audio.c revision 1.89 1 /* $NetBSD: audio.c,v 1.89 2021/02/09 05:53:14 isaki Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Locking: there are three locks per device.
67 *
68 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
69 * returned in the second parameter to hw_if->get_locks(). It is known
70 * as the "thread lock".
71 *
72 * It serializes access to state in all places except the
73 * driver's interrupt service routine. This lock is taken from process
74 * context (example: access to /dev/audio). It is also taken from soft
75 * interrupt handlers in this module, primarily to serialize delivery of
76 * wakeups. This lock may be used/provided by modules external to the
77 * audio subsystem, so take care not to introduce a lock order problem.
78 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79 *
80 * - sc_intr_lock, provided by the underlying driver. This may be either a
81 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
83 * is known as the "interrupt lock".
84 *
85 * It provides atomic access to the device's hardware state, and to audio
86 * channel data that may be accessed by the hardware driver's ISR.
87 * In all places outside the ISR, sc_lock must be held before taking
88 * sc_intr_lock. This is to ensure that groups of hardware operations are
89 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90 *
91 * - sc_exlock, private to this module. This is a variable protected by
92 * sc_lock. It is known as the "critical section".
93 * Some operations release sc_lock in order to allocate memory, to wait
94 * for in-flight I/O to complete, to copy to/from user context, etc.
95 * sc_exlock provides a critical section even under the circumstance.
96 * "+" in following list indicates the interfaces which necessary to be
97 * protected by sc_exlock.
98 *
99 * List of hardware interface methods, and which locks are held when each
100 * is called by this module:
101 *
102 * METHOD INTR THREAD NOTES
103 * ----------------------- ------- ------- -------------------------
104 * open x x +
105 * close x x +
106 * query_format - x
107 * set_format - x
108 * round_blocksize - x
109 * commit_settings - x
110 * init_output x x
111 * init_input x x
112 * start_output x x +
113 * start_input x x +
114 * halt_output x x +
115 * halt_input x x +
116 * speaker_ctl x x
117 * getdev - x
118 * set_port - x +
119 * get_port - x +
120 * query_devinfo - x
121 * allocm - - +
122 * freem - - +
123 * round_buffersize - x
124 * get_props - - Called at attach time
125 * trigger_output x x +
126 * trigger_input x x +
127 * dev_ioctl - x
128 * get_locks - - Called at attach time
129 *
130 * In addition, there is an additional lock.
131 *
132 * - track->lock. This is an atomic variable and is similar to the
133 * "interrupt lock". This is one for each track. If any thread context
134 * (and software interrupt context) and hardware interrupt context who
135 * want to access some variables on this track, they must acquire this
136 * lock before. It protects track's consistency between hardware
137 * interrupt context and others.
138 */
139
140 #include <sys/cdefs.h>
141 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.89 2021/02/09 05:53:14 isaki Exp $");
142
143 #ifdef _KERNEL_OPT
144 #include "audio.h"
145 #include "midi.h"
146 #endif
147
148 #if NAUDIO > 0
149
150 #include <sys/types.h>
151 #include <sys/param.h>
152 #include <sys/atomic.h>
153 #include <sys/audioio.h>
154 #include <sys/conf.h>
155 #include <sys/cpu.h>
156 #include <sys/device.h>
157 #include <sys/fcntl.h>
158 #include <sys/file.h>
159 #include <sys/filedesc.h>
160 #include <sys/intr.h>
161 #include <sys/ioctl.h>
162 #include <sys/kauth.h>
163 #include <sys/kernel.h>
164 #include <sys/kmem.h>
165 #include <sys/malloc.h>
166 #include <sys/mman.h>
167 #include <sys/module.h>
168 #include <sys/poll.h>
169 #include <sys/proc.h>
170 #include <sys/queue.h>
171 #include <sys/select.h>
172 #include <sys/signalvar.h>
173 #include <sys/stat.h>
174 #include <sys/sysctl.h>
175 #include <sys/systm.h>
176 #include <sys/syslog.h>
177 #include <sys/vnode.h>
178
179 #include <dev/audio/audio_if.h>
180 #include <dev/audio/audiovar.h>
181 #include <dev/audio/audiodef.h>
182 #include <dev/audio/linear.h>
183 #include <dev/audio/mulaw.h>
184
185 #include <machine/endian.h>
186
187 #include <uvm/uvm_extern.h>
188
189 #include "ioconf.h"
190
191 /*
192 * 0: No debug logs
193 * 1: action changes like open/close/set_format...
194 * 2: + normal operations like read/write/ioctl...
195 * 3: + TRACEs except interrupt
196 * 4: + TRACEs including interrupt
197 */
198 //#define AUDIO_DEBUG 1
199
200 #if defined(AUDIO_DEBUG)
201
202 int audiodebug = AUDIO_DEBUG;
203 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
204 const char *, va_list);
205 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
206 __printflike(3, 4);
207 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
208 __printflike(3, 4);
209 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
210 __printflike(3, 4);
211
212 /* XXX sloppy memory logger */
213 static void audio_mlog_init(void);
214 static void audio_mlog_free(void);
215 static void audio_mlog_softintr(void *);
216 extern void audio_mlog_flush(void);
217 extern void audio_mlog_printf(const char *, ...);
218
219 static int mlog_refs; /* reference counter */
220 static char *mlog_buf[2]; /* double buffer */
221 static int mlog_buflen; /* buffer length */
222 static int mlog_used; /* used length */
223 static int mlog_full; /* number of dropped lines by buffer full */
224 static int mlog_drop; /* number of dropped lines by busy */
225 static volatile uint32_t mlog_inuse; /* in-use */
226 static int mlog_wpage; /* active page */
227 static void *mlog_sih; /* softint handle */
228
229 static void
230 audio_mlog_init(void)
231 {
232 mlog_refs++;
233 if (mlog_refs > 1)
234 return;
235 mlog_buflen = 4096;
236 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
237 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
238 mlog_used = 0;
239 mlog_full = 0;
240 mlog_drop = 0;
241 mlog_inuse = 0;
242 mlog_wpage = 0;
243 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
244 if (mlog_sih == NULL)
245 printf("%s: softint_establish failed\n", __func__);
246 }
247
248 static void
249 audio_mlog_free(void)
250 {
251 mlog_refs--;
252 if (mlog_refs > 0)
253 return;
254
255 audio_mlog_flush();
256 if (mlog_sih)
257 softint_disestablish(mlog_sih);
258 kmem_free(mlog_buf[0], mlog_buflen);
259 kmem_free(mlog_buf[1], mlog_buflen);
260 }
261
262 /*
263 * Flush memory buffer.
264 * It must not be called from hardware interrupt context.
265 */
266 void
267 audio_mlog_flush(void)
268 {
269 if (mlog_refs == 0)
270 return;
271
272 /* Nothing to do if already in use ? */
273 if (atomic_swap_32(&mlog_inuse, 1) == 1)
274 return;
275
276 int rpage = mlog_wpage;
277 mlog_wpage ^= 1;
278 mlog_buf[mlog_wpage][0] = '\0';
279 mlog_used = 0;
280
281 atomic_swap_32(&mlog_inuse, 0);
282
283 if (mlog_buf[rpage][0] != '\0') {
284 printf("%s", mlog_buf[rpage]);
285 if (mlog_drop > 0)
286 printf("mlog_drop %d\n", mlog_drop);
287 if (mlog_full > 0)
288 printf("mlog_full %d\n", mlog_full);
289 }
290 mlog_full = 0;
291 mlog_drop = 0;
292 }
293
294 static void
295 audio_mlog_softintr(void *cookie)
296 {
297 audio_mlog_flush();
298 }
299
300 void
301 audio_mlog_printf(const char *fmt, ...)
302 {
303 int len;
304 va_list ap;
305
306 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
307 /* already inuse */
308 mlog_drop++;
309 return;
310 }
311
312 va_start(ap, fmt);
313 len = vsnprintf(
314 mlog_buf[mlog_wpage] + mlog_used,
315 mlog_buflen - mlog_used,
316 fmt, ap);
317 va_end(ap);
318
319 mlog_used += len;
320 if (mlog_buflen - mlog_used <= 1) {
321 mlog_full++;
322 }
323
324 atomic_swap_32(&mlog_inuse, 0);
325
326 if (mlog_sih)
327 softint_schedule(mlog_sih);
328 }
329
330 /* trace functions */
331 static void
332 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
333 const char *fmt, va_list ap)
334 {
335 char buf[256];
336 int n;
337
338 n = 0;
339 buf[0] = '\0';
340 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
341 funcname, device_unit(sc->sc_dev), header);
342 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
343
344 if (cpu_intr_p()) {
345 audio_mlog_printf("%s\n", buf);
346 } else {
347 audio_mlog_flush();
348 printf("%s\n", buf);
349 }
350 }
351
352 static void
353 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
354 {
355 va_list ap;
356
357 va_start(ap, fmt);
358 audio_vtrace(sc, funcname, "", fmt, ap);
359 va_end(ap);
360 }
361
362 static void
363 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
364 {
365 char hdr[16];
366 va_list ap;
367
368 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
369 va_start(ap, fmt);
370 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
371 va_end(ap);
372 }
373
374 static void
375 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
376 {
377 char hdr[32];
378 char phdr[16], rhdr[16];
379 va_list ap;
380
381 phdr[0] = '\0';
382 rhdr[0] = '\0';
383 if (file->ptrack)
384 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
385 if (file->rtrack)
386 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
387 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
388
389 va_start(ap, fmt);
390 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
391 va_end(ap);
392 }
393
394 #define DPRINTF(n, fmt...) do { \
395 if (audiodebug >= (n)) { \
396 audio_mlog_flush(); \
397 printf(fmt); \
398 } \
399 } while (0)
400 #define TRACE(n, fmt...) do { \
401 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
402 } while (0)
403 #define TRACET(n, t, fmt...) do { \
404 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
405 } while (0)
406 #define TRACEF(n, f, fmt...) do { \
407 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
408 } while (0)
409
410 struct audio_track_debugbuf {
411 char usrbuf[32];
412 char codec[32];
413 char chvol[32];
414 char chmix[32];
415 char freq[32];
416 char outbuf[32];
417 };
418
419 static void
420 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
421 {
422
423 memset(buf, 0, sizeof(*buf));
424
425 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
426 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
427 if (track->freq.filter)
428 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
429 track->freq.srcbuf.head,
430 track->freq.srcbuf.used,
431 track->freq.srcbuf.capacity);
432 if (track->chmix.filter)
433 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
434 track->chmix.srcbuf.used);
435 if (track->chvol.filter)
436 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
437 track->chvol.srcbuf.used);
438 if (track->codec.filter)
439 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
440 track->codec.srcbuf.used);
441 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
442 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
443 }
444 #else
445 #define DPRINTF(n, fmt...) do { } while (0)
446 #define TRACE(n, fmt, ...) do { } while (0)
447 #define TRACET(n, t, fmt, ...) do { } while (0)
448 #define TRACEF(n, f, fmt, ...) do { } while (0)
449 #endif
450
451 #define SPECIFIED(x) ((x) != ~0)
452 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
453
454 /*
455 * Default hardware blocksize in msec.
456 *
457 * We use 10 msec for most modern platforms. This period is good enough to
458 * play audio and video synchronizely.
459 * In contrast, for very old platforms, this is usually too short and too
460 * severe. Also such platforms usually can not play video confortably, so
461 * it's not so important to make the blocksize shorter. If the platform
462 * defines its own value as __AUDIO_BLK_MS in its <machine/param.h>, it
463 * uses this instead.
464 *
465 * In either case, you can overwrite AUDIO_BLK_MS by your kernel
466 * configuration file if you wish.
467 */
468 #if !defined(AUDIO_BLK_MS)
469 # if defined(__AUDIO_BLK_MS)
470 # define AUDIO_BLK_MS __AUDIO_BLK_MS
471 # else
472 # define AUDIO_BLK_MS (10)
473 # endif
474 #endif
475
476 /* Device timeout in msec */
477 #define AUDIO_TIMEOUT (3000)
478
479 /* #define AUDIO_PM_IDLE */
480 #ifdef AUDIO_PM_IDLE
481 int audio_idle_timeout = 30;
482 #endif
483
484 /* Number of elements of async mixer's pid */
485 #define AM_CAPACITY (4)
486
487 struct portname {
488 const char *name;
489 int mask;
490 };
491
492 static int audiomatch(device_t, cfdata_t, void *);
493 static void audioattach(device_t, device_t, void *);
494 static int audiodetach(device_t, int);
495 static int audioactivate(device_t, enum devact);
496 static void audiochilddet(device_t, device_t);
497 static int audiorescan(device_t, const char *, const int *);
498
499 static int audio_modcmd(modcmd_t, void *);
500
501 #ifdef AUDIO_PM_IDLE
502 static void audio_idle(void *);
503 static void audio_activity(device_t, devactive_t);
504 #endif
505
506 static bool audio_suspend(device_t dv, const pmf_qual_t *);
507 static bool audio_resume(device_t dv, const pmf_qual_t *);
508 static void audio_volume_down(device_t);
509 static void audio_volume_up(device_t);
510 static void audio_volume_toggle(device_t);
511
512 static void audio_mixer_capture(struct audio_softc *);
513 static void audio_mixer_restore(struct audio_softc *);
514
515 static void audio_softintr_rd(void *);
516 static void audio_softintr_wr(void *);
517
518 static void audio_printf(struct audio_softc *, const char *, ...)
519 __printflike(2, 3);
520 static int audio_exlock_mutex_enter(struct audio_softc *);
521 static void audio_exlock_mutex_exit(struct audio_softc *);
522 static int audio_exlock_enter(struct audio_softc *);
523 static void audio_exlock_exit(struct audio_softc *);
524 static struct audio_softc *audio_file_enter(audio_file_t *, struct psref *);
525 static void audio_file_exit(struct audio_softc *, struct psref *);
526 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
527
528 static int audioclose(struct file *);
529 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
530 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
531 static int audioioctl(struct file *, u_long, void *);
532 static int audiopoll(struct file *, int);
533 static int audiokqfilter(struct file *, struct knote *);
534 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
535 struct uvm_object **, int *);
536 static int audiostat(struct file *, struct stat *);
537
538 static void filt_audiowrite_detach(struct knote *);
539 static int filt_audiowrite_event(struct knote *, long);
540 static void filt_audioread_detach(struct knote *);
541 static int filt_audioread_event(struct knote *, long);
542
543 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
544 audio_file_t **);
545 static int audio_close(struct audio_softc *, audio_file_t *);
546 static int audio_unlink(struct audio_softc *, audio_file_t *);
547 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
548 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
549 static void audio_file_clear(struct audio_softc *, audio_file_t *);
550 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
551 struct lwp *, audio_file_t *);
552 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
553 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
554 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
555 struct uvm_object **, int *, audio_file_t *);
556
557 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
558
559 static void audio_pintr(void *);
560 static void audio_rintr(void *);
561
562 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
563
564 static __inline int audio_track_readablebytes(const audio_track_t *);
565 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
566 const struct audio_info *);
567 static int audio_track_setinfo_check(audio_track_t *,
568 audio_format2_t *, const struct audio_prinfo *);
569 static void audio_track_setinfo_water(audio_track_t *,
570 const struct audio_info *);
571 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
572 struct audio_info *);
573 static int audio_hw_set_format(struct audio_softc *, int,
574 const audio_format2_t *, const audio_format2_t *,
575 audio_filter_reg_t *, audio_filter_reg_t *);
576 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
577 audio_file_t *);
578 static bool audio_can_playback(struct audio_softc *);
579 static bool audio_can_capture(struct audio_softc *);
580 static int audio_check_params(audio_format2_t *);
581 static int audio_mixers_init(struct audio_softc *sc, int,
582 const audio_format2_t *, const audio_format2_t *,
583 const audio_filter_reg_t *, const audio_filter_reg_t *);
584 static int audio_select_freq(const struct audio_format *);
585 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
586 static int audio_hw_validate_format(struct audio_softc *, int,
587 const audio_format2_t *);
588 static int audio_mixers_set_format(struct audio_softc *,
589 const struct audio_info *);
590 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
591 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
592 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
593 #if defined(AUDIO_DEBUG)
594 static int audio_sysctl_debug(SYSCTLFN_PROTO);
595 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
596 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
597 #endif
598
599 static void *audio_realloc(void *, size_t);
600 static int audio_realloc_usrbuf(audio_track_t *, int);
601 static void audio_free_usrbuf(audio_track_t *);
602
603 static audio_track_t *audio_track_create(struct audio_softc *,
604 audio_trackmixer_t *);
605 static void audio_track_destroy(audio_track_t *);
606 static audio_filter_t audio_track_get_codec(audio_track_t *,
607 const audio_format2_t *, const audio_format2_t *);
608 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
609 static void audio_track_play(audio_track_t *);
610 static int audio_track_drain(struct audio_softc *, audio_track_t *);
611 static void audio_track_record(audio_track_t *);
612 static void audio_track_clear(struct audio_softc *, audio_track_t *);
613
614 static int audio_mixer_init(struct audio_softc *, int,
615 const audio_format2_t *, const audio_filter_reg_t *);
616 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
617 static void audio_pmixer_start(struct audio_softc *, bool);
618 static void audio_pmixer_process(struct audio_softc *);
619 static void audio_pmixer_agc(audio_trackmixer_t *, int);
620 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
621 static void audio_pmixer_output(struct audio_softc *);
622 static int audio_pmixer_halt(struct audio_softc *);
623 static void audio_rmixer_start(struct audio_softc *);
624 static void audio_rmixer_process(struct audio_softc *);
625 static void audio_rmixer_input(struct audio_softc *);
626 static int audio_rmixer_halt(struct audio_softc *);
627
628 static void mixer_init(struct audio_softc *);
629 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
630 static int mixer_close(struct audio_softc *, audio_file_t *);
631 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
632 static void mixer_async_add(struct audio_softc *, pid_t);
633 static void mixer_async_remove(struct audio_softc *, pid_t);
634 static void mixer_signal(struct audio_softc *);
635
636 static int au_portof(struct audio_softc *, char *, int);
637
638 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
639 mixer_devinfo_t *, const struct portname *);
640 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
641 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
642 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
643 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
644 u_int *, u_char *);
645 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
646 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
647 static int au_set_monitor_gain(struct audio_softc *, int);
648 static int au_get_monitor_gain(struct audio_softc *);
649 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
650 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
651
652 static __inline struct audio_params
653 format2_to_params(const audio_format2_t *f2)
654 {
655 audio_params_t p;
656
657 /* validbits/precision <-> precision/stride */
658 p.sample_rate = f2->sample_rate;
659 p.channels = f2->channels;
660 p.encoding = f2->encoding;
661 p.validbits = f2->precision;
662 p.precision = f2->stride;
663 return p;
664 }
665
666 static __inline audio_format2_t
667 params_to_format2(const struct audio_params *p)
668 {
669 audio_format2_t f2;
670
671 /* precision/stride <-> validbits/precision */
672 f2.sample_rate = p->sample_rate;
673 f2.channels = p->channels;
674 f2.encoding = p->encoding;
675 f2.precision = p->validbits;
676 f2.stride = p->precision;
677 return f2;
678 }
679
680 /* Return true if this track is a playback track. */
681 static __inline bool
682 audio_track_is_playback(const audio_track_t *track)
683 {
684
685 return ((track->mode & AUMODE_PLAY) != 0);
686 }
687
688 /* Return true if this track is a recording track. */
689 static __inline bool
690 audio_track_is_record(const audio_track_t *track)
691 {
692
693 return ((track->mode & AUMODE_RECORD) != 0);
694 }
695
696 #if 0 /* XXX Not used yet */
697 /*
698 * Convert 0..255 volume used in userland to internal presentation 0..256.
699 */
700 static __inline u_int
701 audio_volume_to_inner(u_int v)
702 {
703
704 return v < 127 ? v : v + 1;
705 }
706
707 /*
708 * Convert 0..256 internal presentation to 0..255 volume used in userland.
709 */
710 static __inline u_int
711 audio_volume_to_outer(u_int v)
712 {
713
714 return v < 127 ? v : v - 1;
715 }
716 #endif /* 0 */
717
718 static dev_type_open(audioopen);
719 /* XXXMRG use more dev_type_xxx */
720
721 const struct cdevsw audio_cdevsw = {
722 .d_open = audioopen,
723 .d_close = noclose,
724 .d_read = noread,
725 .d_write = nowrite,
726 .d_ioctl = noioctl,
727 .d_stop = nostop,
728 .d_tty = notty,
729 .d_poll = nopoll,
730 .d_mmap = nommap,
731 .d_kqfilter = nokqfilter,
732 .d_discard = nodiscard,
733 .d_flag = D_OTHER | D_MPSAFE
734 };
735
736 const struct fileops audio_fileops = {
737 .fo_name = "audio",
738 .fo_read = audioread,
739 .fo_write = audiowrite,
740 .fo_ioctl = audioioctl,
741 .fo_fcntl = fnullop_fcntl,
742 .fo_stat = audiostat,
743 .fo_poll = audiopoll,
744 .fo_close = audioclose,
745 .fo_mmap = audiommap,
746 .fo_kqfilter = audiokqfilter,
747 .fo_restart = fnullop_restart
748 };
749
750 /* The default audio mode: 8 kHz mono mu-law */
751 static const struct audio_params audio_default = {
752 .sample_rate = 8000,
753 .encoding = AUDIO_ENCODING_ULAW,
754 .precision = 8,
755 .validbits = 8,
756 .channels = 1,
757 };
758
759 static const char *encoding_names[] = {
760 "none",
761 AudioEmulaw,
762 AudioEalaw,
763 "pcm16",
764 "pcm8",
765 AudioEadpcm,
766 AudioEslinear_le,
767 AudioEslinear_be,
768 AudioEulinear_le,
769 AudioEulinear_be,
770 AudioEslinear,
771 AudioEulinear,
772 AudioEmpeg_l1_stream,
773 AudioEmpeg_l1_packets,
774 AudioEmpeg_l1_system,
775 AudioEmpeg_l2_stream,
776 AudioEmpeg_l2_packets,
777 AudioEmpeg_l2_system,
778 AudioEac3,
779 };
780
781 /*
782 * Returns encoding name corresponding to AUDIO_ENCODING_*.
783 * Note that it may return a local buffer because it is mainly for debugging.
784 */
785 const char *
786 audio_encoding_name(int encoding)
787 {
788 static char buf[16];
789
790 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
791 return encoding_names[encoding];
792 } else {
793 snprintf(buf, sizeof(buf), "enc=%d", encoding);
794 return buf;
795 }
796 }
797
798 /*
799 * Supported encodings used by AUDIO_GETENC.
800 * index and flags are set by code.
801 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
802 */
803 static const audio_encoding_t audio_encodings[] = {
804 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
805 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
806 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
807 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
808 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
809 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
810 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
811 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
812 #if defined(AUDIO_SUPPORT_LINEAR24)
813 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
814 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
815 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
816 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
817 #endif
818 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
819 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
820 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
821 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
822 };
823
824 static const struct portname itable[] = {
825 { AudioNmicrophone, AUDIO_MICROPHONE },
826 { AudioNline, AUDIO_LINE_IN },
827 { AudioNcd, AUDIO_CD },
828 { 0, 0 }
829 };
830 static const struct portname otable[] = {
831 { AudioNspeaker, AUDIO_SPEAKER },
832 { AudioNheadphone, AUDIO_HEADPHONE },
833 { AudioNline, AUDIO_LINE_OUT },
834 { 0, 0 }
835 };
836
837 static struct psref_class *audio_psref_class __read_mostly;
838
839 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
840 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
841 audiochilddet, DVF_DETACH_SHUTDOWN);
842
843 static int
844 audiomatch(device_t parent, cfdata_t match, void *aux)
845 {
846 struct audio_attach_args *sa;
847
848 sa = aux;
849 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
850 __func__, sa->type, sa, sa->hwif);
851 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
852 }
853
854 static void
855 audioattach(device_t parent, device_t self, void *aux)
856 {
857 struct audio_softc *sc;
858 struct audio_attach_args *sa;
859 const struct audio_hw_if *hw_if;
860 audio_format2_t phwfmt;
861 audio_format2_t rhwfmt;
862 audio_filter_reg_t pfil;
863 audio_filter_reg_t rfil;
864 const struct sysctlnode *node;
865 void *hdlp;
866 bool has_playback;
867 bool has_capture;
868 bool has_indep;
869 bool has_fulldup;
870 int mode;
871 int error;
872
873 sc = device_private(self);
874 sc->sc_dev = self;
875 sa = (struct audio_attach_args *)aux;
876 hw_if = sa->hwif;
877 hdlp = sa->hdl;
878
879 if (hw_if == NULL) {
880 panic("audioattach: missing hw_if method");
881 }
882 if (hw_if->get_locks == NULL || hw_if->get_props == NULL) {
883 aprint_error(": missing mandatory method\n");
884 return;
885 }
886
887 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
888 sc->sc_props = hw_if->get_props(hdlp);
889
890 has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
891 has_capture = (sc->sc_props & AUDIO_PROP_CAPTURE);
892 has_indep = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
893 has_fulldup = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
894
895 #ifdef DIAGNOSTIC
896 if (hw_if->query_format == NULL ||
897 hw_if->set_format == NULL ||
898 hw_if->getdev == NULL ||
899 hw_if->set_port == NULL ||
900 hw_if->get_port == NULL ||
901 hw_if->query_devinfo == NULL) {
902 aprint_error(": missing mandatory method\n");
903 return;
904 }
905 if (has_playback) {
906 if ((hw_if->start_output == NULL &&
907 hw_if->trigger_output == NULL) ||
908 hw_if->halt_output == NULL) {
909 aprint_error(": missing playback method\n");
910 }
911 }
912 if (has_capture) {
913 if ((hw_if->start_input == NULL &&
914 hw_if->trigger_input == NULL) ||
915 hw_if->halt_input == NULL) {
916 aprint_error(": missing capture method\n");
917 }
918 }
919 #endif
920
921 sc->hw_if = hw_if;
922 sc->hw_hdl = hdlp;
923 sc->hw_dev = parent;
924
925 sc->sc_exlock = 1;
926 sc->sc_blk_ms = AUDIO_BLK_MS;
927 SLIST_INIT(&sc->sc_files);
928 cv_init(&sc->sc_exlockcv, "audiolk");
929 sc->sc_am_capacity = 0;
930 sc->sc_am_used = 0;
931 sc->sc_am = NULL;
932
933 /* MMAP is now supported by upper layer. */
934 sc->sc_props |= AUDIO_PROP_MMAP;
935
936 KASSERT(has_playback || has_capture);
937 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
938 if (!has_playback || !has_capture) {
939 KASSERT(!has_indep);
940 KASSERT(!has_fulldup);
941 }
942
943 mode = 0;
944 if (has_playback) {
945 aprint_normal(": playback");
946 mode |= AUMODE_PLAY;
947 }
948 if (has_capture) {
949 aprint_normal("%c capture", has_playback ? ',' : ':');
950 mode |= AUMODE_RECORD;
951 }
952 if (has_playback && has_capture) {
953 if (has_fulldup)
954 aprint_normal(", full duplex");
955 else
956 aprint_normal(", half duplex");
957
958 if (has_indep)
959 aprint_normal(", independent");
960 }
961
962 aprint_naive("\n");
963 aprint_normal("\n");
964
965 /* probe hw params */
966 memset(&phwfmt, 0, sizeof(phwfmt));
967 memset(&rhwfmt, 0, sizeof(rhwfmt));
968 memset(&pfil, 0, sizeof(pfil));
969 memset(&rfil, 0, sizeof(rfil));
970 if (has_indep) {
971 int perror, rerror;
972
973 /* On independent devices, probe separately. */
974 perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
975 rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
976 if (perror && rerror) {
977 aprint_error_dev(self,
978 "audio_hw_probe failed: perror=%d, rerror=%d\n",
979 perror, rerror);
980 goto bad;
981 }
982 if (perror) {
983 mode &= ~AUMODE_PLAY;
984 aprint_error_dev(self, "audio_hw_probe failed: "
985 "errno=%d, playback disabled\n", perror);
986 }
987 if (rerror) {
988 mode &= ~AUMODE_RECORD;
989 aprint_error_dev(self, "audio_hw_probe failed: "
990 "errno=%d, capture disabled\n", rerror);
991 }
992 } else {
993 /*
994 * On non independent devices or uni-directional devices,
995 * probe once (simultaneously).
996 */
997 audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
998 error = audio_hw_probe(sc, fmt, mode);
999 if (error) {
1000 aprint_error_dev(self,
1001 "audio_hw_probe failed: errno=%d\n", error);
1002 goto bad;
1003 }
1004 if (has_playback && has_capture)
1005 rhwfmt = phwfmt;
1006 }
1007
1008 /* Init hardware. */
1009 /* hw_probe() also validates [pr]hwfmt. */
1010 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1011 if (error) {
1012 aprint_error_dev(self,
1013 "audio_hw_set_format failed: errno=%d\n", error);
1014 goto bad;
1015 }
1016
1017 /*
1018 * Init track mixers. If at least one direction is available on
1019 * attach time, we assume a success.
1020 */
1021 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1022 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
1023 aprint_error_dev(self,
1024 "audio_mixers_init failed: errno=%d\n", error);
1025 goto bad;
1026 }
1027
1028 sc->sc_psz = pserialize_create();
1029 psref_target_init(&sc->sc_psref, audio_psref_class);
1030
1031 selinit(&sc->sc_wsel);
1032 selinit(&sc->sc_rsel);
1033
1034 /* Initial parameter of /dev/sound */
1035 sc->sc_sound_pparams = params_to_format2(&audio_default);
1036 sc->sc_sound_rparams = params_to_format2(&audio_default);
1037 sc->sc_sound_ppause = false;
1038 sc->sc_sound_rpause = false;
1039
1040 /* XXX TODO: consider about sc_ai */
1041
1042 mixer_init(sc);
1043 TRACE(2, "inputs ports=0x%x, input master=%d, "
1044 "output ports=0x%x, output master=%d",
1045 sc->sc_inports.allports, sc->sc_inports.master,
1046 sc->sc_outports.allports, sc->sc_outports.master);
1047
1048 sysctl_createv(&sc->sc_log, 0, NULL, &node,
1049 0,
1050 CTLTYPE_NODE, device_xname(sc->sc_dev),
1051 SYSCTL_DESCR("audio test"),
1052 NULL, 0,
1053 NULL, 0,
1054 CTL_HW,
1055 CTL_CREATE, CTL_EOL);
1056
1057 if (node != NULL) {
1058 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1059 CTLFLAG_READWRITE,
1060 CTLTYPE_INT, "blk_ms",
1061 SYSCTL_DESCR("blocksize in msec"),
1062 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1063 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1064
1065 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1066 CTLFLAG_READWRITE,
1067 CTLTYPE_BOOL, "multiuser",
1068 SYSCTL_DESCR("allow multiple user access"),
1069 audio_sysctl_multiuser, 0, (void *)sc, 0,
1070 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1071
1072 #if defined(AUDIO_DEBUG)
1073 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1074 CTLFLAG_READWRITE,
1075 CTLTYPE_INT, "debug",
1076 SYSCTL_DESCR("debug level (0..4)"),
1077 audio_sysctl_debug, 0, (void *)sc, 0,
1078 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1079 #endif
1080 }
1081
1082 #ifdef AUDIO_PM_IDLE
1083 callout_init(&sc->sc_idle_counter, 0);
1084 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1085 #endif
1086
1087 if (!pmf_device_register(self, audio_suspend, audio_resume))
1088 aprint_error_dev(self, "couldn't establish power handler\n");
1089 #ifdef AUDIO_PM_IDLE
1090 if (!device_active_register(self, audio_activity))
1091 aprint_error_dev(self, "couldn't register activity handler\n");
1092 #endif
1093
1094 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1095 audio_volume_down, true))
1096 aprint_error_dev(self, "couldn't add volume down handler\n");
1097 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1098 audio_volume_up, true))
1099 aprint_error_dev(self, "couldn't add volume up handler\n");
1100 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1101 audio_volume_toggle, true))
1102 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1103
1104 #ifdef AUDIO_PM_IDLE
1105 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1106 #endif
1107
1108 #if defined(AUDIO_DEBUG)
1109 audio_mlog_init();
1110 #endif
1111
1112 audiorescan(self, "audio", NULL);
1113 sc->sc_exlock = 0;
1114 return;
1115
1116 bad:
1117 /* Clearing hw_if means that device is attached but disabled. */
1118 sc->hw_if = NULL;
1119 sc->sc_exlock = 0;
1120 aprint_error_dev(sc->sc_dev, "disabled\n");
1121 return;
1122 }
1123
1124 /*
1125 * Initialize hardware mixer.
1126 * This function is called from audioattach().
1127 */
1128 static void
1129 mixer_init(struct audio_softc *sc)
1130 {
1131 mixer_devinfo_t mi;
1132 int iclass, mclass, oclass, rclass;
1133 int record_master_found, record_source_found;
1134
1135 iclass = mclass = oclass = rclass = -1;
1136 sc->sc_inports.index = -1;
1137 sc->sc_inports.master = -1;
1138 sc->sc_inports.nports = 0;
1139 sc->sc_inports.isenum = false;
1140 sc->sc_inports.allports = 0;
1141 sc->sc_inports.isdual = false;
1142 sc->sc_inports.mixerout = -1;
1143 sc->sc_inports.cur_port = -1;
1144 sc->sc_outports.index = -1;
1145 sc->sc_outports.master = -1;
1146 sc->sc_outports.nports = 0;
1147 sc->sc_outports.isenum = false;
1148 sc->sc_outports.allports = 0;
1149 sc->sc_outports.isdual = false;
1150 sc->sc_outports.mixerout = -1;
1151 sc->sc_outports.cur_port = -1;
1152 sc->sc_monitor_port = -1;
1153 /*
1154 * Read through the underlying driver's list, picking out the class
1155 * names from the mixer descriptions. We'll need them to decode the
1156 * mixer descriptions on the next pass through the loop.
