audio.c revision 1.92 1 /* $NetBSD: audio.c,v 1.92 2021/04/24 23:36:52 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Locking: there are three locks per device.
67 *
68 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
69 * returned in the second parameter to hw_if->get_locks(). It is known
70 * as the "thread lock".
71 *
72 * It serializes access to state in all places except the
73 * driver's interrupt service routine. This lock is taken from process
74 * context (example: access to /dev/audio). It is also taken from soft
75 * interrupt handlers in this module, primarily to serialize delivery of
76 * wakeups. This lock may be used/provided by modules external to the
77 * audio subsystem, so take care not to introduce a lock order problem.
78 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79 *
80 * - sc_intr_lock, provided by the underlying driver. This may be either a
81 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
83 * is known as the "interrupt lock".
84 *
85 * It provides atomic access to the device's hardware state, and to audio
86 * channel data that may be accessed by the hardware driver's ISR.
87 * In all places outside the ISR, sc_lock must be held before taking
88 * sc_intr_lock. This is to ensure that groups of hardware operations are
89 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90 *
91 * - sc_exlock, private to this module. This is a variable protected by
92 * sc_lock. It is known as the "critical section".
93 * Some operations release sc_lock in order to allocate memory, to wait
94 * for in-flight I/O to complete, to copy to/from user context, etc.
95 * sc_exlock provides a critical section even under the circumstance.
96 * "+" in following list indicates the interfaces which necessary to be
97 * protected by sc_exlock.
98 *
99 * List of hardware interface methods, and which locks are held when each
100 * is called by this module:
101 *
102 * METHOD INTR THREAD NOTES
103 * ----------------------- ------- ------- -------------------------
104 * open x x +
105 * close x x +
106 * query_format - x
107 * set_format - x
108 * round_blocksize - x
109 * commit_settings - x
110 * init_output x x
111 * init_input x x
112 * start_output x x +
113 * start_input x x +
114 * halt_output x x +
115 * halt_input x x +
116 * speaker_ctl x x
117 * getdev - x
118 * set_port - x +
119 * get_port - x +
120 * query_devinfo - x
121 * allocm - - +
122 * freem - - +
123 * round_buffersize - x
124 * get_props - - Called at attach time
125 * trigger_output x x +
126 * trigger_input x x +
127 * dev_ioctl - x
128 * get_locks - - Called at attach time
129 *
130 * In addition, there is an additional lock.
131 *
132 * - track->lock. This is an atomic variable and is similar to the
133 * "interrupt lock". This is one for each track. If any thread context
134 * (and software interrupt context) and hardware interrupt context who
135 * want to access some variables on this track, they must acquire this
136 * lock before. It protects track's consistency between hardware
137 * interrupt context and others.
138 */
139
140 #include <sys/cdefs.h>
141 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.92 2021/04/24 23:36:52 thorpej Exp $");
142
143 #ifdef _KERNEL_OPT
144 #include "audio.h"
145 #include "midi.h"
146 #endif
147
148 #if NAUDIO > 0
149
150 #include <sys/types.h>
151 #include <sys/param.h>
152 #include <sys/atomic.h>
153 #include <sys/audioio.h>
154 #include <sys/conf.h>
155 #include <sys/cpu.h>
156 #include <sys/device.h>
157 #include <sys/fcntl.h>
158 #include <sys/file.h>
159 #include <sys/filedesc.h>
160 #include <sys/intr.h>
161 #include <sys/ioctl.h>
162 #include <sys/kauth.h>
163 #include <sys/kernel.h>
164 #include <sys/kmem.h>
165 #include <sys/malloc.h>
166 #include <sys/mman.h>
167 #include <sys/module.h>
168 #include <sys/poll.h>
169 #include <sys/proc.h>
170 #include <sys/queue.h>
171 #include <sys/select.h>
172 #include <sys/signalvar.h>
173 #include <sys/stat.h>
174 #include <sys/sysctl.h>
175 #include <sys/systm.h>
176 #include <sys/syslog.h>
177 #include <sys/vnode.h>
178
179 #include <dev/audio/audio_if.h>
180 #include <dev/audio/audiovar.h>
181 #include <dev/audio/audiodef.h>
182 #include <dev/audio/linear.h>
183 #include <dev/audio/mulaw.h>
184
185 #include <machine/endian.h>
186
187 #include <uvm/uvm_extern.h>
188
189 #include "ioconf.h"
190
191 /*
192 * 0: No debug logs
193 * 1: action changes like open/close/set_format...
194 * 2: + normal operations like read/write/ioctl...
195 * 3: + TRACEs except interrupt
196 * 4: + TRACEs including interrupt
197 */
198 //#define AUDIO_DEBUG 1
199
200 #if defined(AUDIO_DEBUG)
201
202 int audiodebug = AUDIO_DEBUG;
203 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
204 const char *, va_list);
205 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
206 __printflike(3, 4);
207 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
208 __printflike(3, 4);
209 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
210 __printflike(3, 4);
211
212 /* XXX sloppy memory logger */
213 static void audio_mlog_init(void);
214 static void audio_mlog_free(void);
215 static void audio_mlog_softintr(void *);
216 extern void audio_mlog_flush(void);
217 extern void audio_mlog_printf(const char *, ...);
218
219 static int mlog_refs; /* reference counter */
220 static char *mlog_buf[2]; /* double buffer */
221 static int mlog_buflen; /* buffer length */
222 static int mlog_used; /* used length */
223 static int mlog_full; /* number of dropped lines by buffer full */
224 static int mlog_drop; /* number of dropped lines by busy */
225 static volatile uint32_t mlog_inuse; /* in-use */
226 static int mlog_wpage; /* active page */
227 static void *mlog_sih; /* softint handle */
228
229 static void
230 audio_mlog_init(void)
231 {
232 mlog_refs++;
233 if (mlog_refs > 1)
234 return;
235 mlog_buflen = 4096;
236 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
237 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
238 mlog_used = 0;
239 mlog_full = 0;
240 mlog_drop = 0;
241 mlog_inuse = 0;
242 mlog_wpage = 0;
243 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
244 if (mlog_sih == NULL)
245 printf("%s: softint_establish failed\n", __func__);
246 }
247
248 static void
249 audio_mlog_free(void)
250 {
251 mlog_refs--;
252 if (mlog_refs > 0)
253 return;
254
255 audio_mlog_flush();
256 if (mlog_sih)
257 softint_disestablish(mlog_sih);
258 kmem_free(mlog_buf[0], mlog_buflen);
259 kmem_free(mlog_buf[1], mlog_buflen);
260 }
261
262 /*
263 * Flush memory buffer.
264 * It must not be called from hardware interrupt context.
265 */
266 void
267 audio_mlog_flush(void)
268 {
269 if (mlog_refs == 0)
270 return;
271
272 /* Nothing to do if already in use ? */
273 if (atomic_swap_32(&mlog_inuse, 1) == 1)
274 return;
275
276 int rpage = mlog_wpage;
277 mlog_wpage ^= 1;
278 mlog_buf[mlog_wpage][0] = '\0';
279 mlog_used = 0;
280
281 atomic_swap_32(&mlog_inuse, 0);
282
283 if (mlog_buf[rpage][0] != '\0') {
284 printf("%s", mlog_buf[rpage]);
285 if (mlog_drop > 0)
286 printf("mlog_drop %d\n", mlog_drop);
287 if (mlog_full > 0)
288 printf("mlog_full %d\n", mlog_full);
289 }
290 mlog_full = 0;
291 mlog_drop = 0;
292 }
293
294 static void
295 audio_mlog_softintr(void *cookie)
296 {
297 audio_mlog_flush();
298 }
299
300 void
301 audio_mlog_printf(const char *fmt, ...)
302 {
303 int len;
304 va_list ap;
305
306 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
307 /* already inuse */
308 mlog_drop++;
309 return;
310 }
311
312 va_start(ap, fmt);
313 len = vsnprintf(
314 mlog_buf[mlog_wpage] + mlog_used,
315 mlog_buflen - mlog_used,
316 fmt, ap);
317 va_end(ap);
318
319 mlog_used += len;
320 if (mlog_buflen - mlog_used <= 1) {
321 mlog_full++;
322 }
323
324 atomic_swap_32(&mlog_inuse, 0);
325
326 if (mlog_sih)
327 softint_schedule(mlog_sih);
328 }
329
330 /* trace functions */
331 static void
332 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
333 const char *fmt, va_list ap)
334 {
335 char buf[256];
336 int n;
337
338 n = 0;
339 buf[0] = '\0';
340 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
341 funcname, device_unit(sc->sc_dev), header);
342 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
343
344 if (cpu_intr_p()) {
345 audio_mlog_printf("%s\n", buf);
346 } else {
347 audio_mlog_flush();
348 printf("%s\n", buf);
349 }
350 }
351
352 static void
353 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
354 {
355 va_list ap;
356
357 va_start(ap, fmt);
358 audio_vtrace(sc, funcname, "", fmt, ap);
359 va_end(ap);
360 }
361
362 static void
363 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
364 {
365 char hdr[16];
366 va_list ap;
367
368 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
369 va_start(ap, fmt);
370 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
371 va_end(ap);
372 }
373
374 static void
375 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
376 {
377 char hdr[32];
378 char phdr[16], rhdr[16];
379 va_list ap;
380
381 phdr[0] = '\0';
382 rhdr[0] = '\0';
383 if (file->ptrack)
384 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
385 if (file->rtrack)
386 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
387 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
388
389 va_start(ap, fmt);
390 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
391 va_end(ap);
392 }
393
394 #define DPRINTF(n, fmt...) do { \
395 if (audiodebug >= (n)) { \
396 audio_mlog_flush(); \
397 printf(fmt); \
398 } \
399 } while (0)
400 #define TRACE(n, fmt...) do { \
401 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
402 } while (0)
403 #define TRACET(n, t, fmt...) do { \
404 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
405 } while (0)
406 #define TRACEF(n, f, fmt...) do { \
407 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
408 } while (0)
409
410 struct audio_track_debugbuf {
411 char usrbuf[32];
412 char codec[32];
413 char chvol[32];
414 char chmix[32];
415 char freq[32];
416 char outbuf[32];
417 };
418
419 static void
420 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
421 {
422
423 memset(buf, 0, sizeof(*buf));
424
425 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
426 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
427 if (track->freq.filter)
428 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
429 track->freq.srcbuf.head,
430 track->freq.srcbuf.used,
431 track->freq.srcbuf.capacity);
432 if (track->chmix.filter)
433 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
434 track->chmix.srcbuf.used);
435 if (track->chvol.filter)
436 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
437 track->chvol.srcbuf.used);
438 if (track->codec.filter)
439 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
440 track->codec.srcbuf.used);
441 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
442 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
443 }
444 #else
445 #define DPRINTF(n, fmt...) do { } while (0)
446 #define TRACE(n, fmt, ...) do { } while (0)
447 #define TRACET(n, t, fmt, ...) do { } while (0)
448 #define TRACEF(n, f, fmt, ...) do { } while (0)
449 #endif
450
451 #define SPECIFIED(x) ((x) != ~0)
452 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
453
454 /*
455 * Default hardware blocksize in msec.
456 *
457 * We use 10 msec for most modern platforms. This period is good enough to
458 * play audio and video synchronizely.
459 * In contrast, for very old platforms, this is usually too short and too
460 * severe. Also such platforms usually can not play video confortably, so
461 * it's not so important to make the blocksize shorter. If the platform
462 * defines its own value as __AUDIO_BLK_MS in its <machine/param.h>, it
463 * uses this instead.
464 *
465 * In either case, you can overwrite AUDIO_BLK_MS by your kernel
466 * configuration file if you wish.
467 */
468 #if !defined(AUDIO_BLK_MS)
469 # if defined(__AUDIO_BLK_MS)
470 # define AUDIO_BLK_MS __AUDIO_BLK_MS
471 # else
472 # define AUDIO_BLK_MS (10)
473 # endif
474 #endif
475
476 /* Device timeout in msec */
477 #define AUDIO_TIMEOUT (3000)
478
479 /* #define AUDIO_PM_IDLE */
480 #ifdef AUDIO_PM_IDLE
481 int audio_idle_timeout = 30;
482 #endif
483
484 /* Number of elements of async mixer's pid */
485 #define AM_CAPACITY (4)
486
487 struct portname {
488 const char *name;
489 int mask;
490 };
491
492 static int audiomatch(device_t, cfdata_t, void *);
493 static void audioattach(device_t, device_t, void *);
494 static int audiodetach(device_t, int);
495 static int audioactivate(device_t, enum devact);
496 static void audiochilddet(device_t, device_t);
497 static int audiorescan(device_t, const char *, const int *);
498
499 static int audio_modcmd(modcmd_t, void *);
500
501 #ifdef AUDIO_PM_IDLE
502 static void audio_idle(void *);
503 static void audio_activity(device_t, devactive_t);
504 #endif
505
506 static bool audio_suspend(device_t dv, const pmf_qual_t *);
507 static bool audio_resume(device_t dv, const pmf_qual_t *);
508 static void audio_volume_down(device_t);
509 static void audio_volume_up(device_t);
510 static void audio_volume_toggle(device_t);
511
512 static void audio_mixer_capture(struct audio_softc *);
513 static void audio_mixer_restore(struct audio_softc *);
514
515 static void audio_softintr_rd(void *);
516 static void audio_softintr_wr(void *);
517
518 static void audio_printf(struct audio_softc *, const char *, ...)
519 __printflike(2, 3);
520 static int audio_exlock_mutex_enter(struct audio_softc *);
521 static void audio_exlock_mutex_exit(struct audio_softc *);
522 static int audio_exlock_enter(struct audio_softc *);
523 static void audio_exlock_exit(struct audio_softc *);
524 static void audio_sc_acquire_foropen(struct audio_softc *, struct psref *);
525 static struct audio_softc *audio_sc_acquire_fromfile(audio_file_t *,
526 struct psref *);
527 static void audio_sc_release(struct audio_softc *, struct psref *);
528 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
529
530 static int audioclose(struct file *);
531 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
532 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
533 static int audioioctl(struct file *, u_long, void *);
534 static int audiopoll(struct file *, int);
535 static int audiokqfilter(struct file *, struct knote *);
536 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
537 struct uvm_object **, int *);
538 static int audiostat(struct file *, struct stat *);
539
540 static void filt_audiowrite_detach(struct knote *);
541 static int filt_audiowrite_event(struct knote *, long);
542 static void filt_audioread_detach(struct knote *);
543 static int filt_audioread_event(struct knote *, long);
544
545 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
546 audio_file_t **);
547 static int audio_close(struct audio_softc *, audio_file_t *);
548 static int audio_unlink(struct audio_softc *, audio_file_t *);
549 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
550 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
551 static void audio_file_clear(struct audio_softc *, audio_file_t *);
552 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
553 struct lwp *, audio_file_t *);
554 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
555 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
556 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
557 struct uvm_object **, int *, audio_file_t *);
558
559 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
560
561 static void audio_pintr(void *);
562 static void audio_rintr(void *);
563
564 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
565
566 static __inline int audio_track_readablebytes(const audio_track_t *);
567 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
568 const struct audio_info *);
569 static int audio_track_setinfo_check(audio_track_t *,
570 audio_format2_t *, const struct audio_prinfo *);
571 static void audio_track_setinfo_water(audio_track_t *,
572 const struct audio_info *);
573 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
574 struct audio_info *);
575 static int audio_hw_set_format(struct audio_softc *, int,
576 const audio_format2_t *, const audio_format2_t *,
577 audio_filter_reg_t *, audio_filter_reg_t *);
578 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
579 audio_file_t *);
580 static bool audio_can_playback(struct audio_softc *);
581 static bool audio_can_capture(struct audio_softc *);
582 static int audio_check_params(audio_format2_t *);
583 static int audio_mixers_init(struct audio_softc *sc, int,
584 const audio_format2_t *, const audio_format2_t *,
585 const audio_filter_reg_t *, const audio_filter_reg_t *);
586 static int audio_select_freq(const struct audio_format *);
587 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
588 static int audio_hw_validate_format(struct audio_softc *, int,
589 const audio_format2_t *);
590 static int audio_mixers_set_format(struct audio_softc *,
591 const struct audio_info *);
592 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
593 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
594 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
595 #if defined(AUDIO_DEBUG)
596 static int audio_sysctl_debug(SYSCTLFN_PROTO);
597 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
598 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
599 #endif
600
601 static void *audio_realloc(void *, size_t);
602 static int audio_realloc_usrbuf(audio_track_t *, int);
603 static void audio_free_usrbuf(audio_track_t *);
604
605 static audio_track_t *audio_track_create(struct audio_softc *,
606 audio_trackmixer_t *);
607 static void audio_track_destroy(audio_track_t *);
608 static audio_filter_t audio_track_get_codec(audio_track_t *,
609 const audio_format2_t *, const audio_format2_t *);
610 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
611 static void audio_track_play(audio_track_t *);
612 static int audio_track_drain(struct audio_softc *, audio_track_t *);
613 static void audio_track_record(audio_track_t *);
614 static void audio_track_clear(struct audio_softc *, audio_track_t *);
615
616 static int audio_mixer_init(struct audio_softc *, int,
617 const audio_format2_t *, const audio_filter_reg_t *);
618 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
619 static void audio_pmixer_start(struct audio_softc *, bool);
620 static void audio_pmixer_process(struct audio_softc *);
621 static void audio_pmixer_agc(audio_trackmixer_t *, int);
622 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
623 static void audio_pmixer_output(struct audio_softc *);
624 static int audio_pmixer_halt(struct audio_softc *);
625 static void audio_rmixer_start(struct audio_softc *);
626 static void audio_rmixer_process(struct audio_softc *);
627 static void audio_rmixer_input(struct audio_softc *);
628 static int audio_rmixer_halt(struct audio_softc *);
629
630 static void mixer_init(struct audio_softc *);
631 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
632 static int mixer_close(struct audio_softc *, audio_file_t *);
633 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
634 static void mixer_async_add(struct audio_softc *, pid_t);
635 static void mixer_async_remove(struct audio_softc *, pid_t);
636 static void mixer_signal(struct audio_softc *);
637
638 static int au_portof(struct audio_softc *, char *, int);
639
640 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
641 mixer_devinfo_t *, const struct portname *);
642 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
643 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
644 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
645 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
646 u_int *, u_char *);
647 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
648 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
649 static int au_set_monitor_gain(struct audio_softc *, int);
650 static int au_get_monitor_gain(struct audio_softc *);
651 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
652 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
653
654 static __inline struct audio_params
655 format2_to_params(const audio_format2_t *f2)
656 {
657 audio_params_t p;
658
659 /* validbits/precision <-> precision/stride */
660 p.sample_rate = f2->sample_rate;
661 p.channels = f2->channels;
662 p.encoding = f2->encoding;
663 p.validbits = f2->precision;
664 p.precision = f2->stride;
665 return p;
666 }
667
668 static __inline audio_format2_t
669 params_to_format2(const struct audio_params *p)
670 {
671 audio_format2_t f2;
672
673 /* precision/stride <-> validbits/precision */
674 f2.sample_rate = p->sample_rate;
675 f2.channels = p->channels;
676 f2.encoding = p->encoding;
677 f2.precision = p->validbits;
678 f2.stride = p->precision;
679 return f2;
680 }
681
682 /* Return true if this track is a playback track. */
683 static __inline bool
684 audio_track_is_playback(const audio_track_t *track)
685 {
686
687 return ((track->mode & AUMODE_PLAY) != 0);
688 }
689
690 /* Return true if this track is a recording track. */
691 static __inline bool
692 audio_track_is_record(const audio_track_t *track)
693 {
694
695 return ((track->mode & AUMODE_RECORD) != 0);
696 }
697
698 #if 0 /* XXX Not used yet */
699 /*
700 * Convert 0..255 volume used in userland to internal presentation 0..256.
701 */
702 static __inline u_int
703 audio_volume_to_inner(u_int v)
704 {
705
706 return v < 127 ? v : v + 1;
707 }
708
709 /*
710 * Convert 0..256 internal presentation to 0..255 volume used in userland.
711 */
712 static __inline u_int
713 audio_volume_to_outer(u_int v)
714 {
715
716 return v < 127 ? v : v - 1;
717 }
718 #endif /* 0 */
719
720 static dev_type_open(audioopen);
721 /* XXXMRG use more dev_type_xxx */
722
723 const struct cdevsw audio_cdevsw = {
724 .d_open = audioopen,
725 .d_close = noclose,
726 .d_read = noread,
727 .d_write = nowrite,
728 .d_ioctl = noioctl,
729 .d_stop = nostop,
730 .d_tty = notty,
731 .d_poll = nopoll,
732 .d_mmap = nommap,
733 .d_kqfilter = nokqfilter,
734 .d_discard = nodiscard,
735 .d_flag = D_OTHER | D_MPSAFE
736 };
737
738 const struct fileops audio_fileops = {
739 .fo_name = "audio",
740 .fo_read = audioread,
741 .fo_write = audiowrite,
742 .fo_ioctl = audioioctl,
743 .fo_fcntl = fnullop_fcntl,
744 .fo_stat = audiostat,
745 .fo_poll = audiopoll,
746 .fo_close = audioclose,
747 .fo_mmap = audiommap,
748 .fo_kqfilter = audiokqfilter,
749 .fo_restart = fnullop_restart
750 };
751
752 /* The default audio mode: 8 kHz mono mu-law */
753 static const struct audio_params audio_default = {
754 .sample_rate = 8000,
755 .encoding = AUDIO_ENCODING_ULAW,
756 .precision = 8,
757 .validbits = 8,
758 .channels = 1,
759 };
760
761 static const char *encoding_names[] = {
762 "none",
763 AudioEmulaw,
764 AudioEalaw,
765 "pcm16",
766 "pcm8",
767 AudioEadpcm,
768 AudioEslinear_le,
769 AudioEslinear_be,
770 AudioEulinear_le,
771 AudioEulinear_be,
772 AudioEslinear,
773 AudioEulinear,
774 AudioEmpeg_l1_stream,
775 AudioEmpeg_l1_packets,
776 AudioEmpeg_l1_system,
777 AudioEmpeg_l2_stream,
778 AudioEmpeg_l2_packets,
779 AudioEmpeg_l2_system,
780 AudioEac3,
781 };
782
783 /*
784 * Returns encoding name corresponding to AUDIO_ENCODING_*.
785 * Note that it may return a local buffer because it is mainly for debugging.
786 */
787 const char *
788 audio_encoding_name(int encoding)
789 {
790 static char buf[16];
791
792 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
793 return encoding_names[encoding];
794 } else {
795 snprintf(buf, sizeof(buf), "enc=%d", encoding);
796 return buf;
797 }
798 }
799
800 /*
801 * Supported encodings used by AUDIO_GETENC.
802 * index and flags are set by code.
