Home | History | Annotate | Line # | Download | only in audio
audio.c revision 1.92
      1 /*	$NetBSD: audio.c,v 1.92 2021/04/24 23:36:52 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1991-1993 Regents of the University of California.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgement:
     46  *	This product includes software developed by the Computer Systems
     47  *	Engineering Group at Lawrence Berkeley Laboratory.
     48  * 4. Neither the name of the University nor of the Laboratory may be used
     49  *    to endorse or promote products derived from this software without
     50  *    specific prior written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     62  * SUCH DAMAGE.
     63  */
     64 
     65 /*
     66  * Locking: there are three locks per device.
     67  *
     68  * - sc_lock, provided by the underlying driver.  This is an adaptive lock,
     69  *   returned in the second parameter to hw_if->get_locks().  It is known
     70  *   as the "thread lock".
     71  *
     72  *   It serializes access to state in all places except the
     73  *   driver's interrupt service routine.  This lock is taken from process
     74  *   context (example: access to /dev/audio).  It is also taken from soft
     75  *   interrupt handlers in this module, primarily to serialize delivery of
     76  *   wakeups.  This lock may be used/provided by modules external to the
     77  *   audio subsystem, so take care not to introduce a lock order problem.
     78  *   LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
     79  *
     80  * - sc_intr_lock, provided by the underlying driver.  This may be either a
     81  *   spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
     82  *   IPL_SOFT*), returned in the first parameter to hw_if->get_locks().  It
     83  *   is known as the "interrupt lock".
     84  *
     85  *   It provides atomic access to the device's hardware state, and to audio
     86  *   channel data that may be accessed by the hardware driver's ISR.
     87  *   In all places outside the ISR, sc_lock must be held before taking
     88  *   sc_intr_lock.  This is to ensure that groups of hardware operations are
     89  *   made atomically.  SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
     90  *
     91  * - sc_exlock, private to this module.  This is a variable protected by
     92  *   sc_lock.  It is known as the "critical section".
     93  *   Some operations release sc_lock in order to allocate memory, to wait
     94  *   for in-flight I/O to complete, to copy to/from user context, etc.
     95  *   sc_exlock provides a critical section even under the circumstance.
     96  *   "+" in following list indicates the interfaces which necessary to be
     97  *   protected by sc_exlock.
     98  *
     99  * List of hardware interface methods, and which locks are held when each
    100  * is called by this module:
    101  *
    102  *	METHOD			INTR	THREAD  NOTES
    103  *	----------------------- ------- -------	-------------------------
    104  *	open 			x	x +
    105  *	close 			x	x +
    106  *	query_format		-	x
    107  *	set_format		-	x
    108  *	round_blocksize		-	x
    109  *	commit_settings		-	x
    110  *	init_output 		x	x
    111  *	init_input 		x	x
    112  *	start_output 		x	x +
    113  *	start_input 		x	x +
    114  *	halt_output 		x	x +
    115  *	halt_input 		x	x +
    116  *	speaker_ctl 		x	x
    117  *	getdev 			-	x
    118  *	set_port 		-	x +
    119  *	get_port 		-	x +
    120  *	query_devinfo 		-	x
    121  *	allocm 			-	- +
    122  *	freem 			-	- +
    123  *	round_buffersize 	-	x
    124  *	get_props 		-	-	Called at attach time
    125  *	trigger_output 		x	x +
    126  *	trigger_input 		x	x +
    127  *	dev_ioctl 		-	x
    128  *	get_locks 		-	-	Called at attach time
    129  *
    130  * In addition, there is an additional lock.
    131  *
    132  * - track->lock.  This is an atomic variable and is similar to the
    133  *   "interrupt lock".  This is one for each track.  If any thread context
    134  *   (and software interrupt context) and hardware interrupt context who
    135  *   want to access some variables on this track, they must acquire this
    136  *   lock before.  It protects track's consistency between hardware
    137  *   interrupt context and others.
    138  */
    139 
    140 #include <sys/cdefs.h>
    141 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.92 2021/04/24 23:36:52 thorpej Exp $");
    142 
    143 #ifdef _KERNEL_OPT
    144 #include "audio.h"
    145 #include "midi.h"
    146 #endif
    147 
    148 #if NAUDIO > 0
    149 
    150 #include <sys/types.h>
    151 #include <sys/param.h>
    152 #include <sys/atomic.h>
    153 #include <sys/audioio.h>
    154 #include <sys/conf.h>
    155 #include <sys/cpu.h>
    156 #include <sys/device.h>
    157 #include <sys/fcntl.h>
    158 #include <sys/file.h>
    159 #include <sys/filedesc.h>
    160 #include <sys/intr.h>
    161 #include <sys/ioctl.h>
    162 #include <sys/kauth.h>
    163 #include <sys/kernel.h>
    164 #include <sys/kmem.h>
    165 #include <sys/malloc.h>
    166 #include <sys/mman.h>
    167 #include <sys/module.h>
    168 #include <sys/poll.h>
    169 #include <sys/proc.h>
    170 #include <sys/queue.h>
    171 #include <sys/select.h>
    172 #include <sys/signalvar.h>
    173 #include <sys/stat.h>
    174 #include <sys/sysctl.h>
    175 #include <sys/systm.h>
    176 #include <sys/syslog.h>
    177 #include <sys/vnode.h>
    178 
    179 #include <dev/audio/audio_if.h>
    180 #include <dev/audio/audiovar.h>
    181 #include <dev/audio/audiodef.h>
    182 #include <dev/audio/linear.h>
    183 #include <dev/audio/mulaw.h>
    184 
    185 #include <machine/endian.h>
    186 
    187 #include <uvm/uvm_extern.h>
    188 
    189 #include "ioconf.h"
    190 
    191 /*
    192  * 0: No debug logs
    193  * 1: action changes like open/close/set_format...
    194  * 2: + normal operations like read/write/ioctl...
    195  * 3: + TRACEs except interrupt
    196  * 4: + TRACEs including interrupt
    197  */
    198 //#define AUDIO_DEBUG 1
    199 
    200 #if defined(AUDIO_DEBUG)
    201 
    202 int audiodebug = AUDIO_DEBUG;
    203 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
    204 	const char *, va_list);
    205 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
    206 	__printflike(3, 4);
    207 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
    208 	__printflike(3, 4);
    209 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
    210 	__printflike(3, 4);
    211 
    212 /* XXX sloppy memory logger */
    213 static void audio_mlog_init(void);
    214 static void audio_mlog_free(void);
    215 static void audio_mlog_softintr(void *);
    216 extern void audio_mlog_flush(void);
    217 extern void audio_mlog_printf(const char *, ...);
    218 
    219 static int mlog_refs;		/* reference counter */
    220 static char *mlog_buf[2];	/* double buffer */
    221 static int mlog_buflen;		/* buffer length */
    222 static int mlog_used;		/* used length */
    223 static int mlog_full;		/* number of dropped lines by buffer full */
    224 static int mlog_drop;		/* number of dropped lines by busy */
    225 static volatile uint32_t mlog_inuse;	/* in-use */
    226 static int mlog_wpage;		/* active page */
    227 static void *mlog_sih;		/* softint handle */
    228 
    229 static void
    230 audio_mlog_init(void)
    231 {
    232 	mlog_refs++;
    233 	if (mlog_refs > 1)
    234 		return;
    235 	mlog_buflen = 4096;
    236 	mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
    237 	mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
    238 	mlog_used = 0;
    239 	mlog_full = 0;
    240 	mlog_drop = 0;
    241 	mlog_inuse = 0;
    242 	mlog_wpage = 0;
    243 	mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
    244 	if (mlog_sih == NULL)
    245 		printf("%s: softint_establish failed\n", __func__);
    246 }
    247 
    248 static void
    249 audio_mlog_free(void)
    250 {
    251 	mlog_refs--;
    252 	if (mlog_refs > 0)
    253 		return;
    254 
    255 	audio_mlog_flush();
    256 	if (mlog_sih)
    257 		softint_disestablish(mlog_sih);
    258 	kmem_free(mlog_buf[0], mlog_buflen);
    259 	kmem_free(mlog_buf[1], mlog_buflen);
    260 }
    261 
    262 /*
    263  * Flush memory buffer.
    264  * It must not be called from hardware interrupt context.
    265  */
    266 void
    267 audio_mlog_flush(void)
    268 {
    269 	if (mlog_refs == 0)
    270 		return;
    271 
    272 	/* Nothing to do if already in use ? */
    273 	if (atomic_swap_32(&mlog_inuse, 1) == 1)
    274 		return;
    275 
    276 	int rpage = mlog_wpage;
    277 	mlog_wpage ^= 1;
    278 	mlog_buf[mlog_wpage][0] = '\0';
    279 	mlog_used = 0;
    280 
    281 	atomic_swap_32(&mlog_inuse, 0);
    282 
    283 	if (mlog_buf[rpage][0] != '\0') {
    284 		printf("%s", mlog_buf[rpage]);
    285 		if (mlog_drop > 0)
    286 			printf("mlog_drop %d\n", mlog_drop);
    287 		if (mlog_full > 0)
    288 			printf("mlog_full %d\n", mlog_full);
    289 	}
    290 	mlog_full = 0;
    291 	mlog_drop = 0;
    292 }
    293 
    294 static void
    295 audio_mlog_softintr(void *cookie)
    296 {
    297 	audio_mlog_flush();
    298 }
    299 
    300 void
    301 audio_mlog_printf(const char *fmt, ...)
    302 {
    303 	int len;
    304 	va_list ap;
    305 
    306 	if (atomic_swap_32(&mlog_inuse, 1) == 1) {
    307 		/* already inuse */
    308 		mlog_drop++;
    309 		return;
    310 	}
    311 
    312 	va_start(ap, fmt);
    313 	len = vsnprintf(
    314 	    mlog_buf[mlog_wpage] + mlog_used,
    315 	    mlog_buflen - mlog_used,
    316 	    fmt, ap);
    317 	va_end(ap);
    318 
    319 	mlog_used += len;
    320 	if (mlog_buflen - mlog_used <= 1) {
    321 		mlog_full++;
    322 	}
    323 
    324 	atomic_swap_32(&mlog_inuse, 0);
    325 
    326 	if (mlog_sih)
    327 		softint_schedule(mlog_sih);
    328 }
    329 
    330 /* trace functions */
    331 static void
    332 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
    333 	const char *fmt, va_list ap)
    334 {
    335 	char buf[256];
    336 	int n;
    337 
    338 	n = 0;
    339 	buf[0] = '\0';
    340 	n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
    341 	    funcname, device_unit(sc->sc_dev), header);
    342 	n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
    343 
    344 	if (cpu_intr_p()) {
    345 		audio_mlog_printf("%s\n", buf);
    346 	} else {
    347 		audio_mlog_flush();
    348 		printf("%s\n", buf);
    349 	}
    350 }
    351 
    352 static void
    353 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
    354 {
    355 	va_list ap;
    356 
    357 	va_start(ap, fmt);
    358 	audio_vtrace(sc, funcname, "", fmt, ap);
    359 	va_end(ap);
    360 }
    361 
    362 static void
    363 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
    364 {
    365 	char hdr[16];
    366 	va_list ap;
    367 
    368 	snprintf(hdr, sizeof(hdr), "#%d ", track->id);
    369 	va_start(ap, fmt);
    370 	audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
    371 	va_end(ap);
    372 }
    373 
    374 static void
    375 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
    376 {
    377 	char hdr[32];
    378 	char phdr[16], rhdr[16];
    379 	va_list ap;
    380 
    381 	phdr[0] = '\0';
    382 	rhdr[0] = '\0';
    383 	if (file->ptrack)
    384 		snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
    385 	if (file->rtrack)
    386 		snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
    387 	snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
    388 
    389 	va_start(ap, fmt);
    390 	audio_vtrace(file->sc, funcname, hdr, fmt, ap);
    391 	va_end(ap);
    392 }
    393 
    394 #define DPRINTF(n, fmt...)	do {	\
    395 	if (audiodebug >= (n)) {	\
    396 		audio_mlog_flush();	\
    397 		printf(fmt);		\
    398 	}				\
    399 } while (0)
    400 #define TRACE(n, fmt...)	do { \
    401 	if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
    402 } while (0)
    403 #define TRACET(n, t, fmt...)	do { \
    404 	if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
    405 } while (0)
    406 #define TRACEF(n, f, fmt...)	do { \
    407 	if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
    408 } while (0)
    409 
    410 struct audio_track_debugbuf {
    411 	char usrbuf[32];
    412 	char codec[32];
    413 	char chvol[32];
    414 	char chmix[32];
    415 	char freq[32];
    416 	char outbuf[32];
    417 };
    418 
    419 static void
    420 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
    421 {
    422 
    423 	memset(buf, 0, sizeof(*buf));
    424 
    425 	snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
    426 	    track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
    427 	if (track->freq.filter)
    428 		snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
    429 		    track->freq.srcbuf.head,
    430 		    track->freq.srcbuf.used,
    431 		    track->freq.srcbuf.capacity);
    432 	if (track->chmix.filter)
    433 		snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
    434 		    track->chmix.srcbuf.used);
    435 	if (track->chvol.filter)
    436 		snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
    437 		    track->chvol.srcbuf.used);
    438 	if (track->codec.filter)
    439 		snprintf(buf->codec, sizeof(buf->codec), " e=%d",
    440 		    track->codec.srcbuf.used);
    441 	snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
    442 	    track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
    443 }
    444 #else
    445 #define DPRINTF(n, fmt...)	do { } while (0)
    446 #define TRACE(n, fmt, ...)	do { } while (0)
    447 #define TRACET(n, t, fmt, ...)	do { } while (0)
    448 #define TRACEF(n, f, fmt, ...)	do { } while (0)
    449 #endif
    450 
    451 #define SPECIFIED(x)	((x) != ~0)
    452 #define SPECIFIED_CH(x)	((x) != (u_char)~0)
    453 
    454 /*
    455  * Default hardware blocksize in msec.
    456  *
    457  * We use 10 msec for most modern platforms.  This period is good enough to
    458  * play audio and video synchronizely.
    459  * In contrast, for very old platforms, this is usually too short and too
    460  * severe.  Also such platforms usually can not play video confortably, so
    461  * it's not so important to make the blocksize shorter.  If the platform
    462  * defines its own value as __AUDIO_BLK_MS in its <machine/param.h>, it
    463  * uses this instead.
    464  *
    465  * In either case, you can overwrite AUDIO_BLK_MS by your kernel
    466  * configuration file if you wish.
    467  */
    468 #if !defined(AUDIO_BLK_MS)
    469 # if defined(__AUDIO_BLK_MS)
    470 #  define AUDIO_BLK_MS __AUDIO_BLK_MS
    471 # else
    472 #  define AUDIO_BLK_MS (10)
    473 # endif
    474 #endif
    475 
    476 /* Device timeout in msec */
    477 #define AUDIO_TIMEOUT	(3000)
    478 
    479 /* #define AUDIO_PM_IDLE */
    480 #ifdef AUDIO_PM_IDLE
    481 int audio_idle_timeout = 30;
    482 #endif
    483 
    484 /* Number of elements of async mixer's pid */
    485 #define AM_CAPACITY	(4)
    486 
    487 struct portname {
    488 	const char *name;
    489 	int mask;
    490 };
    491 
    492 static int audiomatch(device_t, cfdata_t, void *);
    493 static void audioattach(device_t, device_t, void *);
    494 static int audiodetach(device_t, int);
    495 static int audioactivate(device_t, enum devact);
    496 static void audiochilddet(device_t, device_t);
    497 static int audiorescan(device_t, const char *, const int *);
    498 
    499 static int audio_modcmd(modcmd_t, void *);
    500 
    501 #ifdef AUDIO_PM_IDLE
    502 static void audio_idle(void *);
    503 static void audio_activity(device_t, devactive_t);
    504 #endif
    505 
    506 static bool audio_suspend(device_t dv, const pmf_qual_t *);
    507 static bool audio_resume(device_t dv, const pmf_qual_t *);
    508 static void audio_volume_down(device_t);
    509 static void audio_volume_up(device_t);
    510 static void audio_volume_toggle(device_t);
    511 
    512 static void audio_mixer_capture(struct audio_softc *);
    513 static void audio_mixer_restore(struct audio_softc *);
    514 
    515 static void audio_softintr_rd(void *);
    516 static void audio_softintr_wr(void *);
    517 
    518 static void audio_printf(struct audio_softc *, const char *, ...)
    519 	__printflike(2, 3);
    520 static int audio_exlock_mutex_enter(struct audio_softc *);
    521 static void audio_exlock_mutex_exit(struct audio_softc *);
    522 static int audio_exlock_enter(struct audio_softc *);
    523 static void audio_exlock_exit(struct audio_softc *);
    524 static void audio_sc_acquire_foropen(struct audio_softc *, struct psref *);
    525 static struct audio_softc *audio_sc_acquire_fromfile(audio_file_t *,
    526 	struct psref *);
    527 static void audio_sc_release(struct audio_softc *, struct psref *);
    528 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
    529 
    530 static int audioclose(struct file *);
    531 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
    532 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
    533 static int audioioctl(struct file *, u_long, void *);
    534 static int audiopoll(struct file *, int);
    535 static int audiokqfilter(struct file *, struct knote *);
    536 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
    537 	struct uvm_object **, int *);
    538 static int audiostat(struct file *, struct stat *);
    539 
    540 static void filt_audiowrite_detach(struct knote *);
    541 static int  filt_audiowrite_event(struct knote *, long);
    542 static void filt_audioread_detach(struct knote *);
    543 static int  filt_audioread_event(struct knote *, long);
    544 
    545 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
    546 	audio_file_t **);
    547 static int audio_close(struct audio_softc *, audio_file_t *);
    548 static int audio_unlink(struct audio_softc *, audio_file_t *);
    549 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
    550 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
    551 static void audio_file_clear(struct audio_softc *, audio_file_t *);
    552 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
    553 	struct lwp *, audio_file_t *);
    554 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
    555 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
    556 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
    557 	struct uvm_object **, int *, audio_file_t *);
    558 
    559 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
    560 
    561 static void audio_pintr(void *);
    562 static void audio_rintr(void *);
    563 
    564 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
    565 
    566 static __inline int audio_track_readablebytes(const audio_track_t *);
    567 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
    568 	const struct audio_info *);
    569 static int audio_track_setinfo_check(audio_track_t *,
    570 	audio_format2_t *, const struct audio_prinfo *);
    571 static void audio_track_setinfo_water(audio_track_t *,
    572 	const struct audio_info *);
    573 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
    574 	struct audio_info *);
    575 static int audio_hw_set_format(struct audio_softc *, int,
    576 	const audio_format2_t *, const audio_format2_t *,
    577 	audio_filter_reg_t *, audio_filter_reg_t *);
    578 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
    579 	audio_file_t *);
    580 static bool audio_can_playback(struct audio_softc *);
    581 static bool audio_can_capture(struct audio_softc *);
    582 static int audio_check_params(audio_format2_t *);
    583 static int audio_mixers_init(struct audio_softc *sc, int,
    584 	const audio_format2_t *, const audio_format2_t *,
    585 	const audio_filter_reg_t *, const audio_filter_reg_t *);
    586 static int audio_select_freq(const struct audio_format *);
    587 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
    588 static int audio_hw_validate_format(struct audio_softc *, int,
    589 	const audio_format2_t *);
    590 static int audio_mixers_set_format(struct audio_softc *,
    591 	const struct audio_info *);
    592 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
    593 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
    594 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
    595 #if defined(AUDIO_DEBUG)
    596 static int audio_sysctl_debug(SYSCTLFN_PROTO);
    597 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
    598 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
    599 #endif
    600 
    601 static void *audio_realloc(void *, size_t);
    602 static int audio_realloc_usrbuf(audio_track_t *, int);
    603 static void audio_free_usrbuf(audio_track_t *);
    604 
    605 static audio_track_t *audio_track_create(struct audio_softc *,
    606 	audio_trackmixer_t *);
    607 static void audio_track_destroy(audio_track_t *);
    608 static audio_filter_t audio_track_get_codec(audio_track_t *,
    609 	const audio_format2_t *, const audio_format2_t *);
    610 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
    611 static void audio_track_play(audio_track_t *);
    612 static int audio_track_drain(struct audio_softc *, audio_track_t *);
    613 static void audio_track_record(audio_track_t *);
    614 static void audio_track_clear(struct audio_softc *, audio_track_t *);
    615 
    616 static int audio_mixer_init(struct audio_softc *, int,
    617 	const audio_format2_t *, const audio_filter_reg_t *);
    618 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
    619 static void audio_pmixer_start(struct audio_softc *, bool);
    620 static void audio_pmixer_process(struct audio_softc *);
    621 static void audio_pmixer_agc(audio_trackmixer_t *, int);
    622 static int  audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
    623 static void audio_pmixer_output(struct audio_softc *);
    624 static int  audio_pmixer_halt(struct audio_softc *);
    625 static void audio_rmixer_start(struct audio_softc *);
    626 static void audio_rmixer_process(struct audio_softc *);
    627 static void audio_rmixer_input(struct audio_softc *);
    628 static int  audio_rmixer_halt(struct audio_softc *);
    629 
    630 static void mixer_init(struct audio_softc *);
    631 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
    632 static int mixer_close(struct audio_softc *, audio_file_t *);
    633 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
    634 static void mixer_async_add(struct audio_softc *, pid_t);
    635 static void mixer_async_remove(struct audio_softc *, pid_t);
    636 static void mixer_signal(struct audio_softc *);
    637 
    638 static int au_portof(struct audio_softc *, char *, int);
    639 
    640 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
    641 	mixer_devinfo_t *, const struct portname *);
    642 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
    643 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
    644 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
    645 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
    646 	u_int *, u_char *);
    647 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
    648 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
    649 static int au_set_monitor_gain(struct audio_softc *, int);
    650 static int au_get_monitor_gain(struct audio_softc *);
    651 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
    652 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
    653 
    654 static __inline struct audio_params
    655 format2_to_params(const audio_format2_t *f2)
    656 {
    657 	audio_params_t p;
    658 
    659 	/* validbits/precision <-> precision/stride */
    660 	p.sample_rate = f2->sample_rate;
    661 	p.channels    = f2->channels;
    662 	p.encoding    = f2->encoding;
    663 	p.validbits   = f2->precision;
    664 	p.precision   = f2->stride;
    665 	return p;
    666 }
    667 
    668 static __inline audio_format2_t
    669 params_to_format2(const struct audio_params *p)
    670 {
    671 	audio_format2_t f2;
    672 
    673 	/* precision/stride <-> validbits/precision */
    674 	f2.sample_rate = p->sample_rate;
    675 	f2.channels    = p->channels;
    676 	f2.encoding    = p->encoding;
    677 	f2.precision   = p->validbits;
    678 	f2.stride      = p->precision;
    679 	return f2;
    680 }
    681 
    682 /* Return true if this track is a playback track. */
    683 static __inline bool
    684 audio_track_is_playback(const audio_track_t *track)
    685 {
    686 
    687 	return ((track->mode & AUMODE_PLAY) != 0);
    688 }
    689 
    690 /* Return true if this track is a recording track. */
    691 static __inline bool
    692 audio_track_is_record(const audio_track_t *track)
    693 {
    694 
    695 	return ((track->mode & AUMODE_RECORD) != 0);
    696 }
    697 
    698 #if 0 /* XXX Not used yet */
    699 /*
    700  * Convert 0..255 volume used in userland to internal presentation 0..256.
    701  */
    702 static __inline u_int
    703 audio_volume_to_inner(u_int v)
    704 {
    705 
    706 	return v < 127 ? v : v + 1;
    707 }
    708 
    709 /*
    710  * Convert 0..256 internal presentation to 0..255 volume used in userland.
    711  */
    712 static __inline u_int
    713 audio_volume_to_outer(u_int v)
    714 {
    715 
    716 	return v < 127 ? v : v - 1;
    717 }
    718 #endif /* 0 */
    719 
    720 static dev_type_open(audioopen);
    721 /* XXXMRG use more dev_type_xxx */
    722 
    723 const struct cdevsw audio_cdevsw = {
    724 	.d_open = audioopen,
    725 	.d_close = noclose,
    726 	.d_read = noread,
    727 	.d_write = nowrite,
    728 	.d_ioctl = noioctl,
    729 	.d_stop = nostop,
    730 	.d_tty = notty,
    731 	.d_poll = nopoll,
    732 	.d_mmap = nommap,
    733 	.d_kqfilter = nokqfilter,
    734 	.d_discard = nodiscard,
    735 	.d_flag = D_OTHER | D_MPSAFE
    736 };
    737 
    738 const struct fileops audio_fileops = {
    739 	.fo_name = "audio",
    740 	.fo_read = audioread,
    741 	.fo_write = audiowrite,
    742 	.fo_ioctl = audioioctl,
    743 	.fo_fcntl = fnullop_fcntl,
    744 	.fo_stat = audiostat,
    745 	.fo_poll = audiopoll,
    746 	.fo_close = audioclose,
    747 	.fo_mmap = audiommap,
    748 	.fo_kqfilter = audiokqfilter,
    749 	.fo_restart = fnullop_restart
    750 };
    751 
    752 /* The default audio mode: 8 kHz mono mu-law */
    753 static const struct audio_params audio_default = {
    754 	.sample_rate = 8000,
    755 	.encoding = AUDIO_ENCODING_ULAW,
    756 	.precision = 8,
    757 	.validbits = 8,
    758 	.channels = 1,
    759 };
    760 
    761 static const char *encoding_names[] = {
    762 	"none",
    763 	AudioEmulaw,
    764 	AudioEalaw,
    765 	"pcm16",
    766 	"pcm8",
    767 	AudioEadpcm,
    768 	AudioEslinear_le,
    769 	AudioEslinear_be,
    770 	AudioEulinear_le,
    771 	AudioEulinear_be,
    772 	AudioEslinear,
    773 	AudioEulinear,
    774 	AudioEmpeg_l1_stream,
    775 	AudioEmpeg_l1_packets,
    776 	AudioEmpeg_l1_system,
    777 	AudioEmpeg_l2_stream,
    778 	AudioEmpeg_l2_packets,
    779 	AudioEmpeg_l2_system,
    780 	AudioEac3,
    781 };
    782 
    783 /*
    784  * Returns encoding name corresponding to AUDIO_ENCODING_*.
    785  * Note that it may return a local buffer because it is mainly for debugging.
    786  */
    787 const char *
    788 audio_encoding_name(int encoding)
    789 {
    790 	static char buf[16];
    791 
    792 	if (0 <= encoding && encoding < __arraycount(encoding_names)) {
    793 		return encoding_names[encoding];
    794 	} else {
    795 		snprintf(buf, sizeof(buf), "enc=%d", encoding);
    796 		return buf;
    797 	}
    798 }
    799 
    800 /*
    801  * Supported encodings used by AUDIO_GETENC.
    802  * index and flags are set by code.
    803  * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
    804  */
    805 static const audio_encoding_t audio_encodings[] = {
    806 	{ 0, AudioEmulaw,	AUDIO_ENCODING_ULAW,		8,  0 },
    807 	{ 0, AudioEalaw,	AUDIO_ENCODING_ALAW,		8,  0 },
    808 	{ 0, AudioEslinear,	AUDIO_ENCODING_SLINEAR,		8,  0 },
    809 	{ 0, AudioEulinear,	AUDIO_ENCODING_ULINEAR,		8,  0 },
    810 	{ 0, AudioEslinear_le,	AUDIO_ENCODING_SLINEAR_LE,	16, 0 },
    811 	{ 0, AudioEulinear_le,	AUDIO_ENCODING_ULINEAR_LE,	16, 0 },
    812 	{ 0, AudioEslinear_be,	AUDIO_ENCODING_SLINEAR_BE,	16, 0 },
    813 	{ 0, AudioEulinear_be,	AUDIO_ENCODING_ULINEAR_BE,	16, 0 },
    814 #if defined(AUDIO_SUPPORT_LINEAR24)
    815 	{ 0, AudioEslinear_le,	AUDIO_ENCODING_SLINEAR_LE,	24, 0 },
    816 	{ 0, AudioEulinear_le,	AUDIO_ENCODING_ULINEAR_LE,	24, 0 },
    817 	{ 0, AudioEslinear_be,	AUDIO_ENCODING_SLINEAR_BE,	24, 0 },
    818 	{ 0, AudioEulinear_be,	AUDIO_ENCODING_ULINEAR_BE,	24, 0 },
    819 #endif
    820 	{ 0, AudioEslinear_le,	AUDIO_ENCODING_SLINEAR_LE,	32, 0 },
    821 	{ 0, AudioEulinear_le,	AUDIO_ENCODING_ULINEAR_LE,	32, 0 },
    822 	{ 0, AudioEslinear_be,	AUDIO_ENCODING_SLINEAR_BE,	32, 0 },
    823 	{ 0, AudioEulinear_be,	AUDIO_ENCODING_ULINEAR_BE,	32, 0 },
    824 };
    825 
    826 static const struct portname itable[] = {
    827 	{ AudioNmicrophone,	AUDIO_MICROPHONE },
    828 	{ AudioNline,		AUDIO_LINE_IN },
    829 	{ AudioNcd,		AUDIO_CD },
    830 	{ 0, 0 }
    831 };
    832 static const struct portname otable[] = {
    833 	{ AudioNspeaker,	AUDIO_SPEAKER },
    834 	{ AudioNheadphone,	AUDIO_HEADPHONE },
    835 	{ AudioNline,		AUDIO_LINE_OUT },
    836 	{ 0, 0 }
    837 };
    838 
    839 static struct psref_class *audio_psref_class __read_mostly;
    840 
    841 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
    842     audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
    843     audiochilddet, DVF_DETACH_SHUTDOWN);
    844 
    845 static int
    846 audiomatch(device_t parent, cfdata_t match, void *aux)
    847 {
    848 	struct audio_attach_args *sa;
    849 
    850 	sa = aux;
    851 	DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
    852 	     __func__, sa->type, sa, sa->hwif);
    853 	return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
    854 }
    855 
    856 static void
    857 audioattach(device_t parent, device_t self, void *aux)
    858 {
    859 	struct audio_softc *sc;
    860 	struct audio_attach_args *sa;
    861 	const struct audio_hw_if *hw_if;
    862 	audio_format2_t phwfmt;
    863 	audio_format2_t rhwfmt;
    864 	audio_filter_reg_t pfil;
    865 	audio_filter_reg_t rfil;
    866 	const struct sysctlnode *node;
    867 	void *hdlp;
    868 	bool has_playback;
    869 	bool has_capture;
    870 	bool has_indep;
    871 	bool has_fulldup;
    872 	int mode;
    873 	int error;
    874 
    875 	sc = device_private(self);
    876 	sc->sc_dev = self;
    877 	sa = (struct audio_attach_args *)aux;
    878 	hw_if = sa->hwif;
    879 	hdlp = sa->hdl;
    880 
    881 	if (hw_if == NULL) {
    882 		panic("audioattach: missing hw_if method");
    883 	}
    884 	if (hw_if->get_locks == NULL || hw_if->get_props == NULL) {
    885 		aprint_error(": missing mandatory method\n");
    886 		return;
    887 	}
    888 
    889 	hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
    890 	sc->sc_props = hw_if->get_props(hdlp);
    891 
    892 	has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
    893 	has_capture  = (sc->sc_props & AUDIO_PROP_CAPTURE);
    894 	has_indep    = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
    895 	has_fulldup  = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
    896 
    897 #ifdef DIAGNOSTIC
    898 	if (hw_if->query_format == NULL ||
    899 	    hw_if->set_format == NULL ||
    900 	    hw_if->getdev == NULL ||
    901 	    hw_if->set_port == NULL ||
    902 	    hw_if->get_port == NULL ||
    903 	    hw_if->query_devinfo == NULL) {
    904 		aprint_error(": missing mandatory method\n");
    905 		return;
    906 	}
    907 	if (has_playback) {
    908 		if ((hw_if->start_output == NULL &&
    909 		     hw_if->trigger_output == NULL) ||
    910 		    hw_if->halt_output == NULL) {
    911 			aprint_error(": missing playback method\n");
    912 		}
    913 	}
    914 	if (has_capture) {
    915 		if ((hw_if->start_input == NULL &&
    916 		     hw_if->trigger_input == NULL) ||
    917 		    hw_if->halt_input == NULL) {
    918 			aprint_error(": missing capture method\n");
    919 		}
    920 	}
    921 #endif
    922 
    923 	sc->hw_if = hw_if;
    924 	sc->hw_hdl = hdlp;
    925 	sc->hw_dev = parent;
    926 
    927 	sc->sc_exlock = 1;
    928 	sc->sc_blk_ms = AUDIO_BLK_MS;
    929 	SLIST_INIT(&sc->sc_files);
    930 	cv_init(&sc->sc_exlockcv, "audiolk");
    931 	sc->sc_am_capacity = 0;
    932 	sc->sc_am_used = 0;
    933 	sc->sc_am = NULL;
    934 
    935 	/* MMAP is now supported by upper layer.  */
    936 	sc->sc_props |= AUDIO_PROP_MMAP;
    937 
    938 	KASSERT(has_playback || has_capture);
    939 	/* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
    940 	if (!has_playback || !has_capture) {
    941 		KASSERT(!has_indep);
    942 		KASSERT(!has_fulldup);
    943 	}
    944 
    945 	mode = 0;
    946 	if (has_playback) {
    947 		aprint_normal(": playback");
    948 		mode |= AUMODE_PLAY;
    949 	}
    950 	if (has_capture) {
    951 		aprint_normal("%c capture", has_playback ? ',' : ':');
    952 		mode |= AUMODE_RECORD;
    953 	}
    954 	if (has_playback && has_capture) {
    955 		if (has_fulldup)
    956 			aprint_normal(", full duplex");
    957 		else
    958 			aprint_normal(", half duplex");
    959 
    960 		if (has_indep)
    961 			aprint_normal(", independent");
    962 	}
    963 
    964 	aprint_naive("\n");
    965 	aprint_normal("\n");
    966 
    967 	/* probe hw params */
    968 	memset(&phwfmt, 0, sizeof(phwfmt));
    969 	memset(&rhwfmt, 0, sizeof(rhwfmt));
    970 	memset(&pfil, 0, sizeof(pfil));
    971 	memset(&rfil, 0, sizeof(rfil));
    972 	if (has_indep) {
    973 		int perror, rerror;
    974 
    975 		/* On independent devices, probe separately. */
    976 		perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
    977 		rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
    978 		if (perror && rerror) {
    979 			aprint_error_dev(self,
    980 			    "audio_hw_probe failed: perror=%d, rerror=%d\n",
    981 			    perror, rerror);
    982 			goto bad;
    983 		}
    984 		if (perror) {
    985 			mode &= ~AUMODE_PLAY;
    986 			aprint_error_dev(self, "audio_hw_probe failed: "
    987 			    "errno=%d, playback disabled\n", perror);
    988 		}
    989 		if (rerror) {
    990 			mode &= ~AUMODE_RECORD;
    991 			aprint_error_dev(self, "audio_hw_probe failed: "
    992 			    "errno=%d, capture disabled\n", rerror);
    993 		}
    994 	} else {
    995 		/*
    996 		 * On non independent devices or uni-directional devices,
    997 		 * probe once (simultaneously).
    998 		 */
    999 		audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
   1000 		error = audio_hw_probe(sc, fmt, mode);
   1001 		if (error) {
   1002 			aprint_error_dev(self,
   1003 			    "audio_hw_probe failed: errno=%d\n", error);
   1004 			goto bad;
   1005 		}
   1006 		if (has_playback && has_capture)
   1007 			rhwfmt = phwfmt;
   1008 	}
   1009 
   1010 	/* Init hardware. */
   1011 	/* hw_probe() also validates [pr]hwfmt.  */
   1012 	error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   1013 	if (error) {
   1014 		aprint_error_dev(self,
   1015 		    "audio_hw_set_format failed: errno=%d\n", error);
   1016 		goto bad;
   1017 	}
   1018 
   1019 	/*
   1020 	 * Init track mixers.  If at least one direction is available on
   1021 	 * attach time, we assume a success.
   1022 	 */
   1023 	error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   1024 	if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
   1025 		aprint_error_dev(self,
   1026 		    "audio_mixers_init failed: errno=%d\n", error);
   1027 		goto bad;
   1028 	}
   1029 
   1030 	sc->sc_psz = pserialize_create();
   1031 	psref_target_init(&sc->sc_psref, audio_psref_class);
   1032 
   1033 	selinit(&sc->sc_wsel);
   1034 	selinit(&sc->sc_rsel);
   1035 
   1036 	/* Initial parameter of /dev/sound */
   1037 	sc->sc_sound_pparams = params_to_format2(&audio_default);
   1038 	sc->sc_sound_rparams = params_to_format2(&audio_default);
   1039 	sc->sc_sound_ppause = false;
   1040 	sc->sc_sound_rpause = false;
   1041 
   1042 	/* XXX TODO: consider about sc_ai */
   1043 
   1044 	mixer_init(sc);
   1045 	TRACE(2, "inputs ports=0x%x, input master=%d, "
   1046 	    "output ports=0x%x, output master=%d",
   1047 	    sc->sc_inports.allports, sc->sc_inports.master,
   1048 	    sc->sc_outports.allports, sc->sc_outports.master);
   1049 
   1050 	sysctl_createv(&sc->sc_log, 0, NULL, &node,
   1051 	    0,
   1052 	    CTLTYPE_NODE, device_xname(sc->sc_dev),
   1053 	    SYSCTL_DESCR("audio test"),
   1054 	    NULL, 0,
   1055 	    NULL, 0,
   1056 	    CTL_HW,
   1057 	    CTL_CREATE, CTL_EOL);
   1058 
   1059 	if (node != NULL) {
   1060 		sysctl_createv(&sc->sc_log, 0, NULL, NULL,
   1061 		    CTLFLAG_READWRITE,
   1062 		    CTLTYPE_INT, "blk_ms",
   1063 		    SYSCTL_DESCR("blocksize in msec"),
   1064 		    audio_sysctl_blk_ms, 0, (void *)sc, 0,
   1065 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
   1066 
   1067 		sysctl_createv(&sc->sc_log, 0, NULL, NULL,
   1068 		    CTLFLAG_READWRITE,
   1069 		    CTLTYPE_BOOL, "multiuser",
   1070 		    SYSCTL_DESCR("allow multiple user access"),
   1071 		    audio_sysctl_multiuser, 0, (void *)sc, 0,
   1072 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
   1073 
   1074 #if defined(AUDIO_DEBUG)
   1075 		sysctl_createv(&sc->sc_log, 0, NULL, NULL,
   1076 		    CTLFLAG_READWRITE,
   1077 		    CTLTYPE_INT, "debug",
   1078 		    SYSCTL_DESCR("debug level (0..4)"),
   1079 		    audio_sysctl_debug, 0, (void *)sc, 0,
   1080 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
   1081 #endif
   1082 	}
   1083 
   1084 #ifdef AUDIO_PM_IDLE
   1085 	callout_init(&sc->sc_idle_counter, 0);
   1086 	callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
   1087 #endif
   1088 
   1089 	if (!pmf_device_register(self, audio_suspend, audio_resume))
   1090 		aprint_error_dev(self, "couldn't establish power handler\n");
   1091 #ifdef AUDIO_PM_IDLE
   1092 	if (!device_active_register(self, audio_activity))
   1093 		aprint_error_dev(self, "couldn't register activity handler\n");
   1094 #endif
   1095 
   1096 	if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
   1097 	    audio_volume_down, true))
   1098 		aprint_error_dev(self, "couldn't add volume down handler\n");
   1099 	if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
   1100 	    audio_volume_up, true))
   1101 		aprint_error_dev(self, "couldn't add volume up handler\n");
   1102 	if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
   1103 	    audio_volume_toggle, true))
   1104 		aprint_error_dev(self, "couldn't add volume toggle handler\n");
   1105 
   1106 #ifdef AUDIO_PM_IDLE
   1107 	callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
   1108 #endif
   1109 
   1110 #if defined(AUDIO_DEBUG)
   1111 	audio_mlog_init();
   1112 #endif
   1113 
   1114 	audiorescan(self, NULL, NULL);
   1115 	sc->sc_exlock = 0;
   1116 	return;
   1117 
   1118 bad:
   1119 	/* Clearing hw_if means that device is attached but disabled. */
   1120 	sc->hw_if = NULL;
   1121 	sc->sc_exlock = 0;
   1122 	aprint_error_dev(sc->sc_dev, "disabled\n");
   1123 	return;
   1124 }
   1125 
   1126 /*
   1127  * Initialize hardware mixer.
   1128  * This function is called from audioattach().
   1129  */
   1130 static void
   1131 mixer_init(struct audio_softc *sc)
   1132 {
   1133 	mixer_devinfo_t mi;
   1134 	int iclass, mclass, oclass, rclass;
   1135 	int record_master_found, record_source_found;
   1136 
   1137 	iclass = mclass = oclass = rclass = -1;
   1138 	sc->sc_inports.index = -1;
   1139 	sc->sc_inports.master = -1;
   1140 	sc->sc_inports.nports = 0;
   1141 	sc->sc_inports.isenum = false;
   1142 	sc->sc_inports.allports = 0;
   1143 	sc->sc_inports.isdual = false;
   1144 	sc->sc_inports.mixerout = -1;
   1145 	sc->sc_inports.cur_port = -1;
   1146 	sc->sc_outports.index = -1;
   1147 	sc->sc_outports.master = -1;
   1148 	sc->sc_outports.nports = 0;
   1149 	sc->sc_outports.isenum = false;
   1150 	sc->sc_outports.allports = 0;
   1151 	sc->sc_outports.isdual = false;
   1152 	sc->sc_outports.mixerout = -1;
   1153 	sc->sc_outports.cur_port = -1;
   1154 	sc->sc_monitor_port = -1;
   1155 	/*
   1156 	 * Read through the underlying driver's list, picking out the class
   1157 	 * names from the mixer descriptions. We'll need them to decode the
   1158 	 * mixer descriptions on the next pass through the loop.