1157 */
1158 mutex_enter(sc->sc_lock);
1159 for(mi.index = 0; ; mi.index++) {
1160 if (audio_query_devinfo(sc, &mi) != 0)
1161 break;
1162 /*
1163 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1164 * All the other types describe an actual mixer.
1165 */
1166 if (mi.type == AUDIO_MIXER_CLASS) {
1167 if (strcmp(mi.label.name, AudioCinputs) == 0)
1168 iclass = mi.mixer_class;
1169 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1170 mclass = mi.mixer_class;
1171 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1172 oclass = mi.mixer_class;
1173 if (strcmp(mi.label.name, AudioCrecord) == 0)
1174 rclass = mi.mixer_class;
1175 }
1176 }
1177 mutex_exit(sc->sc_lock);
1178
1179 /* Allocate save area. Ensure non-zero allocation. */
1180 sc->sc_nmixer_states = mi.index;
1181 sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
1182 (sc->sc_nmixer_states + 1), KM_SLEEP);
1183
1184 /*
1185 * This is where we assign each control in the "audio" model, to the
1186 * underlying "mixer" control. We walk through the whole list once,
1187 * assigning likely candidates as we come across them.
1188 */
1189 record_master_found = 0;
1190 record_source_found = 0;
1191 mutex_enter(sc->sc_lock);
1192 for(mi.index = 0; ; mi.index++) {
1193 if (audio_query_devinfo(sc, &mi) != 0)
1194 break;
1195 KASSERT(mi.index < sc->sc_nmixer_states);
1196 if (mi.type == AUDIO_MIXER_CLASS)
1197 continue;
1198 if (mi.mixer_class == iclass) {
1199 /*
1200 * AudioCinputs is only a fallback, when we don't
1201 * find what we're looking for in AudioCrecord, so
1202 * check the flags before accepting one of these.
1203 */
1204 if (strcmp(mi.label.name, AudioNmaster) == 0
1205 && record_master_found == 0)
1206 sc->sc_inports.master = mi.index;
1207 if (strcmp(mi.label.name, AudioNsource) == 0
1208 && record_source_found == 0) {
1209 if (mi.type == AUDIO_MIXER_ENUM) {
1210 int i;
1211 for(i = 0; i < mi.un.e.num_mem; i++)
1212 if (strcmp(mi.un.e.member[i].label.name,
1213 AudioNmixerout) == 0)
1214 sc->sc_inports.mixerout =
1215 mi.un.e.member[i].ord;
1216 }
1217 au_setup_ports(sc, &sc->sc_inports, &mi,
1218 itable);
1219 }
1220 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1221 sc->sc_outports.master == -1)
1222 sc->sc_outports.master = mi.index;
1223 } else if (mi.mixer_class == mclass) {
1224 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1225 sc->sc_monitor_port = mi.index;
1226 } else if (mi.mixer_class == oclass) {
1227 if (strcmp(mi.label.name, AudioNmaster) == 0)
1228 sc->sc_outports.master = mi.index;
1229 if (strcmp(mi.label.name, AudioNselect) == 0)
1230 au_setup_ports(sc, &sc->sc_outports, &mi,
1231 otable);
1232 } else if (mi.mixer_class == rclass) {
1233 /*
1234 * These are the preferred mixers for the audio record
1235 * controls, so set the flags here, but don't check.
1236 */
1237 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1238 sc->sc_inports.master = mi.index;
1239 record_master_found = 1;
1240 }
1241 #if 1 /* Deprecated. Use AudioNmaster. */
1242 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1243 sc->sc_inports.master = mi.index;
1244 record_master_found = 1;
1245 }
1246 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1247 sc->sc_inports.master = mi.index;
1248 record_master_found = 1;
1249 }
1250 #endif
1251 if (strcmp(mi.label.name, AudioNsource) == 0) {
1252 if (mi.type == AUDIO_MIXER_ENUM) {
1253 int i;
1254 for(i = 0; i < mi.un.e.num_mem; i++)
1255 if (strcmp(mi.un.e.member[i].label.name,
1256 AudioNmixerout) == 0)
1257 sc->sc_inports.mixerout =
1258 mi.un.e.member[i].ord;
1259 }
1260 au_setup_ports(sc, &sc->sc_inports, &mi,
1261 itable);
1262 record_source_found = 1;
1263 }
1264 }
1265 }
1266 mutex_exit(sc->sc_lock);
1267 }
1268
1269 static int
1270 audioactivate(device_t self, enum devact act)
1271 {
1272 struct audio_softc *sc = device_private(self);
1273
1274 switch (act) {
1275 case DVACT_DEACTIVATE:
1276 mutex_enter(sc->sc_lock);
1277 sc->sc_dying = true;
1278 cv_broadcast(&sc->sc_exlockcv);
1279 mutex_exit(sc->sc_lock);
1280 return 0;
1281 default:
1282 return EOPNOTSUPP;
1283 }
1284 }
1285
1286 static int
1287 audiodetach(device_t self, int flags)
1288 {
1289 struct audio_softc *sc;
1290 struct audio_file *file;
1291 int error;
1292
1293 sc = device_private(self);
1294 TRACE(2, "flags=%d", flags);
1295
1296 /* device is not initialized */
1297 if (sc->hw_if == NULL)
1298 return 0;
1299
1300 /* Start draining existing accessors of the device. */
1301 error = config_detach_children(self, flags);
1302 if (error)
1303 return error;
1304
1305 /* delete sysctl nodes */
1306 sysctl_teardown(&sc->sc_log);
1307
1308 mutex_enter(sc->sc_lock);
1309 sc->sc_dying = true;
1310 cv_broadcast(&sc->sc_exlockcv);
1311 if (sc->sc_pmixer)
1312 cv_broadcast(&sc->sc_pmixer->outcv);
1313 if (sc->sc_rmixer)
1314 cv_broadcast(&sc->sc_rmixer->outcv);
1315
1316 /* Prevent new users */
1317 SLIST_FOREACH(file, &sc->sc_files, entry) {
1318 atomic_store_relaxed(&file->dying, true);
1319 }
1320
1321 /*
1322 * Wait for existing users to drain.
1323 * - pserialize_perform waits for all pserialize_read sections on
1324 * all CPUs; after this, no more new psref_acquire can happen.
1325 * - psref_target_destroy waits for all extant acquired psrefs to
1326 * be psref_released.
1327 */
1328 pserialize_perform(sc->sc_psz);
1329 mutex_exit(sc->sc_lock);
1330 psref_target_destroy(&sc->sc_psref, audio_psref_class);
1331
1332 /*
1333 * We are now guaranteed that there are no calls to audio fileops
1334 * that hold sc, and any new calls with files that were for sc will
1335 * fail. Thus, we now have exclusive access to the softc.
1336 */
1337 sc->sc_exlock = 1;
1338
1339 /*
1340 * Clean up all open instances.
1341 * Here, we no longer need any locks to traverse sc_files.
1342 */
1343 while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
1344 audio_unlink(sc, file);
1345 }
1346
1347 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1348 audio_volume_down, true);
1349 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1350 audio_volume_up, true);
1351 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1352 audio_volume_toggle, true);
1353
1354 #ifdef AUDIO_PM_IDLE
1355 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1356
1357 device_active_deregister(self, audio_activity);
1358 #endif
1359
1360 pmf_device_deregister(self);
1361
1362 /* Free resources */
1363 if (sc->sc_pmixer) {
1364 audio_mixer_destroy(sc, sc->sc_pmixer);
1365 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1366 }
1367 if (sc->sc_rmixer) {
1368 audio_mixer_destroy(sc, sc->sc_rmixer);
1369 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1370 }
1371 if (sc->sc_am)
1372 kern_free(sc->sc_am);
1373
1374 seldestroy(&sc->sc_wsel);
1375 seldestroy(&sc->sc_rsel);
1376
1377 #ifdef AUDIO_PM_IDLE
1378 callout_destroy(&sc->sc_idle_counter);
1379 #endif
1380
1381 cv_destroy(&sc->sc_exlockcv);
1382
1383 #if defined(AUDIO_DEBUG)
1384 audio_mlog_free();
1385 #endif
1386
1387 return 0;
1388 }
1389
1390 static void
1391 audiochilddet(device_t self, device_t child)
1392 {
1393
1394 /* we hold no child references, so do nothing */
1395 }
1396
1397 static int
1398 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1399 {
1400
1401 if (config_match(parent, cf, aux))
1402 config_attach_loc(parent, cf, locs, aux, NULL);
1403
1404 return 0;
1405 }
1406
1407 static int
1408 audiorescan(device_t self, const char *ifattr, const int *flags)
1409 {
1410 struct audio_softc *sc = device_private(self);
1411
1412 if (!ifattr_match(ifattr, "audio"))
1413 return 0;
1414
1415 config_search_loc(audiosearch, sc->sc_dev, "audio", NULL, NULL);
1416
1417 return 0;
1418 }
1419
1420 /*
1421 * Called from hardware driver. This is where the MI audio driver gets
1422 * probed/attached to the hardware driver.
1423 */
1424 device_t
1425 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1426 {
1427 struct audio_attach_args arg;
1428
1429 #ifdef DIAGNOSTIC
1430 if (ahwp == NULL) {
1431 aprint_error("audio_attach_mi: NULL\n");
1432 return 0;
1433 }
1434 #endif
1435 arg.type = AUDIODEV_TYPE_AUDIO;
1436 arg.hwif = ahwp;
1437 arg.hdl = hdlp;
1438 return config_found(dev, &arg, audioprint);
1439 }
1440
1441 /*
1442 * audio_printf() outputs fmt... with the audio device name and MD device
1443 * name prefixed. If the message is considered to be related to the MD
1444 * driver, use this one instead of device_printf().
1445 */
1446 static void
1447 audio_printf(struct audio_softc *sc, const char *fmt, ...)
1448 {
1449 va_list ap;
1450
1451 printf("%s(%s): ", device_xname(sc->sc_dev), device_xname(sc->hw_dev));
1452 va_start(ap, fmt);
1453 vprintf(fmt, ap);
1454 va_end(ap);
1455 }
1456
1457 /*
1458 * Enter critical section and also keep sc_lock.
1459 * If successful, returns 0 with sc_lock held. Otherwise returns errno.
1460 * Must be called without sc_lock held.
1461 */
1462 static int
1463 audio_exlock_mutex_enter(struct audio_softc *sc)
1464 {
1465 int error;
1466
1467 mutex_enter(sc->sc_lock);
1468 if (sc->sc_dying) {
1469 mutex_exit(sc->sc_lock);
1470 return EIO;
1471 }
1472
1473 while (__predict_false(sc->sc_exlock != 0)) {
1474 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1475 if (sc->sc_dying)
1476 error = EIO;
1477 if (error) {
1478 mutex_exit(sc->sc_lock);
1479 return error;
1480 }
1481 }
1482
1483 /* Acquire */
1484 sc->sc_exlock = 1;
1485 return 0;
1486 }
1487
1488 /*
1489 * Exit critical section and exit sc_lock.
1490 * Must be called with sc_lock held.
1491 */
1492 static void
1493 audio_exlock_mutex_exit(struct audio_softc *sc)
1494 {
1495
1496 KASSERT(mutex_owned(sc->sc_lock));
1497
1498 sc->sc_exlock = 0;
1499 cv_broadcast(&sc->sc_exlockcv);
1500 mutex_exit(sc->sc_lock);
1501 }
1502
1503 /*
1504 * Enter critical section.
1505 * If successful, it returns 0. Otherwise returns errno.
1506 * Must be called without sc_lock held.
1507 * This function returns without sc_lock held.
1508 */
1509 static int
1510 audio_exlock_enter(struct audio_softc *sc)
1511 {
1512 int error;
1513
1514 error = audio_exlock_mutex_enter(sc);
1515 if (error)
1516 return error;
1517 mutex_exit(sc->sc_lock);
1518 return 0;
1519 }
1520
1521 /*
1522 * Exit critical section.
1523 * Must be called without sc_lock held.
1524 */
1525 static void
1526 audio_exlock_exit(struct audio_softc *sc)
1527 {
1528
1529 mutex_enter(sc->sc_lock);
1530 audio_exlock_mutex_exit(sc);
1531 }
1532
1533 /*
1534 * Acquire sc from file, and increment the psref count.
1535 * If successful, returns sc. Otherwise returns NULL.
1536 */
1537 struct audio_softc *
1538 audio_file_enter(audio_file_t *file, struct psref *refp)
1539 {
1540 int s;
1541 bool dying;
1542
1543 /* psref(9) forbids to migrate CPUs */
1544 curlwp_bind();
1545
1546 /* Block audiodetach while we acquire a reference */
1547 s = pserialize_read_enter();
1548
1549 /* If close or audiodetach already ran, tough -- no more audio */
1550 dying = atomic_load_relaxed(&file->dying);
1551 if (dying) {
1552 pserialize_read_exit(s);
1553 return NULL;
1554 }
1555
1556 /* Acquire a reference */
1557 psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
1558
1559 /* Now sc won't go away until we drop the reference count */
1560 pserialize_read_exit(s);
1561
1562 return file->sc;
1563 }
1564
1565 /*
1566 * Decrement the psref count.
1567 */
1568 void
1569 audio_file_exit(struct audio_softc *sc, struct psref *refp)
1570 {
1571
1572 psref_release(refp, &sc->sc_psref, audio_psref_class);
1573 }
1574
1575 /*
1576 * Wait for I/O to complete, releasing sc_lock.
1577 * Must be called with sc_lock held.
1578 */
1579 static int
1580 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1581 {
1582 int error;
1583
1584 KASSERT(track);
1585 KASSERT(mutex_owned(sc->sc_lock));
1586
1587 /* Wait for pending I/O to complete. */
1588 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1589 mstohz(AUDIO_TIMEOUT));
1590 if (sc->sc_suspending) {
1591 /* If it's about to suspend, ignore timeout error. */
1592 if (error == EWOULDBLOCK) {
1593 TRACET(2, track, "timeout (suspending)");
1594 return 0;
1595 }
1596 }
1597 if (sc->sc_dying) {
1598 error = EIO;
1599 }
1600 if (error) {
1601 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1602 if (error == EWOULDBLOCK)
1603 audio_printf(sc, "device timeout\n");
1604 } else {
1605 TRACET(3, track, "wakeup");
1606 }
1607 return error;
1608 }
1609
1610 /*
1611 * Try to acquire track lock.
1612 * It doesn't block if the track lock is already aquired.
1613 * Returns true if the track lock was acquired, or false if the track
1614 * lock was already acquired.
1615 */
1616 static __inline bool
1617 audio_track_lock_tryenter(audio_track_t *track)
1618 {
1619 return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1620 }
1621
1622 /*
1623 * Acquire track lock.
1624 */
1625 static __inline void
1626 audio_track_lock_enter(audio_track_t *track)
1627 {
1628 /* Don't sleep here. */
1629 while (audio_track_lock_tryenter(track) == false)
1630 ;
1631 }
1632
1633 /*
1634 * Release track lock.
1635 */
1636 static __inline void
1637 audio_track_lock_exit(audio_track_t *track)
1638 {
1639 atomic_swap_uint(&track->lock, 0);
1640 }
1641
1642
1643 static int
1644 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1645 {
1646 struct audio_softc *sc;
1647 int error;
1648
1649 /* Find the device */
1650 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1651 if (sc == NULL || sc->hw_if == NULL)
1652 return ENXIO;
1653
1654 error = audio_exlock_enter(sc);
1655 if (error)
1656 return error;
1657
1658 device_active(sc->sc_dev, DVA_SYSTEM);
1659 switch (AUDIODEV(dev)) {
1660 case SOUND_DEVICE:
1661 case AUDIO_DEVICE:
1662 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1663 break;
1664 case AUDIOCTL_DEVICE:
1665 error = audioctl_open(dev, sc, flags, ifmt, l);
1666 break;
1667 case MIXER_DEVICE:
1668 error = mixer_open(dev, sc, flags, ifmt, l);
1669 break;
1670 default:
1671 error = ENXIO;
1672 break;
1673 }
1674 audio_exlock_exit(sc);
1675
1676 return error;
1677 }
1678
1679 static int
1680 audioclose(struct file *fp)
1681 {
1682 struct audio_softc *sc;
1683 struct psref sc_ref;
1684 audio_file_t *file;
1685 int error;
1686 dev_t dev;
1687
1688 KASSERT(fp->f_audioctx);
1689 file = fp->f_audioctx;
1690 dev = file->dev;
1691 error = 0;
1692
1693 /*
1694 * audioclose() must
1695 * - unplug track from the trackmixer (and unplug anything from softc),
1696 * if sc exists.
1697 * - free all memory objects, regardless of sc.
1698 */
1699
1700 sc = audio_file_enter(file, &sc_ref);
1701 if (sc) {
1702 switch (AUDIODEV(dev)) {
1703 case SOUND_DEVICE:
1704 case AUDIO_DEVICE:
1705 error = audio_close(sc, file);
1706 break;
1707 case AUDIOCTL_DEVICE:
1708 error = 0;
1709 break;
1710 case MIXER_DEVICE:
1711 error = mixer_close(sc, file);
1712 break;
1713 default:
1714 error = ENXIO;
1715 break;
1716 }
1717
1718 audio_file_exit(sc, &sc_ref);
1719 }
1720
1721 /* Free memory objects anyway */
1722 TRACEF(2, file, "free memory");
1723 if (file->ptrack)
1724 audio_track_destroy(file->ptrack);
1725 if (file->rtrack)
1726 audio_track_destroy(file->rtrack);
1727 kmem_free(file, sizeof(*file));
1728 fp->f_audioctx = NULL;
1729
1730 return error;
1731 }
1732
1733 static int
1734 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1735 int ioflag)
1736 {
1737 struct audio_softc *sc;
1738 struct psref sc_ref;
1739 audio_file_t *file;
1740 int error;
1741 dev_t dev;
1742
1743 KASSERT(fp->f_audioctx);
1744 file = fp->f_audioctx;
1745 dev = file->dev;
1746
1747 sc = audio_file_enter(file, &sc_ref);
1748 if (sc == NULL)
1749 return EIO;
1750
1751 if (fp->f_flag & O_NONBLOCK)
1752 ioflag |= IO_NDELAY;
1753
1754 switch (AUDIODEV(dev)) {
1755 case SOUND_DEVICE:
1756 case AUDIO_DEVICE:
1757 error = audio_read(sc, uio, ioflag, file);
1758 break;
1759 case AUDIOCTL_DEVICE:
1760 case MIXER_DEVICE:
1761 error = ENODEV;
1762 break;
1763 default:
1764 error = ENXIO;
1765 break;
1766 }
1767
1768 audio_file_exit(sc, &sc_ref);
1769 return error;
1770 }
1771
1772 static int
1773 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1774 int ioflag)
1775 {
1776 struct audio_softc *sc;
1777 struct psref sc_ref;
1778 audio_file_t *file;
1779 int error;
1780 dev_t dev;
1781
1782 KASSERT(fp->f_audioctx);
1783 file = fp->f_audioctx;
1784 dev = file->dev;
1785
1786 sc = audio_file_enter(file, &sc_ref);
1787 if (sc == NULL)
1788 return EIO;
1789
1790 if (fp->f_flag & O_NONBLOCK)
1791 ioflag |= IO_NDELAY;
1792
1793 switch (AUDIODEV(dev)) {
1794 case SOUND_DEVICE:
1795 case AUDIO_DEVICE:
1796 error = audio_write(sc, uio, ioflag, file);
1797 break;
1798 case AUDIOCTL_DEVICE:
1799 case MIXER_DEVICE:
1800 error = ENODEV;
1801 break;
1802 default:
1803 error = ENXIO;
1804 break;
1805 }
1806
1807 audio_file_exit(sc, &sc_ref);
1808 return error;
1809 }
1810
1811 static int
1812 audioioctl(struct file *fp, u_long cmd, void *addr)
1813 {
1814 struct audio_softc *sc;
1815 struct psref sc_ref;
1816 audio_file_t *file;
1817 struct lwp *l = curlwp;
1818 int error;
1819 dev_t dev;
1820
1821 KASSERT(fp->f_audioctx);
1822 file = fp->f_audioctx;
1823 dev = file->dev;
1824
1825 sc = audio_file_enter(file, &sc_ref);
1826 if (sc == NULL)
1827 return EIO;
1828
1829 switch (AUDIODEV(dev)) {
1830 case SOUND_DEVICE:
1831 case AUDIO_DEVICE:
1832 case AUDIOCTL_DEVICE:
1833 mutex_enter(sc->sc_lock);
1834 device_active(sc->sc_dev, DVA_SYSTEM);
1835 mutex_exit(sc->sc_lock);
1836 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1837 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1838 else
1839 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1840 file);
1841 break;
1842 case MIXER_DEVICE:
1843 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1844 break;
1845 default:
1846 error = ENXIO;
1847 break;
1848 }
1849
1850 audio_file_exit(sc, &sc_ref);
1851 return error;
1852 }
1853
1854 static int
1855 audiostat(struct file *fp, struct stat *st)
1856 {
1857 struct audio_softc *sc;
1858 struct psref sc_ref;
1859 audio_file_t *file;
1860
1861 KASSERT(fp->f_audioctx);
1862 file = fp->f_audioctx;
1863
1864 sc = audio_file_enter(file, &sc_ref);
1865 if (sc == NULL)
1866 return EIO;
1867
1868 memset(st, 0, sizeof(*st));
1869
1870 st->st_dev = file->dev;
1871 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1872 st->st_gid = kauth_cred_getegid(fp->f_cred);
1873 st->st_mode = S_IFCHR;
1874
1875 audio_file_exit(sc, &sc_ref);
1876 return 0;
1877 }
1878
1879 static int
1880 audiopoll(struct file *fp, int events)
1881 {
1882 struct audio_softc *sc;
1883 struct psref sc_ref;
1884 audio_file_t *file;
1885 struct lwp *l = curlwp;
1886 int revents;
1887 dev_t dev;
1888
1889 KASSERT(fp->f_audioctx);
1890 file = fp->f_audioctx;
1891 dev = file->dev;
1892
1893 sc = audio_file_enter(file, &sc_ref);
1894 if (sc == NULL)
1895 return POLLERR;
1896
1897 switch (AUDIODEV(dev)) {
1898 case SOUND_DEVICE:
1899 case AUDIO_DEVICE:
1900 revents = audio_poll(sc, events, l, file);
1901 break;
1902 case AUDIOCTL_DEVICE:
1903 case MIXER_DEVICE:
1904 revents = 0;
1905 break;
1906 default:
1907 revents = POLLERR;
1908 break;
1909 }
1910
1911 audio_file_exit(sc, &sc_ref);
1912 return revents;
1913 }
1914
1915 static int
1916 audiokqfilter(struct file *fp, struct knote *kn)
1917 {
1918 struct audio_softc *sc;
1919 struct psref sc_ref;
1920 audio_file_t *file;
1921 dev_t dev;
1922 int error;
1923
1924 KASSERT(fp->f_audioctx);
1925 file = fp->f_audioctx;
1926 dev = file->dev;
1927
1928 sc = audio_file_enter(file, &sc_ref);
1929 if (sc == NULL)
1930 return EIO;
1931
1932 switch (AUDIODEV(dev)) {
1933 case SOUND_DEVICE:
1934 case AUDIO_DEVICE:
1935 error = audio_kqfilter(sc, file, kn);
1936 break;
1937 case AUDIOCTL_DEVICE:
1938 case MIXER_DEVICE:
1939 error = ENODEV;
1940 break;
1941 default:
1942 error = ENXIO;
1943 break;
1944 }
1945
1946 audio_file_exit(sc, &sc_ref);
1947 return error;
1948 }
1949
1950 static int
1951 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
1952 int *advicep, struct uvm_object **uobjp, int *maxprotp)
1953 {
1954 struct audio_softc *sc;
1955 struct psref sc_ref;
1956 audio_file_t *file;
1957 dev_t dev;
1958 int error;
1959
1960 KASSERT(fp->f_audioctx);
1961 file = fp->f_audioctx;
1962 dev = file->dev;
1963
1964 sc = audio_file_enter(file, &sc_ref);
1965 if (sc == NULL)
1966 return EIO;
1967
1968 mutex_enter(sc->sc_lock);
1969 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
1970 mutex_exit(sc->sc_lock);
1971
1972 switch (AUDIODEV(dev)) {
1973 case SOUND_DEVICE:
1974 case AUDIO_DEVICE:
1975 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
1976 uobjp, maxprotp, file);
1977 break;
1978 case AUDIOCTL_DEVICE:
1979 case MIXER_DEVICE:
1980 default:
1981 error = ENOTSUP;
1982 break;
1983 }
1984
1985 audio_file_exit(sc, &sc_ref);
1986 return error;
1987 }
1988
1989
1990 /* Exported interfaces for audiobell. */
1991
1992 /*
1993 * Open for audiobell.
1994 * It stores allocated file to *filep.
1995 * If successful returns 0, otherwise errno.
1996 */
1997 int
1998 audiobellopen(dev_t dev, audio_file_t **filep)
1999 {
2000 struct audio_softc *sc;
2001 int error;
2002
2003 /* Find the device */
2004 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
2005 if (sc == NULL || sc->hw_if == NULL)
2006 return ENXIO;
2007
2008 error = audio_exlock_enter(sc);
2009 if (error)
2010 return error;
2011
2012 device_active(sc->sc_dev, DVA_SYSTEM);
2013 error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
2014
2015 audio_exlock_exit(sc);
2016 return error;
2017 }
2018
2019 /* Close for audiobell */
2020 int
2021 audiobellclose(audio_file_t *file)
2022 {
2023 struct audio_softc *sc;
2024 struct psref sc_ref;
2025 int error;
2026
2027 sc = audio_file_enter(file, &sc_ref);
2028 if (sc == NULL)
2029 return EIO;
2030
2031 error = audio_close(sc, file);
2032
2033 audio_file_exit(sc, &sc_ref);
2034
2035 KASSERT(file->ptrack);
2036 audio_track_destroy(file->ptrack);
2037 KASSERT(file->rtrack == NULL);
2038 kmem_free(file, sizeof(*file));
2039 return error;
2040 }
2041
2042 /* Set sample rate for audiobell */
2043 int
2044 audiobellsetrate(audio_file_t *file, u_int sample_rate)
2045 {
2046 struct audio_softc *sc;
2047 struct psref sc_ref;
2048 struct audio_info ai;
2049 int error;
2050
2051 sc = audio_file_enter(file, &sc_ref);
2052 if (sc == NULL)
2053 return EIO;
2054
2055 AUDIO_INITINFO(&ai);
2056 ai.play.sample_rate = sample_rate;
2057
2058 error = audio_exlock_enter(sc);
2059 if (error)
2060 goto done;
2061 error = audio_file_setinfo(sc, file, &ai);
2062 audio_exlock_exit(sc);
2063
2064 done:
2065 audio_file_exit(sc, &sc_ref);
2066 return error;
2067 }
2068
2069 /* Playback for audiobell */
2070 int
2071 audiobellwrite(audio_file_t *file, struct uio *uio)
2072 {
2073 struct audio_softc *sc;
2074 struct psref sc_ref;
2075 int error;
2076
2077 sc = audio_file_enter(file, &sc_ref);
2078 if (sc == NULL)
2079 return EIO;
2080
2081 error = audio_write(sc, uio, 0, file);
2082
2083 audio_file_exit(sc, &sc_ref);
2084 return error;
2085 }
2086
2087
2088 /*
2089 * Audio driver
2090 */
2091
2092 /*
2093 * Must be called with sc_exlock held and without sc_lock held.
2094 */
2095 int
2096 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
2097 struct lwp *l, audio_file_t **bellfile)
2098 {
2099 struct audio_info ai;
2100 struct file *fp;
2101 audio_file_t *af;
2102 audio_ring_t *hwbuf;
2103 bool fullduplex;
2104 bool cred_held;
2105 bool hw_opened;
2106 bool rmixer_started;
2107 int fd;
2108 int error;
2109
2110 KASSERT(sc->sc_exlock);
2111
2112 TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
2113 (audiodebug >= 3) ? "start " : "",
2114 ISDEVSOUND(dev) ? "sound" : "audio",
2115 flags, sc->sc_popens, sc->sc_ropens);
2116
2117 fp = NULL;
2118 cred_held = false;
2119 hw_opened = false;
2120 rmixer_started = false;
2121
2122 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
2123 af->sc = sc;
2124 af->dev = dev;
2125 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
2126 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
2127 if ((flags & FREAD) != 0 && audio_can_capture(sc))
2128 af->mode |= AUMODE_RECORD;
2129 if (af->mode == 0) {
2130 error = ENXIO;
2131 goto bad;
2132 }
2133
2134 fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
2135
2136 /*
2137 * On half duplex hardware,
2138 * 1. if mode is (PLAY | REC), let mode PLAY.
2139 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
2140 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
2141 */
2142 if (fullduplex == false) {
2143 if ((af->mode & AUMODE_PLAY)) {
2144 if (sc->sc_ropens != 0) {
2145 TRACE(1, "record track already exists");
2146 error = ENODEV;
2147 goto bad;
2148 }
2149 /* Play takes precedence */
2150 af->mode &= ~AUMODE_RECORD;
2151 }
2152 if ((af->mode & AUMODE_RECORD)) {
2153 if (sc->sc_popens != 0) {
2154 TRACE(1, "play track already exists");
2155 error = ENODEV;
2156 goto bad;
2157 }
2158 }
2159 }
2160
2161 /* Create tracks */
2162 if ((af->mode & AUMODE_PLAY))
2163 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
2164 if ((af->mode & AUMODE_RECORD))
2165 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
2166
2167 /* Set parameters */
2168 AUDIO_INITINFO(&ai);
2169 if (bellfile) {
2170 /* If audiobell, only sample_rate will be set later. */
2171 ai.play.sample_rate = audio_default.sample_rate;
2172 ai.play.encoding = AUDIO_ENCODING_SLINEAR_NE;
2173 ai.play.channels = 1;
2174 ai.play.precision = 16;
2175 ai.play.pause = 0;
2176 } else if (ISDEVAUDIO(dev)) {
2177 /* If /dev/audio, initialize everytime. */
2178 ai.play.sample_rate = audio_default.sample_rate;
2179 ai.play.encoding = audio_default.encoding;
2180 ai.play.channels = audio_default.channels;
2181 ai.play.precision = audio_default.precision;
2182 ai.play.pause = 0;
2183 ai.record.sample_rate = audio_default.sample_rate;
2184 ai.record.encoding = audio_default.encoding;
2185 ai.record.channels = audio_default.channels;
2186 ai.record.precision = audio_default.precision;
2187 ai.record.pause = 0;
2188 } else {
2189 /* If /dev/sound, take over the previous parameters. */
2190 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2191 ai.play.encoding = sc->sc_sound_pparams.encoding;
2192 ai.play.channels = sc->sc_sound_pparams.channels;
2193 ai.play.precision = sc->sc_sound_pparams.precision;
2194 ai.play.pause = sc->sc_sound_ppause;
2195 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2196 ai.record.encoding = sc->sc_sound_rparams.encoding;
2197 ai.record.channels = sc->sc_sound_rparams.channels;
2198 ai.record.precision = sc->sc_sound_rparams.precision;
2199 ai.record.pause = sc->sc_sound_rpause;
2200 }
2201 error = audio_file_setinfo(sc, af, &ai);
2202 if (error)
2203 goto bad;
2204
2205 if (sc->sc_popens + sc->sc_ropens == 0) {
2206 /* First open */
2207
2208 sc->sc_cred = kauth_cred_get();
2209 kauth_cred_hold(sc->sc_cred);
2210 cred_held = true;
2211
2212 if (sc->hw_if->open) {
2213 int hwflags;
2214
2215 /*
2216 * Call hw_if->open() only at first open of
2217 * combination of playback and recording.
2218 * On full duplex hardware, the flags passed to
2219 * hw_if->open() is always (FREAD | FWRITE)
2220 * regardless of this open()'s flags.
2221 * see also dev/isa/aria.c
2222 * On half duplex hardware, the flags passed to
2223 * hw_if->open() is either FREAD or FWRITE.
2224 * see also arch/evbarm/mini2440/audio_mini2440.c
2225 */
2226 if (fullduplex) {
2227 hwflags = FREAD | FWRITE;
2228 } else {
2229 /* Construct hwflags from af->mode. */
2230 hwflags = 0;
2231 if ((af->mode & AUMODE_PLAY) != 0)
2232 hwflags |= FWRITE;
2233 if ((af->mode & AUMODE_RECORD) != 0)
2234 hwflags |= FREAD;
2235 }
2236
2237 mutex_enter(sc->sc_lock);
2238 mutex_enter(sc->sc_intr_lock);
2239 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2240 mutex_exit(sc->sc_intr_lock);
2241 mutex_exit(sc->sc_lock);
2242 if (error)
2243 goto bad;
2244 }
2245 /*
2246 * Regardless of whether we called hw_if->open (whether
2247 * hw_if->open exists) or not, we move to the Opened phase
2248 * here. Therefore from this point, we have to call
2249 * hw_if->close (if exists) whenever abort.
2250 * Note that both of hw_if->{open,close} are optional.
2251 */
2252 hw_opened = true;
2253
2254 /*
2255 * Set speaker mode when a half duplex.
2256 * XXX I'm not sure this is correct.
2257 */
2258 if (1/*XXX*/) {
2259 if (sc->hw_if->speaker_ctl) {
2260 int on;
2261 if (af->ptrack) {
2262 on = 1;
2263 } else {
2264 on = 0;
2265 }
2266 mutex_enter(sc->sc_lock);
2267 mutex_enter(sc->sc_intr_lock);
2268 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2269 mutex_exit(sc->sc_intr_lock);
2270 mutex_exit(sc->sc_lock);
2271 if (error)
2272 goto bad;
2273 }
2274 }
2275 } else if (sc->sc_multiuser == false) {
2276 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2277 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2278 error = EPERM;
2279 goto bad;
2280 }
2281 }
2282
2283 /* Call init_output if this is the first playback open. */
2284 if (af->ptrack && sc->sc_popens == 0) {
2285 if (sc->hw_if->init_output) {
2286 hwbuf = &sc->sc_pmixer->hwbuf;
2287 mutex_enter(sc->sc_lock);
2288 mutex_enter(sc->sc_intr_lock);
2289 error = sc->hw_if->init_output(sc->hw_hdl,
2290 hwbuf->mem,
2291 hwbuf->capacity *
2292 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2293 mutex_exit(sc->sc_intr_lock);
2294 mutex_exit(sc->sc_lock);
2295 if (error)
2296 goto bad;
2297 }
2298 }
2299 /*
2300 * Call init_input and start rmixer, if this is the first recording
2301 * open. See pause consideration notes.