803 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
804 */
805 static const audio_encoding_t audio_encodings[] = {
806 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
807 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
808 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
809 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
810 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
811 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
812 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
813 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
814 #if defined(AUDIO_SUPPORT_LINEAR24)
815 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
816 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
817 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
818 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
819 #endif
820 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
821 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
822 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
823 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
824 };
825
826 static const struct portname itable[] = {
827 { AudioNmicrophone, AUDIO_MICROPHONE },
828 { AudioNline, AUDIO_LINE_IN },
829 { AudioNcd, AUDIO_CD },
830 { 0, 0 }
831 };
832 static const struct portname otable[] = {
833 { AudioNspeaker, AUDIO_SPEAKER },
834 { AudioNheadphone, AUDIO_HEADPHONE },
835 { AudioNline, AUDIO_LINE_OUT },
836 { 0, 0 }
837 };
838
839 static struct psref_class *audio_psref_class __read_mostly;
840
841 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
842 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
843 audiochilddet, DVF_DETACH_SHUTDOWN);
844
845 static int
846 audiomatch(device_t parent, cfdata_t match, void *aux)
847 {
848 struct audio_attach_args *sa;
849
850 sa = aux;
851 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
852 __func__, sa->type, sa, sa->hwif);
853 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
854 }
855
856 static void
857 audioattach(device_t parent, device_t self, void *aux)
858 {
859 struct audio_softc *sc;
860 struct audio_attach_args *sa;
861 const struct audio_hw_if *hw_if;
862 audio_format2_t phwfmt;
863 audio_format2_t rhwfmt;
864 audio_filter_reg_t pfil;
865 audio_filter_reg_t rfil;
866 const struct sysctlnode *node;
867 void *hdlp;
868 bool has_playback;
869 bool has_capture;
870 bool has_indep;
871 bool has_fulldup;
872 int mode;
873 int error;
874
875 sc = device_private(self);
876 sc->sc_dev = self;
877 sa = (struct audio_attach_args *)aux;
878 hw_if = sa->hwif;
879 hdlp = sa->hdl;
880
881 if (hw_if == NULL) {
882 panic("audioattach: missing hw_if method");
883 }
884 if (hw_if->get_locks == NULL || hw_if->get_props == NULL) {
885 aprint_error(": missing mandatory method\n");
886 return;
887 }
888
889 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
890 sc->sc_props = hw_if->get_props(hdlp);
891
892 has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
893 has_capture = (sc->sc_props & AUDIO_PROP_CAPTURE);
894 has_indep = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
895 has_fulldup = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
896
897 #ifdef DIAGNOSTIC
898 if (hw_if->query_format == NULL ||
899 hw_if->set_format == NULL ||
900 hw_if->getdev == NULL ||
901 hw_if->set_port == NULL ||
902 hw_if->get_port == NULL ||
903 hw_if->query_devinfo == NULL) {
904 aprint_error(": missing mandatory method\n");
905 return;
906 }
907 if (has_playback) {
908 if ((hw_if->start_output == NULL &&
909 hw_if->trigger_output == NULL) ||
910 hw_if->halt_output == NULL) {
911 aprint_error(": missing playback method\n");
912 }
913 }
914 if (has_capture) {
915 if ((hw_if->start_input == NULL &&
916 hw_if->trigger_input == NULL) ||
917 hw_if->halt_input == NULL) {
918 aprint_error(": missing capture method\n");
919 }
920 }
921 #endif
922
923 sc->hw_if = hw_if;
924 sc->hw_hdl = hdlp;
925 sc->hw_dev = parent;
926
927 sc->sc_exlock = 1;
928 sc->sc_blk_ms = AUDIO_BLK_MS;
929 SLIST_INIT(&sc->sc_files);
930 cv_init(&sc->sc_exlockcv, "audiolk");
931 sc->sc_am_capacity = 0;
932 sc->sc_am_used = 0;
933 sc->sc_am = NULL;
934
935 /* MMAP is now supported by upper layer. */
936 sc->sc_props |= AUDIO_PROP_MMAP;
937
938 KASSERT(has_playback || has_capture);
939 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
940 if (!has_playback || !has_capture) {
941 KASSERT(!has_indep);
942 KASSERT(!has_fulldup);
943 }
944
945 mode = 0;
946 if (has_playback) {
947 aprint_normal(": playback");
948 mode |= AUMODE_PLAY;
949 }
950 if (has_capture) {
951 aprint_normal("%c capture", has_playback ? ',' : ':');
952 mode |= AUMODE_RECORD;
953 }
954 if (has_playback && has_capture) {
955 if (has_fulldup)
956 aprint_normal(", full duplex");
957 else
958 aprint_normal(", half duplex");
959
960 if (has_indep)
961 aprint_normal(", independent");
962 }
963
964 aprint_naive("\n");
965 aprint_normal("\n");
966
967 /* probe hw params */
968 memset(&phwfmt, 0, sizeof(phwfmt));
969 memset(&rhwfmt, 0, sizeof(rhwfmt));
970 memset(&pfil, 0, sizeof(pfil));
971 memset(&rfil, 0, sizeof(rfil));
972 if (has_indep) {
973 int perror, rerror;
974
975 /* On independent devices, probe separately. */
976 perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
977 rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
978 if (perror && rerror) {
979 aprint_error_dev(self,
980 "audio_hw_probe failed: perror=%d, rerror=%d\n",
981 perror, rerror);
982 goto bad;
983 }
984 if (perror) {
985 mode &= ~AUMODE_PLAY;
986 aprint_error_dev(self, "audio_hw_probe failed: "
987 "errno=%d, playback disabled\n", perror);
988 }
989 if (rerror) {
990 mode &= ~AUMODE_RECORD;
991 aprint_error_dev(self, "audio_hw_probe failed: "
992 "errno=%d, capture disabled\n", rerror);
993 }
994 } else {
995 /*
996 * On non independent devices or uni-directional devices,
997 * probe once (simultaneously).
998 */
999 audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
1000 error = audio_hw_probe(sc, fmt, mode);
1001 if (error) {
1002 aprint_error_dev(self,
1003 "audio_hw_probe failed: errno=%d\n", error);
1004 goto bad;
1005 }
1006 if (has_playback && has_capture)
1007 rhwfmt = phwfmt;
1008 }
1009
1010 /* Init hardware. */
1011 /* hw_probe() also validates [pr]hwfmt. */
1012 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1013 if (error) {
1014 aprint_error_dev(self,
1015 "audio_hw_set_format failed: errno=%d\n", error);
1016 goto bad;
1017 }
1018
1019 /*
1020 * Init track mixers. If at least one direction is available on
1021 * attach time, we assume a success.
1022 */
1023 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1024 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
1025 aprint_error_dev(self,
1026 "audio_mixers_init failed: errno=%d\n", error);
1027 goto bad;
1028 }
1029
1030 sc->sc_psz = pserialize_create();
1031 psref_target_init(&sc->sc_psref, audio_psref_class);
1032
1033 selinit(&sc->sc_wsel);
1034 selinit(&sc->sc_rsel);
1035
1036 /* Initial parameter of /dev/sound */
1037 sc->sc_sound_pparams = params_to_format2(&audio_default);
1038 sc->sc_sound_rparams = params_to_format2(&audio_default);
1039 sc->sc_sound_ppause = false;
1040 sc->sc_sound_rpause = false;
1041
1042 /* XXX TODO: consider about sc_ai */
1043
1044 mixer_init(sc);
1045 TRACE(2, "inputs ports=0x%x, input master=%d, "
1046 "output ports=0x%x, output master=%d",
1047 sc->sc_inports.allports, sc->sc_inports.master,
1048 sc->sc_outports.allports, sc->sc_outports.master);
1049
1050 sysctl_createv(&sc->sc_log, 0, NULL, &node,
1051 0,
1052 CTLTYPE_NODE, device_xname(sc->sc_dev),
1053 SYSCTL_DESCR("audio test"),
1054 NULL, 0,
1055 NULL, 0,
1056 CTL_HW,
1057 CTL_CREATE, CTL_EOL);
1058
1059 if (node != NULL) {
1060 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1061 CTLFLAG_READWRITE,
1062 CTLTYPE_INT, "blk_ms",
1063 SYSCTL_DESCR("blocksize in msec"),
1064 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1065 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1066
1067 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1068 CTLFLAG_READWRITE,
1069 CTLTYPE_BOOL, "multiuser",
1070 SYSCTL_DESCR("allow multiple user access"),
1071 audio_sysctl_multiuser, 0, (void *)sc, 0,
1072 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1073
1074 #if defined(AUDIO_DEBUG)
1075 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1076 CTLFLAG_READWRITE,
1077 CTLTYPE_INT, "debug",
1078 SYSCTL_DESCR("debug level (0..4)"),
1079 audio_sysctl_debug, 0, (void *)sc, 0,
1080 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1081 #endif
1082 }
1083
1084 #ifdef AUDIO_PM_IDLE
1085 callout_init(&sc->sc_idle_counter, 0);
1086 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1087 #endif
1088
1089 if (!pmf_device_register(self, audio_suspend, audio_resume))
1090 aprint_error_dev(self, "couldn't establish power handler\n");
1091 #ifdef AUDIO_PM_IDLE
1092 if (!device_active_register(self, audio_activity))
1093 aprint_error_dev(self, "couldn't register activity handler\n");
1094 #endif
1095
1096 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1097 audio_volume_down, true))
1098 aprint_error_dev(self, "couldn't add volume down handler\n");
1099 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1100 audio_volume_up, true))
1101 aprint_error_dev(self, "couldn't add volume up handler\n");
1102 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1103 audio_volume_toggle, true))
1104 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1105
1106 #ifdef AUDIO_PM_IDLE
1107 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1108 #endif
1109
1110 #if defined(AUDIO_DEBUG)
1111 audio_mlog_init();
1112 #endif
1113
1114 audiorescan(self, NULL, NULL);
1115 sc->sc_exlock = 0;
1116 return;
1117
1118 bad:
1119 /* Clearing hw_if means that device is attached but disabled. */
1120 sc->hw_if = NULL;
1121 sc->sc_exlock = 0;
1122 aprint_error_dev(sc->sc_dev, "disabled\n");
1123 return;
1124 }
1125
1126 /*
1127 * Initialize hardware mixer.
1128 * This function is called from audioattach().
1129 */
1130 static void
1131 mixer_init(struct audio_softc *sc)
1132 {
1133 mixer_devinfo_t mi;
1134 int iclass, mclass, oclass, rclass;
1135 int record_master_found, record_source_found;
1136
1137 iclass = mclass = oclass = rclass = -1;
1138 sc->sc_inports.index = -1;
1139 sc->sc_inports.master = -1;
1140 sc->sc_inports.nports = 0;
1141 sc->sc_inports.isenum = false;
1142 sc->sc_inports.allports = 0;
1143 sc->sc_inports.isdual = false;
1144 sc->sc_inports.mixerout = -1;
1145 sc->sc_inports.cur_port = -1;
1146 sc->sc_outports.index = -1;
1147 sc->sc_outports.master = -1;
1148 sc->sc_outports.nports = 0;
1149 sc->sc_outports.isenum = false;
1150 sc->sc_outports.allports = 0;
1151 sc->sc_outports.isdual = false;
1152 sc->sc_outports.mixerout = -1;
1153 sc->sc_outports.cur_port = -1;
1154 sc->sc_monitor_port = -1;
1155 /*
1156 * Read through the underlying driver's list, picking out the class
1157 * names from the mixer descriptions. We'll need them to decode the
1158 * mixer descriptions on the next pass through the loop.
1159 */
1160 mutex_enter(sc->sc_lock);
1161 for(mi.index = 0; ; mi.index++) {
1162 if (audio_query_devinfo(sc, &mi) != 0)
1163 break;
1164 /*
1165 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1166 * All the other types describe an actual mixer.
1167 */
1168 if (mi.type == AUDIO_MIXER_CLASS) {
1169 if (strcmp(mi.label.name, AudioCinputs) == 0)
1170 iclass = mi.mixer_class;
1171 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1172 mclass = mi.mixer_class;
1173 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1174 oclass = mi.mixer_class;
1175 if (strcmp(mi.label.name, AudioCrecord) == 0)
1176 rclass = mi.mixer_class;
1177 }
1178 }
1179 mutex_exit(sc->sc_lock);
1180
1181 /* Allocate save area. Ensure non-zero allocation. */
1182 sc->sc_nmixer_states = mi.index;
1183 sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
1184 (sc->sc_nmixer_states + 1), KM_SLEEP);
1185
1186 /*
1187 * This is where we assign each control in the "audio" model, to the
1188 * underlying "mixer" control. We walk through the whole list once,
1189 * assigning likely candidates as we come across them.
1190 */
1191 record_master_found = 0;
1192 record_source_found = 0;
1193 mutex_enter(sc->sc_lock);
1194 for(mi.index = 0; ; mi.index++) {
1195 if (audio_query_devinfo(sc, &mi) != 0)
1196 break;
1197 KASSERT(mi.index < sc->sc_nmixer_states);
1198 if (mi.type == AUDIO_MIXER_CLASS)
1199 continue;
1200 if (mi.mixer_class == iclass) {
1201 /*
1202 * AudioCinputs is only a fallback, when we don't
1203 * find what we're looking for in AudioCrecord, so
1204 * check the flags before accepting one of these.
1205 */
1206 if (strcmp(mi.label.name, AudioNmaster) == 0
1207 && record_master_found == 0)
1208 sc->sc_inports.master = mi.index;
1209 if (strcmp(mi.label.name, AudioNsource) == 0
1210 && record_source_found == 0) {
1211 if (mi.type == AUDIO_MIXER_ENUM) {
1212 int i;
1213 for(i = 0; i < mi.un.e.num_mem; i++)
1214 if (strcmp(mi.un.e.member[i].label.name,
1215 AudioNmixerout) == 0)
1216 sc->sc_inports.mixerout =
1217 mi.un.e.member[i].ord;
1218 }
1219 au_setup_ports(sc, &sc->sc_inports, &mi,
1220 itable);
1221 }
1222 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1223 sc->sc_outports.master == -1)
1224 sc->sc_outports.master = mi.index;
1225 } else if (mi.mixer_class == mclass) {
1226 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1227 sc->sc_monitor_port = mi.index;
1228 } else if (mi.mixer_class == oclass) {
1229 if (strcmp(mi.label.name, AudioNmaster) == 0)
1230 sc->sc_outports.master = mi.index;
1231 if (strcmp(mi.label.name, AudioNselect) == 0)
1232 au_setup_ports(sc, &sc->sc_outports, &mi,
1233 otable);
1234 } else if (mi.mixer_class == rclass) {
1235 /*
1236 * These are the preferred mixers for the audio record
1237 * controls, so set the flags here, but don't check.
1238 */
1239 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1240 sc->sc_inports.master = mi.index;
1241 record_master_found = 1;
1242 }
1243 #if 1 /* Deprecated. Use AudioNmaster. */
1244 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1245 sc->sc_inports.master = mi.index;
1246 record_master_found = 1;
1247 }
1248 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1249 sc->sc_inports.master = mi.index;
1250 record_master_found = 1;
1251 }
1252 #endif
1253 if (strcmp(mi.label.name, AudioNsource) == 0) {
1254 if (mi.type == AUDIO_MIXER_ENUM) {
1255 int i;
1256 for(i = 0; i < mi.un.e.num_mem; i++)
1257 if (strcmp(mi.un.e.member[i].label.name,
1258 AudioNmixerout) == 0)
1259 sc->sc_inports.mixerout =
1260 mi.un.e.member[i].ord;
1261 }
1262 au_setup_ports(sc, &sc->sc_inports, &mi,
1263 itable);
1264 record_source_found = 1;
1265 }
1266 }
1267 }
1268 mutex_exit(sc->sc_lock);
1269 }
1270
1271 static int
1272 audioactivate(device_t self, enum devact act)
1273 {
1274 struct audio_softc *sc = device_private(self);
1275
1276 switch (act) {
1277 case DVACT_DEACTIVATE:
1278 mutex_enter(sc->sc_lock);
1279 sc->sc_dying = true;
1280 cv_broadcast(&sc->sc_exlockcv);
1281 mutex_exit(sc->sc_lock);
1282 return 0;
1283 default:
1284 return EOPNOTSUPP;
1285 }
1286 }
1287
1288 static int
1289 audiodetach(device_t self, int flags)
1290 {
1291 struct audio_softc *sc;
1292 struct audio_file *file;
1293 int error;
1294
1295 sc = device_private(self);
1296 TRACE(2, "flags=%d", flags);
1297
1298 /* device is not initialized */
1299 if (sc->hw_if == NULL)
1300 return 0;
1301
1302 /* Start draining existing accessors of the device. */
1303 error = config_detach_children(self, flags);
1304 if (error)
1305 return error;
1306
1307 /*
1308 * This waits currently running sysctls to finish if exists.
1309 * After this, no more new sysctls will come.
1310 */
1311 sysctl_teardown(&sc->sc_log);
1312
1313 mutex_enter(sc->sc_lock);
1314 sc->sc_dying = true;
1315 cv_broadcast(&sc->sc_exlockcv);
1316 if (sc->sc_pmixer)
1317 cv_broadcast(&sc->sc_pmixer->outcv);
1318 if (sc->sc_rmixer)
1319 cv_broadcast(&sc->sc_rmixer->outcv);
1320
1321 /* Prevent new users */
1322 SLIST_FOREACH(file, &sc->sc_files, entry) {
1323 atomic_store_relaxed(&file->dying, true);
1324 }
1325
1326 /*
1327 * Wait for existing users to drain.
1328 * - pserialize_perform waits for all pserialize_read sections on
1329 * all CPUs; after this, no more new psref_acquire can happen.
1330 * - psref_target_destroy waits for all extant acquired psrefs to
1331 * be psref_released.
1332 */
1333 pserialize_perform(sc->sc_psz);
1334 mutex_exit(sc->sc_lock);
1335 psref_target_destroy(&sc->sc_psref, audio_psref_class);
1336
1337 /*
1338 * We are now guaranteed that there are no calls to audio fileops
1339 * that hold sc, and any new calls with files that were for sc will
1340 * fail. Thus, we now have exclusive access to the softc.
1341 */
1342 sc->sc_exlock = 1;
1343
1344 /*
1345 * Clean up all open instances.
1346 * Here, we no longer need any locks to traverse sc_files.
1347 */
1348 while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
1349 audio_unlink(sc, file);
1350 }
1351
1352 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1353 audio_volume_down, true);
1354 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1355 audio_volume_up, true);
1356 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1357 audio_volume_toggle, true);
1358
1359 #ifdef AUDIO_PM_IDLE
1360 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1361
1362 device_active_deregister(self, audio_activity);
1363 #endif
1364
1365 pmf_device_deregister(self);
1366
1367 /* Free resources */
1368 if (sc->sc_pmixer) {
1369 audio_mixer_destroy(sc, sc->sc_pmixer);
1370 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1371 }
1372 if (sc->sc_rmixer) {
1373 audio_mixer_destroy(sc, sc->sc_rmixer);
1374 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1375 }
1376 if (sc->sc_am)
1377 kern_free(sc->sc_am);
1378
1379 seldestroy(&sc->sc_wsel);
1380 seldestroy(&sc->sc_rsel);
1381
1382 #ifdef AUDIO_PM_IDLE
1383 callout_destroy(&sc->sc_idle_counter);
1384 #endif
1385
1386 cv_destroy(&sc->sc_exlockcv);
1387
1388 #if defined(AUDIO_DEBUG)
1389 audio_mlog_free();
1390 #endif
1391
1392 return 0;
1393 }
1394
1395 static void
1396 audiochilddet(device_t self, device_t child)
1397 {
1398
1399 /* we hold no child references, so do nothing */
1400 }
1401
1402 static int
1403 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1404 {
1405
1406 if (config_probe(parent, cf, aux))
1407 config_attach(parent, cf, aux, NULL,
1408 CFARG_EOL);
1409
1410 return 0;
1411 }
1412
1413 static int
1414 audiorescan(device_t self, const char *ifattr, const int *locators)
1415 {
1416 struct audio_softc *sc = device_private(self);
1417
1418 config_search(sc->sc_dev, NULL,
1419 CFARG_SEARCH, audiosearch,
1420 CFARG_EOL);
1421
1422 return 0;
1423 }
1424
1425 /*
1426 * Called from hardware driver. This is where the MI audio driver gets
1427 * probed/attached to the hardware driver.
1428 */
1429 device_t
1430 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1431 {
1432 struct audio_attach_args arg;
1433
1434 #ifdef DIAGNOSTIC
1435 if (ahwp == NULL) {
1436 aprint_error("audio_attach_mi: NULL\n");
1437 return 0;
1438 }
1439 #endif
1440 arg.type = AUDIODEV_TYPE_AUDIO;
1441 arg.hwif = ahwp;
1442 arg.hdl = hdlp;
1443 return config_found(dev, &arg, audioprint, CFARG_EOL);
1444 }
1445
1446 /*
1447 * audio_printf() outputs fmt... with the audio device name and MD device
1448 * name prefixed. If the message is considered to be related to the MD
1449 * driver, use this one instead of device_printf().
1450 */
1451 static void
1452 audio_printf(struct audio_softc *sc, const char *fmt, ...)
1453 {
1454 va_list ap;
1455
1456 printf("%s(%s): ", device_xname(sc->sc_dev), device_xname(sc->hw_dev));
1457 va_start(ap, fmt);
1458 vprintf(fmt, ap);
1459 va_end(ap);
1460 }
1461
1462 /*
1463 * Enter critical section and also keep sc_lock.
1464 * If successful, returns 0 with sc_lock held. Otherwise returns errno.
1465 * Must be called without sc_lock held.
1466 */
1467 static int
1468 audio_exlock_mutex_enter(struct audio_softc *sc)
1469 {
1470 int error;
1471
1472 mutex_enter(sc->sc_lock);
1473 if (sc->sc_dying) {
1474 mutex_exit(sc->sc_lock);
1475 return EIO;
1476 }
1477
1478 while (__predict_false(sc->sc_exlock != 0)) {
1479 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1480 if (sc->sc_dying)
1481 error = EIO;
1482 if (error) {
1483 mutex_exit(sc->sc_lock);
1484 return error;
1485 }
1486 }
1487
1488 /* Acquire */
1489 sc->sc_exlock = 1;
1490 return 0;
1491 }
1492
1493 /*
1494 * Exit critical section and exit sc_lock.
1495 * Must be called with sc_lock held.
1496 */
1497 static void
1498 audio_exlock_mutex_exit(struct audio_softc *sc)
1499 {
1500
1501 KASSERT(mutex_owned(sc->sc_lock));
1502
1503 sc->sc_exlock = 0;
1504 cv_broadcast(&sc->sc_exlockcv);
1505 mutex_exit(sc->sc_lock);
1506 }
1507
1508 /*
1509 * Enter critical section.
1510 * If successful, it returns 0. Otherwise returns errno.
1511 * Must be called without sc_lock held.
1512 * This function returns without sc_lock held.
1513 */
1514 static int
1515 audio_exlock_enter(struct audio_softc *sc)
1516 {
1517 int error;
1518
1519 error = audio_exlock_mutex_enter(sc);
1520 if (error)
1521 return error;
1522 mutex_exit(sc->sc_lock);
1523 return 0;
1524 }
1525
1526 /*
1527 * Exit critical section.
1528 * Must be called without sc_lock held.
1529 */
1530 static void
1531 audio_exlock_exit(struct audio_softc *sc)
1532 {
1533
1534 mutex_enter(sc->sc_lock);
1535 audio_exlock_mutex_exit(sc);
1536 }
1537
1538 /*
1539 * Increment reference counter for this sc.
1540 * This is intended to be used for open.
1541 */
1542 void
1543 audio_sc_acquire_foropen(struct audio_softc *sc, struct psref *refp)
1544 {
1545 int s;
1546
1547 /* Block audiodetach while we acquire a reference */
1548 s = pserialize_read_enter();
1549
1550 /*
1551 * We don't examine sc_dying here. However, all open methods
1552 * call audio_exlock_enter() right after this, so we can examine
1553 * sc_dying in it.
1554 */
1555
1556 /* Acquire a reference */
1557 psref_acquire(refp, &sc->sc_psref, audio_psref_class);
1558
1559 /* Now sc won't go away until we drop the reference count */
1560 pserialize_read_exit(s);
1561 }
1562
1563 /*
1564 * Get sc from file, and increment reference counter for this sc.
1565 * This is intended to be used for methods other than open.
1566 * If successful, returns sc. Otherwise returns NULL.
1567 */
1568 struct audio_softc *
1569 audio_sc_acquire_fromfile(audio_file_t *file, struct psref *refp)
1570 {
1571 int s;
1572 bool dying;
1573
1574 /* Block audiodetach while we acquire a reference */
1575 s = pserialize_read_enter();
1576
1577 /* If close or audiodetach already ran, tough -- no more audio */
1578 dying = atomic_load_relaxed(&file->dying);
1579 if (dying) {
1580 pserialize_read_exit(s);
1581 return NULL;
1582 }
1583
1584 /* Acquire a reference */
1585 psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
1586
1587 /* Now sc won't go away until we drop the reference count */
1588 pserialize_read_exit(s);
1589
1590 return file->sc;
1591 }
1592
1593 /*
1594 * Decrement reference counter for this sc.
1595 */
1596 void
1597 audio_sc_release(struct audio_softc *sc, struct psref *refp)
1598 {
1599
1600 psref_release(refp, &sc->sc_psref, audio_psref_class);
1601 }
1602
1603 /*
1604 * Wait for I/O to complete, releasing sc_lock.
1605 * Must be called with sc_lock held.
1606 */
1607 static int
1608 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1609 {
1610 int error;
1611
1612 KASSERT(track);
1613 KASSERT(mutex_owned(sc->sc_lock));
1614
1615 /* Wait for pending I/O to complete. */
1616 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1617 mstohz(AUDIO_TIMEOUT));
1618 if (sc->sc_suspending) {
1619 /* If it's about to suspend, ignore timeout error. */
1620 if (error == EWOULDBLOCK) {
1621 TRACET(2, track, "timeout (suspending)");
1622 return 0;
1623 }
1624 }
1625 if (sc->sc_dying) {
1626 error = EIO;
1627 }
1628 if (error) {
1629 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1630 if (error == EWOULDBLOCK)
1631 audio_printf(sc, "device timeout\n");
1632 } else {
1633 TRACET(3, track, "wakeup");
1634 }
1635 return error;
1636 }
1637
1638 /*
1639 * Try to acquire track lock.