   1159 	 */
   1160 	mutex_enter(sc->sc_lock);
   1161 	for(mi.index = 0; ; mi.index++) {
   1162 		if (audio_query_devinfo(sc, &mi) != 0)
   1163 			break;
   1164 		 /*
   1165 		  * The type of AUDIO_MIXER_CLASS merely introduces a class.
   1166 		  * All the other types describe an actual mixer.
   1167 		  */
   1168 		if (mi.type == AUDIO_MIXER_CLASS) {
   1169 			if (strcmp(mi.label.name, AudioCinputs) == 0)
   1170 				iclass = mi.mixer_class;
   1171 			if (strcmp(mi.label.name, AudioCmonitor) == 0)
   1172 				mclass = mi.mixer_class;
   1173 			if (strcmp(mi.label.name, AudioCoutputs) == 0)
   1174 				oclass = mi.mixer_class;
   1175 			if (strcmp(mi.label.name, AudioCrecord) == 0)
   1176 				rclass = mi.mixer_class;
   1177 		}
   1178 	}
   1179 	mutex_exit(sc->sc_lock);
   1180 
   1181 	/* Allocate save area.  Ensure non-zero allocation. */
   1182 	sc->sc_nmixer_states = mi.index;
   1183 	sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
   1184 	    (sc->sc_nmixer_states + 1), KM_SLEEP);
   1185 
   1186 	/*
   1187 	 * This is where we assign each control in the "audio" model, to the
   1188 	 * underlying "mixer" control.  We walk through the whole list once,
   1189 	 * assigning likely candidates as we come across them.
   1190 	 */
   1191 	record_master_found = 0;
   1192 	record_source_found = 0;
   1193 	mutex_enter(sc->sc_lock);
   1194 	for(mi.index = 0; ; mi.index++) {
   1195 		if (audio_query_devinfo(sc, &mi) != 0)
   1196 			break;
   1197 		KASSERT(mi.index < sc->sc_nmixer_states);
   1198 		if (mi.type == AUDIO_MIXER_CLASS)
   1199 			continue;
   1200 		if (mi.mixer_class == iclass) {
   1201 			/*
   1202 			 * AudioCinputs is only a fallback, when we don't
   1203 			 * find what we're looking for in AudioCrecord, so
   1204 			 * check the flags before accepting one of these.
   1205 			 */
   1206 			if (strcmp(mi.label.name, AudioNmaster) == 0
   1207 			    && record_master_found == 0)
   1208 				sc->sc_inports.master = mi.index;
   1209 			if (strcmp(mi.label.name, AudioNsource) == 0
   1210 			    && record_source_found == 0) {
   1211 				if (mi.type == AUDIO_MIXER_ENUM) {
   1212 				    int i;
   1213 				    for(i = 0; i < mi.un.e.num_mem; i++)
   1214 					if (strcmp(mi.un.e.member[i].label.name,
   1215 						    AudioNmixerout) == 0)
   1216 						sc->sc_inports.mixerout =
   1217 						    mi.un.e.member[i].ord;
   1218 				}
   1219 				au_setup_ports(sc, &sc->sc_inports, &mi,
   1220 				    itable);
   1221 			}
   1222 			if (strcmp(mi.label.name, AudioNdac) == 0 &&
   1223 			    sc->sc_outports.master == -1)
   1224 				sc->sc_outports.master = mi.index;
   1225 		} else if (mi.mixer_class == mclass) {
   1226 			if (strcmp(mi.label.name, AudioNmonitor) == 0)
   1227 				sc->sc_monitor_port = mi.index;
   1228 		} else if (mi.mixer_class == oclass) {
   1229 			if (strcmp(mi.label.name, AudioNmaster) == 0)
   1230 				sc->sc_outports.master = mi.index;
   1231 			if (strcmp(mi.label.name, AudioNselect) == 0)
   1232 				au_setup_ports(sc, &sc->sc_outports, &mi,
   1233 				    otable);
   1234 		} else if (mi.mixer_class == rclass) {
   1235 			/*
   1236 			 * These are the preferred mixers for the audio record
   1237 			 * controls, so set the flags here, but don't check.
   1238 			 */
   1239 			if (strcmp(mi.label.name, AudioNmaster) == 0) {
   1240 				sc->sc_inports.master = mi.index;
   1241 				record_master_found = 1;
   1242 			}
   1243 #if 1	/* Deprecated. Use AudioNmaster. */
   1244 			if (strcmp(mi.label.name, AudioNrecord) == 0) {
   1245 				sc->sc_inports.master = mi.index;
   1246 				record_master_found = 1;
   1247 			}
   1248 			if (strcmp(mi.label.name, AudioNvolume) == 0) {
   1249 				sc->sc_inports.master = mi.index;
   1250 				record_master_found = 1;
   1251 			}
   1252 #endif
   1253 			if (strcmp(mi.label.name, AudioNsource) == 0) {
   1254 				if (mi.type == AUDIO_MIXER_ENUM) {
   1255 				    int i;
   1256 				    for(i = 0; i < mi.un.e.num_mem; i++)
   1257 					if (strcmp(mi.un.e.member[i].label.name,
   1258 						    AudioNmixerout) == 0)
   1259 						sc->sc_inports.mixerout =
   1260 						    mi.un.e.member[i].ord;
   1261 				}
   1262 				au_setup_ports(sc, &sc->sc_inports, &mi,
   1263 				    itable);
   1264 				record_source_found = 1;
   1265 			}
   1266 		}
   1267 	}
   1268 	mutex_exit(sc->sc_lock);
   1269 }
   1270 
   1271 static int
   1272 audioactivate(device_t self, enum devact act)
   1273 {
   1274 	struct audio_softc *sc = device_private(self);
   1275 
   1276 	switch (act) {
   1277 	case DVACT_DEACTIVATE:
   1278 		mutex_enter(sc->sc_lock);
   1279 		sc->sc_dying = true;
   1280 		cv_broadcast(&sc->sc_exlockcv);
   1281 		mutex_exit(sc->sc_lock);
   1282 		return 0;
   1283 	default:
   1284 		return EOPNOTSUPP;
   1285 	}
   1286 }
   1287 
   1288 static int
   1289 audiodetach(device_t self, int flags)
   1290 {
   1291 	struct audio_softc *sc;
   1292 	struct audio_file *file;
   1293 	int error;
   1294 
   1295 	sc = device_private(self);
   1296 	TRACE(2, "flags=%d", flags);
   1297 
   1298 	/* device is not initialized */
   1299 	if (sc->hw_if == NULL)
   1300 		return 0;
   1301 
   1302 	/* Start draining existing accessors of the device. */
   1303 	error = config_detach_children(self, flags);
   1304 	if (error)
   1305 		return error;
   1306 
   1307 	/*
   1308 	 * This waits currently running sysctls to finish if exists.
   1309 	 * After this, no more new sysctls will come.
   1310 	 */
   1311 	sysctl_teardown(&sc->sc_log);
   1312 
   1313 	mutex_enter(sc->sc_lock);
   1314 	sc->sc_dying = true;
   1315 	cv_broadcast(&sc->sc_exlockcv);
   1316 	if (sc->sc_pmixer)
   1317 		cv_broadcast(&sc->sc_pmixer->outcv);
   1318 	if (sc->sc_rmixer)
   1319 		cv_broadcast(&sc->sc_rmixer->outcv);
   1320 
   1321 	/* Prevent new users */
   1322 	SLIST_FOREACH(file, &sc->sc_files, entry) {
   1323 		atomic_store_relaxed(&file->dying, true);
   1324 	}
   1325 
   1326 	/*
   1327 	 * Wait for existing users to drain.
   1328 	 * - pserialize_perform waits for all pserialize_read sections on
   1329 	 *   all CPUs; after this, no more new psref_acquire can happen.
   1330 	 * - psref_target_destroy waits for all extant acquired psrefs to
   1331 	 *   be psref_released.
   1332 	 */
   1333 	pserialize_perform(sc->sc_psz);
   1334 	mutex_exit(sc->sc_lock);
   1335 	psref_target_destroy(&sc->sc_psref, audio_psref_class);
   1336 
   1337 	/*
   1338 	 * We are now guaranteed that there are no calls to audio fileops
   1339 	 * that hold sc, and any new calls with files that were for sc will
   1340 	 * fail.  Thus, we now have exclusive access to the softc.
   1341 	 */
   1342 	sc->sc_exlock = 1;
   1343 
   1344 	/*
   1345 	 * Clean up all open instances.
   1346 	 * Here, we no longer need any locks to traverse sc_files.
   1347 	 */
   1348 	while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
   1349 		audio_unlink(sc, file);
   1350 	}
   1351 
   1352 	pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
   1353 	    audio_volume_down, true);
   1354 	pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
   1355 	    audio_volume_up, true);
   1356 	pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
   1357 	    audio_volume_toggle, true);
   1358 
   1359 #ifdef AUDIO_PM_IDLE
   1360 	callout_halt(&sc->sc_idle_counter, sc->sc_lock);
   1361 
   1362 	device_active_deregister(self, audio_activity);
   1363 #endif
   1364 
   1365 	pmf_device_deregister(self);
   1366 
   1367 	/* Free resources */
   1368 	if (sc->sc_pmixer) {
   1369 		audio_mixer_destroy(sc, sc->sc_pmixer);
   1370 		kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
   1371 	}
   1372 	if (sc->sc_rmixer) {
   1373 		audio_mixer_destroy(sc, sc->sc_rmixer);
   1374 		kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
   1375 	}
   1376 	if (sc->sc_am)
   1377 		kern_free(sc->sc_am);
   1378 
   1379 	seldestroy(&sc->sc_wsel);
   1380 	seldestroy(&sc->sc_rsel);
   1381 
   1382 #ifdef AUDIO_PM_IDLE
   1383 	callout_destroy(&sc->sc_idle_counter);
   1384 #endif
   1385 
   1386 	cv_destroy(&sc->sc_exlockcv);
   1387 
   1388 #if defined(AUDIO_DEBUG)
   1389 	audio_mlog_free();
   1390 #endif
   1391 
   1392 	return 0;
   1393 }
   1394 
   1395 static void
   1396 audiochilddet(device_t self, device_t child)
   1397 {
   1398 
   1399 	/* we hold no child references, so do nothing */
   1400 }
   1401 
   1402 static int
   1403 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
   1404 {
   1405 
   1406 	if (config_probe(parent, cf, aux))
   1407 		config_attach(parent, cf, aux, NULL,
   1408 		    CFARG_EOL);
   1409 
   1410 	return 0;
   1411 }
   1412 
   1413 static int
   1414 audiorescan(device_t self, const char *ifattr, const int *locators)
   1415 {
   1416 	struct audio_softc *sc = device_private(self);
   1417 
   1418 	config_search(sc->sc_dev, NULL,
   1419 	    CFARG_SEARCH, audiosearch,
   1420 	    CFARG_EOL);
   1421 
   1422 	return 0;
   1423 }
   1424 
   1425 /*
   1426  * Called from hardware driver.  This is where the MI audio driver gets
   1427  * probed/attached to the hardware driver.
   1428  */
   1429 device_t
   1430 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
   1431 {
   1432 	struct audio_attach_args arg;
   1433 
   1434 #ifdef DIAGNOSTIC
   1435 	if (ahwp == NULL) {
   1436 		aprint_error("audio_attach_mi: NULL\n");
   1437 		return 0;
   1438 	}
   1439 #endif
   1440 	arg.type = AUDIODEV_TYPE_AUDIO;
   1441 	arg.hwif = ahwp;
   1442 	arg.hdl = hdlp;
   1443 	return config_found(dev, &arg, audioprint, CFARG_EOL);
   1444 }
   1445 
   1446 /*
   1447  * audio_printf() outputs fmt... with the audio device name and MD device
   1448  * name prefixed.  If the message is considered to be related to the MD
   1449  * driver, use this one instead of device_printf().
   1450  */
   1451 static void
   1452 audio_printf(struct audio_softc *sc, const char *fmt, ...)
   1453 {
   1454 	va_list ap;
   1455 
   1456 	printf("%s(%s): ", device_xname(sc->sc_dev), device_xname(sc->hw_dev));
   1457 	va_start(ap, fmt);
   1458 	vprintf(fmt, ap);
   1459 	va_end(ap);
   1460 }
   1461 
   1462 /*
   1463  * Enter critical section and also keep sc_lock.
   1464  * If successful, returns 0 with sc_lock held.  Otherwise returns errno.
   1465  * Must be called without sc_lock held.
   1466  */
   1467 static int
   1468 audio_exlock_mutex_enter(struct audio_softc *sc)
   1469 {
   1470 	int error;
   1471 
   1472 	mutex_enter(sc->sc_lock);
   1473 	if (sc->sc_dying) {
   1474 		mutex_exit(sc->sc_lock);
   1475 		return EIO;
   1476 	}
   1477 
   1478 	while (__predict_false(sc->sc_exlock != 0)) {
   1479 		error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
   1480 		if (sc->sc_dying)
   1481 			error = EIO;
   1482 		if (error) {
   1483 			mutex_exit(sc->sc_lock);
   1484 			return error;
   1485 		}
   1486 	}
   1487 
   1488 	/* Acquire */
   1489 	sc->sc_exlock = 1;
   1490 	return 0;
   1491 }
   1492 
   1493 /*
   1494  * Exit critical section and exit sc_lock.
   1495  * Must be called with sc_lock held.
   1496  */
   1497 static void
   1498 audio_exlock_mutex_exit(struct audio_softc *sc)
   1499 {
   1500 
   1501 	KASSERT(mutex_owned(sc->sc_lock));
   1502 
   1503 	sc->sc_exlock = 0;
   1504 	cv_broadcast(&sc->sc_exlockcv);
   1505 	mutex_exit(sc->sc_lock);
   1506 }
   1507 
   1508 /*
   1509  * Enter critical section.
   1510  * If successful, it returns 0.  Otherwise returns errno.
   1511  * Must be called without sc_lock held.
   1512  * This function returns without sc_lock held.
   1513  */
   1514 static int
   1515 audio_exlock_enter(struct audio_softc *sc)
   1516 {
   1517 	int error;
   1518 
   1519 	error = audio_exlock_mutex_enter(sc);
   1520 	if (error)
   1521 		return error;
   1522 	mutex_exit(sc->sc_lock);
   1523 	return 0;
   1524 }
   1525 
   1526 /*
   1527  * Exit critical section.
   1528  * Must be called without sc_lock held.
   1529  */
   1530 static void
   1531 audio_exlock_exit(struct audio_softc *sc)
   1532 {
   1533 
   1534 	mutex_enter(sc->sc_lock);
   1535 	audio_exlock_mutex_exit(sc);
   1536 }
   1537 
   1538 /*
   1539  * Increment reference counter for this sc.
   1540  * This is intended to be used for open.
   1541  */
   1542 void
   1543 audio_sc_acquire_foropen(struct audio_softc *sc, struct psref *refp)
   1544 {
   1545 	int s;
   1546 
   1547 	/* Block audiodetach while we acquire a reference */
   1548 	s = pserialize_read_enter();
   1549 
   1550 	/*
   1551 	 * We don't examine sc_dying here.  However, all open methods
   1552 	 * call audio_exlock_enter() right after this, so we can examine
   1553 	 * sc_dying in it.
   1554 	 */
   1555 
   1556 	/* Acquire a reference */
   1557 	psref_acquire(refp, &sc->sc_psref, audio_psref_class);
   1558 
   1559 	/* Now sc won't go away until we drop the reference count */
   1560 	pserialize_read_exit(s);
   1561 }
   1562 
   1563 /*
   1564  * Get sc from file, and increment reference counter for this sc.
   1565  * This is intended to be used for methods other than open.
   1566  * If successful, returns sc.  Otherwise returns NULL.
   1567  */
   1568 struct audio_softc *
   1569 audio_sc_acquire_fromfile(audio_file_t *file, struct psref *refp)
   1570 {
   1571 	int s;
   1572 	bool dying;
   1573 
   1574 	/* Block audiodetach while we acquire a reference */
   1575 	s = pserialize_read_enter();
   1576 
   1577 	/* If close or audiodetach already ran, tough -- no more audio */
   1578 	dying = atomic_load_relaxed(&file->dying);
   1579 	if (dying) {
   1580 		pserialize_read_exit(s);
   1581 		return NULL;
   1582 	}
   1583 
   1584 	/* Acquire a reference */
   1585 	psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
   1586 
   1587 	/* Now sc won't go away until we drop the reference count */
   1588 	pserialize_read_exit(s);
   1589 
   1590 	return file->sc;
   1591 }
   1592 
   1593 /*
   1594  * Decrement reference counter for this sc.
   1595  */
   1596 void
   1597 audio_sc_release(struct audio_softc *sc, struct psref *refp)
   1598 {
   1599 
   1600 	psref_release(refp, &sc->sc_psref, audio_psref_class);
   1601 }
   1602 
   1603 /*
   1604  * Wait for I/O to complete, releasing sc_lock.
   1605  * Must be called with sc_lock held.
   1606  */
   1607 static int
   1608 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
   1609 {
   1610 	int error;
   1611 
   1612 	KASSERT(track);
   1613 	KASSERT(mutex_owned(sc->sc_lock));
   1614 
   1615 	/* Wait for pending I/O to complete. */
   1616 	error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
   1617 	    mstohz(AUDIO_TIMEOUT));
   1618 	if (sc->sc_suspending) {
   1619 		/* If it's about to suspend, ignore timeout error. */
   1620 		if (error == EWOULDBLOCK) {
   1621 			TRACET(2, track, "timeout (suspending)");
   1622 			return 0;
   1623 		}
   1624 	}
   1625 	if (sc->sc_dying) {
   1626 		error = EIO;
   1627 	}
   1628 	if (error) {
   1629 		TRACET(2, track, "cv_timedwait_sig failed %d", error);
   1630 		if (error == EWOULDBLOCK)
   1631 			audio_printf(sc, "device timeout\n");
   1632 	} else {
   1633 		TRACET(3, track, "wakeup");
   1634 	}
   1635 	return error;
   1636 }
   1637 
   1638 /*
   1639  * Try to acquire track lock.
   1640  * It doesn't block if the track lock is already aquired.
   1641  * Returns true if the track lock was acquired, or false if the track
   1642  * lock was already acquired.
   1643  */
   1644 static __inline bool
   1645 audio_track_lock_tryenter(audio_track_t *track)
   1646 {
   1647 	return (atomic_cas_uint(&track->lock, 0, 1) == 0);
   1648 }
   1649 
   1650 /*
   1651  * Acquire track lock.
   1652  */
   1653 static __inline void
   1654 audio_track_lock_enter(audio_track_t *track)
   1655 {
   1656 	/* Don't sleep here. */
   1657 	while (audio_track_lock_tryenter(track) == false)
   1658 		;
   1659 }
   1660 
   1661 /*
   1662  * Release track lock.
   1663  */
   1664 static __inline void
   1665 audio_track_lock_exit(audio_track_t *track)
   1666 {
   1667 	atomic_swap_uint(&track->lock, 0);
   1668 }
   1669 
   1670 
   1671 static int
   1672 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
   1673 {
   1674 	struct audio_softc *sc;
   1675 	struct psref sc_ref;
   1676 	int bound;
   1677 	int error;
   1678 
   1679 	/* Find the device */
   1680 	sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
   1681 	if (sc == NULL || sc->hw_if == NULL)
   1682 		return ENXIO;
   1683 
   1684 	bound = curlwp_bind();
   1685 	audio_sc_acquire_foropen(sc, &sc_ref);
   1686 
   1687 	error = audio_exlock_enter(sc);
   1688 	if (error)
   1689 		goto done;
   1690 
   1691 	device_active(sc->sc_dev, DVA_SYSTEM);
   1692 	switch (AUDIODEV(dev)) {
   1693 	case SOUND_DEVICE:
   1694 	case AUDIO_DEVICE:
   1695 		error = audio_open(dev, sc, flags, ifmt, l, NULL);
   1696 		break;
   1697 	case AUDIOCTL_DEVICE:
   1698 		error = audioctl_open(dev, sc, flags, ifmt, l);
   1699 		break;
   1700 	case MIXER_DEVICE:
   1701 		error = mixer_open(dev, sc, flags, ifmt, l);
   1702 		break;
   1703 	default:
   1704 		error = ENXIO;
   1705 		break;
   1706 	}
   1707 	audio_exlock_exit(sc);
   1708 
   1709 done:
   1710 	audio_sc_release(sc, &sc_ref);
   1711 	curlwp_bindx(bound);
   1712 	return error;
   1713 }
   1714 
   1715 static int
   1716 audioclose(struct file *fp)
   1717 {
   1718 	struct audio_softc *sc;
   1719 	struct psref sc_ref;
   1720 	audio_file_t *file;
   1721 	int bound;
   1722 	int error;
   1723 	dev_t dev;
   1724 
   1725 	KASSERT(fp->f_audioctx);
   1726 	file = fp->f_audioctx;
   1727 	dev = file->dev;
   1728 	error = 0;
   1729 
   1730 	/*
   1731 	 * audioclose() must
   1732 	 * - unplug track from the trackmixer (and unplug anything from softc),
   1733 	 *   if sc exists.
   1734 	 * - free all memory objects, regardless of sc.
   1735 	 */
   1736 
   1737 	bound = curlwp_bind();
   1738 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
   1739 	if (sc) {
   1740 		switch (AUDIODEV(dev)) {
   1741 		case SOUND_DEVICE:
   1742 		case AUDIO_DEVICE:
   1743 			error = audio_close(sc, file);
   1744 			break;
   1745 		case AUDIOCTL_DEVICE:
   1746 			error = 0;
   1747 			break;
   1748 		case MIXER_DEVICE:
   1749 			error = mixer_close(sc, file);
   1750 			break;
   1751 		default:
   1752 			error = ENXIO;
   1753 			break;
   1754 		}
   1755 
   1756 		audio_sc_release(sc, &sc_ref);
   1757 	}
   1758 	curlwp_bindx(bound);
   1759 
   1760 	/* Free memory objects anyway */
   1761 	TRACEF(2, file, "free memory");
   1762 	if (file->ptrack)
   1763 		audio_track_destroy(file->ptrack);
   1764 	if (file->rtrack)
   1765 		audio_track_destroy(file->rtrack);
   1766 	kmem_free(file, sizeof(*file));
   1767 	fp->f_audioctx = NULL;
   1768 
   1769 	return error;
   1770 }
   1771 
   1772 static int
   1773 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
   1774 	int ioflag)
   1775 {
   1776 	struct audio_softc *sc;
   1777 	struct psref sc_ref;
   1778 	audio_file_t *file;
   1779 	int bound;
   1780 	int error;
   1781 	dev_t dev;
   1782 
   1783 	KASSERT(fp->f_audioctx);
   1784 	file = fp->f_audioctx;
   1785 	dev = file->dev;
   1786 
   1787 	bound = curlwp_bind();
   1788 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
   1789 	if (sc == NULL) {
   1790 		error = EIO;
   1791 		goto done;
   1792 	}
   1793 
   1794 	if (fp->f_flag & O_NONBLOCK)
   1795 		ioflag |= IO_NDELAY;
   1796 
   1797 	switch (AUDIODEV(dev)) {
   1798 	case SOUND_DEVICE:
   1799 	case AUDIO_DEVICE:
   1800 		error = audio_read(sc, uio, ioflag, file);
   1801 		break;
   1802 	case AUDIOCTL_DEVICE:
   1803 	case MIXER_DEVICE:
   1804 		error = ENODEV;
   1805 		break;
   1806 	default:
   1807 		error = ENXIO;
   1808 		break;
   1809 	}
   1810 
   1811 	audio_sc_release(sc, &sc_ref);
   1812 done:
   1813 	curlwp_bindx(bound);
   1814 	return error;
   1815 }
   1816 
   1817 static int
   1818 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
   1819 	int ioflag)
   1820 {
   1821 	struct audio_softc *sc;
   1822 	struct psref sc_ref;
   1823 	audio_file_t *file;
   1824 	int bound;
   1825 	int error;
   1826 	dev_t dev;
   1827 
   1828 	KASSERT(fp->f_audioctx);
   1829 	file = fp->f_audioctx;
   1830 	dev = file->dev;
   1831 
   1832 	bound = curlwp_bind();
   1833 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
   1834 	if (sc == NULL) {
   1835 		error = EIO;
   1836 		goto done;
   1837 	}
   1838 
   1839 	if (fp->f_flag & O_NONBLOCK)
   1840 		ioflag |= IO_NDELAY;
   1841 
   1842 	switch (AUDIODEV(dev)) {
   1843 	case SOUND_DEVICE:
   1844 	case AUDIO_DEVICE:
   1845 		error = audio_write(sc, uio, ioflag, file);
   1846 		break;
   1847 	case AUDIOCTL_DEVICE:
   1848 	case MIXER_DEVICE:
   1849 		error = ENODEV;
   1850 		break;
   1851 	default:
   1852 		error = ENXIO;
   1853 		break;
   1854 	}
   1855 
   1856 	audio_sc_release(sc, &sc_ref);
   1857 done:
   1858 	curlwp_bindx(bound);
   1859 	return error;
   1860 }
   1861 
   1862 static int
   1863 audioioctl(struct file *fp, u_long cmd, void *addr)
   1864 {
   1865 	struct audio_softc *sc;
   1866 	struct psref sc_ref;
   1867 	audio_file_t *file;
   1868 	struct lwp *l = curlwp;
   1869 	int bound;
   1870 	int error;
   1871 	dev_t dev;
   1872 
   1873 	KASSERT(fp->f_audioctx);
   1874 	file = fp->f_audioctx;
   1875 	dev = file->dev;
   1876 
   1877 	bound = curlwp_bind();
   1878 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
   1879 	if (sc == NULL) {
   1880 		error = EIO;
   1881 		goto done;
   1882 	}
   1883 
   1884 	switch (AUDIODEV(dev)) {
   1885 	case SOUND_DEVICE:
   1886 	case AUDIO_DEVICE:
   1887 	case AUDIOCTL_DEVICE:
   1888 		mutex_enter(sc->sc_lock);
   1889 		device_active(sc->sc_dev, DVA_SYSTEM);
   1890 		mutex_exit(sc->sc_lock);
   1891 		if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
   1892 			error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
   1893 		else
   1894 			error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
   1895 			    file);
   1896 		break;
   1897 	case MIXER_DEVICE:
   1898 		error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
   1899 		break;
   1900 	default:
   1901 		error = ENXIO;
   1902 		break;
   1903 	}
   1904 
   1905 	audio_sc_release(sc, &sc_ref);
   1906 done:
   1907 	curlwp_bindx(bound);
   1908 	return error;
   1909 }
   1910 
   1911 static int
   1912 audiostat(struct file *fp, struct stat *st)
   1913 {
   1914 	struct audio_softc *sc;
   1915 	struct psref sc_ref;
   1916 	audio_file_t *file;
   1917 	int bound;
   1918 	int error;
   1919 
   1920 	KASSERT(fp->f_audioctx);
   1921 	file = fp->f_audioctx;
   1922 
   1923 	bound = curlwp_bind();
   1924 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
   1925 	if (sc == NULL) {
   1926 		error = EIO;
   1927 		goto done;
   1928 	}
   1929 
   1930 	error = 0;
   1931 	memset(st, 0, sizeof(*st));
   1932 
   1933 	st->st_dev = file->dev;
   1934 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
   1935 	st->st_gid = kauth_cred_getegid(fp->f_cred);
   1936 	st->st_mode = S_IFCHR;
   1937 
   1938 	audio_sc_release(sc, &sc_ref);
   1939 done:
   1940 	curlwp_bindx(bound);
   1941 	return error;
   1942 }
   1943 
   1944 static int
   1945 audiopoll(struct file *fp, int events)
   1946 {
   1947 	struct audio_softc *sc;
   1948 	struct psref sc_ref;
   1949 	audio_file_t *file;
   1950 	struct lwp *l = curlwp;
   1951 	int bound;
   1952 	int revents;
   1953 	dev_t dev;
   1954 
   1955 	KASSERT(fp->f_audioctx);
   1956 	file = fp->f_audioctx;
   1957 	dev = file->dev;
   1958 
   1959 	bound = curlwp_bind();
   1960 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
   1961 	if (sc == NULL) {
   1962 		revents = POLLERR;
   1963 		goto done;
   1964 	}
   1965 
   1966 	switch (AUDIODEV(dev)) {
   1967 	case SOUND_DEVICE:
   1968 	case AUDIO_DEVICE:
   1969 		revents = audio_poll(sc, events, l, file);
   1970 		break;
   1971 	case AUDIOCTL_DEVICE:
   1972 	case MIXER_DEVICE:
   1973 		revents = 0;
   1974 		break;
   1975 	default:
   1976 		revents = POLLERR;
   1977 		break;
   1978 	}
   1979 
   1980 	audio_sc_release(sc, &sc_ref);
   1981 done:
   1982 	curlwp_bindx(bound);
   1983 	return revents;
   1984 }
   1985 
   1986 static int
   1987 audiokqfilter(struct file *fp, struct knote *kn)
   1988 {
   1989 	struct audio_softc *sc;
   1990 	struct psref sc_ref;
   1991 	audio_file_t *file;
   1992 	dev_t dev;
   1993 	int bound;
   1994 	int error;
   1995 
   1996 	KASSERT(fp->f_audioctx);
   1997 	file = fp->f_audioctx;
   1998 	dev = file->dev;
   1999 
   2000 	bound = curlwp_bind();
   2001 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
   2002 	if (sc == NULL) {
   2003 		error = EIO;
   2004 		goto done;
   2005 	}
   2006 
   2007 	switch (AUDIODEV(dev)) {
   2008 	case SOUND_DEVICE:
   2009 	case AUDIO_DEVICE:
   2010 		error = audio_kqfilter(sc, file, kn);
   2011 		break;
   2012 	case AUDIOCTL_DEVICE:
   2013 	case MIXER_DEVICE:
   2014 		error = ENODEV;
   2015 		break;
   2016 	default:
   2017 		error = ENXIO;
   2018 		break;
   2019 	}
   2020 
   2021 	audio_sc_release(sc, &sc_ref);
   2022 done:
   2023 	curlwp_bindx(bound);
   2024 	return error;
   2025 }
   2026 
   2027 static int
   2028 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
   2029 	int *advicep, struct uvm_object **uobjp, int *maxprotp)
   2030 {
   2031 	struct audio_softc *sc;
   2032 	struct psref sc_ref;
   2033 	audio_file_t *file;
   2034 	dev_t dev;
   2035 	int bound;
   2036 	int error;
   2037 
   2038 	KASSERT(fp->f_audioctx);
   2039 	file = fp->f_audioctx;
   2040 	dev = file->dev;
   2041 
   2042 	bound = curlwp_bind();
   2043 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
   2044 	if (sc == NULL) {
   2045 		error = EIO;
   2046 		goto done;
   2047 	}
   2048 
   2049 	mutex_enter(sc->sc_lock);
   2050 	device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
   2051 	mutex_exit(sc->sc_lock);
   2052 
   2053 	switch (AUDIODEV(dev)) {
   2054 	case SOUND_DEVICE:
   2055 	case AUDIO_DEVICE:
   2056 		error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
   2057 		    uobjp, maxprotp, file);
   2058 		break;
   2059 	case AUDIOCTL_DEVICE:
   2060 	case MIXER_DEVICE:
   2061 	default:
   2062 		error = ENOTSUP;
   2063 		break;
   2064 	}
   2065 
   2066 	audio_sc_release(sc, &sc_ref);
   2067 done:
   2068 	curlwp_bindx(bound);
   2069 	return error;
   2070 }
   2071 
   2072 
   2073 /* Exported interfaces for audiobell. */
   2074 
   2075 /*
   2076  * Open for audiobell.
   2077  * It stores allocated file to *filep.
   2078  * If successful returns 0, otherwise errno.
   2079  */
   2080 int
   2081 audiobellopen(dev_t dev, audio_file_t **filep)
   2082 {
   2083 	struct audio_softc *sc;
   2084 	struct psref sc_ref;
   2085 	int bound;
   2086 	int error;
   2087 
   2088 	/* Find the device */
   2089 	sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
   2090 	if (sc == NULL || sc->hw_if == NULL)
   2091 		return ENXIO;
   2092 
   2093 	bound = curlwp_bind();
   2094 	audio_sc_acquire_foropen(sc, &sc_ref);
   2095 
   2096 	error = audio_exlock_enter(sc);
   2097 	if (error)
   2098 		goto done;
   2099 
   2100 	device_active(sc->sc_dev, DVA_SYSTEM);
   2101 	error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
   2102 
   2103 	audio_exlock_exit(sc);
   2104 done:
   2105 	audio_sc_release(sc, &sc_ref);
   2106 	curlwp_bindx(bound);
   2107 	return error;
   2108 }
   2109 
   2110 /* Close for audiobell */
   2111 int
   2112 audiobellclose(audio_file_t *file)
   2113 {
   2114 	struct audio_softc *sc;
   2115 	struct psref sc_ref;
   2116 	int bound;
   2117 	int error;
   2118 
   2119 	error = 0;
   2120 	/*
   2121 	 * audiobellclose() must
   2122 	 * - unplug track from the trackmixer if sc exist.
   2123 	 * - free all memory objects, regardless of sc.
   2124 	 */
   2125 	bound = curlwp_bind();
   2126 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
   2127 	if (sc) {
   2128 		error = audio_close(sc, file);
   2129 		audio_sc_release(sc, &sc_ref);
   2130 	}
   2131 	curlwp_bindx(bound);
   2132 
   2133 	/* Free memory objects anyway */
   2134 	KASSERT(file->ptrack);
   2135 	audio_track_destroy(file->ptrack);
   2136 	KASSERT(file->rtrack == NULL);
   2137 	kmem_free(file, sizeof(*file));
   2138 	return error;
   2139 }
   2140 
   2141 /* Set sample rate for audiobell */
   2142 int
   2143 audiobellsetrate(audio_file_t *file, u_int sample_rate)
   2144 {
   2145 	struct audio_softc *sc;
   2146 	struct psref sc_ref;
   2147 	struct audio_info ai;
   2148 	int bound;
   2149 	int error;
   2150 
   2151 	bound = curlwp_bind();
   2152 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
   2153 	if (sc == NULL) {
   2154 		error = EIO;
   2155 		goto done1;
   2156 	}
   2157 
   2158 	AUDIO_INITINFO(&ai);
   2159 	ai.play.sample_rate = sample_rate;
   2160 
   2161 	error = audio_exlock_enter(sc);
   2162 	if (error)
   2163 		goto done2;
   2164 	error = audio_file_setinfo(sc, file, &ai);
   2165 	audio_exlock_exit(sc);
   2166 
   2167 done2:
   2168 	audio_sc_release(sc, &sc_ref);
   2169 done1:
   2170 	curlwp_bindx(bound);
   2171 	return error;
   2172 }
   2173 
   2174 /* Playback for audiobell */
   2175 int
   2176 audiobellwrite(audio_file_t *file, struct uio *uio)
   2177 {
   2178 	struct audio_softc *sc;
   2179 	struct psref sc_ref;
   2180 	int bound;
   2181 	int error;
   2182 
   2183 	bound = curlwp_bind();
   2184 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
   2185 	if (sc == NULL) {
   2186 		error = EIO;
   2187 		goto done;
   2188 	}
   2189 
   2190 	error = audio_write(sc, uio, 0, file);
   2191 
   2192 	audio_sc_release(sc, &sc_ref);
   2193 done:
   2194 	curlwp_bindx(bound);
   2195 	return error;
   2196 }
   2197 
   2198 
   2199 /*
   2200  * Audio driver
   2201  */
   2202 
   2203 /*
   2204  * Must be called with sc_exlock held and without sc_lock held.
   2205  */
   2206 int
   2207 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
   2208 	struct lwp *l, audio_file_t **bellfile)
   2209 {
   2210 	struct audio_info ai;
   2211 	struct file *fp;
   2212 	audio_file_t *af;
   2213 	audio_ring_t *hwbuf;
   2214 	bool fullduplex;
   2215 	bool cred_held;
   2216 	bool hw_opened;
   2217 	bool rmixer_started;
   2218 	bool inserted;
   2219 	int fd;
   2220 	int error;
   2221 
   2222 	KASSERT(sc->sc_exlock);
   2223 
   2224 	TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
   2225 	    (audiodebug >= 3) ? "start " : "",
   2226 	    ISDEVSOUND(dev) ? "sound" : "audio",
   2227 	    flags, sc->sc_popens, sc->sc_ropens);
   2228 
   2229 	fp = NULL;
   2230 	cred_held = false;
   2231 	hw_opened = false;
   2232 	rmixer_started = false;
   2233 	inserted = false;
   2234 
   2235 	af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
   2236 	af->sc = sc;
   2237 	af->dev = dev;
   2238 	if ((flags & FWRITE) != 0 && audio_can_playback(sc))
   2239 		af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
   2240 	if ((flags & FREAD) != 0 && audio_can_capture(sc))
   2241 		af->mode |= AUMODE_RECORD;
   2242 	if (af->mode == 0) {
   2243 		error = ENXIO;
   2244 		goto bad;
   2245 	}
   2246 
   2247 	fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
   2248 
   2249 	/*
   2250 	 * On half duplex hardware,
   2251 	 * 1. if mode is (PLAY | REC), let mode PLAY.
   2252 	 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
   2253 	 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
   2254 	 */
   2255 	if (fullduplex == false) {
   2256 		if ((af->mode & AUMODE_PLAY)) {
   2257 			if (sc->sc_ropens != 0) {
   2258 				TRACE(1, "record track already exists");
   2259 				error = ENODEV;
   2260 				goto bad;
   2261 			}
   2262 			/* Play takes precedence */
   2263 			af->mode &= ~AUMODE_RECORD;
   2264 		}
   2265 		if ((af->mode & AUMODE_RECORD)) {
   2266 			if (sc->sc_popens != 0) {
   2267 				TRACE(1, "play track already exists");
   2268 				error = ENODEV;
   2269 				goto bad;
   2270 			}
   2271 		}
   2272 	}
   2273 
   2274 	/* Create tracks */
   2275 	if ((af->mode & AUMODE_PLAY))
   2276 		af->ptrack = audio_track_create(sc, sc->sc_pmixer);
   2277 	if ((af->mode & AUMODE_RECORD))
   2278 		af->rtrack = audio_track_create(sc, sc->sc_rmixer);
   2279 
   2280 	/* Set parameters */
   2281 	AUDIO_INITINFO(&ai);
   2282 	if (bellfile) {
   2283 		/* If audiobell, only sample_rate will be set later. */
   2284 		ai.play.sample_rate   = audio_default.sample_rate;
   2285 		ai.play.encoding      = AUDIO_ENCODING_SLINEAR_NE;
   2286 		ai.play.channels      = 1;
   2287 		ai.play.precision     = 16;
   2288 		ai.play.pause         = 0;
   2289 	} else if (ISDEVAUDIO(dev)) {
   2290 		/* If /dev/audio, initialize everytime. */
   2291 		ai.play.sample_rate   = audio_default.sample_rate;
   2292 		ai.play.encoding      = audio_default.encoding;
   2293 		ai.play.channels      = audio_default.channels;
   2294 		ai.play.precision     = audio_default.precision;
   2295 		ai.play.pause         = 0;
   2296 		ai.record.sample_rate = audio_default.sample_rate;
   2297 		ai.record.encoding    = audio_default.encoding;
   2298 		ai.record.channels    = audio_default.channels;
   2299 		ai.record.precision   = audio_default.precision;
   2300 		ai.record.pause       = 0;
   2301 	} else {
   2302 		/* If /dev/sound, take over the previous parameters. */
   2303 		ai.play.sample_rate   = sc->sc_sound_pparams.sample_rate;
   2304 		ai.play.encoding      = sc->sc_sound_pparams.encoding;
   2305 		ai.play.channels      = sc->sc_sound_pparams.channels;
   2306 		ai.play.precision     = sc->sc_sound_pparams.precision;
   2307 		ai.play.pause         = sc->sc_sound_ppause;
   2308 		ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
   2309 		ai.record.encoding    = sc->sc_sound_rparams.encoding;
   2310 		ai.record.channels    = sc->sc_sound_rparams.channels;
   2311 		ai.record.precision   = sc->sc_sound_rparams.precision;
   2312 		ai.record.pause       = sc->sc_sound_rpause;
   2313 	}
   2314 	error = audio_file_setinfo(sc, af, &ai);
   2315 	if (error)
   2316 		goto bad;
   2317 
   2318 	if (sc->sc_popens + sc->sc_ropens == 0) {
   2319 		/* First open */
   2320 
   2321 		sc->sc_cred = kauth_cred_get();
   2322 		kauth_cred_hold(sc->sc_cred);
   2323 		cred_held = true;
   2324 
   2325 		if (sc->hw_if->open) {
   2326 			int hwflags;
   2327 
   2328 			/*
   2329 			 * Call hw_if->open() only at first open of
   2330 			 * combination of playback and recording.