2302 */
2303 if (af->rtrack && sc->sc_ropens == 0) {
2304 if (sc->hw_if->init_input) {
2305 hwbuf = &sc->sc_rmixer->hwbuf;
2306 mutex_enter(sc->sc_lock);
2307 mutex_enter(sc->sc_intr_lock);
2308 error = sc->hw_if->init_input(sc->hw_hdl,
2309 hwbuf->mem,
2310 hwbuf->capacity *
2311 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2312 mutex_exit(sc->sc_intr_lock);
2313 mutex_exit(sc->sc_lock);
2314 if (error)
2315 goto bad;
2316 }
2317
2318 mutex_enter(sc->sc_lock);
2319 audio_rmixer_start(sc);
2320 mutex_exit(sc->sc_lock);
2321 rmixer_started = true;
2322 }
2323
2324 if (bellfile) {
2325 *bellfile = af;
2326 } else {
2327 error = fd_allocfile(&fp, &fd);
2328 if (error)
2329 goto bad;
2330
2331 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2332 KASSERTMSG(error == EMOVEFD, "error=%d", error);
2333 }
2334
2335 /*
2336 * Count up finally.
2337 * Don't fail from here.
2338 */
2339 mutex_enter(sc->sc_lock);
2340 if (af->ptrack)
2341 sc->sc_popens++;
2342 if (af->rtrack)
2343 sc->sc_ropens++;
2344 mutex_enter(sc->sc_intr_lock);
2345 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2346 mutex_exit(sc->sc_intr_lock);
2347 mutex_exit(sc->sc_lock);
2348
2349 TRACEF(3, af, "done");
2350 return error;
2351
2352 bad:
2353 if (fp) {
2354 fd_abort(curproc, fp, fd);
2355 }
2356
2357 if (rmixer_started) {
2358 mutex_enter(sc->sc_lock);
2359 audio_rmixer_halt(sc);
2360 mutex_exit(sc->sc_lock);
2361 }
2362
2363 if (hw_opened) {
2364 if (sc->hw_if->close) {
2365 mutex_enter(sc->sc_lock);
2366 mutex_enter(sc->sc_intr_lock);
2367 sc->hw_if->close(sc->hw_hdl);
2368 mutex_exit(sc->sc_intr_lock);
2369 mutex_exit(sc->sc_lock);
2370 }
2371 }
2372 if (cred_held) {
2373 kauth_cred_free(sc->sc_cred);
2374 }
2375
2376 /*
2377 * Since track here is not yet linked to sc_files,
2378 * you can call track_destroy() without sc_intr_lock.
2379 */
2380 if (af->rtrack) {
2381 audio_track_destroy(af->rtrack);
2382 af->rtrack = NULL;
2383 }
2384 if (af->ptrack) {
2385 audio_track_destroy(af->ptrack);
2386 af->ptrack = NULL;
2387 }
2388
2389 kmem_free(af, sizeof(*af));
2390 return error;
2391 }
2392
2393 /*
2394 * Must be called without sc_lock nor sc_exlock held.
2395 */
2396 int
2397 audio_close(struct audio_softc *sc, audio_file_t *file)
2398 {
2399 int error;
2400
2401 /* Protect entering new fileops to this file */
2402 atomic_store_relaxed(&file->dying, true);
2403
2404 /*
2405 * Drain first.
2406 * It must be done before unlinking(acquiring exlock).
2407 */
2408 if (file->ptrack) {
2409 mutex_enter(sc->sc_lock);
2410 audio_track_drain(sc, file->ptrack);
2411 mutex_exit(sc->sc_lock);
2412 }
2413
2414 error = audio_exlock_enter(sc);
2415 if (error) {
2416 /*
2417 * If EIO, this sc is about to detach. In this case, even if
2418 * we don't do subsequent _unlink(), audiodetach() will do it.
2419 */
2420 if (error == EIO)
2421 return error;
2422
2423 /* XXX This should not happen but what should I do ? */
2424 panic("%s: can't acquire exlock: errno=%d", __func__, error);
2425 }
2426 error = audio_unlink(sc, file);
2427 audio_exlock_exit(sc);
2428
2429 return error;
2430 }
2431
2432 /*
2433 * Unlink this file, but not freeing memory here.
2434 * Must be called with sc_exlock held and without sc_lock held.
2435 */
2436 int
2437 audio_unlink(struct audio_softc *sc, audio_file_t *file)
2438 {
2439 int error;
2440
2441 mutex_enter(sc->sc_lock);
2442
2443 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2444 (audiodebug >= 3) ? "start " : "",
2445 (int)curproc->p_pid, (int)curlwp->l_lid,
2446 sc->sc_popens, sc->sc_ropens);
2447 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2448 "sc->sc_popens=%d, sc->sc_ropens=%d",
2449 sc->sc_popens, sc->sc_ropens);
2450
2451 device_active(sc->sc_dev, DVA_SYSTEM);
2452
2453 mutex_enter(sc->sc_intr_lock);
2454 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2455 mutex_exit(sc->sc_intr_lock);
2456
2457 if (file->ptrack) {
2458 TRACET(3, file->ptrack, "dropframes=%" PRIu64,
2459 file->ptrack->dropframes);
2460
2461 KASSERT(sc->sc_popens > 0);
2462 sc->sc_popens--;
2463
2464 /* Call hw halt_output if this is the last playback track. */
2465 if (sc->sc_popens == 0 && sc->sc_pbusy) {
2466 error = audio_pmixer_halt(sc);
2467 if (error) {
2468 audio_printf(sc,
2469 "halt_output failed: errno=%d (ignored)\n",
2470 error);
2471 }
2472 }
2473
2474 /* Restore mixing volume if all tracks are gone. */
2475 if (sc->sc_popens == 0) {
2476 /* intr_lock is not necessary, but just manners. */
2477 mutex_enter(sc->sc_intr_lock);
2478 sc->sc_pmixer->volume = 256;
2479 sc->sc_pmixer->voltimer = 0;
2480 mutex_exit(sc->sc_intr_lock);
2481 }
2482 }
2483 if (file->rtrack) {
2484 TRACET(3, file->rtrack, "dropframes=%" PRIu64,
2485 file->rtrack->dropframes);
2486
2487 KASSERT(sc->sc_ropens > 0);
2488 sc->sc_ropens--;
2489
2490 /* Call hw halt_input if this is the last recording track. */
2491 if (sc->sc_ropens == 0 && sc->sc_rbusy) {
2492 error = audio_rmixer_halt(sc);
2493 if (error) {
2494 audio_printf(sc,
2495 "halt_input failed: errno=%d (ignored)\n",
2496 error);
2497 }
2498 }
2499
2500 }
2501
2502 /* Call hw close if this is the last track. */
2503 if (sc->sc_popens + sc->sc_ropens == 0) {
2504 if (sc->hw_if->close) {
2505 TRACE(2, "hw_if close");
2506 mutex_enter(sc->sc_intr_lock);
2507 sc->hw_if->close(sc->hw_hdl);
2508 mutex_exit(sc->sc_intr_lock);
2509 }
2510 }
2511
2512 mutex_exit(sc->sc_lock);
2513 if (sc->sc_popens + sc->sc_ropens == 0)
2514 kauth_cred_free(sc->sc_cred);
2515
2516 TRACE(3, "done");
2517
2518 return 0;
2519 }
2520
2521 /*
2522 * Must be called without sc_lock nor sc_exlock held.
2523 */
2524 int
2525 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2526 audio_file_t *file)
2527 {
2528 audio_track_t *track;
2529 audio_ring_t *usrbuf;
2530 audio_ring_t *input;
2531 int error;
2532
2533 /*
2534 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2535 * However read() system call itself can be called because it's
2536 * opened with O_RDWR. So in this case, deny this read().
2537 */
2538 track = file->rtrack;
2539 if (track == NULL) {
2540 return EBADF;
2541 }
2542
2543 /* I think it's better than EINVAL. */
2544 if (track->mmapped)
2545 return EPERM;
2546
2547 TRACET(2, track, "resid=%zd ioflag=0x%x", uio->uio_resid, ioflag);
2548
2549 #ifdef AUDIO_PM_IDLE
2550 error = audio_exlock_mutex_enter(sc);
2551 if (error)
2552 return error;
2553
2554 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2555 device_active(&sc->sc_dev, DVA_SYSTEM);
2556
2557 /* In recording, unlike playback, read() never operates rmixer. */
2558
2559 audio_exlock_mutex_exit(sc);
2560 #endif
2561
2562 usrbuf = &track->usrbuf;
2563 input = track->input;
2564 error = 0;
2565
2566 while (uio->uio_resid > 0 && error == 0) {
2567 int bytes;
2568
2569 TRACET(3, track,
2570 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2571 uio->uio_resid,
2572 input->head, input->used, input->capacity,
2573 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2574
2575 /* Wait when buffers are empty. */
2576 mutex_enter(sc->sc_lock);
2577 for (;;) {
2578 bool empty;
2579 audio_track_lock_enter(track);
2580 empty = (input->used == 0 && usrbuf->used == 0);
2581 audio_track_lock_exit(track);
2582 if (!empty)
2583 break;
2584
2585 if ((ioflag & IO_NDELAY)) {
2586 mutex_exit(sc->sc_lock);
2587 return EWOULDBLOCK;
2588 }
2589
2590 TRACET(3, track, "sleep");
2591 error = audio_track_waitio(sc, track);
2592 if (error) {
2593 mutex_exit(sc->sc_lock);
2594 return error;
2595 }
2596 }
2597 mutex_exit(sc->sc_lock);
2598
2599 audio_track_lock_enter(track);
2600 audio_track_record(track);
2601
2602 /* uiomove from usrbuf as much as possible. */
2603 bytes = uimin(usrbuf->used, uio->uio_resid);
2604 while (bytes > 0) {
2605 int head = usrbuf->head;
2606 int len = uimin(bytes, usrbuf->capacity - head);
2607 error = uiomove((uint8_t *)usrbuf->mem + head, len,
2608 uio);
2609 if (error) {
2610 audio_track_lock_exit(track);
2611 device_printf(sc->sc_dev,
2612 "%s: uiomove(%d) failed: errno=%d\n",
2613 __func__, len, error);
2614 goto abort;
2615 }
2616 auring_take(usrbuf, len);
2617 track->useriobytes += len;
2618 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2619 len,
2620 usrbuf->head, usrbuf->used, usrbuf->capacity);
2621 bytes -= len;
2622 }
2623
2624 audio_track_lock_exit(track);
2625 }
2626
2627 abort:
2628 return error;
2629 }
2630
2631
2632 /*
2633 * Clear file's playback and/or record track buffer immediately.
2634 */
2635 static void
2636 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2637 {
2638
2639 if (file->ptrack)
2640 audio_track_clear(sc, file->ptrack);
2641 if (file->rtrack)
2642 audio_track_clear(sc, file->rtrack);
2643 }
2644
2645 /*
2646 * Must be called without sc_lock nor sc_exlock held.
2647 */
2648 int
2649 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2650 audio_file_t *file)
2651 {
2652 audio_track_t *track;
2653 audio_ring_t *usrbuf;
2654 audio_ring_t *outbuf;
2655 int error;
2656
2657 track = file->ptrack;
2658 KASSERT(track);
2659
2660 /* I think it's better than EINVAL. */
2661 if (track->mmapped)
2662 return EPERM;
2663
2664 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2665 audiodebug >= 3 ? "begin " : "",
2666 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2667
2668 if (uio->uio_resid == 0) {
2669 track->eofcounter++;
2670 return 0;
2671 }
2672
2673 error = audio_exlock_mutex_enter(sc);
2674 if (error)
2675 return error;
2676
2677 #ifdef AUDIO_PM_IDLE
2678 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2679 device_active(&sc->sc_dev, DVA_SYSTEM);
2680 #endif
2681
2682 /*
2683 * The first write starts pmixer.
2684 */
2685 if (sc->sc_pbusy == false)
2686 audio_pmixer_start(sc, false);
2687 audio_exlock_mutex_exit(sc);
2688
2689 usrbuf = &track->usrbuf;
2690 outbuf = &track->outbuf;
2691 track->pstate = AUDIO_STATE_RUNNING;
2692 error = 0;
2693
2694 while (uio->uio_resid > 0 && error == 0) {
2695 int bytes;
2696
2697 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2698 uio->uio_resid,
2699 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2700
2701 /* Wait when buffers are full. */
2702 mutex_enter(sc->sc_lock);
2703 for (;;) {
2704 bool full;
2705 audio_track_lock_enter(track);
2706 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2707 outbuf->used >= outbuf->capacity);
2708 audio_track_lock_exit(track);
2709 if (!full)
2710 break;
2711
2712 if ((ioflag & IO_NDELAY)) {
2713 error = EWOULDBLOCK;
2714 mutex_exit(sc->sc_lock);
2715 goto abort;
2716 }
2717
2718 TRACET(3, track, "sleep usrbuf=%d/H%d",
2719 usrbuf->used, track->usrbuf_usedhigh);
2720 error = audio_track_waitio(sc, track);
2721 if (error) {
2722 mutex_exit(sc->sc_lock);
2723 goto abort;
2724 }
2725 }
2726 mutex_exit(sc->sc_lock);
2727
2728 audio_track_lock_enter(track);
2729
2730 /* uiomove to usrbuf as much as possible. */
2731 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2732 uio->uio_resid);
2733 while (bytes > 0) {
2734 int tail = auring_tail(usrbuf);
2735 int len = uimin(bytes, usrbuf->capacity - tail);
2736 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2737 uio);
2738 if (error) {
2739 audio_track_lock_exit(track);
2740 device_printf(sc->sc_dev,
2741 "%s: uiomove(%d) failed: errno=%d\n",
2742 __func__, len, error);
2743 goto abort;
2744 }
2745 auring_push(usrbuf, len);
2746 track->useriobytes += len;
2747 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2748 len,
2749 usrbuf->head, usrbuf->used, usrbuf->capacity);
2750 bytes -= len;
2751 }
2752
2753 /* Convert them as much as possible. */
2754 while (usrbuf->used >= track->usrbuf_blksize &&
2755 outbuf->used < outbuf->capacity) {
2756 audio_track_play(track);
2757 }
2758
2759 audio_track_lock_exit(track);
2760 }
2761
2762 abort:
2763 TRACET(3, track, "done error=%d", error);
2764 return error;
2765 }
2766
2767 /*
2768 * Must be called without sc_lock nor sc_exlock held.
2769 */
2770 int
2771 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2772 struct lwp *l, audio_file_t *file)
2773 {
2774 struct audio_offset *ao;
2775 struct audio_info ai;
2776 audio_track_t *track;
2777 audio_encoding_t *ae;
2778 audio_format_query_t *query;
2779 u_int stamp;
2780 u_int offs;
2781 int fd;
2782 int index;
2783 int error;
2784
2785 #if defined(AUDIO_DEBUG)
2786 const char *ioctlnames[] = {
2787 " AUDIO_GETINFO", /* 21 */
2788 " AUDIO_SETINFO", /* 22 */
2789 " AUDIO_DRAIN", /* 23 */
2790 " AUDIO_FLUSH", /* 24 */
2791 " AUDIO_WSEEK", /* 25 */
2792 " AUDIO_RERROR", /* 26 */
2793 " AUDIO_GETDEV", /* 27 */
2794 " AUDIO_GETENC", /* 28 */
2795 " AUDIO_GETFD", /* 29 */
2796 " AUDIO_SETFD", /* 30 */
2797 " AUDIO_PERROR", /* 31 */
2798 " AUDIO_GETIOFFS", /* 32 */
2799 " AUDIO_GETOOFFS", /* 33 */
2800 " AUDIO_GETPROPS", /* 34 */
2801 " AUDIO_GETBUFINFO", /* 35 */
2802 " AUDIO_SETCHAN", /* 36 */
2803 " AUDIO_GETCHAN", /* 37 */
2804 " AUDIO_QUERYFORMAT", /* 38 */
2805 " AUDIO_GETFORMAT", /* 39 */
2806 " AUDIO_SETFORMAT", /* 40 */
2807 };
2808 int nameidx = (cmd & 0xff);
2809 const char *ioctlname = "";
2810 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2811 ioctlname = ioctlnames[nameidx - 21];
2812 TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2813 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2814 (int)curproc->p_pid, (int)l->l_lid);
2815 #endif
2816
2817 error = 0;
2818 switch (cmd) {
2819 case FIONBIO:
2820 /* All handled in the upper FS layer. */
2821 break;
2822
2823 case FIONREAD:
2824 /* Get the number of bytes that can be read. */
2825 if (file->rtrack) {
2826 *(int *)addr = audio_track_readablebytes(file->rtrack);
2827 } else {
2828 *(int *)addr = 0;
2829 }
2830 break;
2831
2832 case FIOASYNC:
2833 /* Set/Clear ASYNC I/O. */
2834 if (*(int *)addr) {
2835 file->async_audio = curproc->p_pid;
2836 TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2837 } else {
2838 file->async_audio = 0;
2839 TRACEF(2, file, "FIOASYNC off");
2840 }
2841 break;
2842
2843 case AUDIO_FLUSH:
2844 /* XXX TODO: clear errors and restart? */
2845 audio_file_clear(sc, file);
2846 break;
2847
2848 case AUDIO_RERROR:
2849 /*
2850 * Number of read bytes dropped. We don't know where
2851 * or when they were dropped (including conversion stage).
2852 * Therefore, the number of accurate bytes or samples is
2853 * also unknown.
2854 */
2855 track = file->rtrack;
2856 if (track) {
2857 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2858 track->dropframes);
2859 }
2860 break;
2861
2862 case AUDIO_PERROR:
2863 /*
2864 * Number of write bytes dropped. We don't know where
2865 * or when they were dropped (including conversion stage).
2866 * Therefore, the number of accurate bytes or samples is
2867 * also unknown.
2868 */
2869 track = file->ptrack;
2870 if (track) {
2871 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2872 track->dropframes);
2873 }
2874 break;
2875
2876 case AUDIO_GETIOFFS:
2877 /* XXX TODO */
2878 ao = (struct audio_offset *)addr;
2879 ao->samples = 0;
2880 ao->deltablks = 0;
2881 ao->offset = 0;
2882 break;
2883
2884 case AUDIO_GETOOFFS:
2885 ao = (struct audio_offset *)addr;
2886 track = file->ptrack;
2887 if (track == NULL) {
2888 ao->samples = 0;
2889 ao->deltablks = 0;
2890 ao->offset = 0;
2891 break;
2892 }
2893 mutex_enter(sc->sc_lock);
2894 mutex_enter(sc->sc_intr_lock);
2895 /* figure out where next DMA will start */
2896 stamp = track->usrbuf_stamp;
2897 offs = track->usrbuf.head;
2898 mutex_exit(sc->sc_intr_lock);
2899 mutex_exit(sc->sc_lock);
2900
2901 ao->samples = stamp;
2902 ao->deltablks = (stamp / track->usrbuf_blksize) -
2903 (track->usrbuf_stamp_last / track->usrbuf_blksize);
2904 track->usrbuf_stamp_last = stamp;
2905 offs = rounddown(offs, track->usrbuf_blksize)
2906 + track->usrbuf_blksize;
2907 if (offs >= track->usrbuf.capacity)
2908 offs -= track->usrbuf.capacity;
2909 ao->offset = offs;
2910
2911 TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
2912 ao->samples, ao->deltablks, ao->offset);
2913 break;
2914
2915 case AUDIO_WSEEK:
2916 /* XXX return value does not include outbuf one. */
2917 if (file->ptrack)
2918 *(u_long *)addr = file->ptrack->usrbuf.used;
2919 break;
2920
2921 case AUDIO_SETINFO:
2922 error = audio_exlock_enter(sc);
2923 if (error)
2924 break;
2925 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
2926 if (error) {
2927 audio_exlock_exit(sc);
2928 break;
2929 }
2930 /* XXX TODO: update last_ai if /dev/sound ? */
2931 if (ISDEVSOUND(dev))
2932 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
2933 audio_exlock_exit(sc);
2934 break;
2935
2936 case AUDIO_GETINFO:
2937 error = audio_exlock_enter(sc);
2938 if (error)
2939 break;
2940 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
2941 audio_exlock_exit(sc);
2942 break;
2943
2944 case AUDIO_GETBUFINFO:
2945 error = audio_exlock_enter(sc);
2946 if (error)
2947 break;
2948 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
2949 audio_exlock_exit(sc);
2950 break;
2951
2952 case AUDIO_DRAIN:
2953 if (file->ptrack) {
2954 mutex_enter(sc->sc_lock);
2955 error = audio_track_drain(sc, file->ptrack);
2956 mutex_exit(sc->sc_lock);
2957 }
2958 break;
2959
2960 case AUDIO_GETDEV:
2961 mutex_enter(sc->sc_lock);
2962 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
2963 mutex_exit(sc->sc_lock);
2964 break;
2965
2966 case AUDIO_GETENC:
2967 ae = (audio_encoding_t *)addr;
2968 index = ae->index;
2969 if (index < 0 || index >= __arraycount(audio_encodings)) {
2970 error = EINVAL;
2971 break;
2972 }
2973 *ae = audio_encodings[index];
2974 ae->index = index;
2975 /*
2976 * EMULATED always.
2977 * EMULATED flag at that time used to mean that it could
2978 * not be passed directly to the hardware as-is. But
2979 * currently, all formats including hardware native is not
2980 * passed directly to the hardware. So I set EMULATED
2981 * flag for all formats.
2982 */
2983 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
2984 break;
2985
2986 case AUDIO_GETFD:
2987 /*
2988 * Returns the current setting of full duplex mode.
2989 * If HW has full duplex mode and there are two mixers,
2990 * it is full duplex. Otherwise half duplex.
2991 */
2992 error = audio_exlock_enter(sc);
2993 if (error)
2994 break;
2995 fd = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
2996 && (sc->sc_pmixer && sc->sc_rmixer);
2997 audio_exlock_exit(sc);
2998 *(int *)addr = fd;
2999 break;
3000
3001 case AUDIO_GETPROPS:
3002 *(int *)addr = sc->sc_props;
3003 break;
3004
3005 case AUDIO_QUERYFORMAT:
3006 query = (audio_format_query_t *)addr;
3007 mutex_enter(sc->sc_lock);
3008 error = sc->hw_if->query_format(sc->hw_hdl, query);
3009 mutex_exit(sc->sc_lock);
3010 /* Hide internal information */
3011 query->fmt.driver_data = NULL;
3012 break;
3013
3014 case AUDIO_GETFORMAT:
3015 error = audio_exlock_enter(sc);
3016 if (error)
3017 break;
3018 audio_mixers_get_format(sc, (struct audio_info *)addr);
3019 audio_exlock_exit(sc);
3020 break;
3021
3022 case AUDIO_SETFORMAT:
3023 error = audio_exlock_enter(sc);
3024 audio_mixers_get_format(sc, &ai);
3025 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
3026 if (error) {
3027 /* Rollback */
3028 audio_mixers_set_format(sc, &ai);
3029 }
3030 audio_exlock_exit(sc);
3031 break;
3032
3033 case AUDIO_SETFD:
3034 case AUDIO_SETCHAN:
3035 case AUDIO_GETCHAN:
3036 /* Obsoleted */
3037 break;
3038
3039 default:
3040 if (sc->hw_if->dev_ioctl) {
3041 mutex_enter(sc->sc_lock);
3042 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
3043 cmd, addr, flag, l);
3044 mutex_exit(sc->sc_lock);
3045 } else {
3046 TRACEF(2, file, "unknown ioctl");
3047 error = EINVAL;
3048 }
3049 break;
3050 }
3051 TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
3052 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
3053 error);
3054 return error;
3055 }
3056
3057 /*
3058 * Returns the number of bytes that can be read on recording buffer.
3059 */
3060 static __inline int
3061 audio_track_readablebytes(const audio_track_t *track)
3062 {
3063 int bytes;
3064
3065 KASSERT(track);
3066 KASSERT(track->mode == AUMODE_RECORD);
3067
3068 /*
3069 * Although usrbuf is primarily readable data, recorded data
3070 * also stays in track->input until reading. So it is necessary
3071 * to add it. track->input is in frame, usrbuf is in byte.
3072 */
3073 bytes = track->usrbuf.used +
3074 track->input->used * frametobyte(&track->usrbuf.fmt, 1);
3075 return bytes;
3076 }
3077
3078 /*
3079 * Must be called without sc_lock nor sc_exlock held.
3080 */
3081 int
3082 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
3083 audio_file_t *file)
3084 {
3085 audio_track_t *track;
3086 int revents;
3087 bool in_is_valid;
3088 bool out_is_valid;
3089
3090 #if defined(AUDIO_DEBUG)
3091 #define POLLEV_BITMAP "\177\020" \
3092 "b\10WRBAND\0" \
3093 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
3094 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
3095 char evbuf[64];
3096 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
3097 TRACEF(2, file, "pid=%d.%d events=%s",
3098 (int)curproc->p_pid, (int)l->l_lid, evbuf);
3099 #endif
3100
3101 revents = 0;
3102 in_is_valid = false;
3103 out_is_valid = false;
3104 if (events & (POLLIN | POLLRDNORM)) {
3105 track = file->rtrack;
3106 if (track) {
3107 int used;
3108 in_is_valid = true;
3109 used = audio_track_readablebytes(track);
3110 if (used > 0)
3111 revents |= events & (POLLIN | POLLRDNORM);
3112 }
3113 }
3114 if (events & (POLLOUT | POLLWRNORM)) {
3115 track = file->ptrack;
3116 if (track) {
3117 out_is_valid = true;
3118 if (track->usrbuf.used <= track->usrbuf_usedlow)
3119 revents |= events & (POLLOUT | POLLWRNORM);
3120 }
3121 }
3122
3123 if (revents == 0) {
3124 mutex_enter(sc->sc_lock);
3125 if (in_is_valid) {
3126 TRACEF(3, file, "selrecord rsel");
3127 selrecord(l, &sc->sc_rsel);
3128 }
3129 if (out_is_valid) {
3130 TRACEF(3, file, "selrecord wsel");
3131 selrecord(l, &sc->sc_wsel);
3132 }
3133 mutex_exit(sc->sc_lock);
3134 }
3135
3136 #if defined(AUDIO_DEBUG)
3137 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
3138 TRACEF(2, file, "revents=%s", evbuf);
3139 #endif
3140 return revents;
3141 }
3142
3143 static const struct filterops audioread_filtops = {
3144 .f_isfd = 1,
3145 .f_attach = NULL,
3146 .f_detach = filt_audioread_detach,
3147 .f_event = filt_audioread_event,
3148 };
3149
3150 static void
3151 filt_audioread_detach(struct knote *kn)
3152 {
3153 struct audio_softc *sc;
3154 audio_file_t *file;
3155
3156 file = kn->kn_hook;
3157 sc = file->sc;
3158 TRACEF(3, file, "called");
3159
3160 mutex_enter(sc->sc_lock);
3161 selremove_knote(&sc->sc_rsel, kn);
3162 mutex_exit(sc->sc_lock);
3163 }
3164
3165 static int
3166 filt_audioread_event(struct knote *kn, long hint)
3167 {
3168 audio_file_t *file;
3169 audio_track_t *track;
3170
3171 file = kn->kn_hook;
3172 track = file->rtrack;
3173
3174 /*
3175 * kn_data must contain the number of bytes can be read.
3176 * The return value indicates whether the event occurs or not.
3177 */
3178
3179 if (track == NULL) {
3180 /* can not read with this descriptor. */
3181 kn->kn_data = 0;
3182 return 0;
3183 }
3184
3185 kn->kn_data = audio_track_readablebytes(track);
3186 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3187 return kn->kn_data > 0;
3188 }
3189
3190 static const struct filterops audiowrite_filtops = {
3191 .f_isfd = 1,
3192 .f_attach = NULL,
3193 .f_detach = filt_audiowrite_detach,
3194 .f_event = filt_audiowrite_event,
3195 };
3196
3197 static void
3198 filt_audiowrite_detach(struct knote *kn)
3199 {
3200 struct audio_softc *sc;
3201 audio_file_t *file;
3202
3203 file = kn->kn_hook;
3204 sc = file->sc;
3205 TRACEF(3, file, "called");
3206
3207 mutex_enter(sc->sc_lock);
3208 selremove_knote(&sc->sc_wsel, kn);
3209 mutex_exit(sc->sc_lock);
3210 }
3211
3212 static int
3213 filt_audiowrite_event(struct knote *kn, long hint)
3214 {
3215 audio_file_t *file;
3216 audio_track_t *track;
3217
3218 file = kn->kn_hook;
3219 track = file->ptrack;
3220
3221 /*
3222 * kn_data must contain the number of bytes can be write.
3223 * The return value indicates whether the event occurs or not.
3224 */
3225
3226 if (track == NULL) {
3227 /* can not write with this descriptor. */
3228 kn->kn_data = 0;
3229 return 0;
3230 }
3231
3232 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
3233 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3234 return (track->usrbuf.used < track->usrbuf_usedlow);
3235 }
3236
3237 /*
3238 * Must be called without sc_lock nor sc_exlock held.
3239 */
3240 int
3241 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3242 {
3243 struct selinfo *sip;
3244
3245 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3246
3247 switch (kn->kn_filter) {
3248 case EVFILT_READ:
3249 sip = &sc->sc_rsel;
3250 kn->kn_fop = &audioread_filtops;
3251 break;
3252
3253 case EVFILT_WRITE:
3254 sip = &sc->sc_wsel;
3255 kn->kn_fop = &audiowrite_filtops;
3256 break;
3257
3258 default:
3259 return EINVAL;
3260 }
3261
3262 kn->kn_hook = file;
3263
3264 mutex_enter(sc->sc_lock);
3265 selrecord_knote(sip, kn);
3266 mutex_exit(sc->sc_lock);
3267
3268 return 0;
3269 }
3270
3271 /*
3272 * Must be called without sc_lock nor sc_exlock held.
3273 */
3274 int
3275 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3276 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3277 audio_file_t *file)
3278 {
3279 audio_track_t *track;
3280 vsize_t vsize;
3281 int error;
3282
3283 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3284
3285 if (*offp < 0)
3286 return EINVAL;
3287
3288 #if 0
3289 /* XXX
3290 * The idea here was to use the protection to determine if
3291 * we are mapping the read or write buffer, but it fails.
3292 * The VM system is broken in (at least) two ways.
3293 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3294 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3295 * has to be used for mmapping the play buffer.
3296 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3297 * audio_mmap will get called at some point with VM_PROT_READ
3298 * only.
3299 * So, alas, we always map the play buffer for now.
3300 */
3301 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3302 prot == VM_PROT_WRITE)
3303 track = file->ptrack;
3304 else if (prot == VM_PROT_READ)
3305 track = file->rtrack;
3306 else
3307 return EINVAL;
3308 #else
3309 track = file->ptrack;
3310 #endif
3311 if (track == NULL)
3312 return EACCES;
3313
3314 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3315 if (len > vsize)
3316 return EOVERFLOW;
3317 if (*offp > (uint)(vsize - len))
3318 return EOVERFLOW;
3319
3320 /* XXX TODO: what happens when mmap twice. */
3321 if (!track->mmapped) {
3322 track->mmapped = true;
3323
3324 if (!track->is_pause) {
3325 error = audio_exlock_mutex_enter(sc);
3326 if (error)
3327 return error;
3328 if (sc->sc_pbusy == false)
3329 audio_pmixer_start(sc, true);
3330 audio_exlock_mutex_exit(sc);
3331 }
3332 /* XXX mmapping record buffer is not supported */
3333 }
3334
3335 /* get ringbuffer */
3336 *uobjp = track->uobj;
3337
3338 /* Acquire a reference for the mmap. munmap will release. */
3339 uao_reference(*uobjp);
3340 *maxprotp = prot;
3341 *advicep = UVM_ADV_RANDOM;
3342 *flagsp = MAP_SHARED;
3343 return 0;
3344 }
3345
3346 /*
3347 * /dev/audioctl has to be able to open at any time without interference
3348 * with any /dev/audio or /dev/sound.
3349 * Must be called with sc_exlock held and without sc_lock held.
3350 */
3351 static int
3352 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3353 struct lwp *l)
3354 {
3355 struct file *fp;
3356 audio_file_t *af;
3357 int fd;
3358 int error;
3359
3360 KASSERT(sc->sc_exlock);
3361
3362 TRACE(1, "called");
3363
3364 error = fd_allocfile(&fp, &fd);
3365 if (error)
3366 return error;
3367
3368 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
3369 af->sc = sc;
3370 af->dev = dev;
3371
3372 /* Not necessary to insert sc_files. */
3373
3374 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3375 KASSERTMSG(error == EMOVEFD, "error=%d", error);
3376
3377 return error;
3378 }
3379
3380 /*
3381 * Free 'mem' if available, and initialize the pointer.
3382 * For this reason, this is implemented as macro.
3383 */
3384 #define audio_free(mem) do { \
3385 if (mem != NULL) { \
3386 kern_free(mem); \
3387 mem = NULL; \
3388 } \
3389 } while (0)
3390
3391 /*
3392 * (Re)allocate 'memblock' with specified 'bytes'.
3393 * bytes must not be 0.
3394 * This function never returns NULL.
3395 */
3396 static void *
3397 audio_realloc(void *memblock, size_t bytes)
3398 {
3399
3400 KASSERT(bytes != 0);
3401 audio_free(memblock);
3402 return kern_malloc(bytes, M_WAITOK);
3403 }
3404
3405 /*
3406 * (Re)allocate usrbuf with 'newbufsize' bytes.