1640 * It doesn't block if the track lock is already aquired.
1641 * Returns true if the track lock was acquired, or false if the track
1642 * lock was already acquired.
1643 */
1644 static __inline bool
1645 audio_track_lock_tryenter(audio_track_t *track)
1646 {
1647 return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1648 }
1649
1650 /*
1651 * Acquire track lock.
1652 */
1653 static __inline void
1654 audio_track_lock_enter(audio_track_t *track)
1655 {
1656 /* Don't sleep here. */
1657 while (audio_track_lock_tryenter(track) == false)
1658 ;
1659 }
1660
1661 /*
1662 * Release track lock.
1663 */
1664 static __inline void
1665 audio_track_lock_exit(audio_track_t *track)
1666 {
1667 atomic_swap_uint(&track->lock, 0);
1668 }
1669
1670
1671 static int
1672 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1673 {
1674 struct audio_softc *sc;
1675 struct psref sc_ref;
1676 int bound;
1677 int error;
1678
1679 /* Find the device */
1680 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1681 if (sc == NULL || sc->hw_if == NULL)
1682 return ENXIO;
1683
1684 bound = curlwp_bind();
1685 audio_sc_acquire_foropen(sc, &sc_ref);
1686
1687 error = audio_exlock_enter(sc);
1688 if (error)
1689 goto done;
1690
1691 device_active(sc->sc_dev, DVA_SYSTEM);
1692 switch (AUDIODEV(dev)) {
1693 case SOUND_DEVICE:
1694 case AUDIO_DEVICE:
1695 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1696 break;
1697 case AUDIOCTL_DEVICE:
1698 error = audioctl_open(dev, sc, flags, ifmt, l);
1699 break;
1700 case MIXER_DEVICE:
1701 error = mixer_open(dev, sc, flags, ifmt, l);
1702 break;
1703 default:
1704 error = ENXIO;
1705 break;
1706 }
1707 audio_exlock_exit(sc);
1708
1709 done:
1710 audio_sc_release(sc, &sc_ref);
1711 curlwp_bindx(bound);
1712 return error;
1713 }
1714
1715 static int
1716 audioclose(struct file *fp)
1717 {
1718 struct audio_softc *sc;
1719 struct psref sc_ref;
1720 audio_file_t *file;
1721 int bound;
1722 int error;
1723 dev_t dev;
1724
1725 KASSERT(fp->f_audioctx);
1726 file = fp->f_audioctx;
1727 dev = file->dev;
1728 error = 0;
1729
1730 /*
1731 * audioclose() must
1732 * - unplug track from the trackmixer (and unplug anything from softc),
1733 * if sc exists.
1734 * - free all memory objects, regardless of sc.
1735 */
1736
1737 bound = curlwp_bind();
1738 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1739 if (sc) {
1740 switch (AUDIODEV(dev)) {
1741 case SOUND_DEVICE:
1742 case AUDIO_DEVICE:
1743 error = audio_close(sc, file);
1744 break;
1745 case AUDIOCTL_DEVICE:
1746 error = 0;
1747 break;
1748 case MIXER_DEVICE:
1749 error = mixer_close(sc, file);
1750 break;
1751 default:
1752 error = ENXIO;
1753 break;
1754 }
1755
1756 audio_sc_release(sc, &sc_ref);
1757 }
1758 curlwp_bindx(bound);
1759
1760 /* Free memory objects anyway */
1761 TRACEF(2, file, "free memory");
1762 if (file->ptrack)
1763 audio_track_destroy(file->ptrack);
1764 if (file->rtrack)
1765 audio_track_destroy(file->rtrack);
1766 kmem_free(file, sizeof(*file));
1767 fp->f_audioctx = NULL;
1768
1769 return error;
1770 }
1771
1772 static int
1773 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1774 int ioflag)
1775 {
1776 struct audio_softc *sc;
1777 struct psref sc_ref;
1778 audio_file_t *file;
1779 int bound;
1780 int error;
1781 dev_t dev;
1782
1783 KASSERT(fp->f_audioctx);
1784 file = fp->f_audioctx;
1785 dev = file->dev;
1786
1787 bound = curlwp_bind();
1788 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1789 if (sc == NULL) {
1790 error = EIO;
1791 goto done;
1792 }
1793
1794 if (fp->f_flag & O_NONBLOCK)
1795 ioflag |= IO_NDELAY;
1796
1797 switch (AUDIODEV(dev)) {
1798 case SOUND_DEVICE:
1799 case AUDIO_DEVICE:
1800 error = audio_read(sc, uio, ioflag, file);
1801 break;
1802 case AUDIOCTL_DEVICE:
1803 case MIXER_DEVICE:
1804 error = ENODEV;
1805 break;
1806 default:
1807 error = ENXIO;
1808 break;
1809 }
1810
1811 audio_sc_release(sc, &sc_ref);
1812 done:
1813 curlwp_bindx(bound);
1814 return error;
1815 }
1816
1817 static int
1818 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1819 int ioflag)
1820 {
1821 struct audio_softc *sc;
1822 struct psref sc_ref;
1823 audio_file_t *file;
1824 int bound;
1825 int error;
1826 dev_t dev;
1827
1828 KASSERT(fp->f_audioctx);
1829 file = fp->f_audioctx;
1830 dev = file->dev;
1831
1832 bound = curlwp_bind();
1833 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1834 if (sc == NULL) {
1835 error = EIO;
1836 goto done;
1837 }
1838
1839 if (fp->f_flag & O_NONBLOCK)
1840 ioflag |= IO_NDELAY;
1841
1842 switch (AUDIODEV(dev)) {
1843 case SOUND_DEVICE:
1844 case AUDIO_DEVICE:
1845 error = audio_write(sc, uio, ioflag, file);
1846 break;
1847 case AUDIOCTL_DEVICE:
1848 case MIXER_DEVICE:
1849 error = ENODEV;
1850 break;
1851 default:
1852 error = ENXIO;
1853 break;
1854 }
1855
1856 audio_sc_release(sc, &sc_ref);
1857 done:
1858 curlwp_bindx(bound);
1859 return error;
1860 }
1861
1862 static int
1863 audioioctl(struct file *fp, u_long cmd, void *addr)
1864 {
1865 struct audio_softc *sc;
1866 struct psref sc_ref;
1867 audio_file_t *file;
1868 struct lwp *l = curlwp;
1869 int bound;
1870 int error;
1871 dev_t dev;
1872
1873 KASSERT(fp->f_audioctx);
1874 file = fp->f_audioctx;
1875 dev = file->dev;
1876
1877 bound = curlwp_bind();
1878 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1879 if (sc == NULL) {
1880 error = EIO;
1881 goto done;
1882 }
1883
1884 switch (AUDIODEV(dev)) {
1885 case SOUND_DEVICE:
1886 case AUDIO_DEVICE:
1887 case AUDIOCTL_DEVICE:
1888 mutex_enter(sc->sc_lock);
1889 device_active(sc->sc_dev, DVA_SYSTEM);
1890 mutex_exit(sc->sc_lock);
1891 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1892 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1893 else
1894 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1895 file);
1896 break;
1897 case MIXER_DEVICE:
1898 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1899 break;
1900 default:
1901 error = ENXIO;
1902 break;
1903 }
1904
1905 audio_sc_release(sc, &sc_ref);
1906 done:
1907 curlwp_bindx(bound);
1908 return error;
1909 }
1910
1911 static int
1912 audiostat(struct file *fp, struct stat *st)
1913 {
1914 struct audio_softc *sc;
1915 struct psref sc_ref;
1916 audio_file_t *file;
1917 int bound;
1918 int error;
1919
1920 KASSERT(fp->f_audioctx);
1921 file = fp->f_audioctx;
1922
1923 bound = curlwp_bind();
1924 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1925 if (sc == NULL) {
1926 error = EIO;
1927 goto done;
1928 }
1929
1930 error = 0;
1931 memset(st, 0, sizeof(*st));
1932
1933 st->st_dev = file->dev;
1934 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1935 st->st_gid = kauth_cred_getegid(fp->f_cred);
1936 st->st_mode = S_IFCHR;
1937
1938 audio_sc_release(sc, &sc_ref);
1939 done:
1940 curlwp_bindx(bound);
1941 return error;
1942 }
1943
1944 static int
1945 audiopoll(struct file *fp, int events)
1946 {
1947 struct audio_softc *sc;
1948 struct psref sc_ref;
1949 audio_file_t *file;
1950 struct lwp *l = curlwp;
1951 int bound;
1952 int revents;
1953 dev_t dev;
1954
1955 KASSERT(fp->f_audioctx);
1956 file = fp->f_audioctx;
1957 dev = file->dev;
1958
1959 bound = curlwp_bind();
1960 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1961 if (sc == NULL) {
1962 revents = POLLERR;
1963 goto done;
1964 }
1965
1966 switch (AUDIODEV(dev)) {
1967 case SOUND_DEVICE:
1968 case AUDIO_DEVICE:
1969 revents = audio_poll(sc, events, l, file);
1970 break;
1971 case AUDIOCTL_DEVICE:
1972 case MIXER_DEVICE:
1973 revents = 0;
1974 break;
1975 default:
1976 revents = POLLERR;
1977 break;
1978 }
1979
1980 audio_sc_release(sc, &sc_ref);
1981 done:
1982 curlwp_bindx(bound);
1983 return revents;
1984 }
1985
1986 static int
1987 audiokqfilter(struct file *fp, struct knote *kn)
1988 {
1989 struct audio_softc *sc;
1990 struct psref sc_ref;
1991 audio_file_t *file;
1992 dev_t dev;
1993 int bound;
1994 int error;
1995
1996 KASSERT(fp->f_audioctx);
1997 file = fp->f_audioctx;
1998 dev = file->dev;
1999
2000 bound = curlwp_bind();
2001 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2002 if (sc == NULL) {
2003 error = EIO;
2004 goto done;
2005 }
2006
2007 switch (AUDIODEV(dev)) {
2008 case SOUND_DEVICE:
2009 case AUDIO_DEVICE:
2010 error = audio_kqfilter(sc, file, kn);
2011 break;
2012 case AUDIOCTL_DEVICE:
2013 case MIXER_DEVICE:
2014 error = ENODEV;
2015 break;
2016 default:
2017 error = ENXIO;
2018 break;
2019 }
2020
2021 audio_sc_release(sc, &sc_ref);
2022 done:
2023 curlwp_bindx(bound);
2024 return error;
2025 }
2026
2027 static int
2028 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
2029 int *advicep, struct uvm_object **uobjp, int *maxprotp)
2030 {
2031 struct audio_softc *sc;
2032 struct psref sc_ref;
2033 audio_file_t *file;
2034 dev_t dev;
2035 int bound;
2036 int error;
2037
2038 KASSERT(fp->f_audioctx);
2039 file = fp->f_audioctx;
2040 dev = file->dev;
2041
2042 bound = curlwp_bind();
2043 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2044 if (sc == NULL) {
2045 error = EIO;
2046 goto done;
2047 }
2048
2049 mutex_enter(sc->sc_lock);
2050 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
2051 mutex_exit(sc->sc_lock);
2052
2053 switch (AUDIODEV(dev)) {
2054 case SOUND_DEVICE:
2055 case AUDIO_DEVICE:
2056 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
2057 uobjp, maxprotp, file);
2058 break;
2059 case AUDIOCTL_DEVICE:
2060 case MIXER_DEVICE:
2061 default:
2062 error = ENOTSUP;
2063 break;
2064 }
2065
2066 audio_sc_release(sc, &sc_ref);
2067 done:
2068 curlwp_bindx(bound);
2069 return error;
2070 }
2071
2072
2073 /* Exported interfaces for audiobell. */
2074
2075 /*
2076 * Open for audiobell.
2077 * It stores allocated file to *filep.
2078 * If successful returns 0, otherwise errno.
2079 */
2080 int
2081 audiobellopen(dev_t dev, audio_file_t **filep)
2082 {
2083 struct audio_softc *sc;
2084 struct psref sc_ref;
2085 int bound;
2086 int error;
2087
2088 /* Find the device */
2089 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
2090 if (sc == NULL || sc->hw_if == NULL)
2091 return ENXIO;
2092
2093 bound = curlwp_bind();
2094 audio_sc_acquire_foropen(sc, &sc_ref);
2095
2096 error = audio_exlock_enter(sc);
2097 if (error)
2098 goto done;
2099
2100 device_active(sc->sc_dev, DVA_SYSTEM);
2101 error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
2102
2103 audio_exlock_exit(sc);
2104 done:
2105 audio_sc_release(sc, &sc_ref);
2106 curlwp_bindx(bound);
2107 return error;
2108 }
2109
2110 /* Close for audiobell */
2111 int
2112 audiobellclose(audio_file_t *file)
2113 {
2114 struct audio_softc *sc;
2115 struct psref sc_ref;
2116 int bound;
2117 int error;
2118
2119 error = 0;
2120 /*
2121 * audiobellclose() must
2122 * - unplug track from the trackmixer if sc exist.
2123 * - free all memory objects, regardless of sc.
2124 */
2125 bound = curlwp_bind();
2126 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2127 if (sc) {
2128 error = audio_close(sc, file);
2129 audio_sc_release(sc, &sc_ref);
2130 }
2131 curlwp_bindx(bound);
2132
2133 /* Free memory objects anyway */
2134 KASSERT(file->ptrack);
2135 audio_track_destroy(file->ptrack);
2136 KASSERT(file->rtrack == NULL);
2137 kmem_free(file, sizeof(*file));
2138 return error;
2139 }
2140
2141 /* Set sample rate for audiobell */
2142 int
2143 audiobellsetrate(audio_file_t *file, u_int sample_rate)
2144 {
2145 struct audio_softc *sc;
2146 struct psref sc_ref;
2147 struct audio_info ai;
2148 int bound;
2149 int error;
2150
2151 bound = curlwp_bind();
2152 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2153 if (sc == NULL) {
2154 error = EIO;
2155 goto done1;
2156 }
2157
2158 AUDIO_INITINFO(&ai);
2159 ai.play.sample_rate = sample_rate;
2160
2161 error = audio_exlock_enter(sc);
2162 if (error)
2163 goto done2;
2164 error = audio_file_setinfo(sc, file, &ai);
2165 audio_exlock_exit(sc);
2166
2167 done2:
2168 audio_sc_release(sc, &sc_ref);
2169 done1:
2170 curlwp_bindx(bound);
2171 return error;
2172 }
2173
2174 /* Playback for audiobell */
2175 int
2176 audiobellwrite(audio_file_t *file, struct uio *uio)
2177 {
2178 struct audio_softc *sc;
2179 struct psref sc_ref;
2180 int bound;
2181 int error;
2182
2183 bound = curlwp_bind();
2184 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2185 if (sc == NULL) {
2186 error = EIO;
2187 goto done;
2188 }
2189
2190 error = audio_write(sc, uio, 0, file);
2191
2192 audio_sc_release(sc, &sc_ref);
2193 done:
2194 curlwp_bindx(bound);
2195 return error;
2196 }
2197
2198
2199 /*
2200 * Audio driver
2201 */
2202
2203 /*
2204 * Must be called with sc_exlock held and without sc_lock held.
2205 */
2206 int
2207 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
2208 struct lwp *l, audio_file_t **bellfile)
2209 {
2210 struct audio_info ai;
2211 struct file *fp;
2212 audio_file_t *af;
2213 audio_ring_t *hwbuf;
2214 bool fullduplex;
2215 bool cred_held;
2216 bool hw_opened;
2217 bool rmixer_started;
2218 bool inserted;
2219 int fd;
2220 int error;
2221
2222 KASSERT(sc->sc_exlock);
2223
2224 TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
2225 (audiodebug >= 3) ? "start " : "",
2226 ISDEVSOUND(dev) ? "sound" : "audio",
2227 flags, sc->sc_popens, sc->sc_ropens);
2228
2229 fp = NULL;
2230 cred_held = false;
2231 hw_opened = false;
2232 rmixer_started = false;
2233 inserted = false;
2234
2235 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
2236 af->sc = sc;
2237 af->dev = dev;
2238 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
2239 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
2240 if ((flags & FREAD) != 0 && audio_can_capture(sc))
2241 af->mode |= AUMODE_RECORD;
2242 if (af->mode == 0) {
2243 error = ENXIO;
2244 goto bad;
2245 }
2246
2247 fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
2248
2249 /*
2250 * On half duplex hardware,
2251 * 1. if mode is (PLAY | REC), let mode PLAY.
2252 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
2253 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
2254 */
2255 if (fullduplex == false) {
2256 if ((af->mode & AUMODE_PLAY)) {
2257 if (sc->sc_ropens != 0) {
2258 TRACE(1, "record track already exists");
2259 error = ENODEV;
2260 goto bad;
2261 }
2262 /* Play takes precedence */
2263 af->mode &= ~AUMODE_RECORD;
2264 }
2265 if ((af->mode & AUMODE_RECORD)) {
2266 if (sc->sc_popens != 0) {
2267 TRACE(1, "play track already exists");
2268 error = ENODEV;
2269 goto bad;
2270 }
2271 }
2272 }
2273
2274 /* Create tracks */
2275 if ((af->mode & AUMODE_PLAY))
2276 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
2277 if ((af->mode & AUMODE_RECORD))
2278 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
2279
2280 /* Set parameters */
2281 AUDIO_INITINFO(&ai);
2282 if (bellfile) {
2283 /* If audiobell, only sample_rate will be set later. */
2284 ai.play.sample_rate = audio_default.sample_rate;
2285 ai.play.encoding = AUDIO_ENCODING_SLINEAR_NE;
2286 ai.play.channels = 1;
2287 ai.play.precision = 16;
2288 ai.play.pause = 0;
2289 } else if (ISDEVAUDIO(dev)) {
2290 /* If /dev/audio, initialize everytime. */
2291 ai.play.sample_rate = audio_default.sample_rate;
2292 ai.play.encoding = audio_default.encoding;
2293 ai.play.channels = audio_default.channels;
2294 ai.play.precision = audio_default.precision;
2295 ai.play.pause = 0;
2296 ai.record.sample_rate = audio_default.sample_rate;
2297 ai.record.encoding = audio_default.encoding;
2298 ai.record.channels = audio_default.channels;
2299 ai.record.precision = audio_default.precision;
2300 ai.record.pause = 0;
2301 } else {
2302 /* If /dev/sound, take over the previous parameters. */
2303 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2304 ai.play.encoding = sc->sc_sound_pparams.encoding;
2305 ai.play.channels = sc->sc_sound_pparams.channels;
2306 ai.play.precision = sc->sc_sound_pparams.precision;
2307 ai.play.pause = sc->sc_sound_ppause;
2308 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2309 ai.record.encoding = sc->sc_sound_rparams.encoding;
2310 ai.record.channels = sc->sc_sound_rparams.channels;
2311 ai.record.precision = sc->sc_sound_rparams.precision;
2312 ai.record.pause = sc->sc_sound_rpause;
2313 }
2314 error = audio_file_setinfo(sc, af, &ai);
2315 if (error)
2316 goto bad;
2317
2318 if (sc->sc_popens + sc->sc_ropens == 0) {
2319 /* First open */
2320
2321 sc->sc_cred = kauth_cred_get();
2322 kauth_cred_hold(sc->sc_cred);
2323 cred_held = true;
2324
2325 if (sc->hw_if->open) {
2326 int hwflags;
2327
2328 /*
2329 * Call hw_if->open() only at first open of
2330 * combination of playback and recording.
2331 * On full duplex hardware, the flags passed to
2332 * hw_if->open() is always (FREAD | FWRITE)
2333 * regardless of this open()'s flags.
2334 * see also dev/isa/aria.c
2335 * On half duplex hardware, the flags passed to
2336 * hw_if->open() is either FREAD or FWRITE.
2337 * see also arch/evbarm/mini2440/audio_mini2440.c
2338 */
2339 if (fullduplex) {
2340 hwflags = FREAD | FWRITE;
2341 } else {
2342 /* Construct hwflags from af->mode. */
2343 hwflags = 0;
2344 if ((af->mode & AUMODE_PLAY) != 0)
2345 hwflags |= FWRITE;
2346 if ((af->mode & AUMODE_RECORD) != 0)
2347 hwflags |= FREAD;
2348 }
2349
2350 mutex_enter(sc->sc_lock);
2351 mutex_enter(sc->sc_intr_lock);
2352 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2353 mutex_exit(sc->sc_intr_lock);
2354 mutex_exit(sc->sc_lock);
2355 if (error)
2356 goto bad;
2357 }
2358 /*
2359 * Regardless of whether we called hw_if->open (whether
2360 * hw_if->open exists) or not, we move to the Opened phase
2361 * here. Therefore from this point, we have to call
2362 * hw_if->close (if exists) whenever abort.
2363 * Note that both of hw_if->{open,close} are optional.
2364 */
2365 hw_opened = true;
2366
2367 /*
2368 * Set speaker mode when a half duplex.
2369 * XXX I'm not sure this is correct.
2370 */
2371 if (1/*XXX*/) {
2372 if (sc->hw_if->speaker_ctl) {
2373 int on;
2374 if (af->ptrack) {
2375 on = 1;
2376 } else {
2377 on = 0;
2378 }
2379 mutex_enter(sc->sc_lock);
2380 mutex_enter(sc->sc_intr_lock);
2381 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2382 mutex_exit(sc->sc_intr_lock);
2383 mutex_exit(sc->sc_lock);
2384 if (error)
2385 goto bad;
2386 }
2387 }
2388 } else if (sc->sc_multiuser == false) {
2389 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2390 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2391 error = EPERM;
2392 goto bad;
2393 }
2394 }
2395
2396 /* Call init_output if this is the first playback open. */
2397 if (af->ptrack && sc->sc_popens == 0) {
2398 if (sc->hw_if->init_output) {
2399 hwbuf = &sc->sc_pmixer->hwbuf;
2400 mutex_enter(sc->sc_lock);
2401 mutex_enter(sc->sc_intr_lock);
2402 error = sc->hw_if->init_output(sc->hw_hdl,
2403 hwbuf->mem,
2404 hwbuf->capacity *
2405 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2406 mutex_exit(sc->sc_intr_lock);
2407 mutex_exit(sc->sc_lock);
2408 if (error)
2409 goto bad;
2410 }
2411 }
2412 /*
2413 * Call init_input and start rmixer, if this is the first recording
2414 * open. See pause consideration notes.
2415 */
2416 if (af->rtrack && sc->sc_ropens == 0) {
2417 if (sc->hw_if->init_input) {
2418 hwbuf = &sc->sc_rmixer->hwbuf;
2419 mutex_enter(sc->sc_lock);
2420 mutex_enter(sc->sc_intr_lock);
2421 error = sc->hw_if->init_input(sc->hw_hdl,
2422 hwbuf->mem,
2423 hwbuf->capacity *
2424 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2425 mutex_exit(sc->sc_intr_lock);
2426 mutex_exit(sc->sc_lock);
2427 if (error)
2428 goto bad;
2429 }
2430
2431 mutex_enter(sc->sc_lock);
2432 audio_rmixer_start(sc);
2433 mutex_exit(sc->sc_lock);
2434 rmixer_started = true;
2435 }
2436
2437 /*
2438 * This is the last sc_lock section in the function, so we have to
2439 * examine sc_dying again before starting the rest tasks. Because
2440 * audiodeatch() may have been invoked (and it would set sc_dying)
2441 * from the time audioopen() was executed until now. If it happens,
2442 * audiodetach() may already have set file->dying for all sc_files
2443 * that exist at that point, so that audioopen() must abort without
2444 * inserting af to sc_files, in order to keep consistency.