   2331 			 * On full duplex hardware, the flags passed to
   2332 			 * hw_if->open() is always (FREAD | FWRITE)
   2333 			 * regardless of this open()'s flags.
   2334 			 * see also dev/isa/aria.c
   2335 			 * On half duplex hardware, the flags passed to
   2336 			 * hw_if->open() is either FREAD or FWRITE.
   2337 			 * see also arch/evbarm/mini2440/audio_mini2440.c
   2338 			 */
   2339 			if (fullduplex) {
   2340 				hwflags = FREAD | FWRITE;
   2341 			} else {
   2342 				/* Construct hwflags from af->mode. */
   2343 				hwflags = 0;
   2344 				if ((af->mode & AUMODE_PLAY) != 0)
   2345 					hwflags |= FWRITE;
   2346 				if ((af->mode & AUMODE_RECORD) != 0)
   2347 					hwflags |= FREAD;
   2348 			}
   2349 
   2350 			mutex_enter(sc->sc_lock);
   2351 			mutex_enter(sc->sc_intr_lock);
   2352 			error = sc->hw_if->open(sc->hw_hdl, hwflags);
   2353 			mutex_exit(sc->sc_intr_lock);
   2354 			mutex_exit(sc->sc_lock);
   2355 			if (error)
   2356 				goto bad;
   2357 		}
   2358 		/*
   2359 		 * Regardless of whether we called hw_if->open (whether
   2360 		 * hw_if->open exists) or not, we move to the Opened phase
   2361 		 * here.  Therefore from this point, we have to call
   2362 		 * hw_if->close (if exists) whenever abort.
   2363 		 * Note that both of hw_if->{open,close} are optional.
   2364 		 */
   2365 		hw_opened = true;
   2366 
   2367 		/*
   2368 		 * Set speaker mode when a half duplex.
   2369 		 * XXX I'm not sure this is correct.
   2370 		 */
   2371 		if (1/*XXX*/) {
   2372 			if (sc->hw_if->speaker_ctl) {
   2373 				int on;
   2374 				if (af->ptrack) {
   2375 					on = 1;
   2376 				} else {
   2377 					on = 0;
   2378 				}
   2379 				mutex_enter(sc->sc_lock);
   2380 				mutex_enter(sc->sc_intr_lock);
   2381 				error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
   2382 				mutex_exit(sc->sc_intr_lock);
   2383 				mutex_exit(sc->sc_lock);
   2384 				if (error)
   2385 					goto bad;
   2386 			}
   2387 		}
   2388 	} else if (sc->sc_multiuser == false) {
   2389 		uid_t euid = kauth_cred_geteuid(kauth_cred_get());
   2390 		if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
   2391 			error = EPERM;
   2392 			goto bad;
   2393 		}
   2394 	}
   2395 
   2396 	/* Call init_output if this is the first playback open. */
   2397 	if (af->ptrack && sc->sc_popens == 0) {
   2398 		if (sc->hw_if->init_output) {
   2399 			hwbuf = &sc->sc_pmixer->hwbuf;
   2400 			mutex_enter(sc->sc_lock);
   2401 			mutex_enter(sc->sc_intr_lock);
   2402 			error = sc->hw_if->init_output(sc->hw_hdl,
   2403 			    hwbuf->mem,
   2404 			    hwbuf->capacity *
   2405 			    hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
   2406 			mutex_exit(sc->sc_intr_lock);
   2407 			mutex_exit(sc->sc_lock);
   2408 			if (error)
   2409 				goto bad;
   2410 		}
   2411 	}
   2412 	/*
   2413 	 * Call init_input and start rmixer, if this is the first recording
   2414 	 * open.  See pause consideration notes.
   2415 	 */
   2416 	if (af->rtrack && sc->sc_ropens == 0) {
   2417 		if (sc->hw_if->init_input) {
   2418 			hwbuf = &sc->sc_rmixer->hwbuf;
   2419 			mutex_enter(sc->sc_lock);
   2420 			mutex_enter(sc->sc_intr_lock);
   2421 			error = sc->hw_if->init_input(sc->hw_hdl,
   2422 			    hwbuf->mem,
   2423 			    hwbuf->capacity *
   2424 			    hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
   2425 			mutex_exit(sc->sc_intr_lock);
   2426 			mutex_exit(sc->sc_lock);
   2427 			if (error)
   2428 				goto bad;
   2429 		}
   2430 
   2431 		mutex_enter(sc->sc_lock);
   2432 		audio_rmixer_start(sc);
   2433 		mutex_exit(sc->sc_lock);
   2434 		rmixer_started = true;
   2435 	}
   2436 
   2437 	/*
   2438 	 * This is the last sc_lock section in the function, so we have to
   2439 	 * examine sc_dying again before starting the rest tasks.  Because
   2440 	 * audiodeatch() may have been invoked (and it would set sc_dying)
   2441 	 * from the time audioopen() was executed until now.  If it happens,
   2442 	 * audiodetach() may already have set file->dying for all sc_files
   2443 	 * that exist at that point, so that audioopen() must abort without
   2444 	 * inserting af to sc_files, in order to keep consistency.
   2445 	 */
   2446 	mutex_enter(sc->sc_lock);
   2447 	if (sc->sc_dying) {
   2448 		mutex_exit(sc->sc_lock);
   2449 		goto bad;
   2450 	}
   2451 
   2452 	/* Count up finally */
   2453 	if (af->ptrack)
   2454 		sc->sc_popens++;
   2455 	if (af->rtrack)
   2456 		sc->sc_ropens++;
   2457 	mutex_enter(sc->sc_intr_lock);
   2458 	SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
   2459 	mutex_exit(sc->sc_intr_lock);
   2460 	mutex_exit(sc->sc_lock);
   2461 	inserted = true;
   2462 
   2463 	if (bellfile) {
   2464 		*bellfile = af;
   2465 	} else {
   2466 		error = fd_allocfile(&fp, &fd);
   2467 		if (error)
   2468 			goto bad;
   2469 
   2470 		error = fd_clone(fp, fd, flags, &audio_fileops, af);
   2471 		KASSERTMSG(error == EMOVEFD, "error=%d", error);
   2472 	}
   2473 
   2474 	/* Be nothing else after fd_clone */
   2475 
   2476 	TRACEF(3, af, "done");
   2477 	return error;
   2478 
   2479 bad:
   2480 	if (inserted) {
   2481 		mutex_enter(sc->sc_lock);
   2482 		mutex_enter(sc->sc_intr_lock);
   2483 		SLIST_REMOVE(&sc->sc_files, af, audio_file, entry);
   2484 		mutex_exit(sc->sc_intr_lock);
   2485 		if (af->ptrack)
   2486 			sc->sc_popens--;
   2487 		if (af->rtrack)
   2488 			sc->sc_ropens--;
   2489 		mutex_exit(sc->sc_lock);
   2490 	}
   2491 
   2492 	if (rmixer_started) {
   2493 		mutex_enter(sc->sc_lock);
   2494 		audio_rmixer_halt(sc);
   2495 		mutex_exit(sc->sc_lock);
   2496 	}
   2497 
   2498 	if (hw_opened) {
   2499 		if (sc->hw_if->close) {
   2500 			mutex_enter(sc->sc_lock);
   2501 			mutex_enter(sc->sc_intr_lock);
   2502 			sc->hw_if->close(sc->hw_hdl);
   2503 			mutex_exit(sc->sc_intr_lock);
   2504 			mutex_exit(sc->sc_lock);
   2505 		}
   2506 	}
   2507 	if (cred_held) {
   2508 		kauth_cred_free(sc->sc_cred);
   2509 	}
   2510 
   2511 	/*
   2512 	 * Since track here is not yet linked to sc_files,
   2513 	 * you can call track_destroy() without sc_intr_lock.
   2514 	 */
   2515 	if (af->rtrack) {
   2516 		audio_track_destroy(af->rtrack);
   2517 		af->rtrack = NULL;
   2518 	}
   2519 	if (af->ptrack) {
   2520 		audio_track_destroy(af->ptrack);
   2521 		af->ptrack = NULL;
   2522 	}
   2523 
   2524 	kmem_free(af, sizeof(*af));
   2525 	return error;
   2526 }
   2527 
   2528 /*
   2529  * Must be called without sc_lock nor sc_exlock held.
   2530  */
   2531 int
   2532 audio_close(struct audio_softc *sc, audio_file_t *file)
   2533 {
   2534 	int error;
   2535 
   2536 	/* Protect entering new fileops to this file */
   2537 	atomic_store_relaxed(&file->dying, true);
   2538 
   2539 	/*
   2540 	 * Drain first.
   2541 	 * It must be done before unlinking(acquiring exlock).
   2542 	 */
   2543 	if (file->ptrack) {
   2544 		mutex_enter(sc->sc_lock);
   2545 		audio_track_drain(sc, file->ptrack);
   2546 		mutex_exit(sc->sc_lock);
   2547 	}
   2548 
   2549 	error = audio_exlock_enter(sc);
   2550 	if (error) {
   2551 		/*
   2552 		 * If EIO, this sc is about to detach.  In this case, even if
   2553 		 * we don't do subsequent _unlink(), audiodetach() will do it.
   2554 		 */
   2555 		if (error == EIO)
   2556 			return error;
   2557 
   2558 		/* XXX This should not happen but what should I do ? */
   2559 		panic("%s: can't acquire exlock: errno=%d", __func__, error);
   2560 	}
   2561 	error = audio_unlink(sc, file);
   2562 	audio_exlock_exit(sc);
   2563 
   2564 	return error;
   2565 }
   2566 
   2567 /*
   2568  * Unlink this file, but not freeing memory here.
   2569  * Must be called with sc_exlock held and without sc_lock held.
   2570  */
   2571 int
   2572 audio_unlink(struct audio_softc *sc, audio_file_t *file)
   2573 {
   2574 	int error;
   2575 
   2576 	mutex_enter(sc->sc_lock);
   2577 
   2578 	TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
   2579 	    (audiodebug >= 3) ? "start " : "",
   2580 	    (int)curproc->p_pid, (int)curlwp->l_lid,
   2581 	    sc->sc_popens, sc->sc_ropens);
   2582 	KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
   2583 	    "sc->sc_popens=%d, sc->sc_ropens=%d",
   2584 	    sc->sc_popens, sc->sc_ropens);
   2585 
   2586 	device_active(sc->sc_dev, DVA_SYSTEM);
   2587 
   2588 	mutex_enter(sc->sc_intr_lock);
   2589 	SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
   2590 	mutex_exit(sc->sc_intr_lock);
   2591 
   2592 	if (file->ptrack) {
   2593 		TRACET(3, file->ptrack, "dropframes=%" PRIu64,
   2594 		    file->ptrack->dropframes);
   2595 
   2596 		KASSERT(sc->sc_popens > 0);
   2597 		sc->sc_popens--;
   2598 
   2599 		/* Call hw halt_output if this is the last playback track. */
   2600 		if (sc->sc_popens == 0 && sc->sc_pbusy) {
   2601 			error = audio_pmixer_halt(sc);
   2602 			if (error) {
   2603 				audio_printf(sc,
   2604 				    "halt_output failed: errno=%d (ignored)\n",
   2605 				    error);
   2606 			}
   2607 		}
   2608 
   2609 		/* Restore mixing volume if all tracks are gone. */
   2610 		if (sc->sc_popens == 0) {
   2611 			/* intr_lock is not necessary, but just manners. */
   2612 			mutex_enter(sc->sc_intr_lock);
   2613 			sc->sc_pmixer->volume = 256;
   2614 			sc->sc_pmixer->voltimer = 0;
   2615 			mutex_exit(sc->sc_intr_lock);
   2616 		}
   2617 	}
   2618 	if (file->rtrack) {
   2619 		TRACET(3, file->rtrack, "dropframes=%" PRIu64,
   2620 		    file->rtrack->dropframes);
   2621 
   2622 		KASSERT(sc->sc_ropens > 0);
   2623 		sc->sc_ropens--;
   2624 
   2625 		/* Call hw halt_input if this is the last recording track. */
   2626 		if (sc->sc_ropens == 0 && sc->sc_rbusy) {
   2627 			error = audio_rmixer_halt(sc);
   2628 			if (error) {
   2629 				audio_printf(sc,
   2630 				    "halt_input failed: errno=%d (ignored)\n",
   2631 				    error);
   2632 			}
   2633 		}
   2634 
   2635 	}
   2636 
   2637 	/* Call hw close if this is the last track. */
   2638 	if (sc->sc_popens + sc->sc_ropens == 0) {
   2639 		if (sc->hw_if->close) {
   2640 			TRACE(2, "hw_if close");
   2641 			mutex_enter(sc->sc_intr_lock);
   2642 			sc->hw_if->close(sc->hw_hdl);
   2643 			mutex_exit(sc->sc_intr_lock);
   2644 		}
   2645 	}
   2646 
   2647 	mutex_exit(sc->sc_lock);
   2648 	if (sc->sc_popens + sc->sc_ropens == 0)
   2649 		kauth_cred_free(sc->sc_cred);
   2650 
   2651 	TRACE(3, "done");
   2652 
   2653 	return 0;
   2654 }
   2655 
   2656 /*
   2657  * Must be called without sc_lock nor sc_exlock held.
   2658  */
   2659 int
   2660 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
   2661 	audio_file_t *file)
   2662 {
   2663 	audio_track_t *track;
   2664 	audio_ring_t *usrbuf;
   2665 	audio_ring_t *input;
   2666 	int error;
   2667 
   2668 	/*
   2669 	 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
   2670 	 * However read() system call itself can be called because it's
   2671 	 * opened with O_RDWR.  So in this case, deny this read().
   2672 	 */
   2673 	track = file->rtrack;
   2674 	if (track == NULL) {
   2675 		return EBADF;
   2676 	}
   2677 
   2678 	/* I think it's better than EINVAL. */
   2679 	if (track->mmapped)
   2680 		return EPERM;
   2681 
   2682 	TRACET(2, track, "resid=%zd ioflag=0x%x", uio->uio_resid, ioflag);
   2683 
   2684 #ifdef AUDIO_PM_IDLE
   2685 	error = audio_exlock_mutex_enter(sc);
   2686 	if (error)
   2687 		return error;
   2688 
   2689 	if (device_is_active(&sc->sc_dev) || sc->sc_idle)
   2690 		device_active(&sc->sc_dev, DVA_SYSTEM);
   2691 
   2692 	/* In recording, unlike playback, read() never operates rmixer. */
   2693 
   2694 	audio_exlock_mutex_exit(sc);
   2695 #endif
   2696 
   2697 	usrbuf = &track->usrbuf;
   2698 	input = track->input;
   2699 	error = 0;
   2700 
   2701 	while (uio->uio_resid > 0 && error == 0) {
   2702 		int bytes;
   2703 
   2704 		TRACET(3, track,
   2705 		    "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
   2706 		    uio->uio_resid,
   2707 		    input->head, input->used, input->capacity,
   2708 		    usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
   2709 
   2710 		/* Wait when buffers are empty. */
   2711 		mutex_enter(sc->sc_lock);
   2712 		for (;;) {
   2713 			bool empty;
   2714 			audio_track_lock_enter(track);
   2715 			empty = (input->used == 0 && usrbuf->used == 0);
   2716 			audio_track_lock_exit(track);
   2717 			if (!empty)
   2718 				break;
   2719 
   2720 			if ((ioflag & IO_NDELAY)) {
   2721 				mutex_exit(sc->sc_lock);
   2722 				return EWOULDBLOCK;
   2723 			}
   2724 
   2725 			TRACET(3, track, "sleep");
   2726 			error = audio_track_waitio(sc, track);
   2727 			if (error) {
   2728 				mutex_exit(sc->sc_lock);
   2729 				return error;
   2730 			}
   2731 		}
   2732 		mutex_exit(sc->sc_lock);
   2733 
   2734 		audio_track_lock_enter(track);
   2735 		audio_track_record(track);
   2736 
   2737 		/* uiomove from usrbuf as much as possible. */
   2738 		bytes = uimin(usrbuf->used, uio->uio_resid);
   2739 		while (bytes > 0) {
   2740 			int head = usrbuf->head;
   2741 			int len = uimin(bytes, usrbuf->capacity - head);
   2742 			error = uiomove((uint8_t *)usrbuf->mem + head, len,
   2743 			    uio);
   2744 			if (error) {
   2745 				audio_track_lock_exit(track);
   2746 				device_printf(sc->sc_dev,
   2747 				    "%s: uiomove(%d) failed: errno=%d\n",
   2748 				    __func__, len, error);
   2749 				goto abort;
   2750 			}
   2751 			auring_take(usrbuf, len);
   2752 			track->useriobytes += len;
   2753 			TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
   2754 			    len,
   2755 			    usrbuf->head, usrbuf->used, usrbuf->capacity);
   2756 			bytes -= len;
   2757 		}
   2758 
   2759 		audio_track_lock_exit(track);
   2760 	}
   2761 
   2762 abort:
   2763 	return error;
   2764 }
   2765 
   2766 
   2767 /*
   2768  * Clear file's playback and/or record track buffer immediately.
   2769  */
   2770 static void
   2771 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
   2772 {
   2773 
   2774 	if (file->ptrack)
   2775 		audio_track_clear(sc, file->ptrack);
   2776 	if (file->rtrack)
   2777 		audio_track_clear(sc, file->rtrack);
   2778 }
   2779 
   2780 /*
   2781  * Must be called without sc_lock nor sc_exlock held.
   2782  */
   2783 int
   2784 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
   2785 	audio_file_t *file)
   2786 {
   2787 	audio_track_t *track;
   2788 	audio_ring_t *usrbuf;
   2789 	audio_ring_t *outbuf;
   2790 	int error;
   2791 
   2792 	track = file->ptrack;
   2793 	KASSERT(track);
   2794 
   2795 	/* I think it's better than EINVAL. */
   2796 	if (track->mmapped)
   2797 		return EPERM;
   2798 
   2799 	TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
   2800 	    audiodebug >= 3 ? "begin " : "",
   2801 	    uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
   2802 
   2803 	if (uio->uio_resid == 0) {
   2804 		track->eofcounter++;
   2805 		return 0;
   2806 	}
   2807 
   2808 	error = audio_exlock_mutex_enter(sc);
   2809 	if (error)
   2810 		return error;
   2811 
   2812 #ifdef AUDIO_PM_IDLE
   2813 	if (device_is_active(&sc->sc_dev) || sc->sc_idle)
   2814 		device_active(&sc->sc_dev, DVA_SYSTEM);
   2815 #endif
   2816 
   2817 	/*
   2818 	 * The first write starts pmixer.
   2819 	 */
   2820 	if (sc->sc_pbusy == false)
   2821 		audio_pmixer_start(sc, false);
   2822 	audio_exlock_mutex_exit(sc);
   2823 
   2824 	usrbuf = &track->usrbuf;
   2825 	outbuf = &track->outbuf;
   2826 	track->pstate = AUDIO_STATE_RUNNING;
   2827 	error = 0;
   2828 
   2829 	while (uio->uio_resid > 0 && error == 0) {
   2830 		int bytes;
   2831 
   2832 		TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
   2833 		    uio->uio_resid,
   2834 		    usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
   2835 
   2836 		/* Wait when buffers are full. */
   2837 		mutex_enter(sc->sc_lock);
   2838 		for (;;) {
   2839 			bool full;
   2840 			audio_track_lock_enter(track);
   2841 			full = (usrbuf->used >= track->usrbuf_usedhigh &&
   2842 			    outbuf->used >= outbuf->capacity);
   2843 			audio_track_lock_exit(track);
   2844 			if (!full)
   2845 				break;
   2846 
   2847 			if ((ioflag & IO_NDELAY)) {
   2848 				error = EWOULDBLOCK;
   2849 				mutex_exit(sc->sc_lock);
   2850 				goto abort;
   2851 			}
   2852 
   2853 			TRACET(3, track, "sleep usrbuf=%d/H%d",
   2854 			    usrbuf->used, track->usrbuf_usedhigh);
   2855 			error = audio_track_waitio(sc, track);
   2856 			if (error) {
   2857 				mutex_exit(sc->sc_lock);
   2858 				goto abort;
   2859 			}
   2860 		}
   2861 		mutex_exit(sc->sc_lock);
   2862 
   2863 		audio_track_lock_enter(track);
   2864 
   2865 		/* uiomove to usrbuf as much as possible. */
   2866 		bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
   2867 		    uio->uio_resid);
   2868 		while (bytes > 0) {
   2869 			int tail = auring_tail(usrbuf);
   2870 			int len = uimin(bytes, usrbuf->capacity - tail);
   2871 			error = uiomove((uint8_t *)usrbuf->mem + tail, len,
   2872 			    uio);
   2873 			if (error) {
   2874 				audio_track_lock_exit(track);
   2875 				device_printf(sc->sc_dev,
   2876 				    "%s: uiomove(%d) failed: errno=%d\n",
   2877 				    __func__, len, error);
   2878 				goto abort;
   2879 			}
   2880 			auring_push(usrbuf, len);
   2881 			track->useriobytes += len;
   2882 			TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
   2883 			    len,
   2884 			    usrbuf->head, usrbuf->used, usrbuf->capacity);
   2885 			bytes -= len;
   2886 		}
   2887 
   2888 		/* Convert them as much as possible. */
   2889 		while (usrbuf->used >= track->usrbuf_blksize &&
   2890 		    outbuf->used < outbuf->capacity) {
   2891 			audio_track_play(track);
   2892 		}
   2893 
   2894 		audio_track_lock_exit(track);
   2895 	}
   2896 
   2897 abort:
   2898 	TRACET(3, track, "done error=%d", error);
   2899 	return error;
   2900 }
   2901 
   2902 /*
   2903  * Must be called without sc_lock nor sc_exlock held.
   2904  */
   2905 int
   2906 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
   2907 	struct lwp *l, audio_file_t *file)
   2908 {
   2909 	struct audio_offset *ao;
   2910 	struct audio_info ai;
   2911 	audio_track_t *track;
   2912 	audio_encoding_t *ae;
   2913 	audio_format_query_t *query;
   2914 	u_int stamp;
   2915 	u_int offs;
   2916 	int fd;
   2917 	int index;
   2918 	int error;
   2919 
   2920 #if defined(AUDIO_DEBUG)
   2921 	const char *ioctlnames[] = {
   2922 		" AUDIO_GETINFO",	/* 21 */
   2923 		" AUDIO_SETINFO",	/* 22 */
   2924 		" AUDIO_DRAIN",		/* 23 */
   2925 		" AUDIO_FLUSH",		/* 24 */
   2926 		" AUDIO_WSEEK",		/* 25 */
   2927 		" AUDIO_RERROR",	/* 26 */
   2928 		" AUDIO_GETDEV",	/* 27 */
   2929 		" AUDIO_GETENC",	/* 28 */
   2930 		" AUDIO_GETFD",		/* 29 */
   2931 		" AUDIO_SETFD",		/* 30 */
   2932 		" AUDIO_PERROR",	/* 31 */
   2933 		" AUDIO_GETIOFFS",	/* 32 */
   2934 		" AUDIO_GETOOFFS",	/* 33 */
   2935 		" AUDIO_GETPROPS",	/* 34 */
   2936 		" AUDIO_GETBUFINFO",	/* 35 */
   2937 		" AUDIO_SETCHAN",	/* 36 */
   2938 		" AUDIO_GETCHAN",	/* 37 */
   2939 		" AUDIO_QUERYFORMAT",	/* 38 */
   2940 		" AUDIO_GETFORMAT",	/* 39 */
   2941 		" AUDIO_SETFORMAT",	/* 40 */
   2942 	};
   2943 	int nameidx = (cmd & 0xff);
   2944 	const char *ioctlname = "";
   2945 	if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
   2946 		ioctlname = ioctlnames[nameidx - 21];
   2947 	TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
   2948 	    IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
   2949 	    (int)curproc->p_pid, (int)l->l_lid);
   2950 #endif
   2951 
   2952 	error = 0;
   2953 	switch (cmd) {
   2954 	case FIONBIO:
   2955 		/* All handled in the upper FS layer. */
   2956 		break;
   2957 
   2958 	case FIONREAD:
   2959 		/* Get the number of bytes that can be read. */
   2960 		if (file->rtrack) {
   2961 			*(int *)addr = audio_track_readablebytes(file->rtrack);
   2962 		} else {
   2963 			*(int *)addr = 0;
   2964 		}
   2965 		break;
   2966 
   2967 	case FIOASYNC:
   2968 		/* Set/Clear ASYNC I/O. */
   2969 		if (*(int *)addr) {
   2970 			file->async_audio = curproc->p_pid;
   2971 			TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
   2972 		} else {
   2973 			file->async_audio = 0;
   2974 			TRACEF(2, file, "FIOASYNC off");
   2975 		}
   2976 		break;
   2977 
   2978 	case AUDIO_FLUSH:
   2979 		/* XXX TODO: clear errors and restart? */
   2980 		audio_file_clear(sc, file);
   2981 		break;
   2982 
   2983 	case AUDIO_RERROR:
   2984 		/*
   2985 		 * Number of read bytes dropped.  We don't know where
   2986 		 * or when they were dropped (including conversion stage).
   2987 		 * Therefore, the number of accurate bytes or samples is
   2988 		 * also unknown.
   2989 		 */
   2990 		track = file->rtrack;
   2991 		if (track) {
   2992 			*(int *)addr = frametobyte(&track->usrbuf.fmt,
   2993 			    track->dropframes);
   2994 		}
   2995 		break;
   2996 
   2997 	case AUDIO_PERROR:
   2998 		/*
   2999 		 * Number of write bytes dropped.  We don't know where
   3000 		 * or when they were dropped (including conversion stage).
   3001 		 * Therefore, the number of accurate bytes or samples is
   3002 		 * also unknown.
   3003 		 */
   3004 		track = file->ptrack;
   3005 		if (track) {
   3006 			*(int *)addr = frametobyte(&track->usrbuf.fmt,
   3007 			    track->dropframes);
   3008 		}
   3009 		break;
   3010 
   3011 	case AUDIO_GETIOFFS:
   3012 		/* XXX TODO */
   3013 		ao = (struct audio_offset *)addr;
   3014 		ao->samples = 0;
   3015 		ao->deltablks = 0;
   3016 		ao->offset = 0;
   3017 		break;
   3018 
   3019 	case AUDIO_GETOOFFS:
   3020 		ao = (struct audio_offset *)addr;
   3021 		track = file->ptrack;
   3022 		if (track == NULL) {
   3023 			ao->samples = 0;
   3024 			ao->deltablks = 0;
   3025 			ao->offset = 0;
   3026 			break;
   3027 		}
   3028 		mutex_enter(sc->sc_lock);
   3029 		mutex_enter(sc->sc_intr_lock);
   3030 		/* figure out where next DMA will start */
   3031 		stamp = track->usrbuf_stamp;
   3032 		offs = track->usrbuf.head;
   3033 		mutex_exit(sc->sc_intr_lock);
   3034 		mutex_exit(sc->sc_lock);
   3035 
   3036 		ao->samples = stamp;
   3037 		ao->deltablks = (stamp / track->usrbuf_blksize) -
   3038 		    (track->usrbuf_stamp_last / track->usrbuf_blksize);
   3039 		track->usrbuf_stamp_last = stamp;
   3040 		offs = rounddown(offs, track->usrbuf_blksize)
   3041 		    + track->usrbuf_blksize;
   3042 		if (offs >= track->usrbuf.capacity)
   3043 			offs -= track->usrbuf.capacity;
   3044 		ao->offset = offs;
   3045 
   3046 		TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
   3047 		    ao->samples, ao->deltablks, ao->offset);
   3048 		break;
   3049 
   3050 	case AUDIO_WSEEK:
   3051 		/* XXX return value does not include outbuf one. */
   3052 		if (file->ptrack)
   3053 			*(u_long *)addr = file->ptrack->usrbuf.used;
   3054 		break;
   3055 
   3056 	case AUDIO_SETINFO:
   3057 		error = audio_exlock_enter(sc);
   3058 		if (error)
   3059 			break;
   3060 		error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
   3061 		if (error) {
   3062 			audio_exlock_exit(sc);
   3063 			break;
   3064 		}
   3065 		/* XXX TODO: update last_ai if /dev/sound ? */
   3066 		if (ISDEVSOUND(dev))
   3067 			error = audiogetinfo(sc, &sc->sc_ai, 0, file);
   3068 		audio_exlock_exit(sc);
   3069 		break;
   3070 
   3071 	case AUDIO_GETINFO:
   3072 		error = audio_exlock_enter(sc);
   3073 		if (error)
   3074 			break;
   3075 		error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
   3076 		audio_exlock_exit(sc);
   3077 		break;
   3078 
   3079 	case AUDIO_GETBUFINFO:
   3080 		error = audio_exlock_enter(sc);
   3081 		if (error)
   3082 			break;
   3083 		error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
   3084 		audio_exlock_exit(sc);
   3085 		break;
   3086 
   3087 	case AUDIO_DRAIN:
   3088 		if (file->ptrack) {
   3089 			mutex_enter(sc->sc_lock);
   3090 			error = audio_track_drain(sc, file->ptrack);
   3091 			mutex_exit(sc->sc_lock);
   3092 		}
   3093 		break;
   3094 
   3095 	case AUDIO_GETDEV:
   3096 		mutex_enter(sc->sc_lock);
   3097 		error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
   3098 		mutex_exit(sc->sc_lock);
   3099 		break;
   3100 
   3101 	case AUDIO_GETENC:
   3102 		ae = (audio_encoding_t *)addr;
   3103 		index = ae->index;
   3104 		if (index < 0 || index >= __arraycount(audio_encodings)) {
   3105 			error = EINVAL;
   3106 			break;
   3107 		}
   3108 		*ae = audio_encodings[index];
   3109 		ae->index = index;
   3110 		/*
   3111 		 * EMULATED always.
   3112 		 * EMULATED flag at that time used to mean that it could
   3113 		 * not be passed directly to the hardware as-is.  But
   3114 		 * currently, all formats including hardware native is not
   3115 		 * passed directly to the hardware.  So I set EMULATED
   3116 		 * flag for all formats.
   3117 		 */
   3118 		ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
   3119 		break;
   3120 
   3121 	case AUDIO_GETFD:
   3122 		/*
   3123 		 * Returns the current setting of full duplex mode.
   3124 		 * If HW has full duplex mode and there are two mixers,
   3125 		 * it is full duplex.  Otherwise half duplex.
   3126 		 */
   3127 		error = audio_exlock_enter(sc);
   3128 		if (error)
   3129 			break;
   3130 		fd = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
   3131 		    && (sc->sc_pmixer && sc->sc_rmixer);
   3132 		audio_exlock_exit(sc);
   3133 		*(int *)addr = fd;
   3134 		break;
   3135 
   3136 	case AUDIO_GETPROPS:
   3137 		*(int *)addr = sc->sc_props;
   3138 		break;
   3139 
   3140 	case AUDIO_QUERYFORMAT:
   3141 		query = (audio_format_query_t *)addr;
   3142 		mutex_enter(sc->sc_lock);
   3143 		error = sc->hw_if->query_format(sc->hw_hdl, query);
   3144 		mutex_exit(sc->sc_lock);
   3145 		/* Hide internal information */
   3146 		query->fmt.driver_data = NULL;
   3147 		break;
   3148 
   3149 	case AUDIO_GETFORMAT:
   3150 		error = audio_exlock_enter(sc);
   3151 		if (error)
   3152 			break;
   3153 		audio_mixers_get_format(sc, (struct audio_info *)addr);
   3154 		audio_exlock_exit(sc);
   3155 		break;
   3156 
   3157 	case AUDIO_SETFORMAT:
   3158 		error = audio_exlock_enter(sc);
   3159 		audio_mixers_get_format(sc, &ai);
   3160 		error = audio_mixers_set_format(sc, (struct audio_info *)addr);
   3161 		if (error) {
   3162 			/* Rollback */
   3163 			audio_mixers_set_format(sc, &ai);
   3164 		}
   3165 		audio_exlock_exit(sc);
   3166 		break;
   3167 
   3168 	case AUDIO_SETFD:
   3169 	case AUDIO_SETCHAN:
   3170 	case AUDIO_GETCHAN:
   3171 		/* Obsoleted */
   3172 		break;
   3173 
   3174 	default:
   3175 		if (sc->hw_if->dev_ioctl) {
   3176 			mutex_enter(sc->sc_lock);
   3177 			error = sc->hw_if->dev_ioctl(sc->hw_hdl,
   3178 			    cmd, addr, flag, l);
   3179 			mutex_exit(sc->sc_lock);
   3180 		} else {
   3181 			TRACEF(2, file, "unknown ioctl");
   3182 			error = EINVAL;
   3183 		}
   3184 		break;
   3185 	}
   3186 	TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
   3187 	    IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
   3188 	    error);
   3189 	return error;
   3190 }
   3191 
   3192 /*
   3193  * Returns the number of bytes that can be read on recording buffer.
   3194  */
   3195 static __inline int
   3196 audio_track_readablebytes(const audio_track_t *track)
   3197 {
   3198 	int bytes;
   3199 
   3200 	KASSERT(track);
   3201 	KASSERT(track->mode == AUMODE_RECORD);
   3202 
   3203 	/*
   3204 	 * Although usrbuf is primarily readable data, recorded data
   3205 	 * also stays in track->input until reading.  So it is necessary
   3206 	 * to add it.  track->input is in frame, usrbuf is in byte.
   3207 	 */
   3208 	bytes = track->usrbuf.used +
   3209 	    track->input->used * frametobyte(&track->usrbuf.fmt, 1);
   3210 	return bytes;
   3211 }
   3212 
   3213 /*
   3214  * Must be called without sc_lock nor sc_exlock held.
   3215  */
   3216 int
   3217 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
   3218 	audio_file_t *file)
   3219 {
   3220 	audio_track_t *track;
   3221 	int revents;
   3222 	bool in_is_valid;
   3223 	bool out_is_valid;
   3224 
   3225 #if defined(AUDIO_DEBUG)
   3226 #define POLLEV_BITMAP "\177\020" \
   3227 	    "b\10WRBAND\0" \
   3228 	    "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
   3229 	    "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
   3230 	char evbuf[64];
   3231 	snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
   3232 	TRACEF(2, file, "pid=%d.%d events=%s",
   3233 	    (int)curproc->p_pid, (int)l->l_lid, evbuf);
   3234 #endif
   3235 
   3236 	revents = 0;
   3237 	in_is_valid = false;
   3238 	out_is_valid = false;
   3239 	if (events & (POLLIN | POLLRDNORM)) {
   3240 		track = file->rtrack;
   3241 		if (track) {
   3242 			int used;
   3243 			in_is_valid = true;
   3244 			used = audio_track_readablebytes(track);
   3245 			if (used > 0)
   3246 				revents |= events & (POLLIN | POLLRDNORM);
   3247 		}
   3248 	}
   3249 	if (events & (POLLOUT | POLLWRNORM)) {
   3250 		track = file->ptrack;
   3251 		if (track) {
   3252 			out_is_valid = true;
   3253 			if (track->usrbuf.used <= track->usrbuf_usedlow)
   3254 				revents |= events & (POLLOUT | POLLWRNORM);
   3255 		}
   3256 	}
   3257 
   3258 	if (revents == 0) {
   3259 		mutex_enter(sc->sc_lock);
   3260 		if (in_is_valid) {
   3261 			TRACEF(3, file, "selrecord rsel");
   3262 			selrecord(l, &sc->sc_rsel);
   3263 		}
   3264 		if (out_is_valid) {
   3265 			TRACEF(3, file, "selrecord wsel");
   3266 			selrecord(l, &sc->sc_wsel);
   3267 		}
   3268 		mutex_exit(sc->sc_lock);
   3269 	}
   3270 
   3271 #if defined(AUDIO_DEBUG)
   3272 	snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
   3273 	TRACEF(2, file, "revents=%s", evbuf);
   3274 #endif
   3275 	return revents;
   3276 }
   3277 
   3278 static const struct filterops audioread_filtops = {
   3279 	.f_isfd = 1,
   3280 	.f_attach = NULL,
   3281 	.f_detach = filt_audioread_detach,
   3282 	.f_event = filt_audioread_event,
   3283 };
   3284 
   3285 static void
   3286 filt_audioread_detach(struct knote *kn)
   3287 {
   3288 	struct audio_softc *sc;
   3289 	audio_file_t *file;
   3290 
   3291 	file = kn->kn_hook;
   3292 	sc = file->sc;
   3293 	TRACEF(3, file, "called");
   3294 
   3295 	mutex_enter(sc->sc_lock);
   3296 	selremove_knote(&sc->sc_rsel, kn);
   3297 	mutex_exit(sc->sc_lock);
   3298 }
   3299 
   3300 static int
   3301 filt_audioread_event(struct knote *kn, long hint)
   3302 {
   3303 	audio_file_t *file;
   3304 	audio_track_t *track;
   3305 
   3306 	file = kn->kn_hook;
   3307 	track = file->rtrack;
   3308 
   3309 	/*
   3310 	 * kn_data must contain the number of bytes can be read.
   3311 	 * The return value indicates whether the event occurs or not.
   3312 	 */
   3313 
   3314 	if (track == NULL) {
   3315 		/* can not read with this descriptor. */
   3316 		kn->kn_data = 0;
   3317 		return 0;
   3318 	}
   3319 
   3320 	kn->kn_data = audio_track_readablebytes(track);
   3321 	TRACEF(3, file, "data=%" PRId64, kn->kn_data);
   3322 	return kn->kn_data > 0;
   3323 }
   3324 
   3325 static const struct filterops audiowrite_filtops = {
   3326 	.f_isfd = 1,
   3327 	.f_attach = NULL,
   3328 	.f_detach = filt_audiowrite_detach,
   3329 	.f_event = filt_audiowrite_event,
   3330 };
   3331 
   3332 static void
   3333 filt_audiowrite_detach(struct knote *kn)
   3334 {
   3335 	struct audio_softc *sc;
   3336 	audio_file_t *file;
   3337 
   3338 	file = kn->kn_hook;
   3339 	sc = file->sc;
   3340 	TRACEF(3, file, "called");
   3341 
   3342 	mutex_enter(sc->sc_lock);
   3343 	selremove_knote(&sc->sc_wsel, kn);
   3344 	mutex_exit(sc->sc_lock);
   3345 }
   3346 
   3347 static int
   3348 filt_audiowrite_event(struct knote *kn, long hint)
   3349 {
   3350 	audio_file_t *file;
   3351 	audio_track_t *track;
   3352 
   3353 	file = kn->kn_hook;
   3354 	track = file->ptrack;
   3355 
   3356 	/*
   3357 	 * kn_data must contain the number of bytes can be write.
   3358 	 * The return value indicates whether the event occurs or not.
   3359 	 */
   3360 
   3361 	if (track == NULL) {
   3362 		/* can not write with this descriptor. */
   3363 		kn->kn_data = 0;
   3364 		return 0;
   3365 	}
   3366 
   3367 	kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
   3368 	TRACEF(3, file, "data=%" PRId64, kn->kn_data);
   3369 	return (track->usrbuf.used < track->usrbuf_usedlow);
   3370 }
   3371 
   3372 /*
   3373  * Must be called without sc_lock nor sc_exlock held.
   3374  */
   3375 int
   3376 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
   3377 {
   3378 	struct selinfo *sip;
   3379 
   3380 	TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
   3381 
   3382 	switch (kn->kn_filter) {
   3383 	case EVFILT_READ:
   3384 		sip = &sc->sc_rsel;
   3385 		kn->kn_fop = &audioread_filtops;
   3386 		break;
   3387 
   3388 	case EVFILT_WRITE:
   3389 		sip = &sc->sc_wsel;
   3390 		kn->kn_fop = &audiowrite_filtops;
   3391 		break;
   3392 
   3393 	default:
   3394 		return EINVAL;
   3395 	}
   3396 
   3397 	kn->kn_hook = file;
   3398 
   3399 	mutex_enter(sc->sc_lock);
   3400 	selrecord_knote(sip, kn);
   3401 	mutex_exit(sc->sc_lock);
   3402 
   3403 	return 0;
   3404 }
   3405 
   3406 /*
   3407  * Must be called without sc_lock nor sc_exlock held.
   3408  */
   3409 int
   3410 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
   3411 	int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
   3412 	audio_file_t *file)
   3413 {
   3414 	audio_track_t *track;
   3415 	vsize_t vsize;
   3416 	int error;
   3417 
   3418 	TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
   3419 
   3420 	if (*offp < 0)
   3421 		return EINVAL;
   3422 
   3423 #if 0
   3424 	/* XXX
   3425 	 * The idea here was to use the protection to determine if
   3426 	 * we are mapping the read or write buffer, but it fails.
   3427 	 * The VM system is broken in (at least) two ways.
   3428 	 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
   3429 	 *    when writing to it, so VM_PROT_READ|VM_PROT_WRITE
   3430 	 *    has to be used for mmapping the play buffer.
   3431 	 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
   3432 	 *    audio_mmap will get called at some point with VM_PROT_READ
   3433 	 *    only.
   3434 	 * So, alas, we always map the play buffer for now.