3407 * Use this function for usrbuf because only usrbuf can be mmapped.
3408 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3409 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3410 * and returns errno.
3411 * It must be called before updating usrbuf.capacity.
3412 */
3413 static int
3414 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3415 {
3416 struct audio_softc *sc;
3417 vaddr_t vstart;
3418 vsize_t oldvsize;
3419 vsize_t newvsize;
3420 int error;
3421
3422 KASSERT(newbufsize > 0);
3423 sc = track->mixer->sc;
3424
3425 /* Get a nonzero multiple of PAGE_SIZE */
3426 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3427
3428 if (track->usrbuf.mem != NULL) {
3429 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3430 PAGE_SIZE);
3431 if (oldvsize == newvsize) {
3432 track->usrbuf.capacity = newbufsize;
3433 return 0;
3434 }
3435 vstart = (vaddr_t)track->usrbuf.mem;
3436 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3437 /* uvm_unmap also detach uobj */
3438 track->uobj = NULL; /* paranoia */
3439 track->usrbuf.mem = NULL;
3440 }
3441
3442 /* Create a uvm anonymous object */
3443 track->uobj = uao_create(newvsize, 0);
3444
3445 /* Map it into the kernel virtual address space */
3446 vstart = 0;
3447 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3448 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3449 UVM_ADV_RANDOM, 0));
3450 if (error) {
3451 device_printf(sc->sc_dev, "uvm_map failed: errno=%d\n", error);
3452 uao_detach(track->uobj); /* release reference */
3453 goto abort;
3454 }
3455
3456 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3457 false, 0);
3458 if (error) {
3459 device_printf(sc->sc_dev, "uvm_map_pageable failed: errno=%d\n",
3460 error);
3461 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3462 /* uvm_unmap also detach uobj */
3463 goto abort;
3464 }
3465
3466 track->usrbuf.mem = (void *)vstart;
3467 track->usrbuf.capacity = newbufsize;
3468 memset(track->usrbuf.mem, 0, newvsize);
3469 return 0;
3470
3471 /* failure */
3472 abort:
3473 track->uobj = NULL; /* paranoia */
3474 track->usrbuf.mem = NULL;
3475 track->usrbuf.capacity = 0;
3476 return error;
3477 }
3478
3479 /*
3480 * Free usrbuf (if available).
3481 */
3482 static void
3483 audio_free_usrbuf(audio_track_t *track)
3484 {
3485 vaddr_t vstart;
3486 vsize_t vsize;
3487
3488 vstart = (vaddr_t)track->usrbuf.mem;
3489 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3490 if (track->usrbuf.mem != NULL) {
3491 /*
3492 * Unmap the kernel mapping. uvm_unmap releases the
3493 * reference to the uvm object, and this should be the
3494 * last virtual mapping of the uvm object, so no need
3495 * to explicitly release (`detach') the object.
3496 */
3497 uvm_unmap(kernel_map, vstart, vstart + vsize);
3498
3499 track->uobj = NULL;
3500 track->usrbuf.mem = NULL;
3501 track->usrbuf.capacity = 0;
3502 }
3503 }
3504
3505 /*
3506 * This filter changes the volume for each channel.
3507 * arg->context points track->ch_volume[].
3508 */
3509 static void
3510 audio_track_chvol(audio_filter_arg_t *arg)
3511 {
3512 int16_t *ch_volume;
3513 const aint_t *s;
3514 aint_t *d;
3515 u_int i;
3516 u_int ch;
3517 u_int channels;
3518
3519 DIAGNOSTIC_filter_arg(arg);
3520 KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3521 "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3522 arg->srcfmt->channels, arg->dstfmt->channels);
3523 KASSERT(arg->context != NULL);
3524 KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3525 "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3526
3527 s = arg->src;
3528 d = arg->dst;
3529 ch_volume = arg->context;
3530
3531 channels = arg->srcfmt->channels;
3532 for (i = 0; i < arg->count; i++) {
3533 for (ch = 0; ch < channels; ch++) {
3534 aint2_t val;
3535 val = *s++;
3536 val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3537 *d++ = (aint_t)val;
3538 }
3539 }
3540 }
3541
3542 /*
3543 * This filter performs conversion from stereo (or more channels) to mono.
3544 */
3545 static void
3546 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3547 {
3548 const aint_t *s;
3549 aint_t *d;
3550 u_int i;
3551
3552 DIAGNOSTIC_filter_arg(arg);
3553
3554 s = arg->src;
3555 d = arg->dst;
3556
3557 for (i = 0; i < arg->count; i++) {
3558 *d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3559 s += arg->srcfmt->channels;
3560 }
3561 }
3562
3563 /*
3564 * This filter performs conversion from mono to stereo (or more channels).
3565 */
3566 static void
3567 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3568 {
3569 const aint_t *s;
3570 aint_t *d;
3571 u_int i;
3572 u_int ch;
3573 u_int dstchannels;
3574
3575 DIAGNOSTIC_filter_arg(arg);
3576
3577 s = arg->src;
3578 d = arg->dst;
3579 dstchannels = arg->dstfmt->channels;
3580
3581 for (i = 0; i < arg->count; i++) {
3582 d[0] = s[0];
3583 d[1] = s[0];
3584 s++;
3585 d += dstchannels;
3586 }
3587 if (dstchannels > 2) {
3588 d = arg->dst;
3589 for (i = 0; i < arg->count; i++) {
3590 for (ch = 2; ch < dstchannels; ch++) {
3591 d[ch] = 0;
3592 }
3593 d += dstchannels;
3594 }
3595 }
3596 }
3597
3598 /*
3599 * This filter shrinks M channels into N channels.
3600 * Extra channels are discarded.
3601 */
3602 static void
3603 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3604 {
3605 const aint_t *s;
3606 aint_t *d;
3607 u_int i;
3608 u_int ch;
3609
3610 DIAGNOSTIC_filter_arg(arg);
3611
3612 s = arg->src;
3613 d = arg->dst;
3614
3615 for (i = 0; i < arg->count; i++) {
3616 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3617 *d++ = s[ch];
3618 }
3619 s += arg->srcfmt->channels;
3620 }
3621 }
3622
3623 /*
3624 * This filter expands M channels into N channels.
3625 * Silence is inserted for missing channels.
3626 */
3627 static void
3628 audio_track_chmix_expand(audio_filter_arg_t *arg)
3629 {
3630 const aint_t *s;
3631 aint_t *d;
3632 u_int i;
3633 u_int ch;
3634 u_int srcchannels;
3635 u_int dstchannels;
3636
3637 DIAGNOSTIC_filter_arg(arg);
3638
3639 s = arg->src;
3640 d = arg->dst;
3641
3642 srcchannels = arg->srcfmt->channels;
3643 dstchannels = arg->dstfmt->channels;
3644 for (i = 0; i < arg->count; i++) {
3645 for (ch = 0; ch < srcchannels; ch++) {
3646 *d++ = *s++;
3647 }
3648 for (; ch < dstchannels; ch++) {
3649 *d++ = 0;
3650 }
3651 }
3652 }
3653
3654 /*
3655 * This filter performs frequency conversion (up sampling).
3656 * It uses linear interpolation.
3657 */
3658 static void
3659 audio_track_freq_up(audio_filter_arg_t *arg)
3660 {
3661 audio_track_t *track;
3662 audio_ring_t *src;
3663 audio_ring_t *dst;
3664 const aint_t *s;
3665 aint_t *d;
3666 aint_t prev[AUDIO_MAX_CHANNELS];
3667 aint_t curr[AUDIO_MAX_CHANNELS];
3668 aint_t grad[AUDIO_MAX_CHANNELS];
3669 u_int i;
3670 u_int t;
3671 u_int step;
3672 u_int channels;
3673 u_int ch;
3674 int srcused;
3675
3676 track = arg->context;
3677 KASSERT(track);
3678 src = &track->freq.srcbuf;
3679 dst = track->freq.dst;
3680 DIAGNOSTIC_ring(dst);
3681 DIAGNOSTIC_ring(src);
3682 KASSERT(src->used > 0);
3683 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3684 "src->fmt.channels=%d dst->fmt.channels=%d",
3685 src->fmt.channels, dst->fmt.channels);
3686 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3687 "src->head=%d track->mixer->frames_per_block=%d",
3688 src->head, track->mixer->frames_per_block);
3689
3690 s = arg->src;
3691 d = arg->dst;
3692
3693 /*
3694 * In order to faciliate interpolation for each block, slide (delay)
3695 * input by one sample. As a result, strictly speaking, the output
3696 * phase is delayed by 1/dstfreq. However, I believe there is no
3697 * observable impact.
3698 *
3699 * Example)
3700 * srcfreq:dstfreq = 1:3
3701 *
3702 * A - -
3703 * |
3704 * |
3705 * | B - -
3706 * +-----+-----> input timeframe
3707 * 0 1
3708 *
3709 * 0 1
3710 * +-----+-----> input timeframe
3711 * | A
3712 * | x x
3713 * | x x
3714 * x (B)
3715 * +-+-+-+-+-+-> output timeframe
3716 * 0 1 2 3 4 5
3717 */
3718
3719 /* Last samples in previous block */
3720 channels = src->fmt.channels;
3721 for (ch = 0; ch < channels; ch++) {
3722 prev[ch] = track->freq_prev[ch];
3723 curr[ch] = track->freq_curr[ch];
3724 grad[ch] = curr[ch] - prev[ch];
3725 }
3726
3727 step = track->freq_step;
3728 t = track->freq_current;
3729 //#define FREQ_DEBUG
3730 #if defined(FREQ_DEBUG)
3731 #define PRINTF(fmt...) printf(fmt)
3732 #else
3733 #define PRINTF(fmt...) do { } while (0)
3734 #endif
3735 srcused = src->used;
3736 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3737 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3738 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3739 PRINTF(" t=%d\n", t);
3740
3741 for (i = 0; i < arg->count; i++) {
3742 PRINTF("i=%d t=%5d", i, t);
3743 if (t >= 65536) {
3744 for (ch = 0; ch < channels; ch++) {
3745 prev[ch] = curr[ch];
3746 curr[ch] = *s++;
3747 grad[ch] = curr[ch] - prev[ch];
3748 }
3749 PRINTF(" prev=%d s[%d]=%d",
3750 prev[0], src->used - srcused, curr[0]);
3751
3752 /* Update */
3753 t -= 65536;
3754 srcused--;
3755 if (srcused < 0) {
3756 PRINTF(" break\n");
3757 break;
3758 }
3759 }
3760
3761 for (ch = 0; ch < channels; ch++) {
3762 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3763 #if defined(FREQ_DEBUG)
3764 if (ch == 0)
3765 printf(" t=%5d *d=%d", t, d[-1]);
3766 #endif
3767 }
3768 t += step;
3769
3770 PRINTF("\n");
3771 }
3772 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3773
3774 auring_take(src, src->used);
3775 auring_push(dst, i);
3776
3777 /* Adjust */
3778 t += track->freq_leap;
3779
3780 track->freq_current = t;
3781 for (ch = 0; ch < channels; ch++) {
3782 track->freq_prev[ch] = prev[ch];
3783 track->freq_curr[ch] = curr[ch];
3784 }
3785 }
3786
3787 /*
3788 * This filter performs frequency conversion (down sampling).
3789 * It uses simple thinning.
3790 */
3791 static void
3792 audio_track_freq_down(audio_filter_arg_t *arg)
3793 {
3794 audio_track_t *track;
3795 audio_ring_t *src;
3796 audio_ring_t *dst;
3797 const aint_t *s0;
3798 aint_t *d;
3799 u_int i;
3800 u_int t;
3801 u_int step;
3802 u_int ch;
3803 u_int channels;
3804
3805 track = arg->context;
3806 KASSERT(track);
3807 src = &track->freq.srcbuf;
3808 dst = track->freq.dst;
3809
3810 DIAGNOSTIC_ring(dst);
3811 DIAGNOSTIC_ring(src);
3812 KASSERT(src->used > 0);
3813 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3814 "src->fmt.channels=%d dst->fmt.channels=%d",
3815 src->fmt.channels, dst->fmt.channels);
3816 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3817 "src->head=%d track->mixer->frames_per_block=%d",
3818 src->head, track->mixer->frames_per_block);
3819
3820 s0 = arg->src;
3821 d = arg->dst;
3822 t = track->freq_current;
3823 step = track->freq_step;
3824 channels = dst->fmt.channels;
3825 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3826 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3827 PRINTF(" t=%d\n", t);
3828
3829 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3830 const aint_t *s;
3831 PRINTF("i=%4d t=%10d", i, t);
3832 s = s0 + (t / 65536) * channels;
3833 PRINTF(" s=%5ld", (s - s0) / channels);
3834 for (ch = 0; ch < channels; ch++) {
3835 if (ch == 0) PRINTF(" *s=%d", s[ch]);
3836 *d++ = s[ch];
3837 }
3838 PRINTF("\n");
3839 t += step;
3840 }
3841 t += track->freq_leap;
3842 PRINTF("end t=%d\n", t);
3843 auring_take(src, src->used);
3844 auring_push(dst, i);
3845 track->freq_current = t % 65536;
3846 }
3847
3848 /*
3849 * Creates track and returns it.
3850 * Must be called without sc_lock held.
3851 */
3852 audio_track_t *
3853 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
3854 {
3855 audio_track_t *track;
3856 static int newid = 0;
3857
3858 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
3859
3860 track->id = newid++;
3861 track->mixer = mixer;
3862 track->mode = mixer->mode;
3863
3864 /* Do TRACE after id is assigned. */
3865 TRACET(3, track, "for %s",
3866 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
3867
3868 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
3869 track->volume = 256;
3870 #endif
3871 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
3872 track->ch_volume[i] = 256;
3873 }
3874
3875 return track;
3876 }
3877
3878 /*
3879 * Release all resources of the track and track itself.
3880 * track must not be NULL. Don't specify the track within the file
3881 * structure linked from sc->sc_files.
3882 */
3883 static void
3884 audio_track_destroy(audio_track_t *track)
3885 {
3886
3887 KASSERT(track);
3888
3889 audio_free_usrbuf(track);
3890 audio_free(track->codec.srcbuf.mem);
3891 audio_free(track->chvol.srcbuf.mem);
3892 audio_free(track->chmix.srcbuf.mem);
3893 audio_free(track->freq.srcbuf.mem);
3894 audio_free(track->outbuf.mem);
3895
3896 kmem_free(track, sizeof(*track));
3897 }
3898
3899 /*
3900 * It returns encoding conversion filter according to src and dst format.
3901 * If it is not a convertible pair, it returns NULL. Either src or dst
3902 * must be internal format.
3903 */
3904 static audio_filter_t
3905 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
3906 const audio_format2_t *dst)
3907 {
3908
3909 if (audio_format2_is_internal(src)) {
3910 if (dst->encoding == AUDIO_ENCODING_ULAW) {
3911 return audio_internal_to_mulaw;
3912 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
3913 return audio_internal_to_alaw;
3914 } else if (audio_format2_is_linear(dst)) {
3915 switch (dst->stride) {
3916 case 8:
3917 return audio_internal_to_linear8;
3918 case 16:
3919 return audio_internal_to_linear16;
3920 #if defined(AUDIO_SUPPORT_LINEAR24)
3921 case 24:
3922 return audio_internal_to_linear24;
3923 #endif
3924 case 32:
3925 return audio_internal_to_linear32;
3926 default:
3927 TRACET(1, track, "unsupported %s stride %d",
3928 "dst", dst->stride);
3929 goto abort;
3930 }
3931 }
3932 } else if (audio_format2_is_internal(dst)) {
3933 if (src->encoding == AUDIO_ENCODING_ULAW) {
3934 return audio_mulaw_to_internal;
3935 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
3936 return audio_alaw_to_internal;
3937 } else if (audio_format2_is_linear(src)) {
3938 switch (src->stride) {
3939 case 8:
3940 return audio_linear8_to_internal;
3941 case 16:
3942 return audio_linear16_to_internal;
3943 #if defined(AUDIO_SUPPORT_LINEAR24)
3944 case 24:
3945 return audio_linear24_to_internal;
3946 #endif
3947 case 32:
3948 return audio_linear32_to_internal;
3949 default:
3950 TRACET(1, track, "unsupported %s stride %d",
3951 "src", src->stride);
3952 goto abort;
3953 }
3954 }
3955 }
3956
3957 TRACET(1, track, "unsupported encoding");
3958 abort:
3959 #if defined(AUDIO_DEBUG)
3960 if (audiodebug >= 2) {
3961 char buf[100];
3962 audio_format2_tostr(buf, sizeof(buf), src);
3963 TRACET(2, track, "src %s", buf);
3964 audio_format2_tostr(buf, sizeof(buf), dst);
3965 TRACET(2, track, "dst %s", buf);
3966 }
3967 #endif
3968 return NULL;
3969 }
3970
3971 /*
3972 * Initialize the codec stage of this track as necessary.
3973 * If successful, it initializes the codec stage as necessary, stores updated
3974 * last_dst in *last_dstp in any case, and returns 0.
3975 * Otherwise, it returns errno without modifying *last_dstp.
3976 */
3977 static int
3978 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
3979 {
3980 audio_ring_t *last_dst;
3981 audio_ring_t *srcbuf;
3982 audio_format2_t *srcfmt;
3983 audio_format2_t *dstfmt;
3984 audio_filter_arg_t *arg;
3985 u_int len;
3986 int error;
3987
3988 KASSERT(track);
3989
3990 last_dst = *last_dstp;
3991 dstfmt = &last_dst->fmt;
3992 srcfmt = &track->inputfmt;
3993 srcbuf = &track->codec.srcbuf;
3994 error = 0;
3995
3996 if (srcfmt->encoding != dstfmt->encoding
3997 || srcfmt->precision != dstfmt->precision
3998 || srcfmt->stride != dstfmt->stride) {
3999 track->codec.dst = last_dst;
4000
4001 srcbuf->fmt = *dstfmt;
4002 srcbuf->fmt.encoding = srcfmt->encoding;
4003 srcbuf->fmt.precision = srcfmt->precision;
4004 srcbuf->fmt.stride = srcfmt->stride;
4005
4006 track->codec.filter = audio_track_get_codec(track,
4007 &srcbuf->fmt, dstfmt);
4008 if (track->codec.filter == NULL) {
4009 error = EINVAL;
4010 goto abort;
4011 }
4012
4013 srcbuf->head = 0;
4014 srcbuf->used = 0;
4015 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4016 len = auring_bytelen(srcbuf);
4017 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4018
4019 arg = &track->codec.arg;
4020 arg->srcfmt = &srcbuf->fmt;
4021 arg->dstfmt = dstfmt;
4022 arg->context = NULL;
4023
4024 *last_dstp = srcbuf;
4025 return 0;
4026 }
4027
4028 abort:
4029 track->codec.filter = NULL;
4030 audio_free(srcbuf->mem);
4031 return error;
4032 }
4033
4034 /*
4035 * Initialize the chvol stage of this track as necessary.
4036 * If successful, it initializes the chvol stage as necessary, stores updated
4037 * last_dst in *last_dstp in any case, and returns 0.
4038 * Otherwise, it returns errno without modifying *last_dstp.
4039 */
4040 static int
4041 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
4042 {
4043 audio_ring_t *last_dst;
4044 audio_ring_t *srcbuf;
4045 audio_format2_t *srcfmt;
4046 audio_format2_t *dstfmt;
4047 audio_filter_arg_t *arg;
4048 u_int len;
4049 int error;
4050
4051 KASSERT(track);
4052
4053 last_dst = *last_dstp;
4054 dstfmt = &last_dst->fmt;
4055 srcfmt = &track->inputfmt;
4056 srcbuf = &track->chvol.srcbuf;
4057 error = 0;
4058
4059 /* Check whether channel volume conversion is necessary. */
4060 bool use_chvol = false;
4061 for (int ch = 0; ch < srcfmt->channels; ch++) {
4062 if (track->ch_volume[ch] != 256) {
4063 use_chvol = true;
4064 break;
4065 }
4066 }
4067
4068 if (use_chvol == true) {
4069 track->chvol.dst = last_dst;
4070 track->chvol.filter = audio_track_chvol;
4071
4072 srcbuf->fmt = *dstfmt;
4073 /* no format conversion occurs */
4074
4075 srcbuf->head = 0;
4076 srcbuf->used = 0;
4077 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4078 len = auring_bytelen(srcbuf);
4079 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4080
4081 arg = &track->chvol.arg;
4082 arg->srcfmt = &srcbuf->fmt;
4083 arg->dstfmt = dstfmt;
4084 arg->context = track->ch_volume;
4085
4086 *last_dstp = srcbuf;
4087 return 0;
4088 }
4089
4090 track->chvol.filter = NULL;
4091 audio_free(srcbuf->mem);
4092 return error;
4093 }
4094
4095 /*
4096 * Initialize the chmix stage of this track as necessary.
4097 * If successful, it initializes the chmix stage as necessary, stores updated
4098 * last_dst in *last_dstp in any case, and returns 0.
4099 * Otherwise, it returns errno without modifying *last_dstp.
4100 */
4101 static int
4102 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
4103 {
4104 audio_ring_t *last_dst;
4105 audio_ring_t *srcbuf;
4106 audio_format2_t *srcfmt;
4107 audio_format2_t *dstfmt;
4108 audio_filter_arg_t *arg;
4109 u_int srcch;
4110 u_int dstch;
4111 u_int len;
4112 int error;
4113
4114 KASSERT(track);
4115
4116 last_dst = *last_dstp;
4117 dstfmt = &last_dst->fmt;
4118 srcfmt = &track->inputfmt;
4119 srcbuf = &track->chmix.srcbuf;
4120 error = 0;
4121
4122 srcch = srcfmt->channels;
4123 dstch = dstfmt->channels;
4124 if (srcch != dstch) {
4125 track->chmix.dst = last_dst;
4126
4127 if (srcch >= 2 && dstch == 1) {
4128 track->chmix.filter = audio_track_chmix_mixLR;
4129 } else if (srcch == 1 && dstch >= 2) {
4130 track->chmix.filter = audio_track_chmix_dupLR;
4131 } else if (srcch > dstch) {
4132 track->chmix.filter = audio_track_chmix_shrink;
4133 } else {
4134 track->chmix.filter = audio_track_chmix_expand;
4135 }
4136
4137 srcbuf->fmt = *dstfmt;
4138 srcbuf->fmt.channels = srcch;
4139
4140 srcbuf->head = 0;
4141 srcbuf->used = 0;
4142 /* XXX The buffer size should be able to calculate. */
4143 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4144 len = auring_bytelen(srcbuf);
4145 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4146
4147 arg = &track->chmix.arg;
4148 arg->srcfmt = &srcbuf->fmt;
4149 arg->dstfmt = dstfmt;
4150 arg->context = NULL;
4151
4152 *last_dstp = srcbuf;
4153 return 0;
4154 }
4155
4156 track->chmix.filter = NULL;
4157 audio_free(srcbuf->mem);
4158 return error;
4159 }
4160
4161 /*
4162 * Initialize the freq stage of this track as necessary.
4163 * If successful, it initializes the freq stage as necessary, stores updated
4164 * last_dst in *last_dstp in any case, and returns 0.
4165 * Otherwise, it returns errno without modifying *last_dstp.
4166 */
4167 static int
4168 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
4169 {
4170 audio_ring_t *last_dst;
4171 audio_ring_t *srcbuf;
4172 audio_format2_t *srcfmt;
4173 audio_format2_t *dstfmt;
4174 audio_filter_arg_t *arg;
4175 uint32_t srcfreq;
4176 uint32_t dstfreq;
4177 u_int dst_capacity;
4178 u_int mod;
4179 u_int len;
4180 int error;
4181
4182 KASSERT(track);
4183
4184 last_dst = *last_dstp;
4185 dstfmt = &last_dst->fmt;
4186 srcfmt = &track->inputfmt;
4187 srcbuf = &track->freq.srcbuf;
4188 error = 0;
4189
4190 srcfreq = srcfmt->sample_rate;
4191 dstfreq = dstfmt->sample_rate;
4192 if (srcfreq != dstfreq) {
4193 track->freq.dst = last_dst;
4194
4195 memset(track->freq_prev, 0, sizeof(track->freq_prev));
4196 memset(track->freq_curr, 0, sizeof(track->freq_curr));
4197
4198 /* freq_step is the ratio of src/dst when let dst 65536. */
4199 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4200
4201 dst_capacity = frame_per_block(track->mixer, dstfmt);
4202 mod = (uint64_t)srcfreq * 65536 % dstfreq;
4203 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4204
4205 if (track->freq_step < 65536) {
4206 track->freq.filter = audio_track_freq_up;
4207 /* In order to carry at the first time. */
4208 track->freq_current = 65536;
4209 } else {
4210 track->freq.filter = audio_track_freq_down;
4211 track->freq_current = 0;
4212 }
4213
4214 srcbuf->fmt = *dstfmt;
4215 srcbuf->fmt.sample_rate = srcfreq;
4216
4217 srcbuf->head = 0;
4218 srcbuf->used = 0;
4219 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4220 len = auring_bytelen(srcbuf);
4221 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4222
4223 arg = &track->freq.arg;
4224 arg->srcfmt = &srcbuf->fmt;
4225 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
4226 arg->context = track;
4227
4228 *last_dstp = srcbuf;
4229 return 0;
4230 }
4231
4232 track->freq.filter = NULL;
4233 audio_free(srcbuf->mem);
4234 return error;
4235 }
4236
4237 /*
4238 * When playing back: (e.g. if codec and freq stage are valid)
4239 *
4240 * write
4241 * | uiomove
4242 * v
4243 * usrbuf [...............] byte ring buffer (mmap-able)
4244 * | memcpy
4245 * v
4246 * codec.srcbuf[....] 1 block (ring) buffer <-- stage input
4247 * .dst ----+
4248 * | convert
4249 * v
4250 * freq.srcbuf [....] 1 block (ring) buffer
4251 * .dst ----+
4252 * | convert
4253 * v
4254 * outbuf [...............] NBLKOUT blocks ring buffer
4255 *
4256 *
4257 * When recording:
4258 *
4259 * freq.srcbuf [...............] NBLKOUT blocks ring buffer <-- stage input
4260 * .dst ----+
4261 * | convert
4262 * v
4263 * codec.srcbuf[.....] 1 block (ring) buffer
4264 * .dst ----+
4265 * | convert
4266 * v
4267 * outbuf [.....] 1 block (ring) buffer
4268 * | memcpy
4269 * v
4270 * usrbuf [...............] byte ring buffer (mmap-able *)
4271 * | uiomove
4272 * v
4273 * read
4274 *
4275 * *: usrbuf for recording is also mmap-able due to symmetry with
4276 * playback buffer, but for now mmap will never happen for recording.
4277 */
4278
4279 /*
4280 * Set the userland format of this track.
4281 * usrfmt argument should have been previously verified by
4282 * audio_track_setinfo_check().
4283 * This function may release and reallocate all internal conversion buffers.
4284 * It returns 0 if successful. Otherwise it returns errno with clearing all
4285 * internal buffers.
4286 * It must be called without sc_intr_lock since uvm_* routines require non
4287 * intr_lock state.
4288 * It must be called with track lock held since it may release and reallocate
4289 * outbuf.
4290 */
4291 static int
4292 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4293 {
4294 struct audio_softc *sc;
4295 u_int newbufsize;
4296 u_int oldblksize;
4297 u_int len;
4298 int error;
4299
4300 KASSERT(track);
4301 sc = track->mixer->sc;
4302
4303 /* usrbuf is the closest buffer to the userland. */
4304 track->usrbuf.fmt = *usrfmt;
4305
4306 /*
4307 * For references, one block size (in 40msec) is:
4308 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4309 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4310 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4311 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4312 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4313 *
4314 * For example,
4315 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4316 * newbufsize = rounddown(65536 / 7056) = 63504
4317 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4318 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4319 *
4320 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4321 * newbufsize = rounddown(65536 / 7680) = 61440
4322 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4323 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4324 */
4325 oldblksize = track->usrbuf_blksize;
4326 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4327 frame_per_block(track->mixer, &track->usrbuf.fmt));
4328 track->usrbuf.head = 0;
4329 track->usrbuf.used = 0;
4330 newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4331 newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4332 error = audio_realloc_usrbuf(track, newbufsize);
4333 if (error) {
4334 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4335 newbufsize);
4336 goto error;
4337 }
4338
4339 /* Recalc water mark. */
4340 if (track->usrbuf_blksize != oldblksize) {
4341 if (audio_track_is_playback(track)) {
4342 /* Set high at 100%, low at 75%. */
4343 track->usrbuf_usedhigh = track->usrbuf.capacity;
4344 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4345 } else {
4346 /* Set high at 100% minus 1block(?), low at 0% */
4347 track->usrbuf_usedhigh = track->usrbuf.capacity -
4348 track->usrbuf_blksize;
4349 track->usrbuf_usedlow = 0;
4350 }
4351 }
4352
4353 /* Stage buffer */
4354 audio_ring_t *last_dst = &track->outbuf;
4355 if (audio_track_is_playback(track)) {
4356 /* On playback, initialize from the mixer side in order. */
4357 track->inputfmt = *usrfmt;
4358 track->outbuf.fmt = track->mixer->track_fmt;
4359
4360 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4361 goto error;
4362 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4363 goto error;
4364 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4365 goto error;
4366 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4367 goto error;
4368 } else {
4369 /* On recording, initialize from userland side in order. */
4370 track->inputfmt = track->mixer->track_fmt;
4371 track->outbuf.fmt = *usrfmt;
4372
4373 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4374 goto error;
4375 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4376 goto error;
4377 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4378 goto error;
4379 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4380 goto error;
4381 }
4382 #if 0
4383 /* debug */
4384 if (track->freq.filter) {
4385 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4386 audio_print_format2("freq dst", &track->freq.dst->fmt);
4387 }
4388 if (track->chmix.filter) {
4389 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4390 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4391 }
4392 if (track->chvol.filter) {
4393 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4394 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4395 }
4396 if (track->codec.filter) {
4397 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4398 audio_print_format2("codec dst", &track->codec.dst->fmt);
4399 }
4400 #endif
4401
4402 /* Stage input buffer */
4403 track->input = last_dst;
4404
4405 /*
4406 * On the recording track, make the first stage a ring buffer.
4407 * XXX is there a better way?
4408 */
4409 if (audio_track_is_record(track)) {
4410 track->input->capacity = NBLKOUT *
4411 frame_per_block(track->mixer, &track->input->fmt);
4412 len = auring_bytelen(track->input);
4413 track->input->mem = audio_realloc(track->input->mem, len);
4414 }
4415
4416 /*
4417 * Output buffer.
4418 * On the playback track, its capacity is NBLKOUT blocks.
4419 * On the recording track, its capacity is 1 block.
4420 */
4421 track->outbuf.head = 0;
4422 track->outbuf.used = 0;
4423 track->outbuf.capacity = frame_per_block(track->mixer,
4424 &track->outbuf.fmt);
4425 if (audio_track_is_playback(track))
4426 track->outbuf.capacity *= NBLKOUT;
4427 len = auring_bytelen(&track->outbuf);
4428 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4429 if (track->outbuf.mem == NULL) {
4430 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4431 error = ENOMEM;
4432 goto error;
4433 }
4434
4435 #if defined(AUDIO_DEBUG)
4436 if (audiodebug >= 3) {
4437 struct audio_track_debugbuf m;
4438
4439 memset(&m, 0, sizeof(m));
4440 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4441 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4442 if (track->freq.filter)
4443 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4444 track->freq.srcbuf.capacity *
4445 frametobyte(&track->freq.srcbuf.fmt, 1));
4446 if (track->chmix.filter)
4447 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4448 track->chmix.srcbuf.capacity *
4449 frametobyte(&track->chmix.srcbuf.fmt, 1));
4450 if (track->chvol.filter)
4451 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4452 track->chvol.srcbuf.capacity *
4453 frametobyte(&track->chvol.srcbuf.fmt, 1));
4454 if (track->codec.filter)
4455 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4456 track->codec.srcbuf.capacity *
4457 frametobyte(&track->codec.srcbuf.fmt, 1));
4458 snprintf(m.usrbuf, sizeof(m.usrbuf),
4459 " usr=%d", track->usrbuf.capacity);
4460
4461 if (audio_track_is_playback(track)) {
4462 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4463 m.outbuf, m.freq, m.chmix,
4464 m.chvol, m.codec, m.usrbuf);
4465 } else {
4466 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4467 m.freq, m.chmix, m.chvol,
4468 m.codec, m.outbuf, m.usrbuf);
4469 }
4470 }
4471 #endif
4472 return 0;
4473
4474 error:
4475 audio_free_usrbuf(track);
4476 audio_free(track->codec.srcbuf.mem);
4477 audio_free(track->chvol.srcbuf.mem);
4478 audio_free(track->chmix.srcbuf.mem);
4479 audio_free(track->freq.srcbuf.mem);
4480 audio_free(track->outbuf.mem);
4481 return error;
4482 }
4483
4484 /*
4485 * Fill silence frames (as the internal format) up to 1 block
4486 * if the ring is not empty and less than 1 block.
4487 * It returns the number of appended frames.
4488 */
4489 static int
4490 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4491 {
4492 int fpb;
4493 int n;
4494
4495 KASSERT(track);
4496 KASSERT(audio_format2_is_internal(&ring->fmt));
4497
4498 /* XXX is n correct? */
4499 /* XXX memset uses frametobyte()? */
4500
4501 if (ring->used == 0)
4502 return 0;
4503
4504 fpb = frame_per_block(track->mixer, &ring->fmt);
4505 if (ring->used >= fpb)
4506 return 0;
4507
4508 n = (ring->capacity - ring->used) % fpb;
4509
4510 KASSERTMSG(auring_get_contig_free(ring) >= n,
4511 "auring_get_contig_free(ring)=%d n=%d",
4512 auring_get_contig_free(ring), n);
4513
4514 memset(auring_tailptr_aint(ring), 0,
4515 n * ring->fmt.channels * sizeof(aint_t));
4516 auring_push(ring, n);
4517 return n;
4518 }
4519
4520 /*
4521 * Execute the conversion stage.