2445 */
2446 mutex_enter(sc->sc_lock);
2447 if (sc->sc_dying) {
2448 mutex_exit(sc->sc_lock);
2449 goto bad;
2450 }
2451
2452 /* Count up finally */
2453 if (af->ptrack)
2454 sc->sc_popens++;
2455 if (af->rtrack)
2456 sc->sc_ropens++;
2457 mutex_enter(sc->sc_intr_lock);
2458 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2459 mutex_exit(sc->sc_intr_lock);
2460 mutex_exit(sc->sc_lock);
2461 inserted = true;
2462
2463 if (bellfile) {
2464 *bellfile = af;
2465 } else {
2466 error = fd_allocfile(&fp, &fd);
2467 if (error)
2468 goto bad;
2469
2470 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2471 KASSERTMSG(error == EMOVEFD, "error=%d", error);
2472 }
2473
2474 /* Be nothing else after fd_clone */
2475
2476 TRACEF(3, af, "done");
2477 return error;
2478
2479 bad:
2480 if (inserted) {
2481 mutex_enter(sc->sc_lock);
2482 mutex_enter(sc->sc_intr_lock);
2483 SLIST_REMOVE(&sc->sc_files, af, audio_file, entry);
2484 mutex_exit(sc->sc_intr_lock);
2485 if (af->ptrack)
2486 sc->sc_popens--;
2487 if (af->rtrack)
2488 sc->sc_ropens--;
2489 mutex_exit(sc->sc_lock);
2490 }
2491
2492 if (rmixer_started) {
2493 mutex_enter(sc->sc_lock);
2494 audio_rmixer_halt(sc);
2495 mutex_exit(sc->sc_lock);
2496 }
2497
2498 if (hw_opened) {
2499 if (sc->hw_if->close) {
2500 mutex_enter(sc->sc_lock);
2501 mutex_enter(sc->sc_intr_lock);
2502 sc->hw_if->close(sc->hw_hdl);
2503 mutex_exit(sc->sc_intr_lock);
2504 mutex_exit(sc->sc_lock);
2505 }
2506 }
2507 if (cred_held) {
2508 kauth_cred_free(sc->sc_cred);
2509 }
2510
2511 /*
2512 * Since track here is not yet linked to sc_files,
2513 * you can call track_destroy() without sc_intr_lock.
2514 */
2515 if (af->rtrack) {
2516 audio_track_destroy(af->rtrack);
2517 af->rtrack = NULL;
2518 }
2519 if (af->ptrack) {
2520 audio_track_destroy(af->ptrack);
2521 af->ptrack = NULL;
2522 }
2523
2524 kmem_free(af, sizeof(*af));
2525 return error;
2526 }
2527
2528 /*
2529 * Must be called without sc_lock nor sc_exlock held.
2530 */
2531 int
2532 audio_close(struct audio_softc *sc, audio_file_t *file)
2533 {
2534 int error;
2535
2536 /* Protect entering new fileops to this file */
2537 atomic_store_relaxed(&file->dying, true);
2538
2539 /*
2540 * Drain first.
2541 * It must be done before unlinking(acquiring exlock).
2542 */
2543 if (file->ptrack) {
2544 mutex_enter(sc->sc_lock);
2545 audio_track_drain(sc, file->ptrack);
2546 mutex_exit(sc->sc_lock);
2547 }
2548
2549 error = audio_exlock_enter(sc);
2550 if (error) {
2551 /*
2552 * If EIO, this sc is about to detach. In this case, even if
2553 * we don't do subsequent _unlink(), audiodetach() will do it.
2554 */
2555 if (error == EIO)
2556 return error;
2557
2558 /* XXX This should not happen but what should I do ? */
2559 panic("%s: can't acquire exlock: errno=%d", __func__, error);
2560 }
2561 error = audio_unlink(sc, file);
2562 audio_exlock_exit(sc);
2563
2564 return error;
2565 }
2566
2567 /*
2568 * Unlink this file, but not freeing memory here.
2569 * Must be called with sc_exlock held and without sc_lock held.
2570 */
2571 int
2572 audio_unlink(struct audio_softc *sc, audio_file_t *file)
2573 {
2574 int error;
2575
2576 mutex_enter(sc->sc_lock);
2577
2578 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2579 (audiodebug >= 3) ? "start " : "",
2580 (int)curproc->p_pid, (int)curlwp->l_lid,
2581 sc->sc_popens, sc->sc_ropens);
2582 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2583 "sc->sc_popens=%d, sc->sc_ropens=%d",
2584 sc->sc_popens, sc->sc_ropens);
2585
2586 device_active(sc->sc_dev, DVA_SYSTEM);
2587
2588 mutex_enter(sc->sc_intr_lock);
2589 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2590 mutex_exit(sc->sc_intr_lock);
2591
2592 if (file->ptrack) {
2593 TRACET(3, file->ptrack, "dropframes=%" PRIu64,
2594 file->ptrack->dropframes);
2595
2596 KASSERT(sc->sc_popens > 0);
2597 sc->sc_popens--;
2598
2599 /* Call hw halt_output if this is the last playback track. */
2600 if (sc->sc_popens == 0 && sc->sc_pbusy) {
2601 error = audio_pmixer_halt(sc);
2602 if (error) {
2603 audio_printf(sc,
2604 "halt_output failed: errno=%d (ignored)\n",
2605 error);
2606 }
2607 }
2608
2609 /* Restore mixing volume if all tracks are gone. */
2610 if (sc->sc_popens == 0) {
2611 /* intr_lock is not necessary, but just manners. */
2612 mutex_enter(sc->sc_intr_lock);
2613 sc->sc_pmixer->volume = 256;
2614 sc->sc_pmixer->voltimer = 0;
2615 mutex_exit(sc->sc_intr_lock);
2616 }
2617 }
2618 if (file->rtrack) {
2619 TRACET(3, file->rtrack, "dropframes=%" PRIu64,
2620 file->rtrack->dropframes);
2621
2622 KASSERT(sc->sc_ropens > 0);
2623 sc->sc_ropens--;
2624
2625 /* Call hw halt_input if this is the last recording track. */
2626 if (sc->sc_ropens == 0 && sc->sc_rbusy) {
2627 error = audio_rmixer_halt(sc);
2628 if (error) {
2629 audio_printf(sc,
2630 "halt_input failed: errno=%d (ignored)\n",
2631 error);
2632 }
2633 }
2634
2635 }
2636
2637 /* Call hw close if this is the last track. */
2638 if (sc->sc_popens + sc->sc_ropens == 0) {
2639 if (sc->hw_if->close) {
2640 TRACE(2, "hw_if close");
2641 mutex_enter(sc->sc_intr_lock);
2642 sc->hw_if->close(sc->hw_hdl);
2643 mutex_exit(sc->sc_intr_lock);
2644 }
2645 }
2646
2647 mutex_exit(sc->sc_lock);
2648 if (sc->sc_popens + sc->sc_ropens == 0)
2649 kauth_cred_free(sc->sc_cred);
2650
2651 TRACE(3, "done");
2652
2653 return 0;
2654 }
2655
2656 /*
2657 * Must be called without sc_lock nor sc_exlock held.
2658 */
2659 int
2660 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2661 audio_file_t *file)
2662 {
2663 audio_track_t *track;
2664 audio_ring_t *usrbuf;
2665 audio_ring_t *input;
2666 int error;
2667
2668 /*
2669 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2670 * However read() system call itself can be called because it's
2671 * opened with O_RDWR. So in this case, deny this read().
2672 */
2673 track = file->rtrack;
2674 if (track == NULL) {
2675 return EBADF;
2676 }
2677
2678 /* I think it's better than EINVAL. */
2679 if (track->mmapped)
2680 return EPERM;
2681
2682 TRACET(2, track, "resid=%zd ioflag=0x%x", uio->uio_resid, ioflag);
2683
2684 #ifdef AUDIO_PM_IDLE
2685 error = audio_exlock_mutex_enter(sc);
2686 if (error)
2687 return error;
2688
2689 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2690 device_active(&sc->sc_dev, DVA_SYSTEM);
2691
2692 /* In recording, unlike playback, read() never operates rmixer. */
2693
2694 audio_exlock_mutex_exit(sc);
2695 #endif
2696
2697 usrbuf = &track->usrbuf;
2698 input = track->input;
2699 error = 0;
2700
2701 while (uio->uio_resid > 0 && error == 0) {
2702 int bytes;
2703
2704 TRACET(3, track,
2705 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2706 uio->uio_resid,
2707 input->head, input->used, input->capacity,
2708 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2709
2710 /* Wait when buffers are empty. */
2711 mutex_enter(sc->sc_lock);
2712 for (;;) {
2713 bool empty;
2714 audio_track_lock_enter(track);
2715 empty = (input->used == 0 && usrbuf->used == 0);
2716 audio_track_lock_exit(track);
2717 if (!empty)
2718 break;
2719
2720 if ((ioflag & IO_NDELAY)) {
2721 mutex_exit(sc->sc_lock);
2722 return EWOULDBLOCK;
2723 }
2724
2725 TRACET(3, track, "sleep");
2726 error = audio_track_waitio(sc, track);
2727 if (error) {
2728 mutex_exit(sc->sc_lock);
2729 return error;
2730 }
2731 }
2732 mutex_exit(sc->sc_lock);
2733
2734 audio_track_lock_enter(track);
2735 audio_track_record(track);
2736
2737 /* uiomove from usrbuf as much as possible. */
2738 bytes = uimin(usrbuf->used, uio->uio_resid);
2739 while (bytes > 0) {
2740 int head = usrbuf->head;
2741 int len = uimin(bytes, usrbuf->capacity - head);
2742 error = uiomove((uint8_t *)usrbuf->mem + head, len,
2743 uio);
2744 if (error) {
2745 audio_track_lock_exit(track);
2746 device_printf(sc->sc_dev,
2747 "%s: uiomove(%d) failed: errno=%d\n",
2748 __func__, len, error);
2749 goto abort;
2750 }
2751 auring_take(usrbuf, len);
2752 track->useriobytes += len;
2753 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2754 len,
2755 usrbuf->head, usrbuf->used, usrbuf->capacity);
2756 bytes -= len;
2757 }
2758
2759 audio_track_lock_exit(track);
2760 }
2761
2762 abort:
2763 return error;
2764 }
2765
2766
2767 /*
2768 * Clear file's playback and/or record track buffer immediately.
2769 */
2770 static void
2771 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2772 {
2773
2774 if (file->ptrack)
2775 audio_track_clear(sc, file->ptrack);
2776 if (file->rtrack)
2777 audio_track_clear(sc, file->rtrack);
2778 }
2779
2780 /*
2781 * Must be called without sc_lock nor sc_exlock held.
2782 */
2783 int
2784 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2785 audio_file_t *file)
2786 {
2787 audio_track_t *track;
2788 audio_ring_t *usrbuf;
2789 audio_ring_t *outbuf;
2790 int error;
2791
2792 track = file->ptrack;
2793 KASSERT(track);
2794
2795 /* I think it's better than EINVAL. */
2796 if (track->mmapped)
2797 return EPERM;
2798
2799 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2800 audiodebug >= 3 ? "begin " : "",
2801 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2802
2803 if (uio->uio_resid == 0) {
2804 track->eofcounter++;
2805 return 0;
2806 }
2807
2808 error = audio_exlock_mutex_enter(sc);
2809 if (error)
2810 return error;
2811
2812 #ifdef AUDIO_PM_IDLE
2813 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2814 device_active(&sc->sc_dev, DVA_SYSTEM);
2815 #endif
2816
2817 /*
2818 * The first write starts pmixer.
2819 */
2820 if (sc->sc_pbusy == false)
2821 audio_pmixer_start(sc, false);
2822 audio_exlock_mutex_exit(sc);
2823
2824 usrbuf = &track->usrbuf;
2825 outbuf = &track->outbuf;
2826 track->pstate = AUDIO_STATE_RUNNING;
2827 error = 0;
2828
2829 while (uio->uio_resid > 0 && error == 0) {
2830 int bytes;
2831
2832 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2833 uio->uio_resid,
2834 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2835
2836 /* Wait when buffers are full. */
2837 mutex_enter(sc->sc_lock);
2838 for (;;) {
2839 bool full;
2840 audio_track_lock_enter(track);
2841 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2842 outbuf->used >= outbuf->capacity);
2843 audio_track_lock_exit(track);
2844 if (!full)
2845 break;
2846
2847 if ((ioflag & IO_NDELAY)) {
2848 error = EWOULDBLOCK;
2849 mutex_exit(sc->sc_lock);
2850 goto abort;
2851 }
2852
2853 TRACET(3, track, "sleep usrbuf=%d/H%d",
2854 usrbuf->used, track->usrbuf_usedhigh);
2855 error = audio_track_waitio(sc, track);
2856 if (error) {
2857 mutex_exit(sc->sc_lock);
2858 goto abort;
2859 }
2860 }
2861 mutex_exit(sc->sc_lock);
2862
2863 audio_track_lock_enter(track);
2864
2865 /* uiomove to usrbuf as much as possible. */
2866 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2867 uio->uio_resid);
2868 while (bytes > 0) {
2869 int tail = auring_tail(usrbuf);
2870 int len = uimin(bytes, usrbuf->capacity - tail);
2871 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2872 uio);
2873 if (error) {
2874 audio_track_lock_exit(track);
2875 device_printf(sc->sc_dev,
2876 "%s: uiomove(%d) failed: errno=%d\n",
2877 __func__, len, error);
2878 goto abort;
2879 }
2880 auring_push(usrbuf, len);
2881 track->useriobytes += len;
2882 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2883 len,
2884 usrbuf->head, usrbuf->used, usrbuf->capacity);
2885 bytes -= len;
2886 }
2887
2888 /* Convert them as much as possible. */
2889 while (usrbuf->used >= track->usrbuf_blksize &&
2890 outbuf->used < outbuf->capacity) {
2891 audio_track_play(track);
2892 }
2893
2894 audio_track_lock_exit(track);
2895 }
2896
2897 abort:
2898 TRACET(3, track, "done error=%d", error);
2899 return error;
2900 }
2901
2902 /*
2903 * Must be called without sc_lock nor sc_exlock held.
2904 */
2905 int
2906 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2907 struct lwp *l, audio_file_t *file)
2908 {
2909 struct audio_offset *ao;
2910 struct audio_info ai;
2911 audio_track_t *track;
2912 audio_encoding_t *ae;
2913 audio_format_query_t *query;
2914 u_int stamp;
2915 u_int offs;
2916 int fd;
2917 int index;
2918 int error;
2919
2920 #if defined(AUDIO_DEBUG)
2921 const char *ioctlnames[] = {
2922 " AUDIO_GETINFO", /* 21 */
2923 " AUDIO_SETINFO", /* 22 */
2924 " AUDIO_DRAIN", /* 23 */
2925 " AUDIO_FLUSH", /* 24 */
2926 " AUDIO_WSEEK", /* 25 */
2927 " AUDIO_RERROR", /* 26 */
2928 " AUDIO_GETDEV", /* 27 */
2929 " AUDIO_GETENC", /* 28 */
2930 " AUDIO_GETFD", /* 29 */
2931 " AUDIO_SETFD", /* 30 */
2932 " AUDIO_PERROR", /* 31 */
2933 " AUDIO_GETIOFFS", /* 32 */
2934 " AUDIO_GETOOFFS", /* 33 */
2935 " AUDIO_GETPROPS", /* 34 */
2936 " AUDIO_GETBUFINFO", /* 35 */
2937 " AUDIO_SETCHAN", /* 36 */
2938 " AUDIO_GETCHAN", /* 37 */
2939 " AUDIO_QUERYFORMAT", /* 38 */
2940 " AUDIO_GETFORMAT", /* 39 */
2941 " AUDIO_SETFORMAT", /* 40 */
2942 };
2943 int nameidx = (cmd & 0xff);
2944 const char *ioctlname = "";
2945 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2946 ioctlname = ioctlnames[nameidx - 21];
2947 TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2948 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2949 (int)curproc->p_pid, (int)l->l_lid);
2950 #endif
2951
2952 error = 0;
2953 switch (cmd) {
2954 case FIONBIO:
2955 /* All handled in the upper FS layer. */
2956 break;
2957
2958 case FIONREAD:
2959 /* Get the number of bytes that can be read. */
2960 if (file->rtrack) {
2961 *(int *)addr = audio_track_readablebytes(file->rtrack);
2962 } else {
2963 *(int *)addr = 0;
2964 }
2965 break;
2966
2967 case FIOASYNC:
2968 /* Set/Clear ASYNC I/O. */
2969 if (*(int *)addr) {
2970 file->async_audio = curproc->p_pid;
2971 TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2972 } else {
2973 file->async_audio = 0;
2974 TRACEF(2, file, "FIOASYNC off");
2975 }
2976 break;
2977
2978 case AUDIO_FLUSH:
2979 /* XXX TODO: clear errors and restart? */
2980 audio_file_clear(sc, file);
2981 break;
2982
2983 case AUDIO_RERROR:
2984 /*
2985 * Number of read bytes dropped. We don't know where
2986 * or when they were dropped (including conversion stage).
2987 * Therefore, the number of accurate bytes or samples is
2988 * also unknown.
2989 */
2990 track = file->rtrack;
2991 if (track) {
2992 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2993 track->dropframes);
2994 }
2995 break;
2996
2997 case AUDIO_PERROR:
2998 /*
2999 * Number of write bytes dropped. We don't know where
3000 * or when they were dropped (including conversion stage).
3001 * Therefore, the number of accurate bytes or samples is
3002 * also unknown.
3003 */
3004 track = file->ptrack;
3005 if (track) {
3006 *(int *)addr = frametobyte(&track->usrbuf.fmt,
3007 track->dropframes);
3008 }
3009 break;
3010
3011 case AUDIO_GETIOFFS:
3012 /* XXX TODO */
3013 ao = (struct audio_offset *)addr;
3014 ao->samples = 0;
3015 ao->deltablks = 0;
3016 ao->offset = 0;
3017 break;
3018
3019 case AUDIO_GETOOFFS:
3020 ao = (struct audio_offset *)addr;
3021 track = file->ptrack;
3022 if (track == NULL) {
3023 ao->samples = 0;
3024 ao->deltablks = 0;
3025 ao->offset = 0;
3026 break;
3027 }
3028 mutex_enter(sc->sc_lock);
3029 mutex_enter(sc->sc_intr_lock);
3030 /* figure out where next DMA will start */
3031 stamp = track->usrbuf_stamp;
3032 offs = track->usrbuf.head;
3033 mutex_exit(sc->sc_intr_lock);
3034 mutex_exit(sc->sc_lock);
3035
3036 ao->samples = stamp;
3037 ao->deltablks = (stamp / track->usrbuf_blksize) -
3038 (track->usrbuf_stamp_last / track->usrbuf_blksize);
3039 track->usrbuf_stamp_last = stamp;
3040 offs = rounddown(offs, track->usrbuf_blksize)
3041 + track->usrbuf_blksize;
3042 if (offs >= track->usrbuf.capacity)
3043 offs -= track->usrbuf.capacity;
3044 ao->offset = offs;
3045
3046 TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
3047 ao->samples, ao->deltablks, ao->offset);
3048 break;
3049
3050 case AUDIO_WSEEK:
3051 /* XXX return value does not include outbuf one. */
3052 if (file->ptrack)
3053 *(u_long *)addr = file->ptrack->usrbuf.used;
3054 break;
3055
3056 case AUDIO_SETINFO:
3057 error = audio_exlock_enter(sc);
3058 if (error)
3059 break;
3060 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
3061 if (error) {
3062 audio_exlock_exit(sc);
3063 break;
3064 }
3065 /* XXX TODO: update last_ai if /dev/sound ? */
3066 if (ISDEVSOUND(dev))
3067 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
3068 audio_exlock_exit(sc);
3069 break;
3070
3071 case AUDIO_GETINFO:
3072 error = audio_exlock_enter(sc);
3073 if (error)
3074 break;
3075 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
3076 audio_exlock_exit(sc);
3077 break;
3078
3079 case AUDIO_GETBUFINFO:
3080 error = audio_exlock_enter(sc);
3081 if (error)
3082 break;
3083 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
3084 audio_exlock_exit(sc);
3085 break;
3086
3087 case AUDIO_DRAIN:
3088 if (file->ptrack) {
3089 mutex_enter(sc->sc_lock);
3090 error = audio_track_drain(sc, file->ptrack);
3091 mutex_exit(sc->sc_lock);
3092 }
3093 break;
3094
3095 case AUDIO_GETDEV:
3096 mutex_enter(sc->sc_lock);
3097 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
3098 mutex_exit(sc->sc_lock);
3099 break;
3100
3101 case AUDIO_GETENC:
3102 ae = (audio_encoding_t *)addr;
3103 index = ae->index;
3104 if (index < 0 || index >= __arraycount(audio_encodings)) {
3105 error = EINVAL;
3106 break;
3107 }
3108 *ae = audio_encodings[index];
3109 ae->index = index;
3110 /*
3111 * EMULATED always.
3112 * EMULATED flag at that time used to mean that it could
3113 * not be passed directly to the hardware as-is. But
3114 * currently, all formats including hardware native is not
3115 * passed directly to the hardware. So I set EMULATED
3116 * flag for all formats.
3117 */
3118 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
3119 break;
3120
3121 case AUDIO_GETFD:
3122 /*
3123 * Returns the current setting of full duplex mode.
3124 * If HW has full duplex mode and there are two mixers,
3125 * it is full duplex. Otherwise half duplex.
3126 */
3127 error = audio_exlock_enter(sc);
3128 if (error)
3129 break;
3130 fd = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
3131 && (sc->sc_pmixer && sc->sc_rmixer);
3132 audio_exlock_exit(sc);
3133 *(int *)addr = fd;
3134 break;
3135
3136 case AUDIO_GETPROPS:
3137 *(int *)addr = sc->sc_props;
3138 break;
3139
3140 case AUDIO_QUERYFORMAT:
3141 query = (audio_format_query_t *)addr;
3142 mutex_enter(sc->sc_lock);
3143 error = sc->hw_if->query_format(sc->hw_hdl, query);
3144 mutex_exit(sc->sc_lock);
3145 /* Hide internal information */
3146 query->fmt.driver_data = NULL;
3147 break;
3148
3149 case AUDIO_GETFORMAT:
3150 error = audio_exlock_enter(sc);
3151 if (error)
3152 break;
3153 audio_mixers_get_format(sc, (struct audio_info *)addr);
3154 audio_exlock_exit(sc);
3155 break;
3156
3157 case AUDIO_SETFORMAT:
3158 error = audio_exlock_enter(sc);
3159 audio_mixers_get_format(sc, &ai);
3160 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
3161 if (error) {
3162 /* Rollback */
3163 audio_mixers_set_format(sc, &ai);
3164 }
3165 audio_exlock_exit(sc);
3166 break;
3167
3168 case AUDIO_SETFD:
3169 case AUDIO_SETCHAN:
3170 case AUDIO_GETCHAN:
3171 /* Obsoleted */
3172 break;
3173
3174 default:
3175 if (sc->hw_if->dev_ioctl) {
3176 mutex_enter(sc->sc_lock);
3177 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
3178 cmd, addr, flag, l);
3179 mutex_exit(sc->sc_lock);
3180 } else {
3181 TRACEF(2, file, "unknown ioctl");
3182 error = EINVAL;
3183 }
3184 break;
3185 }
3186 TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
3187 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
3188 error);
3189 return error;
3190 }
3191
3192 /*
3193 * Returns the number of bytes that can be read on recording buffer.
3194 */
3195 static __inline int
3196 audio_track_readablebytes(const audio_track_t *track)
3197 {
3198 int bytes;
3199
3200 KASSERT(track);
3201 KASSERT(track->mode == AUMODE_RECORD);
3202
3203 /*
3204 * Although usrbuf is primarily readable data, recorded data
3205 * also stays in track->input until reading. So it is necessary
3206 * to add it. track->input is in frame, usrbuf is in byte.
3207 */
3208 bytes = track->usrbuf.used +
3209 track->input->used * frametobyte(&track->usrbuf.fmt, 1);
3210 return bytes;
3211 }
3212
3213 /*
3214 * Must be called without sc_lock nor sc_exlock held.