   3435 	 */
   3436 	if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
   3437 	    prot == VM_PROT_WRITE)
   3438 		track = file->ptrack;
   3439 	else if (prot == VM_PROT_READ)
   3440 		track = file->rtrack;
   3441 	else
   3442 		return EINVAL;
   3443 #else
   3444 	track = file->ptrack;
   3445 #endif
   3446 	if (track == NULL)
   3447 		return EACCES;
   3448 
   3449 	vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
   3450 	if (len > vsize)
   3451 		return EOVERFLOW;
   3452 	if (*offp > (uint)(vsize - len))
   3453 		return EOVERFLOW;
   3454 
   3455 	/* XXX TODO: what happens when mmap twice. */
   3456 	if (!track->mmapped) {
   3457 		track->mmapped = true;
   3458 
   3459 		if (!track->is_pause) {
   3460 			error = audio_exlock_mutex_enter(sc);
   3461 			if (error)
   3462 				return error;
   3463 			if (sc->sc_pbusy == false)
   3464 				audio_pmixer_start(sc, true);
   3465 			audio_exlock_mutex_exit(sc);
   3466 		}
   3467 		/* XXX mmapping record buffer is not supported */
   3468 	}
   3469 
   3470 	/* get ringbuffer */
   3471 	*uobjp = track->uobj;
   3472 
   3473 	/* Acquire a reference for the mmap.  munmap will release. */
   3474 	uao_reference(*uobjp);
   3475 	*maxprotp = prot;
   3476 	*advicep = UVM_ADV_RANDOM;
   3477 	*flagsp = MAP_SHARED;
   3478 	return 0;
   3479 }
   3480 
   3481 /*
   3482  * /dev/audioctl has to be able to open at any time without interference
   3483  * with any /dev/audio or /dev/sound.
   3484  * Must be called with sc_exlock held and without sc_lock held.
   3485  */
   3486 static int
   3487 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
   3488 	struct lwp *l)
   3489 {
   3490 	struct file *fp;
   3491 	audio_file_t *af;
   3492 	int fd;
   3493 	int error;
   3494 
   3495 	KASSERT(sc->sc_exlock);
   3496 
   3497 	TRACE(1, "called");
   3498 
   3499 	error = fd_allocfile(&fp, &fd);
   3500 	if (error)
   3501 		return error;
   3502 
   3503 	af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
   3504 	af->sc = sc;
   3505 	af->dev = dev;
   3506 
   3507 	/* Not necessary to insert sc_files. */
   3508 
   3509 	error = fd_clone(fp, fd, flags, &audio_fileops, af);
   3510 	KASSERTMSG(error == EMOVEFD, "error=%d", error);
   3511 
   3512 	return error;
   3513 }
   3514 
   3515 /*
   3516  * Free 'mem' if available, and initialize the pointer.
   3517  * For this reason, this is implemented as macro.
   3518  */
   3519 #define audio_free(mem)	do {	\
   3520 	if (mem != NULL) {	\
   3521 		kern_free(mem);	\
   3522 		mem = NULL;	\
   3523 	}	\
   3524 } while (0)
   3525 
   3526 /*
   3527  * (Re)allocate 'memblock' with specified 'bytes'.
   3528  * bytes must not be 0.
   3529  * This function never returns NULL.
   3530  */
   3531 static void *
   3532 audio_realloc(void *memblock, size_t bytes)
   3533 {
   3534 
   3535 	KASSERT(bytes != 0);
   3536 	audio_free(memblock);
   3537 	return kern_malloc(bytes, M_WAITOK);
   3538 }
   3539 
   3540 /*
   3541  * (Re)allocate usrbuf with 'newbufsize' bytes.
   3542  * Use this function for usrbuf because only usrbuf can be mmapped.
   3543  * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
   3544  * returns 0.  Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
   3545  * and returns errno.
   3546  * It must be called before updating usrbuf.capacity.
   3547  */
   3548 static int
   3549 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
   3550 {
   3551 	struct audio_softc *sc;
   3552 	vaddr_t vstart;
   3553 	vsize_t oldvsize;
   3554 	vsize_t newvsize;
   3555 	int error;
   3556 
   3557 	KASSERT(newbufsize > 0);
   3558 	sc = track->mixer->sc;
   3559 
   3560 	/* Get a nonzero multiple of PAGE_SIZE */
   3561 	newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
   3562 
   3563 	if (track->usrbuf.mem != NULL) {
   3564 		oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
   3565 		    PAGE_SIZE);
   3566 		if (oldvsize == newvsize) {
   3567 			track->usrbuf.capacity = newbufsize;
   3568 			return 0;
   3569 		}
   3570 		vstart = (vaddr_t)track->usrbuf.mem;
   3571 		uvm_unmap(kernel_map, vstart, vstart + oldvsize);
   3572 		/* uvm_unmap also detach uobj */
   3573 		track->uobj = NULL;		/* paranoia */
   3574 		track->usrbuf.mem = NULL;
   3575 	}
   3576 
   3577 	/* Create a uvm anonymous object */
   3578 	track->uobj = uao_create(newvsize, 0);
   3579 
   3580 	/* Map it into the kernel virtual address space */
   3581 	vstart = 0;
   3582 	error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
   3583 	    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
   3584 	    UVM_ADV_RANDOM, 0));
   3585 	if (error) {
   3586 		device_printf(sc->sc_dev, "uvm_map failed: errno=%d\n", error);
   3587 		uao_detach(track->uobj);	/* release reference */
   3588 		goto abort;
   3589 	}
   3590 
   3591 	error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
   3592 	    false, 0);
   3593 	if (error) {
   3594 		device_printf(sc->sc_dev, "uvm_map_pageable failed: errno=%d\n",
   3595 		    error);
   3596 		uvm_unmap(kernel_map, vstart, vstart + newvsize);
   3597 		/* uvm_unmap also detach uobj */
   3598 		goto abort;
   3599 	}
   3600 
   3601 	track->usrbuf.mem = (void *)vstart;
   3602 	track->usrbuf.capacity = newbufsize;
   3603 	memset(track->usrbuf.mem, 0, newvsize);
   3604 	return 0;
   3605 
   3606 	/* failure */
   3607 abort:
   3608 	track->uobj = NULL;		/* paranoia */
   3609 	track->usrbuf.mem = NULL;
   3610 	track->usrbuf.capacity = 0;
   3611 	return error;
   3612 }
   3613 
   3614 /*
   3615  * Free usrbuf (if available).
   3616  */
   3617 static void
   3618 audio_free_usrbuf(audio_track_t *track)
   3619 {
   3620 	vaddr_t vstart;
   3621 	vsize_t vsize;
   3622 
   3623 	vstart = (vaddr_t)track->usrbuf.mem;
   3624 	vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
   3625 	if (track->usrbuf.mem != NULL) {
   3626 		/*
   3627 		 * Unmap the kernel mapping.  uvm_unmap releases the
   3628 		 * reference to the uvm object, and this should be the
   3629 		 * last virtual mapping of the uvm object, so no need
   3630 		 * to explicitly release (`detach') the object.
   3631 		 */
   3632 		uvm_unmap(kernel_map, vstart, vstart + vsize);
   3633 
   3634 		track->uobj = NULL;
   3635 		track->usrbuf.mem = NULL;
   3636 		track->usrbuf.capacity = 0;
   3637 	}
   3638 }
   3639 
   3640 /*
   3641  * This filter changes the volume for each channel.
   3642  * arg->context points track->ch_volume[].
   3643  */
   3644 static void
   3645 audio_track_chvol(audio_filter_arg_t *arg)
   3646 {
   3647 	int16_t *ch_volume;
   3648 	const aint_t *s;
   3649 	aint_t *d;
   3650 	u_int i;
   3651 	u_int ch;
   3652 	u_int channels;
   3653 
   3654 	DIAGNOSTIC_filter_arg(arg);
   3655 	KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
   3656 	    "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
   3657 	    arg->srcfmt->channels, arg->dstfmt->channels);
   3658 	KASSERT(arg->context != NULL);
   3659 	KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
   3660 	    "arg->srcfmt->channels=%d", arg->srcfmt->channels);
   3661 
   3662 	s = arg->src;
   3663 	d = arg->dst;
   3664 	ch_volume = arg->context;
   3665 
   3666 	channels = arg->srcfmt->channels;
   3667 	for (i = 0; i < arg->count; i++) {
   3668 		for (ch = 0; ch < channels; ch++) {
   3669 			aint2_t val;
   3670 			val = *s++;
   3671 			val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
   3672 			*d++ = (aint_t)val;
   3673 		}
   3674 	}
   3675 }
   3676 
   3677 /*
   3678  * This filter performs conversion from stereo (or more channels) to mono.
   3679  */
   3680 static void
   3681 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
   3682 {
   3683 	const aint_t *s;
   3684 	aint_t *d;
   3685 	u_int i;
   3686 
   3687 	DIAGNOSTIC_filter_arg(arg);
   3688 
   3689 	s = arg->src;
   3690 	d = arg->dst;
   3691 
   3692 	for (i = 0; i < arg->count; i++) {
   3693 		*d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
   3694 		s += arg->srcfmt->channels;
   3695 	}
   3696 }
   3697 
   3698 /*
   3699  * This filter performs conversion from mono to stereo (or more channels).
   3700  */
   3701 static void
   3702 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
   3703 {
   3704 	const aint_t *s;
   3705 	aint_t *d;
   3706 	u_int i;
   3707 	u_int ch;
   3708 	u_int dstchannels;
   3709 
   3710 	DIAGNOSTIC_filter_arg(arg);
   3711 
   3712 	s = arg->src;
   3713 	d = arg->dst;
   3714 	dstchannels = arg->dstfmt->channels;
   3715 
   3716 	for (i = 0; i < arg->count; i++) {
   3717 		d[0] = s[0];
   3718 		d[1] = s[0];
   3719 		s++;
   3720 		d += dstchannels;
   3721 	}
   3722 	if (dstchannels > 2) {
   3723 		d = arg->dst;
   3724 		for (i = 0; i < arg->count; i++) {
   3725 			for (ch = 2; ch < dstchannels; ch++) {
   3726 				d[ch] = 0;
   3727 			}
   3728 			d += dstchannels;
   3729 		}
   3730 	}
   3731 }
   3732 
   3733 /*
   3734  * This filter shrinks M channels into N channels.
   3735  * Extra channels are discarded.
   3736  */
   3737 static void
   3738 audio_track_chmix_shrink(audio_filter_arg_t *arg)
   3739 {
   3740 	const aint_t *s;
   3741 	aint_t *d;
   3742 	u_int i;
   3743 	u_int ch;
   3744 
   3745 	DIAGNOSTIC_filter_arg(arg);
   3746 
   3747 	s = arg->src;
   3748 	d = arg->dst;
   3749 
   3750 	for (i = 0; i < arg->count; i++) {
   3751 		for (ch = 0; ch < arg->dstfmt->channels; ch++) {
   3752 			*d++ = s[ch];
   3753 		}
   3754 		s += arg->srcfmt->channels;
   3755 	}
   3756 }
   3757 
   3758 /*
   3759  * This filter expands M channels into N channels.
   3760  * Silence is inserted for missing channels.
   3761  */
   3762 static void
   3763 audio_track_chmix_expand(audio_filter_arg_t *arg)
   3764 {
   3765 	const aint_t *s;
   3766 	aint_t *d;
   3767 	u_int i;
   3768 	u_int ch;
   3769 	u_int srcchannels;
   3770 	u_int dstchannels;
   3771 
   3772 	DIAGNOSTIC_filter_arg(arg);
   3773 
   3774 	s = arg->src;
   3775 	d = arg->dst;
   3776 
   3777 	srcchannels = arg->srcfmt->channels;
   3778 	dstchannels = arg->dstfmt->channels;
   3779 	for (i = 0; i < arg->count; i++) {
   3780 		for (ch = 0; ch < srcchannels; ch++) {
   3781 			*d++ = *s++;
   3782 		}
   3783 		for (; ch < dstchannels; ch++) {
   3784 			*d++ = 0;
   3785 		}
   3786 	}
   3787 }
   3788 
   3789 /*
   3790  * This filter performs frequency conversion (up sampling).
   3791  * It uses linear interpolation.
   3792  */
   3793 static void
   3794 audio_track_freq_up(audio_filter_arg_t *arg)
   3795 {
   3796 	audio_track_t *track;
   3797 	audio_ring_t *src;
   3798 	audio_ring_t *dst;
   3799 	const aint_t *s;
   3800 	aint_t *d;
   3801 	aint_t prev[AUDIO_MAX_CHANNELS];
   3802 	aint_t curr[AUDIO_MAX_CHANNELS];
   3803 	aint_t grad[AUDIO_MAX_CHANNELS];
   3804 	u_int i;
   3805 	u_int t;
   3806 	u_int step;
   3807 	u_int channels;
   3808 	u_int ch;
   3809 	int srcused;
   3810 
   3811 	track = arg->context;
   3812 	KASSERT(track);
   3813 	src = &track->freq.srcbuf;
   3814 	dst = track->freq.dst;
   3815 	DIAGNOSTIC_ring(dst);
   3816 	DIAGNOSTIC_ring(src);
   3817 	KASSERT(src->used > 0);
   3818 	KASSERTMSG(src->fmt.channels == dst->fmt.channels,
   3819 	    "src->fmt.channels=%d dst->fmt.channels=%d",
   3820 	    src->fmt.channels, dst->fmt.channels);
   3821 	KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
   3822 	    "src->head=%d track->mixer->frames_per_block=%d",
   3823 	    src->head, track->mixer->frames_per_block);
   3824 
   3825 	s = arg->src;
   3826 	d = arg->dst;
   3827 
   3828 	/*
   3829 	 * In order to faciliate interpolation for each block, slide (delay)
   3830 	 * input by one sample.  As a result, strictly speaking, the output
   3831 	 * phase is delayed by 1/dstfreq.  However, I believe there is no
   3832 	 * observable impact.
   3833 	 *
   3834 	 * Example)
   3835 	 * srcfreq:dstfreq = 1:3
   3836 	 *
   3837 	 *  A - -
   3838 	 *  |
   3839 	 *  |
   3840 	 *  |     B - -
   3841 	 *  +-----+-----> input timeframe
   3842 	 *  0     1
   3843 	 *
   3844 	 *  0     1
   3845 	 *  +-----+-----> input timeframe
   3846 	 *  |     A
   3847 	 *  |   x   x
   3848 	 *  | x       x
   3849 	 *  x          (B)
   3850 	 *  +-+-+-+-+-+-> output timeframe
   3851 	 *  0 1 2 3 4 5
   3852 	 */
   3853 
   3854 	/* Last samples in previous block */
   3855 	channels = src->fmt.channels;
   3856 	for (ch = 0; ch < channels; ch++) {
   3857 		prev[ch] = track->freq_prev[ch];
   3858 		curr[ch] = track->freq_curr[ch];
   3859 		grad[ch] = curr[ch] - prev[ch];
   3860 	}
   3861 
   3862 	step = track->freq_step;
   3863 	t = track->freq_current;
   3864 //#define FREQ_DEBUG
   3865 #if defined(FREQ_DEBUG)
   3866 #define PRINTF(fmt...)	printf(fmt)
   3867 #else
   3868 #define PRINTF(fmt...)	do { } while (0)
   3869 #endif
   3870 	srcused = src->used;
   3871 	PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
   3872 	PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
   3873 	PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
   3874 	PRINTF(" t=%d\n", t);
   3875 
   3876 	for (i = 0; i < arg->count; i++) {
   3877 		PRINTF("i=%d t=%5d", i, t);
   3878 		if (t >= 65536) {
   3879 			for (ch = 0; ch < channels; ch++) {
   3880 				prev[ch] = curr[ch];
   3881 				curr[ch] = *s++;
   3882 				grad[ch] = curr[ch] - prev[ch];
   3883 			}
   3884 			PRINTF(" prev=%d s[%d]=%d",
   3885 			    prev[0], src->used - srcused, curr[0]);
   3886 
   3887 			/* Update */
   3888 			t -= 65536;
   3889 			srcused--;
   3890 			if (srcused < 0) {
   3891 				PRINTF(" break\n");
   3892 				break;
   3893 			}
   3894 		}
   3895 
   3896 		for (ch = 0; ch < channels; ch++) {
   3897 			*d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
   3898 #if defined(FREQ_DEBUG)
   3899 			if (ch == 0)
   3900 				printf(" t=%5d *d=%d", t, d[-1]);
   3901 #endif
   3902 		}
   3903 		t += step;
   3904 
   3905 		PRINTF("\n");
   3906 	}
   3907 	PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
   3908 
   3909 	auring_take(src, src->used);
   3910 	auring_push(dst, i);
   3911 
   3912 	/* Adjust */
   3913 	t += track->freq_leap;
   3914 
   3915 	track->freq_current = t;
   3916 	for (ch = 0; ch < channels; ch++) {
   3917 		track->freq_prev[ch] = prev[ch];
   3918 		track->freq_curr[ch] = curr[ch];
   3919 	}
   3920 }
   3921 
   3922 /*
   3923  * This filter performs frequency conversion (down sampling).
   3924  * It uses simple thinning.
   3925  */
   3926 static void
   3927 audio_track_freq_down(audio_filter_arg_t *arg)
   3928 {
   3929 	audio_track_t *track;
   3930 	audio_ring_t *src;
   3931 	audio_ring_t *dst;
   3932 	const aint_t *s0;
   3933 	aint_t *d;
   3934 	u_int i;
   3935 	u_int t;
   3936 	u_int step;
   3937 	u_int ch;
   3938 	u_int channels;
   3939 
   3940 	track = arg->context;
   3941 	KASSERT(track);
   3942 	src = &track->freq.srcbuf;
   3943 	dst = track->freq.dst;
   3944 
   3945 	DIAGNOSTIC_ring(dst);
   3946 	DIAGNOSTIC_ring(src);
   3947 	KASSERT(src->used > 0);
   3948 	KASSERTMSG(src->fmt.channels == dst->fmt.channels,
   3949 	    "src->fmt.channels=%d dst->fmt.channels=%d",
   3950 	    src->fmt.channels, dst->fmt.channels);
   3951 	KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
   3952 	    "src->head=%d track->mixer->frames_per_block=%d",
   3953 	    src->head, track->mixer->frames_per_block);
   3954 
   3955 	s0 = arg->src;
   3956 	d = arg->dst;
   3957 	t = track->freq_current;
   3958 	step = track->freq_step;
   3959 	channels = dst->fmt.channels;
   3960 	PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
   3961 	PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
   3962 	PRINTF(" t=%d\n", t);
   3963 
   3964 	for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
   3965 		const aint_t *s;
   3966 		PRINTF("i=%4d t=%10d", i, t);
   3967 		s = s0 + (t / 65536) * channels;
   3968 		PRINTF(" s=%5ld", (s - s0) / channels);
   3969 		for (ch = 0; ch < channels; ch++) {
   3970 			if (ch == 0) PRINTF(" *s=%d", s[ch]);
   3971 			*d++ = s[ch];
   3972 		}
   3973 		PRINTF("\n");
   3974 		t += step;
   3975 	}
   3976 	t += track->freq_leap;
   3977 	PRINTF("end t=%d\n", t);
   3978 	auring_take(src, src->used);
   3979 	auring_push(dst, i);
   3980 	track->freq_current = t % 65536;
   3981 }
   3982 
   3983 /*
   3984  * Creates track and returns it.
   3985  * Must be called without sc_lock held.
   3986  */
   3987 audio_track_t *
   3988 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
   3989 {
   3990 	audio_track_t *track;
   3991 	static int newid = 0;
   3992 
   3993 	track = kmem_zalloc(sizeof(*track), KM_SLEEP);
   3994 
   3995 	track->id = newid++;
   3996 	track->mixer = mixer;
   3997 	track->mode = mixer->mode;
   3998 
   3999 	/* Do TRACE after id is assigned. */
   4000 	TRACET(3, track, "for %s",
   4001 	    mixer->mode == AUMODE_PLAY ? "playback" : "recording");
   4002 
   4003 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
   4004 	track->volume = 256;
   4005 #endif
   4006 	for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
   4007 		track->ch_volume[i] = 256;
   4008 	}
   4009 
   4010 	return track;
   4011 }
   4012 
   4013 /*
   4014  * Release all resources of the track and track itself.
   4015  * track must not be NULL.  Don't specify the track within the file
   4016  * structure linked from sc->sc_files.
   4017  */
   4018 static void
   4019 audio_track_destroy(audio_track_t *track)
   4020 {
   4021 
   4022 	KASSERT(track);
   4023 
   4024 	audio_free_usrbuf(track);
   4025 	audio_free(track->codec.srcbuf.mem);
   4026 	audio_free(track->chvol.srcbuf.mem);
   4027 	audio_free(track->chmix.srcbuf.mem);
   4028 	audio_free(track->freq.srcbuf.mem);
   4029 	audio_free(track->outbuf.mem);
   4030 
   4031 	kmem_free(track, sizeof(*track));
   4032 }
   4033 
   4034 /*
   4035  * It returns encoding conversion filter according to src and dst format.
   4036  * If it is not a convertible pair, it returns NULL.  Either src or dst
   4037  * must be internal format.
   4038  */
   4039 static audio_filter_t
   4040 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
   4041 	const audio_format2_t *dst)
   4042 {
   4043 
   4044 	if (audio_format2_is_internal(src)) {
   4045 		if (dst->encoding == AUDIO_ENCODING_ULAW) {
   4046 			return audio_internal_to_mulaw;
   4047 		} else if (dst->encoding == AUDIO_ENCODING_ALAW) {
   4048 			return audio_internal_to_alaw;
   4049 		} else if (audio_format2_is_linear(dst)) {
   4050 			switch (dst->stride) {
   4051 			case 8:
   4052 				return audio_internal_to_linear8;
   4053 			case 16:
   4054 				return audio_internal_to_linear16;
   4055 #if defined(AUDIO_SUPPORT_LINEAR24)
   4056 			case 24:
   4057 				return audio_internal_to_linear24;
   4058 #endif
   4059 			case 32:
   4060 				return audio_internal_to_linear32;
   4061 			default:
   4062 				TRACET(1, track, "unsupported %s stride %d",
   4063 				    "dst", dst->stride);
   4064 				goto abort;
   4065 			}
   4066 		}
   4067 	} else if (audio_format2_is_internal(dst)) {
   4068 		if (src->encoding == AUDIO_ENCODING_ULAW) {
   4069 			return audio_mulaw_to_internal;
   4070 		} else if (src->encoding == AUDIO_ENCODING_ALAW) {
   4071 			return audio_alaw_to_internal;
   4072 		} else if (audio_format2_is_linear(src)) {
   4073 			switch (src->stride) {
   4074 			case 8:
   4075 				return audio_linear8_to_internal;
   4076 			case 16:
   4077 				return audio_linear16_to_internal;
   4078 #if defined(AUDIO_SUPPORT_LINEAR24)
   4079 			case 24:
   4080 				return audio_linear24_to_internal;
   4081 #endif
   4082 			case 32:
   4083 				return audio_linear32_to_internal;
   4084 			default:
   4085 				TRACET(1, track, "unsupported %s stride %d",
   4086 				    "src", src->stride);
   4087 				goto abort;
   4088 			}
   4089 		}
   4090 	}
   4091 
   4092 	TRACET(1, track, "unsupported encoding");
   4093 abort:
   4094 #if defined(AUDIO_DEBUG)
   4095 	if (audiodebug >= 2) {
   4096 		char buf[100];
   4097 		audio_format2_tostr(buf, sizeof(buf), src);
   4098 		TRACET(2, track, "src %s", buf);
   4099 		audio_format2_tostr(buf, sizeof(buf), dst);
   4100 		TRACET(2, track, "dst %s", buf);
   4101 	}
   4102 #endif
   4103 	return NULL;
   4104 }
   4105 
   4106 /*
   4107  * Initialize the codec stage of this track as necessary.
   4108  * If successful, it initializes the codec stage as necessary, stores updated
   4109  * last_dst in *last_dstp in any case, and returns 0.
   4110  * Otherwise, it returns errno without modifying *last_dstp.
   4111  */
   4112 static int
   4113 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
   4114 {
   4115 	audio_ring_t *last_dst;
   4116 	audio_ring_t *srcbuf;
   4117 	audio_format2_t *srcfmt;
   4118 	audio_format2_t *dstfmt;
   4119 	audio_filter_arg_t *arg;
   4120 	u_int len;
   4121 	int error;
   4122 
   4123 	KASSERT(track);
   4124 
   4125 	last_dst = *last_dstp;
   4126 	dstfmt = &last_dst->fmt;
   4127 	srcfmt = &track->inputfmt;
   4128 	srcbuf = &track->codec.srcbuf;
   4129 	error = 0;
   4130 
   4131 	if (srcfmt->encoding != dstfmt->encoding
   4132 	 || srcfmt->precision != dstfmt->precision
   4133 	 || srcfmt->stride != dstfmt->stride) {
   4134 		track->codec.dst = last_dst;
   4135 
   4136 		srcbuf->fmt = *dstfmt;
   4137 		srcbuf->fmt.encoding = srcfmt->encoding;
   4138 		srcbuf->fmt.precision = srcfmt->precision;
   4139 		srcbuf->fmt.stride = srcfmt->stride;
   4140 
   4141 		track->codec.filter = audio_track_get_codec(track,
   4142 		    &srcbuf->fmt, dstfmt);
   4143 		if (track->codec.filter == NULL) {
   4144 			error = EINVAL;
   4145 			goto abort;
   4146 		}
   4147 
   4148 		srcbuf->head = 0;
   4149 		srcbuf->used = 0;
   4150 		srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
   4151 		len = auring_bytelen(srcbuf);
   4152 		srcbuf->mem = audio_realloc(srcbuf->mem, len);
   4153 
   4154 		arg = &track->codec.arg;
   4155 		arg->srcfmt = &srcbuf->fmt;
   4156 		arg->dstfmt = dstfmt;
   4157 		arg->context = NULL;
   4158 
   4159 		*last_dstp = srcbuf;
   4160 		return 0;
   4161 	}
   4162 
   4163 abort:
   4164 	track->codec.filter = NULL;
   4165 	audio_free(srcbuf->mem);
   4166 	return error;
   4167 }
   4168 
   4169 /*
   4170  * Initialize the chvol stage of this track as necessary.
   4171  * If successful, it initializes the chvol stage as necessary, stores updated
   4172  * last_dst in *last_dstp in any case, and returns 0.
   4173  * Otherwise, it returns errno without modifying *last_dstp.
   4174  */
   4175 static int
   4176 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
   4177 {
   4178 	audio_ring_t *last_dst;
   4179 	audio_ring_t *srcbuf;
   4180 	audio_format2_t *srcfmt;
   4181 	audio_format2_t *dstfmt;
   4182 	audio_filter_arg_t *arg;
   4183 	u_int len;
   4184 	int error;
   4185 
   4186 	KASSERT(track);
   4187 
   4188 	last_dst = *last_dstp;
   4189 	dstfmt = &last_dst->fmt;
   4190 	srcfmt = &track->inputfmt;
   4191 	srcbuf = &track->chvol.srcbuf;
   4192 	error = 0;
   4193 
   4194 	/* Check whether channel volume conversion is necessary. */
   4195 	bool use_chvol = false;
   4196 	for (int ch = 0; ch < srcfmt->channels; ch++) {
   4197 		if (track->ch_volume[ch] != 256) {
   4198 			use_chvol = true;
   4199 			break;
   4200 		}
   4201 	}
   4202 
   4203 	if (use_chvol == true) {
   4204 		track->chvol.dst = last_dst;
   4205 		track->chvol.filter = audio_track_chvol;
   4206 
   4207 		srcbuf->fmt = *dstfmt;
   4208 		/* no format conversion occurs */
   4209 
   4210 		srcbuf->head = 0;
   4211 		srcbuf->used = 0;
   4212 		srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
   4213 		len = auring_bytelen(srcbuf);
   4214 		srcbuf->mem = audio_realloc(srcbuf->mem, len);
   4215 
   4216 		arg = &track->chvol.arg;
   4217 		arg->srcfmt = &srcbuf->fmt;
   4218 		arg->dstfmt = dstfmt;
   4219 		arg->context = track->ch_volume;
   4220 
   4221 		*last_dstp = srcbuf;
   4222 		return 0;
   4223 	}
   4224 
   4225 	track->chvol.filter = NULL;
   4226 	audio_free(srcbuf->mem);
   4227 	return error;
   4228 }
   4229 
   4230 /*
   4231  * Initialize the chmix stage of this track as necessary.
   4232  * If successful, it initializes the chmix stage as necessary, stores updated
   4233  * last_dst in *last_dstp in any case, and returns 0.
   4234  * Otherwise, it returns errno without modifying *last_dstp.
   4235  */
   4236 static int
   4237 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
   4238 {
   4239 	audio_ring_t *last_dst;
   4240 	audio_ring_t *srcbuf;
   4241 	audio_format2_t *srcfmt;
   4242 	audio_format2_t *dstfmt;
   4243 	audio_filter_arg_t *arg;
   4244 	u_int srcch;
   4245 	u_int dstch;
   4246 	u_int len;
   4247 	int error;
   4248 
   4249 	KASSERT(track);
   4250 
   4251 	last_dst = *last_dstp;
   4252 	dstfmt = &last_dst->fmt;
   4253 	srcfmt = &track->inputfmt;
   4254 	srcbuf = &track->chmix.srcbuf;
   4255 	error = 0;
   4256 
   4257 	srcch = srcfmt->channels;
   4258 	dstch = dstfmt->channels;
   4259 	if (srcch != dstch) {
   4260 		track->chmix.dst = last_dst;
   4261 
   4262 		if (srcch >= 2 && dstch == 1) {
   4263 			track->chmix.filter = audio_track_chmix_mixLR;
   4264 		} else if (srcch == 1 && dstch >= 2) {
   4265 			track->chmix.filter = audio_track_chmix_dupLR;
   4266 		} else if (srcch > dstch) {
   4267 			track->chmix.filter = audio_track_chmix_shrink;
   4268 		} else {
   4269 			track->chmix.filter = audio_track_chmix_expand;
   4270 		}
   4271 
   4272 		srcbuf->fmt = *dstfmt;
   4273 		srcbuf->fmt.channels = srcch;
   4274 
   4275 		srcbuf->head = 0;
   4276 		srcbuf->used = 0;
   4277 		/* XXX The buffer size should be able to calculate. */
   4278 		srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
   4279 		len = auring_bytelen(srcbuf);
   4280 		srcbuf->mem = audio_realloc(srcbuf->mem, len);
   4281 
   4282 		arg = &track->chmix.arg;
   4283 		arg->srcfmt = &srcbuf->fmt;
   4284 		arg->dstfmt = dstfmt;
   4285 		arg->context = NULL;
   4286 
   4287 		*last_dstp = srcbuf;
   4288 		return 0;
   4289 	}
   4290 
   4291 	track->chmix.filter = NULL;
   4292 	audio_free(srcbuf->mem);
   4293 	return error;
   4294 }
   4295 
   4296 /*
   4297  * Initialize the freq stage of this track as necessary.
   4298  * If successful, it initializes the freq stage as necessary, stores updated
   4299  * last_dst in *last_dstp in any case, and returns 0.
   4300  * Otherwise, it returns errno without modifying *last_dstp.
   4301  */
   4302 static int
   4303 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
   4304 {
   4305 	audio_ring_t *last_dst;
   4306 	audio_ring_t *srcbuf;
   4307 	audio_format2_t *srcfmt;
   4308 	audio_format2_t *dstfmt;
   4309 	audio_filter_arg_t *arg;
   4310 	uint32_t srcfreq;
   4311 	uint32_t dstfreq;
   4312 	u_int dst_capacity;
   4313 	u_int mod;
   4314 	u_int len;
   4315 	int error;
   4316 
   4317 	KASSERT(track);
   4318 
   4319 	last_dst = *last_dstp;
   4320 	dstfmt = &last_dst->fmt;
   4321 	srcfmt = &track->inputfmt;
   4322 	srcbuf = &track->freq.srcbuf;
   4323 	error = 0;
   4324 
   4325 	srcfreq = srcfmt->sample_rate;
   4326 	dstfreq = dstfmt->sample_rate;
   4327 	if (srcfreq != dstfreq) {
   4328 		track->freq.dst = last_dst;
   4329 
   4330 		memset(track->freq_prev, 0, sizeof(track->freq_prev));
   4331 		memset(track->freq_curr, 0, sizeof(track->freq_curr));
   4332 
   4333 		/* freq_step is the ratio of src/dst when let dst 65536. */
   4334 		track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
   4335 
   4336 		dst_capacity = frame_per_block(track->mixer, dstfmt);
   4337 		mod = (uint64_t)srcfreq * 65536 % dstfreq;
   4338 		track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
   4339 
   4340 		if (track->freq_step < 65536) {
   4341 			track->freq.filter = audio_track_freq_up;
   4342 			/* In order to carry at the first time. */
   4343 			track->freq_current = 65536;
   4344 		} else {
   4345 			track->freq.filter = audio_track_freq_down;
   4346 			track->freq_current = 0;
   4347 		}
   4348 
   4349 		srcbuf->fmt = *dstfmt;
   4350 		srcbuf->fmt.sample_rate = srcfreq;
   4351 
   4352 		srcbuf->head = 0;
   4353 		srcbuf->used = 0;
   4354 		srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
   4355 		len = auring_bytelen(srcbuf);
   4356 		srcbuf->mem = audio_realloc(srcbuf->mem, len);
   4357 
   4358 		arg = &track->freq.arg;
   4359 		arg->srcfmt = &srcbuf->fmt;
   4360 		arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
   4361 		arg->context = track;
   4362 
   4363 		*last_dstp = srcbuf;
   4364 		return 0;
   4365 	}
   4366 
   4367 	track->freq.filter = NULL;
   4368 	audio_free(srcbuf->mem);
   4369 	return error;
   4370 }
   4371 
   4372 /*
   4373  * When playing back: (e.g. if codec and freq stage are valid)
   4374  *
   4375  *               write
   4376  *                | uiomove
   4377  *                v
   4378  *  usrbuf      [...............]  byte ring buffer (mmap-able)
   4379  *                | memcpy
   4380  *                v
   4381  *  codec.srcbuf[....]             1 block (ring) buffer   <-- stage input
   4382  *       .dst ----+
   4383  *                | convert
   4384  *                v
   4385  *  freq.srcbuf [....]             1 block (ring) buffer
   4386  *      .dst  ----+
   4387  *                | convert
   4388  *                v
   4389  *  outbuf      [...............]  NBLKOUT blocks ring buffer
   4390  *
   4391  *
   4392  * When recording:
   4393  *
   4394  *  freq.srcbuf [...............]  NBLKOUT blocks ring buffer <-- stage input
   4395  *      .dst  ----+
   4396  *                | convert
   4397  *                v
   4398  *  codec.srcbuf[.....]            1 block (ring) buffer
   4399  *       .dst ----+
   4400  *                | convert
   4401  *                v
   4402  *  outbuf      [.....]            1 block (ring) buffer
   4403  *                | memcpy
   4404  *                v
   4405  *  usrbuf      [...............]  byte ring buffer (mmap-able *)
   4406  *                | uiomove
   4407  *                v
   4408  *               read
   4409  *
   4410  *    *: usrbuf for recording is also mmap-able due to symmetry with
   4411  *       playback buffer, but for now mmap will never happen for recording.
   4412  */
   4413 
   4414 /*
   4415  * Set the userland format of this track.
   4416  * usrfmt argument should have been previously verified by
   4417  * audio_track_setinfo_check().
   4418  * This function may release and reallocate all internal conversion buffers.
   4419  * It returns 0 if successful.  Otherwise it returns errno with clearing all
   4420  * internal buffers.
   4421  * It must be called without sc_intr_lock since uvm_* routines require non
   4422  * intr_lock state.
   4423  * It must be called with track lock held since it may release and reallocate
   4424  * outbuf.
   4425  */
   4426 static int
   4427 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
   4428 {
   4429 	struct audio_softc *sc;
   4430 	u_int newbufsize;
   4431 	u_int oldblksize;
   4432 	u_int len;
   4433 	int error;
   4434 
   4435 	KASSERT(track);
   4436 	sc = track->mixer->sc;
   4437 
   4438 	/* usrbuf is the closest buffer to the userland. */
   4439 	track->usrbuf.fmt = *usrfmt;
   4440 
   4441 	/*
   4442 	 * For references, one block size (in 40msec) is:
   4443 	 *  320 bytes    = 204 blocks/64KB for mulaw/8kHz/1ch
   4444 	 *  7680 bytes   = 8 blocks/64KB for s16/48kHz/2ch
   4445 	 *  30720 bytes  = 90 KB/3blocks for s16/48kHz/8ch
   4446 	 *  61440 bytes  = 180 KB/3blocks for s16/96kHz/8ch
   4447 	 *  245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
   4448 	 *
   4449 	 * For example,
   4450 	 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
   4451 	 *     newbufsize = rounddown(65536 / 7056) = 63504
   4452 	 *     newvsize = roundup2(63504, PAGE_SIZE) = 65536
   4453 	 *    Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
   4454 	 *
   4455 	 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
   4456 	 *     newbufsize = rounddown(65536 / 7680) = 61440
   4457 	 *     newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
   4458 	 *    Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
   4459 	 */
   4460 	oldblksize = track->usrbuf_blksize;
   4461 	track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
   4462 	    frame_per_block(track->mixer, &track->usrbuf.fmt));
   4463 	track->usrbuf.head = 0;
   4464 	track->usrbuf.used = 0;
   4465 	newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
   4466 	newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
   4467 	error = audio_realloc_usrbuf(track, newbufsize);
   4468 	if (error) {
   4469 		device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
   4470 		    newbufsize);
   4471 		goto error;
   4472 	}
   4473 
   4474 	/* Recalc water mark. */
   4475 	if (track->usrbuf_blksize != oldblksize) {
   4476 		if (audio_track_is_playback(track)) {
   4477 			/* Set high at 100%, low at 75%.  */
   4478 			track->usrbuf_usedhigh = track->usrbuf.capacity;
   4479 			track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
   4480 		} else {
   4481 			/* Set high at 100% minus 1block(?), low at 0% */
   4482 			track->usrbuf_usedhigh = track->usrbuf.capacity -
   4483 			    track->usrbuf_blksize;
   4484 			track->usrbuf_usedlow = 0;
   4485 		}
   4486 	}
   4487 
   4488 	/* Stage buffer */
   4489 	audio_ring_t *last_dst = &track->outbuf;
   4490 	if (audio_track_is_playback(track)) {
   4491 		/* On playback, initialize from the mixer side in order. */
   4492 		track->inputfmt = *usrfmt;
   4493 		track->outbuf.fmt =  track->mixer->track_fmt;
   4494 
   4495 		if ((error = audio_track_init_freq(track, &last_dst)) != 0)
   4496 			goto error;
   4497 		if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
   4498 			goto error;
   4499 		if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
   4500 			goto error;
   4501 		if ((error = audio_track_init_codec(track, &last_dst)) != 0)
   4502 			goto error;
   4503 	} else {
   4504 		/* On recording, initialize from userland side in order. */
   4505 		track->inputfmt = track->mixer->track_fmt;
   4506 		track->outbuf.fmt = *usrfmt;
   4507 
   4508 		if ((error = audio_track_init_codec(track, &last_dst)) != 0)
   4509 			goto error;
   4510 		if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
   4511 			goto error;
   4512 		if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
   4513 			goto error;
   4514 		if ((error = audio_track_init_freq(track, &last_dst)) != 0)
   4515 			goto error;
   4516 	}
   4517 #if 0
   4518 	/* debug */
   4519 	if (track->freq.filter) {
   4520 		audio_print_format2("freq src", &track->freq.srcbuf.fmt);
   4521 		audio_print_format2("freq dst", &track->freq.dst->fmt);
   4522 	}
   4523 	if (track->chmix.filter) {
   4524 		audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
   4525 		audio_print_format2("chmix dst", &track->chmix.dst->fmt);
   4526 	}
   4527 	if (track->chvol.filter) {
   4528 		audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
   4529 		audio_print_format2("chvol dst", &track->chvol.dst->fmt);
   4530 	}
   4531 	if (track->codec.filter) {
   4532 		audio_print_format2("codec src", &track->codec.srcbuf.fmt);
   4533 		audio_print_format2("codec dst", &track->codec.dst->fmt);
   4534 	}
   4535 #endif
   4536 
   4537 	/* Stage input buffer */
   4538 	track->input = last_dst;
   4539 
   4540 	/*
   4541 	 * On the recording track, make the first stage a ring buffer.
   4542 	 * XXX is there a better way?
   4543 	 */
   4544 	if (audio_track_is_record(track)) {
   4545 		track->input->capacity = NBLKOUT *
   4546 		    frame_per_block(track->mixer, &track->input->fmt);
   4547 		len = auring_bytelen(track->input);
   4548 		track->input->mem = audio_realloc(track->input->mem, len);
   4549 	}
   4550 
   4551 	/*
   4552 	 * Output buffer.
   4553 	 * On the playback track, its capacity is NBLKOUT blocks.
   4554 	 * On the recording track, its capacity is 1 block.