4522 * It prepares arg from this stage and executes stage->filter.
4523 * It must be called only if stage->filter is not NULL.
4524 *
4525 * For stages other than frequency conversion, the function increments
4526 * src and dst counters here. For frequency conversion stage, on the
4527 * other hand, the function does not touch src and dst counters and
4528 * filter side has to increment them.
4529 */
4530 static void
4531 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4532 {
4533 audio_filter_arg_t *arg;
4534 int srccount;
4535 int dstcount;
4536 int count;
4537
4538 KASSERT(track);
4539 KASSERT(stage->filter);
4540
4541 srccount = auring_get_contig_used(&stage->srcbuf);
4542 dstcount = auring_get_contig_free(stage->dst);
4543
4544 if (isfreq) {
4545 KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4546 count = uimin(dstcount, track->mixer->frames_per_block);
4547 } else {
4548 count = uimin(srccount, dstcount);
4549 }
4550
4551 if (count > 0) {
4552 arg = &stage->arg;
4553 arg->src = auring_headptr(&stage->srcbuf);
4554 arg->dst = auring_tailptr(stage->dst);
4555 arg->count = count;
4556
4557 stage->filter(arg);
4558
4559 if (!isfreq) {
4560 auring_take(&stage->srcbuf, count);
4561 auring_push(stage->dst, count);
4562 }
4563 }
4564 }
4565
4566 /*
4567 * Produce output buffer for playback from user input buffer.
4568 * It must be called only if usrbuf is not empty and outbuf is
4569 * available at least one free block.
4570 */
4571 static void
4572 audio_track_play(audio_track_t *track)
4573 {
4574 audio_ring_t *usrbuf;
4575 audio_ring_t *input;
4576 int count;
4577 int framesize;
4578 int bytes;
4579
4580 KASSERT(track);
4581 KASSERT(track->lock);
4582 TRACET(4, track, "start pstate=%d", track->pstate);
4583
4584 /* At this point usrbuf must not be empty. */
4585 KASSERT(track->usrbuf.used > 0);
4586 /* Also, outbuf must be available at least one block. */
4587 count = auring_get_contig_free(&track->outbuf);
4588 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4589 "count=%d fpb=%d",
4590 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4591
4592 /* XXX TODO: is this necessary for now? */
4593 int track_count_0 = track->outbuf.used;
4594
4595 usrbuf = &track->usrbuf;
4596 input = track->input;
4597
4598 /*
4599 * framesize is always 1 byte or more since all formats supported as
4600 * usrfmt(=input) have 8bit or more stride.
4601 */
4602 framesize = frametobyte(&input->fmt, 1);
4603 KASSERT(framesize >= 1);
4604
4605 /* The next stage of usrbuf (=input) must be available. */
4606 KASSERT(auring_get_contig_free(input) > 0);
4607
4608 /*
4609 * Copy usrbuf up to 1block to input buffer.
4610 * count is the number of frames to copy from usrbuf.
4611 * bytes is the number of bytes to copy from usrbuf. However it is
4612 * not copied less than one frame.
4613 */
4614 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4615 bytes = count * framesize;
4616
4617 track->usrbuf_stamp += bytes;
4618
4619 if (usrbuf->head + bytes < usrbuf->capacity) {
4620 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4621 (uint8_t *)usrbuf->mem + usrbuf->head,
4622 bytes);
4623 auring_push(input, count);
4624 auring_take(usrbuf, bytes);
4625 } else {
4626 int bytes1;
4627 int bytes2;
4628
4629 bytes1 = auring_get_contig_used(usrbuf);
4630 KASSERTMSG(bytes1 % framesize == 0,
4631 "bytes1=%d framesize=%d", bytes1, framesize);
4632 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4633 (uint8_t *)usrbuf->mem + usrbuf->head,
4634 bytes1);
4635 auring_push(input, bytes1 / framesize);
4636 auring_take(usrbuf, bytes1);
4637
4638 bytes2 = bytes - bytes1;
4639 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4640 (uint8_t *)usrbuf->mem + usrbuf->head,
4641 bytes2);
4642 auring_push(input, bytes2 / framesize);
4643 auring_take(usrbuf, bytes2);
4644 }
4645
4646 /* Encoding conversion */
4647 if (track->codec.filter)
4648 audio_apply_stage(track, &track->codec, false);
4649
4650 /* Channel volume */
4651 if (track->chvol.filter)
4652 audio_apply_stage(track, &track->chvol, false);
4653
4654 /* Channel mix */
4655 if (track->chmix.filter)
4656 audio_apply_stage(track, &track->chmix, false);
4657
4658 /* Frequency conversion */
4659 /*
4660 * Since the frequency conversion needs correction for each block,
4661 * it rounds up to 1 block.
4662 */
4663 if (track->freq.filter) {
4664 int n;
4665 n = audio_append_silence(track, &track->freq.srcbuf);
4666 if (n > 0) {
4667 TRACET(4, track,
4668 "freq.srcbuf add silence %d -> %d/%d/%d",
4669 n,
4670 track->freq.srcbuf.head,
4671 track->freq.srcbuf.used,
4672 track->freq.srcbuf.capacity);
4673 }
4674 if (track->freq.srcbuf.used > 0) {
4675 audio_apply_stage(track, &track->freq, true);
4676 }
4677 }
4678
4679 if (bytes < track->usrbuf_blksize) {
4680 /*
4681 * Clear all conversion buffer pointer if the conversion was
4682 * not exactly one block. These conversion stage buffers are
4683 * certainly circular buffers because of symmetry with the
4684 * previous and next stage buffer. However, since they are
4685 * treated as simple contiguous buffers in operation, so head
4686 * always should point 0. This may happen during drain-age.
4687 */
4688 TRACET(4, track, "reset stage");
4689 if (track->codec.filter) {
4690 KASSERT(track->codec.srcbuf.used == 0);
4691 track->codec.srcbuf.head = 0;
4692 }
4693 if (track->chvol.filter) {
4694 KASSERT(track->chvol.srcbuf.used == 0);
4695 track->chvol.srcbuf.head = 0;
4696 }
4697 if (track->chmix.filter) {
4698 KASSERT(track->chmix.srcbuf.used == 0);
4699 track->chmix.srcbuf.head = 0;
4700 }
4701 if (track->freq.filter) {
4702 KASSERT(track->freq.srcbuf.used == 0);
4703 track->freq.srcbuf.head = 0;
4704 }
4705 }
4706
4707 if (track->input == &track->outbuf) {
4708 track->outputcounter = track->inputcounter;
4709 } else {
4710 track->outputcounter += track->outbuf.used - track_count_0;
4711 }
4712
4713 #if defined(AUDIO_DEBUG)
4714 if (audiodebug >= 3) {
4715 struct audio_track_debugbuf m;
4716 audio_track_bufstat(track, &m);
4717 TRACET(0, track, "end%s%s%s%s%s%s",
4718 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4719 }
4720 #endif
4721 }
4722
4723 /*
4724 * Produce user output buffer for recording from input buffer.
4725 */
4726 static void
4727 audio_track_record(audio_track_t *track)
4728 {
4729 audio_ring_t *outbuf;
4730 audio_ring_t *usrbuf;
4731 int count;
4732 int bytes;
4733 int framesize;
4734
4735 KASSERT(track);
4736 KASSERT(track->lock);
4737
4738 /* Number of frames to process */
4739 count = auring_get_contig_used(track->input);
4740 count = uimin(count, track->mixer->frames_per_block);
4741 if (count == 0) {
4742 TRACET(4, track, "count == 0");
4743 return;
4744 }
4745
4746 /* Frequency conversion */
4747 if (track->freq.filter) {
4748 if (track->freq.srcbuf.used > 0) {
4749 audio_apply_stage(track, &track->freq, true);
4750 /* XXX should input of freq be from beginning of buf? */
4751 }
4752 }
4753
4754 /* Channel mix */
4755 if (track->chmix.filter)
4756 audio_apply_stage(track, &track->chmix, false);
4757
4758 /* Channel volume */
4759 if (track->chvol.filter)
4760 audio_apply_stage(track, &track->chvol, false);
4761
4762 /* Encoding conversion */
4763 if (track->codec.filter)
4764 audio_apply_stage(track, &track->codec, false);
4765
4766 /* Copy outbuf to usrbuf */
4767 outbuf = &track->outbuf;
4768 usrbuf = &track->usrbuf;
4769 /*
4770 * framesize is always 1 byte or more since all formats supported
4771 * as usrfmt(=output) have 8bit or more stride.
4772 */
4773 framesize = frametobyte(&outbuf->fmt, 1);
4774 KASSERT(framesize >= 1);
4775 /*
4776 * count is the number of frames to copy to usrbuf.
4777 * bytes is the number of bytes to copy to usrbuf.
4778 */
4779 count = outbuf->used;
4780 count = uimin(count,
4781 (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4782 bytes = count * framesize;
4783 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4784 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4785 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4786 bytes);
4787 auring_push(usrbuf, bytes);
4788 auring_take(outbuf, count);
4789 } else {
4790 int bytes1;
4791 int bytes2;
4792
4793 bytes1 = auring_get_contig_free(usrbuf);
4794 KASSERTMSG(bytes1 % framesize == 0,
4795 "bytes1=%d framesize=%d", bytes1, framesize);
4796 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4797 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4798 bytes1);
4799 auring_push(usrbuf, bytes1);
4800 auring_take(outbuf, bytes1 / framesize);
4801
4802 bytes2 = bytes - bytes1;
4803 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4804 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4805 bytes2);
4806 auring_push(usrbuf, bytes2);
4807 auring_take(outbuf, bytes2 / framesize);
4808 }
4809
4810 /* XXX TODO: any counters here? */
4811
4812 #if defined(AUDIO_DEBUG)
4813 if (audiodebug >= 3) {
4814 struct audio_track_debugbuf m;
4815 audio_track_bufstat(track, &m);
4816 TRACET(0, track, "end%s%s%s%s%s%s",
4817 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4818 }
4819 #endif
4820 }
4821
4822 /*
4823 * Calculate blktime [msec] from mixer(.hwbuf.fmt).
4824 * Must be called with sc_exlock held.
4825 */
4826 static u_int
4827 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4828 {
4829 audio_format2_t *fmt;
4830 u_int blktime;
4831 u_int frames_per_block;
4832
4833 KASSERT(sc->sc_exlock);
4834
4835 fmt = &mixer->hwbuf.fmt;
4836 blktime = sc->sc_blk_ms;
4837
4838 /*
4839 * If stride is not multiples of 8, special treatment is necessary.
4840 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
4841 */
4842 if (fmt->stride == 4) {
4843 frames_per_block = fmt->sample_rate * blktime / 1000;
4844 if ((frames_per_block & 1) != 0)
4845 blktime *= 2;
4846 }
4847 #ifdef DIAGNOSTIC
4848 else if (fmt->stride % NBBY != 0) {
4849 panic("unsupported HW stride %d", fmt->stride);
4850 }
4851 #endif
4852
4853 return blktime;
4854 }
4855
4856 /*
4857 * Initialize the mixer corresponding to the mode.
4858 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
4859 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
4860 * This function returns 0 on successful. Otherwise returns errno.
4861 * Must be called with sc_exlock held and without sc_lock held.
4862 */
4863 static int
4864 audio_mixer_init(struct audio_softc *sc, int mode,
4865 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
4866 {
4867 char codecbuf[64];
4868 char blkdmsbuf[8];
4869 audio_trackmixer_t *mixer;
4870 void (*softint_handler)(void *);
4871 int len;
4872 int blksize;
4873 int capacity;
4874 size_t bufsize;
4875 int hwblks;
4876 int blkms;
4877 int blkdms;
4878 int error;
4879
4880 KASSERT(hwfmt != NULL);
4881 KASSERT(reg != NULL);
4882 KASSERT(sc->sc_exlock);
4883
4884 error = 0;
4885 if (mode == AUMODE_PLAY)
4886 mixer = sc->sc_pmixer;
4887 else
4888 mixer = sc->sc_rmixer;
4889
4890 mixer->sc = sc;
4891 mixer->mode = mode;
4892
4893 mixer->hwbuf.fmt = *hwfmt;
4894 mixer->volume = 256;
4895 mixer->blktime_d = 1000;
4896 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
4897 sc->sc_blk_ms = mixer->blktime_n;
4898 hwblks = NBLKHW;
4899
4900 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
4901 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
4902 if (sc->hw_if->round_blocksize) {
4903 int rounded;
4904 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
4905 mutex_enter(sc->sc_lock);
4906 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
4907 mode, &p);
4908 mutex_exit(sc->sc_lock);
4909 TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
4910 if (rounded != blksize) {
4911 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
4912 mixer->hwbuf.fmt.channels) != 0) {
4913 audio_printf(sc,
4914 "round_blocksize returned blocksize "
4915 "indivisible by framesize: "
4916 "blksize=%d rounded=%d "
4917 "stride=%ubit channels=%u\n",
4918 blksize, rounded,
4919 mixer->hwbuf.fmt.stride,
4920 mixer->hwbuf.fmt.channels);
4921 return EINVAL;
4922 }
4923 /* Recalculation */
4924 blksize = rounded;
4925 mixer->frames_per_block = blksize * NBBY /
4926 (mixer->hwbuf.fmt.stride *
4927 mixer->hwbuf.fmt.channels);
4928 }
4929 }
4930 mixer->blktime_n = mixer->frames_per_block;
4931 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
4932
4933 capacity = mixer->frames_per_block * hwblks;
4934 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
4935 if (sc->hw_if->round_buffersize) {
4936 size_t rounded;
4937 mutex_enter(sc->sc_lock);
4938 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
4939 bufsize);
4940 mutex_exit(sc->sc_lock);
4941 TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
4942 if (rounded < bufsize) {
4943 /* buffersize needs NBLKHW blocks at least. */
4944 audio_printf(sc,
4945 "round_buffersize returned too small buffersize: "
4946 "buffersize=%zd blksize=%d\n",
4947 rounded, blksize);
4948 return EINVAL;
4949 }
4950 if (rounded % blksize != 0) {
4951 /* buffersize/blksize constraint mismatch? */
4952 audio_printf(sc,
4953 "round_buffersize returned buffersize indivisible "
4954 "by blksize: buffersize=%zu blksize=%d\n",
4955 rounded, blksize);
4956 return EINVAL;
4957 }
4958 if (rounded != bufsize) {
4959 /* Recalculation */
4960 bufsize = rounded;
4961 hwblks = bufsize / blksize;
4962 capacity = mixer->frames_per_block * hwblks;
4963 }
4964 }
4965 TRACE(1, "buffersize for %s = %zu",
4966 (mode == AUMODE_PLAY) ? "playback" : "recording",
4967 bufsize);
4968 mixer->hwbuf.capacity = capacity;
4969
4970 if (sc->hw_if->allocm) {
4971 /* sc_lock is not necessary for allocm */
4972 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
4973 if (mixer->hwbuf.mem == NULL) {
4974 audio_printf(sc, "allocm(%zu) failed\n", bufsize);
4975 return ENOMEM;
4976 }
4977 } else {
4978 mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
4979 }
4980
4981 /* From here, audio_mixer_destroy is necessary to exit. */
4982 if (mode == AUMODE_PLAY) {
4983 cv_init(&mixer->outcv, "audiowr");
4984 } else {
4985 cv_init(&mixer->outcv, "audiord");
4986 }
4987
4988 if (mode == AUMODE_PLAY) {
4989 softint_handler = audio_softintr_wr;
4990 } else {
4991 softint_handler = audio_softintr_rd;
4992 }
4993 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
4994 softint_handler, sc);
4995 if (mixer->sih == NULL) {
4996 device_printf(sc->sc_dev, "softint_establish failed\n");
4997 goto abort;
4998 }
4999
5000 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
5001 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
5002 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
5003 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
5004 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
5005
5006 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
5007 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
5008 mixer->swap_endian = true;
5009 TRACE(1, "swap_endian");
5010 }
5011
5012 if (mode == AUMODE_PLAY) {
5013 /* Mixing buffer */
5014 mixer->mixfmt = mixer->track_fmt;
5015 mixer->mixfmt.precision *= 2;
5016 mixer->mixfmt.stride *= 2;
5017 /* XXX TODO: use some macros? */
5018 len = mixer->frames_per_block * mixer->mixfmt.channels *
5019 mixer->mixfmt.stride / NBBY;
5020 mixer->mixsample = audio_realloc(mixer->mixsample, len);
5021 } else {
5022 /* No mixing buffer for recording */
5023 }
5024
5025 if (reg->codec) {
5026 mixer->codec = reg->codec;
5027 mixer->codecarg.context = reg->context;
5028 if (mode == AUMODE_PLAY) {
5029 mixer->codecarg.srcfmt = &mixer->track_fmt;
5030 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
5031 } else {
5032 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
5033 mixer->codecarg.dstfmt = &mixer->track_fmt;
5034 }
5035 mixer->codecbuf.fmt = mixer->track_fmt;
5036 mixer->codecbuf.capacity = mixer->frames_per_block;
5037 len = auring_bytelen(&mixer->codecbuf);
5038 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
5039 if (mixer->codecbuf.mem == NULL) {
5040 device_printf(sc->sc_dev,
5041 "malloc codecbuf(%d) failed\n", len);
5042 error = ENOMEM;
5043 goto abort;
5044 }
5045 }
5046
5047 /* Succeeded so display it. */
5048 codecbuf[0] = '\0';
5049 if (mixer->codec || mixer->swap_endian) {
5050 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
5051 (mode == AUMODE_PLAY) ? "->" : "<-",
5052 audio_encoding_name(mixer->hwbuf.fmt.encoding),
5053 mixer->hwbuf.fmt.precision);
5054 }
5055 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
5056 blkdms = (mixer->blktime_n * 10000 / mixer->blktime_d) % 10;
5057 blkdmsbuf[0] = '\0';
5058 if (blkdms != 0) {
5059 snprintf(blkdmsbuf, sizeof(blkdmsbuf), ".%1d", blkdms);
5060 }
5061 aprint_normal_dev(sc->sc_dev,
5062 "%s:%d%s %dch %dHz, blk %d bytes (%d%sms) for %s\n",
5063 audio_encoding_name(mixer->track_fmt.encoding),
5064 mixer->track_fmt.precision,
5065 codecbuf,
5066 mixer->track_fmt.channels,
5067 mixer->track_fmt.sample_rate,
5068 blksize,
5069 blkms, blkdmsbuf,
5070 (mode == AUMODE_PLAY) ? "playback" : "recording");
5071
5072 return 0;
5073
5074 abort:
5075 audio_mixer_destroy(sc, mixer);
5076 return error;
5077 }
5078
5079 /*
5080 * Releases all resources of 'mixer'.
5081 * Note that it does not release the memory area of 'mixer' itself.
5082 * Must be called with sc_exlock held and without sc_lock held.
5083 */
5084 static void
5085 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
5086 {
5087 int bufsize;
5088
5089 KASSERT(sc->sc_exlock == 1);
5090
5091 bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
5092
5093 if (mixer->hwbuf.mem != NULL) {
5094 if (sc->hw_if->freem) {
5095 /* sc_lock is not necessary for freem */
5096 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
5097 } else {
5098 kmem_free(mixer->hwbuf.mem, bufsize);
5099 }
5100 mixer->hwbuf.mem = NULL;
5101 }
5102
5103 audio_free(mixer->codecbuf.mem);
5104 audio_free(mixer->mixsample);
5105
5106 cv_destroy(&mixer->outcv);
5107
5108 if (mixer->sih) {
5109 softint_disestablish(mixer->sih);
5110 mixer->sih = NULL;
5111 }
5112 }
5113
5114 /*
5115 * Starts playback mixer.
5116 * Must be called only if sc_pbusy is false.
5117 * Must be called with sc_lock && sc_exlock held.
5118 * Must not be called from the interrupt context.
5119 */
5120 static void
5121 audio_pmixer_start(struct audio_softc *sc, bool force)
5122 {
5123 audio_trackmixer_t *mixer;
5124 int minimum;
5125
5126 KASSERT(mutex_owned(sc->sc_lock));
5127 KASSERT(sc->sc_exlock);
5128 KASSERT(sc->sc_pbusy == false);
5129
5130 mutex_enter(sc->sc_intr_lock);
5131
5132 mixer = sc->sc_pmixer;
5133 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
5134 (audiodebug >= 3) ? "begin " : "",
5135 (int)mixer->mixseq, (int)mixer->hwseq,
5136 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5137 force ? " force" : "");
5138
5139 /* Need two blocks to start normally. */
5140 minimum = (force) ? 1 : 2;
5141 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
5142 audio_pmixer_process(sc);
5143 }
5144
5145 /* Start output */
5146 audio_pmixer_output(sc);
5147 sc->sc_pbusy = true;
5148
5149 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
5150 (int)mixer->mixseq, (int)mixer->hwseq,
5151 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5152
5153 mutex_exit(sc->sc_intr_lock);
5154 }
5155
5156 /*
5157 * When playing back with MD filter:
5158 *
5159 * track track ...
5160 * v v
5161 * + mix (with aint2_t)
5162 * | master volume (with aint2_t)
5163 * v
5164 * mixsample [::::] wide-int 1 block (ring) buffer
5165 * |
5166 * | convert aint2_t -> aint_t
5167 * v
5168 * codecbuf [....] 1 block (ring) buffer
5169 * |
5170 * | convert to hw format
5171 * v
5172 * hwbuf [............] NBLKHW blocks ring buffer
5173 *
5174 * When playing back without MD filter:
5175 *
5176 * mixsample [::::] wide-int 1 block (ring) buffer
5177 * |
5178 * | convert aint2_t -> aint_t
5179 * | (with byte swap if necessary)
5180 * v
5181 * hwbuf [............] NBLKHW blocks ring buffer
5182 *
5183 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5184 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5185 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5186 */
5187
5188 /*
5189 * Performs track mixing and converts it to hwbuf.
5190 * Note that this function doesn't transfer hwbuf to hardware.
5191 * Must be called with sc_intr_lock held.
5192 */
5193 static void
5194 audio_pmixer_process(struct audio_softc *sc)
5195 {
5196 audio_trackmixer_t *mixer;
5197 audio_file_t *f;
5198 int frame_count;
5199 int sample_count;
5200 int mixed;
5201 int i;
5202 aint2_t *m;
5203 aint_t *h;
5204
5205 mixer = sc->sc_pmixer;
5206
5207 frame_count = mixer->frames_per_block;
5208 KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
5209 "auring_get_contig_free()=%d frame_count=%d",
5210 auring_get_contig_free(&mixer->hwbuf), frame_count);
5211 sample_count = frame_count * mixer->mixfmt.channels;
5212
5213 mixer->mixseq++;
5214
5215 /* Mix all tracks */
5216 mixed = 0;
5217 SLIST_FOREACH(f, &sc->sc_files, entry) {
5218 audio_track_t *track = f->ptrack;
5219
5220 if (track == NULL)
5221 continue;
5222
5223 if (track->is_pause) {
5224 TRACET(4, track, "skip; paused");
5225 continue;
5226 }
5227
5228 /* Skip if the track is used by process context. */
5229 if (audio_track_lock_tryenter(track) == false) {
5230 TRACET(4, track, "skip; in use");
5231 continue;
5232 }
5233
5234 /* Emulate mmap'ped track */
5235 if (track->mmapped) {
5236 auring_push(&track->usrbuf, track->usrbuf_blksize);
5237 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5238 track->usrbuf.head,
5239 track->usrbuf.used,
5240 track->usrbuf.capacity);
5241 }
5242
5243 if (track->outbuf.used < mixer->frames_per_block &&
5244 track->usrbuf.used > 0) {
5245 TRACET(4, track, "process");
5246 audio_track_play(track);
5247 }
5248
5249 if (track->outbuf.used > 0) {
5250 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5251 } else {
5252 TRACET(4, track, "skip; empty");
5253 }
5254
5255 audio_track_lock_exit(track);
5256 }
5257
5258 if (mixed == 0) {
5259 /* Silence */
5260 memset(mixer->mixsample, 0,
5261 frametobyte(&mixer->mixfmt, frame_count));
5262 } else {
5263 if (mixed > 1) {
5264 /* If there are multiple tracks, do auto gain control */
5265 audio_pmixer_agc(mixer, sample_count);
5266 }
5267
5268 /* Apply master volume */
5269 if (mixer->volume < 256) {
5270 m = mixer->mixsample;
5271 for (i = 0; i < sample_count; i++) {
5272 *m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
5273 m++;
5274 }
5275
5276 /*
5277 * Recover the volume gradually at the pace of
5278 * several times per second. If it's too fast, you
5279 * can recognize that the volume changes up and down
5280 * quickly and it's not so comfortable.
5281 */
5282 mixer->voltimer += mixer->blktime_n;
5283 if (mixer->voltimer * 4 >= mixer->blktime_d) {
5284 mixer->volume++;
5285 mixer->voltimer = 0;
5286 #if defined(AUDIO_DEBUG_AGC)
5287 TRACE(1, "volume recover: %d", mixer->volume);
5288 #endif
5289 }
5290 }
5291 }
5292
5293 /*
5294 * The rest is the hardware part.
5295 */
5296
5297 if (mixer->codec) {
5298 h = auring_tailptr_aint(&mixer->codecbuf);
5299 } else {
5300 h = auring_tailptr_aint(&mixer->hwbuf);
5301 }
5302
5303 m = mixer->mixsample;
5304 if (mixer->swap_endian) {
5305 for (i = 0; i < sample_count; i++) {
5306 *h++ = bswap16(*m++);
5307 }
5308 } else {
5309 for (i = 0; i < sample_count; i++) {
5310 *h++ = *m++;
5311 }
5312 }
5313
5314 /* Hardware driver's codec */
5315 if (mixer->codec) {
5316 auring_push(&mixer->codecbuf, frame_count);
5317 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5318 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5319 mixer->codecarg.count = frame_count;
5320 mixer->codec(&mixer->codecarg);
5321 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5322 }
5323
5324 auring_push(&mixer->hwbuf, frame_count);
5325
5326 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5327 (int)mixer->mixseq,
5328 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5329 (mixed == 0) ? " silent" : "");
5330 }
5331
5332 /*
5333 * Do auto gain control.
5334 * Must be called sc_intr_lock held.
5335 */
5336 static void
5337 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5338 {
5339 struct audio_softc *sc __unused;
5340 aint2_t val;
5341 aint2_t maxval;
5342 aint2_t minval;
5343 aint2_t over_plus;
5344 aint2_t over_minus;
5345 aint2_t *m;
5346 int newvol;
5347 int i;
5348
5349 sc = mixer->sc;
5350
5351 /* Overflow detection */
5352 maxval = AINT_T_MAX;
5353 minval = AINT_T_MIN;
5354 m = mixer->mixsample;
5355 for (i = 0; i < sample_count; i++) {
5356 val = *m++;
5357 if (val > maxval)
5358 maxval = val;
5359 else if (val < minval)
5360 minval = val;
5361 }
5362
5363 /* Absolute value of overflowed amount */
5364 over_plus = maxval - AINT_T_MAX;
5365 over_minus = AINT_T_MIN - minval;
5366
5367 if (over_plus > 0 || over_minus > 0) {
5368 if (over_plus > over_minus) {
5369 newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5370 } else {
5371 newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5372 }
5373
5374 /*
5375 * Change the volume only if new one is smaller.
5376 * Reset the timer even if the volume isn't changed.
5377 */
5378 if (newvol <= mixer->volume) {
5379 mixer->volume = newvol;
5380 mixer->voltimer = 0;
5381 #if defined(AUDIO_DEBUG_AGC)
5382 TRACE(1, "auto volume adjust: %d", mixer->volume);
5383 #endif
5384 }
5385 }
5386 }
5387
5388 /*
5389 * Mix one track.
5390 * 'mixed' specifies the number of tracks mixed so far.
5391 * It returns the number of tracks mixed. In other words, it returns
5392 * mixed + 1 if this track is mixed.
5393 */
5394 static int
5395 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5396 int mixed)
5397 {
5398 int count;
5399 int sample_count;
5400 int remain;
5401 int i;
5402 const aint_t *s;
5403 aint2_t *d;
5404
5405 /* XXX TODO: Is this necessary for now? */
5406 if (mixer->mixseq < track->seq)
5407 return mixed;
5408
5409 count = auring_get_contig_used(&track->outbuf);
5410 count = uimin(count, mixer->frames_per_block);
5411
5412 s = auring_headptr_aint(&track->outbuf);
5413 d = mixer->mixsample;
5414
5415 /*
5416 * Apply track volume with double-sized integer and perform
5417 * additive synthesis.
5418 *
5419 * XXX If you limit the track volume to 1.0 or less (<= 256),
5420 * it would be better to do this in the track conversion stage
5421 * rather than here. However, if you accept the volume to
5422 * be greater than 1.0 (> 256), it's better to do it here.
5423 * Because the operation here is done by double-sized integer.
5424 */
5425 sample_count = count * mixer->mixfmt.channels;
5426 if (mixed == 0) {
5427 /* If this is the first track, assignment can be used. */
5428 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5429 if (track->volume != 256) {
5430 for (i = 0; i < sample_count; i++) {
5431 aint2_t v;
5432 v = *s++;
5433 *d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5434 }
5435 } else
5436 #endif
5437 {
5438 for (i = 0; i < sample_count; i++) {
5439 *d++ = ((aint2_t)*s++);
5440 }
5441 }
5442 /* Fill silence if the first track is not filled. */
5443 for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5444 *d++ = 0;
5445 } else {
5446 /* If this is the second or later, add it. */
5447 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5448 if (track->volume != 256) {
5449 for (i = 0; i < sample_count; i++) {
5450 aint2_t v;
5451 v = *s++;
5452 *d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5453 }
5454 } else
5455 #endif
5456 {
5457 for (i = 0; i < sample_count; i++) {
5458 *d++ += ((aint2_t)*s++);
5459 }
5460 }
5461 }
5462
5463 auring_take(&track->outbuf, count);
5464 /*
5465 * The counters have to align block even if outbuf is less than
5466 * one block. XXX Is this still necessary?
5467 */
5468 remain = mixer->frames_per_block - count;
5469 if (__predict_false(remain != 0)) {
5470 auring_push(&track->outbuf, remain);
5471 auring_take(&track->outbuf, remain);
5472 }
5473
5474 /*
5475 * Update track sequence.
5476 * mixseq has previous value yet at this point.
5477 */
5478 track->seq = mixer->mixseq + 1;
5479
5480 return mixed + 1;
5481 }
5482
5483 /*
5484 * Output one block from hwbuf to HW.
5485 * Must be called with sc_intr_lock held.
5486 */
5487 static void
5488 audio_pmixer_output(struct audio_softc *sc)
5489 {
5490 audio_trackmixer_t *mixer;
5491 audio_params_t params;
5492 void *start;
5493 void *end;
5494 int blksize;
5495 int error;
5496
5497 mixer = sc->sc_pmixer;
5498 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5499 sc->sc_pbusy,
5500 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5501 KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5502 "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5503 mixer->hwbuf.used, mixer->frames_per_block);
5504
5505 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5506
5507 if (sc->hw_if->trigger_output) {
5508 /* trigger (at once) */
5509 if (!sc->sc_pbusy) {
5510 start = mixer->hwbuf.mem;
5511 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5512 params = format2_to_params(&mixer->hwbuf.fmt);
5513
5514 error = sc->hw_if->trigger_output(sc->hw_hdl,
5515 start, end, blksize, audio_pintr, sc, ¶ms);
5516 if (error) {
5517 audio_printf(sc,
5518 "trigger_output failed: errno=%d\n",
5519 error);
5520 return;
5521 }
5522 }
5523 } else {
5524 /* start (everytime) */
5525 start = auring_headptr(&mixer->hwbuf);
5526
5527 error = sc->hw_if->start_output(sc->hw_hdl,
5528 start, blksize, audio_pintr, sc);
5529 if (error) {
5530 audio_printf(sc,
5531 "start_output failed: errno=%d\n", error);
5532 return;
5533 }
5534 }
5535 }
5536
5537 /*
5538 * This is an interrupt handler for playback.
5539 * It is called with sc_intr_lock held.
5540 *
5541 * It is usually called from hardware interrupt. However, note that
5542 * for some drivers (e.g. uaudio) it is called from software interrupt.
5543 */
5544 static void
5545 audio_pintr(void *arg)
5546 {
5547 struct audio_softc *sc;
5548 audio_trackmixer_t *mixer;
5549
5550 sc = arg;
5551 KASSERT(mutex_owned(sc->sc_intr_lock));
5552
5553 if (sc->sc_dying)
5554 return;
5555 if (sc->sc_pbusy == false) {
5556 #if defined(DIAGNOSTIC)
5557 audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
5558 device_xname(sc->hw_dev));
5559 #endif
5560 return;
5561 }
5562
5563 mixer = sc->sc_pmixer;
5564 mixer->hw_complete_counter += mixer->frames_per_block;
5565 mixer->hwseq++;
5566
5567 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5568
5569 TRACE(4,
5570 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5571 mixer->hwseq, mixer->hw_complete_counter,
5572 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5573
5574 #if defined(AUDIO_HW_SINGLE_BUFFER)
5575 /*
5576 * Create a new block here and output it immediately.
5577 * It makes a latency lower but needs machine power.
5578 */
5579 audio_pmixer_process(sc);
5580 audio_pmixer_output(sc);
5581 #else
5582 /*
5583 * It is called when block N output is done.
5584 * Output immediately block N+1 created by the last interrupt.
5585 * And then create block N+2 for the next interrupt.
5586 * This method makes playback robust even on slower machines.
5587 * Instead the latency is increased by one block.