3215 */
3216 int
3217 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
3218 audio_file_t *file)
3219 {
3220 audio_track_t *track;
3221 int revents;
3222 bool in_is_valid;
3223 bool out_is_valid;
3224
3225 #if defined(AUDIO_DEBUG)
3226 #define POLLEV_BITMAP "\177\020" \
3227 "b\10WRBAND\0" \
3228 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
3229 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
3230 char evbuf[64];
3231 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
3232 TRACEF(2, file, "pid=%d.%d events=%s",
3233 (int)curproc->p_pid, (int)l->l_lid, evbuf);
3234 #endif
3235
3236 revents = 0;
3237 in_is_valid = false;
3238 out_is_valid = false;
3239 if (events & (POLLIN | POLLRDNORM)) {
3240 track = file->rtrack;
3241 if (track) {
3242 int used;
3243 in_is_valid = true;
3244 used = audio_track_readablebytes(track);
3245 if (used > 0)
3246 revents |= events & (POLLIN | POLLRDNORM);
3247 }
3248 }
3249 if (events & (POLLOUT | POLLWRNORM)) {
3250 track = file->ptrack;
3251 if (track) {
3252 out_is_valid = true;
3253 if (track->usrbuf.used <= track->usrbuf_usedlow)
3254 revents |= events & (POLLOUT | POLLWRNORM);
3255 }
3256 }
3257
3258 if (revents == 0) {
3259 mutex_enter(sc->sc_lock);
3260 if (in_is_valid) {
3261 TRACEF(3, file, "selrecord rsel");
3262 selrecord(l, &sc->sc_rsel);
3263 }
3264 if (out_is_valid) {
3265 TRACEF(3, file, "selrecord wsel");
3266 selrecord(l, &sc->sc_wsel);
3267 }
3268 mutex_exit(sc->sc_lock);
3269 }
3270
3271 #if defined(AUDIO_DEBUG)
3272 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
3273 TRACEF(2, file, "revents=%s", evbuf);
3274 #endif
3275 return revents;
3276 }
3277
3278 static const struct filterops audioread_filtops = {
3279 .f_isfd = 1,
3280 .f_attach = NULL,
3281 .f_detach = filt_audioread_detach,
3282 .f_event = filt_audioread_event,
3283 };
3284
3285 static void
3286 filt_audioread_detach(struct knote *kn)
3287 {
3288 struct audio_softc *sc;
3289 audio_file_t *file;
3290
3291 file = kn->kn_hook;
3292 sc = file->sc;
3293 TRACEF(3, file, "called");
3294
3295 mutex_enter(sc->sc_lock);
3296 selremove_knote(&sc->sc_rsel, kn);
3297 mutex_exit(sc->sc_lock);
3298 }
3299
3300 static int
3301 filt_audioread_event(struct knote *kn, long hint)
3302 {
3303 audio_file_t *file;
3304 audio_track_t *track;
3305
3306 file = kn->kn_hook;
3307 track = file->rtrack;
3308
3309 /*
3310 * kn_data must contain the number of bytes can be read.
3311 * The return value indicates whether the event occurs or not.
3312 */
3313
3314 if (track == NULL) {
3315 /* can not read with this descriptor. */
3316 kn->kn_data = 0;
3317 return 0;
3318 }
3319
3320 kn->kn_data = audio_track_readablebytes(track);
3321 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3322 return kn->kn_data > 0;
3323 }
3324
3325 static const struct filterops audiowrite_filtops = {
3326 .f_isfd = 1,
3327 .f_attach = NULL,
3328 .f_detach = filt_audiowrite_detach,
3329 .f_event = filt_audiowrite_event,
3330 };
3331
3332 static void
3333 filt_audiowrite_detach(struct knote *kn)
3334 {
3335 struct audio_softc *sc;
3336 audio_file_t *file;
3337
3338 file = kn->kn_hook;
3339 sc = file->sc;
3340 TRACEF(3, file, "called");
3341
3342 mutex_enter(sc->sc_lock);
3343 selremove_knote(&sc->sc_wsel, kn);
3344 mutex_exit(sc->sc_lock);
3345 }
3346
3347 static int
3348 filt_audiowrite_event(struct knote *kn, long hint)
3349 {
3350 audio_file_t *file;
3351 audio_track_t *track;
3352
3353 file = kn->kn_hook;
3354 track = file->ptrack;
3355
3356 /*
3357 * kn_data must contain the number of bytes can be write.
3358 * The return value indicates whether the event occurs or not.
3359 */
3360
3361 if (track == NULL) {
3362 /* can not write with this descriptor. */
3363 kn->kn_data = 0;
3364 return 0;
3365 }
3366
3367 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
3368 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3369 return (track->usrbuf.used < track->usrbuf_usedlow);
3370 }
3371
3372 /*
3373 * Must be called without sc_lock nor sc_exlock held.
3374 */
3375 int
3376 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3377 {
3378 struct selinfo *sip;
3379
3380 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3381
3382 switch (kn->kn_filter) {
3383 case EVFILT_READ:
3384 sip = &sc->sc_rsel;
3385 kn->kn_fop = &audioread_filtops;
3386 break;
3387
3388 case EVFILT_WRITE:
3389 sip = &sc->sc_wsel;
3390 kn->kn_fop = &audiowrite_filtops;
3391 break;
3392
3393 default:
3394 return EINVAL;
3395 }
3396
3397 kn->kn_hook = file;
3398
3399 mutex_enter(sc->sc_lock);
3400 selrecord_knote(sip, kn);
3401 mutex_exit(sc->sc_lock);
3402
3403 return 0;
3404 }
3405
3406 /*
3407 * Must be called without sc_lock nor sc_exlock held.
3408 */
3409 int
3410 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3411 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3412 audio_file_t *file)
3413 {
3414 audio_track_t *track;
3415 vsize_t vsize;
3416 int error;
3417
3418 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3419
3420 if (*offp < 0)
3421 return EINVAL;
3422
3423 #if 0
3424 /* XXX
3425 * The idea here was to use the protection to determine if
3426 * we are mapping the read or write buffer, but it fails.
3427 * The VM system is broken in (at least) two ways.
3428 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3429 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3430 * has to be used for mmapping the play buffer.
3431 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3432 * audio_mmap will get called at some point with VM_PROT_READ
3433 * only.
3434 * So, alas, we always map the play buffer for now.
3435 */
3436 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3437 prot == VM_PROT_WRITE)
3438 track = file->ptrack;
3439 else if (prot == VM_PROT_READ)
3440 track = file->rtrack;
3441 else
3442 return EINVAL;
3443 #else
3444 track = file->ptrack;
3445 #endif
3446 if (track == NULL)
3447 return EACCES;
3448
3449 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3450 if (len > vsize)
3451 return EOVERFLOW;
3452 if (*offp > (uint)(vsize - len))
3453 return EOVERFLOW;
3454
3455 /* XXX TODO: what happens when mmap twice. */
3456 if (!track->mmapped) {
3457 track->mmapped = true;
3458
3459 if (!track->is_pause) {
3460 error = audio_exlock_mutex_enter(sc);
3461 if (error)
3462 return error;
3463 if (sc->sc_pbusy == false)
3464 audio_pmixer_start(sc, true);
3465 audio_exlock_mutex_exit(sc);
3466 }
3467 /* XXX mmapping record buffer is not supported */
3468 }
3469
3470 /* get ringbuffer */
3471 *uobjp = track->uobj;
3472
3473 /* Acquire a reference for the mmap. munmap will release. */
3474 uao_reference(*uobjp);
3475 *maxprotp = prot;
3476 *advicep = UVM_ADV_RANDOM;
3477 *flagsp = MAP_SHARED;
3478 return 0;
3479 }
3480
3481 /*
3482 * /dev/audioctl has to be able to open at any time without interference
3483 * with any /dev/audio or /dev/sound.
3484 * Must be called with sc_exlock held and without sc_lock held.
3485 */
3486 static int
3487 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3488 struct lwp *l)
3489 {
3490 struct file *fp;
3491 audio_file_t *af;
3492 int fd;
3493 int error;
3494
3495 KASSERT(sc->sc_exlock);
3496
3497 TRACE(1, "called");
3498
3499 error = fd_allocfile(&fp, &fd);
3500 if (error)
3501 return error;
3502
3503 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
3504 af->sc = sc;
3505 af->dev = dev;
3506
3507 /* Not necessary to insert sc_files. */
3508
3509 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3510 KASSERTMSG(error == EMOVEFD, "error=%d", error);
3511
3512 return error;
3513 }
3514
3515 /*
3516 * Free 'mem' if available, and initialize the pointer.
3517 * For this reason, this is implemented as macro.
3518 */
3519 #define audio_free(mem) do { \
3520 if (mem != NULL) { \
3521 kern_free(mem); \
3522 mem = NULL; \
3523 } \
3524 } while (0)
3525
3526 /*
3527 * (Re)allocate 'memblock' with specified 'bytes'.
3528 * bytes must not be 0.
3529 * This function never returns NULL.
3530 */
3531 static void *
3532 audio_realloc(void *memblock, size_t bytes)
3533 {
3534
3535 KASSERT(bytes != 0);
3536 audio_free(memblock);
3537 return kern_malloc(bytes, M_WAITOK);
3538 }
3539
3540 /*
3541 * (Re)allocate usrbuf with 'newbufsize' bytes.
3542 * Use this function for usrbuf because only usrbuf can be mmapped.
3543 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3544 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3545 * and returns errno.
3546 * It must be called before updating usrbuf.capacity.
3547 */
3548 static int
3549 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3550 {
3551 struct audio_softc *sc;
3552 vaddr_t vstart;
3553 vsize_t oldvsize;
3554 vsize_t newvsize;
3555 int error;
3556
3557 KASSERT(newbufsize > 0);
3558 sc = track->mixer->sc;
3559
3560 /* Get a nonzero multiple of PAGE_SIZE */
3561 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3562
3563 if (track->usrbuf.mem != NULL) {
3564 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3565 PAGE_SIZE);
3566 if (oldvsize == newvsize) {
3567 track->usrbuf.capacity = newbufsize;
3568 return 0;
3569 }
3570 vstart = (vaddr_t)track->usrbuf.mem;
3571 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3572 /* uvm_unmap also detach uobj */
3573 track->uobj = NULL; /* paranoia */
3574 track->usrbuf.mem = NULL;
3575 }
3576
3577 /* Create a uvm anonymous object */
3578 track->uobj = uao_create(newvsize, 0);
3579
3580 /* Map it into the kernel virtual address space */
3581 vstart = 0;
3582 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3583 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3584 UVM_ADV_RANDOM, 0));
3585 if (error) {
3586 device_printf(sc->sc_dev, "uvm_map failed: errno=%d\n", error);
3587 uao_detach(track->uobj); /* release reference */
3588 goto abort;
3589 }
3590
3591 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3592 false, 0);
3593 if (error) {
3594 device_printf(sc->sc_dev, "uvm_map_pageable failed: errno=%d\n",
3595 error);
3596 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3597 /* uvm_unmap also detach uobj */
3598 goto abort;
3599 }
3600
3601 track->usrbuf.mem = (void *)vstart;
3602 track->usrbuf.capacity = newbufsize;
3603 memset(track->usrbuf.mem, 0, newvsize);
3604 return 0;
3605
3606 /* failure */
3607 abort:
3608 track->uobj = NULL; /* paranoia */
3609 track->usrbuf.mem = NULL;
3610 track->usrbuf.capacity = 0;
3611 return error;
3612 }
3613
3614 /*
3615 * Free usrbuf (if available).
3616 */
3617 static void
3618 audio_free_usrbuf(audio_track_t *track)
3619 {
3620 vaddr_t vstart;
3621 vsize_t vsize;
3622
3623 vstart = (vaddr_t)track->usrbuf.mem;
3624 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3625 if (track->usrbuf.mem != NULL) {
3626 /*
3627 * Unmap the kernel mapping. uvm_unmap releases the
3628 * reference to the uvm object, and this should be the
3629 * last virtual mapping of the uvm object, so no need
3630 * to explicitly release (`detach') the object.
3631 */
3632 uvm_unmap(kernel_map, vstart, vstart + vsize);
3633
3634 track->uobj = NULL;
3635 track->usrbuf.mem = NULL;
3636 track->usrbuf.capacity = 0;
3637 }
3638 }
3639
3640 /*
3641 * This filter changes the volume for each channel.
3642 * arg->context points track->ch_volume[].
3643 */
3644 static void
3645 audio_track_chvol(audio_filter_arg_t *arg)
3646 {
3647 int16_t *ch_volume;
3648 const aint_t *s;
3649 aint_t *d;
3650 u_int i;
3651 u_int ch;
3652 u_int channels;
3653
3654 DIAGNOSTIC_filter_arg(arg);
3655 KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3656 "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3657 arg->srcfmt->channels, arg->dstfmt->channels);
3658 KASSERT(arg->context != NULL);
3659 KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3660 "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3661
3662 s = arg->src;
3663 d = arg->dst;
3664 ch_volume = arg->context;
3665
3666 channels = arg->srcfmt->channels;
3667 for (i = 0; i < arg->count; i++) {
3668 for (ch = 0; ch < channels; ch++) {
3669 aint2_t val;
3670 val = *s++;
3671 val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3672 *d++ = (aint_t)val;
3673 }
3674 }
3675 }
3676
3677 /*
3678 * This filter performs conversion from stereo (or more channels) to mono.
3679 */
3680 static void
3681 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3682 {
3683 const aint_t *s;
3684 aint_t *d;
3685 u_int i;
3686
3687 DIAGNOSTIC_filter_arg(arg);
3688
3689 s = arg->src;
3690 d = arg->dst;
3691
3692 for (i = 0; i < arg->count; i++) {
3693 *d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3694 s += arg->srcfmt->channels;
3695 }
3696 }
3697
3698 /*
3699 * This filter performs conversion from mono to stereo (or more channels).
3700 */
3701 static void
3702 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3703 {
3704 const aint_t *s;
3705 aint_t *d;
3706 u_int i;
3707 u_int ch;
3708 u_int dstchannels;
3709
3710 DIAGNOSTIC_filter_arg(arg);
3711
3712 s = arg->src;
3713 d = arg->dst;
3714 dstchannels = arg->dstfmt->channels;
3715
3716 for (i = 0; i < arg->count; i++) {
3717 d[0] = s[0];
3718 d[1] = s[0];
3719 s++;
3720 d += dstchannels;
3721 }
3722 if (dstchannels > 2) {
3723 d = arg->dst;
3724 for (i = 0; i < arg->count; i++) {
3725 for (ch = 2; ch < dstchannels; ch++) {
3726 d[ch] = 0;
3727 }
3728 d += dstchannels;
3729 }
3730 }
3731 }
3732
3733 /*
3734 * This filter shrinks M channels into N channels.
3735 * Extra channels are discarded.
3736 */
3737 static void
3738 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3739 {
3740 const aint_t *s;
3741 aint_t *d;
3742 u_int i;
3743 u_int ch;
3744
3745 DIAGNOSTIC_filter_arg(arg);
3746
3747 s = arg->src;
3748 d = arg->dst;
3749
3750 for (i = 0; i < arg->count; i++) {
3751 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3752 *d++ = s[ch];
3753 }
3754 s += arg->srcfmt->channels;
3755 }
3756 }
3757
3758 /*
3759 * This filter expands M channels into N channels.
3760 * Silence is inserted for missing channels.
3761 */
3762 static void
3763 audio_track_chmix_expand(audio_filter_arg_t *arg)
3764 {
3765 const aint_t *s;
3766 aint_t *d;
3767 u_int i;
3768 u_int ch;
3769 u_int srcchannels;
3770 u_int dstchannels;
3771
3772 DIAGNOSTIC_filter_arg(arg);
3773
3774 s = arg->src;
3775 d = arg->dst;
3776
3777 srcchannels = arg->srcfmt->channels;
3778 dstchannels = arg->dstfmt->channels;
3779 for (i = 0; i < arg->count; i++) {
3780 for (ch = 0; ch < srcchannels; ch++) {
3781 *d++ = *s++;
3782 }
3783 for (; ch < dstchannels; ch++) {
3784 *d++ = 0;
3785 }
3786 }
3787 }
3788
3789 /*
3790 * This filter performs frequency conversion (up sampling).
3791 * It uses linear interpolation.
3792 */
3793 static void
3794 audio_track_freq_up(audio_filter_arg_t *arg)
3795 {
3796 audio_track_t *track;
3797 audio_ring_t *src;
3798 audio_ring_t *dst;
3799 const aint_t *s;
3800 aint_t *d;
3801 aint_t prev[AUDIO_MAX_CHANNELS];
3802 aint_t curr[AUDIO_MAX_CHANNELS];
3803 aint_t grad[AUDIO_MAX_CHANNELS];
3804 u_int i;
3805 u_int t;
3806 u_int step;
3807 u_int channels;
3808 u_int ch;
3809 int srcused;
3810
3811 track = arg->context;
3812 KASSERT(track);
3813 src = &track->freq.srcbuf;
3814 dst = track->freq.dst;
3815 DIAGNOSTIC_ring(dst);
3816 DIAGNOSTIC_ring(src);
3817 KASSERT(src->used > 0);
3818 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3819 "src->fmt.channels=%d dst->fmt.channels=%d",
3820 src->fmt.channels, dst->fmt.channels);
3821 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3822 "src->head=%d track->mixer->frames_per_block=%d",
3823 src->head, track->mixer->frames_per_block);
3824
3825 s = arg->src;
3826 d = arg->dst;
3827
3828 /*
3829 * In order to faciliate interpolation for each block, slide (delay)
3830 * input by one sample. As a result, strictly speaking, the output
3831 * phase is delayed by 1/dstfreq. However, I believe there is no
3832 * observable impact.
3833 *
3834 * Example)
3835 * srcfreq:dstfreq = 1:3
3836 *
3837 * A - -
3838 * |
3839 * |
3840 * | B - -
3841 * +-----+-----> input timeframe
3842 * 0 1
3843 *
3844 * 0 1
3845 * +-----+-----> input timeframe
3846 * | A
3847 * | x x
3848 * | x x
3849 * x (B)
3850 * +-+-+-+-+-+-> output timeframe
3851 * 0 1 2 3 4 5
3852 */
3853
3854 /* Last samples in previous block */
3855 channels = src->fmt.channels;
3856 for (ch = 0; ch < channels; ch++) {
3857 prev[ch] = track->freq_prev[ch];
3858 curr[ch] = track->freq_curr[ch];
3859 grad[ch] = curr[ch] - prev[ch];
3860 }
3861
3862 step = track->freq_step;
3863 t = track->freq_current;
3864 //#define FREQ_DEBUG
3865 #if defined(FREQ_DEBUG)
3866 #define PRINTF(fmt...) printf(fmt)
3867 #else
3868 #define PRINTF(fmt...) do { } while (0)
3869 #endif
3870 srcused = src->used;
3871 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3872 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3873 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3874 PRINTF(" t=%d\n", t);
3875
3876 for (i = 0; i < arg->count; i++) {
3877 PRINTF("i=%d t=%5d", i, t);
3878 if (t >= 65536) {
3879 for (ch = 0; ch < channels; ch++) {
3880 prev[ch] = curr[ch];
3881 curr[ch] = *s++;
3882 grad[ch] = curr[ch] - prev[ch];
3883 }
3884 PRINTF(" prev=%d s[%d]=%d",
3885 prev[0], src->used - srcused, curr[0]);
3886
3887 /* Update */
3888 t -= 65536;
3889 srcused--;
3890 if (srcused < 0) {
3891 PRINTF(" break\n");
3892 break;
3893 }
3894 }
3895
3896 for (ch = 0; ch < channels; ch++) {
3897 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3898 #if defined(FREQ_DEBUG)
3899 if (ch == 0)
3900 printf(" t=%5d *d=%d", t, d[-1]);
3901 #endif
3902 }
3903 t += step;
3904
3905 PRINTF("\n");
3906 }
3907 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3908
3909 auring_take(src, src->used);
3910 auring_push(dst, i);
3911
3912 /* Adjust */
3913 t += track->freq_leap;
3914
3915 track->freq_current = t;
3916 for (ch = 0; ch < channels; ch++) {
3917 track->freq_prev[ch] = prev[ch];
3918 track->freq_curr[ch] = curr[ch];
3919 }
3920 }
3921
3922 /*
3923 * This filter performs frequency conversion (down sampling).
3924 * It uses simple thinning.
3925 */
3926 static void
3927 audio_track_freq_down(audio_filter_arg_t *arg)
3928 {
3929 audio_track_t *track;
3930 audio_ring_t *src;
3931 audio_ring_t *dst;
3932 const aint_t *s0;
3933 aint_t *d;
3934 u_int i;
3935 u_int t;
3936 u_int step;
3937 u_int ch;
3938 u_int channels;
3939
3940 track = arg->context;
3941 KASSERT(track);
3942 src = &track->freq.srcbuf;
3943 dst = track->freq.dst;
3944
3945 DIAGNOSTIC_ring(dst);
3946 DIAGNOSTIC_ring(src);
3947 KASSERT(src->used > 0);
3948 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3949 "src->fmt.channels=%d dst->fmt.channels=%d",
3950 src->fmt.channels, dst->fmt.channels);
3951 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3952 "src->head=%d track->mixer->frames_per_block=%d",
3953 src->head, track->mixer->frames_per_block);
3954
3955 s0 = arg->src;
3956 d = arg->dst;
3957 t = track->freq_current;
3958 step = track->freq_step;
3959 channels = dst->fmt.channels;
3960 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3961 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3962 PRINTF(" t=%d\n", t);
3963
3964 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3965 const aint_t *s;
3966 PRINTF("i=%4d t=%10d", i, t);
3967 s = s0 + (t / 65536) * channels;
3968 PRINTF(" s=%5ld", (s - s0) / channels);
3969 for (ch = 0; ch < channels; ch++) {
3970 if (ch == 0) PRINTF(" *s=%d", s[ch]);
3971 *d++ = s[ch];
3972 }
3973 PRINTF("\n");
3974 t += step;
3975 }
3976 t += track->freq_leap;
3977 PRINTF("end t=%d\n", t);
3978 auring_take(src, src->used);
3979 auring_push(dst, i);
3980 track->freq_current = t % 65536;
3981 }
3982
3983 /*
3984 * Creates track and returns it.
3985 * Must be called without sc_lock held.
3986 */
3987 audio_track_t *
3988 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
3989 {
3990 audio_track_t *track;
3991 static int newid = 0;
3992
3993 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
3994
3995 track->id = newid++;
3996 track->mixer = mixer;
3997 track->mode = mixer->mode;
3998
3999 /* Do TRACE after id is assigned. */
4000 TRACET(3, track, "for %s",
4001 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
4002
4003 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
4004 track->volume = 256;
4005 #endif
4006 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
4007 track->ch_volume[i] = 256;
4008 }
4009
4010 return track;
4011 }
4012
4013 /*
4014 * Release all resources of the track and track itself.
4015 * track must not be NULL. Don't specify the track within the file
4016 * structure linked from sc->sc_files.
4017 */
4018 static void
4019 audio_track_destroy(audio_track_t *track)
4020 {
4021
4022 KASSERT(track);
4023
4024 audio_free_usrbuf(track);
4025 audio_free(track->codec.srcbuf.mem);
4026 audio_free(track->chvol.srcbuf.mem);
4027 audio_free(track->chmix.srcbuf.mem);
4028 audio_free(track->freq.srcbuf.mem);
4029 audio_free(track->outbuf.mem);
4030
4031 kmem_free(track, sizeof(*track));
4032 }
4033
4034 /*
4035 * It returns encoding conversion filter according to src and dst format.
4036 * If it is not a convertible pair, it returns NULL. Either src or dst
4037 * must be internal format.
4038 */
4039 static audio_filter_t
4040 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
4041 const audio_format2_t *dst)
4042 {
4043
4044 if (audio_format2_is_internal(src)) {
4045 if (dst->encoding == AUDIO_ENCODING_ULAW) {
4046 return audio_internal_to_mulaw;
4047 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
4048 return audio_internal_to_alaw;
4049 } else if (audio_format2_is_linear(dst)) {
4050 switch (dst->stride) {
4051 case 8:
4052 return audio_internal_to_linear8;
4053 case 16:
4054 return audio_internal_to_linear16;
4055 #if defined(AUDIO_SUPPORT_LINEAR24)
4056 case 24:
4057 return audio_internal_to_linear24;
4058 #endif
4059 case 32:
4060 return audio_internal_to_linear32;
4061 default:
4062 TRACET(1, track, "unsupported %s stride %d",
4063 "dst", dst->stride);
4064 goto abort;
4065 }
4066 }
4067 } else if (audio_format2_is_internal(dst)) {
4068 if (src->encoding == AUDIO_ENCODING_ULAW) {
4069 return audio_mulaw_to_internal;
4070 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
4071 return audio_alaw_to_internal;
4072 } else if (audio_format2_is_linear(src)) {
4073 switch (src->stride) {
4074 case 8:
4075 return audio_linear8_to_internal;
4076 case 16:
4077 return audio_linear16_to_internal;
4078 #if defined(AUDIO_SUPPORT_LINEAR24)
4079 case 24:
4080 return audio_linear24_to_internal;
4081 #endif
4082 case 32:
4083 return audio_linear32_to_internal;
4084 default:
4085 TRACET(1, track, "unsupported %s stride %d",
4086 "src", src->stride);
4087 goto abort;
4088 }
4089 }
4090 }
4091
4092 TRACET(1, track, "unsupported encoding");
4093 abort:
4094 #if defined(AUDIO_DEBUG)
4095 if (audiodebug >= 2) {
4096 char buf[100];
4097 audio_format2_tostr(buf, sizeof(buf), src);
4098 TRACET(2, track, "src %s", buf);
4099 audio_format2_tostr(buf, sizeof(buf), dst);
4100 TRACET(2, track, "dst %s", buf);
4101 }
4102 #endif
4103 return NULL;
4104 }
4105
4106 /*
4107 * Initialize the codec stage of this track as necessary.