   4555 	 */
   4556 	track->outbuf.head = 0;
   4557 	track->outbuf.used = 0;
   4558 	track->outbuf.capacity = frame_per_block(track->mixer,
   4559 	    &track->outbuf.fmt);
   4560 	if (audio_track_is_playback(track))
   4561 		track->outbuf.capacity *= NBLKOUT;
   4562 	len = auring_bytelen(&track->outbuf);
   4563 	track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
   4564 	if (track->outbuf.mem == NULL) {
   4565 		device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
   4566 		error = ENOMEM;
   4567 		goto error;
   4568 	}
   4569 
   4570 #if defined(AUDIO_DEBUG)
   4571 	if (audiodebug >= 3) {
   4572 		struct audio_track_debugbuf m;
   4573 
   4574 		memset(&m, 0, sizeof(m));
   4575 		snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
   4576 		    track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
   4577 		if (track->freq.filter)
   4578 			snprintf(m.freq, sizeof(m.freq), " freq=%d",
   4579 			    track->freq.srcbuf.capacity *
   4580 			    frametobyte(&track->freq.srcbuf.fmt, 1));
   4581 		if (track->chmix.filter)
   4582 			snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
   4583 			    track->chmix.srcbuf.capacity *
   4584 			    frametobyte(&track->chmix.srcbuf.fmt, 1));
   4585 		if (track->chvol.filter)
   4586 			snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
   4587 			    track->chvol.srcbuf.capacity *
   4588 			    frametobyte(&track->chvol.srcbuf.fmt, 1));
   4589 		if (track->codec.filter)
   4590 			snprintf(m.codec, sizeof(m.codec), " codec=%d",
   4591 			    track->codec.srcbuf.capacity *
   4592 			    frametobyte(&track->codec.srcbuf.fmt, 1));
   4593 		snprintf(m.usrbuf, sizeof(m.usrbuf),
   4594 		    " usr=%d", track->usrbuf.capacity);
   4595 
   4596 		if (audio_track_is_playback(track)) {
   4597 			TRACET(0, track, "bufsize%s%s%s%s%s%s",
   4598 			    m.outbuf, m.freq, m.chmix,
   4599 			    m.chvol, m.codec, m.usrbuf);
   4600 		} else {
   4601 			TRACET(0, track, "bufsize%s%s%s%s%s%s",
   4602 			    m.freq, m.chmix, m.chvol,
   4603 			    m.codec, m.outbuf, m.usrbuf);
   4604 		}
   4605 	}
   4606 #endif
   4607 	return 0;
   4608 
   4609 error:
   4610 	audio_free_usrbuf(track);
   4611 	audio_free(track->codec.srcbuf.mem);
   4612 	audio_free(track->chvol.srcbuf.mem);
   4613 	audio_free(track->chmix.srcbuf.mem);
   4614 	audio_free(track->freq.srcbuf.mem);
   4615 	audio_free(track->outbuf.mem);
   4616 	return error;
   4617 }
   4618 
   4619 /*
   4620  * Fill silence frames (as the internal format) up to 1 block
   4621  * if the ring is not empty and less than 1 block.
   4622  * It returns the number of appended frames.
   4623  */
   4624 static int
   4625 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
   4626 {
   4627 	int fpb;
   4628 	int n;
   4629 
   4630 	KASSERT(track);
   4631 	KASSERT(audio_format2_is_internal(&ring->fmt));
   4632 
   4633 	/* XXX is n correct? */
   4634 	/* XXX memset uses frametobyte()? */
   4635 
   4636 	if (ring->used == 0)
   4637 		return 0;
   4638 
   4639 	fpb = frame_per_block(track->mixer, &ring->fmt);
   4640 	if (ring->used >= fpb)
   4641 		return 0;
   4642 
   4643 	n = (ring->capacity - ring->used) % fpb;
   4644 
   4645 	KASSERTMSG(auring_get_contig_free(ring) >= n,
   4646 	    "auring_get_contig_free(ring)=%d n=%d",
   4647 	    auring_get_contig_free(ring), n);
   4648 
   4649 	memset(auring_tailptr_aint(ring), 0,
   4650 	    n * ring->fmt.channels * sizeof(aint_t));
   4651 	auring_push(ring, n);
   4652 	return n;
   4653 }
   4654 
   4655 /*
   4656  * Execute the conversion stage.
   4657  * It prepares arg from this stage and executes stage->filter.
   4658  * It must be called only if stage->filter is not NULL.
   4659  *
   4660  * For stages other than frequency conversion, the function increments
   4661  * src and dst counters here.  For frequency conversion stage, on the
   4662  * other hand, the function does not touch src and dst counters and
   4663  * filter side has to increment them.
   4664  */
   4665 static void
   4666 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
   4667 {
   4668 	audio_filter_arg_t *arg;
   4669 	int srccount;
   4670 	int dstcount;
   4671 	int count;
   4672 
   4673 	KASSERT(track);
   4674 	KASSERT(stage->filter);
   4675 
   4676 	srccount = auring_get_contig_used(&stage->srcbuf);
   4677 	dstcount = auring_get_contig_free(stage->dst);
   4678 
   4679 	if (isfreq) {
   4680 		KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
   4681 		count = uimin(dstcount, track->mixer->frames_per_block);
   4682 	} else {
   4683 		count = uimin(srccount, dstcount);
   4684 	}
   4685 
   4686 	if (count > 0) {
   4687 		arg = &stage->arg;
   4688 		arg->src = auring_headptr(&stage->srcbuf);
   4689 		arg->dst = auring_tailptr(stage->dst);
   4690 		arg->count = count;
   4691 
   4692 		stage->filter(arg);
   4693 
   4694 		if (!isfreq) {
   4695 			auring_take(&stage->srcbuf, count);
   4696 			auring_push(stage->dst, count);
   4697 		}
   4698 	}
   4699 }
   4700 
   4701 /*
   4702  * Produce output buffer for playback from user input buffer.
   4703  * It must be called only if usrbuf is not empty and outbuf is
   4704  * available at least one free block.
   4705  */
   4706 static void
   4707 audio_track_play(audio_track_t *track)
   4708 {
   4709 	audio_ring_t *usrbuf;
   4710 	audio_ring_t *input;
   4711 	int count;
   4712 	int framesize;
   4713 	int bytes;
   4714 
   4715 	KASSERT(track);
   4716 	KASSERT(track->lock);
   4717 	TRACET(4, track, "start pstate=%d", track->pstate);
   4718 
   4719 	/* At this point usrbuf must not be empty. */
   4720 	KASSERT(track->usrbuf.used > 0);
   4721 	/* Also, outbuf must be available at least one block. */
   4722 	count = auring_get_contig_free(&track->outbuf);
   4723 	KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
   4724 	    "count=%d fpb=%d",
   4725 	    count, frame_per_block(track->mixer, &track->outbuf.fmt));
   4726 
   4727 	/* XXX TODO: is this necessary for now? */
   4728 	int track_count_0 = track->outbuf.used;
   4729 
   4730 	usrbuf = &track->usrbuf;
   4731 	input = track->input;
   4732 
   4733 	/*
   4734 	 * framesize is always 1 byte or more since all formats supported as
   4735 	 * usrfmt(=input) have 8bit or more stride.
   4736 	 */
   4737 	framesize = frametobyte(&input->fmt, 1);
   4738 	KASSERT(framesize >= 1);
   4739 
   4740 	/* The next stage of usrbuf (=input) must be available. */
   4741 	KASSERT(auring_get_contig_free(input) > 0);
   4742 
   4743 	/*
   4744 	 * Copy usrbuf up to 1block to input buffer.
   4745 	 * count is the number of frames to copy from usrbuf.
   4746 	 * bytes is the number of bytes to copy from usrbuf.  However it is
   4747 	 * not copied less than one frame.
   4748 	 */
   4749 	count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
   4750 	bytes = count * framesize;
   4751 
   4752 	track->usrbuf_stamp += bytes;
   4753 
   4754 	if (usrbuf->head + bytes < usrbuf->capacity) {
   4755 		memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
   4756 		    (uint8_t *)usrbuf->mem + usrbuf->head,
   4757 		    bytes);
   4758 		auring_push(input, count);
   4759 		auring_take(usrbuf, bytes);
   4760 	} else {
   4761 		int bytes1;
   4762 		int bytes2;
   4763 
   4764 		bytes1 = auring_get_contig_used(usrbuf);
   4765 		KASSERTMSG(bytes1 % framesize == 0,
   4766 		    "bytes1=%d framesize=%d", bytes1, framesize);
   4767 		memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
   4768 		    (uint8_t *)usrbuf->mem + usrbuf->head,
   4769 		    bytes1);
   4770 		auring_push(input, bytes1 / framesize);
   4771 		auring_take(usrbuf, bytes1);
   4772 
   4773 		bytes2 = bytes - bytes1;
   4774 		memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
   4775 		    (uint8_t *)usrbuf->mem + usrbuf->head,
   4776 		    bytes2);
   4777 		auring_push(input, bytes2 / framesize);
   4778 		auring_take(usrbuf, bytes2);
   4779 	}
   4780 
   4781 	/* Encoding conversion */
   4782 	if (track->codec.filter)
   4783 		audio_apply_stage(track, &track->codec, false);
   4784 
   4785 	/* Channel volume */
   4786 	if (track->chvol.filter)
   4787 		audio_apply_stage(track, &track->chvol, false);
   4788 
   4789 	/* Channel mix */
   4790 	if (track->chmix.filter)
   4791 		audio_apply_stage(track, &track->chmix, false);
   4792 
   4793 	/* Frequency conversion */
   4794 	/*
   4795 	 * Since the frequency conversion needs correction for each block,
   4796 	 * it rounds up to 1 block.
   4797 	 */
   4798 	if (track->freq.filter) {
   4799 		int n;
   4800 		n = audio_append_silence(track, &track->freq.srcbuf);
   4801 		if (n > 0) {
   4802 			TRACET(4, track,
   4803 			    "freq.srcbuf add silence %d -> %d/%d/%d",
   4804 			    n,
   4805 			    track->freq.srcbuf.head,
   4806 			    track->freq.srcbuf.used,
   4807 			    track->freq.srcbuf.capacity);
   4808 		}
   4809 		if (track->freq.srcbuf.used > 0) {
   4810 			audio_apply_stage(track, &track->freq, true);
   4811 		}
   4812 	}
   4813 
   4814 	if (bytes < track->usrbuf_blksize) {
   4815 		/*
   4816 		 * Clear all conversion buffer pointer if the conversion was
   4817 		 * not exactly one block.  These conversion stage buffers are
   4818 		 * certainly circular buffers because of symmetry with the
   4819 		 * previous and next stage buffer.  However, since they are
   4820 		 * treated as simple contiguous buffers in operation, so head
   4821 		 * always should point 0.  This may happen during drain-age.
   4822 		 */
   4823 		TRACET(4, track, "reset stage");
   4824 		if (track->codec.filter) {
   4825 			KASSERT(track->codec.srcbuf.used == 0);
   4826 			track->codec.srcbuf.head = 0;
   4827 		}
   4828 		if (track->chvol.filter) {
   4829 			KASSERT(track->chvol.srcbuf.used == 0);
   4830 			track->chvol.srcbuf.head = 0;
   4831 		}
   4832 		if (track->chmix.filter) {
   4833 			KASSERT(track->chmix.srcbuf.used == 0);
   4834 			track->chmix.srcbuf.head = 0;
   4835 		}
   4836 		if (track->freq.filter) {
   4837 			KASSERT(track->freq.srcbuf.used == 0);
   4838 			track->freq.srcbuf.head = 0;
   4839 		}
   4840 	}
   4841 
   4842 	if (track->input == &track->outbuf) {
   4843 		track->outputcounter = track->inputcounter;
   4844 	} else {
   4845 		track->outputcounter += track->outbuf.used - track_count_0;
   4846 	}
   4847 
   4848 #if defined(AUDIO_DEBUG)
   4849 	if (audiodebug >= 3) {
   4850 		struct audio_track_debugbuf m;
   4851 		audio_track_bufstat(track, &m);
   4852 		TRACET(0, track, "end%s%s%s%s%s%s",
   4853 		    m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
   4854 	}
   4855 #endif
   4856 }
   4857 
   4858 /*
   4859  * Produce user output buffer for recording from input buffer.
   4860  */
   4861 static void
   4862 audio_track_record(audio_track_t *track)
   4863 {
   4864 	audio_ring_t *outbuf;
   4865 	audio_ring_t *usrbuf;
   4866 	int count;
   4867 	int bytes;
   4868 	int framesize;
   4869 
   4870 	KASSERT(track);
   4871 	KASSERT(track->lock);
   4872 
   4873 	/* Number of frames to process */
   4874 	count = auring_get_contig_used(track->input);
   4875 	count = uimin(count, track->mixer->frames_per_block);
   4876 	if (count == 0) {
   4877 		TRACET(4, track, "count == 0");
   4878 		return;
   4879 	}
   4880 
   4881 	/* Frequency conversion */
   4882 	if (track->freq.filter) {
   4883 		if (track->freq.srcbuf.used > 0) {
   4884 			audio_apply_stage(track, &track->freq, true);
   4885 			/* XXX should input of freq be from beginning of buf? */
   4886 		}
   4887 	}
   4888 
   4889 	/* Channel mix */
   4890 	if (track->chmix.filter)
   4891 		audio_apply_stage(track, &track->chmix, false);
   4892 
   4893 	/* Channel volume */
   4894 	if (track->chvol.filter)
   4895 		audio_apply_stage(track, &track->chvol, false);
   4896 
   4897 	/* Encoding conversion */
   4898 	if (track->codec.filter)
   4899 		audio_apply_stage(track, &track->codec, false);
   4900 
   4901 	/* Copy outbuf to usrbuf */
   4902 	outbuf = &track->outbuf;
   4903 	usrbuf = &track->usrbuf;
   4904 	/*
   4905 	 * framesize is always 1 byte or more since all formats supported
   4906 	 * as usrfmt(=output) have 8bit or more stride.
   4907 	 */
   4908 	framesize = frametobyte(&outbuf->fmt, 1);
   4909 	KASSERT(framesize >= 1);
   4910 	/*
   4911 	 * count is the number of frames to copy to usrbuf.
   4912 	 * bytes is the number of bytes to copy to usrbuf.
   4913 	 */
   4914 	count = outbuf->used;
   4915 	count = uimin(count,
   4916 	    (track->usrbuf_usedhigh - usrbuf->used) / framesize);
   4917 	bytes = count * framesize;
   4918 	if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
   4919 		memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
   4920 		    (uint8_t *)outbuf->mem + outbuf->head * framesize,
   4921 		    bytes);
   4922 		auring_push(usrbuf, bytes);
   4923 		auring_take(outbuf, count);
   4924 	} else {
   4925 		int bytes1;
   4926 		int bytes2;
   4927 
   4928 		bytes1 = auring_get_contig_free(usrbuf);
   4929 		KASSERTMSG(bytes1 % framesize == 0,
   4930 		    "bytes1=%d framesize=%d", bytes1, framesize);
   4931 		memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
   4932 		    (uint8_t *)outbuf->mem + outbuf->head * framesize,
   4933 		    bytes1);
   4934 		auring_push(usrbuf, bytes1);
   4935 		auring_take(outbuf, bytes1 / framesize);
   4936 
   4937 		bytes2 = bytes - bytes1;
   4938 		memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
   4939 		    (uint8_t *)outbuf->mem + outbuf->head * framesize,
   4940 		    bytes2);
   4941 		auring_push(usrbuf, bytes2);
   4942 		auring_take(outbuf, bytes2 / framesize);
   4943 	}
   4944 
   4945 	/* XXX TODO: any counters here? */
   4946 
   4947 #if defined(AUDIO_DEBUG)
   4948 	if (audiodebug >= 3) {
   4949 		struct audio_track_debugbuf m;
   4950 		audio_track_bufstat(track, &m);
   4951 		TRACET(0, track, "end%s%s%s%s%s%s",
   4952 		    m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
   4953 	}
   4954 #endif
   4955 }
   4956 
   4957 /*
   4958  * Calculate blktime [msec] from mixer(.hwbuf.fmt).
   4959  * Must be called with sc_exlock held.
   4960  */
   4961 static u_int
   4962 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
   4963 {
   4964 	audio_format2_t *fmt;
   4965 	u_int blktime;
   4966 	u_int frames_per_block;
   4967 
   4968 	KASSERT(sc->sc_exlock);
   4969 
   4970 	fmt = &mixer->hwbuf.fmt;
   4971 	blktime = sc->sc_blk_ms;
   4972 
   4973 	/*
   4974 	 * If stride is not multiples of 8, special treatment is necessary.
   4975 	 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
   4976 	 */
   4977 	if (fmt->stride == 4) {
   4978 		frames_per_block = fmt->sample_rate * blktime / 1000;
   4979 		if ((frames_per_block & 1) != 0)
   4980 			blktime *= 2;
   4981 	}
   4982 #ifdef DIAGNOSTIC
   4983 	else if (fmt->stride % NBBY != 0) {
   4984 		panic("unsupported HW stride %d", fmt->stride);
   4985 	}
   4986 #endif
   4987 
   4988 	return blktime;
   4989 }
   4990 
   4991 /*
   4992  * Initialize the mixer corresponding to the mode.
   4993  * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
   4994  * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
   4995  * This function returns 0 on successful.  Otherwise returns errno.
   4996  * Must be called with sc_exlock held and without sc_lock held.
   4997  */
   4998 static int
   4999 audio_mixer_init(struct audio_softc *sc, int mode,
   5000 	const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
   5001 {
   5002 	char codecbuf[64];
   5003 	char blkdmsbuf[8];
   5004 	audio_trackmixer_t *mixer;
   5005 	void (*softint_handler)(void *);
   5006 	int len;
   5007 	int blksize;
   5008 	int capacity;
   5009 	size_t bufsize;
   5010 	int hwblks;
   5011 	int blkms;
   5012 	int blkdms;
   5013 	int error;
   5014 
   5015 	KASSERT(hwfmt != NULL);
   5016 	KASSERT(reg != NULL);
   5017 	KASSERT(sc->sc_exlock);
   5018 
   5019 	error = 0;
   5020 	if (mode == AUMODE_PLAY)
   5021 		mixer = sc->sc_pmixer;
   5022 	else
   5023 		mixer = sc->sc_rmixer;
   5024 
   5025 	mixer->sc = sc;
   5026 	mixer->mode = mode;
   5027 
   5028 	mixer->hwbuf.fmt = *hwfmt;
   5029 	mixer->volume = 256;
   5030 	mixer->blktime_d = 1000;
   5031 	mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
   5032 	sc->sc_blk_ms = mixer->blktime_n;
   5033 	hwblks = NBLKHW;
   5034 
   5035 	mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
   5036 	blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
   5037 	if (sc->hw_if->round_blocksize) {
   5038 		int rounded;
   5039 		audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
   5040 		mutex_enter(sc->sc_lock);
   5041 		rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
   5042 		    mode, &p);
   5043 		mutex_exit(sc->sc_lock);
   5044 		TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
   5045 		if (rounded != blksize) {
   5046 			if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
   5047 			    mixer->hwbuf.fmt.channels) != 0) {
   5048 				audio_printf(sc,
   5049 				    "round_blocksize returned blocksize "
   5050 				    "indivisible by framesize: "
   5051 				    "blksize=%d rounded=%d "
   5052 				    "stride=%ubit channels=%u\n",
   5053 				    blksize, rounded,
   5054 				    mixer->hwbuf.fmt.stride,
   5055 				    mixer->hwbuf.fmt.channels);
   5056 				return EINVAL;
   5057 			}
   5058 			/* Recalculation */
   5059 			blksize = rounded;
   5060 			mixer->frames_per_block = blksize * NBBY /
   5061 			    (mixer->hwbuf.fmt.stride *
   5062 			     mixer->hwbuf.fmt.channels);
   5063 		}
   5064 	}
   5065 	mixer->blktime_n = mixer->frames_per_block;
   5066 	mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
   5067 
   5068 	capacity = mixer->frames_per_block * hwblks;
   5069 	bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
   5070 	if (sc->hw_if->round_buffersize) {
   5071 		size_t rounded;
   5072 		mutex_enter(sc->sc_lock);
   5073 		rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
   5074 		    bufsize);
   5075 		mutex_exit(sc->sc_lock);
   5076 		TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
   5077 		if (rounded < bufsize) {
   5078 			/* buffersize needs NBLKHW blocks at least. */
   5079 			audio_printf(sc,
   5080 			    "round_buffersize returned too small buffersize: "
   5081 			    "buffersize=%zd blksize=%d\n",
   5082 			    rounded, blksize);
   5083 			return EINVAL;
   5084 		}
   5085 		if (rounded % blksize != 0) {
   5086 			/* buffersize/blksize constraint mismatch? */
   5087 			audio_printf(sc,
   5088 			    "round_buffersize returned buffersize indivisible "
   5089 			    "by blksize: buffersize=%zu blksize=%d\n",
   5090 			    rounded, blksize);
   5091 			return EINVAL;
   5092 		}
   5093 		if (rounded != bufsize) {
   5094 			/* Recalculation */
   5095 			bufsize = rounded;
   5096 			hwblks = bufsize / blksize;
   5097 			capacity = mixer->frames_per_block * hwblks;
   5098 		}
   5099 	}
   5100 	TRACE(1, "buffersize for %s = %zu",
   5101 	    (mode == AUMODE_PLAY) ? "playback" : "recording",
   5102 	    bufsize);
   5103 	mixer->hwbuf.capacity = capacity;
   5104 
   5105 	if (sc->hw_if->allocm) {
   5106 		/* sc_lock is not necessary for allocm */
   5107 		mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
   5108 		if (mixer->hwbuf.mem == NULL) {
   5109 			audio_printf(sc, "allocm(%zu) failed\n", bufsize);
   5110 			return ENOMEM;
   5111 		}
   5112 	} else {
   5113 		mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
   5114 	}
   5115 
   5116 	/* From here, audio_mixer_destroy is necessary to exit. */
   5117 	if (mode == AUMODE_PLAY) {
   5118 		cv_init(&mixer->outcv, "audiowr");
   5119 	} else {
   5120 		cv_init(&mixer->outcv, "audiord");
   5121 	}
   5122 
   5123 	if (mode == AUMODE_PLAY) {
   5124 		softint_handler = audio_softintr_wr;
   5125 	} else {
   5126 		softint_handler = audio_softintr_rd;
   5127 	}
   5128 	mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
   5129 	    softint_handler, sc);
   5130 	if (mixer->sih == NULL) {
   5131 		device_printf(sc->sc_dev, "softint_establish failed\n");
   5132 		goto abort;
   5133 	}
   5134 
   5135 	mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
   5136 	mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
   5137 	mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
   5138 	mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
   5139 	mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
   5140 
   5141 	if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
   5142 	    mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
   5143 		mixer->swap_endian = true;
   5144 		TRACE(1, "swap_endian");
   5145 	}
   5146 
   5147 	if (mode == AUMODE_PLAY) {
   5148 		/* Mixing buffer */
   5149 		mixer->mixfmt = mixer->track_fmt;
   5150 		mixer->mixfmt.precision *= 2;
   5151 		mixer->mixfmt.stride *= 2;
   5152 		/* XXX TODO: use some macros? */
   5153 		len = mixer->frames_per_block * mixer->mixfmt.channels *
   5154 		    mixer->mixfmt.stride / NBBY;
   5155 		mixer->mixsample = audio_realloc(mixer->mixsample, len);
   5156 	} else {
   5157 		/* No mixing buffer for recording */
   5158 	}
   5159 
   5160 	if (reg->codec) {
   5161 		mixer->codec = reg->codec;
   5162 		mixer->codecarg.context = reg->context;
   5163 		if (mode == AUMODE_PLAY) {
   5164 			mixer->codecarg.srcfmt = &mixer->track_fmt;
   5165 			mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
   5166 		} else {
   5167 			mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
   5168 			mixer->codecarg.dstfmt = &mixer->track_fmt;
   5169 		}
   5170 		mixer->codecbuf.fmt = mixer->track_fmt;
   5171 		mixer->codecbuf.capacity = mixer->frames_per_block;
   5172 		len = auring_bytelen(&mixer->codecbuf);
   5173 		mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
   5174 		if (mixer->codecbuf.mem == NULL) {
   5175 			device_printf(sc->sc_dev,
   5176 			    "malloc codecbuf(%d) failed\n", len);
   5177 			error = ENOMEM;
   5178 			goto abort;
   5179 		}
   5180 	}
   5181 
   5182 	/* Succeeded so display it. */
   5183 	codecbuf[0] = '\0';
   5184 	if (mixer->codec || mixer->swap_endian) {
   5185 		snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
   5186 		    (mode == AUMODE_PLAY) ? "->" : "<-",
   5187 		    audio_encoding_name(mixer->hwbuf.fmt.encoding),
   5188 		    mixer->hwbuf.fmt.precision);
   5189 	}
   5190 	blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
   5191 	blkdms = (mixer->blktime_n * 10000 / mixer->blktime_d) % 10;
   5192 	blkdmsbuf[0] = '\0';
   5193 	if (blkdms != 0) {
   5194 		snprintf(blkdmsbuf, sizeof(blkdmsbuf), ".%1d", blkdms);
   5195 	}
   5196 	aprint_normal_dev(sc->sc_dev,
   5197 	    "%s:%d%s %dch %dHz, blk %d bytes (%d%sms) for %s\n",
   5198 	    audio_encoding_name(mixer->track_fmt.encoding),
   5199 	    mixer->track_fmt.precision,
   5200 	    codecbuf,
   5201 	    mixer->track_fmt.channels,
   5202 	    mixer->track_fmt.sample_rate,
   5203 	    blksize,
   5204 	    blkms, blkdmsbuf,
   5205 	    (mode == AUMODE_PLAY) ? "playback" : "recording");
   5206 
   5207 	return 0;
   5208 
   5209 abort:
   5210 	audio_mixer_destroy(sc, mixer);
   5211 	return error;
   5212 }
   5213 
   5214 /*
   5215  * Releases all resources of 'mixer'.
   5216  * Note that it does not release the memory area of 'mixer' itself.
   5217  * Must be called with sc_exlock held and without sc_lock held.
   5218  */
   5219 static void
   5220 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
   5221 {
   5222 	int bufsize;
   5223 
   5224 	KASSERT(sc->sc_exlock == 1);
   5225 
   5226 	bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
   5227 
   5228 	if (mixer->hwbuf.mem != NULL) {
   5229 		if (sc->hw_if->freem) {
   5230 			/* sc_lock is not necessary for freem */
   5231 			sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
   5232 		} else {
   5233 			kmem_free(mixer->hwbuf.mem, bufsize);
   5234 		}
   5235 		mixer->hwbuf.mem = NULL;
   5236 	}
   5237 
   5238 	audio_free(mixer->codecbuf.mem);
   5239 	audio_free(mixer->mixsample);
   5240 
   5241 	cv_destroy(&mixer->outcv);
   5242 
   5243 	if (mixer->sih) {
   5244 		softint_disestablish(mixer->sih);
   5245 		mixer->sih = NULL;
   5246 	}
   5247 }
   5248 
   5249 /*
   5250  * Starts playback mixer.
   5251  * Must be called only if sc_pbusy is false.
   5252  * Must be called with sc_lock && sc_exlock held.
   5253  * Must not be called from the interrupt context.
   5254  */
   5255 static void
   5256 audio_pmixer_start(struct audio_softc *sc, bool force)
   5257 {
   5258 	audio_trackmixer_t *mixer;
   5259 	int minimum;
   5260 
   5261 	KASSERT(mutex_owned(sc->sc_lock));
   5262 	KASSERT(sc->sc_exlock);
   5263 	KASSERT(sc->sc_pbusy == false);
   5264 
   5265 	mutex_enter(sc->sc_intr_lock);
   5266 
   5267 	mixer = sc->sc_pmixer;
   5268 	TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
   5269 	    (audiodebug >= 3) ? "begin " : "",
   5270 	    (int)mixer->mixseq, (int)mixer->hwseq,
   5271 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
   5272 	    force ? " force" : "");
   5273 
   5274 	/* Need two blocks to start normally. */
   5275 	minimum = (force) ? 1 : 2;
   5276 	while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
   5277 		audio_pmixer_process(sc);
   5278 	}
   5279 
   5280 	/* Start output */
   5281 	audio_pmixer_output(sc);
   5282 	sc->sc_pbusy = true;
   5283 
   5284 	TRACE(3, "end   mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
   5285 	    (int)mixer->mixseq, (int)mixer->hwseq,
   5286 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
   5287 
   5288 	mutex_exit(sc->sc_intr_lock);
   5289 }
   5290 
   5291 /*
   5292  * When playing back with MD filter:
   5293  *
   5294  *           track track ...
   5295  *               v v
   5296  *                +  mix (with aint2_t)
   5297  *                |  master volume (with aint2_t)
   5298  *                v
   5299  *    mixsample [::::]                  wide-int 1 block (ring) buffer
   5300  *                |
   5301  *                |  convert aint2_t -> aint_t
   5302  *                v
   5303  *    codecbuf  [....]                  1 block (ring) buffer
   5304  *                |
   5305  *                |  convert to hw format
   5306  *                v
   5307  *    hwbuf     [............]          NBLKHW blocks ring buffer
   5308  *
   5309  * When playing back without MD filter:
   5310  *
   5311  *    mixsample [::::]                  wide-int 1 block (ring) buffer
   5312  *                |
   5313  *                |  convert aint2_t -> aint_t
   5314  *                |  (with byte swap if necessary)
   5315  *                v
   5316  *    hwbuf     [............]          NBLKHW blocks ring buffer
   5317  *
   5318  * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
   5319  * codecbuf:  slinear_NE, internal precision,      HW ch, HW freq.
   5320  * hwbuf:     HW encoding, HW precision,           HW ch, HW freq.
   5321  */
   5322 
   5323 /*
   5324  * Performs track mixing and converts it to hwbuf.
   5325  * Note that this function doesn't transfer hwbuf to hardware.
   5326  * Must be called with sc_intr_lock held.
   5327  */
   5328 static void
   5329 audio_pmixer_process(struct audio_softc *sc)
   5330 {
   5331 	audio_trackmixer_t *mixer;
   5332 	audio_file_t *f;
   5333 	int frame_count;
   5334 	int sample_count;
   5335 	int mixed;
   5336 	int i;
   5337 	aint2_t *m;
   5338 	aint_t *h;
   5339 
   5340 	mixer = sc->sc_pmixer;
   5341 
   5342 	frame_count = mixer->frames_per_block;
   5343 	KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
   5344 	    "auring_get_contig_free()=%d frame_count=%d",
   5345 	    auring_get_contig_free(&mixer->hwbuf), frame_count);
   5346 	sample_count = frame_count * mixer->mixfmt.channels;
   5347 
   5348 	mixer->mixseq++;
   5349 
   5350 	/* Mix all tracks */
   5351 	mixed = 0;
   5352 	SLIST_FOREACH(f, &sc->sc_files, entry) {
   5353 		audio_track_t *track = f->ptrack;
   5354 
   5355 		if (track == NULL)
   5356 			continue;
   5357 
   5358 		if (track->is_pause) {
   5359 			TRACET(4, track, "skip; paused");
   5360 			continue;
   5361 		}
   5362 
   5363 		/* Skip if the track is used by process context. */
   5364 		if (audio_track_lock_tryenter(track) == false) {
   5365 			TRACET(4, track, "skip; in use");
   5366 			continue;
   5367 		}
   5368 
   5369 		/* Emulate mmap'ped track */
   5370 		if (track->mmapped) {
   5371 			auring_push(&track->usrbuf, track->usrbuf_blksize);
   5372 			TRACET(4, track, "mmap; usr=%d/%d/C%d",
   5373 			    track->usrbuf.head,
   5374 			    track->usrbuf.used,
   5375 			    track->usrbuf.capacity);
   5376 		}
   5377 
   5378 		if (track->outbuf.used < mixer->frames_per_block &&
   5379 		    track->usrbuf.used > 0) {
   5380 			TRACET(4, track, "process");
   5381 			audio_track_play(track);
   5382 		}
   5383 
   5384 		if (track->outbuf.used > 0) {
   5385 			mixed = audio_pmixer_mix_track(mixer, track, mixed);
   5386 		} else {
   5387 			TRACET(4, track, "skip; empty");
   5388 		}
   5389 
   5390 		audio_track_lock_exit(track);
   5391 	}
   5392 
   5393 	if (mixed == 0) {
   5394 		/* Silence */
   5395 		memset(mixer->mixsample, 0,
   5396 		    frametobyte(&mixer->mixfmt, frame_count));
   5397 	} else {
   5398 		if (mixed > 1) {
   5399 			/* If there are multiple tracks, do auto gain control */
   5400 			audio_pmixer_agc(mixer, sample_count);
   5401 		}
   5402 
   5403 		/* Apply master volume */
   5404 		if (mixer->volume < 256) {
   5405 			m = mixer->mixsample;
   5406 			for (i = 0; i < sample_count; i++) {
   5407 				*m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
   5408 				m++;
   5409 			}
   5410 
   5411 			/*
   5412 			 * Recover the volume gradually at the pace of
   5413 			 * several times per second.  If it's too fast, you
   5414 			 * can recognize that the volume changes up and down
   5415 			 * quickly and it's not so comfortable.
   5416 			 */
   5417 			mixer->voltimer += mixer->blktime_n;
   5418 			if (mixer->voltimer * 4 >= mixer->blktime_d) {
   5419 				mixer->volume++;
   5420 				mixer->voltimer = 0;
   5421 #if defined(AUDIO_DEBUG_AGC)
   5422 				TRACE(1, "volume recover: %d", mixer->volume);
   5423 #endif
   5424 			}
   5425 		}
   5426 	}
   5427 
   5428 	/*
   5429 	 * The rest is the hardware part.
   5430 	 */
   5431 
   5432 	if (mixer->codec) {
   5433 		h = auring_tailptr_aint(&mixer->codecbuf);
   5434 	} else {
   5435 		h = auring_tailptr_aint(&mixer->hwbuf);
   5436 	}
   5437 
   5438 	m = mixer->mixsample;
   5439 	if (mixer->swap_endian) {
   5440 		for (i = 0; i < sample_count; i++) {
   5441 			*h++ = bswap16(*m++);
   5442 		}
   5443 	} else {
   5444 		for (i = 0; i < sample_count; i++) {
   5445 			*h++ = *m++;
   5446 		}
   5447 	}
   5448 
   5449 	/* Hardware driver's codec */
   5450 	if (mixer->codec) {
   5451 		auring_push(&mixer->codecbuf, frame_count);
   5452 		mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
   5453 		mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
   5454 		mixer->codecarg.count = frame_count;
   5455 		mixer->codec(&mixer->codecarg);
   5456 		auring_take(&mixer->codecbuf, mixer->codecarg.count);
   5457 	}
   5458 
   5459 	auring_push(&mixer->hwbuf, frame_count);
   5460 
   5461 	TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
   5462 	    (int)mixer->mixseq,
   5463 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
   5464 	    (mixed == 0) ? " silent" : "");
   5465 }
   5466 
   5467 /*
   5468  * Do auto gain control.
   5469  * Must be called sc_intr_lock held.
   5470  */
   5471 static void
   5472 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
   5473 {
   5474 	struct audio_softc *sc __unused;
   5475 	aint2_t val;
   5476 	aint2_t maxval;
   5477 	aint2_t minval;
   5478 	aint2_t over_plus;
   5479 	aint2_t over_minus;
   5480 	aint2_t *m;
   5481 	int newvol;
   5482 	int i;
   5483 
   5484 	sc = mixer->sc;
   5485 
   5486 	/* Overflow detection */
   5487 	maxval = AINT_T_MAX;
   5488 	minval = AINT_T_MIN;
   5489 	m = mixer->mixsample;
   5490 	for (i = 0; i < sample_count; i++) {
   5491 		val = *m++;
   5492 		if (val > maxval)
   5493 			maxval = val;
   5494 		else if (val < minval)
   5495 			minval = val;
   5496 	}
   5497 
   5498 	/* Absolute value of overflowed amount */
   5499 	over_plus = maxval - AINT_T_MAX;
   5500 	over_minus = AINT_T_MIN - minval;
   5501 
   5502 	if (over_plus > 0 || over_minus > 0) {
   5503 		if (over_plus > over_minus) {
   5504 			newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
   5505 		} else {
   5506 			newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
   5507 		}
   5508 
   5509 		/*
   5510 		 * Change the volume only if new one is smaller.
   5511 		 * Reset the timer even if the volume isn't changed.
   5512 		 */
   5513 		if (newvol <= mixer->volume) {
   5514 			mixer->volume = newvol;
   5515 			mixer->voltimer = 0;
   5516 #if defined(AUDIO_DEBUG_AGC)
   5517 			TRACE(1, "auto volume adjust: %d", mixer->volume);
   5518 #endif
   5519 		}
   5520 	}
   5521 }
   5522 
   5523 /*
   5524  * Mix one track.
   5525  * 'mixed' specifies the number of tracks mixed so far.
   5526  * It returns the number of tracks mixed.  In other words, it returns
   5527  * mixed + 1 if this track is mixed.
   5528  */
   5529 static int
   5530 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
   5531 	int mixed)
   5532 {
   5533 	int count;
   5534 	int sample_count;
   5535 	int remain;
   5536 	int i;
   5537 	const aint_t *s;
   5538 	aint2_t *d;
   5539 
   5540 	/* XXX TODO: Is this necessary for now? */
   5541 	if (mixer->mixseq < track->seq)
   5542 		return mixed;
   5543 
   5544 	count = auring_get_contig_used(&track->outbuf);
   5545 	count = uimin(count, mixer->frames_per_block);
   5546 
   5547 	s = auring_headptr_aint(&track->outbuf);
   5548 	d = mixer->mixsample;
   5549 
   5550 	/*
   5551 	 * Apply track volume with double-sized integer and perform
   5552 	 * additive synthesis.
   5553 	 *
   5554 	 * XXX If you limit the track volume to 1.0 or less (<= 256),
   5555 	 *     it would be better to do this in the track conversion stage
   5556 	 *     rather than here.  However, if you accept the volume to
   5557 	 *     be greater than 1.0 (> 256), it's better to do it here.
   5558 	 *     Because the operation here is done by double-sized integer.
   5559 	 */
   5560 	sample_count = count * mixer->mixfmt.channels;
   5561 	if (mixed == 0) {
   5562 		/* If this is the first track, assignment can be used. */
   5563 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
   5564 		if (track->volume != 256) {
   5565 			for (i = 0; i < sample_count; i++) {
   5566 				aint2_t v;
   5567 				v = *s++;
   5568 				*d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
   5569 			}
   5570 		} else
   5571 #endif
   5572 		{
   5573 			for (i = 0; i < sample_count; i++) {
   5574 				*d++ = ((aint2_t)*s++);
   5575 			}
   5576 		}
   5577 		/* Fill silence if the first track is not filled. */
   5578 		for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
   5579 			*d++ = 0;
   5580 	} else {
   5581 		/* If this is the second or later, add it. */
   5582 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
   5583 		if (track->volume != 256) {
   5584 			for (i = 0; i < sample_count; i++) {
   5585 				aint2_t v;
   5586 				v = *s++;
   5587 				*d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
   5588 			}
   5589 		} else
   5590 #endif
   5591 		{
   5592 			for (i = 0; i < sample_count; i++) {
   5593 				*d++ += ((aint2_t)*s++);
   5594 			}
   5595 		}
   5596 	}
   5597 
   5598 	auring_take(&track->outbuf, count);
   5599 	/*
   5600 	 * The counters have to align block even if outbuf is less than
   5601 	 * one block. XXX Is this still necessary?
   5602 	 */
   5603 	remain = mixer->frames_per_block - count;
   5604 	if (__predict_false(remain != 0)) {
   5605 		auring_push(&track->outbuf, remain);
   5606 		auring_take(&track->outbuf, remain);
   5607 	}
   5608 
   5609 	/*
   5610 	 * Update track sequence.
   5611 	 * mixseq has previous value yet at this point.
   5612 	 */
   5613 	track->seq = mixer->mixseq + 1;
   5614 
   5615 	return mixed + 1;
   5616 }
   5617 
   5618 /*
   5619  * Output one block from hwbuf to HW.
   5620  * Must be called with sc_intr_lock held.
   5621  */
   5622 static void
   5623 audio_pmixer_output(struct audio_softc *sc)
   5624 {
   5625 	audio_trackmixer_t *mixer;
   5626 	audio_params_t params;
   5627 	void *start;
   5628 	void *end;
   5629 	int blksize;
   5630 	int error;
   5631 
   5632 	mixer = sc->sc_pmixer;
   5633 	TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
   5634 	    sc->sc_pbusy,
   5635 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
   5636 	KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
   5637 	    "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
   5638 	    mixer->hwbuf.used, mixer->frames_per_block);
   5639 
   5640 	blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
   5641 
   5642 	if (sc->hw_if->trigger_output) {
   5643 		/* trigger (at once) */
   5644 		if (!sc->sc_pbusy) {
   5645 			start = mixer->hwbuf.mem;
   5646 			end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
   5647 			params = format2_to_params(&mixer->hwbuf.fmt);
   5648 
   5649 			error = sc->hw_if->trigger_output(sc->hw_hdl,
   5650 			    start, end, blksize, audio_pintr, sc, &params);
   5651 			if (error) {
   5652 				audio_printf(sc,
   5653 				    "trigger_output failed: errno=%d\n",
   5654 				    error);
   5655 				return;
   5656 			}
   5657 		}
   5658 	} else {
   5659 		/* start (everytime) */
   5660 		start = auring_headptr(&mixer->hwbuf);
   5661 
   5662 		error = sc->hw_if->start_output(sc->hw_hdl,
   5663 		    start, blksize, audio_pintr, sc);
   5664 		if (error) {
   5665 			audio_printf(sc,
   5666 			    "start_output failed: errno=%d\n", error);
   5667 			return;
   5668 		}
   5669 	}
   5670 }
   5671 
   5672 /*
   5673  * This is an interrupt handler for playback.