5588 */
5589
5590 /* At first, output ready block. */
5591 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5592 audio_pmixer_output(sc);
5593 }
5594
5595 bool later = false;
5596
5597 if (mixer->hwbuf.used < mixer->frames_per_block) {
5598 later = true;
5599 }
5600
5601 /* Then, process next block. */
5602 audio_pmixer_process(sc);
5603
5604 if (later) {
5605 audio_pmixer_output(sc);
5606 }
5607 #endif
5608
5609 /*
5610 * When this interrupt is the real hardware interrupt, disabling
5611 * preemption here is not necessary. But some drivers (e.g. uaudio)
5612 * emulate it by software interrupt, so kpreempt_disable is necessary.
5613 */
5614 kpreempt_disable();
5615 softint_schedule(mixer->sih);
5616 kpreempt_enable();
5617 }
5618
5619 /*
5620 * Starts record mixer.
5621 * Must be called only if sc_rbusy is false.
5622 * Must be called with sc_lock && sc_exlock held.
5623 * Must not be called from the interrupt context.
5624 */
5625 static void
5626 audio_rmixer_start(struct audio_softc *sc)
5627 {
5628
5629 KASSERT(mutex_owned(sc->sc_lock));
5630 KASSERT(sc->sc_exlock);
5631 KASSERT(sc->sc_rbusy == false);
5632
5633 mutex_enter(sc->sc_intr_lock);
5634
5635 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5636 audio_rmixer_input(sc);
5637 sc->sc_rbusy = true;
5638 TRACE(3, "end");
5639
5640 mutex_exit(sc->sc_intr_lock);
5641 }
5642
5643 /*
5644 * When recording with MD filter:
5645 *
5646 * hwbuf [............] NBLKHW blocks ring buffer
5647 * |
5648 * | convert from hw format
5649 * v
5650 * codecbuf [....] 1 block (ring) buffer
5651 * | |
5652 * v v
5653 * track track ...
5654 *
5655 * When recording without MD filter:
5656 *
5657 * hwbuf [............] NBLKHW blocks ring buffer
5658 * | |
5659 * v v
5660 * track track ...
5661 *
5662 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5663 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5664 */
5665
5666 /*
5667 * Distribute a recorded block to all recording tracks.
5668 */
5669 static void
5670 audio_rmixer_process(struct audio_softc *sc)
5671 {
5672 audio_trackmixer_t *mixer;
5673 audio_ring_t *mixersrc;
5674 audio_file_t *f;
5675 aint_t *p;
5676 int count;
5677 int bytes;
5678 int i;
5679
5680 mixer = sc->sc_rmixer;
5681
5682 /*
5683 * count is the number of frames to be retrieved this time.
5684 * count should be one block.
5685 */
5686 count = auring_get_contig_used(&mixer->hwbuf);
5687 count = uimin(count, mixer->frames_per_block);
5688 if (count <= 0) {
5689 TRACE(4, "count %d: too short", count);
5690 return;
5691 }
5692 bytes = frametobyte(&mixer->track_fmt, count);
5693
5694 /* Hardware driver's codec */
5695 if (mixer->codec) {
5696 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5697 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5698 mixer->codecarg.count = count;
5699 mixer->codec(&mixer->codecarg);
5700 auring_take(&mixer->hwbuf, mixer->codecarg.count);
5701 auring_push(&mixer->codecbuf, mixer->codecarg.count);
5702 mixersrc = &mixer->codecbuf;
5703 } else {
5704 mixersrc = &mixer->hwbuf;
5705 }
5706
5707 if (mixer->swap_endian) {
5708 /* inplace conversion */
5709 p = auring_headptr_aint(mixersrc);
5710 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5711 *p = bswap16(*p);
5712 }
5713 }
5714
5715 /* Distribute to all tracks. */
5716 SLIST_FOREACH(f, &sc->sc_files, entry) {
5717 audio_track_t *track = f->rtrack;
5718 audio_ring_t *input;
5719
5720 if (track == NULL)
5721 continue;
5722
5723 if (track->is_pause) {
5724 TRACET(4, track, "skip; paused");
5725 continue;
5726 }
5727
5728 if (audio_track_lock_tryenter(track) == false) {
5729 TRACET(4, track, "skip; in use");
5730 continue;
5731 }
5732
5733 /* If the track buffer is full, discard the oldest one? */
5734 input = track->input;
5735 if (input->capacity - input->used < mixer->frames_per_block) {
5736 int drops = mixer->frames_per_block -
5737 (input->capacity - input->used);
5738 track->dropframes += drops;
5739 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5740 drops,
5741 input->head, input->used, input->capacity);
5742 auring_take(input, drops);
5743 }
5744 KASSERTMSG(input->used % mixer->frames_per_block == 0,
5745 "input->used=%d mixer->frames_per_block=%d",
5746 input->used, mixer->frames_per_block);
5747
5748 memcpy(auring_tailptr_aint(input),
5749 auring_headptr_aint(mixersrc),
5750 bytes);
5751 auring_push(input, count);
5752
5753 /* XXX sequence counter? */
5754
5755 audio_track_lock_exit(track);
5756 }
5757
5758 auring_take(mixersrc, count);
5759 }
5760
5761 /*
5762 * Input one block from HW to hwbuf.
5763 * Must be called with sc_intr_lock held.
5764 */
5765 static void
5766 audio_rmixer_input(struct audio_softc *sc)
5767 {
5768 audio_trackmixer_t *mixer;
5769 audio_params_t params;
5770 void *start;
5771 void *end;
5772 int blksize;
5773 int error;
5774
5775 mixer = sc->sc_rmixer;
5776 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5777
5778 if (sc->hw_if->trigger_input) {
5779 /* trigger (at once) */
5780 if (!sc->sc_rbusy) {
5781 start = mixer->hwbuf.mem;
5782 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5783 params = format2_to_params(&mixer->hwbuf.fmt);
5784
5785 error = sc->hw_if->trigger_input(sc->hw_hdl,
5786 start, end, blksize, audio_rintr, sc, ¶ms);
5787 if (error) {
5788 audio_printf(sc,
5789 "trigger_input failed: errno=%d\n",
5790 error);
5791 return;
5792 }
5793 }
5794 } else {
5795 /* start (everytime) */
5796 start = auring_tailptr(&mixer->hwbuf);
5797
5798 error = sc->hw_if->start_input(sc->hw_hdl,
5799 start, blksize, audio_rintr, sc);
5800 if (error) {
5801 audio_printf(sc,
5802 "start_input failed: errno=%d\n", error);
5803 return;
5804 }
5805 }
5806 }
5807
5808 /*
5809 * This is an interrupt handler for recording.
5810 * It is called with sc_intr_lock.
5811 *
5812 * It is usually called from hardware interrupt. However, note that
5813 * for some drivers (e.g. uaudio) it is called from software interrupt.
5814 */
5815 static void
5816 audio_rintr(void *arg)
5817 {
5818 struct audio_softc *sc;
5819 audio_trackmixer_t *mixer;
5820
5821 sc = arg;
5822 KASSERT(mutex_owned(sc->sc_intr_lock));
5823
5824 if (sc->sc_dying)
5825 return;
5826 if (sc->sc_rbusy == false) {
5827 #if defined(DIAGNOSTIC)
5828 audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
5829 device_xname(sc->hw_dev));
5830 #endif
5831 return;
5832 }
5833
5834 mixer = sc->sc_rmixer;
5835 mixer->hw_complete_counter += mixer->frames_per_block;
5836 mixer->hwseq++;
5837
5838 auring_push(&mixer->hwbuf, mixer->frames_per_block);
5839
5840 TRACE(4,
5841 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5842 mixer->hwseq, mixer->hw_complete_counter,
5843 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5844
5845 /* Distrubute recorded block */
5846 audio_rmixer_process(sc);
5847
5848 /* Request next block */
5849 audio_rmixer_input(sc);
5850
5851 /*
5852 * When this interrupt is the real hardware interrupt, disabling
5853 * preemption here is not necessary. But some drivers (e.g. uaudio)
5854 * emulate it by software interrupt, so kpreempt_disable is necessary.
5855 */
5856 kpreempt_disable();
5857 softint_schedule(mixer->sih);
5858 kpreempt_enable();
5859 }
5860
5861 /*
5862 * Halts playback mixer.
5863 * This function also clears related parameters, so call this function
5864 * instead of calling halt_output directly.
5865 * Must be called only if sc_pbusy is true.
5866 * Must be called with sc_lock && sc_exlock held.
5867 */
5868 static int
5869 audio_pmixer_halt(struct audio_softc *sc)
5870 {
5871 int error;
5872
5873 TRACE(2, "called");
5874 KASSERT(mutex_owned(sc->sc_lock));
5875 KASSERT(sc->sc_exlock);
5876
5877 mutex_enter(sc->sc_intr_lock);
5878 error = sc->hw_if->halt_output(sc->hw_hdl);
5879
5880 /* Halts anyway even if some error has occurred. */
5881 sc->sc_pbusy = false;
5882 sc->sc_pmixer->hwbuf.head = 0;
5883 sc->sc_pmixer->hwbuf.used = 0;
5884 sc->sc_pmixer->mixseq = 0;
5885 sc->sc_pmixer->hwseq = 0;
5886 mutex_exit(sc->sc_intr_lock);
5887
5888 return error;
5889 }
5890
5891 /*
5892 * Halts recording mixer.
5893 * This function also clears related parameters, so call this function
5894 * instead of calling halt_input directly.
5895 * Must be called only if sc_rbusy is true.
5896 * Must be called with sc_lock && sc_exlock held.
5897 */
5898 static int
5899 audio_rmixer_halt(struct audio_softc *sc)
5900 {
5901 int error;
5902
5903 TRACE(2, "called");
5904 KASSERT(mutex_owned(sc->sc_lock));
5905 KASSERT(sc->sc_exlock);
5906
5907 mutex_enter(sc->sc_intr_lock);
5908 error = sc->hw_if->halt_input(sc->hw_hdl);
5909
5910 /* Halts anyway even if some error has occurred. */
5911 sc->sc_rbusy = false;
5912 sc->sc_rmixer->hwbuf.head = 0;
5913 sc->sc_rmixer->hwbuf.used = 0;
5914 sc->sc_rmixer->mixseq = 0;
5915 sc->sc_rmixer->hwseq = 0;
5916 mutex_exit(sc->sc_intr_lock);
5917
5918 return error;
5919 }
5920
5921 /*
5922 * Flush this track.
5923 * Halts all operations, clears all buffers, reset error counters.
5924 * XXX I'm not sure...
5925 */
5926 static void
5927 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
5928 {
5929
5930 KASSERT(track);
5931 TRACET(3, track, "clear");
5932
5933 audio_track_lock_enter(track);
5934
5935 track->usrbuf.used = 0;
5936 /* Clear all internal parameters. */
5937 if (track->codec.filter) {
5938 track->codec.srcbuf.used = 0;
5939 track->codec.srcbuf.head = 0;
5940 }
5941 if (track->chvol.filter) {
5942 track->chvol.srcbuf.used = 0;
5943 track->chvol.srcbuf.head = 0;
5944 }
5945 if (track->chmix.filter) {
5946 track->chmix.srcbuf.used = 0;
5947 track->chmix.srcbuf.head = 0;
5948 }
5949 if (track->freq.filter) {
5950 track->freq.srcbuf.used = 0;
5951 track->freq.srcbuf.head = 0;
5952 if (track->freq_step < 65536)
5953 track->freq_current = 65536;
5954 else
5955 track->freq_current = 0;
5956 memset(track->freq_prev, 0, sizeof(track->freq_prev));
5957 memset(track->freq_curr, 0, sizeof(track->freq_curr));
5958 }
5959 /* Clear buffer, then operation halts naturally. */
5960 track->outbuf.used = 0;
5961
5962 /* Clear counters. */
5963 track->dropframes = 0;
5964
5965 audio_track_lock_exit(track);
5966 }
5967
5968 /*
5969 * Drain the track.
5970 * track must be present and for playback.
5971 * If successful, it returns 0. Otherwise returns errno.
5972 * Must be called with sc_lock held.
5973 */
5974 static int
5975 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
5976 {
5977 audio_trackmixer_t *mixer;
5978 int done;
5979 int error;
5980
5981 KASSERT(track);
5982 TRACET(3, track, "start");
5983 mixer = track->mixer;
5984 KASSERT(mutex_owned(sc->sc_lock));
5985
5986 /* Ignore them if pause. */
5987 if (track->is_pause) {
5988 TRACET(3, track, "pause -> clear");
5989 track->pstate = AUDIO_STATE_CLEAR;
5990 }
5991 /* Terminate early here if there is no data in the track. */
5992 if (track->pstate == AUDIO_STATE_CLEAR) {
5993 TRACET(3, track, "no need to drain");
5994 return 0;
5995 }
5996 track->pstate = AUDIO_STATE_DRAINING;
5997
5998 for (;;) {
5999 /* I want to display it before condition evaluation. */
6000 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
6001 (int)curproc->p_pid, (int)curlwp->l_lid,
6002 (int)track->seq, (int)mixer->hwseq,
6003 track->outbuf.head, track->outbuf.used,
6004 track->outbuf.capacity);
6005
6006 /* Condition to terminate */
6007 audio_track_lock_enter(track);
6008 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
6009 track->outbuf.used == 0 &&
6010 track->seq <= mixer->hwseq);
6011 audio_track_lock_exit(track);
6012 if (done)
6013 break;
6014
6015 TRACET(3, track, "sleep");
6016 error = audio_track_waitio(sc, track);
6017 if (error)
6018 return error;
6019
6020 /* XXX call audio_track_play here ? */
6021 }
6022
6023 track->pstate = AUDIO_STATE_CLEAR;
6024 TRACET(3, track, "done trk_inp=%d trk_out=%d",
6025 (int)track->inputcounter, (int)track->outputcounter);
6026 return 0;
6027 }
6028
6029 /*
6030 * Send signal to process.
6031 * This is intended to be called only from audio_softintr_{rd,wr}.
6032 * Must be called without sc_intr_lock held.
6033 */
6034 static inline void
6035 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
6036 {
6037 proc_t *p;
6038
6039 KASSERT(pid != 0);
6040
6041 /*
6042 * psignal() must be called without spin lock held.
6043 */
6044
6045 mutex_enter(&proc_lock);
6046 p = proc_find(pid);
6047 if (p)
6048 psignal(p, signum);
6049 mutex_exit(&proc_lock);
6050 }
6051
6052 /*
6053 * This is software interrupt handler for record.
6054 * It is called from recording hardware interrupt everytime.
6055 * It does:
6056 * - Deliver SIGIO for all async processes.
6057 * - Notify to audio_read() that data has arrived.
6058 * - selnotify() for select/poll-ing processes.
6059 */
6060 /*
6061 * XXX If a process issues FIOASYNC between hardware interrupt and
6062 * software interrupt, (stray) SIGIO will be sent to the process
6063 * despite the fact that it has not receive recorded data yet.
6064 */
6065 static void
6066 audio_softintr_rd(void *cookie)
6067 {
6068 struct audio_softc *sc = cookie;
6069 audio_file_t *f;
6070 pid_t pid;
6071
6072 mutex_enter(sc->sc_lock);
6073
6074 SLIST_FOREACH(f, &sc->sc_files, entry) {
6075 audio_track_t *track = f->rtrack;
6076
6077 if (track == NULL)
6078 continue;
6079
6080 TRACET(4, track, "broadcast; inp=%d/%d/%d",
6081 track->input->head,
6082 track->input->used,
6083 track->input->capacity);
6084
6085 pid = f->async_audio;
6086 if (pid != 0) {
6087 TRACEF(4, f, "sending SIGIO %d", pid);
6088 audio_psignal(sc, pid, SIGIO);
6089 }
6090 }
6091
6092 /* Notify that data has arrived. */
6093 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
6094 cv_broadcast(&sc->sc_rmixer->outcv);
6095
6096 mutex_exit(sc->sc_lock);
6097 }
6098
6099 /*
6100 * This is software interrupt handler for playback.
6101 * It is called from playback hardware interrupt everytime.
6102 * It does:
6103 * - Deliver SIGIO for all async and writable (used < lowat) processes.
6104 * - Notify to audio_write() that outbuf block available.
6105 * - selnotify() for select/poll-ing processes if there are any writable
6106 * (used < lowat) processes. Checking each descriptor will be done by
6107 * filt_audiowrite_event().
6108 */
6109 static void
6110 audio_softintr_wr(void *cookie)
6111 {
6112 struct audio_softc *sc = cookie;
6113 audio_file_t *f;
6114 bool found;
6115 pid_t pid;
6116
6117 TRACE(4, "called");
6118 found = false;
6119
6120 mutex_enter(sc->sc_lock);
6121
6122 SLIST_FOREACH(f, &sc->sc_files, entry) {
6123 audio_track_t *track = f->ptrack;
6124
6125 if (track == NULL)
6126 continue;
6127
6128 TRACET(4, track, "broadcast; trkseq=%d out=%d/%d/%d",
6129 (int)track->seq,
6130 track->outbuf.head,
6131 track->outbuf.used,
6132 track->outbuf.capacity);
6133
6134 /*
6135 * Send a signal if the process is async mode and
6136 * used is lower than lowat.
6137 */
6138 if (track->usrbuf.used <= track->usrbuf_usedlow &&
6139 !track->is_pause) {
6140 /* For selnotify */
6141 found = true;
6142 /* For SIGIO */
6143 pid = f->async_audio;
6144 if (pid != 0) {
6145 TRACEF(4, f, "sending SIGIO %d", pid);
6146 audio_psignal(sc, pid, SIGIO);
6147 }
6148 }
6149 }
6150
6151 /*
6152 * Notify for select/poll when someone become writable.
6153 * It needs sc_lock (and not sc_intr_lock).
6154 */
6155 if (found) {
6156 TRACE(4, "selnotify");
6157 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
6158 }
6159
6160 /* Notify to audio_write() that outbuf available. */
6161 cv_broadcast(&sc->sc_pmixer->outcv);
6162
6163 mutex_exit(sc->sc_lock);
6164 }
6165
6166 /*
6167 * Check (and convert) the format *p came from userland.
6168 * If successful, it writes back the converted format to *p if necessary and
6169 * returns 0. Otherwise returns errno (*p may be changed even in this case).
6170 */
6171 static int
6172 audio_check_params(audio_format2_t *p)
6173 {
6174
6175 /*
6176 * Convert obsolete AUDIO_ENCODING_PCM encodings.
6177 *
6178 * AUDIO_ENCODING_PCM16 == AUDIO_ENCODING_LINEAR
6179 * So, it's always signed, as in SunOS.
6180 *
6181 * AUDIO_ENCODING_PCM8 == AUDIO_ENCODING_LINEAR8
6182 * So, it's always unsigned, as in SunOS.
6183 */
6184 if (p->encoding == AUDIO_ENCODING_PCM16) {
6185 p->encoding = AUDIO_ENCODING_SLINEAR;
6186 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
6187 if (p->precision == 8)
6188 p->encoding = AUDIO_ENCODING_ULINEAR;
6189 else
6190 return EINVAL;
6191 }
6192
6193 /*
6194 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
6195 * suffix.
6196 */
6197 if (p->encoding == AUDIO_ENCODING_SLINEAR)
6198 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6199 if (p->encoding == AUDIO_ENCODING_ULINEAR)
6200 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6201
6202 switch (p->encoding) {
6203 case AUDIO_ENCODING_ULAW:
6204 case AUDIO_ENCODING_ALAW:
6205 if (p->precision != 8)
6206 return EINVAL;
6207 break;
6208 case AUDIO_ENCODING_ADPCM:
6209 if (p->precision != 4 && p->precision != 8)
6210 return EINVAL;
6211 break;
6212 case AUDIO_ENCODING_SLINEAR_LE:
6213 case AUDIO_ENCODING_SLINEAR_BE:
6214 case AUDIO_ENCODING_ULINEAR_LE:
6215 case AUDIO_ENCODING_ULINEAR_BE:
6216 if (p->precision != 8 && p->precision != 16 &&
6217 p->precision != 24 && p->precision != 32)
6218 return EINVAL;
6219
6220 /* 8bit format does not have endianness. */
6221 if (p->precision == 8) {
6222 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6223 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6224 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6225 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6226 }
6227
6228 if (p->precision > p->stride)
6229 return EINVAL;
6230 break;
6231 case AUDIO_ENCODING_MPEG_L1_STREAM:
6232 case AUDIO_ENCODING_MPEG_L1_PACKETS:
6233 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6234 case AUDIO_ENCODING_MPEG_L2_STREAM:
6235 case AUDIO_ENCODING_MPEG_L2_PACKETS:
6236 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6237 case AUDIO_ENCODING_AC3:
6238 break;
6239 default:
6240 return EINVAL;
6241 }
6242
6243 /* sanity check # of channels*/
6244 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6245 return EINVAL;
6246
6247 return 0;
6248 }
6249
6250 /*
6251 * Initialize playback and record mixers.
6252 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
6253 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6254 * the filter registration information. These four must not be NULL.
6255 * If successful returns 0. Otherwise returns errno.
6256 * Must be called with sc_exlock held and without sc_lock held.
6257 * Must not be called if there are any tracks.
6258 * Caller should check that the initialization succeed by whether
6259 * sc_[pr]mixer is not NULL.
6260 */
6261 static int
6262 audio_mixers_init(struct audio_softc *sc, int mode,
6263 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6264 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6265 {
6266 int error;
6267
6268 KASSERT(phwfmt != NULL);
6269 KASSERT(rhwfmt != NULL);
6270 KASSERT(pfil != NULL);
6271 KASSERT(rfil != NULL);
6272 KASSERT(sc->sc_exlock);
6273
6274 if ((mode & AUMODE_PLAY)) {
6275 if (sc->sc_pmixer == NULL) {
6276 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
6277 KM_SLEEP);
6278 } else {
6279 /* destroy() doesn't free memory. */
6280 audio_mixer_destroy(sc, sc->sc_pmixer);
6281 memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
6282 }
6283 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6284 if (error) {
6285 /* audio_mixer_init already displayed error code */
6286 audio_printf(sc, "configuring playback mode failed\n");
6287 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6288 sc->sc_pmixer = NULL;
6289 return error;
6290 }
6291 }
6292 if ((mode & AUMODE_RECORD)) {
6293 if (sc->sc_rmixer == NULL) {
6294 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
6295 KM_SLEEP);
6296 } else {
6297 /* destroy() doesn't free memory. */
6298 audio_mixer_destroy(sc, sc->sc_rmixer);
6299 memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
6300 }
6301 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6302 if (error) {
6303 /* audio_mixer_init already displayed error code */
6304 audio_printf(sc, "configuring record mode failed\n");
6305 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6306 sc->sc_rmixer = NULL;
6307 return error;
6308 }
6309 }
6310
6311 return 0;
6312 }
6313
6314 /*
6315 * Select a frequency.
6316 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6317 * XXX Better algorithm?
6318 */
6319 static int
6320 audio_select_freq(const struct audio_format *fmt)
6321 {
6322 int freq;
6323 int high;
6324 int low;
6325 int j;
6326
6327 if (fmt->frequency_type == 0) {
6328 low = fmt->frequency[0];
6329 high = fmt->frequency[1];
6330 freq = 48000;
6331 if (low <= freq && freq <= high) {
6332 return freq;
6333 }
6334 freq = 44100;
6335 if (low <= freq && freq <= high) {
6336 return freq;
6337 }
6338 return high;
6339 } else {
6340 for (j = 0; j < fmt->frequency_type; j++) {
6341 if (fmt->frequency[j] == 48000) {
6342 return fmt->frequency[j];
6343 }
6344 }
6345 high = 0;
6346 for (j = 0; j < fmt->frequency_type; j++) {
6347 if (fmt->frequency[j] == 44100) {
6348 return fmt->frequency[j];
6349 }
6350 if (fmt->frequency[j] > high) {
6351 high = fmt->frequency[j];
6352 }
6353 }
6354 return high;
6355 }
6356 }
6357
6358 /*
6359 * Choose the most preferred hardware format.
6360 * If successful, it will store the chosen format into *cand and return 0.
6361 * Otherwise, return errno.
6362 * Must be called without sc_lock held.
6363 */
6364 static int
6365 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
6366 {
6367 audio_format_query_t query;
6368 int cand_score;
6369 int score;
6370 int i;
6371 int error;
6372
6373 /*
6374 * Score each formats and choose the highest one.
6375 *
6376 * +---- priority(0-3)
6377 * |+--- encoding/precision
6378 * ||+-- channels
6379 * score = 0x000000PEC
6380 */
6381
6382 cand_score = 0;
6383 for (i = 0; ; i++) {
6384 memset(&query, 0, sizeof(query));
6385 query.index = i;
6386
6387 mutex_enter(sc->sc_lock);
6388 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6389 mutex_exit(sc->sc_lock);
6390 if (error == EINVAL)
6391 break;
6392 if (error)
6393 return error;
6394
6395 #if defined(AUDIO_DEBUG)
6396 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6397 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6398 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6399 query.fmt.priority,
6400 audio_encoding_name(query.fmt.encoding),
6401 query.fmt.validbits,
6402 query.fmt.precision,
6403 query.fmt.channels);
6404 if (query.fmt.frequency_type == 0) {
6405 DPRINTF(1, "{%d-%d",
6406 query.fmt.frequency[0], query.fmt.frequency[1]);
6407 } else {
6408 int j;
6409 for (j = 0; j < query.fmt.frequency_type; j++) {
6410 DPRINTF(1, "%c%d",
6411 (j == 0) ? '{' : ',',
6412 query.fmt.frequency[j]);
6413 }
6414 }
6415 DPRINTF(1, "}\n");
6416 #endif
6417
6418 if ((query.fmt.mode & mode) == 0) {
6419 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6420 mode);
6421 continue;
6422 }
6423
6424 if (query.fmt.priority < 0) {
6425 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6426 continue;
6427 }
6428
6429 /* Score */
6430 score = (query.fmt.priority & 3) * 0x100;
6431 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6432 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6433 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6434 score += 0x20;
6435 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6436 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6437 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6438 score += 0x10;
6439 }
6440 score += query.fmt.channels;
6441
6442 if (score < cand_score) {
6443 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6444 score, cand_score);
6445 continue;
6446 }
6447
6448 /* Update candidate */
6449 cand_score = score;
6450 cand->encoding = query.fmt.encoding;
6451 cand->precision = query.fmt.validbits;
6452 cand->stride = query.fmt.precision;
6453 cand->channels = query.fmt.channels;
6454 cand->sample_rate = audio_select_freq(&query.fmt);
6455 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6456 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6457 cand_score, query.fmt.priority,
6458 audio_encoding_name(query.fmt.encoding),
6459 cand->precision, cand->stride,
6460 cand->channels, cand->sample_rate);
6461 }
6462
6463 if (cand_score == 0) {
6464 DPRINTF(1, "%s no fmt\n", __func__);
6465 return ENXIO;
6466 }
6467 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6468 audio_encoding_name(cand->encoding),
6469 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6470 return 0;
6471 }
6472
6473 /*
6474 * Validate fmt with query_format.
6475 * If fmt is included in the result of query_format, returns 0.
6476 * Otherwise returns EINVAL.
6477 * Must be called without sc_lock held.
6478 */
6479 static int
6480 audio_hw_validate_format(struct audio_softc *sc, int mode,
6481 const audio_format2_t *fmt)
6482 {
6483 audio_format_query_t query;
6484 struct audio_format *q;
6485 int index;
6486 int error;
6487 int j;
6488
6489 for (index = 0; ; index++) {
6490 query.index = index;
6491 mutex_enter(sc->sc_lock);
6492 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6493 mutex_exit(sc->sc_lock);
6494 if (error == EINVAL)
6495 break;
6496 if (error)
6497 return error;
6498
6499 q = &query.fmt;
6500 /*
6501 * Note that fmt is audio_format2_t (precision/stride) but
6502 * q is audio_format_t (validbits/precision).
6503 */
6504 if ((q->mode & mode) == 0) {
6505 continue;
6506 }
6507 if (fmt->encoding != q->encoding) {
6508 continue;
6509 }
6510 if (fmt->precision != q->validbits) {
6511 continue;
6512 }
6513 if (fmt->stride != q->precision) {
6514 continue;
6515 }
6516 if (fmt->channels != q->channels) {
6517 continue;
6518 }
6519 if (q->frequency_type == 0) {
6520 if (fmt->sample_rate < q->frequency[0] ||
6521 fmt->sample_rate > q->frequency[1]) {
6522 continue;
6523 }
6524 } else {
6525 for (j = 0; j < q->frequency_type; j++) {
6526 if (fmt->sample_rate == q->frequency[j])
6527 break;
6528 }
6529 if (j == query.fmt.frequency_type) {
6530 continue;
6531 }
6532 }
6533
6534 /* Matched. */
6535 return 0;
6536 }
6537
6538 return EINVAL;
6539 }
6540
6541 /*
6542 * Set track mixer's format depending on ai->mode.
6543 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6544 * with ai.play.*.
6545 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6546 * with ai.record.*.
6547 * All other fields in ai are ignored.
6548 * If successful returns 0. Otherwise returns errno.
6549 * This function does not roll back even if it fails.
6550 * Must be called with sc_exlock held and without sc_lock held.
6551 */
6552 static int
6553 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6554 {
6555 audio_format2_t phwfmt;
6556 audio_format2_t rhwfmt;
6557 audio_filter_reg_t pfil;
6558 audio_filter_reg_t rfil;
6559 int mode;
6560 int error;
6561
6562 KASSERT(sc->sc_exlock);
6563
6564 /*
6565 * Even when setting either one of playback and recording,
6566 * both must be halted.
6567 */
6568 if (sc->sc_popens + sc->sc_ropens > 0)
6569 return EBUSY;
6570
6571 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6572 return ENOTTY;
6573
6574 mode = ai->mode;
6575 if ((mode & AUMODE_PLAY)) {
6576 phwfmt.encoding = ai->play.encoding;
6577 phwfmt.precision = ai->play.precision;
6578 phwfmt.stride = ai->play.precision;
6579 phwfmt.channels = ai->play.channels;
6580 phwfmt.sample_rate = ai->play.sample_rate;
6581 }
6582 if ((mode & AUMODE_RECORD)) {
6583 rhwfmt.encoding = ai->record.encoding;
6584 rhwfmt.precision = ai->record.precision;
6585 rhwfmt.stride = ai->record.precision;
6586 rhwfmt.channels = ai->record.channels;
6587 rhwfmt.sample_rate = ai->record.sample_rate;
6588 }
6589
6590 /* On non-independent devices, use the same format for both. */
6591 if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
6592 if (mode == AUMODE_RECORD) {
6593 phwfmt = rhwfmt;
6594 } else {
6595 rhwfmt = phwfmt;
6596 }
6597 mode = AUMODE_PLAY | AUMODE_RECORD;
6598 }
6599
6600 /* Then, unset the direction not exist on the hardware. */
6601 if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
6602 mode &= ~AUMODE_PLAY;
6603 if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
6604 mode &= ~AUMODE_RECORD;
6605
6606 /* debug */
6607 if ((mode & AUMODE_PLAY)) {
6608 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6609 audio_encoding_name(phwfmt.encoding),
6610 phwfmt.precision,
6611 phwfmt.stride,
6612 phwfmt.channels,
6613 phwfmt.sample_rate);
6614 }
6615 if ((mode & AUMODE_RECORD)) {
6616 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6617 audio_encoding_name(rhwfmt.encoding),
6618 rhwfmt.precision,
6619 rhwfmt.stride,
6620 rhwfmt.channels,
6621 rhwfmt.sample_rate);
6622 }
6623
6624 /* Check the format */
6625 if ((mode & AUMODE_PLAY)) {
6626 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6627 TRACE(1, "invalid format");
6628 return EINVAL;
6629 }
6630 }
6631 if ((mode & AUMODE_RECORD)) {
6632 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6633 TRACE(1, "invalid format");
6634 return EINVAL;
6635 }
6636 }
6637
6638 /* Configure the mixers. */
6639 memset(&pfil, 0, sizeof(pfil));
6640 memset(&rfil, 0, sizeof(rfil));
6641 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6642 if (error)
6643 return error;
6644
6645 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6646 if (error)
6647 return error;
6648
6649 /*
6650 * Reinitialize the sticky parameters for /dev/sound.
6651 * If the number of the hardware channels becomes less than the number
6652 * of channels that sticky parameters remember, subsequent /dev/sound
6653 * open will fail. To prevent this, reinitialize the sticky
6654 * parameters whenever the hardware format is changed.
6655 */
6656 sc->sc_sound_pparams = params_to_format2(&audio_default);
6657 sc->sc_sound_rparams = params_to_format2(&audio_default);
6658 sc->sc_sound_ppause = false;
6659 sc->sc_sound_rpause = false;
6660
6661 return 0;
6662 }
6663
6664 /*
6665 * Store current mixers format into *ai.
6666 * Must be called with sc_exlock held.
6667 */
6668 static void
6669 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6670 {
6671
6672 KASSERT(sc->sc_exlock);
6673
6674 /*
6675 * There is no stride information in audio_info but it doesn't matter.
6676 * trackmixer always treats stride and precision as the same.
6677 */
6678 AUDIO_INITINFO(ai);
6679 ai->mode = 0;
6680 if (sc->sc_pmixer) {
6681 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6682 ai->play.encoding = fmt->encoding;
6683 ai->play.precision = fmt->precision;
6684 ai->play.channels = fmt->channels;
6685 ai->play.sample_rate = fmt->sample_rate;
6686 ai->mode |= AUMODE_PLAY;
6687 }
6688 if (sc->sc_rmixer) {
6689 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6690 ai->record.encoding = fmt->encoding;
6691 ai->record.precision = fmt->precision;
6692 ai->record.channels = fmt->channels;
6693 ai->record.sample_rate = fmt->sample_rate;
6694 ai->mode |= AUMODE_RECORD;
6695 }
6696 }
6697
6698 /*
6699 * audio_info details:
6700 *
6701 * ai.{play,record}.sample_rate (R/W)
6702 * ai.{play,record}.encoding (R/W)
6703 * ai.{play,record}.precision (R/W)
6704 * ai.{play,record}.channels (R/W)
6705 * These specify the playback or recording format.