4108 * If successful, it initializes the codec stage as necessary, stores updated
4109 * last_dst in *last_dstp in any case, and returns 0.
4110 * Otherwise, it returns errno without modifying *last_dstp.
4111 */
4112 static int
4113 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
4114 {
4115 audio_ring_t *last_dst;
4116 audio_ring_t *srcbuf;
4117 audio_format2_t *srcfmt;
4118 audio_format2_t *dstfmt;
4119 audio_filter_arg_t *arg;
4120 u_int len;
4121 int error;
4122
4123 KASSERT(track);
4124
4125 last_dst = *last_dstp;
4126 dstfmt = &last_dst->fmt;
4127 srcfmt = &track->inputfmt;
4128 srcbuf = &track->codec.srcbuf;
4129 error = 0;
4130
4131 if (srcfmt->encoding != dstfmt->encoding
4132 || srcfmt->precision != dstfmt->precision
4133 || srcfmt->stride != dstfmt->stride) {
4134 track->codec.dst = last_dst;
4135
4136 srcbuf->fmt = *dstfmt;
4137 srcbuf->fmt.encoding = srcfmt->encoding;
4138 srcbuf->fmt.precision = srcfmt->precision;
4139 srcbuf->fmt.stride = srcfmt->stride;
4140
4141 track->codec.filter = audio_track_get_codec(track,
4142 &srcbuf->fmt, dstfmt);
4143 if (track->codec.filter == NULL) {
4144 error = EINVAL;
4145 goto abort;
4146 }
4147
4148 srcbuf->head = 0;
4149 srcbuf->used = 0;
4150 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4151 len = auring_bytelen(srcbuf);
4152 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4153
4154 arg = &track->codec.arg;
4155 arg->srcfmt = &srcbuf->fmt;
4156 arg->dstfmt = dstfmt;
4157 arg->context = NULL;
4158
4159 *last_dstp = srcbuf;
4160 return 0;
4161 }
4162
4163 abort:
4164 track->codec.filter = NULL;
4165 audio_free(srcbuf->mem);
4166 return error;
4167 }
4168
4169 /*
4170 * Initialize the chvol stage of this track as necessary.
4171 * If successful, it initializes the chvol stage as necessary, stores updated
4172 * last_dst in *last_dstp in any case, and returns 0.
4173 * Otherwise, it returns errno without modifying *last_dstp.
4174 */
4175 static int
4176 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
4177 {
4178 audio_ring_t *last_dst;
4179 audio_ring_t *srcbuf;
4180 audio_format2_t *srcfmt;
4181 audio_format2_t *dstfmt;
4182 audio_filter_arg_t *arg;
4183 u_int len;
4184 int error;
4185
4186 KASSERT(track);
4187
4188 last_dst = *last_dstp;
4189 dstfmt = &last_dst->fmt;
4190 srcfmt = &track->inputfmt;
4191 srcbuf = &track->chvol.srcbuf;
4192 error = 0;
4193
4194 /* Check whether channel volume conversion is necessary. */
4195 bool use_chvol = false;
4196 for (int ch = 0; ch < srcfmt->channels; ch++) {
4197 if (track->ch_volume[ch] != 256) {
4198 use_chvol = true;
4199 break;
4200 }
4201 }
4202
4203 if (use_chvol == true) {
4204 track->chvol.dst = last_dst;
4205 track->chvol.filter = audio_track_chvol;
4206
4207 srcbuf->fmt = *dstfmt;
4208 /* no format conversion occurs */
4209
4210 srcbuf->head = 0;
4211 srcbuf->used = 0;
4212 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4213 len = auring_bytelen(srcbuf);
4214 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4215
4216 arg = &track->chvol.arg;
4217 arg->srcfmt = &srcbuf->fmt;
4218 arg->dstfmt = dstfmt;
4219 arg->context = track->ch_volume;
4220
4221 *last_dstp = srcbuf;
4222 return 0;
4223 }
4224
4225 track->chvol.filter = NULL;
4226 audio_free(srcbuf->mem);
4227 return error;
4228 }
4229
4230 /*
4231 * Initialize the chmix stage of this track as necessary.
4232 * If successful, it initializes the chmix stage as necessary, stores updated
4233 * last_dst in *last_dstp in any case, and returns 0.
4234 * Otherwise, it returns errno without modifying *last_dstp.
4235 */
4236 static int
4237 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
4238 {
4239 audio_ring_t *last_dst;
4240 audio_ring_t *srcbuf;
4241 audio_format2_t *srcfmt;
4242 audio_format2_t *dstfmt;
4243 audio_filter_arg_t *arg;
4244 u_int srcch;
4245 u_int dstch;
4246 u_int len;
4247 int error;
4248
4249 KASSERT(track);
4250
4251 last_dst = *last_dstp;
4252 dstfmt = &last_dst->fmt;
4253 srcfmt = &track->inputfmt;
4254 srcbuf = &track->chmix.srcbuf;
4255 error = 0;
4256
4257 srcch = srcfmt->channels;
4258 dstch = dstfmt->channels;
4259 if (srcch != dstch) {
4260 track->chmix.dst = last_dst;
4261
4262 if (srcch >= 2 && dstch == 1) {
4263 track->chmix.filter = audio_track_chmix_mixLR;
4264 } else if (srcch == 1 && dstch >= 2) {
4265 track->chmix.filter = audio_track_chmix_dupLR;
4266 } else if (srcch > dstch) {
4267 track->chmix.filter = audio_track_chmix_shrink;
4268 } else {
4269 track->chmix.filter = audio_track_chmix_expand;
4270 }
4271
4272 srcbuf->fmt = *dstfmt;
4273 srcbuf->fmt.channels = srcch;
4274
4275 srcbuf->head = 0;
4276 srcbuf->used = 0;
4277 /* XXX The buffer size should be able to calculate. */
4278 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4279 len = auring_bytelen(srcbuf);
4280 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4281
4282 arg = &track->chmix.arg;
4283 arg->srcfmt = &srcbuf->fmt;
4284 arg->dstfmt = dstfmt;
4285 arg->context = NULL;
4286
4287 *last_dstp = srcbuf;
4288 return 0;
4289 }
4290
4291 track->chmix.filter = NULL;
4292 audio_free(srcbuf->mem);
4293 return error;
4294 }
4295
4296 /*
4297 * Initialize the freq stage of this track as necessary.
4298 * If successful, it initializes the freq stage as necessary, stores updated
4299 * last_dst in *last_dstp in any case, and returns 0.
4300 * Otherwise, it returns errno without modifying *last_dstp.
4301 */
4302 static int
4303 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
4304 {
4305 audio_ring_t *last_dst;
4306 audio_ring_t *srcbuf;
4307 audio_format2_t *srcfmt;
4308 audio_format2_t *dstfmt;
4309 audio_filter_arg_t *arg;
4310 uint32_t srcfreq;
4311 uint32_t dstfreq;
4312 u_int dst_capacity;
4313 u_int mod;
4314 u_int len;
4315 int error;
4316
4317 KASSERT(track);
4318
4319 last_dst = *last_dstp;
4320 dstfmt = &last_dst->fmt;
4321 srcfmt = &track->inputfmt;
4322 srcbuf = &track->freq.srcbuf;
4323 error = 0;
4324
4325 srcfreq = srcfmt->sample_rate;
4326 dstfreq = dstfmt->sample_rate;
4327 if (srcfreq != dstfreq) {
4328 track->freq.dst = last_dst;
4329
4330 memset(track->freq_prev, 0, sizeof(track->freq_prev));
4331 memset(track->freq_curr, 0, sizeof(track->freq_curr));
4332
4333 /* freq_step is the ratio of src/dst when let dst 65536. */
4334 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4335
4336 dst_capacity = frame_per_block(track->mixer, dstfmt);
4337 mod = (uint64_t)srcfreq * 65536 % dstfreq;
4338 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4339
4340 if (track->freq_step < 65536) {
4341 track->freq.filter = audio_track_freq_up;
4342 /* In order to carry at the first time. */
4343 track->freq_current = 65536;
4344 } else {
4345 track->freq.filter = audio_track_freq_down;
4346 track->freq_current = 0;
4347 }
4348
4349 srcbuf->fmt = *dstfmt;
4350 srcbuf->fmt.sample_rate = srcfreq;
4351
4352 srcbuf->head = 0;
4353 srcbuf->used = 0;
4354 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4355 len = auring_bytelen(srcbuf);
4356 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4357
4358 arg = &track->freq.arg;
4359 arg->srcfmt = &srcbuf->fmt;
4360 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
4361 arg->context = track;
4362
4363 *last_dstp = srcbuf;
4364 return 0;
4365 }
4366
4367 track->freq.filter = NULL;
4368 audio_free(srcbuf->mem);
4369 return error;
4370 }
4371
4372 /*
4373 * When playing back: (e.g. if codec and freq stage are valid)
4374 *
4375 * write
4376 * | uiomove
4377 * v
4378 * usrbuf [...............] byte ring buffer (mmap-able)
4379 * | memcpy
4380 * v
4381 * codec.srcbuf[....] 1 block (ring) buffer <-- stage input
4382 * .dst ----+
4383 * | convert
4384 * v
4385 * freq.srcbuf [....] 1 block (ring) buffer
4386 * .dst ----+
4387 * | convert
4388 * v
4389 * outbuf [...............] NBLKOUT blocks ring buffer
4390 *
4391 *
4392 * When recording:
4393 *
4394 * freq.srcbuf [...............] NBLKOUT blocks ring buffer <-- stage input
4395 * .dst ----+
4396 * | convert
4397 * v
4398 * codec.srcbuf[.....] 1 block (ring) buffer
4399 * .dst ----+
4400 * | convert
4401 * v
4402 * outbuf [.....] 1 block (ring) buffer
4403 * | memcpy
4404 * v
4405 * usrbuf [...............] byte ring buffer (mmap-able *)
4406 * | uiomove
4407 * v
4408 * read
4409 *
4410 * *: usrbuf for recording is also mmap-able due to symmetry with
4411 * playback buffer, but for now mmap will never happen for recording.
4412 */
4413
4414 /*
4415 * Set the userland format of this track.
4416 * usrfmt argument should have been previously verified by
4417 * audio_track_setinfo_check().
4418 * This function may release and reallocate all internal conversion buffers.
4419 * It returns 0 if successful. Otherwise it returns errno with clearing all
4420 * internal buffers.
4421 * It must be called without sc_intr_lock since uvm_* routines require non
4422 * intr_lock state.
4423 * It must be called with track lock held since it may release and reallocate
4424 * outbuf.
4425 */
4426 static int
4427 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4428 {
4429 struct audio_softc *sc;
4430 u_int newbufsize;
4431 u_int oldblksize;
4432 u_int len;
4433 int error;
4434
4435 KASSERT(track);
4436 sc = track->mixer->sc;
4437
4438 /* usrbuf is the closest buffer to the userland. */
4439 track->usrbuf.fmt = *usrfmt;
4440
4441 /*
4442 * For references, one block size (in 40msec) is:
4443 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4444 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4445 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4446 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4447 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4448 *
4449 * For example,
4450 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4451 * newbufsize = rounddown(65536 / 7056) = 63504
4452 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4453 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4454 *
4455 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4456 * newbufsize = rounddown(65536 / 7680) = 61440
4457 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4458 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4459 */
4460 oldblksize = track->usrbuf_blksize;
4461 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4462 frame_per_block(track->mixer, &track->usrbuf.fmt));
4463 track->usrbuf.head = 0;
4464 track->usrbuf.used = 0;
4465 newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4466 newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4467 error = audio_realloc_usrbuf(track, newbufsize);
4468 if (error) {
4469 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4470 newbufsize);
4471 goto error;
4472 }
4473
4474 /* Recalc water mark. */
4475 if (track->usrbuf_blksize != oldblksize) {
4476 if (audio_track_is_playback(track)) {
4477 /* Set high at 100%, low at 75%. */
4478 track->usrbuf_usedhigh = track->usrbuf.capacity;
4479 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4480 } else {
4481 /* Set high at 100% minus 1block(?), low at 0% */
4482 track->usrbuf_usedhigh = track->usrbuf.capacity -
4483 track->usrbuf_blksize;
4484 track->usrbuf_usedlow = 0;
4485 }
4486 }
4487
4488 /* Stage buffer */
4489 audio_ring_t *last_dst = &track->outbuf;
4490 if (audio_track_is_playback(track)) {
4491 /* On playback, initialize from the mixer side in order. */
4492 track->inputfmt = *usrfmt;
4493 track->outbuf.fmt = track->mixer->track_fmt;
4494
4495 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4496 goto error;
4497 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4498 goto error;
4499 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4500 goto error;
4501 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4502 goto error;
4503 } else {
4504 /* On recording, initialize from userland side in order. */
4505 track->inputfmt = track->mixer->track_fmt;
4506 track->outbuf.fmt = *usrfmt;
4507
4508 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4509 goto error;
4510 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4511 goto error;
4512 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4513 goto error;
4514 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4515 goto error;
4516 }
4517 #if 0
4518 /* debug */
4519 if (track->freq.filter) {
4520 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4521 audio_print_format2("freq dst", &track->freq.dst->fmt);
4522 }
4523 if (track->chmix.filter) {
4524 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4525 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4526 }
4527 if (track->chvol.filter) {
4528 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4529 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4530 }
4531 if (track->codec.filter) {
4532 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4533 audio_print_format2("codec dst", &track->codec.dst->fmt);
4534 }
4535 #endif
4536
4537 /* Stage input buffer */
4538 track->input = last_dst;
4539
4540 /*
4541 * On the recording track, make the first stage a ring buffer.
4542 * XXX is there a better way?
4543 */
4544 if (audio_track_is_record(track)) {
4545 track->input->capacity = NBLKOUT *
4546 frame_per_block(track->mixer, &track->input->fmt);
4547 len = auring_bytelen(track->input);
4548 track->input->mem = audio_realloc(track->input->mem, len);
4549 }
4550
4551 /*
4552 * Output buffer.
4553 * On the playback track, its capacity is NBLKOUT blocks.
4554 * On the recording track, its capacity is 1 block.
4555 */
4556 track->outbuf.head = 0;
4557 track->outbuf.used = 0;
4558 track->outbuf.capacity = frame_per_block(track->mixer,
4559 &track->outbuf.fmt);
4560 if (audio_track_is_playback(track))
4561 track->outbuf.capacity *= NBLKOUT;
4562 len = auring_bytelen(&track->outbuf);
4563 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4564 if (track->outbuf.mem == NULL) {
4565 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4566 error = ENOMEM;
4567 goto error;
4568 }
4569
4570 #if defined(AUDIO_DEBUG)
4571 if (audiodebug >= 3) {
4572 struct audio_track_debugbuf m;
4573
4574 memset(&m, 0, sizeof(m));
4575 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4576 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4577 if (track->freq.filter)
4578 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4579 track->freq.srcbuf.capacity *
4580 frametobyte(&track->freq.srcbuf.fmt, 1));
4581 if (track->chmix.filter)
4582 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4583 track->chmix.srcbuf.capacity *
4584 frametobyte(&track->chmix.srcbuf.fmt, 1));
4585 if (track->chvol.filter)
4586 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4587 track->chvol.srcbuf.capacity *
4588 frametobyte(&track->chvol.srcbuf.fmt, 1));
4589 if (track->codec.filter)
4590 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4591 track->codec.srcbuf.capacity *
4592 frametobyte(&track->codec.srcbuf.fmt, 1));
4593 snprintf(m.usrbuf, sizeof(m.usrbuf),
4594 " usr=%d", track->usrbuf.capacity);
4595
4596 if (audio_track_is_playback(track)) {
4597 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4598 m.outbuf, m.freq, m.chmix,
4599 m.chvol, m.codec, m.usrbuf);
4600 } else {
4601 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4602 m.freq, m.chmix, m.chvol,
4603 m.codec, m.outbuf, m.usrbuf);
4604 }
4605 }
4606 #endif
4607 return 0;
4608
4609 error:
4610 audio_free_usrbuf(track);
4611 audio_free(track->codec.srcbuf.mem);
4612 audio_free(track->chvol.srcbuf.mem);
4613 audio_free(track->chmix.srcbuf.mem);
4614 audio_free(track->freq.srcbuf.mem);
4615 audio_free(track->outbuf.mem);
4616 return error;
4617 }
4618
4619 /*
4620 * Fill silence frames (as the internal format) up to 1 block
4621 * if the ring is not empty and less than 1 block.
4622 * It returns the number of appended frames.
4623 */
4624 static int
4625 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4626 {
4627 int fpb;
4628 int n;
4629
4630 KASSERT(track);
4631 KASSERT(audio_format2_is_internal(&ring->fmt));
4632
4633 /* XXX is n correct? */
4634 /* XXX memset uses frametobyte()? */
4635
4636 if (ring->used == 0)
4637 return 0;
4638
4639 fpb = frame_per_block(track->mixer, &ring->fmt);
4640 if (ring->used >= fpb)
4641 return 0;
4642
4643 n = (ring->capacity - ring->used) % fpb;
4644
4645 KASSERTMSG(auring_get_contig_free(ring) >= n,
4646 "auring_get_contig_free(ring)=%d n=%d",
4647 auring_get_contig_free(ring), n);
4648
4649 memset(auring_tailptr_aint(ring), 0,
4650 n * ring->fmt.channels * sizeof(aint_t));
4651 auring_push(ring, n);
4652 return n;
4653 }
4654
4655 /*
4656 * Execute the conversion stage.
4657 * It prepares arg from this stage and executes stage->filter.
4658 * It must be called only if stage->filter is not NULL.
4659 *
4660 * For stages other than frequency conversion, the function increments
4661 * src and dst counters here. For frequency conversion stage, on the
4662 * other hand, the function does not touch src and dst counters and
4663 * filter side has to increment them.
4664 */
4665 static void
4666 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4667 {
4668 audio_filter_arg_t *arg;
4669 int srccount;
4670 int dstcount;
4671 int count;
4672
4673 KASSERT(track);
4674 KASSERT(stage->filter);
4675
4676 srccount = auring_get_contig_used(&stage->srcbuf);
4677 dstcount = auring_get_contig_free(stage->dst);
4678
4679 if (isfreq) {
4680 KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4681 count = uimin(dstcount, track->mixer->frames_per_block);
4682 } else {
4683 count = uimin(srccount, dstcount);
4684 }
4685
4686 if (count > 0) {
4687 arg = &stage->arg;
4688 arg->src = auring_headptr(&stage->srcbuf);
4689 arg->dst = auring_tailptr(stage->dst);
4690 arg->count = count;
4691
4692 stage->filter(arg);
4693
4694 if (!isfreq) {
4695 auring_take(&stage->srcbuf, count);
4696 auring_push(stage->dst, count);
4697 }
4698 }
4699 }
4700
4701 /*
4702 * Produce output buffer for playback from user input buffer.
4703 * It must be called only if usrbuf is not empty and outbuf is
4704 * available at least one free block.
4705 */
4706 static void
4707 audio_track_play(audio_track_t *track)
4708 {
4709 audio_ring_t *usrbuf;
4710 audio_ring_t *input;
4711 int count;
4712 int framesize;
4713 int bytes;
4714
4715 KASSERT(track);
4716 KASSERT(track->lock);
4717 TRACET(4, track, "start pstate=%d", track->pstate);
4718
4719 /* At this point usrbuf must not be empty. */
4720 KASSERT(track->usrbuf.used > 0);
4721 /* Also, outbuf must be available at least one block. */
4722 count = auring_get_contig_free(&track->outbuf);
4723 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4724 "count=%d fpb=%d",
4725 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4726
4727 /* XXX TODO: is this necessary for now? */
4728 int track_count_0 = track->outbuf.used;
4729
4730 usrbuf = &track->usrbuf;
4731 input = track->input;
4732
4733 /*
4734 * framesize is always 1 byte or more since all formats supported as
4735 * usrfmt(=input) have 8bit or more stride.
4736 */
4737 framesize = frametobyte(&input->fmt, 1);
4738 KASSERT(framesize >= 1);
4739
4740 /* The next stage of usrbuf (=input) must be available. */
4741 KASSERT(auring_get_contig_free(input) > 0);
4742
4743 /*
4744 * Copy usrbuf up to 1block to input buffer.
4745 * count is the number of frames to copy from usrbuf.
4746 * bytes is the number of bytes to copy from usrbuf. However it is
4747 * not copied less than one frame.
4748 */
4749 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4750 bytes = count * framesize;
4751
4752 track->usrbuf_stamp += bytes;
4753
4754 if (usrbuf->head + bytes < usrbuf->capacity) {
4755 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4756 (uint8_t *)usrbuf->mem + usrbuf->head,
4757 bytes);
4758 auring_push(input, count);
4759 auring_take(usrbuf, bytes);
4760 } else {
4761 int bytes1;
4762 int bytes2;
4763
4764 bytes1 = auring_get_contig_used(usrbuf);
4765 KASSERTMSG(bytes1 % framesize == 0,
4766 "bytes1=%d framesize=%d", bytes1, framesize);
4767 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4768 (uint8_t *)usrbuf->mem + usrbuf->head,
4769 bytes1);
4770 auring_push(input, bytes1 / framesize);
4771 auring_take(usrbuf, bytes1);
4772
4773 bytes2 = bytes - bytes1;
4774 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4775 (uint8_t *)usrbuf->mem + usrbuf->head,
4776 bytes2);
4777 auring_push(input, bytes2 / framesize);
4778 auring_take(usrbuf, bytes2);
4779 }
4780
4781 /* Encoding conversion */
4782 if (track->codec.filter)
4783 audio_apply_stage(track, &track->codec, false);
4784
4785 /* Channel volume */
4786 if (track->chvol.filter)
4787 audio_apply_stage(track, &track->chvol, false);
4788
4789 /* Channel mix */
4790 if (track->chmix.filter)
4791 audio_apply_stage(track, &track->chmix, false);
4792
4793 /* Frequency conversion */
4794 /*
4795 * Since the frequency conversion needs correction for each block,
4796 * it rounds up to 1 block.
4797 */
4798 if (track->freq.filter) {
4799 int n;
4800 n = audio_append_silence(track, &track->freq.srcbuf);
4801 if (n > 0) {
4802 TRACET(4, track,
4803 "freq.srcbuf add silence %d -> %d/%d/%d",
4804 n,
4805 track->freq.srcbuf.head,
4806 track->freq.srcbuf.used,
4807 track->freq.srcbuf.capacity);
4808 }
4809 if (track->freq.srcbuf.used > 0) {
4810 audio_apply_stage(track, &track->freq, true);
4811 }
4812 }
4813
4814 if (bytes < track->usrbuf_blksize) {
4815 /*
4816 * Clear all conversion buffer pointer if the conversion was
4817 * not exactly one block. These conversion stage buffers are
4818 * certainly circular buffers because of symmetry with the
4819 * previous and next stage buffer. However, since they are
4820 * treated as simple contiguous buffers in operation, so head
4821 * always should point 0. This may happen during drain-age.
4822 */
4823 TRACET(4, track, "reset stage");
4824 if (track->codec.filter) {
4825 KASSERT(track->codec.srcbuf.used == 0);
4826 track->codec.srcbuf.head = 0;
4827 }
4828 if (track->chvol.filter) {
4829 KASSERT(track->chvol.srcbuf.used == 0);
4830 track->chvol.srcbuf.head = 0;
4831 }
4832 if (track->chmix.filter) {
4833 KASSERT(track->chmix.srcbuf.used == 0);
4834 track->chmix.srcbuf.head = 0;
4835 }
4836 if (track->freq.filter) {
4837 KASSERT(track->freq.srcbuf.used == 0);
4838 track->freq.srcbuf.head = 0;
4839 }
4840 }
4841
4842 if (track->input == &track->outbuf) {
4843 track->outputcounter = track->inputcounter;
4844 } else {
4845 track->outputcounter += track->outbuf.used - track_count_0;
4846 }
4847
4848 #if defined(AUDIO_DEBUG)
4849 if (audiodebug >= 3) {
4850 struct audio_track_debugbuf m;
4851 audio_track_bufstat(track, &m);
4852 TRACET(0, track, "end%s%s%s%s%s%s",
4853 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4854 }
4855 #endif
4856 }
4857
4858 /*
4859 * Produce user output buffer for recording from input buffer.