   5674  * It is called with sc_intr_lock held.
   5675  *
   5676  * It is usually called from hardware interrupt.  However, note that
   5677  * for some drivers (e.g. uaudio) it is called from software interrupt.
   5678  */
   5679 static void
   5680 audio_pintr(void *arg)
   5681 {
   5682 	struct audio_softc *sc;
   5683 	audio_trackmixer_t *mixer;
   5684 
   5685 	sc = arg;
   5686 	KASSERT(mutex_owned(sc->sc_intr_lock));
   5687 
   5688 	if (sc->sc_dying)
   5689 		return;
   5690 	if (sc->sc_pbusy == false) {
   5691 #if defined(DIAGNOSTIC)
   5692 		audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
   5693 		    device_xname(sc->hw_dev));
   5694 #endif
   5695 		return;
   5696 	}
   5697 
   5698 	mixer = sc->sc_pmixer;
   5699 	mixer->hw_complete_counter += mixer->frames_per_block;
   5700 	mixer->hwseq++;
   5701 
   5702 	auring_take(&mixer->hwbuf, mixer->frames_per_block);
   5703 
   5704 	TRACE(4,
   5705 	    "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
   5706 	    mixer->hwseq, mixer->hw_complete_counter,
   5707 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
   5708 
   5709 #if defined(AUDIO_HW_SINGLE_BUFFER)
   5710 	/*
   5711 	 * Create a new block here and output it immediately.
   5712 	 * It makes a latency lower but needs machine power.
   5713 	 */
   5714 	audio_pmixer_process(sc);
   5715 	audio_pmixer_output(sc);
   5716 #else
   5717 	/*
   5718 	 * It is called when block N output is done.
   5719 	 * Output immediately block N+1 created by the last interrupt.
   5720 	 * And then create block N+2 for the next interrupt.
   5721 	 * This method makes playback robust even on slower machines.
   5722 	 * Instead the latency is increased by one block.
   5723 	 */
   5724 
   5725 	/* At first, output ready block. */
   5726 	if (mixer->hwbuf.used >= mixer->frames_per_block) {
   5727 		audio_pmixer_output(sc);
   5728 	}
   5729 
   5730 	bool later = false;
   5731 
   5732 	if (mixer->hwbuf.used < mixer->frames_per_block) {
   5733 		later = true;
   5734 	}
   5735 
   5736 	/* Then, process next block. */
   5737 	audio_pmixer_process(sc);
   5738 
   5739 	if (later) {
   5740 		audio_pmixer_output(sc);
   5741 	}
   5742 #endif
   5743 
   5744 	/*
   5745 	 * When this interrupt is the real hardware interrupt, disabling
   5746 	 * preemption here is not necessary.  But some drivers (e.g. uaudio)
   5747 	 * emulate it by software interrupt, so kpreempt_disable is necessary.
   5748 	 */
   5749 	kpreempt_disable();
   5750 	softint_schedule(mixer->sih);
   5751 	kpreempt_enable();
   5752 }
   5753 
   5754 /*
   5755  * Starts record mixer.
   5756  * Must be called only if sc_rbusy is false.
   5757  * Must be called with sc_lock && sc_exlock held.
   5758  * Must not be called from the interrupt context.
   5759  */
   5760 static void
   5761 audio_rmixer_start(struct audio_softc *sc)
   5762 {
   5763 
   5764 	KASSERT(mutex_owned(sc->sc_lock));
   5765 	KASSERT(sc->sc_exlock);
   5766 	KASSERT(sc->sc_rbusy == false);
   5767 
   5768 	mutex_enter(sc->sc_intr_lock);
   5769 
   5770 	TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
   5771 	audio_rmixer_input(sc);
   5772 	sc->sc_rbusy = true;
   5773 	TRACE(3, "end");
   5774 
   5775 	mutex_exit(sc->sc_intr_lock);
   5776 }
   5777 
   5778 /*
   5779  * When recording with MD filter:
   5780  *
   5781  *    hwbuf     [............]          NBLKHW blocks ring buffer
   5782  *                |
   5783  *                | convert from hw format
   5784  *                v
   5785  *    codecbuf  [....]                  1 block (ring) buffer
   5786  *               |  |
   5787  *               v  v
   5788  *            track track ...
   5789  *
   5790  * When recording without MD filter:
   5791  *
   5792  *    hwbuf     [............]          NBLKHW blocks ring buffer
   5793  *               |  |
   5794  *               v  v
   5795  *            track track ...
   5796  *
   5797  * hwbuf:     HW encoding, HW precision, HW ch, HW freq.
   5798  * codecbuf:  slinear_NE, internal precision, HW ch, HW freq.
   5799  */
   5800 
   5801 /*
   5802  * Distribute a recorded block to all recording tracks.
   5803  */
   5804 static void
   5805 audio_rmixer_process(struct audio_softc *sc)
   5806 {
   5807 	audio_trackmixer_t *mixer;
   5808 	audio_ring_t *mixersrc;
   5809 	audio_file_t *f;
   5810 	aint_t *p;
   5811 	int count;
   5812 	int bytes;
   5813 	int i;
   5814 
   5815 	mixer = sc->sc_rmixer;
   5816 
   5817 	/*
   5818 	 * count is the number of frames to be retrieved this time.
   5819 	 * count should be one block.
   5820 	 */
   5821 	count = auring_get_contig_used(&mixer->hwbuf);
   5822 	count = uimin(count, mixer->frames_per_block);
   5823 	if (count <= 0) {
   5824 		TRACE(4, "count %d: too short", count);
   5825 		return;
   5826 	}
   5827 	bytes = frametobyte(&mixer->track_fmt, count);
   5828 
   5829 	/* Hardware driver's codec */
   5830 	if (mixer->codec) {
   5831 		mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
   5832 		mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
   5833 		mixer->codecarg.count = count;
   5834 		mixer->codec(&mixer->codecarg);
   5835 		auring_take(&mixer->hwbuf, mixer->codecarg.count);
   5836 		auring_push(&mixer->codecbuf, mixer->codecarg.count);
   5837 		mixersrc = &mixer->codecbuf;
   5838 	} else {
   5839 		mixersrc = &mixer->hwbuf;
   5840 	}
   5841 
   5842 	if (mixer->swap_endian) {
   5843 		/* inplace conversion */
   5844 		p = auring_headptr_aint(mixersrc);
   5845 		for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
   5846 			*p = bswap16(*p);
   5847 		}
   5848 	}
   5849 
   5850 	/* Distribute to all tracks. */
   5851 	SLIST_FOREACH(f, &sc->sc_files, entry) {
   5852 		audio_track_t *track = f->rtrack;
   5853 		audio_ring_t *input;
   5854 
   5855 		if (track == NULL)
   5856 			continue;
   5857 
   5858 		if (track->is_pause) {
   5859 			TRACET(4, track, "skip; paused");
   5860 			continue;
   5861 		}
   5862 
   5863 		if (audio_track_lock_tryenter(track) == false) {
   5864 			TRACET(4, track, "skip; in use");
   5865 			continue;
   5866 		}
   5867 
   5868 		/* If the track buffer is full, discard the oldest one? */
   5869 		input = track->input;
   5870 		if (input->capacity - input->used < mixer->frames_per_block) {
   5871 			int drops = mixer->frames_per_block -
   5872 			    (input->capacity - input->used);
   5873 			track->dropframes += drops;
   5874 			TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
   5875 			    drops,
   5876 			    input->head, input->used, input->capacity);
   5877 			auring_take(input, drops);
   5878 		}
   5879 		KASSERTMSG(input->used % mixer->frames_per_block == 0,
   5880 		    "input->used=%d mixer->frames_per_block=%d",
   5881 		    input->used, mixer->frames_per_block);
   5882 
   5883 		memcpy(auring_tailptr_aint(input),
   5884 		    auring_headptr_aint(mixersrc),
   5885 		    bytes);
   5886 		auring_push(input, count);
   5887 
   5888 		/* XXX sequence counter? */
   5889 
   5890 		audio_track_lock_exit(track);
   5891 	}
   5892 
   5893 	auring_take(mixersrc, count);
   5894 }
   5895 
   5896 /*
   5897  * Input one block from HW to hwbuf.
   5898  * Must be called with sc_intr_lock held.
   5899  */
   5900 static void
   5901 audio_rmixer_input(struct audio_softc *sc)
   5902 {
   5903 	audio_trackmixer_t *mixer;
   5904 	audio_params_t params;
   5905 	void *start;
   5906 	void *end;
   5907 	int blksize;
   5908 	int error;
   5909 
   5910 	mixer = sc->sc_rmixer;
   5911 	blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
   5912 
   5913 	if (sc->hw_if->trigger_input) {
   5914 		/* trigger (at once) */
   5915 		if (!sc->sc_rbusy) {
   5916 			start = mixer->hwbuf.mem;
   5917 			end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
   5918 			params = format2_to_params(&mixer->hwbuf.fmt);
   5919 
   5920 			error = sc->hw_if->trigger_input(sc->hw_hdl,
   5921 			    start, end, blksize, audio_rintr, sc, &params);
   5922 			if (error) {
   5923 				audio_printf(sc,
   5924 				    "trigger_input failed: errno=%d\n",
   5925 				    error);
   5926 				return;
   5927 			}
   5928 		}
   5929 	} else {
   5930 		/* start (everytime) */
   5931 		start = auring_tailptr(&mixer->hwbuf);
   5932 
   5933 		error = sc->hw_if->start_input(sc->hw_hdl,
   5934 		    start, blksize, audio_rintr, sc);
   5935 		if (error) {
   5936 			audio_printf(sc,
   5937 			    "start_input failed: errno=%d\n", error);
   5938 			return;
   5939 		}
   5940 	}
   5941 }
   5942 
   5943 /*
   5944  * This is an interrupt handler for recording.
   5945  * It is called with sc_intr_lock.
   5946  *
   5947  * It is usually called from hardware interrupt.  However, note that
   5948  * for some drivers (e.g. uaudio) it is called from software interrupt.
   5949  */
   5950 static void
   5951 audio_rintr(void *arg)
   5952 {
   5953 	struct audio_softc *sc;
   5954 	audio_trackmixer_t *mixer;
   5955 
   5956 	sc = arg;
   5957 	KASSERT(mutex_owned(sc->sc_intr_lock));
   5958 
   5959 	if (sc->sc_dying)
   5960 		return;
   5961 	if (sc->sc_rbusy == false) {
   5962 #if defined(DIAGNOSTIC)
   5963 		audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
   5964 		    device_xname(sc->hw_dev));
   5965 #endif
   5966 		return;
   5967 	}
   5968 
   5969 	mixer = sc->sc_rmixer;
   5970 	mixer->hw_complete_counter += mixer->frames_per_block;
   5971 	mixer->hwseq++;
   5972 
   5973 	auring_push(&mixer->hwbuf, mixer->frames_per_block);
   5974 
   5975 	TRACE(4,
   5976 	    "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
   5977 	    mixer->hwseq, mixer->hw_complete_counter,
   5978 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
   5979 
   5980 	/* Distrubute recorded block */
   5981 	audio_rmixer_process(sc);
   5982 
   5983 	/* Request next block */
   5984 	audio_rmixer_input(sc);
   5985 
   5986 	/*
   5987 	 * When this interrupt is the real hardware interrupt, disabling
   5988 	 * preemption here is not necessary.  But some drivers (e.g. uaudio)
   5989 	 * emulate it by software interrupt, so kpreempt_disable is necessary.
   5990 	 */
   5991 	kpreempt_disable();
   5992 	softint_schedule(mixer->sih);
   5993 	kpreempt_enable();
   5994 }
   5995 
   5996 /*
   5997  * Halts playback mixer.
   5998  * This function also clears related parameters, so call this function
   5999  * instead of calling halt_output directly.
   6000  * Must be called only if sc_pbusy is true.
   6001  * Must be called with sc_lock && sc_exlock held.
   6002  */
   6003 static int
   6004 audio_pmixer_halt(struct audio_softc *sc)
   6005 {
   6006 	int error;
   6007 
   6008 	TRACE(2, "called");
   6009 	KASSERT(mutex_owned(sc->sc_lock));
   6010 	KASSERT(sc->sc_exlock);
   6011 
   6012 	mutex_enter(sc->sc_intr_lock);
   6013 	error = sc->hw_if->halt_output(sc->hw_hdl);
   6014 
   6015 	/* Halts anyway even if some error has occurred. */
   6016 	sc->sc_pbusy = false;
   6017 	sc->sc_pmixer->hwbuf.head = 0;
   6018 	sc->sc_pmixer->hwbuf.used = 0;
   6019 	sc->sc_pmixer->mixseq = 0;
   6020 	sc->sc_pmixer->hwseq = 0;
   6021 	mutex_exit(sc->sc_intr_lock);
   6022 
   6023 	return error;
   6024 }
   6025 
   6026 /*
   6027  * Halts recording mixer.
   6028  * This function also clears related parameters, so call this function
   6029  * instead of calling halt_input directly.
   6030  * Must be called only if sc_rbusy is true.
   6031  * Must be called with sc_lock && sc_exlock held.
   6032  */
   6033 static int
   6034 audio_rmixer_halt(struct audio_softc *sc)
   6035 {
   6036 	int error;
   6037 
   6038 	TRACE(2, "called");
   6039 	KASSERT(mutex_owned(sc->sc_lock));
   6040 	KASSERT(sc->sc_exlock);
   6041 
   6042 	mutex_enter(sc->sc_intr_lock);
   6043 	error = sc->hw_if->halt_input(sc->hw_hdl);
   6044 
   6045 	/* Halts anyway even if some error has occurred. */
   6046 	sc->sc_rbusy = false;
   6047 	sc->sc_rmixer->hwbuf.head = 0;
   6048 	sc->sc_rmixer->hwbuf.used = 0;
   6049 	sc->sc_rmixer->mixseq = 0;
   6050 	sc->sc_rmixer->hwseq = 0;
   6051 	mutex_exit(sc->sc_intr_lock);
   6052 
   6053 	return error;
   6054 }
   6055 
   6056 /*
   6057  * Flush this track.
   6058  * Halts all operations, clears all buffers, reset error counters.
   6059  * XXX I'm not sure...
   6060  */
   6061 static void
   6062 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
   6063 {
   6064 
   6065 	KASSERT(track);
   6066 	TRACET(3, track, "clear");
   6067 
   6068 	audio_track_lock_enter(track);
   6069 
   6070 	track->usrbuf.used = 0;
   6071 	/* Clear all internal parameters. */
   6072 	if (track->codec.filter) {
   6073 		track->codec.srcbuf.used = 0;
   6074 		track->codec.srcbuf.head = 0;
   6075 	}
   6076 	if (track->chvol.filter) {
   6077 		track->chvol.srcbuf.used = 0;
   6078 		track->chvol.srcbuf.head = 0;
   6079 	}
   6080 	if (track->chmix.filter) {
   6081 		track->chmix.srcbuf.used = 0;
   6082 		track->chmix.srcbuf.head = 0;
   6083 	}
   6084 	if (track->freq.filter) {
   6085 		track->freq.srcbuf.used = 0;
   6086 		track->freq.srcbuf.head = 0;
   6087 		if (track->freq_step < 65536)
   6088 			track->freq_current = 65536;
   6089 		else
   6090 			track->freq_current = 0;
   6091 		memset(track->freq_prev, 0, sizeof(track->freq_prev));
   6092 		memset(track->freq_curr, 0, sizeof(track->freq_curr));
   6093 	}
   6094 	/* Clear buffer, then operation halts naturally. */
   6095 	track->outbuf.used = 0;
   6096 
   6097 	/* Clear counters. */
   6098 	track->dropframes = 0;
   6099 
   6100 	audio_track_lock_exit(track);
   6101 }
   6102 
   6103 /*
   6104  * Drain the track.
   6105  * track must be present and for playback.
   6106  * If successful, it returns 0.  Otherwise returns errno.
   6107  * Must be called with sc_lock held.
   6108  */
   6109 static int
   6110 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
   6111 {
   6112 	audio_trackmixer_t *mixer;
   6113 	int done;
   6114 	int error;
   6115 
   6116 	KASSERT(track);
   6117 	TRACET(3, track, "start");
   6118 	mixer = track->mixer;
   6119 	KASSERT(mutex_owned(sc->sc_lock));
   6120 
   6121 	/* Ignore them if pause. */
   6122 	if (track->is_pause) {
   6123 		TRACET(3, track, "pause -> clear");
   6124 		track->pstate = AUDIO_STATE_CLEAR;
   6125 	}
   6126 	/* Terminate early here if there is no data in the track. */
   6127 	if (track->pstate == AUDIO_STATE_CLEAR) {
   6128 		TRACET(3, track, "no need to drain");
   6129 		return 0;
   6130 	}
   6131 	track->pstate = AUDIO_STATE_DRAINING;
   6132 
   6133 	for (;;) {
   6134 		/* I want to display it before condition evaluation. */
   6135 		TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
   6136 		    (int)curproc->p_pid, (int)curlwp->l_lid,
   6137 		    (int)track->seq, (int)mixer->hwseq,
   6138 		    track->outbuf.head, track->outbuf.used,
   6139 		    track->outbuf.capacity);
   6140 
   6141 		/* Condition to terminate */
   6142 		audio_track_lock_enter(track);
   6143 		done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
   6144 		    track->outbuf.used == 0 &&
   6145 		    track->seq <= mixer->hwseq);
   6146 		audio_track_lock_exit(track);
   6147 		if (done)
   6148 			break;
   6149 
   6150 		TRACET(3, track, "sleep");
   6151 		error = audio_track_waitio(sc, track);
   6152 		if (error)
   6153 			return error;
   6154 
   6155 		/* XXX call audio_track_play here ? */
   6156 	}
   6157 
   6158 	track->pstate = AUDIO_STATE_CLEAR;
   6159 	TRACET(3, track, "done trk_inp=%d trk_out=%d",
   6160 		(int)track->inputcounter, (int)track->outputcounter);
   6161 	return 0;
   6162 }
   6163 
   6164 /*
   6165  * Send signal to process.
   6166  * This is intended to be called only from audio_softintr_{rd,wr}.
   6167  * Must be called without sc_intr_lock held.
   6168  */
   6169 static inline void
   6170 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
   6171 {
   6172 	proc_t *p;
   6173 
   6174 	KASSERT(pid != 0);
   6175 
   6176 	/*
   6177 	 * psignal() must be called without spin lock held.
   6178 	 */
   6179 
   6180 	mutex_enter(&proc_lock);
   6181 	p = proc_find(pid);
   6182 	if (p)
   6183 		psignal(p, signum);
   6184 	mutex_exit(&proc_lock);
   6185 }
   6186 
   6187 /*
   6188  * This is software interrupt handler for record.
   6189  * It is called from recording hardware interrupt everytime.
   6190  * It does:
   6191  * - Deliver SIGIO for all async processes.
   6192  * - Notify to audio_read() that data has arrived.
   6193  * - selnotify() for select/poll-ing processes.
   6194  */
   6195 /*
   6196  * XXX If a process issues FIOASYNC between hardware interrupt and
   6197  *     software interrupt, (stray) SIGIO will be sent to the process
   6198  *     despite the fact that it has not receive recorded data yet.
   6199  */
   6200 static void
   6201 audio_softintr_rd(void *cookie)
   6202 {
   6203 	struct audio_softc *sc = cookie;
   6204 	audio_file_t *f;
   6205 	pid_t pid;
   6206 
   6207 	mutex_enter(sc->sc_lock);
   6208 
   6209 	SLIST_FOREACH(f, &sc->sc_files, entry) {
   6210 		audio_track_t *track = f->rtrack;
   6211 
   6212 		if (track == NULL)
   6213 			continue;
   6214 
   6215 		TRACET(4, track, "broadcast; inp=%d/%d/%d",
   6216 		    track->input->head,
   6217 		    track->input->used,
   6218 		    track->input->capacity);
   6219 
   6220 		pid = f->async_audio;
   6221 		if (pid != 0) {
   6222 			TRACEF(4, f, "sending SIGIO %d", pid);
   6223 			audio_psignal(sc, pid, SIGIO);
   6224 		}
   6225 	}
   6226 
   6227 	/* Notify that data has arrived. */
   6228 	selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
   6229 	cv_broadcast(&sc->sc_rmixer->outcv);
   6230 
   6231 	mutex_exit(sc->sc_lock);
   6232 }
   6233 
   6234 /*
   6235  * This is software interrupt handler for playback.
   6236  * It is called from playback hardware interrupt everytime.
   6237  * It does:
   6238  * - Deliver SIGIO for all async and writable (used < lowat) processes.
   6239  * - Notify to audio_write() that outbuf block available.
   6240  * - selnotify() for select/poll-ing processes if there are any writable
   6241  *   (used < lowat) processes.  Checking each descriptor will be done by
   6242  *   filt_audiowrite_event().
   6243  */
   6244 static void
   6245 audio_softintr_wr(void *cookie)
   6246 {
   6247 	struct audio_softc *sc = cookie;
   6248 	audio_file_t *f;
   6249 	bool found;
   6250 	pid_t pid;
   6251 
   6252 	TRACE(4, "called");
   6253 	found = false;
   6254 
   6255 	mutex_enter(sc->sc_lock);
   6256 
   6257 	SLIST_FOREACH(f, &sc->sc_files, entry) {
   6258 		audio_track_t *track = f->ptrack;
   6259 
   6260 		if (track == NULL)
   6261 			continue;
   6262 
   6263 		TRACET(4, track, "broadcast; trkseq=%d out=%d/%d/%d",
   6264 		    (int)track->seq,
   6265 		    track->outbuf.head,
   6266 		    track->outbuf.used,
   6267 		    track->outbuf.capacity);
   6268 
   6269 		/*
   6270 		 * Send a signal if the process is async mode and
   6271 		 * used is lower than lowat.
   6272 		 */
   6273 		if (track->usrbuf.used <= track->usrbuf_usedlow &&
   6274 		    !track->is_pause) {
   6275 			/* For selnotify */
   6276 			found = true;
   6277 			/* For SIGIO */
   6278 			pid = f->async_audio;
   6279 			if (pid != 0) {
   6280 				TRACEF(4, f, "sending SIGIO %d", pid);
   6281 				audio_psignal(sc, pid, SIGIO);
   6282 			}
   6283 		}
   6284 	}
   6285 
   6286 	/*
   6287 	 * Notify for select/poll when someone become writable.
   6288 	 * It needs sc_lock (and not sc_intr_lock).
   6289 	 */
   6290 	if (found) {
   6291 		TRACE(4, "selnotify");
   6292 		selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
   6293 	}
   6294 
   6295 	/* Notify to audio_write() that outbuf available. */
   6296 	cv_broadcast(&sc->sc_pmixer->outcv);
   6297 
   6298 	mutex_exit(sc->sc_lock);
   6299 }
   6300 
   6301 /*
   6302  * Check (and convert) the format *p came from userland.
   6303  * If successful, it writes back the converted format to *p if necessary and
   6304  * returns 0.  Otherwise returns errno (*p may be changed even in this case).
   6305  */
   6306 static int
   6307 audio_check_params(audio_format2_t *p)
   6308 {
   6309 
   6310 	/*
   6311 	 * Convert obsolete AUDIO_ENCODING_PCM encodings.
   6312 	 *
   6313 	 * AUDIO_ENCODING_PCM16 == AUDIO_ENCODING_LINEAR
   6314 	 * So, it's always signed, as in SunOS.
   6315 	 *
   6316 	 * AUDIO_ENCODING_PCM8 == AUDIO_ENCODING_LINEAR8
   6317 	 * So, it's always unsigned, as in SunOS.
   6318 	 */
   6319 	if (p->encoding == AUDIO_ENCODING_PCM16) {
   6320 		p->encoding = AUDIO_ENCODING_SLINEAR;
   6321 	} else if (p->encoding == AUDIO_ENCODING_PCM8) {
   6322 		if (p->precision == 8)
   6323 			p->encoding = AUDIO_ENCODING_ULINEAR;
   6324 		else
   6325 			return EINVAL;
   6326 	}
   6327 
   6328 	/*
   6329 	 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
   6330 	 * suffix.
   6331 	 */
   6332 	if (p->encoding == AUDIO_ENCODING_SLINEAR)
   6333 		p->encoding = AUDIO_ENCODING_SLINEAR_NE;
   6334 	if (p->encoding == AUDIO_ENCODING_ULINEAR)
   6335 		p->encoding = AUDIO_ENCODING_ULINEAR_NE;
   6336 
   6337 	switch (p->encoding) {
   6338 	case AUDIO_ENCODING_ULAW:
   6339 	case AUDIO_ENCODING_ALAW:
   6340 		if (p->precision != 8)
   6341 			return EINVAL;
   6342 		break;
   6343 	case AUDIO_ENCODING_ADPCM:
   6344 		if (p->precision != 4 && p->precision != 8)
   6345 			return EINVAL;
   6346 		break;
   6347 	case AUDIO_ENCODING_SLINEAR_LE:
   6348 	case AUDIO_ENCODING_SLINEAR_BE:
   6349 	case AUDIO_ENCODING_ULINEAR_LE:
   6350 	case AUDIO_ENCODING_ULINEAR_BE:
   6351 		if (p->precision !=  8 && p->precision != 16 &&
   6352 		    p->precision != 24 && p->precision != 32)
   6353 			return EINVAL;
   6354 
   6355 		/* 8bit format does not have endianness. */
   6356 		if (p->precision == 8) {
   6357 			if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
   6358 				p->encoding = AUDIO_ENCODING_SLINEAR_NE;
   6359 			if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
   6360 				p->encoding = AUDIO_ENCODING_ULINEAR_NE;
   6361 		}
   6362 
   6363 		if (p->precision > p->stride)
   6364 			return EINVAL;
   6365 		break;
   6366 	case AUDIO_ENCODING_MPEG_L1_STREAM:
   6367 	case AUDIO_ENCODING_MPEG_L1_PACKETS:
   6368 	case AUDIO_ENCODING_MPEG_L1_SYSTEM:
   6369 	case AUDIO_ENCODING_MPEG_L2_STREAM:
   6370 	case AUDIO_ENCODING_MPEG_L2_PACKETS:
   6371 	case AUDIO_ENCODING_MPEG_L2_SYSTEM:
   6372 	case AUDIO_ENCODING_AC3:
   6373 		break;
   6374 	default:
   6375 		return EINVAL;
   6376 	}
   6377 
   6378 	/* sanity check # of channels*/
   6379 	if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
   6380 		return EINVAL;
   6381 
   6382 	return 0;
   6383 }
   6384 
   6385 /*
   6386  * Initialize playback and record mixers.
   6387  * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
   6388  * phwfmt and rhwfmt indicate the hardware format.  pfil and rfil indicate
   6389  * the filter registration information.  These four must not be NULL.
   6390  * If successful returns 0.  Otherwise returns errno.
   6391  * Must be called with sc_exlock held and without sc_lock held.
   6392  * Must not be called if there are any tracks.
   6393  * Caller should check that the initialization succeed by whether
   6394  * sc_[pr]mixer is not NULL.
   6395  */
   6396 static int
   6397 audio_mixers_init(struct audio_softc *sc, int mode,
   6398 	const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
   6399 	const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
   6400 {
   6401 	int error;
   6402 
   6403 	KASSERT(phwfmt != NULL);
   6404 	KASSERT(rhwfmt != NULL);
   6405 	KASSERT(pfil != NULL);
   6406 	KASSERT(rfil != NULL);
   6407 	KASSERT(sc->sc_exlock);
   6408 
   6409 	if ((mode & AUMODE_PLAY)) {
   6410 		if (sc->sc_pmixer == NULL) {
   6411 			sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
   6412 			    KM_SLEEP);
   6413 		} else {
   6414 			/* destroy() doesn't free memory. */
   6415 			audio_mixer_destroy(sc, sc->sc_pmixer);
   6416 			memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
   6417 		}
   6418 		error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
   6419 		if (error) {
   6420 			/* audio_mixer_init already displayed error code */
   6421 			audio_printf(sc, "configuring playback mode failed\n");
   6422 			kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
   6423 			sc->sc_pmixer = NULL;
   6424 			return error;
   6425 		}
   6426 	}
   6427 	if ((mode & AUMODE_RECORD)) {
   6428 		if (sc->sc_rmixer == NULL) {
   6429 			sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
   6430 			    KM_SLEEP);
   6431 		} else {
   6432 			/* destroy() doesn't free memory. */
   6433 			audio_mixer_destroy(sc, sc->sc_rmixer);
   6434 			memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
   6435 		}
   6436 		error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
   6437 		if (error) {
   6438 			/* audio_mixer_init already displayed error code */
   6439 			audio_printf(sc, "configuring record mode failed\n");
   6440 			kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
   6441 			sc->sc_rmixer = NULL;
   6442 			return error;
   6443 		}
   6444 	}
   6445 
   6446 	return 0;
   6447 }
   6448 
   6449 /*
   6450  * Select a frequency.
   6451  * Prioritize 48kHz and 44.1kHz.  Otherwise choose the highest one.
   6452  * XXX Better algorithm?
   6453  */
   6454 static int
   6455 audio_select_freq(const struct audio_format *fmt)
   6456 {
   6457 	int freq;
   6458 	int high;
   6459 	int low;
   6460 	int j;
   6461 
   6462 	if (fmt->frequency_type == 0) {
   6463 		low = fmt->frequency[0];
   6464 		high = fmt->frequency[1];
   6465 		freq = 48000;
   6466 		if (low <= freq && freq <= high) {
   6467 			return freq;
   6468 		}
   6469 		freq = 44100;
   6470 		if (low <= freq && freq <= high) {
   6471 			return freq;
   6472 		}
   6473 		return high;
   6474 	} else {
   6475 		for (j = 0; j < fmt->frequency_type; j++) {
   6476 			if (fmt->frequency[j] == 48000) {
   6477 				return fmt->frequency[j];
   6478 			}
   6479 		}
   6480 		high = 0;
   6481 		for (j = 0; j < fmt->frequency_type; j++) {
   6482 			if (fmt->frequency[j] == 44100) {
   6483 				return fmt->frequency[j];
   6484 			}
   6485 			if (fmt->frequency[j] > high) {
   6486 				high = fmt->frequency[j];
   6487 			}
   6488 		}
   6489 		return high;
   6490 	}
   6491 }
   6492 
   6493 /*
   6494  * Choose the most preferred hardware format.
   6495  * If successful, it will store the chosen format into *cand and return 0.
   6496  * Otherwise, return errno.
   6497  * Must be called without sc_lock held.
   6498  */
   6499 static int
   6500 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
   6501 {
   6502 	audio_format_query_t query;
   6503 	int cand_score;
   6504 	int score;
   6505 	int i;
   6506 	int error;
   6507 
   6508 	/*
   6509 	 * Score each formats and choose the highest one.
   6510 	 *
   6511 	 *                 +---- priority(0-3)
   6512 	 *                 |+--- encoding/precision
   6513 	 *                 ||+-- channels
   6514 	 * score = 0x000000PEC
   6515 	 */
   6516 
   6517 	cand_score = 0;
   6518 	for (i = 0; ; i++) {
   6519 		memset(&query, 0, sizeof(query));
   6520 		query.index = i;
   6521 
   6522 		mutex_enter(sc->sc_lock);
   6523 		error = sc->hw_if->query_format(sc->hw_hdl, &query);
   6524 		mutex_exit(sc->sc_lock);
   6525 		if (error == EINVAL)
   6526 			break;
   6527 		if (error)
   6528 			return error;
   6529 
   6530 #if defined(AUDIO_DEBUG)
   6531 		DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
   6532 		    (query.fmt.mode & AUMODE_PLAY)   ? 'P' : '-',
   6533 		    (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
   6534 		    query.fmt.priority,
   6535 		    audio_encoding_name(query.fmt.encoding),
   6536 		    query.fmt.validbits,
   6537 		    query.fmt.precision,
   6538 		    query.fmt.channels);
   6539 		if (query.fmt.frequency_type == 0) {
   6540 			DPRINTF(1, "{%d-%d",
   6541 			    query.fmt.frequency[0], query.fmt.frequency[1]);
   6542 		} else {
   6543 			int j;
   6544 			for (j = 0; j < query.fmt.frequency_type; j++) {
   6545 				DPRINTF(1, "%c%d",
   6546 				    (j == 0) ? '{' : ',',
   6547 				    query.fmt.frequency[j]);
   6548 			}
   6549 		}
   6550 		DPRINTF(1, "}\n");
   6551 #endif
   6552 
   6553 		if ((query.fmt.mode & mode) == 0) {
   6554 			DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
   6555 			    mode);
   6556 			continue;
   6557 		}
   6558 
   6559 		if (query.fmt.priority < 0) {
   6560 			DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
   6561 			continue;
   6562 		}
   6563 
   6564 		/* Score */
   6565 		score = (query.fmt.priority & 3) * 0x100;
   6566 		if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
   6567 		    query.fmt.validbits == AUDIO_INTERNAL_BITS &&
   6568 		    query.fmt.precision == AUDIO_INTERNAL_BITS) {
   6569 			score += 0x20;
   6570 		} else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
   6571 		    query.fmt.validbits == AUDIO_INTERNAL_BITS &&
   6572 		    query.fmt.precision == AUDIO_INTERNAL_BITS) {
   6573 			score += 0x10;
   6574 		}
   6575 		score += query.fmt.channels;
   6576 
   6577 		if (score < cand_score) {
   6578 			DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
   6579 			    score, cand_score);
   6580 			continue;
   6581 		}
   6582 
   6583 		/* Update candidate */
   6584 		cand_score = score;
   6585 		cand->encoding    = query.fmt.encoding;
   6586 		cand->precision   = query.fmt.validbits;
   6587 		cand->stride      = query.fmt.precision;
   6588 		cand->channels    = query.fmt.channels;
   6589 		cand->sample_rate = audio_select_freq(&query.fmt);
   6590 		DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
   6591 		    " pri=%d %s,%d/%d,%dch,%dHz\n", i,
   6592 		    cand_score, query.fmt.priority,
   6593 		    audio_encoding_name(query.fmt.encoding),
   6594 		    cand->precision, cand->stride,
   6595 		    cand->channels, cand->sample_rate);
   6596 	}
   6597 
   6598 	if (cand_score == 0) {
   6599 		DPRINTF(1, "%s no fmt\n", __func__);
   6600 		return ENXIO;
   6601 	}
   6602 	DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
   6603 	    audio_encoding_name(cand->encoding),
   6604 	    cand->precision, cand->stride, cand->channels, cand->sample_rate);
   6605 	return 0;
   6606 }
   6607 
   6608 /*
   6609  * Validate fmt with query_format.
   6610  * If fmt is included in the result of query_format, returns 0.
   6611  * Otherwise returns EINVAL.
   6612  * Must be called without sc_lock held.
   6613  */
   6614 static int
   6615 audio_hw_validate_format(struct audio_softc *sc, int mode,
   6616 	const audio_format2_t *fmt)
   6617 {
   6618 	audio_format_query_t query;
   6619 	struct audio_format *q;
   6620 	int index;
   6621 	int error;
   6622 	int j;
   6623 
   6624 	for (index = 0; ; index++) {
   6625 		query.index = index;
   6626 		mutex_enter(sc->sc_lock);
   6627 		error = sc->hw_if->query_format(sc->hw_hdl, &query);
   6628 		mutex_exit(sc->sc_lock);
   6629 		if (error == EINVAL)
   6630 			break;
   6631 		if (error)
   6632 			return error;
   6633 
   6634 		q = &query.fmt;
   6635 		/*
   6636 		 * Note that fmt is audio_format2_t (precision/stride) but
   6637 		 * q is audio_format_t (validbits/precision).
   6638 		 */
   6639 		if ((q->mode & mode) == 0) {
   6640 			continue;
   6641 		}
   6642 		if (fmt->encoding != q->encoding) {
   6643 			continue;
   6644 		}
   6645 		if (fmt->precision != q->validbits) {
   6646 			continue;
   6647 		}
   6648 		if (fmt->stride != q->precision) {
   6649 			continue;
   6650 		}
   6651 		if (fmt->channels != q->channels) {
   6652 			continue;
   6653 		}
   6654 		if (q->frequency_type == 0) {
   6655 			if (fmt->sample_rate < q->frequency[0] ||
   6656 			    fmt->sample_rate > q->frequency[1]) {
   6657 				continue;
   6658 			}
   6659 		} else {
   6660 			for (j = 0; j < q->frequency_type; j++) {
   6661 				if (fmt->sample_rate == q->frequency[j])
   6662 					break;
   6663 			}
   6664 			if (j == query.fmt.frequency_type) {
   6665 				continue;
   6666 			}
   6667 		}
   6668 
   6669 		/* Matched. */
   6670 		return 0;
   6671 	}
   6672 
   6673 	return EINVAL;
   6674 }
   6675 
   6676 /*
   6677  * Set track mixer's format depending on ai->mode.
   6678  * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
   6679  * with ai.play.*.
   6680  * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
   6681  * with ai.record.*.
   6682  * All other fields in ai are ignored.
   6683  * If successful returns 0.  Otherwise returns errno.
   6684  * This function does not roll back even if it fails.
   6685  * Must be called with sc_exlock held and without sc_lock held.
   6686  */
   6687 static int
   6688 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
   6689 {
   6690 	audio_format2_t phwfmt;
   6691 	audio_format2_t rhwfmt;
   6692 	audio_filter_reg_t pfil;
   6693 	audio_filter_reg_t rfil;
   6694 	int mode;
   6695 	int error;
   6696 
   6697 	KASSERT(sc->sc_exlock);
   6698 
   6699 	/*
   6700 	 * Even when setting either one of playback and recording,
   6701 	 * both must be halted.
   6702 	 */
   6703 	if (sc->sc_popens + sc->sc_ropens > 0)
   6704 		return EBUSY;
   6705 
   6706 	if (!SPECIFIED(ai->mode) || ai->mode == 0)
   6707 		return ENOTTY;
   6708 
   6709 	mode = ai->mode;
   6710 	if ((mode & AUMODE_PLAY)) {
   6711 		phwfmt.encoding    = ai->play.encoding;
   6712 		phwfmt.precision   = ai->play.precision;
   6713 		phwfmt.stride      = ai->play.precision;
   6714 		phwfmt.channels    = ai->play.channels;
   6715 		phwfmt.sample_rate = ai->play.sample_rate;
   6716 	}
   6717 	if ((mode & AUMODE_RECORD)) {
   6718 		rhwfmt.encoding    = ai->record.encoding;
   6719 		rhwfmt.precision   = ai->record.precision;
   6720 		rhwfmt.stride      = ai->record.precision;
   6721 		rhwfmt.channels    = ai->record.channels;
   6722 		rhwfmt.sample_rate = ai->record.sample_rate;
   6723 	}
   6724 
   6725 	/* On non-independent devices, use the same format for both. */
   6726 	if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
   6727 		if (mode == AUMODE_RECORD) {
   6728 			phwfmt = rhwfmt;
   6729 		} else {
   6730 			rhwfmt = phwfmt;
   6731 		}
   6732 		mode = AUMODE_PLAY | AUMODE_RECORD;
   6733 	}
   6734 
   6735 	/* Then, unset the direction not exist on the hardware. */
   6736 	if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
   6737 		mode &= ~AUMODE_PLAY;
   6738 	if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
   6739 		mode &= ~AUMODE_RECORD;
   6740 
   6741 	/* debug */
   6742 	if ((mode & AUMODE_PLAY)) {
   6743 		TRACE(1, "play=%s/%d/%d/%dch/%dHz",
   6744 		    audio_encoding_name(phwfmt.encoding),
   6745 		    phwfmt.precision,
   6746 		    phwfmt.stride,
   6747 		    phwfmt.channels,
   6748 		    phwfmt.sample_rate);
   6749 	}
   6750 	if ((mode & AUMODE_RECORD)) {
   6751 		TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
   6752 		    audio_encoding_name(rhwfmt.encoding),
   6753 		    rhwfmt.precision,
   6754 		    rhwfmt.stride,
   6755 		    rhwfmt.channels,
   6756 		    rhwfmt.sample_rate);
   6757 	}
   6758 
   6759 	/* Check the format */
   6760 	if ((mode & AUMODE_PLAY)) {
   6761 		if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
   6762 			TRACE(1, "invalid format");
   6763 			return EINVAL;
   6764 		}
   6765 	}
   6766 	if ((mode & AUMODE_RECORD)) {
   6767 		if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
   6768 			TRACE(1, "invalid format");
   6769 			return EINVAL;
   6770 		}
   6771 	}
   6772 
   6773 	/* Configure the mixers. */
   6774 	memset(&pfil, 0, sizeof(pfil));
   6775 	memset(&rfil, 0, sizeof(rfil));
   6776 	error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   6777 	if (error)
   6778 		return error;
   6779 
   6780 	error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   6781 	if (error)
   6782 		return error;
   6783 
   6784 	/*
   6785 	 * Reinitialize the sticky parameters for /dev/sound.