6706 * Ignore members within an inactive track.
6707 *
6708 * ai.mode (R/W)
6709 * It specifies the playback or recording mode, AUMODE_*.
6710 * Currently, a mode change operation by ai.mode after opening is
6711 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
6712 * However, it's possible to get or to set for backward compatibility.
6713 *
6714 * ai.{hiwat,lowat} (R/W)
6715 * These specify the high water mark and low water mark for playback
6716 * track. The unit is block.
6717 *
6718 * ai.{play,record}.gain (R/W)
6719 * It specifies the HW mixer volume in 0-255.
6720 * It is historical reason that the gain is connected to HW mixer.
6721 *
6722 * ai.{play,record}.balance (R/W)
6723 * It specifies the left-right balance of HW mixer in 0-64.
6724 * 32 means the center.
6725 * It is historical reason that the balance is connected to HW mixer.
6726 *
6727 * ai.{play,record}.port (R/W)
6728 * It specifies the input/output port of HW mixer.
6729 *
6730 * ai.monitor_gain (R/W)
6731 * It specifies the recording monitor gain(?) of HW mixer.
6732 *
6733 * ai.{play,record}.pause (R/W)
6734 * Non-zero means the track is paused.
6735 *
6736 * ai.play.seek (R/-)
6737 * It indicates the number of bytes written but not processed.
6738 * ai.record.seek (R/-)
6739 * It indicates the number of bytes to be able to read.
6740 *
6741 * ai.{play,record}.avail_ports (R/-)
6742 * Mixer info.
6743 *
6744 * ai.{play,record}.buffer_size (R/-)
6745 * It indicates the buffer size in bytes. Internally it means usrbuf.
6746 *
6747 * ai.{play,record}.samples (R/-)
6748 * It indicates the total number of bytes played or recorded.
6749 *
6750 * ai.{play,record}.eof (R/-)
6751 * It indicates the number of times reached EOF(?).
6752 *
6753 * ai.{play,record}.error (R/-)
6754 * Non-zero indicates overflow/underflow has occured.
6755 *
6756 * ai.{play,record}.waiting (R/-)
6757 * Non-zero indicates that other process waits to open.
6758 * It will never happen anymore.
6759 *
6760 * ai.{play,record}.open (R/-)
6761 * Non-zero indicates the direction is opened by this process(?).
6762 * XXX Is this better to indicate that "the device is opened by
6763 * at least one process"?
6764 *
6765 * ai.{play,record}.active (R/-)
6766 * Non-zero indicates that I/O is currently active.
6767 *
6768 * ai.blocksize (R/-)
6769 * It indicates the block size in bytes.
6770 * XXX The blocksize of playback and recording may be different.
6771 */
6772
6773 /*
6774 * Pause consideration:
6775 *
6776 * Pausing/unpausing never affect [pr]mixer. This single rule makes
6777 * operation simple. Note that playback and recording are asymmetric.
6778 *
6779 * For playback,
6780 * 1. Any playback open doesn't start pmixer regardless of initial pause
6781 * state of this track.
6782 * 2. The first write access among playback tracks only starts pmixer
6783 * regardless of this track's pause state.
6784 * 3. Even a pause of the last playback track doesn't stop pmixer.
6785 * 4. The last close of all playback tracks only stops pmixer.
6786 *
6787 * For recording,
6788 * 1. The first recording open only starts rmixer regardless of initial
6789 * pause state of this track.
6790 * 2. Even a pause of the last track doesn't stop rmixer.
6791 * 3. The last close of all recording tracks only stops rmixer.
6792 */
6793
6794 /*
6795 * Set both track's parameters within a file depending on ai.
6796 * Update sc_sound_[pr]* if set.
6797 * Must be called with sc_exlock held and without sc_lock held.
6798 */
6799 static int
6800 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6801 const struct audio_info *ai)
6802 {
6803 const struct audio_prinfo *pi;
6804 const struct audio_prinfo *ri;
6805 audio_track_t *ptrack;
6806 audio_track_t *rtrack;
6807 audio_format2_t pfmt;
6808 audio_format2_t rfmt;
6809 int pchanges;
6810 int rchanges;
6811 int mode;
6812 struct audio_info saved_ai;
6813 audio_format2_t saved_pfmt;
6814 audio_format2_t saved_rfmt;
6815 int error;
6816
6817 KASSERT(sc->sc_exlock);
6818
6819 pi = &ai->play;
6820 ri = &ai->record;
6821 pchanges = 0;
6822 rchanges = 0;
6823
6824 ptrack = file->ptrack;
6825 rtrack = file->rtrack;
6826
6827 #if defined(AUDIO_DEBUG)
6828 if (audiodebug >= 2) {
6829 char buf[256];
6830 char p[64];
6831 int buflen;
6832 int plen;
6833 #define SPRINTF(var, fmt...) do { \
6834 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
6835 } while (0)
6836
6837 buflen = 0;
6838 plen = 0;
6839 if (SPECIFIED(pi->encoding))
6840 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
6841 if (SPECIFIED(pi->precision))
6842 SPRINTF(p, "/%dbit", pi->precision);
6843 if (SPECIFIED(pi->channels))
6844 SPRINTF(p, "/%dch", pi->channels);
6845 if (SPECIFIED(pi->sample_rate))
6846 SPRINTF(p, "/%dHz", pi->sample_rate);
6847 if (plen > 0)
6848 SPRINTF(buf, ",play.param=%s", p + 1);
6849
6850 plen = 0;
6851 if (SPECIFIED(ri->encoding))
6852 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
6853 if (SPECIFIED(ri->precision))
6854 SPRINTF(p, "/%dbit", ri->precision);
6855 if (SPECIFIED(ri->channels))
6856 SPRINTF(p, "/%dch", ri->channels);
6857 if (SPECIFIED(ri->sample_rate))
6858 SPRINTF(p, "/%dHz", ri->sample_rate);
6859 if (plen > 0)
6860 SPRINTF(buf, ",record.param=%s", p + 1);
6861
6862 if (SPECIFIED(ai->mode))
6863 SPRINTF(buf, ",mode=%d", ai->mode);
6864 if (SPECIFIED(ai->hiwat))
6865 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
6866 if (SPECIFIED(ai->lowat))
6867 SPRINTF(buf, ",lowat=%d", ai->lowat);
6868 if (SPECIFIED(ai->play.gain))
6869 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
6870 if (SPECIFIED(ai->record.gain))
6871 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
6872 if (SPECIFIED_CH(ai->play.balance))
6873 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
6874 if (SPECIFIED_CH(ai->record.balance))
6875 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
6876 if (SPECIFIED(ai->play.port))
6877 SPRINTF(buf, ",play.port=%d", ai->play.port);
6878 if (SPECIFIED(ai->record.port))
6879 SPRINTF(buf, ",record.port=%d", ai->record.port);
6880 if (SPECIFIED(ai->monitor_gain))
6881 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
6882 if (SPECIFIED_CH(ai->play.pause))
6883 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
6884 if (SPECIFIED_CH(ai->record.pause))
6885 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
6886
6887 if (buflen > 0)
6888 TRACE(2, "specified %s", buf + 1);
6889 }
6890 #endif
6891
6892 AUDIO_INITINFO(&saved_ai);
6893 /* XXX shut up gcc */
6894 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
6895 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
6896
6897 /*
6898 * Set default value and save current parameters.
6899 * For backward compatibility, use sticky parameters for nonexistent
6900 * track.
6901 */
6902 if (ptrack) {
6903 pfmt = ptrack->usrbuf.fmt;
6904 saved_pfmt = ptrack->usrbuf.fmt;
6905 saved_ai.play.pause = ptrack->is_pause;
6906 } else {
6907 pfmt = sc->sc_sound_pparams;
6908 }
6909 if (rtrack) {
6910 rfmt = rtrack->usrbuf.fmt;
6911 saved_rfmt = rtrack->usrbuf.fmt;
6912 saved_ai.record.pause = rtrack->is_pause;
6913 } else {
6914 rfmt = sc->sc_sound_rparams;
6915 }
6916 saved_ai.mode = file->mode;
6917
6918 /*
6919 * Overwrite if specified.
6920 */
6921 mode = file->mode;
6922 if (SPECIFIED(ai->mode)) {
6923 /*
6924 * Setting ai->mode no longer does anything because it's
6925 * prohibited to change playback/recording mode after open
6926 * and AUMODE_PLAY_ALL is obsoleted. However, it still
6927 * keeps the state of AUMODE_PLAY_ALL itself for backward
6928 * compatibility.
6929 * In the internal, only file->mode has the state of
6930 * AUMODE_PLAY_ALL flag and track->mode in both track does
6931 * not have.
6932 */
6933 if ((file->mode & AUMODE_PLAY)) {
6934 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
6935 | (ai->mode & AUMODE_PLAY_ALL);
6936 }
6937 }
6938
6939 pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
6940 if (pchanges == -1) {
6941 #if defined(AUDIO_DEBUG)
6942 TRACEF(1, file, "check play.params failed: "
6943 "%s %ubit %uch %uHz",
6944 audio_encoding_name(pi->encoding),
6945 pi->precision,
6946 pi->channels,
6947 pi->sample_rate);
6948 #endif
6949 return EINVAL;
6950 }
6951
6952 rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
6953 if (rchanges == -1) {
6954 #if defined(AUDIO_DEBUG)
6955 TRACEF(1, file, "check record.params failed: "
6956 "%s %ubit %uch %uHz",
6957 audio_encoding_name(ri->encoding),
6958 ri->precision,
6959 ri->channels,
6960 ri->sample_rate);
6961 #endif
6962 return EINVAL;
6963 }
6964
6965 if (SPECIFIED(ai->mode)) {
6966 pchanges = 1;
6967 rchanges = 1;
6968 }
6969
6970 /*
6971 * Even when setting either one of playback and recording,
6972 * both track must be halted.
6973 */
6974 if (pchanges || rchanges) {
6975 audio_file_clear(sc, file);
6976 #if defined(AUDIO_DEBUG)
6977 char nbuf[16];
6978 char fmtbuf[64];
6979 if (pchanges) {
6980 if (ptrack) {
6981 snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
6982 } else {
6983 snprintf(nbuf, sizeof(nbuf), "-");
6984 }
6985 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6986 DPRINTF(1, "audio track#%s play mode: %s\n",
6987 nbuf, fmtbuf);
6988 }
6989 if (rchanges) {
6990 if (rtrack) {
6991 snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
6992 } else {
6993 snprintf(nbuf, sizeof(nbuf), "-");
6994 }
6995 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6996 DPRINTF(1, "audio track#%s rec mode: %s\n",
6997 nbuf, fmtbuf);
6998 }
6999 #endif
7000 }
7001
7002 /* Set mixer parameters */
7003 mutex_enter(sc->sc_lock);
7004 error = audio_hw_setinfo(sc, ai, &saved_ai);
7005 mutex_exit(sc->sc_lock);
7006 if (error)
7007 goto abort1;
7008
7009 /*
7010 * Set to track and update sticky parameters.
7011 */
7012 error = 0;
7013 file->mode = mode;
7014
7015 if (SPECIFIED_CH(pi->pause)) {
7016 if (ptrack)
7017 ptrack->is_pause = pi->pause;
7018 sc->sc_sound_ppause = pi->pause;
7019 }
7020 if (pchanges) {
7021 if (ptrack) {
7022 audio_track_lock_enter(ptrack);
7023 error = audio_track_set_format(ptrack, &pfmt);
7024 audio_track_lock_exit(ptrack);
7025 if (error) {
7026 TRACET(1, ptrack, "set play.params failed");
7027 goto abort2;
7028 }
7029 }
7030 sc->sc_sound_pparams = pfmt;
7031 }
7032 /* Change water marks after initializing the buffers. */
7033 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7034 if (ptrack)
7035 audio_track_setinfo_water(ptrack, ai);
7036 }
7037
7038 if (SPECIFIED_CH(ri->pause)) {
7039 if (rtrack)
7040 rtrack->is_pause = ri->pause;
7041 sc->sc_sound_rpause = ri->pause;
7042 }
7043 if (rchanges) {
7044 if (rtrack) {
7045 audio_track_lock_enter(rtrack);
7046 error = audio_track_set_format(rtrack, &rfmt);
7047 audio_track_lock_exit(rtrack);
7048 if (error) {
7049 TRACET(1, rtrack, "set record.params failed");
7050 goto abort3;
7051 }
7052 }
7053 sc->sc_sound_rparams = rfmt;
7054 }
7055
7056 return 0;
7057
7058 /* Rollback */
7059 abort3:
7060 if (error != ENOMEM) {
7061 rtrack->is_pause = saved_ai.record.pause;
7062 audio_track_lock_enter(rtrack);
7063 audio_track_set_format(rtrack, &saved_rfmt);
7064 audio_track_lock_exit(rtrack);
7065 }
7066 sc->sc_sound_rpause = saved_ai.record.pause;
7067 sc->sc_sound_rparams = saved_rfmt;
7068 abort2:
7069 if (ptrack && error != ENOMEM) {
7070 ptrack->is_pause = saved_ai.play.pause;
7071 audio_track_lock_enter(ptrack);
7072 audio_track_set_format(ptrack, &saved_pfmt);
7073 audio_track_lock_exit(ptrack);
7074 }
7075 sc->sc_sound_ppause = saved_ai.play.pause;
7076 sc->sc_sound_pparams = saved_pfmt;
7077 file->mode = saved_ai.mode;
7078 abort1:
7079 mutex_enter(sc->sc_lock);
7080 audio_hw_setinfo(sc, &saved_ai, NULL);
7081 mutex_exit(sc->sc_lock);
7082
7083 return error;
7084 }
7085
7086 /*
7087 * Write SPECIFIED() parameters within info back to fmt.
7088 * Note that track can be NULL here.
7089 * Return value of 1 indicates that fmt is modified.
7090 * Return value of 0 indicates that fmt is not modified.
7091 * Return value of -1 indicates that error EINVAL has occurred.
7092 */
7093 static int
7094 audio_track_setinfo_check(audio_track_t *track,
7095 audio_format2_t *fmt, const struct audio_prinfo *info)
7096 {
7097 const audio_format2_t *hwfmt;
7098 int changes;
7099
7100 changes = 0;
7101 if (SPECIFIED(info->sample_rate)) {
7102 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
7103 return -1;
7104 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
7105 return -1;
7106 fmt->sample_rate = info->sample_rate;
7107 changes = 1;
7108 }
7109 if (SPECIFIED(info->encoding)) {
7110 fmt->encoding = info->encoding;
7111 changes = 1;
7112 }
7113 if (SPECIFIED(info->precision)) {
7114 fmt->precision = info->precision;
7115 /* we don't have API to specify stride */
7116 fmt->stride = info->precision;
7117 changes = 1;
7118 }
7119 if (SPECIFIED(info->channels)) {
7120 /*
7121 * We can convert between monaural and stereo each other.
7122 * We can reduce than the number of channels that the hardware
7123 * supports.
7124 */
7125 if (info->channels > 2) {
7126 if (track) {
7127 hwfmt = &track->mixer->hwbuf.fmt;
7128 if (info->channels > hwfmt->channels)
7129 return -1;
7130 } else {
7131 /*
7132 * This should never happen.
7133 * If track == NULL, channels should be <= 2.
7134 */
7135 return -1;
7136 }
7137 }
7138 fmt->channels = info->channels;
7139 changes = 1;
7140 }
7141
7142 if (changes) {
7143 if (audio_check_params(fmt) != 0)
7144 return -1;
7145 }
7146
7147 return changes;
7148 }
7149
7150 /*
7151 * Change water marks for playback track if specfied.
7152 */
7153 static void
7154 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
7155 {
7156 u_int blks;
7157 u_int maxblks;
7158 u_int blksize;
7159
7160 KASSERT(audio_track_is_playback(track));
7161
7162 blksize = track->usrbuf_blksize;
7163 maxblks = track->usrbuf.capacity / blksize;
7164
7165 if (SPECIFIED(ai->hiwat)) {
7166 blks = ai->hiwat;
7167 if (blks > maxblks)
7168 blks = maxblks;
7169 if (blks < 2)
7170 blks = 2;
7171 track->usrbuf_usedhigh = blks * blksize;
7172 }
7173 if (SPECIFIED(ai->lowat)) {
7174 blks = ai->lowat;
7175 if (blks > maxblks - 1)
7176 blks = maxblks - 1;
7177 track->usrbuf_usedlow = blks * blksize;
7178 }
7179 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7180 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
7181 track->usrbuf_usedlow = track->usrbuf_usedhigh -
7182 blksize;
7183 }
7184 }
7185 }
7186
7187 /*
7188 * Set hardware part of *newai.
7189 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
7190 * If oldai is specified, previous parameters are stored.
7191 * This function itself does not roll back if error occurred.
7192 * Must be called with sc_lock && sc_exlock held.
7193 */
7194 static int
7195 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
7196 struct audio_info *oldai)
7197 {
7198 const struct audio_prinfo *newpi;
7199 const struct audio_prinfo *newri;
7200 struct audio_prinfo *oldpi;
7201 struct audio_prinfo *oldri;
7202 u_int pgain;
7203 u_int rgain;
7204 u_char pbalance;
7205 u_char rbalance;
7206 int error;
7207
7208 KASSERT(mutex_owned(sc->sc_lock));
7209 KASSERT(sc->sc_exlock);
7210
7211 /* XXX shut up gcc */
7212 oldpi = NULL;
7213 oldri = NULL;
7214
7215 newpi = &newai->play;
7216 newri = &newai->record;
7217 if (oldai) {
7218 oldpi = &oldai->play;
7219 oldri = &oldai->record;
7220 }
7221 error = 0;
7222
7223 /*
7224 * It looks like unnecessary to halt HW mixers to set HW mixers.
7225 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
7226 */
7227
7228 if (SPECIFIED(newpi->port)) {
7229 if (oldai)
7230 oldpi->port = au_get_port(sc, &sc->sc_outports);
7231 error = au_set_port(sc, &sc->sc_outports, newpi->port);
7232 if (error) {
7233 audio_printf(sc,
7234 "setting play.port=%d failed: errno=%d\n",
7235 newpi->port, error);
7236 goto abort;
7237 }
7238 }
7239 if (SPECIFIED(newri->port)) {
7240 if (oldai)
7241 oldri->port = au_get_port(sc, &sc->sc_inports);
7242 error = au_set_port(sc, &sc->sc_inports, newri->port);
7243 if (error) {
7244 audio_printf(sc,
7245 "setting record.port=%d failed: errno=%d\n",
7246 newri->port, error);
7247 goto abort;
7248 }
7249 }
7250
7251 /* Backup play.{gain,balance} */
7252 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7253 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7254 if (oldai) {
7255 oldpi->gain = pgain;
7256 oldpi->balance = pbalance;
7257 }
7258 }
7259 /* Backup record.{gain,balance} */
7260 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7261 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7262 if (oldai) {
7263 oldri->gain = rgain;
7264 oldri->balance = rbalance;
7265 }
7266 }
7267 if (SPECIFIED(newpi->gain)) {
7268 error = au_set_gain(sc, &sc->sc_outports,
7269 newpi->gain, pbalance);
7270 if (error) {
7271 audio_printf(sc,
7272 "setting play.gain=%d failed: errno=%d\n",
7273 newpi->gain, error);
7274 goto abort;
7275 }
7276 }
7277 if (SPECIFIED(newri->gain)) {
7278 error = au_set_gain(sc, &sc->sc_inports,
7279 newri->gain, rbalance);
7280 if (error) {
7281 audio_printf(sc,
7282 "setting record.gain=%d failed: errno=%d\n",
7283 newri->gain, error);
7284 goto abort;
7285 }
7286 }
7287 if (SPECIFIED_CH(newpi->balance)) {
7288 error = au_set_gain(sc, &sc->sc_outports,
7289 pgain, newpi->balance);
7290 if (error) {
7291 audio_printf(sc,
7292 "setting play.balance=%d failed: errno=%d\n",
7293 newpi->balance, error);
7294 goto abort;
7295 }
7296 }
7297 if (SPECIFIED_CH(newri->balance)) {
7298 error = au_set_gain(sc, &sc->sc_inports,
7299 rgain, newri->balance);
7300 if (error) {
7301 audio_printf(sc,
7302 "setting record.balance=%d failed: errno=%d\n",
7303 newri->balance, error);
7304 goto abort;
7305 }
7306 }
7307
7308 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7309 if (oldai)
7310 oldai->monitor_gain = au_get_monitor_gain(sc);
7311 error = au_set_monitor_gain(sc, newai->monitor_gain);
7312 if (error) {
7313 audio_printf(sc,
7314 "setting monitor_gain=%d failed: errno=%d\n",
7315 newai->monitor_gain, error);
7316 goto abort;
7317 }
7318 }
7319
7320 /* XXX TODO */
7321 /* sc->sc_ai = *ai; */
7322
7323 error = 0;
7324 abort:
7325 return error;
7326 }
7327
7328 /*
7329 * Setup the hardware with mixer format phwfmt, rhwfmt.
7330 * The arguments have following restrictions:
7331 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7332 * or both.
7333 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7334 * - On non-independent devices, phwfmt and rhwfmt must have the same
7335 * parameters.
7336 * - pfil and rfil must be zero-filled.
7337 * If successful,
7338 * - pfil, rfil will be filled with filter information specified by the
7339 * hardware driver if necessary.
7340 * and then returns 0. Otherwise returns errno.
7341 * Must be called without sc_lock held.
7342 */
7343 static int
7344 audio_hw_set_format(struct audio_softc *sc, int setmode,
7345 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
7346 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7347 {
7348 audio_params_t pp, rp;
7349 int error;
7350
7351 KASSERT(phwfmt != NULL);
7352 KASSERT(rhwfmt != NULL);
7353
7354 pp = format2_to_params(phwfmt);
7355 rp = format2_to_params(rhwfmt);
7356
7357 mutex_enter(sc->sc_lock);
7358 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7359 &pp, &rp, pfil, rfil);
7360 if (error) {
7361 mutex_exit(sc->sc_lock);
7362 audio_printf(sc, "set_format failed: errno=%d\n", error);
7363 return error;
7364 }
7365
7366 if (sc->hw_if->commit_settings) {
7367 error = sc->hw_if->commit_settings(sc->hw_hdl);
7368 if (error) {
7369 mutex_exit(sc->sc_lock);
7370 audio_printf(sc,
7371 "commit_settings failed: errno=%d\n", error);
7372 return error;
7373 }
7374 }
7375 mutex_exit(sc->sc_lock);
7376
7377 return 0;
7378 }
7379
7380 /*
7381 * Fill audio_info structure. If need_mixerinfo is true, it will also
7382 * fill the hardware mixer information.
7383 * Must be called with sc_exlock held and without sc_lock held.
7384 */
7385 static int
7386 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7387 audio_file_t *file)
7388 {
7389 struct audio_prinfo *ri, *pi;
7390 audio_track_t *track;
7391 audio_track_t *ptrack;
7392 audio_track_t *rtrack;
7393 int gain;
7394
7395 KASSERT(sc->sc_exlock);
7396
7397 ri = &ai->record;
7398 pi = &ai->play;
7399 ptrack = file->ptrack;
7400 rtrack = file->rtrack;
7401
7402 memset(ai, 0, sizeof(*ai));
7403
7404 if (ptrack) {
7405 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7406 pi->channels = ptrack->usrbuf.fmt.channels;
7407 pi->precision = ptrack->usrbuf.fmt.precision;
7408 pi->encoding = ptrack->usrbuf.fmt.encoding;
7409 pi->pause = ptrack->is_pause;
7410 } else {
7411 /* Use sticky parameters if the track is not available. */
7412 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7413 pi->channels = sc->sc_sound_pparams.channels;
7414 pi->precision = sc->sc_sound_pparams.precision;
7415 pi->encoding = sc->sc_sound_pparams.encoding;
7416 pi->pause = sc->sc_sound_ppause;
7417 }
7418 if (rtrack) {
7419 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7420 ri->channels = rtrack->usrbuf.fmt.channels;
7421 ri->precision = rtrack->usrbuf.fmt.precision;
7422 ri->encoding = rtrack->usrbuf.fmt.encoding;
7423 ri->pause = rtrack->is_pause;
7424 } else {
7425 /* Use sticky parameters if the track is not available. */
7426 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7427 ri->channels = sc->sc_sound_rparams.channels;
7428 ri->precision = sc->sc_sound_rparams.precision;
7429 ri->encoding = sc->sc_sound_rparams.encoding;
7430 ri->pause = sc->sc_sound_rpause;
7431 }
7432
7433 if (ptrack) {
7434 pi->seek = ptrack->usrbuf.used;
7435 pi->samples = ptrack->usrbuf_stamp;
7436 pi->eof = ptrack->eofcounter;
7437 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7438 pi->open = 1;
7439 pi->buffer_size = ptrack->usrbuf.capacity;
7440 }
7441 pi->waiting = 0; /* open never hangs */
7442 pi->active = sc->sc_pbusy;
7443
7444 if (rtrack) {
7445 ri->seek = rtrack->usrbuf.used;
7446 ri->samples = rtrack->usrbuf_stamp;
7447 ri->eof = 0;
7448 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7449 ri->open = 1;
7450 ri->buffer_size = rtrack->usrbuf.capacity;
7451 }
7452 ri->waiting = 0; /* open never hangs */
7453 ri->active = sc->sc_rbusy;
7454
7455 /*
7456 * XXX There may be different number of channels between playback
7457 * and recording, so that blocksize also may be different.
7458 * But struct audio_info has an united blocksize...
7459 * Here, I use play info precedencely if ptrack is available,
7460 * otherwise record info.
7461 *
7462 * XXX hiwat/lowat is a playback-only parameter. What should I
7463 * return for a record-only descriptor?
7464 */
7465 track = ptrack ? ptrack : rtrack;
7466 if (track) {
7467 ai->blocksize = track->usrbuf_blksize;
7468 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7469 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7470 }
7471 ai->mode = file->mode;
7472
7473 /*
7474 * For backward compatibility, we have to pad these five fields
7475 * a fake non-zero value even if there are no tracks.
7476 */
7477 if (ptrack == NULL)
7478 pi->buffer_size = 65536;
7479 if (rtrack == NULL)
7480 ri->buffer_size = 65536;
7481 if (ptrack == NULL && rtrack == NULL) {
7482 ai->blocksize = 2048;
7483 ai->hiwat = ai->play.buffer_size / ai->blocksize;
7484 ai->lowat = ai->hiwat * 3 / 4;
7485 }
7486
7487 if (need_mixerinfo) {
7488 mutex_enter(sc->sc_lock);
7489
7490 pi->port = au_get_port(sc, &sc->sc_outports);
7491 ri->port = au_get_port(sc, &sc->sc_inports);
7492
7493 pi->avail_ports = sc->sc_outports.allports;
7494 ri->avail_ports = sc->sc_inports.allports;
7495
7496 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7497 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7498
7499 if (sc->sc_monitor_port != -1) {
7500 gain = au_get_monitor_gain(sc);
7501 if (gain != -1)
7502 ai->monitor_gain = gain;
7503 }
7504 mutex_exit(sc->sc_lock);
7505 }
7506
7507 return 0;
7508 }
7509
7510 /*
7511 * Return true if playback is configured.
7512 * This function can be used after audioattach.
7513 */
7514 static bool
7515 audio_can_playback(struct audio_softc *sc)
7516 {
7517
7518 return (sc->sc_pmixer != NULL);
7519 }
7520
7521 /*
7522 * Return true if recording is configured.
7523 * This function can be used after audioattach.
7524 */
7525 static bool
7526 audio_can_capture(struct audio_softc *sc)
7527 {
7528
7529 return (sc->sc_rmixer != NULL);
7530 }
7531
7532 /*
7533 * Get the afp->index'th item from the valid one of format[].
7534 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7535 *
7536 * This is common routines for query_format.
7537 * If your hardware driver has struct audio_format[], the simplest case
7538 * you can write your query_format interface as follows:
7539 *
7540 * struct audio_format foo_format[] = { ... };
7541 *
7542 * int
7543 * foo_query_format(void *hdl, audio_format_query_t *afp)
7544 * {
7545 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7546 * }
7547 */
7548 int
7549 audio_query_format(const struct audio_format *format, int nformats,
7550 audio_format_query_t *afp)
7551 {
7552 const struct audio_format *f;
7553 int idx;
7554 int i;
7555
7556 idx = 0;
7557 for (i = 0; i < nformats; i++) {
7558 f = &format[i];
7559 if (!AUFMT_IS_VALID(f))
7560 continue;
7561 if (afp->index == idx) {
7562 afp->fmt = *f;
7563 return 0;
7564 }
7565 idx++;
7566 }
7567 return EINVAL;
7568 }
7569
7570 /*
7571 * This function is provided for the hardware driver's set_format() to
7572 * find index matches with 'param' from array of audio_format_t 'formats'.
7573 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7574 * It returns the matched index and never fails. Because param passed to
7575 * set_format() is selected from query_format().
7576 * This function will be an alternative to auconv_set_converter() to
7577 * find index.
7578 */
7579 int
7580 audio_indexof_format(const struct audio_format *formats, int nformats,
7581 int mode, const audio_params_t *param)
7582 {
7583 const struct audio_format *f;
7584 int index;
7585 int j;
7586
7587 for (index = 0; index < nformats; index++) {
7588 f = &formats[index];
7589
7590 if (!AUFMT_IS_VALID(f))
7591 continue;
7592 if ((f->mode & mode) == 0)
7593 continue;
7594 if (f->encoding != param->encoding)
7595 continue;
7596 if (f->validbits != param->precision)
7597 continue;
7598 if (f->channels != param->channels)
7599 continue;
7600
7601 if (f->frequency_type == 0) {
7602 if (param->sample_rate < f->frequency[0] ||
7603 param->sample_rate > f->frequency[1])
7604 continue;
7605 } else {
7606 for (j = 0; j < f->frequency_type; j++) {
7607 if (param->sample_rate == f->frequency[j])
7608 break;
7609 }
7610 if (j == f->frequency_type)
7611 continue;
7612 }
7613
7614 /* Then, matched */
7615 return index;
7616 }
7617
7618 /* Not matched. This should not be happened. */
7619 panic("%s: cannot find matched format\n", __func__);
7620 }
7621
7622 /*
7623 * Get or set hardware blocksize in msec.
7624 * XXX It's for debug.
7625 */
7626 static int
7627 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7628 {
7629 struct sysctlnode node;
7630 struct audio_softc *sc;
7631 audio_format2_t phwfmt;
7632 audio_format2_t rhwfmt;
7633 audio_filter_reg_t pfil;
7634 audio_filter_reg_t rfil;
7635 int t;
7636 int old_blk_ms;
7637 int mode;
7638 int error;
7639
7640 node = *rnode;
7641 sc = node.sysctl_data;
7642
7643 error = audio_exlock_enter(sc);
7644 if (error)
7645 return error;
7646
7647 old_blk_ms = sc->sc_blk_ms;
7648 t = old_blk_ms;
7649 node.sysctl_data = &t;
7650 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7651 if (error || newp == NULL)
7652 goto abort;
7653
7654 if (t < 0) {
7655 error = EINVAL;
7656 goto abort;
7657 }
7658
7659 if (sc->sc_popens + sc->sc_ropens > 0) {
7660 error = EBUSY;
7661 goto abort;
7662 }
7663 sc->sc_blk_ms = t;
7664 mode = 0;
7665 if (sc->sc_pmixer) {
7666 mode |= AUMODE_PLAY;
7667 phwfmt = sc->sc_pmixer->hwbuf.fmt;
7668 }
7669 if (sc->sc_rmixer) {
7670 mode |= AUMODE_RECORD;
7671 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7672 }
7673
7674 /* re-init hardware */
7675 memset(&pfil, 0, sizeof(pfil));
7676 memset(&rfil, 0, sizeof(rfil));
7677 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7678 if (error) {
7679 goto abort;
7680 }
7681
7682 /* re-init track mixer */
7683 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7684 if (error) {
7685 /* Rollback */
7686 sc->sc_blk_ms = old_blk_ms;
7687 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7688 goto abort;
7689 }
7690 error = 0;
7691 abort:
7692 audio_exlock_exit(sc);
7693 return error;
7694 }
7695
7696 /*
7697 * Get or set multiuser mode.
7698 */
7699 static int
7700 audio_sysctl_multiuser(SYSCTLFN_ARGS)
7701 {
7702 struct sysctlnode node;
7703 struct audio_softc *sc;
7704 bool t;
7705 int error;
7706
7707 node = *rnode;
7708 sc = node.sysctl_data;
7709
7710 error = audio_exlock_enter(sc);
7711 if (error)
7712 return error;
7713
7714 t = sc->sc_multiuser;
7715 node.sysctl_data = &t;
7716 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7717 if (error || newp == NULL)
7718 goto abort;
7719
7720 sc->sc_multiuser = t;
7721 error = 0;
7722 abort:
7723 audio_exlock_exit(sc);
7724 return error;
7725 }
7726
7727 #if defined(AUDIO_DEBUG)
7728 /*
7729 * Get or set debug verbose level. (0..4)
7730 * XXX It's for debug.
7731 * XXX It is not separated per device.