4860 */
4861 static void
4862 audio_track_record(audio_track_t *track)
4863 {
4864 audio_ring_t *outbuf;
4865 audio_ring_t *usrbuf;
4866 int count;
4867 int bytes;
4868 int framesize;
4869
4870 KASSERT(track);
4871 KASSERT(track->lock);
4872
4873 /* Number of frames to process */
4874 count = auring_get_contig_used(track->input);
4875 count = uimin(count, track->mixer->frames_per_block);
4876 if (count == 0) {
4877 TRACET(4, track, "count == 0");
4878 return;
4879 }
4880
4881 /* Frequency conversion */
4882 if (track->freq.filter) {
4883 if (track->freq.srcbuf.used > 0) {
4884 audio_apply_stage(track, &track->freq, true);
4885 /* XXX should input of freq be from beginning of buf? */
4886 }
4887 }
4888
4889 /* Channel mix */
4890 if (track->chmix.filter)
4891 audio_apply_stage(track, &track->chmix, false);
4892
4893 /* Channel volume */
4894 if (track->chvol.filter)
4895 audio_apply_stage(track, &track->chvol, false);
4896
4897 /* Encoding conversion */
4898 if (track->codec.filter)
4899 audio_apply_stage(track, &track->codec, false);
4900
4901 /* Copy outbuf to usrbuf */
4902 outbuf = &track->outbuf;
4903 usrbuf = &track->usrbuf;
4904 /*
4905 * framesize is always 1 byte or more since all formats supported
4906 * as usrfmt(=output) have 8bit or more stride.
4907 */
4908 framesize = frametobyte(&outbuf->fmt, 1);
4909 KASSERT(framesize >= 1);
4910 /*
4911 * count is the number of frames to copy to usrbuf.
4912 * bytes is the number of bytes to copy to usrbuf.
4913 */
4914 count = outbuf->used;
4915 count = uimin(count,
4916 (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4917 bytes = count * framesize;
4918 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4919 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4920 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4921 bytes);
4922 auring_push(usrbuf, bytes);
4923 auring_take(outbuf, count);
4924 } else {
4925 int bytes1;
4926 int bytes2;
4927
4928 bytes1 = auring_get_contig_free(usrbuf);
4929 KASSERTMSG(bytes1 % framesize == 0,
4930 "bytes1=%d framesize=%d", bytes1, framesize);
4931 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4932 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4933 bytes1);
4934 auring_push(usrbuf, bytes1);
4935 auring_take(outbuf, bytes1 / framesize);
4936
4937 bytes2 = bytes - bytes1;
4938 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4939 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4940 bytes2);
4941 auring_push(usrbuf, bytes2);
4942 auring_take(outbuf, bytes2 / framesize);
4943 }
4944
4945 /* XXX TODO: any counters here? */
4946
4947 #if defined(AUDIO_DEBUG)
4948 if (audiodebug >= 3) {
4949 struct audio_track_debugbuf m;
4950 audio_track_bufstat(track, &m);
4951 TRACET(0, track, "end%s%s%s%s%s%s",
4952 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4953 }
4954 #endif
4955 }
4956
4957 /*
4958 * Calculate blktime [msec] from mixer(.hwbuf.fmt).
4959 * Must be called with sc_exlock held.
4960 */
4961 static u_int
4962 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4963 {
4964 audio_format2_t *fmt;
4965 u_int blktime;
4966 u_int frames_per_block;
4967
4968 KASSERT(sc->sc_exlock);
4969
4970 fmt = &mixer->hwbuf.fmt;
4971 blktime = sc->sc_blk_ms;
4972
4973 /*
4974 * If stride is not multiples of 8, special treatment is necessary.
4975 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
4976 */
4977 if (fmt->stride == 4) {
4978 frames_per_block = fmt->sample_rate * blktime / 1000;
4979 if ((frames_per_block & 1) != 0)
4980 blktime *= 2;
4981 }
4982 #ifdef DIAGNOSTIC
4983 else if (fmt->stride % NBBY != 0) {
4984 panic("unsupported HW stride %d", fmt->stride);
4985 }
4986 #endif
4987
4988 return blktime;
4989 }
4990
4991 /*
4992 * Initialize the mixer corresponding to the mode.
4993 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
4994 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
4995 * This function returns 0 on successful. Otherwise returns errno.
4996 * Must be called with sc_exlock held and without sc_lock held.
4997 */
4998 static int
4999 audio_mixer_init(struct audio_softc *sc, int mode,
5000 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
5001 {
5002 char codecbuf[64];
5003 char blkdmsbuf[8];
5004 audio_trackmixer_t *mixer;
5005 void (*softint_handler)(void *);
5006 int len;
5007 int blksize;
5008 int capacity;
5009 size_t bufsize;
5010 int hwblks;
5011 int blkms;
5012 int blkdms;
5013 int error;
5014
5015 KASSERT(hwfmt != NULL);
5016 KASSERT(reg != NULL);
5017 KASSERT(sc->sc_exlock);
5018
5019 error = 0;
5020 if (mode == AUMODE_PLAY)
5021 mixer = sc->sc_pmixer;
5022 else
5023 mixer = sc->sc_rmixer;
5024
5025 mixer->sc = sc;
5026 mixer->mode = mode;
5027
5028 mixer->hwbuf.fmt = *hwfmt;
5029 mixer->volume = 256;
5030 mixer->blktime_d = 1000;
5031 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
5032 sc->sc_blk_ms = mixer->blktime_n;
5033 hwblks = NBLKHW;
5034
5035 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
5036 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5037 if (sc->hw_if->round_blocksize) {
5038 int rounded;
5039 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
5040 mutex_enter(sc->sc_lock);
5041 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
5042 mode, &p);
5043 mutex_exit(sc->sc_lock);
5044 TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
5045 if (rounded != blksize) {
5046 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
5047 mixer->hwbuf.fmt.channels) != 0) {
5048 audio_printf(sc,
5049 "round_blocksize returned blocksize "
5050 "indivisible by framesize: "
5051 "blksize=%d rounded=%d "
5052 "stride=%ubit channels=%u\n",
5053 blksize, rounded,
5054 mixer->hwbuf.fmt.stride,
5055 mixer->hwbuf.fmt.channels);
5056 return EINVAL;
5057 }
5058 /* Recalculation */
5059 blksize = rounded;
5060 mixer->frames_per_block = blksize * NBBY /
5061 (mixer->hwbuf.fmt.stride *
5062 mixer->hwbuf.fmt.channels);
5063 }
5064 }
5065 mixer->blktime_n = mixer->frames_per_block;
5066 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
5067
5068 capacity = mixer->frames_per_block * hwblks;
5069 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
5070 if (sc->hw_if->round_buffersize) {
5071 size_t rounded;
5072 mutex_enter(sc->sc_lock);
5073 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
5074 bufsize);
5075 mutex_exit(sc->sc_lock);
5076 TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
5077 if (rounded < bufsize) {
5078 /* buffersize needs NBLKHW blocks at least. */
5079 audio_printf(sc,
5080 "round_buffersize returned too small buffersize: "
5081 "buffersize=%zd blksize=%d\n",
5082 rounded, blksize);
5083 return EINVAL;
5084 }
5085 if (rounded % blksize != 0) {
5086 /* buffersize/blksize constraint mismatch? */
5087 audio_printf(sc,
5088 "round_buffersize returned buffersize indivisible "
5089 "by blksize: buffersize=%zu blksize=%d\n",
5090 rounded, blksize);
5091 return EINVAL;
5092 }
5093 if (rounded != bufsize) {
5094 /* Recalculation */
5095 bufsize = rounded;
5096 hwblks = bufsize / blksize;
5097 capacity = mixer->frames_per_block * hwblks;
5098 }
5099 }
5100 TRACE(1, "buffersize for %s = %zu",
5101 (mode == AUMODE_PLAY) ? "playback" : "recording",
5102 bufsize);
5103 mixer->hwbuf.capacity = capacity;
5104
5105 if (sc->hw_if->allocm) {
5106 /* sc_lock is not necessary for allocm */
5107 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
5108 if (mixer->hwbuf.mem == NULL) {
5109 audio_printf(sc, "allocm(%zu) failed\n", bufsize);
5110 return ENOMEM;
5111 }
5112 } else {
5113 mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
5114 }
5115
5116 /* From here, audio_mixer_destroy is necessary to exit. */
5117 if (mode == AUMODE_PLAY) {
5118 cv_init(&mixer->outcv, "audiowr");
5119 } else {
5120 cv_init(&mixer->outcv, "audiord");
5121 }
5122
5123 if (mode == AUMODE_PLAY) {
5124 softint_handler = audio_softintr_wr;
5125 } else {
5126 softint_handler = audio_softintr_rd;
5127 }
5128 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
5129 softint_handler, sc);
5130 if (mixer->sih == NULL) {
5131 device_printf(sc->sc_dev, "softint_establish failed\n");
5132 goto abort;
5133 }
5134
5135 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
5136 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
5137 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
5138 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
5139 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
5140
5141 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
5142 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
5143 mixer->swap_endian = true;
5144 TRACE(1, "swap_endian");
5145 }
5146
5147 if (mode == AUMODE_PLAY) {
5148 /* Mixing buffer */
5149 mixer->mixfmt = mixer->track_fmt;
5150 mixer->mixfmt.precision *= 2;
5151 mixer->mixfmt.stride *= 2;
5152 /* XXX TODO: use some macros? */
5153 len = mixer->frames_per_block * mixer->mixfmt.channels *
5154 mixer->mixfmt.stride / NBBY;
5155 mixer->mixsample = audio_realloc(mixer->mixsample, len);
5156 } else {
5157 /* No mixing buffer for recording */
5158 }
5159
5160 if (reg->codec) {
5161 mixer->codec = reg->codec;
5162 mixer->codecarg.context = reg->context;
5163 if (mode == AUMODE_PLAY) {
5164 mixer->codecarg.srcfmt = &mixer->track_fmt;
5165 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
5166 } else {
5167 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
5168 mixer->codecarg.dstfmt = &mixer->track_fmt;
5169 }
5170 mixer->codecbuf.fmt = mixer->track_fmt;
5171 mixer->codecbuf.capacity = mixer->frames_per_block;
5172 len = auring_bytelen(&mixer->codecbuf);
5173 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
5174 if (mixer->codecbuf.mem == NULL) {
5175 device_printf(sc->sc_dev,
5176 "malloc codecbuf(%d) failed\n", len);
5177 error = ENOMEM;
5178 goto abort;
5179 }
5180 }
5181
5182 /* Succeeded so display it. */
5183 codecbuf[0] = '\0';
5184 if (mixer->codec || mixer->swap_endian) {
5185 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
5186 (mode == AUMODE_PLAY) ? "->" : "<-",
5187 audio_encoding_name(mixer->hwbuf.fmt.encoding),
5188 mixer->hwbuf.fmt.precision);
5189 }
5190 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
5191 blkdms = (mixer->blktime_n * 10000 / mixer->blktime_d) % 10;
5192 blkdmsbuf[0] = '\0';
5193 if (blkdms != 0) {
5194 snprintf(blkdmsbuf, sizeof(blkdmsbuf), ".%1d", blkdms);
5195 }
5196 aprint_normal_dev(sc->sc_dev,
5197 "%s:%d%s %dch %dHz, blk %d bytes (%d%sms) for %s\n",
5198 audio_encoding_name(mixer->track_fmt.encoding),
5199 mixer->track_fmt.precision,
5200 codecbuf,
5201 mixer->track_fmt.channels,
5202 mixer->track_fmt.sample_rate,
5203 blksize,
5204 blkms, blkdmsbuf,
5205 (mode == AUMODE_PLAY) ? "playback" : "recording");
5206
5207 return 0;
5208
5209 abort:
5210 audio_mixer_destroy(sc, mixer);
5211 return error;
5212 }
5213
5214 /*
5215 * Releases all resources of 'mixer'.
5216 * Note that it does not release the memory area of 'mixer' itself.
5217 * Must be called with sc_exlock held and without sc_lock held.
5218 */
5219 static void
5220 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
5221 {
5222 int bufsize;
5223
5224 KASSERT(sc->sc_exlock == 1);
5225
5226 bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
5227
5228 if (mixer->hwbuf.mem != NULL) {
5229 if (sc->hw_if->freem) {
5230 /* sc_lock is not necessary for freem */
5231 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
5232 } else {
5233 kmem_free(mixer->hwbuf.mem, bufsize);
5234 }
5235 mixer->hwbuf.mem = NULL;
5236 }
5237
5238 audio_free(mixer->codecbuf.mem);
5239 audio_free(mixer->mixsample);
5240
5241 cv_destroy(&mixer->outcv);
5242
5243 if (mixer->sih) {
5244 softint_disestablish(mixer->sih);
5245 mixer->sih = NULL;
5246 }
5247 }
5248
5249 /*
5250 * Starts playback mixer.
5251 * Must be called only if sc_pbusy is false.
5252 * Must be called with sc_lock && sc_exlock held.
5253 * Must not be called from the interrupt context.
5254 */
5255 static void
5256 audio_pmixer_start(struct audio_softc *sc, bool force)
5257 {
5258 audio_trackmixer_t *mixer;
5259 int minimum;
5260
5261 KASSERT(mutex_owned(sc->sc_lock));
5262 KASSERT(sc->sc_exlock);
5263 KASSERT(sc->sc_pbusy == false);
5264
5265 mutex_enter(sc->sc_intr_lock);
5266
5267 mixer = sc->sc_pmixer;
5268 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
5269 (audiodebug >= 3) ? "begin " : "",
5270 (int)mixer->mixseq, (int)mixer->hwseq,
5271 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5272 force ? " force" : "");
5273
5274 /* Need two blocks to start normally. */
5275 minimum = (force) ? 1 : 2;
5276 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
5277 audio_pmixer_process(sc);
5278 }
5279
5280 /* Start output */
5281 audio_pmixer_output(sc);
5282 sc->sc_pbusy = true;
5283
5284 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
5285 (int)mixer->mixseq, (int)mixer->hwseq,
5286 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5287
5288 mutex_exit(sc->sc_intr_lock);
5289 }
5290
5291 /*
5292 * When playing back with MD filter:
5293 *
5294 * track track ...
5295 * v v
5296 * + mix (with aint2_t)
5297 * | master volume (with aint2_t)
5298 * v
5299 * mixsample [::::] wide-int 1 block (ring) buffer
5300 * |
5301 * | convert aint2_t -> aint_t
5302 * v
5303 * codecbuf [....] 1 block (ring) buffer
5304 * |
5305 * | convert to hw format
5306 * v
5307 * hwbuf [............] NBLKHW blocks ring buffer
5308 *
5309 * When playing back without MD filter:
5310 *
5311 * mixsample [::::] wide-int 1 block (ring) buffer
5312 * |
5313 * | convert aint2_t -> aint_t
5314 * | (with byte swap if necessary)
5315 * v
5316 * hwbuf [............] NBLKHW blocks ring buffer
5317 *
5318 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5319 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5320 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5321 */
5322
5323 /*
5324 * Performs track mixing and converts it to hwbuf.
5325 * Note that this function doesn't transfer hwbuf to hardware.
5326 * Must be called with sc_intr_lock held.
5327 */
5328 static void
5329 audio_pmixer_process(struct audio_softc *sc)
5330 {
5331 audio_trackmixer_t *mixer;
5332 audio_file_t *f;
5333 int frame_count;
5334 int sample_count;
5335 int mixed;
5336 int i;
5337 aint2_t *m;
5338 aint_t *h;
5339
5340 mixer = sc->sc_pmixer;
5341
5342 frame_count = mixer->frames_per_block;
5343 KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
5344 "auring_get_contig_free()=%d frame_count=%d",
5345 auring_get_contig_free(&mixer->hwbuf), frame_count);
5346 sample_count = frame_count * mixer->mixfmt.channels;
5347
5348 mixer->mixseq++;
5349
5350 /* Mix all tracks */
5351 mixed = 0;
5352 SLIST_FOREACH(f, &sc->sc_files, entry) {
5353 audio_track_t *track = f->ptrack;
5354
5355 if (track == NULL)
5356 continue;
5357
5358 if (track->is_pause) {
5359 TRACET(4, track, "skip; paused");
5360 continue;
5361 }
5362
5363 /* Skip if the track is used by process context. */
5364 if (audio_track_lock_tryenter(track) == false) {
5365 TRACET(4, track, "skip; in use");
5366 continue;
5367 }
5368
5369 /* Emulate mmap'ped track */
5370 if (track->mmapped) {
5371 auring_push(&track->usrbuf, track->usrbuf_blksize);
5372 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5373 track->usrbuf.head,
5374 track->usrbuf.used,
5375 track->usrbuf.capacity);
5376 }
5377
5378 if (track->outbuf.used < mixer->frames_per_block &&
5379 track->usrbuf.used > 0) {
5380 TRACET(4, track, "process");
5381 audio_track_play(track);
5382 }
5383
5384 if (track->outbuf.used > 0) {
5385 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5386 } else {
5387 TRACET(4, track, "skip; empty");
5388 }
5389
5390 audio_track_lock_exit(track);
5391 }
5392
5393 if (mixed == 0) {
5394 /* Silence */
5395 memset(mixer->mixsample, 0,
5396 frametobyte(&mixer->mixfmt, frame_count));
5397 } else {
5398 if (mixed > 1) {
5399 /* If there are multiple tracks, do auto gain control */
5400 audio_pmixer_agc(mixer, sample_count);
5401 }
5402
5403 /* Apply master volume */
5404 if (mixer->volume < 256) {
5405 m = mixer->mixsample;
5406 for (i = 0; i < sample_count; i++) {
5407 *m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
5408 m++;
5409 }
5410
5411 /*
5412 * Recover the volume gradually at the pace of
5413 * several times per second. If it's too fast, you
5414 * can recognize that the volume changes up and down
5415 * quickly and it's not so comfortable.
5416 */
5417 mixer->voltimer += mixer->blktime_n;
5418 if (mixer->voltimer * 4 >= mixer->blktime_d) {
5419 mixer->volume++;
5420 mixer->voltimer = 0;
5421 #if defined(AUDIO_DEBUG_AGC)
5422 TRACE(1, "volume recover: %d", mixer->volume);
5423 #endif
5424 }
5425 }
5426 }
5427
5428 /*
5429 * The rest is the hardware part.
5430 */
5431
5432 if (mixer->codec) {
5433 h = auring_tailptr_aint(&mixer->codecbuf);
5434 } else {
5435 h = auring_tailptr_aint(&mixer->hwbuf);
5436 }
5437
5438 m = mixer->mixsample;
5439 if (mixer->swap_endian) {
5440 for (i = 0; i < sample_count; i++) {
5441 *h++ = bswap16(*m++);
5442 }
5443 } else {
5444 for (i = 0; i < sample_count; i++) {
5445 *h++ = *m++;
5446 }
5447 }
5448
5449 /* Hardware driver's codec */
5450 if (mixer->codec) {
5451 auring_push(&mixer->codecbuf, frame_count);
5452 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5453 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5454 mixer->codecarg.count = frame_count;
5455 mixer->codec(&mixer->codecarg);
5456 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5457 }
5458
5459 auring_push(&mixer->hwbuf, frame_count);
5460
5461 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5462 (int)mixer->mixseq,
5463 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5464 (mixed == 0) ? " silent" : "");
5465 }
5466
5467 /*
5468 * Do auto gain control.
5469 * Must be called sc_intr_lock held.
5470 */
5471 static void
5472 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5473 {
5474 struct audio_softc *sc __unused;
5475 aint2_t val;
5476 aint2_t maxval;
5477 aint2_t minval;
5478 aint2_t over_plus;
5479 aint2_t over_minus;
5480 aint2_t *m;
5481 int newvol;
5482 int i;
5483
5484 sc = mixer->sc;
5485
5486 /* Overflow detection */
5487 maxval = AINT_T_MAX;
5488 minval = AINT_T_MIN;
5489 m = mixer->mixsample;
5490 for (i = 0; i < sample_count; i++) {
5491 val = *m++;
5492 if (val > maxval)
5493 maxval = val;
5494 else if (val < minval)
5495 minval = val;
5496 }
5497
5498 /* Absolute value of overflowed amount */
5499 over_plus = maxval - AINT_T_MAX;
5500 over_minus = AINT_T_MIN - minval;
5501
5502 if (over_plus > 0 || over_minus > 0) {
5503 if (over_plus > over_minus) {
5504 newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5505 } else {
5506 newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5507 }
5508
5509 /*
5510 * Change the volume only if new one is smaller.
5511 * Reset the timer even if the volume isn't changed.
5512 */
5513 if (newvol <= mixer->volume) {
5514 mixer->volume = newvol;
5515 mixer->voltimer = 0;
5516 #if defined(AUDIO_DEBUG_AGC)
5517 TRACE(1, "auto volume adjust: %d", mixer->volume);
5518 #endif
5519 }
5520 }
5521 }
5522
5523 /*
5524 * Mix one track.
5525 * 'mixed' specifies the number of tracks mixed so far.
5526 * It returns the number of tracks mixed. In other words, it returns
5527 * mixed + 1 if this track is mixed.
5528 */
5529 static int
5530 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5531 int mixed)
5532 {
5533 int count;
5534 int sample_count;
5535 int remain;
5536 int i;
5537 const aint_t *s;
5538 aint2_t *d;
5539
5540 /* XXX TODO: Is this necessary for now? */
5541 if (mixer->mixseq < track->seq)
5542 return mixed;
5543
5544 count = auring_get_contig_used(&track->outbuf);
5545 count = uimin(count, mixer->frames_per_block);
5546
5547 s = auring_headptr_aint(&track->outbuf);
5548 d = mixer->mixsample;
5549
5550 /*
5551 * Apply track volume with double-sized integer and perform
5552 * additive synthesis.
5553 *
5554 * XXX If you limit the track volume to 1.0 or less (<= 256),
5555 * it would be better to do this in the track conversion stage
5556 * rather than here. However, if you accept the volume to
5557 * be greater than 1.0 (> 256), it's better to do it here.
5558 * Because the operation here is done by double-sized integer.
5559 */
5560 sample_count = count * mixer->mixfmt.channels;
5561 if (mixed == 0) {
5562 /* If this is the first track, assignment can be used. */
5563 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5564 if (track->volume != 256) {
5565 for (i = 0; i < sample_count; i++) {
5566 aint2_t v;
5567 v = *s++;
5568 *d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5569 }
5570 } else
5571 #endif
5572 {
5573 for (i = 0; i < sample_count; i++) {
5574 *d++ = ((aint2_t)*s++);
5575 }
5576 }
5577 /* Fill silence if the first track is not filled. */
5578 for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5579 *d++ = 0;
5580 } else {
5581 /* If this is the second or later, add it. */
5582 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5583 if (track->volume != 256) {
5584 for (i = 0; i < sample_count; i++) {
5585 aint2_t v;
5586 v = *s++;
5587 *d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5588 }
5589 } else
5590 #endif
5591 {
5592 for (i = 0; i < sample_count; i++) {
5593 *d++ += ((aint2_t)*s++);
5594 }
5595 }
5596 }
5597
5598 auring_take(&track->outbuf, count);
5599 /*
5600 * The counters have to align block even if outbuf is less than
5601 * one block. XXX Is this still necessary?
5602 */
5603 remain = mixer->frames_per_block - count;
5604 if (__predict_false(remain != 0)) {
5605 auring_push(&track->outbuf, remain);
5606 auring_take(&track->outbuf, remain);
5607 }
5608
5609 /*
5610 * Update track sequence.
5611 * mixseq has previous value yet at this point.
5612 */
5613 track->seq = mixer->mixseq + 1;
5614
5615 return mixed + 1;
5616 }
5617
5618 /*
5619 * Output one block from hwbuf to HW.
5620 * Must be called with sc_intr_lock held.