   6786 	 * If the number of the hardware channels becomes less than the number
   6787 	 * of channels that sticky parameters remember, subsequent /dev/sound
   6788 	 * open will fail.  To prevent this, reinitialize the sticky
   6789 	 * parameters whenever the hardware format is changed.
   6790 	 */
   6791 	sc->sc_sound_pparams = params_to_format2(&audio_default);
   6792 	sc->sc_sound_rparams = params_to_format2(&audio_default);
   6793 	sc->sc_sound_ppause = false;
   6794 	sc->sc_sound_rpause = false;
   6795 
   6796 	return 0;
   6797 }
   6798 
   6799 /*
   6800  * Store current mixers format into *ai.
   6801  * Must be called with sc_exlock held.
   6802  */
   6803 static void
   6804 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
   6805 {
   6806 
   6807 	KASSERT(sc->sc_exlock);
   6808 
   6809 	/*
   6810 	 * There is no stride information in audio_info but it doesn't matter.
   6811 	 * trackmixer always treats stride and precision as the same.
   6812 	 */
   6813 	AUDIO_INITINFO(ai);
   6814 	ai->mode = 0;
   6815 	if (sc->sc_pmixer) {
   6816 		audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
   6817 		ai->play.encoding    = fmt->encoding;
   6818 		ai->play.precision   = fmt->precision;
   6819 		ai->play.channels    = fmt->channels;
   6820 		ai->play.sample_rate = fmt->sample_rate;
   6821 		ai->mode |= AUMODE_PLAY;
   6822 	}
   6823 	if (sc->sc_rmixer) {
   6824 		audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
   6825 		ai->record.encoding    = fmt->encoding;
   6826 		ai->record.precision   = fmt->precision;
   6827 		ai->record.channels    = fmt->channels;
   6828 		ai->record.sample_rate = fmt->sample_rate;
   6829 		ai->mode |= AUMODE_RECORD;
   6830 	}
   6831 }
   6832 
   6833 /*
   6834  * audio_info details:
   6835  *
   6836  * ai.{play,record}.sample_rate		(R/W)
   6837  * ai.{play,record}.encoding		(R/W)
   6838  * ai.{play,record}.precision		(R/W)
   6839  * ai.{play,record}.channels		(R/W)
   6840  *	These specify the playback or recording format.
   6841  *	Ignore members within an inactive track.
   6842  *
   6843  * ai.mode				(R/W)
   6844  *	It specifies the playback or recording mode, AUMODE_*.
   6845  *	Currently, a mode change operation by ai.mode after opening is
   6846  *	prohibited.  In addition, AUMODE_PLAY_ALL no longer makes sense.
   6847  *	However, it's possible to get or to set for backward compatibility.
   6848  *
   6849  * ai.{hiwat,lowat}			(R/W)
   6850  *	These specify the high water mark and low water mark for playback
   6851  *	track.  The unit is block.
   6852  *
   6853  * ai.{play,record}.gain		(R/W)
   6854  *	It specifies the HW mixer volume in 0-255.
   6855  *	It is historical reason that the gain is connected to HW mixer.
   6856  *
   6857  * ai.{play,record}.balance		(R/W)
   6858  *	It specifies the left-right balance of HW mixer in 0-64.
   6859  *	32 means the center.
   6860  *	It is historical reason that the balance is connected to HW mixer.
   6861  *
   6862  * ai.{play,record}.port		(R/W)
   6863  *	It specifies the input/output port of HW mixer.
   6864  *
   6865  * ai.monitor_gain			(R/W)
   6866  *	It specifies the recording monitor gain(?) of HW mixer.
   6867  *
   6868  * ai.{play,record}.pause		(R/W)
   6869  *	Non-zero means the track is paused.
   6870  *
   6871  * ai.play.seek				(R/-)
   6872  *	It indicates the number of bytes written but not processed.
   6873  * ai.record.seek			(R/-)
   6874  *	It indicates the number of bytes to be able to read.
   6875  *
   6876  * ai.{play,record}.avail_ports		(R/-)
   6877  *	Mixer info.
   6878  *
   6879  * ai.{play,record}.buffer_size		(R/-)
   6880  *	It indicates the buffer size in bytes.  Internally it means usrbuf.
   6881  *
   6882  * ai.{play,record}.samples		(R/-)
   6883  *	It indicates the total number of bytes played or recorded.
   6884  *
   6885  * ai.{play,record}.eof			(R/-)
   6886  *	It indicates the number of times reached EOF(?).
   6887  *
   6888  * ai.{play,record}.error		(R/-)
   6889  *	Non-zero indicates overflow/underflow has occured.
   6890  *
   6891  * ai.{play,record}.waiting		(R/-)
   6892  *	Non-zero indicates that other process waits to open.
   6893  *	It will never happen anymore.
   6894  *
   6895  * ai.{play,record}.open		(R/-)
   6896  *	Non-zero indicates the direction is opened by this process(?).
   6897  *	XXX Is this better to indicate that "the device is opened by
   6898  *	at least one process"?
   6899  *
   6900  * ai.{play,record}.active		(R/-)
   6901  *	Non-zero indicates that I/O is currently active.
   6902  *
   6903  * ai.blocksize				(R/-)
   6904  *	It indicates the block size in bytes.
   6905  *	XXX The blocksize of playback and recording may be different.
   6906  */
   6907 
   6908 /*
   6909  * Pause consideration:
   6910  *
   6911  * Pausing/unpausing never affect [pr]mixer.  This single rule makes
   6912  * operation simple.  Note that playback and recording are asymmetric.
   6913  *
   6914  * For playback,
   6915  *  1. Any playback open doesn't start pmixer regardless of initial pause
   6916  *     state of this track.
   6917  *  2. The first write access among playback tracks only starts pmixer
   6918  *     regardless of this track's pause state.
   6919  *  3. Even a pause of the last playback track doesn't stop pmixer.
   6920  *  4. The last close of all playback tracks only stops pmixer.
   6921  *
   6922  * For recording,
   6923  *  1. The first recording open only starts rmixer regardless of initial
   6924  *     pause state of this track.
   6925  *  2. Even a pause of the last track doesn't stop rmixer.
   6926  *  3. The last close of all recording tracks only stops rmixer.
   6927  */
   6928 
   6929 /*
   6930  * Set both track's parameters within a file depending on ai.
   6931  * Update sc_sound_[pr]* if set.
   6932  * Must be called with sc_exlock held and without sc_lock held.
   6933  */
   6934 static int
   6935 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
   6936 	const struct audio_info *ai)
   6937 {
   6938 	const struct audio_prinfo *pi;
   6939 	const struct audio_prinfo *ri;
   6940 	audio_track_t *ptrack;
   6941 	audio_track_t *rtrack;
   6942 	audio_format2_t pfmt;
   6943 	audio_format2_t rfmt;
   6944 	int pchanges;
   6945 	int rchanges;
   6946 	int mode;
   6947 	struct audio_info saved_ai;
   6948 	audio_format2_t saved_pfmt;
   6949 	audio_format2_t saved_rfmt;
   6950 	int error;
   6951 
   6952 	KASSERT(sc->sc_exlock);
   6953 
   6954 	pi = &ai->play;
   6955 	ri = &ai->record;
   6956 	pchanges = 0;
   6957 	rchanges = 0;
   6958 
   6959 	ptrack = file->ptrack;
   6960 	rtrack = file->rtrack;
   6961 
   6962 #if defined(AUDIO_DEBUG)
   6963 	if (audiodebug >= 2) {
   6964 		char buf[256];
   6965 		char p[64];
   6966 		int buflen;
   6967 		int plen;
   6968 #define SPRINTF(var, fmt...) do {	\
   6969 	var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
   6970 } while (0)
   6971 
   6972 		buflen = 0;
   6973 		plen = 0;
   6974 		if (SPECIFIED(pi->encoding))
   6975 			SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
   6976 		if (SPECIFIED(pi->precision))
   6977 			SPRINTF(p, "/%dbit", pi->precision);
   6978 		if (SPECIFIED(pi->channels))
   6979 			SPRINTF(p, "/%dch", pi->channels);
   6980 		if (SPECIFIED(pi->sample_rate))
   6981 			SPRINTF(p, "/%dHz", pi->sample_rate);
   6982 		if (plen > 0)
   6983 			SPRINTF(buf, ",play.param=%s", p + 1);
   6984 
   6985 		plen = 0;
   6986 		if (SPECIFIED(ri->encoding))
   6987 			SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
   6988 		if (SPECIFIED(ri->precision))
   6989 			SPRINTF(p, "/%dbit", ri->precision);
   6990 		if (SPECIFIED(ri->channels))
   6991 			SPRINTF(p, "/%dch", ri->channels);
   6992 		if (SPECIFIED(ri->sample_rate))
   6993 			SPRINTF(p, "/%dHz", ri->sample_rate);
   6994 		if (plen > 0)
   6995 			SPRINTF(buf, ",record.param=%s", p + 1);
   6996 
   6997 		if (SPECIFIED(ai->mode))
   6998 			SPRINTF(buf, ",mode=%d", ai->mode);
   6999 		if (SPECIFIED(ai->hiwat))
   7000 			SPRINTF(buf, ",hiwat=%d", ai->hiwat);
   7001 		if (SPECIFIED(ai->lowat))
   7002 			SPRINTF(buf, ",lowat=%d", ai->lowat);
   7003 		if (SPECIFIED(ai->play.gain))
   7004 			SPRINTF(buf, ",play.gain=%d", ai->play.gain);
   7005 		if (SPECIFIED(ai->record.gain))
   7006 			SPRINTF(buf, ",record.gain=%d", ai->record.gain);
   7007 		if (SPECIFIED_CH(ai->play.balance))
   7008 			SPRINTF(buf, ",play.balance=%d", ai->play.balance);
   7009 		if (SPECIFIED_CH(ai->record.balance))
   7010 			SPRINTF(buf, ",record.balance=%d", ai->record.balance);
   7011 		if (SPECIFIED(ai->play.port))
   7012 			SPRINTF(buf, ",play.port=%d", ai->play.port);
   7013 		if (SPECIFIED(ai->record.port))
   7014 			SPRINTF(buf, ",record.port=%d", ai->record.port);
   7015 		if (SPECIFIED(ai->monitor_gain))
   7016 			SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
   7017 		if (SPECIFIED_CH(ai->play.pause))
   7018 			SPRINTF(buf, ",play.pause=%d", ai->play.pause);
   7019 		if (SPECIFIED_CH(ai->record.pause))
   7020 			SPRINTF(buf, ",record.pause=%d", ai->record.pause);
   7021 
   7022 		if (buflen > 0)
   7023 			TRACE(2, "specified %s", buf + 1);
   7024 	}
   7025 #endif
   7026 
   7027 	AUDIO_INITINFO(&saved_ai);
   7028 	/* XXX shut up gcc */
   7029 	memset(&saved_pfmt, 0, sizeof(saved_pfmt));
   7030 	memset(&saved_rfmt, 0, sizeof(saved_rfmt));
   7031 
   7032 	/*
   7033 	 * Set default value and save current parameters.
   7034 	 * For backward compatibility, use sticky parameters for nonexistent
   7035 	 * track.
   7036 	 */
   7037 	if (ptrack) {
   7038 		pfmt = ptrack->usrbuf.fmt;
   7039 		saved_pfmt = ptrack->usrbuf.fmt;
   7040 		saved_ai.play.pause = ptrack->is_pause;
   7041 	} else {
   7042 		pfmt = sc->sc_sound_pparams;
   7043 	}
   7044 	if (rtrack) {
   7045 		rfmt = rtrack->usrbuf.fmt;
   7046 		saved_rfmt = rtrack->usrbuf.fmt;
   7047 		saved_ai.record.pause = rtrack->is_pause;
   7048 	} else {
   7049 		rfmt = sc->sc_sound_rparams;
   7050 	}
   7051 	saved_ai.mode = file->mode;
   7052 
   7053 	/*
   7054 	 * Overwrite if specified.
   7055 	 */
   7056 	mode = file->mode;
   7057 	if (SPECIFIED(ai->mode)) {
   7058 		/*
   7059 		 * Setting ai->mode no longer does anything because it's
   7060 		 * prohibited to change playback/recording mode after open
   7061 		 * and AUMODE_PLAY_ALL is obsoleted.  However, it still
   7062 		 * keeps the state of AUMODE_PLAY_ALL itself for backward
   7063 		 * compatibility.
   7064 		 * In the internal, only file->mode has the state of
   7065 		 * AUMODE_PLAY_ALL flag and track->mode in both track does
   7066 		 * not have.
   7067 		 */
   7068 		if ((file->mode & AUMODE_PLAY)) {
   7069 			mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
   7070 			    | (ai->mode & AUMODE_PLAY_ALL);
   7071 		}
   7072 	}
   7073 
   7074 	pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
   7075 	if (pchanges == -1) {
   7076 #if defined(AUDIO_DEBUG)
   7077 		TRACEF(1, file, "check play.params failed: "
   7078 		    "%s %ubit %uch %uHz",
   7079 		    audio_encoding_name(pi->encoding),
   7080 		    pi->precision,
   7081 		    pi->channels,
   7082 		    pi->sample_rate);
   7083 #endif
   7084 		return EINVAL;
   7085 	}
   7086 
   7087 	rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
   7088 	if (rchanges == -1) {
   7089 #if defined(AUDIO_DEBUG)
   7090 		TRACEF(1, file, "check record.params failed: "
   7091 		    "%s %ubit %uch %uHz",
   7092 		    audio_encoding_name(ri->encoding),
   7093 		    ri->precision,
   7094 		    ri->channels,
   7095 		    ri->sample_rate);
   7096 #endif
   7097 		return EINVAL;
   7098 	}
   7099 
   7100 	if (SPECIFIED(ai->mode)) {
   7101 		pchanges = 1;
   7102 		rchanges = 1;
   7103 	}
   7104 
   7105 	/*
   7106 	 * Even when setting either one of playback and recording,
   7107 	 * both track must be halted.
   7108 	 */
   7109 	if (pchanges || rchanges) {
   7110 		audio_file_clear(sc, file);
   7111 #if defined(AUDIO_DEBUG)
   7112 		char nbuf[16];
   7113 		char fmtbuf[64];
   7114 		if (pchanges) {
   7115 			if (ptrack) {
   7116 				snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
   7117 			} else {
   7118 				snprintf(nbuf, sizeof(nbuf), "-");
   7119 			}
   7120 			audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
   7121 			DPRINTF(1, "audio track#%s play mode: %s\n",
   7122 			    nbuf, fmtbuf);
   7123 		}
   7124 		if (rchanges) {
   7125 			if (rtrack) {
   7126 				snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
   7127 			} else {
   7128 				snprintf(nbuf, sizeof(nbuf), "-");
   7129 			}
   7130 			audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
   7131 			DPRINTF(1, "audio track#%s rec  mode: %s\n",
   7132 			    nbuf, fmtbuf);
   7133 		}
   7134 #endif
   7135 	}
   7136 
   7137 	/* Set mixer parameters */
   7138 	mutex_enter(sc->sc_lock);
   7139 	error = audio_hw_setinfo(sc, ai, &saved_ai);
   7140 	mutex_exit(sc->sc_lock);
   7141 	if (error)
   7142 		goto abort1;
   7143 
   7144 	/*
   7145 	 * Set to track and update sticky parameters.
   7146 	 */
   7147 	error = 0;
   7148 	file->mode = mode;
   7149 
   7150 	if (SPECIFIED_CH(pi->pause)) {
   7151 		if (ptrack)
   7152 			ptrack->is_pause = pi->pause;
   7153 		sc->sc_sound_ppause = pi->pause;
   7154 	}
   7155 	if (pchanges) {
   7156 		if (ptrack) {
   7157 			audio_track_lock_enter(ptrack);
   7158 			error = audio_track_set_format(ptrack, &pfmt);
   7159 			audio_track_lock_exit(ptrack);
   7160 			if (error) {
   7161 				TRACET(1, ptrack, "set play.params failed");
   7162 				goto abort2;
   7163 			}
   7164 		}
   7165 		sc->sc_sound_pparams = pfmt;
   7166 	}
   7167 	/* Change water marks after initializing the buffers. */
   7168 	if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
   7169 		if (ptrack)
   7170 			audio_track_setinfo_water(ptrack, ai);
   7171 	}
   7172 
   7173 	if (SPECIFIED_CH(ri->pause)) {
   7174 		if (rtrack)
   7175 			rtrack->is_pause = ri->pause;
   7176 		sc->sc_sound_rpause = ri->pause;
   7177 	}
   7178 	if (rchanges) {
   7179 		if (rtrack) {
   7180 			audio_track_lock_enter(rtrack);
   7181 			error = audio_track_set_format(rtrack, &rfmt);
   7182 			audio_track_lock_exit(rtrack);
   7183 			if (error) {
   7184 				TRACET(1, rtrack, "set record.params failed");
   7185 				goto abort3;
   7186 			}
   7187 		}
   7188 		sc->sc_sound_rparams = rfmt;
   7189 	}
   7190 
   7191 	return 0;
   7192 
   7193 	/* Rollback */
   7194 abort3:
   7195 	if (error != ENOMEM) {
   7196 		rtrack->is_pause = saved_ai.record.pause;
   7197 		audio_track_lock_enter(rtrack);
   7198 		audio_track_set_format(rtrack, &saved_rfmt);
   7199 		audio_track_lock_exit(rtrack);
   7200 	}
   7201 	sc->sc_sound_rpause = saved_ai.record.pause;
   7202 	sc->sc_sound_rparams = saved_rfmt;
   7203 abort2:
   7204 	if (ptrack && error != ENOMEM) {
   7205 		ptrack->is_pause = saved_ai.play.pause;
   7206 		audio_track_lock_enter(ptrack);
   7207 		audio_track_set_format(ptrack, &saved_pfmt);
   7208 		audio_track_lock_exit(ptrack);
   7209 	}
   7210 	sc->sc_sound_ppause = saved_ai.play.pause;
   7211 	sc->sc_sound_pparams = saved_pfmt;
   7212 	file->mode = saved_ai.mode;
   7213 abort1:
   7214 	mutex_enter(sc->sc_lock);
   7215 	audio_hw_setinfo(sc, &saved_ai, NULL);
   7216 	mutex_exit(sc->sc_lock);
   7217 
   7218 	return error;
   7219 }
   7220 
   7221 /*
   7222  * Write SPECIFIED() parameters within info back to fmt.
   7223  * Note that track can be NULL here.
   7224  * Return value of 1 indicates that fmt is modified.
   7225  * Return value of 0 indicates that fmt is not modified.
   7226  * Return value of -1 indicates that error EINVAL has occurred.
   7227  */
   7228 static int
   7229 audio_track_setinfo_check(audio_track_t *track,
   7230 	audio_format2_t *fmt, const struct audio_prinfo *info)
   7231 {
   7232 	const audio_format2_t *hwfmt;
   7233 	int changes;
   7234 
   7235 	changes = 0;
   7236 	if (SPECIFIED(info->sample_rate)) {
   7237 		if (info->sample_rate < AUDIO_MIN_FREQUENCY)
   7238 			return -1;
   7239 		if (info->sample_rate > AUDIO_MAX_FREQUENCY)
   7240 			return -1;
   7241 		fmt->sample_rate = info->sample_rate;
   7242 		changes = 1;
   7243 	}
   7244 	if (SPECIFIED(info->encoding)) {
   7245 		fmt->encoding = info->encoding;
   7246 		changes = 1;
   7247 	}
   7248 	if (SPECIFIED(info->precision)) {
   7249 		fmt->precision = info->precision;
   7250 		/* we don't have API to specify stride */
   7251 		fmt->stride = info->precision;
   7252 		changes = 1;
   7253 	}
   7254 	if (SPECIFIED(info->channels)) {
   7255 		/*
   7256 		 * We can convert between monaural and stereo each other.
   7257 		 * We can reduce than the number of channels that the hardware
   7258 		 * supports.
   7259 		 */
   7260 		if (info->channels > 2) {
   7261 			if (track) {
   7262 				hwfmt = &track->mixer->hwbuf.fmt;
   7263 				if (info->channels > hwfmt->channels)
   7264 					return -1;
   7265 			} else {
   7266 				/*
   7267 				 * This should never happen.
   7268 				 * If track == NULL, channels should be <= 2.
   7269 				 */
   7270 				return -1;
   7271 			}
   7272 		}
   7273 		fmt->channels = info->channels;
   7274 		changes = 1;
   7275 	}
   7276 
   7277 	if (changes) {
   7278 		if (audio_check_params(fmt) != 0)
   7279 			return -1;
   7280 	}
   7281 
   7282 	return changes;
   7283 }
   7284 
   7285 /*
   7286  * Change water marks for playback track if specfied.
   7287  */
   7288 static void
   7289 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
   7290 {
   7291 	u_int blks;
   7292 	u_int maxblks;
   7293 	u_int blksize;
   7294 
   7295 	KASSERT(audio_track_is_playback(track));
   7296 
   7297 	blksize = track->usrbuf_blksize;
   7298 	maxblks = track->usrbuf.capacity / blksize;
   7299 
   7300 	if (SPECIFIED(ai->hiwat)) {
   7301 		blks = ai->hiwat;
   7302 		if (blks > maxblks)
   7303 			blks = maxblks;
   7304 		if (blks < 2)
   7305 			blks = 2;
   7306 		track->usrbuf_usedhigh = blks * blksize;
   7307 	}
   7308 	if (SPECIFIED(ai->lowat)) {
   7309 		blks = ai->lowat;
   7310 		if (blks > maxblks - 1)
   7311 			blks = maxblks - 1;
   7312 		track->usrbuf_usedlow = blks * blksize;
   7313 	}
   7314 	if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
   7315 		if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
   7316 			track->usrbuf_usedlow = track->usrbuf_usedhigh -
   7317 			    blksize;
   7318 		}
   7319 	}
   7320 }
   7321 
   7322 /*
   7323  * Set hardware part of *newai.
   7324  * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
   7325  * If oldai is specified, previous parameters are stored.
   7326  * This function itself does not roll back if error occurred.
   7327  * Must be called with sc_lock && sc_exlock held.
   7328  */
   7329 static int
   7330 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
   7331 	struct audio_info *oldai)
   7332 {
   7333 	const struct audio_prinfo *newpi;
   7334 	const struct audio_prinfo *newri;
   7335 	struct audio_prinfo *oldpi;
   7336 	struct audio_prinfo *oldri;
   7337 	u_int pgain;
   7338 	u_int rgain;
   7339 	u_char pbalance;
   7340 	u_char rbalance;
   7341 	int error;
   7342 
   7343 	KASSERT(mutex_owned(sc->sc_lock));
   7344 	KASSERT(sc->sc_exlock);
   7345 
   7346 	/* XXX shut up gcc */
   7347 	oldpi = NULL;
   7348 	oldri = NULL;
   7349 
   7350 	newpi = &newai->play;
   7351 	newri = &newai->record;
   7352 	if (oldai) {
   7353 		oldpi = &oldai->play;
   7354 		oldri = &oldai->record;
   7355 	}
   7356 	error = 0;
   7357 
   7358 	/*
   7359 	 * It looks like unnecessary to halt HW mixers to set HW mixers.
   7360 	 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
   7361 	 */
   7362 
   7363 	if (SPECIFIED(newpi->port)) {
   7364 		if (oldai)
   7365 			oldpi->port = au_get_port(sc, &sc->sc_outports);
   7366 		error = au_set_port(sc, &sc->sc_outports, newpi->port);
   7367 		if (error) {
   7368 			audio_printf(sc,
   7369 			    "setting play.port=%d failed: errno=%d\n",
   7370 			    newpi->port, error);
   7371 			goto abort;
   7372 		}
   7373 	}
   7374 	if (SPECIFIED(newri->port)) {
   7375 		if (oldai)
   7376 			oldri->port = au_get_port(sc, &sc->sc_inports);
   7377 		error = au_set_port(sc, &sc->sc_inports, newri->port);
   7378 		if (error) {
   7379 			audio_printf(sc,
   7380 			    "setting record.port=%d failed: errno=%d\n",
   7381 			    newri->port, error);
   7382 			goto abort;
   7383 		}
   7384 	}
   7385 
   7386 	/* Backup play.{gain,balance} */
   7387 	if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
   7388 		au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
   7389 		if (oldai) {
   7390 			oldpi->gain = pgain;
   7391 			oldpi->balance = pbalance;
   7392 		}
   7393 	}
   7394 	/* Backup record.{gain,balance} */
   7395 	if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
   7396 		au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
   7397 		if (oldai) {
   7398 			oldri->gain = rgain;
   7399 			oldri->balance = rbalance;
   7400 		}
   7401 	}
   7402 	if (SPECIFIED(newpi->gain)) {
   7403 		error = au_set_gain(sc, &sc->sc_outports,
   7404 		    newpi->gain, pbalance);
   7405 		if (error) {
   7406 			audio_printf(sc,
   7407 			    "setting play.gain=%d failed: errno=%d\n",
   7408 			    newpi->gain, error);
   7409 			goto abort;
   7410 		}
   7411 	}
   7412 	if (SPECIFIED(newri->gain)) {
   7413 		error = au_set_gain(sc, &sc->sc_inports,
   7414 		    newri->gain, rbalance);
   7415 		if (error) {
   7416 			audio_printf(sc,
   7417 			    "setting record.gain=%d failed: errno=%d\n",
   7418 			    newri->gain, error);
   7419 			goto abort;
   7420 		}
   7421 	}
   7422 	if (SPECIFIED_CH(newpi->balance)) {
   7423 		error = au_set_gain(sc, &sc->sc_outports,
   7424 		    pgain, newpi->balance);
   7425 		if (error) {
   7426 			audio_printf(sc,
   7427 			    "setting play.balance=%d failed: errno=%d\n",
   7428 			    newpi->balance, error);
   7429 			goto abort;
   7430 		}
   7431 	}
   7432 	if (SPECIFIED_CH(newri->balance)) {
   7433 		error = au_set_gain(sc, &sc->sc_inports,
   7434 		    rgain, newri->balance);
   7435 		if (error) {
   7436 			audio_printf(sc,
   7437 			    "setting record.balance=%d failed: errno=%d\n",
   7438 			    newri->balance, error);
   7439 			goto abort;
   7440 		}
   7441 	}
   7442 
   7443 	if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
   7444 		if (oldai)
   7445 			oldai->monitor_gain = au_get_monitor_gain(sc);
   7446 		error = au_set_monitor_gain(sc, newai->monitor_gain);
   7447 		if (error) {
   7448 			audio_printf(sc,
   7449 			    "setting monitor_gain=%d failed: errno=%d\n",
   7450 			    newai->monitor_gain, error);
   7451 			goto abort;
   7452 		}
   7453 	}
   7454 
   7455 	/* XXX TODO */
   7456 	/* sc->sc_ai = *ai; */
   7457 
   7458 	error = 0;
   7459 abort:
   7460 	return error;
   7461 }
   7462 
   7463 /*
   7464  * Setup the hardware with mixer format phwfmt, rhwfmt.
   7465  * The arguments have following restrictions:
   7466  * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
   7467  *   or both.
   7468  * - phwfmt and rhwfmt must not be NULL regardless of setmode.
   7469  * - On non-independent devices, phwfmt and rhwfmt must have the same
   7470  *   parameters.
   7471  * - pfil and rfil must be zero-filled.
   7472  * If successful,
   7473  * - pfil, rfil will be filled with filter information specified by the
   7474  *   hardware driver if necessary.
   7475  * and then returns 0.  Otherwise returns errno.
   7476  * Must be called without sc_lock held.
   7477  */
   7478 static int
   7479 audio_hw_set_format(struct audio_softc *sc, int setmode,
   7480 	const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
   7481 	audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
   7482 {
   7483 	audio_params_t pp, rp;
   7484 	int error;
   7485 
   7486 	KASSERT(phwfmt != NULL);
   7487 	KASSERT(rhwfmt != NULL);
   7488 
   7489 	pp = format2_to_params(phwfmt);
   7490 	rp = format2_to_params(rhwfmt);
   7491 
   7492 	mutex_enter(sc->sc_lock);
   7493 	error = sc->hw_if->set_format(sc->hw_hdl, setmode,
   7494 	    &pp, &rp, pfil, rfil);
   7495 	if (error) {
   7496 		mutex_exit(sc->sc_lock);
   7497 		audio_printf(sc, "set_format failed: errno=%d\n", error);
   7498 		return error;
   7499 	}
   7500 
   7501 	if (sc->hw_if->commit_settings) {
   7502 		error = sc->hw_if->commit_settings(sc->hw_hdl);
   7503 		if (error) {
   7504 			mutex_exit(sc->sc_lock);
   7505 			audio_printf(sc,
   7506 			    "commit_settings failed: errno=%d\n", error);
   7507 			return error;
   7508 		}
   7509 	}
   7510 	mutex_exit(sc->sc_lock);
   7511 
   7512 	return 0;
   7513 }
   7514 
   7515 /*
   7516  * Fill audio_info structure.  If need_mixerinfo is true, it will also
   7517  * fill the hardware mixer information.
   7518  * Must be called with sc_exlock held and without sc_lock held.
   7519  */
   7520 static int
   7521 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
   7522 	audio_file_t *file)
   7523 {
   7524 	struct audio_prinfo *ri, *pi;
   7525 	audio_track_t *track;
   7526 	audio_track_t *ptrack;
   7527 	audio_track_t *rtrack;
   7528 	int gain;
   7529 
   7530 	KASSERT(sc->sc_exlock);
   7531 
   7532 	ri = &ai->record;
   7533 	pi = &ai->play;
   7534 	ptrack = file->ptrack;
   7535 	rtrack = file->rtrack;
   7536 
   7537 	memset(ai, 0, sizeof(*ai));
   7538 
   7539 	if (ptrack) {
   7540 		pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
   7541 		pi->channels    = ptrack->usrbuf.fmt.channels;
   7542 		pi->precision   = ptrack->usrbuf.fmt.precision;
   7543 		pi->encoding    = ptrack->usrbuf.fmt.encoding;
   7544 		pi->pause       = ptrack->is_pause;
   7545 	} else {
   7546 		/* Use sticky parameters if the track is not available. */
   7547 		pi->sample_rate = sc->sc_sound_pparams.sample_rate;
   7548 		pi->channels    = sc->sc_sound_pparams.channels;
   7549 		pi->precision   = sc->sc_sound_pparams.precision;
   7550 		pi->encoding    = sc->sc_sound_pparams.encoding;
   7551 		pi->pause       = sc->sc_sound_ppause;
   7552 	}
   7553 	if (rtrack) {
   7554 		ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
   7555 		ri->channels    = rtrack->usrbuf.fmt.channels;
   7556 		ri->precision   = rtrack->usrbuf.fmt.precision;
   7557 		ri->encoding    = rtrack->usrbuf.fmt.encoding;
   7558 		ri->pause       = rtrack->is_pause;
   7559 	} else {
   7560 		/* Use sticky parameters if the track is not available. */
   7561 		ri->sample_rate = sc->sc_sound_rparams.sample_rate;
   7562 		ri->channels    = sc->sc_sound_rparams.channels;
   7563 		ri->precision   = sc->sc_sound_rparams.precision;
   7564 		ri->encoding    = sc->sc_sound_rparams.encoding;
   7565 		ri->pause       = sc->sc_sound_rpause;
   7566 	}
   7567 
   7568 	if (ptrack) {
   7569 		pi->seek = ptrack->usrbuf.used;
   7570 		pi->samples = ptrack->usrbuf_stamp;
   7571 		pi->eof = ptrack->eofcounter;
   7572 		pi->error = (ptrack->dropframes != 0) ? 1 : 0;
   7573 		pi->open = 1;
   7574 		pi->buffer_size = ptrack->usrbuf.capacity;
   7575 	}
   7576 	pi->waiting = 0;		/* open never hangs */
   7577 	pi->active = sc->sc_pbusy;
   7578 
   7579 	if (rtrack) {
   7580 		ri->seek = rtrack->usrbuf.used;
   7581 		ri->samples = rtrack->usrbuf_stamp;
   7582 		ri->eof = 0;
   7583 		ri->error = (rtrack->dropframes != 0) ? 1 : 0;
   7584 		ri->open = 1;
   7585 		ri->buffer_size = rtrack->usrbuf.capacity;
   7586 	}
   7587 	ri->waiting = 0;		/* open never hangs */
   7588 	ri->active = sc->sc_rbusy;
   7589 
   7590 	/*
   7591 	 * XXX There may be different number of channels between playback
   7592 	 *     and recording, so that blocksize also may be different.
   7593 	 *     But struct audio_info has an united blocksize...
   7594 	 *     Here, I use play info precedencely if ptrack is available,
   7595 	 *     otherwise record info.
   7596 	 *
   7597 	 * XXX hiwat/lowat is a playback-only parameter.  What should I
   7598 	 *     return for a record-only descriptor?
   7599 	 */
   7600 	track = ptrack ? ptrack : rtrack;
   7601 	if (track) {
   7602 		ai->blocksize = track->usrbuf_blksize;
   7603 		ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
   7604 		ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
   7605 	}
   7606 	ai->mode = file->mode;
   7607 
   7608 	/*
   7609 	 * For backward compatibility, we have to pad these five fields
   7610 	 * a fake non-zero value even if there are no tracks.
   7611 	 */
   7612 	if (ptrack == NULL)
   7613 		pi->buffer_size = 65536;
   7614 	if (rtrack == NULL)
   7615 		ri->buffer_size = 65536;
   7616 	if (ptrack == NULL && rtrack == NULL) {
   7617 		ai->blocksize = 2048;
   7618 		ai->hiwat = ai->play.buffer_size / ai->blocksize;
   7619 		ai->lowat = ai->hiwat * 3 / 4;
   7620 	}
   7621 
   7622 	if (need_mixerinfo) {
   7623 		mutex_enter(sc->sc_lock);
   7624 
   7625 		pi->port = au_get_port(sc, &sc->sc_outports);
   7626 		ri->port = au_get_port(sc, &sc->sc_inports);
   7627 
   7628 		pi->avail_ports = sc->sc_outports.allports;
   7629 		ri->avail_ports = sc->sc_inports.allports;
   7630 
   7631 		au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
   7632 		au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
   7633 
   7634 		if (sc->sc_monitor_port != -1) {
   7635 			gain = au_get_monitor_gain(sc);
   7636 			if (gain != -1)
   7637 				ai->monitor_gain = gain;
   7638 		}
   7639 		mutex_exit(sc->sc_lock);
   7640 	}
   7641 
   7642 	return 0;
   7643 }
   7644 
   7645 /*
   7646  * Return true if playback is configured.
   7647  * This function can be used after audioattach.
   7648  */
   7649 static bool
   7650 audio_can_playback(struct audio_softc *sc)
   7651 {
   7652 
   7653 	return (sc->sc_pmixer != NULL);
   7654 }
   7655 
   7656 /*
   7657  * Return true if recording is configured.
   7658  * This function can be used after audioattach.
   7659  */
   7660 static bool
   7661 audio_can_capture(struct audio_softc *sc)
   7662 {
   7663 
   7664 	return (sc->sc_rmixer != NULL);
   7665 }
   7666 
   7667 /*
   7668  * Get the afp->index'th item from the valid one of format[].
   7669  * If found, stores it to afp->fmt and returns 0.  Otherwise return EINVAL.
   7670  *
   7671  * This is common routines for query_format.
   7672  * If your hardware driver has struct audio_format[], the simplest case
   7673  * you can write your query_format interface as follows:
   7674  *
   7675  * struct audio_format foo_format[] = { ... };
   7676  *
   7677  * int
   7678  * foo_query_format(void *hdl, audio_format_query_t *afp)
   7679  * {
   7680  *   return audio_query_format(foo_format, __arraycount(foo_format), afp);
   7681  * }
   7682  */
   7683 int
   7684 audio_query_format(const struct audio_format *format, int nformats,
   7685 	audio_format_query_t *afp)
   7686 {
   7687 	const struct audio_format *f;
   7688 	int idx;
   7689 	int i;
   7690 
   7691 	idx = 0;
   7692 	for (i = 0; i < nformats; i++) {
   7693 		f = &format[i];
   7694 		if (!AUFMT_IS_VALID(f))
   7695 			continue;
   7696 		if (afp->index == idx) {
   7697 			afp->fmt = *f;
   7698 			return 0;
   7699 		}
   7700 		idx++;
   7701 	}
   7702 	return EINVAL;
   7703 }
   7704 
   7705 /*
   7706  * This function is provided for the hardware driver's set_format() to
   7707  * find index matches with 'param' from array of audio_format_t 'formats'.
   7708  * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
   7709  * It returns the matched index and never fails.  Because param passed to
   7710  * set_format() is selected from query_format().
   7711  * This function will be an alternative to auconv_set_converter() to
   7712  * find index.
   7713  */
   7714 int
   7715 audio_indexof_format(const struct audio_format *formats, int nformats,
   7716 	int mode, const audio_params_t *param)
   7717 {
   7718 	const struct audio_format *f;
   7719 	int index;
   7720 	int j;
   7721 
   7722 	for (index = 0; index < nformats; index++) {
   7723 		f = &formats[index];
   7724 
   7725 		if (!AUFMT_IS_VALID(f))
   7726 			continue;
   7727 		if ((f->mode & mode) == 0)
   7728 			continue;
   7729 		if (f->encoding != param->encoding)
   7730 			continue;
   7731 		if (f->validbits != param->precision)
   7732 			continue;
   7733 		if (f->channels != param->channels)
   7734 			continue;
   7735 
   7736 		if (f->frequency_type == 0) {
   7737 			if (param->sample_rate < f->frequency[0] ||
   7738 			    param->sample_rate > f->frequency[1])
   7739 				continue;
   7740 		} else {
   7741 			for (j = 0; j < f->frequency_type; j++) {
   7742 				if (param->sample_rate == f->frequency[j])
   7743 					break;
   7744 			}
   7745 			if (j == f->frequency_type)
   7746 				continue;
   7747 		}
   7748 
   7749 		/* Then, matched */
   7750 		return index;
   7751 	}
   7752 
   7753 	/* Not matched.  This should not be happened. */
   7754 	panic("%s: cannot find matched format\n", __func__);
   7755 }
   7756 
   7757 /*
   7758  * Get or set hardware blocksize in msec.
   7759  * XXX It's for debug.
   7760  */
   7761 static int
   7762 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
   7763 {
   7764 	struct sysctlnode node;
   7765 	struct audio_softc *sc;
   7766 	audio_format2_t phwfmt;
   7767 	audio_format2_t rhwfmt;
   7768 	audio_filter_reg_t pfil;
   7769 	audio_filter_reg_t rfil;
   7770 	int t;
   7771 	int old_blk_ms;
   7772 	int mode;
   7773 	int error;
   7774 
   7775 	node = *rnode;
   7776 	sc = node.sysctl_data;
   7777 
   7778 	error = audio_exlock_enter(sc);
   7779 	if (error)
   7780 		return error;
   7781 
   7782 	old_blk_ms = sc->sc_blk_ms;
   7783 	t = old_blk_ms;
   7784 	node.sysctl_data = &t;
   7785 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   7786 	if (error || newp == NULL)
   7787 		goto abort;
   7788 
   7789 	if (t < 0) {
   7790 		error = EINVAL;
   7791 		goto abort;
   7792 	}
   7793 
   7794 	if (sc->sc_popens + sc->sc_ropens > 0) {
   7795 		error = EBUSY;
   7796 		goto abort;
   7797 	}
   7798 	sc->sc_blk_ms = t;
   7799 	mode = 0;
   7800 	if (sc->sc_pmixer) {
   7801 		mode |= AUMODE_PLAY;
   7802 		phwfmt = sc->sc_pmixer->hwbuf.fmt;
   7803 	}
   7804 	if (sc->sc_rmixer) {
   7805 		mode |= AUMODE_RECORD;
   7806 		rhwfmt = sc->sc_rmixer->hwbuf.fmt;
   7807 	}
   7808 
   7809 	/* re-init hardware */
   7810 	memset(&pfil, 0, sizeof(pfil));
   7811 	memset(&rfil, 0, sizeof(rfil));
   7812 	error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   7813 	if (error) {
   7814 		goto abort;
   7815 	}
   7816 
   7817 	/* re-init track mixer */
   7818 	error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   7819 	if (error) {
   7820 		/* Rollback */
   7821 		sc->sc_blk_ms = old_blk_ms;
   7822 		audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   7823 		goto abort;
   7824 	}
   7825 	error = 0;
   7826 abort:
   7827 	audio_exlock_exit(sc);
   7828 	return error;
   7829 }
   7830 
   7831 /*
   7832  * Get or set multiuser mode.
   7833  */
   7834 static int
   7835 audio_sysctl_multiuser(SYSCTLFN_ARGS)
   7836 {
   7837 	struct sysctlnode node;
   7838 	struct audio_softc *sc;
   7839 	bool t;
   7840 	int error;
   7841 
   7842 	node = *rnode;
   7843 	sc = node.sysctl_data;
   7844 
   7845 	error = audio_exlock_enter(sc);
   7846 	if (error)
   7847 		return error;
   7848 
   7849 	t = sc->sc_multiuser;
   7850 	node.sysctl_data = &t;
   7851 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   7852 	if (error || newp == NULL)
   7853 		goto abort;
   7854 
   7855 	sc->sc_multiuser = t;
   7856 	error = 0;
   7857 abort:
   7858 	audio_exlock_exit(sc);
   7859 	return error;
   7860 }
   7861 
   7862 #if defined(AUDIO_DEBUG)
   7863 /*
   7864  * Get or set debug verbose level. (0..4)
   7865  * XXX It's for debug.