7732 */
7733 static int
7734 audio_sysctl_debug(SYSCTLFN_ARGS)
7735 {
7736 struct sysctlnode node;
7737 int t;
7738 int error;
7739
7740 node = *rnode;
7741 t = audiodebug;
7742 node.sysctl_data = &t;
7743 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7744 if (error || newp == NULL)
7745 return error;
7746
7747 if (t < 0 || t > 4)
7748 return EINVAL;
7749 audiodebug = t;
7750 printf("audio: audiodebug = %d\n", audiodebug);
7751 return 0;
7752 }
7753 #endif /* AUDIO_DEBUG */
7754
7755 #ifdef AUDIO_PM_IDLE
7756 static void
7757 audio_idle(void *arg)
7758 {
7759 device_t dv = arg;
7760 struct audio_softc *sc = device_private(dv);
7761
7762 #ifdef PNP_DEBUG
7763 extern int pnp_debug_idle;
7764 if (pnp_debug_idle)
7765 printf("%s: idle handler called\n", device_xname(dv));
7766 #endif
7767
7768 sc->sc_idle = true;
7769
7770 /* XXX joerg Make pmf_device_suspend handle children? */
7771 if (!pmf_device_suspend(dv, PMF_Q_SELF))
7772 return;
7773
7774 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7775 pmf_device_resume(dv, PMF_Q_SELF);
7776 }
7777
7778 static void
7779 audio_activity(device_t dv, devactive_t type)
7780 {
7781 struct audio_softc *sc = device_private(dv);
7782
7783 if (type != DVA_SYSTEM)
7784 return;
7785
7786 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7787
7788 sc->sc_idle = false;
7789 if (!device_is_active(dv)) {
7790 /* XXX joerg How to deal with a failing resume... */
7791 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7792 pmf_device_resume(dv, PMF_Q_SELF);
7793 }
7794 }
7795 #endif
7796
7797 static bool
7798 audio_suspend(device_t dv, const pmf_qual_t *qual)
7799 {
7800 struct audio_softc *sc = device_private(dv);
7801 int error;
7802
7803 error = audio_exlock_mutex_enter(sc);
7804 if (error)
7805 return error;
7806 sc->sc_suspending = true;
7807 audio_mixer_capture(sc);
7808
7809 if (sc->sc_pbusy) {
7810 audio_pmixer_halt(sc);
7811 /* Reuse this as need-to-restart flag while suspending */
7812 sc->sc_pbusy = true;
7813 }
7814 if (sc->sc_rbusy) {
7815 audio_rmixer_halt(sc);
7816 /* Reuse this as need-to-restart flag while suspending */
7817 sc->sc_rbusy = true;
7818 }
7819
7820 #ifdef AUDIO_PM_IDLE
7821 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7822 #endif
7823 audio_exlock_mutex_exit(sc);
7824
7825 return true;
7826 }
7827
7828 static bool
7829 audio_resume(device_t dv, const pmf_qual_t *qual)
7830 {
7831 struct audio_softc *sc = device_private(dv);
7832 struct audio_info ai;
7833 int error;
7834
7835 error = audio_exlock_mutex_enter(sc);
7836 if (error)
7837 return error;
7838
7839 sc->sc_suspending = false;
7840 audio_mixer_restore(sc);
7841 /* XXX ? */
7842 AUDIO_INITINFO(&ai);
7843 audio_hw_setinfo(sc, &ai, NULL);
7844
7845 /*
7846 * During from suspend to resume here, sc_[pr]busy is used as
7847 * need-to-restart flag temporarily. After this point,
7848 * sc_[pr]busy is returned to its original usage (busy flag).
7849 * And note that sc_[pr]busy must be false to call [pr]mixer_start().
7850 */
7851 if (sc->sc_pbusy) {
7852 /* pmixer_start() requires pbusy is false */
7853 sc->sc_pbusy = false;
7854 audio_pmixer_start(sc, true);
7855 }
7856 if (sc->sc_rbusy) {
7857 /* rmixer_start() requires rbusy is false */
7858 sc->sc_rbusy = false;
7859 audio_rmixer_start(sc);
7860 }
7861
7862 audio_exlock_mutex_exit(sc);
7863
7864 return true;
7865 }
7866
7867 #if defined(AUDIO_DEBUG)
7868 static void
7869 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
7870 {
7871 int n;
7872
7873 n = 0;
7874 n += snprintf(buf + n, bufsize - n, "%s",
7875 audio_encoding_name(fmt->encoding));
7876 if (fmt->precision == fmt->stride) {
7877 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
7878 } else {
7879 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
7880 fmt->precision, fmt->stride);
7881 }
7882
7883 snprintf(buf + n, bufsize - n, " %uch %uHz",
7884 fmt->channels, fmt->sample_rate);
7885 }
7886 #endif
7887
7888 #if defined(AUDIO_DEBUG)
7889 static void
7890 audio_print_format2(const char *s, const audio_format2_t *fmt)
7891 {
7892 char fmtstr[64];
7893
7894 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
7895 printf("%s %s\n", s, fmtstr);
7896 }
7897 #endif
7898
7899 #ifdef DIAGNOSTIC
7900 void
7901 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
7902 {
7903
7904 KASSERTMSG(fmt, "called from %s", where);
7905
7906 /* XXX MSM6258 vs(4) only has 4bit stride format. */
7907 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
7908 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
7909 "called from %s: fmt->stride=%d", where, fmt->stride);
7910 } else {
7911 KASSERTMSG(fmt->stride % NBBY == 0,
7912 "called from %s: fmt->stride=%d", where, fmt->stride);
7913 }
7914 KASSERTMSG(fmt->precision <= fmt->stride,
7915 "called from %s: fmt->precision=%d fmt->stride=%d",
7916 where, fmt->precision, fmt->stride);
7917 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
7918 "called from %s: fmt->channels=%d", where, fmt->channels);
7919
7920 /* XXX No check for encodings? */
7921 }
7922
7923 void
7924 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
7925 {
7926
7927 KASSERT(arg != NULL);
7928 KASSERT(arg->src != NULL);
7929 KASSERT(arg->dst != NULL);
7930 audio_diagnostic_format2(where, arg->srcfmt);
7931 audio_diagnostic_format2(where, arg->dstfmt);
7932 KASSERT(arg->count > 0);
7933 }
7934
7935 void
7936 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
7937 {
7938
7939 KASSERTMSG(ring, "called from %s", where);
7940 audio_diagnostic_format2(where, &ring->fmt);
7941 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
7942 "called from %s: ring->capacity=%d", where, ring->capacity);
7943 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
7944 "called from %s: ring->used=%d ring->capacity=%d",
7945 where, ring->used, ring->capacity);
7946 if (ring->capacity == 0) {
7947 KASSERTMSG(ring->mem == NULL,
7948 "called from %s: capacity == 0 but mem != NULL", where);
7949 } else {
7950 KASSERTMSG(ring->mem != NULL,
7951 "called from %s: capacity != 0 but mem == NULL", where);
7952 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
7953 "called from %s: ring->head=%d ring->capacity=%d",
7954 where, ring->head, ring->capacity);
7955 }
7956 }
7957 #endif /* DIAGNOSTIC */
7958
7959
7960 /*
7961 * Mixer driver
7962 */
7963
7964 /*
7965 * Must be called without sc_lock held.
7966 */
7967 int
7968 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
7969 struct lwp *l)
7970 {
7971 struct file *fp;
7972 audio_file_t *af;
7973 int error, fd;
7974
7975 TRACE(1, "flags=0x%x", flags);
7976
7977 error = fd_allocfile(&fp, &fd);
7978 if (error)
7979 return error;
7980
7981 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
7982 af->sc = sc;
7983 af->dev = dev;
7984
7985 error = fd_clone(fp, fd, flags, &audio_fileops, af);
7986 KASSERT(error == EMOVEFD);
7987
7988 return error;
7989 }
7990
7991 /*
7992 * Add a process to those to be signalled on mixer activity.
7993 * If the process has already been added, do nothing.
7994 * Must be called with sc_exlock held and without sc_lock held.
7995 */
7996 static void
7997 mixer_async_add(struct audio_softc *sc, pid_t pid)
7998 {
7999 int i;
8000
8001 KASSERT(sc->sc_exlock);
8002
8003 /* If already exists, returns without doing anything. */
8004 for (i = 0; i < sc->sc_am_used; i++) {
8005 if (sc->sc_am[i] == pid)
8006 return;
8007 }
8008
8009 /* Extend array if necessary. */
8010 if (sc->sc_am_used >= sc->sc_am_capacity) {
8011 sc->sc_am_capacity += AM_CAPACITY;
8012 sc->sc_am = kern_realloc(sc->sc_am,
8013 sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
8014 TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
8015 }
8016
8017 TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
8018 sc->sc_am[sc->sc_am_used++] = pid;
8019 }
8020
8021 /*
8022 * Remove a process from those to be signalled on mixer activity.
8023 * If the process has not been added, do nothing.
8024 * Must be called with sc_exlock held and without sc_lock held.
8025 */
8026 static void
8027 mixer_async_remove(struct audio_softc *sc, pid_t pid)
8028 {
8029 int i;
8030
8031 KASSERT(sc->sc_exlock);
8032
8033 for (i = 0; i < sc->sc_am_used; i++) {
8034 if (sc->sc_am[i] == pid) {
8035 sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
8036 TRACE(2, "am[%d](%d) removed, used=%d",
8037 i, (int)pid, sc->sc_am_used);
8038
8039 /* Empty array if no longer necessary. */
8040 if (sc->sc_am_used == 0) {
8041 kern_free(sc->sc_am);
8042 sc->sc_am = NULL;
8043 sc->sc_am_capacity = 0;
8044 TRACE(2, "released");
8045 }
8046 return;
8047 }
8048 }
8049 }
8050
8051 /*
8052 * Signal all processes waiting for the mixer.
8053 * Must be called with sc_exlock held.
8054 */
8055 static void
8056 mixer_signal(struct audio_softc *sc)
8057 {
8058 proc_t *p;
8059 int i;
8060
8061 KASSERT(sc->sc_exlock);
8062
8063 for (i = 0; i < sc->sc_am_used; i++) {
8064 mutex_enter(&proc_lock);
8065 p = proc_find(sc->sc_am[i]);
8066 if (p)
8067 psignal(p, SIGIO);
8068 mutex_exit(&proc_lock);
8069 }
8070 }
8071
8072 /*
8073 * Close a mixer device
8074 */
8075 int
8076 mixer_close(struct audio_softc *sc, audio_file_t *file)
8077 {
8078 int error;
8079
8080 error = audio_exlock_enter(sc);
8081 if (error)
8082 return error;
8083 TRACE(1, "called");
8084 mixer_async_remove(sc, curproc->p_pid);
8085 audio_exlock_exit(sc);
8086
8087 return 0;
8088 }
8089
8090 /*
8091 * Must be called without sc_lock nor sc_exlock held.
8092 */
8093 int
8094 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
8095 struct lwp *l)
8096 {
8097 mixer_devinfo_t *mi;
8098 mixer_ctrl_t *mc;
8099 int error;
8100
8101 TRACE(2, "(%lu,'%c',%lu)",
8102 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
8103 error = EINVAL;
8104
8105 /* we can return cached values if we are sleeping */
8106 if (cmd != AUDIO_MIXER_READ) {
8107 mutex_enter(sc->sc_lock);
8108 device_active(sc->sc_dev, DVA_SYSTEM);
8109 mutex_exit(sc->sc_lock);
8110 }
8111
8112 switch (cmd) {
8113 case FIOASYNC:
8114 error = audio_exlock_enter(sc);
8115 if (error)
8116 break;
8117 if (*(int *)addr) {
8118 mixer_async_add(sc, curproc->p_pid);
8119 } else {
8120 mixer_async_remove(sc, curproc->p_pid);
8121 }
8122 audio_exlock_exit(sc);
8123 break;
8124
8125 case AUDIO_GETDEV:
8126 TRACE(2, "AUDIO_GETDEV");
8127 mutex_enter(sc->sc_lock);
8128 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
8129 mutex_exit(sc->sc_lock);
8130 break;
8131
8132 case AUDIO_MIXER_DEVINFO:
8133 TRACE(2, "AUDIO_MIXER_DEVINFO");
8134 mi = (mixer_devinfo_t *)addr;
8135
8136 mi->un.v.delta = 0; /* default */
8137 mutex_enter(sc->sc_lock);
8138 error = audio_query_devinfo(sc, mi);
8139 mutex_exit(sc->sc_lock);
8140 break;
8141
8142 case AUDIO_MIXER_READ:
8143 TRACE(2, "AUDIO_MIXER_READ");
8144 mc = (mixer_ctrl_t *)addr;
8145
8146 error = audio_exlock_mutex_enter(sc);
8147 if (error)
8148 break;
8149 if (device_is_active(sc->hw_dev))
8150 error = audio_get_port(sc, mc);
8151 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
8152 error = ENXIO;
8153 else {
8154 int dev = mc->dev;
8155 memcpy(mc, &sc->sc_mixer_state[dev],
8156 sizeof(mixer_ctrl_t));
8157 error = 0;
8158 }
8159 audio_exlock_mutex_exit(sc);
8160 break;
8161
8162 case AUDIO_MIXER_WRITE:
8163 TRACE(2, "AUDIO_MIXER_WRITE");
8164 error = audio_exlock_mutex_enter(sc);
8165 if (error)
8166 break;
8167 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
8168 if (error) {
8169 audio_exlock_mutex_exit(sc);
8170 break;
8171 }
8172
8173 if (sc->hw_if->commit_settings) {
8174 error = sc->hw_if->commit_settings(sc->hw_hdl);
8175 if (error) {
8176 audio_exlock_mutex_exit(sc);
8177 break;
8178 }
8179 }
8180 mutex_exit(sc->sc_lock);
8181 mixer_signal(sc);
8182 audio_exlock_exit(sc);
8183 break;
8184
8185 default:
8186 if (sc->hw_if->dev_ioctl) {
8187 mutex_enter(sc->sc_lock);
8188 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
8189 cmd, addr, flag, l);
8190 mutex_exit(sc->sc_lock);
8191 } else
8192 error = EINVAL;
8193 break;
8194 }
8195 TRACE(2, "(%lu,'%c',%lu) result %d",
8196 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
8197 return error;
8198 }
8199
8200 /*
8201 * Must be called with sc_lock held.
8202 */
8203 int
8204 au_portof(struct audio_softc *sc, char *name, int class)
8205 {
8206 mixer_devinfo_t mi;
8207
8208 KASSERT(mutex_owned(sc->sc_lock));
8209
8210 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
8211 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
8212 return mi.index;
8213 }
8214 return -1;
8215 }
8216
8217 /*
8218 * Must be called with sc_lock held.
8219 */
8220 void
8221 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
8222 mixer_devinfo_t *mi, const struct portname *tbl)
8223 {
8224 int i, j;
8225
8226 KASSERT(mutex_owned(sc->sc_lock));
8227
8228 ports->index = mi->index;
8229 if (mi->type == AUDIO_MIXER_ENUM) {
8230 ports->isenum = true;
8231 for(i = 0; tbl[i].name; i++)
8232 for(j = 0; j < mi->un.e.num_mem; j++)
8233 if (strcmp(mi->un.e.member[j].label.name,
8234 tbl[i].name) == 0) {
8235 ports->allports |= tbl[i].mask;
8236 ports->aumask[ports->nports] = tbl[i].mask;
8237 ports->misel[ports->nports] =
8238 mi->un.e.member[j].ord;
8239 ports->miport[ports->nports] =
8240 au_portof(sc, mi->un.e.member[j].label.name,
8241 mi->mixer_class);
8242 if (ports->mixerout != -1 &&
8243 ports->miport[ports->nports] != -1)
8244 ports->isdual = true;
8245 ++ports->nports;
8246 }
8247 } else if (mi->type == AUDIO_MIXER_SET) {
8248 for(i = 0; tbl[i].name; i++)
8249 for(j = 0; j < mi->un.s.num_mem; j++)
8250 if (strcmp(mi->un.s.member[j].label.name,
8251 tbl[i].name) == 0) {
8252 ports->allports |= tbl[i].mask;
8253 ports->aumask[ports->nports] = tbl[i].mask;
8254 ports->misel[ports->nports] =
8255 mi->un.s.member[j].mask;
8256 ports->miport[ports->nports] =
8257 au_portof(sc, mi->un.s.member[j].label.name,
8258 mi->mixer_class);
8259 ++ports->nports;
8260 }
8261 }
8262 }
8263
8264 /*
8265 * Must be called with sc_lock && sc_exlock held.
8266 */
8267 int
8268 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8269 {
8270
8271 KASSERT(mutex_owned(sc->sc_lock));
8272 KASSERT(sc->sc_exlock);
8273
8274 ct->type = AUDIO_MIXER_VALUE;
8275 ct->un.value.num_channels = 2;
8276 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8277 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8278 if (audio_set_port(sc, ct) == 0)
8279 return 0;
8280 ct->un.value.num_channels = 1;
8281 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8282 return audio_set_port(sc, ct);
8283 }
8284
8285 /*
8286 * Must be called with sc_lock && sc_exlock held.
8287 */
8288 int
8289 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8290 {
8291 int error;
8292
8293 KASSERT(mutex_owned(sc->sc_lock));
8294 KASSERT(sc->sc_exlock);
8295
8296 ct->un.value.num_channels = 2;
8297 if (audio_get_port(sc, ct) == 0) {
8298 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8299 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8300 } else {
8301 ct->un.value.num_channels = 1;
8302 error = audio_get_port(sc, ct);
8303 if (error)
8304 return error;
8305 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8306 }
8307 return 0;
8308 }
8309
8310 /*
8311 * Must be called with sc_lock && sc_exlock held.
8312 */
8313 int
8314 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8315 int gain, int balance)
8316 {
8317 mixer_ctrl_t ct;
8318 int i, error;
8319 int l, r;
8320 u_int mask;
8321 int nset;
8322
8323 KASSERT(mutex_owned(sc->sc_lock));
8324 KASSERT(sc->sc_exlock);
8325
8326 if (balance == AUDIO_MID_BALANCE) {
8327 l = r = gain;
8328 } else if (balance < AUDIO_MID_BALANCE) {
8329 l = gain;
8330 r = (balance * gain) / AUDIO_MID_BALANCE;
8331 } else {
8332 r = gain;
8333 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8334 / AUDIO_MID_BALANCE;
8335 }
8336 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8337
8338 if (ports->index == -1) {
8339 usemaster:
8340 if (ports->master == -1)
8341 return 0; /* just ignore it silently */
8342 ct.dev = ports->master;
8343 error = au_set_lr_value(sc, &ct, l, r);
8344 } else {
8345 ct.dev = ports->index;
8346 if (ports->isenum) {
8347 ct.type = AUDIO_MIXER_ENUM;
8348 error = audio_get_port(sc, &ct);
8349 if (error)
8350 return error;
8351 if (ports->isdual) {
8352 if (ports->cur_port == -1)
8353 ct.dev = ports->master;
8354 else
8355 ct.dev = ports->miport[ports->cur_port];
8356 error = au_set_lr_value(sc, &ct, l, r);
8357 } else {
8358 for(i = 0; i < ports->nports; i++)
8359 if (ports->misel[i] == ct.un.ord) {
8360 ct.dev = ports->miport[i];
8361 if (ct.dev == -1 ||
8362 au_set_lr_value(sc, &ct, l, r))
8363 goto usemaster;
8364 else
8365 break;
8366 }
8367 }
8368 } else {
8369 ct.type = AUDIO_MIXER_SET;
8370 error = audio_get_port(sc, &ct);
8371 if (error)
8372 return error;
8373 mask = ct.un.mask;
8374 nset = 0;
8375 for(i = 0; i < ports->nports; i++) {
8376 if (ports->misel[i] & mask) {
8377 ct.dev = ports->miport[i];
8378 if (ct.dev != -1 &&
8379 au_set_lr_value(sc, &ct, l, r) == 0)
8380 nset++;
8381 }
8382 }
8383 if (nset == 0)
8384 goto usemaster;
8385 }
8386 }
8387 if (!error)
8388 mixer_signal(sc);
8389 return error;
8390 }
8391
8392 /*
8393 * Must be called with sc_lock && sc_exlock held.
8394 */
8395 void
8396 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8397 u_int *pgain, u_char *pbalance)
8398 {
8399 mixer_ctrl_t ct;
8400 int i, l, r, n;
8401 int lgain, rgain;
8402
8403 KASSERT(mutex_owned(sc->sc_lock));
8404 KASSERT(sc->sc_exlock);
8405
8406 lgain = AUDIO_MAX_GAIN / 2;
8407 rgain = AUDIO_MAX_GAIN / 2;
8408 if (ports->index == -1) {
8409 usemaster:
8410 if (ports->master == -1)
8411 goto bad;
8412 ct.dev = ports->master;
8413 ct.type = AUDIO_MIXER_VALUE;
8414 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8415 goto bad;
8416 } else {
8417 ct.dev = ports->index;
8418 if (ports->isenum) {
8419 ct.type = AUDIO_MIXER_ENUM;
8420 if (audio_get_port(sc, &ct))
8421 goto bad;
8422 ct.type = AUDIO_MIXER_VALUE;
8423 if (ports->isdual) {
8424 if (ports->cur_port == -1)
8425 ct.dev = ports->master;
8426 else
8427 ct.dev = ports->miport[ports->cur_port];
8428 au_get_lr_value(sc, &ct, &lgain, &rgain);
8429 } else {
8430 for(i = 0; i < ports->nports; i++)
8431 if (ports->misel[i] == ct.un.ord) {
8432 ct.dev = ports->miport[i];
8433 if (ct.dev == -1 ||
8434 au_get_lr_value(sc, &ct,
8435 &lgain, &rgain))
8436 goto usemaster;
8437 else
8438 break;
8439 }
8440 }
8441 } else {
8442 ct.type = AUDIO_MIXER_SET;
8443 if (audio_get_port(sc, &ct))
8444 goto bad;
8445 ct.type = AUDIO_MIXER_VALUE;
8446 lgain = rgain = n = 0;
8447 for(i = 0; i < ports->nports; i++) {
8448 if (ports->misel[i] & ct.un.mask) {
8449 ct.dev = ports->miport[i];
8450 if (ct.dev == -1 ||
8451 au_get_lr_value(sc, &ct, &l, &r))
8452 goto usemaster;
8453 else {
8454 lgain += l;
8455 rgain += r;
8456 n++;
8457 }
8458 }
8459 }
8460 if (n != 0) {
8461 lgain /= n;
8462 rgain /= n;
8463 }
8464 }
8465 }
8466 bad:
8467 if (lgain == rgain) { /* handles lgain==rgain==0 */
8468 *pgain = lgain;
8469 *pbalance = AUDIO_MID_BALANCE;
8470 } else if (lgain < rgain) {
8471 *pgain = rgain;
8472 /* balance should be > AUDIO_MID_BALANCE */
8473 *pbalance = AUDIO_RIGHT_BALANCE -
8474 (AUDIO_MID_BALANCE * lgain) / rgain;
8475 } else /* lgain > rgain */ {
8476 *pgain = lgain;
8477 /* balance should be < AUDIO_MID_BALANCE */
8478 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8479 }
8480 }
8481
8482 /*
8483 * Must be called with sc_lock && sc_exlock held.
8484 */
8485 int
8486 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8487 {
8488 mixer_ctrl_t ct;
8489 int i, error, use_mixerout;
8490
8491 KASSERT(mutex_owned(sc->sc_lock));
8492 KASSERT(sc->sc_exlock);
8493
8494 use_mixerout = 1;
8495 if (port == 0) {
8496 if (ports->allports == 0)
8497 return 0; /* Allow this special case. */
8498 else if (ports->isdual) {
8499 if (ports->cur_port == -1) {
8500 return 0;
8501 } else {
8502 port = ports->aumask[ports->cur_port];
8503 ports->cur_port = -1;
8504 use_mixerout = 0;
8505 }
8506 }
8507 }
8508 if (ports->index == -1)
8509 return EINVAL;
8510 ct.dev = ports->index;
8511 if (ports->isenum) {
8512 if (port & (port-1))
8513 return EINVAL; /* Only one port allowed */
8514 ct.type = AUDIO_MIXER_ENUM;
8515 error = EINVAL;
8516 for(i = 0; i < ports->nports; i++)
8517 if (ports->aumask[i] == port) {
8518 if (ports->isdual && use_mixerout) {
8519 ct.un.ord = ports->mixerout;
8520 ports->cur_port = i;
8521 } else {
8522 ct.un.ord = ports->misel[i];
8523 }
8524 error = audio_set_port(sc, &ct);
8525 break;
8526 }
8527 } else {
8528 ct.type = AUDIO_MIXER_SET;
8529 ct.un.mask = 0;
8530 for(i = 0; i < ports->nports; i++)
8531 if (ports->aumask[i] & port)
8532 ct.un.mask |= ports->misel[i];
8533 if (port != 0 && ct.un.mask == 0)
8534 error = EINVAL;
8535 else
8536 error = audio_set_port(sc, &ct);
8537 }
8538 if (!error)
8539 mixer_signal(sc);
8540 return error;
8541 }
8542
8543 /*
8544 * Must be called with sc_lock && sc_exlock held.
8545 */
8546 int
8547 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8548 {
8549 mixer_ctrl_t ct;
8550 int i, aumask;
8551
8552 KASSERT(mutex_owned(sc->sc_lock));
8553 KASSERT(sc->sc_exlock);
8554
8555 if (ports->index == -1)
8556 return 0;
8557 ct.dev = ports->index;
8558 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8559 if (audio_get_port(sc, &ct))
8560 return 0;
8561 aumask = 0;
8562 if (ports->isenum) {
8563 if (ports->isdual && ports->cur_port != -1) {
8564 if (ports->mixerout == ct.un.ord)
8565 aumask = ports->aumask[ports->cur_port];
8566 else
8567 ports->cur_port = -1;
8568 }
8569 if (aumask == 0)
8570 for(i = 0; i < ports->nports; i++)
8571 if (ports->misel[i] == ct.un.ord)
8572 aumask = ports->aumask[i];
8573 } else {
8574 for(i = 0; i < ports->nports; i++)
8575 if (ct.un.mask & ports->misel[i])
8576 aumask |= ports->aumask[i];
8577 }
8578 return aumask;
8579 }
8580
8581 /*
8582 * It returns 0 if success, otherwise errno.
8583 * Must be called only if sc->sc_monitor_port != -1.
8584 * Must be called with sc_lock && sc_exlock held.
8585 */
8586 static int
8587 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8588 {
8589 mixer_ctrl_t ct;
8590
8591 KASSERT(mutex_owned(sc->sc_lock));
8592 KASSERT(sc->sc_exlock);
8593
8594 ct.dev = sc->sc_monitor_port;
8595 ct.type = AUDIO_MIXER_VALUE;
8596 ct.un.value.num_channels = 1;
8597 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8598 return audio_set_port(sc, &ct);
8599 }
8600
8601 /*
8602 * It returns monitor gain if success, otherwise -1.
8603 * Must be called only if sc->sc_monitor_port != -1.
8604 * Must be called with sc_lock && sc_exlock held.
8605 */
8606 static int
8607 au_get_monitor_gain(struct audio_softc *sc)
8608 {
8609 mixer_ctrl_t ct;
8610
8611 KASSERT(mutex_owned(sc->sc_lock));
8612 KASSERT(sc->sc_exlock);
8613
8614 ct.dev = sc->sc_monitor_port;
8615 ct.type = AUDIO_MIXER_VALUE;
8616 ct.un.value.num_channels = 1;
8617 if (audio_get_port(sc, &ct))
8618 return -1;
8619 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8620 }
8621
8622 /*
8623 * Must be called with sc_lock && sc_exlock held.
8624 */
8625 static int
8626 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8627 {
8628
8629 KASSERT(mutex_owned(sc->sc_lock));
8630 KASSERT(sc->sc_exlock);
8631
8632 return sc->hw_if->set_port(sc->hw_hdl, mc);
8633 }
8634
8635 /*
8636 * Must be called with sc_lock && sc_exlock held.
8637 */
8638 static int
8639 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8640 {
8641
8642 KASSERT(mutex_owned(sc->sc_lock));
8643 KASSERT(sc->sc_exlock);
8644
8645 return sc->hw_if->get_port(sc->hw_hdl, mc);
8646 }
8647
8648 /*
8649 * Must be called with sc_lock && sc_exlock held.
8650 */
8651 static void
8652 audio_mixer_capture(struct audio_softc *sc)
8653 {
8654 mixer_devinfo_t mi;
8655 mixer_ctrl_t *mc;
8656
8657 KASSERT(mutex_owned(sc->sc_lock));
8658 KASSERT(sc->sc_exlock);
8659
8660 for (mi.index = 0;; mi.index++) {
8661 if (audio_query_devinfo(sc, &mi) != 0)
8662 break;
8663 KASSERT(mi.index < sc->sc_nmixer_states);
8664 if (mi.type == AUDIO_MIXER_CLASS)
8665 continue;
8666 mc = &sc->sc_mixer_state[mi.index];
8667 mc->dev = mi.index;
8668 mc->type = mi.type;
8669 mc->un.value.num_channels = mi.un.v.num_channels;
8670 (void)audio_get_port(sc, mc);
8671 }
8672
8673 return;
8674 }
8675
8676 /*
8677 * Must be called with sc_lock && sc_exlock held.
8678 */
8679 static void
8680 audio_mixer_restore(struct audio_softc *sc)
8681 {
8682 mixer_devinfo_t mi;
8683 mixer_ctrl_t *mc;
8684
8685 KASSERT(mutex_owned(sc->sc_lock));
8686 KASSERT(sc->sc_exlock);
8687
8688 for (mi.index = 0; ; mi.index++) {
8689 if (audio_query_devinfo(sc, &mi) != 0)
8690 break;
8691 if (mi.type == AUDIO_MIXER_CLASS)
8692 continue;
8693 mc = &sc->sc_mixer_state[mi.index];
8694 (void)audio_set_port(sc, mc);
8695 }
8696 if (sc->hw_if->commit_settings)
8697 sc->hw_if->commit_settings(sc->hw_hdl);
8698
8699 return;
8700 }
8701
8702 static void
8703 audio_volume_down(device_t dv)
8704 {
8705 struct audio_softc *sc = device_private(dv);
8706 mixer_devinfo_t mi;
8707 int newgain;
8708 u_int gain;
8709 u_char balance;
8710
8711 if (audio_exlock_mutex_enter(sc) != 0)
8712 return;
8713 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8714 mi.index = sc->sc_outports.master;
8715 mi.un.v.delta = 0;
8716 if (audio_query_devinfo(sc, &mi) == 0) {
8717 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8718 newgain = gain - mi.un.v.delta;
8719 if (newgain < AUDIO_MIN_GAIN)
8720 newgain = AUDIO_MIN_GAIN;
8721 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8722 }
8723 }
8724 audio_exlock_mutex_exit(sc);
8725 }
8726
8727 static void
8728 audio_volume_up(device_t dv)
8729 {
8730 struct audio_softc *sc = device_private(dv);
8731 mixer_devinfo_t mi;
8732 u_int gain, newgain;
8733 u_char balance;
8734
8735 if (audio_exlock_mutex_enter(sc) != 0)
8736 return;
8737 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8738 mi.index = sc->sc_outports.master;
8739 mi.un.v.delta = 0;
8740 if (audio_query_devinfo(sc, &mi) == 0) {
8741 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8742 newgain = gain + mi.un.v.delta;
8743 if (newgain > AUDIO_MAX_GAIN)
8744 newgain = AUDIO_MAX_GAIN;
8745 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8746 }
8747 }
8748 audio_exlock_mutex_exit(sc);
8749 }
8750
8751 static void
8752 audio_volume_toggle(device_t dv)
8753 {
8754 struct audio_softc *sc = device_private(dv);
8755 u_int gain, newgain;
8756 u_char balance;
8757
8758 if (audio_exlock_mutex_enter(sc) != 0)
8759 return;
8760 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8761 if (gain != 0) {
8762 sc->sc_lastgain = gain;
8763 newgain = 0;
8764 } else
8765 newgain = sc->sc_lastgain;
8766 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8767 audio_exlock_mutex_exit(sc);
8768 }
8769
8770 /*
8771 * Must be called with sc_lock held.
8772 */
8773 static int
8774 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8775 {
8776
8777 KASSERT(mutex_owned(sc->sc_lock));
8778
8779 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8780 }
8781
8782 #endif /* NAUDIO > 0 */
8783
8784 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8785 #include <sys/param.h>
8786 #include <sys/systm.h>
8787 #include <sys/device.h>
8788 #include <sys/audioio.h>
8789 #include <dev/audio/audio_if.h>
8790 #endif
8791
8792 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8793 int
8794 audioprint(void *aux, const char *pnp)
8795 {
8796 struct audio_attach_args *arg;
8797 const char *type;
8798
8799 if (pnp != NULL) {
8800 arg = aux;
8801 switch (arg->type) {
8802 case AUDIODEV_TYPE_AUDIO:
8803 type = "audio";
8804 break;
8805 case AUDIODEV_TYPE_MIDI:
8806 type = "midi";
8807 break;
8808 case AUDIODEV_TYPE_OPL:
8809 type = "opl";
8810 break;
8811 case AUDIODEV_TYPE_MPU:
8812 type = "mpu";
8813 break;
8814 default:
8815 panic("audioprint: unknown type %d", arg->type);
8816 }
8817 aprint_normal("%s at %s", type, pnp);
8818 }
8819 return UNCONF;
8820 }
8821
8822 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8823
8824 #ifdef _MODULE
8825
8826 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8827
8828 #include "ioconf.c"
8829
8830 #endif
8831
8832 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
8833
8834 static int
8835 audio_modcmd(modcmd_t cmd, void *arg)
8836 {
8837 int error = 0;
8838
8839 switch (cmd) {
8840 case MODULE_CMD_INIT:
8841 /* XXX interrupt level? */
8842 audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
8843 #ifdef _MODULE
8844 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8845 &audio_cdevsw, &audio_cmajor);
8846 if (error)
8847 break;
8848
8849 error = config_init_component(cfdriver_ioconf_audio,
8850 cfattach_ioconf_audio, cfdata_ioconf_audio);
8851 if (error) {
8852 devsw_detach(NULL, &audio_cdevsw);
8853 }
8854 #endif
8855 break;
8856 case MODULE_CMD_FINI:
8857 #ifdef _MODULE
8858 devsw_detach(NULL, &audio_cdevsw);
8859 error = config_fini_component(cfdriver_ioconf_audio,
8860 cfattach_ioconf_audio, cfdata_ioconf_audio);
8861 if (error)
8862 devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8863 &audio_cdevsw, &audio_cmajor);
8864 #endif
8865 psref_class_destroy(audio_psref_class);
8866 break;
8867 default:
8868 error = ENOTTY;
8869 break;
8870 }
8871
8872 return error;
8873 }
8874