   7866  * XXX It is not separated per device.
   7867  */
   7868 static int
   7869 audio_sysctl_debug(SYSCTLFN_ARGS)
   7870 {
   7871 	struct sysctlnode node;
   7872 	int t;
   7873 	int error;
   7874 
   7875 	node = *rnode;
   7876 	t = audiodebug;
   7877 	node.sysctl_data = &t;
   7878 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   7879 	if (error || newp == NULL)
   7880 		return error;
   7881 
   7882 	if (t < 0 || t > 4)
   7883 		return EINVAL;
   7884 	audiodebug = t;
   7885 	printf("audio: audiodebug = %d\n", audiodebug);
   7886 	return 0;
   7887 }
   7888 #endif /* AUDIO_DEBUG */
   7889 
   7890 #ifdef AUDIO_PM_IDLE
   7891 static void
   7892 audio_idle(void *arg)
   7893 {
   7894 	device_t dv = arg;
   7895 	struct audio_softc *sc = device_private(dv);
   7896 
   7897 #ifdef PNP_DEBUG
   7898 	extern int pnp_debug_idle;
   7899 	if (pnp_debug_idle)
   7900 		printf("%s: idle handler called\n", device_xname(dv));
   7901 #endif
   7902 
   7903 	sc->sc_idle = true;
   7904 
   7905 	/* XXX joerg Make pmf_device_suspend handle children? */
   7906 	if (!pmf_device_suspend(dv, PMF_Q_SELF))
   7907 		return;
   7908 
   7909 	if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
   7910 		pmf_device_resume(dv, PMF_Q_SELF);
   7911 }
   7912 
   7913 static void
   7914 audio_activity(device_t dv, devactive_t type)
   7915 {
   7916 	struct audio_softc *sc = device_private(dv);
   7917 
   7918 	if (type != DVA_SYSTEM)
   7919 		return;
   7920 
   7921 	callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
   7922 
   7923 	sc->sc_idle = false;
   7924 	if (!device_is_active(dv)) {
   7925 		/* XXX joerg How to deal with a failing resume... */
   7926 		pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
   7927 		pmf_device_resume(dv, PMF_Q_SELF);
   7928 	}
   7929 }
   7930 #endif
   7931 
   7932 static bool
   7933 audio_suspend(device_t dv, const pmf_qual_t *qual)
   7934 {
   7935 	struct audio_softc *sc = device_private(dv);
   7936 	int error;
   7937 
   7938 	error = audio_exlock_mutex_enter(sc);
   7939 	if (error)
   7940 		return error;
   7941 	sc->sc_suspending = true;
   7942 	audio_mixer_capture(sc);
   7943 
   7944 	if (sc->sc_pbusy) {
   7945 		audio_pmixer_halt(sc);
   7946 		/* Reuse this as need-to-restart flag while suspending */
   7947 		sc->sc_pbusy = true;
   7948 	}
   7949 	if (sc->sc_rbusy) {
   7950 		audio_rmixer_halt(sc);
   7951 		/* Reuse this as need-to-restart flag while suspending */
   7952 		sc->sc_rbusy = true;
   7953 	}
   7954 
   7955 #ifdef AUDIO_PM_IDLE
   7956 	callout_halt(&sc->sc_idle_counter, sc->sc_lock);
   7957 #endif
   7958 	audio_exlock_mutex_exit(sc);
   7959 
   7960 	return true;
   7961 }
   7962 
   7963 static bool
   7964 audio_resume(device_t dv, const pmf_qual_t *qual)
   7965 {
   7966 	struct audio_softc *sc = device_private(dv);
   7967 	struct audio_info ai;
   7968 	int error;
   7969 
   7970 	error = audio_exlock_mutex_enter(sc);
   7971 	if (error)
   7972 		return error;
   7973 
   7974 	sc->sc_suspending = false;
   7975 	audio_mixer_restore(sc);
   7976 	/* XXX ? */
   7977 	AUDIO_INITINFO(&ai);
   7978 	audio_hw_setinfo(sc, &ai, NULL);
   7979 
   7980 	/*
   7981 	 * During from suspend to resume here, sc_[pr]busy is used as
   7982 	 * need-to-restart flag temporarily.  After this point,
   7983 	 * sc_[pr]busy is returned to its original usage (busy flag).
   7984 	 * And note that sc_[pr]busy must be false to call [pr]mixer_start().
   7985 	 */
   7986 	if (sc->sc_pbusy) {
   7987 		/* pmixer_start() requires pbusy is false */
   7988 		sc->sc_pbusy = false;
   7989 		audio_pmixer_start(sc, true);
   7990 	}
   7991 	if (sc->sc_rbusy) {
   7992 		/* rmixer_start() requires rbusy is false */
   7993 		sc->sc_rbusy = false;
   7994 		audio_rmixer_start(sc);
   7995 	}
   7996 
   7997 	audio_exlock_mutex_exit(sc);
   7998 
   7999 	return true;
   8000 }
   8001 
   8002 #if defined(AUDIO_DEBUG)
   8003 static void
   8004 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
   8005 {
   8006 	int n;
   8007 
   8008 	n = 0;
   8009 	n += snprintf(buf + n, bufsize - n, "%s",
   8010 	    audio_encoding_name(fmt->encoding));
   8011 	if (fmt->precision == fmt->stride) {
   8012 		n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
   8013 	} else {
   8014 		n += snprintf(buf + n, bufsize - n, " %d/%dbit",
   8015 			fmt->precision, fmt->stride);
   8016 	}
   8017 
   8018 	snprintf(buf + n, bufsize - n, " %uch %uHz",
   8019 	    fmt->channels, fmt->sample_rate);
   8020 }
   8021 #endif
   8022 
   8023 #if defined(AUDIO_DEBUG)
   8024 static void
   8025 audio_print_format2(const char *s, const audio_format2_t *fmt)
   8026 {
   8027 	char fmtstr[64];
   8028 
   8029 	audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
   8030 	printf("%s %s\n", s, fmtstr);
   8031 }
   8032 #endif
   8033 
   8034 #ifdef DIAGNOSTIC
   8035 void
   8036 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
   8037 {
   8038 
   8039 	KASSERTMSG(fmt, "called from %s", where);
   8040 
   8041 	/* XXX MSM6258 vs(4) only has 4bit stride format. */
   8042 	if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
   8043 		KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
   8044 		    "called from %s: fmt->stride=%d", where, fmt->stride);
   8045 	} else {
   8046 		KASSERTMSG(fmt->stride % NBBY == 0,
   8047 		    "called from %s: fmt->stride=%d", where, fmt->stride);
   8048 	}
   8049 	KASSERTMSG(fmt->precision <= fmt->stride,
   8050 	    "called from %s: fmt->precision=%d fmt->stride=%d",
   8051 	    where, fmt->precision, fmt->stride);
   8052 	KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
   8053 	    "called from %s: fmt->channels=%d", where, fmt->channels);
   8054 
   8055 	/* XXX No check for encodings? */
   8056 }
   8057 
   8058 void
   8059 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
   8060 {
   8061 
   8062 	KASSERT(arg != NULL);
   8063 	KASSERT(arg->src != NULL);
   8064 	KASSERT(arg->dst != NULL);
   8065 	audio_diagnostic_format2(where, arg->srcfmt);
   8066 	audio_diagnostic_format2(where, arg->dstfmt);
   8067 	KASSERT(arg->count > 0);
   8068 }
   8069 
   8070 void
   8071 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
   8072 {
   8073 
   8074 	KASSERTMSG(ring, "called from %s", where);
   8075 	audio_diagnostic_format2(where, &ring->fmt);
   8076 	KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
   8077 	    "called from %s: ring->capacity=%d", where, ring->capacity);
   8078 	KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
   8079 	    "called from %s: ring->used=%d ring->capacity=%d",
   8080 	    where, ring->used, ring->capacity);
   8081 	if (ring->capacity == 0) {
   8082 		KASSERTMSG(ring->mem == NULL,
   8083 		    "called from %s: capacity == 0 but mem != NULL", where);
   8084 	} else {
   8085 		KASSERTMSG(ring->mem != NULL,
   8086 		    "called from %s: capacity != 0 but mem == NULL", where);
   8087 		KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
   8088 		    "called from %s: ring->head=%d ring->capacity=%d",
   8089 		    where, ring->head, ring->capacity);
   8090 	}
   8091 }
   8092 #endif /* DIAGNOSTIC */
   8093 
   8094 
   8095 /*
   8096  * Mixer driver
   8097  */
   8098 
   8099 /*
   8100  * Must be called without sc_lock held.
   8101  */
   8102 int
   8103 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
   8104 	struct lwp *l)
   8105 {
   8106 	struct file *fp;
   8107 	audio_file_t *af;
   8108 	int error, fd;
   8109 
   8110 	TRACE(1, "flags=0x%x", flags);
   8111 
   8112 	error = fd_allocfile(&fp, &fd);
   8113 	if (error)
   8114 		return error;
   8115 
   8116 	af = kmem_zalloc(sizeof(*af), KM_SLEEP);
   8117 	af->sc = sc;
   8118 	af->dev = dev;
   8119 
   8120 	error = fd_clone(fp, fd, flags, &audio_fileops, af);
   8121 	KASSERT(error == EMOVEFD);
   8122 
   8123 	return error;
   8124 }
   8125 
   8126 /*
   8127  * Add a process to those to be signalled on mixer activity.
   8128  * If the process has already been added, do nothing.
   8129  * Must be called with sc_exlock held and without sc_lock held.
   8130  */
   8131 static void
   8132 mixer_async_add(struct audio_softc *sc, pid_t pid)
   8133 {
   8134 	int i;
   8135 
   8136 	KASSERT(sc->sc_exlock);
   8137 
   8138 	/* If already exists, returns without doing anything. */
   8139 	for (i = 0; i < sc->sc_am_used; i++) {
   8140 		if (sc->sc_am[i] == pid)
   8141 			return;
   8142 	}
   8143 
   8144 	/* Extend array if necessary. */
   8145 	if (sc->sc_am_used >= sc->sc_am_capacity) {
   8146 		sc->sc_am_capacity += AM_CAPACITY;
   8147 		sc->sc_am = kern_realloc(sc->sc_am,
   8148 		    sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
   8149 		TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
   8150 	}
   8151 
   8152 	TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
   8153 	sc->sc_am[sc->sc_am_used++] = pid;
   8154 }
   8155 
   8156 /*
   8157  * Remove a process from those to be signalled on mixer activity.
   8158  * If the process has not been added, do nothing.
   8159  * Must be called with sc_exlock held and without sc_lock held.
   8160  */
   8161 static void
   8162 mixer_async_remove(struct audio_softc *sc, pid_t pid)
   8163 {
   8164 	int i;
   8165 
   8166 	KASSERT(sc->sc_exlock);
   8167 
   8168 	for (i = 0; i < sc->sc_am_used; i++) {
   8169 		if (sc->sc_am[i] == pid) {
   8170 			sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
   8171 			TRACE(2, "am[%d](%d) removed, used=%d",
   8172 			    i, (int)pid, sc->sc_am_used);
   8173 
   8174 			/* Empty array if no longer necessary. */
   8175 			if (sc->sc_am_used == 0) {
   8176 				kern_free(sc->sc_am);
   8177 				sc->sc_am = NULL;
   8178 				sc->sc_am_capacity = 0;
   8179 				TRACE(2, "released");
   8180 			}
   8181 			return;
   8182 		}
   8183 	}
   8184 }
   8185 
   8186 /*
   8187  * Signal all processes waiting for the mixer.
   8188  * Must be called with sc_exlock held.
   8189  */
   8190 static void
   8191 mixer_signal(struct audio_softc *sc)
   8192 {
   8193 	proc_t *p;
   8194 	int i;
   8195 
   8196 	KASSERT(sc->sc_exlock);
   8197 
   8198 	for (i = 0; i < sc->sc_am_used; i++) {
   8199 		mutex_enter(&proc_lock);
   8200 		p = proc_find(sc->sc_am[i]);
   8201 		if (p)
   8202 			psignal(p, SIGIO);
   8203 		mutex_exit(&proc_lock);
   8204 	}
   8205 }
   8206 
   8207 /*
   8208  * Close a mixer device
   8209  */
   8210 int
   8211 mixer_close(struct audio_softc *sc, audio_file_t *file)
   8212 {
   8213 	int error;
   8214 
   8215 	error = audio_exlock_enter(sc);
   8216 	if (error)
   8217 		return error;
   8218 	TRACE(1, "called");
   8219 	mixer_async_remove(sc, curproc->p_pid);
   8220 	audio_exlock_exit(sc);
   8221 
   8222 	return 0;
   8223 }
   8224 
   8225 /*
   8226  * Must be called without sc_lock nor sc_exlock held.
   8227  */
   8228 int
   8229 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
   8230 	struct lwp *l)
   8231 {
   8232 	mixer_devinfo_t *mi;
   8233 	mixer_ctrl_t *mc;
   8234 	int error;
   8235 
   8236 	TRACE(2, "(%lu,'%c',%lu)",
   8237 	    IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
   8238 	error = EINVAL;
   8239 
   8240 	/* we can return cached values if we are sleeping */
   8241 	if (cmd != AUDIO_MIXER_READ) {
   8242 		mutex_enter(sc->sc_lock);
   8243 		device_active(sc->sc_dev, DVA_SYSTEM);
   8244 		mutex_exit(sc->sc_lock);
   8245 	}
   8246 
   8247 	switch (cmd) {
   8248 	case FIOASYNC:
   8249 		error = audio_exlock_enter(sc);
   8250 		if (error)
   8251 			break;
   8252 		if (*(int *)addr) {
   8253 			mixer_async_add(sc, curproc->p_pid);
   8254 		} else {
   8255 			mixer_async_remove(sc, curproc->p_pid);
   8256 		}
   8257 		audio_exlock_exit(sc);
   8258 		break;
   8259 
   8260 	case AUDIO_GETDEV:
   8261 		TRACE(2, "AUDIO_GETDEV");
   8262 		mutex_enter(sc->sc_lock);
   8263 		error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
   8264 		mutex_exit(sc->sc_lock);
   8265 		break;
   8266 
   8267 	case AUDIO_MIXER_DEVINFO:
   8268 		TRACE(2, "AUDIO_MIXER_DEVINFO");
   8269 		mi = (mixer_devinfo_t *)addr;
   8270 
   8271 		mi->un.v.delta = 0; /* default */
   8272 		mutex_enter(sc->sc_lock);
   8273 		error = audio_query_devinfo(sc, mi);
   8274 		mutex_exit(sc->sc_lock);
   8275 		break;
   8276 
   8277 	case AUDIO_MIXER_READ:
   8278 		TRACE(2, "AUDIO_MIXER_READ");
   8279 		mc = (mixer_ctrl_t *)addr;
   8280 
   8281 		error = audio_exlock_mutex_enter(sc);
   8282 		if (error)
   8283 			break;
   8284 		if (device_is_active(sc->hw_dev))
   8285 			error = audio_get_port(sc, mc);
   8286 		else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
   8287 			error = ENXIO;
   8288 		else {
   8289 			int dev = mc->dev;
   8290 			memcpy(mc, &sc->sc_mixer_state[dev],
   8291 			    sizeof(mixer_ctrl_t));
   8292 			error = 0;
   8293 		}
   8294 		audio_exlock_mutex_exit(sc);
   8295 		break;
   8296 
   8297 	case AUDIO_MIXER_WRITE:
   8298 		TRACE(2, "AUDIO_MIXER_WRITE");
   8299 		error = audio_exlock_mutex_enter(sc);
   8300 		if (error)
   8301 			break;
   8302 		error = audio_set_port(sc, (mixer_ctrl_t *)addr);
   8303 		if (error) {
   8304 			audio_exlock_mutex_exit(sc);
   8305 			break;
   8306 		}
   8307 
   8308 		if (sc->hw_if->commit_settings) {
   8309 			error = sc->hw_if->commit_settings(sc->hw_hdl);
   8310 			if (error) {
   8311 				audio_exlock_mutex_exit(sc);
   8312 				break;
   8313 			}
   8314 		}
   8315 		mutex_exit(sc->sc_lock);
   8316 		mixer_signal(sc);
   8317 		audio_exlock_exit(sc);
   8318 		break;
   8319 
   8320 	default:
   8321 		if (sc->hw_if->dev_ioctl) {
   8322 			mutex_enter(sc->sc_lock);
   8323 			error = sc->hw_if->dev_ioctl(sc->hw_hdl,
   8324 			    cmd, addr, flag, l);
   8325 			mutex_exit(sc->sc_lock);
   8326 		} else
   8327 			error = EINVAL;
   8328 		break;
   8329 	}
   8330 	TRACE(2, "(%lu,'%c',%lu) result %d",
   8331 	    IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
   8332 	return error;
   8333 }
   8334 
   8335 /*
   8336  * Must be called with sc_lock held.
   8337  */
   8338 int
   8339 au_portof(struct audio_softc *sc, char *name, int class)
   8340 {
   8341 	mixer_devinfo_t mi;
   8342 
   8343 	KASSERT(mutex_owned(sc->sc_lock));
   8344 
   8345 	for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
   8346 		if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
   8347 			return mi.index;
   8348 	}
   8349 	return -1;
   8350 }
   8351 
   8352 /*
   8353  * Must be called with sc_lock held.
   8354  */
   8355 void
   8356 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
   8357 	mixer_devinfo_t *mi, const struct portname *tbl)
   8358 {
   8359 	int i, j;
   8360 
   8361 	KASSERT(mutex_owned(sc->sc_lock));
   8362 
   8363 	ports->index = mi->index;
   8364 	if (mi->type == AUDIO_MIXER_ENUM) {
   8365 		ports->isenum = true;
   8366 		for(i = 0; tbl[i].name; i++)
   8367 		    for(j = 0; j < mi->un.e.num_mem; j++)
   8368 			if (strcmp(mi->un.e.member[j].label.name,
   8369 						    tbl[i].name) == 0) {
   8370 				ports->allports |= tbl[i].mask;
   8371 				ports->aumask[ports->nports] = tbl[i].mask;
   8372 				ports->misel[ports->nports] =
   8373 				    mi->un.e.member[j].ord;
   8374 				ports->miport[ports->nports] =
   8375 				    au_portof(sc, mi->un.e.member[j].label.name,
   8376 				    mi->mixer_class);
   8377 				if (ports->mixerout != -1 &&
   8378 				    ports->miport[ports->nports] != -1)
   8379 					ports->isdual = true;
   8380 				++ports->nports;
   8381 			}
   8382 	} else if (mi->type == AUDIO_MIXER_SET) {
   8383 		for(i = 0; tbl[i].name; i++)
   8384 		    for(j = 0; j < mi->un.s.num_mem; j++)
   8385 			if (strcmp(mi->un.s.member[j].label.name,
   8386 						tbl[i].name) == 0) {
   8387 				ports->allports |= tbl[i].mask;
   8388 				ports->aumask[ports->nports] = tbl[i].mask;
   8389 				ports->misel[ports->nports] =
   8390 				    mi->un.s.member[j].mask;
   8391 				ports->miport[ports->nports] =
   8392 				    au_portof(sc, mi->un.s.member[j].label.name,
   8393 				    mi->mixer_class);
   8394 				++ports->nports;
   8395 			}
   8396 	}
   8397 }
   8398 
   8399 /*
   8400  * Must be called with sc_lock && sc_exlock held.
   8401  */
   8402 int
   8403 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
   8404 {
   8405 
   8406 	KASSERT(mutex_owned(sc->sc_lock));
   8407 	KASSERT(sc->sc_exlock);
   8408 
   8409 	ct->type = AUDIO_MIXER_VALUE;
   8410 	ct->un.value.num_channels = 2;
   8411 	ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
   8412 	ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
   8413 	if (audio_set_port(sc, ct) == 0)
   8414 		return 0;
   8415 	ct->un.value.num_channels = 1;
   8416 	ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
   8417 	return audio_set_port(sc, ct);
   8418 }
   8419 
   8420 /*
   8421  * Must be called with sc_lock && sc_exlock held.
   8422  */
   8423 int
   8424 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
   8425 {
   8426 	int error;
   8427 
   8428 	KASSERT(mutex_owned(sc->sc_lock));
   8429 	KASSERT(sc->sc_exlock);
   8430 
   8431 	ct->un.value.num_channels = 2;
   8432 	if (audio_get_port(sc, ct) == 0) {
   8433 		*l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
   8434 		*r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
   8435 	} else {
   8436 		ct->un.value.num_channels = 1;
   8437 		error = audio_get_port(sc, ct);
   8438 		if (error)
   8439 			return error;
   8440 		*r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
   8441 	}
   8442 	return 0;
   8443 }
   8444 
   8445 /*
   8446  * Must be called with sc_lock && sc_exlock held.
   8447  */
   8448 int
   8449 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
   8450 	int gain, int balance)
   8451 {
   8452 	mixer_ctrl_t ct;
   8453 	int i, error;
   8454 	int l, r;
   8455 	u_int mask;
   8456 	int nset;
   8457 
   8458 	KASSERT(mutex_owned(sc->sc_lock));
   8459 	KASSERT(sc->sc_exlock);
   8460 
   8461 	if (balance == AUDIO_MID_BALANCE) {
   8462 		l = r = gain;
   8463 	} else if (balance < AUDIO_MID_BALANCE) {
   8464 		l = gain;
   8465 		r = (balance * gain) / AUDIO_MID_BALANCE;
   8466 	} else {
   8467 		r = gain;
   8468 		l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
   8469 		    / AUDIO_MID_BALANCE;
   8470 	}
   8471 	TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
   8472 
   8473 	if (ports->index == -1) {
   8474 	usemaster:
   8475 		if (ports->master == -1)
   8476 			return 0; /* just ignore it silently */
   8477 		ct.dev = ports->master;
   8478 		error = au_set_lr_value(sc, &ct, l, r);
   8479 	} else {
   8480 		ct.dev = ports->index;
   8481 		if (ports->isenum) {
   8482 			ct.type = AUDIO_MIXER_ENUM;
   8483 			error = audio_get_port(sc, &ct);
   8484 			if (error)
   8485 				return error;
   8486 			if (ports->isdual) {
   8487 				if (ports->cur_port == -1)
   8488 					ct.dev = ports->master;
   8489 				else
   8490 					ct.dev = ports->miport[ports->cur_port];
   8491 				error = au_set_lr_value(sc, &ct, l, r);
   8492 			} else {
   8493 				for(i = 0; i < ports->nports; i++)
   8494 				    if (ports->misel[i] == ct.un.ord) {
   8495 					    ct.dev = ports->miport[i];
   8496 					    if (ct.dev == -1 ||
   8497 						au_set_lr_value(sc, &ct, l, r))
   8498 						    goto usemaster;
   8499 					    else
   8500 						    break;
   8501 				    }
   8502 			}
   8503 		} else {
   8504 			ct.type = AUDIO_MIXER_SET;
   8505 			error = audio_get_port(sc, &ct);
   8506 			if (error)
   8507 				return error;
   8508 			mask = ct.un.mask;
   8509 			nset = 0;
   8510 			for(i = 0; i < ports->nports; i++) {
   8511 				if (ports->misel[i] & mask) {
   8512 				    ct.dev = ports->miport[i];
   8513 				    if (ct.dev != -1 &&
   8514 					au_set_lr_value(sc, &ct, l, r) == 0)
   8515 					    nset++;
   8516 				}
   8517 			}
   8518 			if (nset == 0)
   8519 				goto usemaster;
   8520 		}
   8521 	}
   8522 	if (!error)
   8523 		mixer_signal(sc);
   8524 	return error;
   8525 }
   8526 
   8527 /*
   8528  * Must be called with sc_lock && sc_exlock held.
   8529  */
   8530 void
   8531 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
   8532 	u_int *pgain, u_char *pbalance)
   8533 {
   8534 	mixer_ctrl_t ct;
   8535 	int i, l, r, n;
   8536 	int lgain, rgain;
   8537 
   8538 	KASSERT(mutex_owned(sc->sc_lock));
   8539 	KASSERT(sc->sc_exlock);
   8540 
   8541 	lgain = AUDIO_MAX_GAIN / 2;
   8542 	rgain = AUDIO_MAX_GAIN / 2;
   8543 	if (ports->index == -1) {
   8544 	usemaster:
   8545 		if (ports->master == -1)
   8546 			goto bad;
   8547 		ct.dev = ports->master;
   8548 		ct.type = AUDIO_MIXER_VALUE;
   8549 		if (au_get_lr_value(sc, &ct, &lgain, &rgain))
   8550 			goto bad;
   8551 	} else {
   8552 		ct.dev = ports->index;
   8553 		if (ports->isenum) {
   8554 			ct.type = AUDIO_MIXER_ENUM;
   8555 			if (audio_get_port(sc, &ct))
   8556 				goto bad;
   8557 			ct.type = AUDIO_MIXER_VALUE;
   8558 			if (ports->isdual) {
   8559 				if (ports->cur_port == -1)
   8560 					ct.dev = ports->master;
   8561 				else
   8562 					ct.dev = ports->miport[ports->cur_port];
   8563 				au_get_lr_value(sc, &ct, &lgain, &rgain);
   8564 			} else {
   8565 				for(i = 0; i < ports->nports; i++)
   8566 				    if (ports->misel[i] == ct.un.ord) {
   8567 					    ct.dev = ports->miport[i];
   8568 					    if (ct.dev == -1 ||
   8569 						au_get_lr_value(sc, &ct,
   8570 								&lgain, &rgain))
   8571 						    goto usemaster;
   8572 					    else
   8573 						    break;
   8574 				    }
   8575 			}
   8576 		} else {
   8577 			ct.type = AUDIO_MIXER_SET;
   8578 			if (audio_get_port(sc, &ct))
   8579 				goto bad;
   8580 			ct.type = AUDIO_MIXER_VALUE;
   8581 			lgain = rgain = n = 0;
   8582 			for(i = 0; i < ports->nports; i++) {
   8583 				if (ports->misel[i] & ct.un.mask) {
   8584 					ct.dev = ports->miport[i];
   8585 					if (ct.dev == -1 ||
   8586 					    au_get_lr_value(sc, &ct, &l, &r))
   8587 						goto usemaster;
   8588 					else {
   8589 						lgain += l;
   8590 						rgain += r;
   8591 						n++;
   8592 					}
   8593 				}
   8594 			}
   8595 			if (n != 0) {
   8596 				lgain /= n;
   8597 				rgain /= n;
   8598 			}
   8599 		}
   8600 	}
   8601 bad:
   8602 	if (lgain == rgain) {	/* handles lgain==rgain==0 */
   8603 		*pgain = lgain;
   8604 		*pbalance = AUDIO_MID_BALANCE;
   8605 	} else if (lgain < rgain) {
   8606 		*pgain = rgain;
   8607 		/* balance should be > AUDIO_MID_BALANCE */
   8608 		*pbalance = AUDIO_RIGHT_BALANCE -
   8609 			(AUDIO_MID_BALANCE * lgain) / rgain;
   8610 	} else /* lgain > rgain */ {
   8611 		*pgain = lgain;
   8612 		/* balance should be < AUDIO_MID_BALANCE */
   8613 		*pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
   8614 	}
   8615 }
   8616 
   8617 /*
   8618  * Must be called with sc_lock && sc_exlock held.
   8619  */
   8620 int
   8621 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
   8622 {
   8623 	mixer_ctrl_t ct;
   8624 	int i, error, use_mixerout;
   8625 
   8626 	KASSERT(mutex_owned(sc->sc_lock));
   8627 	KASSERT(sc->sc_exlock);
   8628 
   8629 	use_mixerout = 1;
   8630 	if (port == 0) {
   8631 		if (ports->allports == 0)
   8632 			return 0;		/* Allow this special case. */
   8633 		else if (ports->isdual) {
   8634 			if (ports->cur_port == -1) {
   8635 				return 0;
   8636 			} else {
   8637 				port = ports->aumask[ports->cur_port];
   8638 				ports->cur_port = -1;
   8639 				use_mixerout = 0;
   8640 			}
   8641 		}
   8642 	}
   8643 	if (ports->index == -1)
   8644 		return EINVAL;
   8645 	ct.dev = ports->index;
   8646 	if (ports->isenum) {
   8647 		if (port & (port-1))
   8648 			return EINVAL; /* Only one port allowed */
   8649 		ct.type = AUDIO_MIXER_ENUM;
   8650 		error = EINVAL;
   8651 		for(i = 0; i < ports->nports; i++)
   8652 			if (ports->aumask[i] == port) {
   8653 				if (ports->isdual && use_mixerout) {
   8654 					ct.un.ord = ports->mixerout;
   8655 					ports->cur_port = i;
   8656 				} else {
   8657 					ct.un.ord = ports->misel[i];
   8658 				}
   8659 				error = audio_set_port(sc, &ct);
   8660 				break;
   8661 			}
   8662 	} else {
   8663 		ct.type = AUDIO_MIXER_SET;
   8664 		ct.un.mask = 0;
   8665 		for(i = 0; i < ports->nports; i++)
   8666 			if (ports->aumask[i] & port)
   8667 				ct.un.mask |= ports->misel[i];
   8668 		if (port != 0 && ct.un.mask == 0)
   8669 			error = EINVAL;
   8670 		else
   8671 			error = audio_set_port(sc, &ct);
   8672 	}
   8673 	if (!error)
   8674 		mixer_signal(sc);
   8675 	return error;
   8676 }
   8677 
   8678 /*
   8679  * Must be called with sc_lock && sc_exlock held.
   8680  */
   8681 int
   8682 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
   8683 {
   8684 	mixer_ctrl_t ct;
   8685 	int i, aumask;
   8686 
   8687 	KASSERT(mutex_owned(sc->sc_lock));
   8688 	KASSERT(sc->sc_exlock);
   8689 
   8690 	if (ports->index == -1)
   8691 		return 0;
   8692 	ct.dev = ports->index;
   8693 	ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
   8694 	if (audio_get_port(sc, &ct))
   8695 		return 0;
   8696 	aumask = 0;
   8697 	if (ports->isenum) {
   8698 		if (ports->isdual && ports->cur_port != -1) {
   8699 			if (ports->mixerout == ct.un.ord)
   8700 				aumask = ports->aumask[ports->cur_port];
   8701 			else
   8702 				ports->cur_port = -1;
   8703 		}
   8704 		if (aumask == 0)
   8705 			for(i = 0; i < ports->nports; i++)
   8706 				if (ports->misel[i] == ct.un.ord)
   8707 					aumask = ports->aumask[i];
   8708 	} else {
   8709 		for(i = 0; i < ports->nports; i++)
   8710 			if (ct.un.mask & ports->misel[i])
   8711 				aumask |= ports->aumask[i];
   8712 	}
   8713 	return aumask;
   8714 }
   8715 
   8716 /*
   8717  * It returns 0 if success, otherwise errno.
   8718  * Must be called only if sc->sc_monitor_port != -1.
   8719  * Must be called with sc_lock && sc_exlock held.
   8720  */
   8721 static int
   8722 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
   8723 {
   8724 	mixer_ctrl_t ct;
   8725 
   8726 	KASSERT(mutex_owned(sc->sc_lock));
   8727 	KASSERT(sc->sc_exlock);
   8728 
   8729 	ct.dev = sc->sc_monitor_port;
   8730 	ct.type = AUDIO_MIXER_VALUE;
   8731 	ct.un.value.num_channels = 1;
   8732 	ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
   8733 	return audio_set_port(sc, &ct);
   8734 }
   8735 
   8736 /*
   8737  * It returns monitor gain if success, otherwise -1.
   8738  * Must be called only if sc->sc_monitor_port != -1.
   8739  * Must be called with sc_lock && sc_exlock held.
   8740  */
   8741 static int
   8742 au_get_monitor_gain(struct audio_softc *sc)
   8743 {
   8744 	mixer_ctrl_t ct;
   8745 
   8746 	KASSERT(mutex_owned(sc->sc_lock));
   8747 	KASSERT(sc->sc_exlock);
   8748 
   8749 	ct.dev = sc->sc_monitor_port;
   8750 	ct.type = AUDIO_MIXER_VALUE;
   8751 	ct.un.value.num_channels = 1;
   8752 	if (audio_get_port(sc, &ct))
   8753 		return -1;
   8754 	return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
   8755 }
   8756 
   8757 /*
   8758  * Must be called with sc_lock && sc_exlock held.
   8759  */
   8760 static int
   8761 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
   8762 {
   8763 
   8764 	KASSERT(mutex_owned(sc->sc_lock));
   8765 	KASSERT(sc->sc_exlock);
   8766 
   8767 	return sc->hw_if->set_port(sc->hw_hdl, mc);
   8768 }
   8769 
   8770 /*
   8771  * Must be called with sc_lock && sc_exlock held.
   8772  */
   8773 static int
   8774 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
   8775 {
   8776 
   8777 	KASSERT(mutex_owned(sc->sc_lock));
   8778 	KASSERT(sc->sc_exlock);
   8779 
   8780 	return sc->hw_if->get_port(sc->hw_hdl, mc);
   8781 }
   8782 
   8783 /*
   8784  * Must be called with sc_lock && sc_exlock held.
   8785  */
   8786 static void
   8787 audio_mixer_capture(struct audio_softc *sc)
   8788 {
   8789 	mixer_devinfo_t mi;
   8790 	mixer_ctrl_t *mc;
   8791 
   8792 	KASSERT(mutex_owned(sc->sc_lock));
   8793 	KASSERT(sc->sc_exlock);
   8794 
   8795 	for (mi.index = 0;; mi.index++) {
   8796 		if (audio_query_devinfo(sc, &mi) != 0)
   8797 			break;
   8798 		KASSERT(mi.index < sc->sc_nmixer_states);
   8799 		if (mi.type == AUDIO_MIXER_CLASS)
   8800 			continue;
   8801 		mc = &sc->sc_mixer_state[mi.index];
   8802 		mc->dev = mi.index;
   8803 		mc->type = mi.type;
   8804 		mc->un.value.num_channels = mi.un.v.num_channels;
   8805 		(void)audio_get_port(sc, mc);
   8806 	}
   8807 
   8808 	return;
   8809 }
   8810 
   8811 /*
   8812  * Must be called with sc_lock && sc_exlock held.
   8813  */
   8814 static void
   8815 audio_mixer_restore(struct audio_softc *sc)
   8816 {
   8817 	mixer_devinfo_t mi;
   8818 	mixer_ctrl_t *mc;
   8819 
   8820 	KASSERT(mutex_owned(sc->sc_lock));
   8821 	KASSERT(sc->sc_exlock);
   8822 
   8823 	for (mi.index = 0; ; mi.index++) {
   8824 		if (audio_query_devinfo(sc, &mi) != 0)
   8825 			break;
   8826 		if (mi.type == AUDIO_MIXER_CLASS)
   8827 			continue;
   8828 		mc = &sc->sc_mixer_state[mi.index];
   8829 		(void)audio_set_port(sc, mc);
   8830 	}
   8831 	if (sc->hw_if->commit_settings)
   8832 		sc->hw_if->commit_settings(sc->hw_hdl);
   8833 
   8834 	return;
   8835 }
   8836 
   8837 static void
   8838 audio_volume_down(device_t dv)
   8839 {
   8840 	struct audio_softc *sc = device_private(dv);
   8841 	mixer_devinfo_t mi;
   8842 	int newgain;
   8843 	u_int gain;
   8844 	u_char balance;
   8845 
   8846 	if (audio_exlock_mutex_enter(sc) != 0)
   8847 		return;
   8848 	if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
   8849 		mi.index = sc->sc_outports.master;
   8850 		mi.un.v.delta = 0;
   8851 		if (audio_query_devinfo(sc, &mi) == 0) {
   8852 			au_get_gain(sc, &sc->sc_outports, &gain, &balance);
   8853 			newgain = gain - mi.un.v.delta;
   8854 			if (newgain < AUDIO_MIN_GAIN)
   8855 				newgain = AUDIO_MIN_GAIN;
   8856 			au_set_gain(sc, &sc->sc_outports, newgain, balance);
   8857 		}
   8858 	}
   8859 	audio_exlock_mutex_exit(sc);
   8860 }
   8861 
   8862 static void
   8863 audio_volume_up(device_t dv)
   8864 {
   8865 	struct audio_softc *sc = device_private(dv);
   8866 	mixer_devinfo_t mi;
   8867 	u_int gain, newgain;
   8868 	u_char balance;
   8869 
   8870 	if (audio_exlock_mutex_enter(sc) != 0)
   8871 		return;
   8872 	if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
   8873 		mi.index = sc->sc_outports.master;
   8874 		mi.un.v.delta = 0;
   8875 		if (audio_query_devinfo(sc, &mi) == 0) {
   8876 			au_get_gain(sc, &sc->sc_outports, &gain, &balance);
   8877 			newgain = gain + mi.un.v.delta;
   8878 			if (newgain > AUDIO_MAX_GAIN)
   8879 				newgain = AUDIO_MAX_GAIN;
   8880 			au_set_gain(sc, &sc->sc_outports, newgain, balance);
   8881 		}
   8882 	}
   8883 	audio_exlock_mutex_exit(sc);
   8884 }
   8885 
   8886 static void
   8887 audio_volume_toggle(device_t dv)
   8888 {
   8889 	struct audio_softc *sc = device_private(dv);
   8890 	u_int gain, newgain;
   8891 	u_char balance;
   8892 
   8893 	if (audio_exlock_mutex_enter(sc) != 0)
   8894 		return;
   8895 	au_get_gain(sc, &sc->sc_outports, &gain, &balance);
   8896 	if (gain != 0) {
   8897 		sc->sc_lastgain = gain;
   8898 		newgain = 0;
   8899 	} else
   8900 		newgain = sc->sc_lastgain;
   8901 	au_set_gain(sc, &sc->sc_outports, newgain, balance);
   8902 	audio_exlock_mutex_exit(sc);
   8903 }
   8904 
   8905 /*
   8906  * Must be called with sc_lock held.
   8907  */
   8908 static int
   8909 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
   8910 {
   8911 
   8912 	KASSERT(mutex_owned(sc->sc_lock));
   8913 
   8914 	return sc->hw_if->query_devinfo(sc->hw_hdl, di);
   8915 }
   8916 
   8917 #endif /* NAUDIO > 0 */
   8918 
   8919 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
   8920 #include <sys/param.h>
   8921 #include <sys/systm.h>
   8922 #include <sys/device.h>
   8923 #include <sys/audioio.h>
   8924 #include <dev/audio/audio_if.h>
   8925 #endif
   8926 
   8927 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
   8928 int
   8929 audioprint(void *aux, const char *pnp)
   8930 {
   8931 	struct audio_attach_args *arg;
   8932 	const char *type;
   8933 
   8934 	if (pnp != NULL) {
   8935 		arg = aux;
   8936 		switch (arg->type) {
   8937 		case AUDIODEV_TYPE_AUDIO:
   8938 			type = "audio";
   8939 			break;
   8940 		case AUDIODEV_TYPE_MIDI:
   8941 			type = "midi";
   8942 			break;
   8943 		case AUDIODEV_TYPE_OPL:
   8944 			type = "opl";
   8945 			break;
   8946 		case AUDIODEV_TYPE_MPU:
   8947 			type = "mpu";
   8948 			break;
   8949 		default:
   8950 			panic("audioprint: unknown type %d", arg->type);
   8951 		}
   8952 		aprint_normal("%s at %s", type, pnp);
   8953 	}
   8954 	return UNCONF;
   8955 }
   8956 
   8957 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
   8958 
   8959 #ifdef _MODULE
   8960 
   8961 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
   8962 
   8963 #include "ioconf.c"
   8964 
   8965 #endif
   8966 
   8967 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
   8968 
   8969 static int
   8970 audio_modcmd(modcmd_t cmd, void *arg)
   8971 {
   8972 	int error = 0;
   8973 
   8974 	switch (cmd) {
   8975 	case MODULE_CMD_INIT:
   8976 		/* XXX interrupt level? */
   8977 		audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
   8978 #ifdef _MODULE
   8979 		error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
   8980 		    &audio_cdevsw, &audio_cmajor);
   8981 		if (error)
   8982 			break;
   8983 
   8984 		error = config_init_component(cfdriver_ioconf_audio,
   8985 		    cfattach_ioconf_audio, cfdata_ioconf_audio);
   8986 		if (error) {
   8987 			devsw_detach(NULL, &audio_cdevsw);
   8988 		}
   8989 #endif
   8990 		break;
   8991 	case MODULE_CMD_FINI:
   8992 #ifdef _MODULE
   8993 		devsw_detach(NULL, &audio_cdevsw);
   8994 		error = config_fini_component(cfdriver_ioconf_audio,
   8995 		   cfattach_ioconf_audio, cfdata_ioconf_audio);
   8996 		if (error)
   8997 			devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
   8998 			    &audio_cdevsw, &audio_cmajor);
   8999 #endif
   9000 		psref_class_destroy(audio_psref_class);
   9001 		break;
   9002 	default:
   9003 		error = ENOTTY;
   9004 		break;
   9005 	}
   9006 
   9007 	return error;
   9008 }
   9009