5621 */
5622 static void
5623 audio_pmixer_output(struct audio_softc *sc)
5624 {
5625 audio_trackmixer_t *mixer;
5626 audio_params_t params;
5627 void *start;
5628 void *end;
5629 int blksize;
5630 int error;
5631
5632 mixer = sc->sc_pmixer;
5633 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5634 sc->sc_pbusy,
5635 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5636 KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5637 "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5638 mixer->hwbuf.used, mixer->frames_per_block);
5639
5640 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5641
5642 if (sc->hw_if->trigger_output) {
5643 /* trigger (at once) */
5644 if (!sc->sc_pbusy) {
5645 start = mixer->hwbuf.mem;
5646 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5647 params = format2_to_params(&mixer->hwbuf.fmt);
5648
5649 error = sc->hw_if->trigger_output(sc->hw_hdl,
5650 start, end, blksize, audio_pintr, sc, ¶ms);
5651 if (error) {
5652 audio_printf(sc,
5653 "trigger_output failed: errno=%d\n",
5654 error);
5655 return;
5656 }
5657 }
5658 } else {
5659 /* start (everytime) */
5660 start = auring_headptr(&mixer->hwbuf);
5661
5662 error = sc->hw_if->start_output(sc->hw_hdl,
5663 start, blksize, audio_pintr, sc);
5664 if (error) {
5665 audio_printf(sc,
5666 "start_output failed: errno=%d\n", error);
5667 return;
5668 }
5669 }
5670 }
5671
5672 /*
5673 * This is an interrupt handler for playback.
5674 * It is called with sc_intr_lock held.
5675 *
5676 * It is usually called from hardware interrupt. However, note that
5677 * for some drivers (e.g. uaudio) it is called from software interrupt.
5678 */
5679 static void
5680 audio_pintr(void *arg)
5681 {
5682 struct audio_softc *sc;
5683 audio_trackmixer_t *mixer;
5684
5685 sc = arg;
5686 KASSERT(mutex_owned(sc->sc_intr_lock));
5687
5688 if (sc->sc_dying)
5689 return;
5690 if (sc->sc_pbusy == false) {
5691 #if defined(DIAGNOSTIC)
5692 audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
5693 device_xname(sc->hw_dev));
5694 #endif
5695 return;
5696 }
5697
5698 mixer = sc->sc_pmixer;
5699 mixer->hw_complete_counter += mixer->frames_per_block;
5700 mixer->hwseq++;
5701
5702 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5703
5704 TRACE(4,
5705 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5706 mixer->hwseq, mixer->hw_complete_counter,
5707 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5708
5709 #if defined(AUDIO_HW_SINGLE_BUFFER)
5710 /*
5711 * Create a new block here and output it immediately.
5712 * It makes a latency lower but needs machine power.
5713 */
5714 audio_pmixer_process(sc);
5715 audio_pmixer_output(sc);
5716 #else
5717 /*
5718 * It is called when block N output is done.
5719 * Output immediately block N+1 created by the last interrupt.
5720 * And then create block N+2 for the next interrupt.
5721 * This method makes playback robust even on slower machines.
5722 * Instead the latency is increased by one block.
5723 */
5724
5725 /* At first, output ready block. */
5726 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5727 audio_pmixer_output(sc);
5728 }
5729
5730 bool later = false;
5731
5732 if (mixer->hwbuf.used < mixer->frames_per_block) {
5733 later = true;
5734 }
5735
5736 /* Then, process next block. */
5737 audio_pmixer_process(sc);
5738
5739 if (later) {
5740 audio_pmixer_output(sc);
5741 }
5742 #endif
5743
5744 /*
5745 * When this interrupt is the real hardware interrupt, disabling
5746 * preemption here is not necessary. But some drivers (e.g. uaudio)
5747 * emulate it by software interrupt, so kpreempt_disable is necessary.
5748 */
5749 kpreempt_disable();
5750 softint_schedule(mixer->sih);
5751 kpreempt_enable();
5752 }
5753
5754 /*
5755 * Starts record mixer.
5756 * Must be called only if sc_rbusy is false.
5757 * Must be called with sc_lock && sc_exlock held.
5758 * Must not be called from the interrupt context.
5759 */
5760 static void
5761 audio_rmixer_start(struct audio_softc *sc)
5762 {
5763
5764 KASSERT(mutex_owned(sc->sc_lock));
5765 KASSERT(sc->sc_exlock);
5766 KASSERT(sc->sc_rbusy == false);
5767
5768 mutex_enter(sc->sc_intr_lock);
5769
5770 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5771 audio_rmixer_input(sc);
5772 sc->sc_rbusy = true;
5773 TRACE(3, "end");
5774
5775 mutex_exit(sc->sc_intr_lock);
5776 }
5777
5778 /*
5779 * When recording with MD filter:
5780 *
5781 * hwbuf [............] NBLKHW blocks ring buffer
5782 * |
5783 * | convert from hw format
5784 * v
5785 * codecbuf [....] 1 block (ring) buffer
5786 * | |
5787 * v v
5788 * track track ...
5789 *
5790 * When recording without MD filter:
5791 *
5792 * hwbuf [............] NBLKHW blocks ring buffer
5793 * | |
5794 * v v
5795 * track track ...
5796 *
5797 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5798 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5799 */
5800
5801 /*
5802 * Distribute a recorded block to all recording tracks.
5803 */
5804 static void
5805 audio_rmixer_process(struct audio_softc *sc)
5806 {
5807 audio_trackmixer_t *mixer;
5808 audio_ring_t *mixersrc;
5809 audio_file_t *f;
5810 aint_t *p;
5811 int count;
5812 int bytes;
5813 int i;
5814
5815 mixer = sc->sc_rmixer;
5816
5817 /*
5818 * count is the number of frames to be retrieved this time.
5819 * count should be one block.
5820 */
5821 count = auring_get_contig_used(&mixer->hwbuf);
5822 count = uimin(count, mixer->frames_per_block);
5823 if (count <= 0) {
5824 TRACE(4, "count %d: too short", count);
5825 return;
5826 }
5827 bytes = frametobyte(&mixer->track_fmt, count);
5828
5829 /* Hardware driver's codec */
5830 if (mixer->codec) {
5831 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5832 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5833 mixer->codecarg.count = count;
5834 mixer->codec(&mixer->codecarg);
5835 auring_take(&mixer->hwbuf, mixer->codecarg.count);
5836 auring_push(&mixer->codecbuf, mixer->codecarg.count);
5837 mixersrc = &mixer->codecbuf;
5838 } else {
5839 mixersrc = &mixer->hwbuf;
5840 }
5841
5842 if (mixer->swap_endian) {
5843 /* inplace conversion */
5844 p = auring_headptr_aint(mixersrc);
5845 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5846 *p = bswap16(*p);
5847 }
5848 }
5849
5850 /* Distribute to all tracks. */
5851 SLIST_FOREACH(f, &sc->sc_files, entry) {
5852 audio_track_t *track = f->rtrack;
5853 audio_ring_t *input;
5854
5855 if (track == NULL)
5856 continue;
5857
5858 if (track->is_pause) {
5859 TRACET(4, track, "skip; paused");
5860 continue;
5861 }
5862
5863 if (audio_track_lock_tryenter(track) == false) {
5864 TRACET(4, track, "skip; in use");
5865 continue;
5866 }
5867
5868 /* If the track buffer is full, discard the oldest one? */
5869 input = track->input;
5870 if (input->capacity - input->used < mixer->frames_per_block) {
5871 int drops = mixer->frames_per_block -
5872 (input->capacity - input->used);
5873 track->dropframes += drops;
5874 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5875 drops,
5876 input->head, input->used, input->capacity);
5877 auring_take(input, drops);
5878 }
5879 KASSERTMSG(input->used % mixer->frames_per_block == 0,
5880 "input->used=%d mixer->frames_per_block=%d",
5881 input->used, mixer->frames_per_block);
5882
5883 memcpy(auring_tailptr_aint(input),
5884 auring_headptr_aint(mixersrc),
5885 bytes);
5886 auring_push(input, count);
5887
5888 /* XXX sequence counter? */
5889
5890 audio_track_lock_exit(track);
5891 }
5892
5893 auring_take(mixersrc, count);
5894 }
5895
5896 /*
5897 * Input one block from HW to hwbuf.
5898 * Must be called with sc_intr_lock held.
5899 */
5900 static void
5901 audio_rmixer_input(struct audio_softc *sc)
5902 {
5903 audio_trackmixer_t *mixer;
5904 audio_params_t params;
5905 void *start;
5906 void *end;
5907 int blksize;
5908 int error;
5909
5910 mixer = sc->sc_rmixer;
5911 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5912
5913 if (sc->hw_if->trigger_input) {
5914 /* trigger (at once) */
5915 if (!sc->sc_rbusy) {
5916 start = mixer->hwbuf.mem;
5917 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5918 params = format2_to_params(&mixer->hwbuf.fmt);
5919
5920 error = sc->hw_if->trigger_input(sc->hw_hdl,
5921 start, end, blksize, audio_rintr, sc, ¶ms);
5922 if (error) {
5923 audio_printf(sc,
5924 "trigger_input failed: errno=%d\n",
5925 error);
5926 return;
5927 }
5928 }
5929 } else {
5930 /* start (everytime) */
5931 start = auring_tailptr(&mixer->hwbuf);
5932
5933 error = sc->hw_if->start_input(sc->hw_hdl,
5934 start, blksize, audio_rintr, sc);
5935 if (error) {
5936 audio_printf(sc,
5937 "start_input failed: errno=%d\n", error);
5938 return;
5939 }
5940 }
5941 }
5942
5943 /*
5944 * This is an interrupt handler for recording.
5945 * It is called with sc_intr_lock.
5946 *
5947 * It is usually called from hardware interrupt. However, note that
5948 * for some drivers (e.g. uaudio) it is called from software interrupt.
5949 */
5950 static void
5951 audio_rintr(void *arg)
5952 {
5953 struct audio_softc *sc;
5954 audio_trackmixer_t *mixer;
5955
5956 sc = arg;
5957 KASSERT(mutex_owned(sc->sc_intr_lock));
5958
5959 if (sc->sc_dying)
5960 return;
5961 if (sc->sc_rbusy == false) {
5962 #if defined(DIAGNOSTIC)
5963 audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
5964 device_xname(sc->hw_dev));
5965 #endif
5966 return;
5967 }
5968
5969 mixer = sc->sc_rmixer;
5970 mixer->hw_complete_counter += mixer->frames_per_block;
5971 mixer->hwseq++;
5972
5973 auring_push(&mixer->hwbuf, mixer->frames_per_block);
5974
5975 TRACE(4,
5976 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5977 mixer->hwseq, mixer->hw_complete_counter,
5978 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5979
5980 /* Distrubute recorded block */
5981 audio_rmixer_process(sc);
5982
5983 /* Request next block */
5984 audio_rmixer_input(sc);
5985
5986 /*
5987 * When this interrupt is the real hardware interrupt, disabling
5988 * preemption here is not necessary. But some drivers (e.g. uaudio)
5989 * emulate it by software interrupt, so kpreempt_disable is necessary.
5990 */
5991 kpreempt_disable();
5992 softint_schedule(mixer->sih);
5993 kpreempt_enable();
5994 }
5995
5996 /*
5997 * Halts playback mixer.
5998 * This function also clears related parameters, so call this function
5999 * instead of calling halt_output directly.
6000 * Must be called only if sc_pbusy is true.
6001 * Must be called with sc_lock && sc_exlock held.
6002 */
6003 static int
6004 audio_pmixer_halt(struct audio_softc *sc)
6005 {
6006 int error;
6007
6008 TRACE(2, "called");
6009 KASSERT(mutex_owned(sc->sc_lock));
6010 KASSERT(sc->sc_exlock);
6011
6012 mutex_enter(sc->sc_intr_lock);
6013 error = sc->hw_if->halt_output(sc->hw_hdl);
6014
6015 /* Halts anyway even if some error has occurred. */
6016 sc->sc_pbusy = false;
6017 sc->sc_pmixer->hwbuf.head = 0;
6018 sc->sc_pmixer->hwbuf.used = 0;
6019 sc->sc_pmixer->mixseq = 0;
6020 sc->sc_pmixer->hwseq = 0;
6021 mutex_exit(sc->sc_intr_lock);
6022
6023 return error;
6024 }
6025
6026 /*
6027 * Halts recording mixer.
6028 * This function also clears related parameters, so call this function
6029 * instead of calling halt_input directly.
6030 * Must be called only if sc_rbusy is true.
6031 * Must be called with sc_lock && sc_exlock held.
6032 */
6033 static int
6034 audio_rmixer_halt(struct audio_softc *sc)
6035 {
6036 int error;
6037
6038 TRACE(2, "called");
6039 KASSERT(mutex_owned(sc->sc_lock));
6040 KASSERT(sc->sc_exlock);
6041
6042 mutex_enter(sc->sc_intr_lock);
6043 error = sc->hw_if->halt_input(sc->hw_hdl);
6044
6045 /* Halts anyway even if some error has occurred. */
6046 sc->sc_rbusy = false;
6047 sc->sc_rmixer->hwbuf.head = 0;
6048 sc->sc_rmixer->hwbuf.used = 0;
6049 sc->sc_rmixer->mixseq = 0;
6050 sc->sc_rmixer->hwseq = 0;
6051 mutex_exit(sc->sc_intr_lock);
6052
6053 return error;
6054 }
6055
6056 /*
6057 * Flush this track.
6058 * Halts all operations, clears all buffers, reset error counters.
6059 * XXX I'm not sure...
6060 */
6061 static void
6062 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
6063 {
6064
6065 KASSERT(track);
6066 TRACET(3, track, "clear");
6067
6068 audio_track_lock_enter(track);
6069
6070 track->usrbuf.used = 0;
6071 /* Clear all internal parameters. */
6072 if (track->codec.filter) {
6073 track->codec.srcbuf.used = 0;
6074 track->codec.srcbuf.head = 0;
6075 }
6076 if (track->chvol.filter) {
6077 track->chvol.srcbuf.used = 0;
6078 track->chvol.srcbuf.head = 0;
6079 }
6080 if (track->chmix.filter) {
6081 track->chmix.srcbuf.used = 0;
6082 track->chmix.srcbuf.head = 0;
6083 }
6084 if (track->freq.filter) {
6085 track->freq.srcbuf.used = 0;
6086 track->freq.srcbuf.head = 0;
6087 if (track->freq_step < 65536)
6088 track->freq_current = 65536;
6089 else
6090 track->freq_current = 0;
6091 memset(track->freq_prev, 0, sizeof(track->freq_prev));
6092 memset(track->freq_curr, 0, sizeof(track->freq_curr));
6093 }
6094 /* Clear buffer, then operation halts naturally. */
6095 track->outbuf.used = 0;
6096
6097 /* Clear counters. */
6098 track->dropframes = 0;
6099
6100 audio_track_lock_exit(track);
6101 }
6102
6103 /*
6104 * Drain the track.
6105 * track must be present and for playback.
6106 * If successful, it returns 0. Otherwise returns errno.
6107 * Must be called with sc_lock held.
6108 */
6109 static int
6110 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
6111 {
6112 audio_trackmixer_t *mixer;
6113 int done;
6114 int error;
6115
6116 KASSERT(track);
6117 TRACET(3, track, "start");
6118 mixer = track->mixer;
6119 KASSERT(mutex_owned(sc->sc_lock));
6120
6121 /* Ignore them if pause. */
6122 if (track->is_pause) {
6123 TRACET(3, track, "pause -> clear");
6124 track->pstate = AUDIO_STATE_CLEAR;
6125 }
6126 /* Terminate early here if there is no data in the track. */
6127 if (track->pstate == AUDIO_STATE_CLEAR) {
6128 TRACET(3, track, "no need to drain");
6129 return 0;
6130 }
6131 track->pstate = AUDIO_STATE_DRAINING;
6132
6133 for (;;) {
6134 /* I want to display it before condition evaluation. */
6135 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
6136 (int)curproc->p_pid, (int)curlwp->l_lid,
6137 (int)track->seq, (int)mixer->hwseq,
6138 track->outbuf.head, track->outbuf.used,
6139 track->outbuf.capacity);
6140
6141 /* Condition to terminate */
6142 audio_track_lock_enter(track);
6143 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
6144 track->outbuf.used == 0 &&
6145 track->seq <= mixer->hwseq);
6146 audio_track_lock_exit(track);
6147 if (done)
6148 break;
6149
6150 TRACET(3, track, "sleep");
6151 error = audio_track_waitio(sc, track);
6152 if (error)
6153 return error;
6154
6155 /* XXX call audio_track_play here ? */
6156 }
6157
6158 track->pstate = AUDIO_STATE_CLEAR;
6159 TRACET(3, track, "done trk_inp=%d trk_out=%d",
6160 (int)track->inputcounter, (int)track->outputcounter);
6161 return 0;
6162 }
6163
6164 /*
6165 * Send signal to process.
6166 * This is intended to be called only from audio_softintr_{rd,wr}.
6167 * Must be called without sc_intr_lock held.
6168 */
6169 static inline void
6170 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
6171 {
6172 proc_t *p;
6173
6174 KASSERT(pid != 0);
6175
6176 /*
6177 * psignal() must be called without spin lock held.
6178 */
6179
6180 mutex_enter(&proc_lock);
6181 p = proc_find(pid);
6182 if (p)
6183 psignal(p, signum);
6184 mutex_exit(&proc_lock);
6185 }
6186
6187 /*
6188 * This is software interrupt handler for record.
6189 * It is called from recording hardware interrupt everytime.
6190 * It does:
6191 * - Deliver SIGIO for all async processes.
6192 * - Notify to audio_read() that data has arrived.
6193 * - selnotify() for select/poll-ing processes.
6194 */
6195 /*
6196 * XXX If a process issues FIOASYNC between hardware interrupt and
6197 * software interrupt, (stray) SIGIO will be sent to the process
6198 * despite the fact that it has not receive recorded data yet.
6199 */
6200 static void
6201 audio_softintr_rd(void *cookie)
6202 {
6203 struct audio_softc *sc = cookie;
6204 audio_file_t *f;
6205 pid_t pid;
6206
6207 mutex_enter(sc->sc_lock);
6208
6209 SLIST_FOREACH(f, &sc->sc_files, entry) {
6210 audio_track_t *track = f->rtrack;
6211
6212 if (track == NULL)
6213 continue;
6214
6215 TRACET(4, track, "broadcast; inp=%d/%d/%d",
6216 track->input->head,
6217 track->input->used,
6218 track->input->capacity);
6219
6220 pid = f->async_audio;
6221 if (pid != 0) {
6222 TRACEF(4, f, "sending SIGIO %d", pid);
6223 audio_psignal(sc, pid, SIGIO);
6224 }
6225 }
6226
6227 /* Notify that data has arrived. */
6228 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
6229 cv_broadcast(&sc->sc_rmixer->outcv);
6230
6231 mutex_exit(sc->sc_lock);
6232 }
6233
6234 /*
6235 * This is software interrupt handler for playback.
6236 * It is called from playback hardware interrupt everytime.
6237 * It does:
6238 * - Deliver SIGIO for all async and writable (used < lowat) processes.
6239 * - Notify to audio_write() that outbuf block available.
6240 * - selnotify() for select/poll-ing processes if there are any writable
6241 * (used < lowat) processes. Checking each descriptor will be done by
6242 * filt_audiowrite_event().
6243 */
6244 static void
6245 audio_softintr_wr(void *cookie)
6246 {
6247 struct audio_softc *sc = cookie;
6248 audio_file_t *f;
6249 bool found;
6250 pid_t pid;
6251
6252 TRACE(4, "called");
6253 found = false;
6254
6255 mutex_enter(sc->sc_lock);
6256
6257 SLIST_FOREACH(f, &sc->sc_files, entry) {
6258 audio_track_t *track = f->ptrack;
6259
6260 if (track == NULL)
6261 continue;
6262
6263 TRACET(4, track, "broadcast; trkseq=%d out=%d/%d/%d",
6264 (int)track->seq,
6265 track->outbuf.head,
6266 track->outbuf.used,
6267 track->outbuf.capacity);
6268
6269 /*
6270 * Send a signal if the process is async mode and
6271 * used is lower than lowat.
6272 */
6273 if (track->usrbuf.used <= track->usrbuf_usedlow &&
6274 !track->is_pause) {
6275 /* For selnotify */
6276 found = true;
6277 /* For SIGIO */
6278 pid = f->async_audio;
6279 if (pid != 0) {
6280 TRACEF(4, f, "sending SIGIO %d", pid);
6281 audio_psignal(sc, pid, SIGIO);
6282 }
6283 }
6284 }
6285
6286 /*
6287 * Notify for select/poll when someone become writable.
6288 * It needs sc_lock (and not sc_intr_lock).
6289 */
6290 if (found) {
6291 TRACE(4, "selnotify");
6292 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
6293 }
6294
6295 /* Notify to audio_write() that outbuf available. */
6296 cv_broadcast(&sc->sc_pmixer->outcv);
6297
6298 mutex_exit(sc->sc_lock);
6299 }
6300
6301 /*
6302 * Check (and convert) the format *p came from userland.
6303 * If successful, it writes back the converted format to *p if necessary and
6304 * returns 0. Otherwise returns errno (*p may be changed even in this case).
6305 */
6306 static int
6307 audio_check_params(audio_format2_t *p)
6308 {
6309
6310 /*
6311 * Convert obsolete AUDIO_ENCODING_PCM encodings.
6312 *
6313 * AUDIO_ENCODING_PCM16 == AUDIO_ENCODING_LINEAR
6314 * So, it's always signed, as in SunOS.
6315 *
6316 * AUDIO_ENCODING_PCM8 == AUDIO_ENCODING_LINEAR8
6317 * So, it's always unsigned, as in SunOS.
6318 */
6319 if (p->encoding == AUDIO_ENCODING_PCM16) {
6320 p->encoding = AUDIO_ENCODING_SLINEAR;
6321 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
6322 if (p->precision == 8)
6323 p->encoding = AUDIO_ENCODING_ULINEAR;
6324 else
6325 return EINVAL;
6326 }
6327
6328 /*
6329 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
6330 * suffix.
6331 */
6332 if (p->encoding == AUDIO_ENCODING_SLINEAR)
6333 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6334 if (p->encoding == AUDIO_ENCODING_ULINEAR)
6335 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6336
6337 switch (p->encoding) {
6338 case AUDIO_ENCODING_ULAW:
6339 case AUDIO_ENCODING_ALAW:
6340 if (p->precision != 8)
6341 return EINVAL;
6342 break;
6343 case AUDIO_ENCODING_ADPCM:
6344 if (p->precision != 4 && p->precision != 8)
6345 return EINVAL;
6346 break;
6347 case AUDIO_ENCODING_SLINEAR_LE:
6348 case AUDIO_ENCODING_SLINEAR_BE:
6349 case AUDIO_ENCODING_ULINEAR_LE:
6350 case AUDIO_ENCODING_ULINEAR_BE:
6351 if (p->precision != 8 && p->precision != 16 &&
6352 p->precision != 24 && p->precision != 32)
6353 return EINVAL;
6354
6355 /* 8bit format does not have endianness. */
6356 if (p->precision == 8) {
6357 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6358 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6359 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6360 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6361 }
6362
6363 if (p->precision > p->stride)
6364 return EINVAL;
6365 break;
6366 case AUDIO_ENCODING_MPEG_L1_STREAM:
6367 case AUDIO_ENCODING_MPEG_L1_PACKETS:
6368 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6369 case AUDIO_ENCODING_MPEG_L2_STREAM:
6370 case AUDIO_ENCODING_MPEG_L2_PACKETS:
6371 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6372 case AUDIO_ENCODING_AC3:
6373 break;
6374 default:
6375 return EINVAL;
6376 }
6377
6378 /* sanity check # of channels*/
6379 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6380 return EINVAL;
6381
6382 return 0;
6383 }
6384
6385 /*
6386 * Initialize playback and record mixers.
6387 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
6388 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6389 * the filter registration information. These four must not be NULL.
6390 * If successful returns 0. Otherwise returns errno.
6391 * Must be called with sc_exlock held and without sc_lock held.
6392 * Must not be called if there are any tracks.
6393 * Caller should check that the initialization succeed by whether
6394 * sc_[pr]mixer is not NULL.
6395 */
6396 static int
6397 audio_mixers_init(struct audio_softc *sc, int mode,
6398 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6399 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6400 {
6401 int error;
6402
6403 KASSERT(phwfmt != NULL);
6404 KASSERT(rhwfmt != NULL);
6405 KASSERT(pfil != NULL);
6406 KASSERT(rfil != NULL);
6407 KASSERT(sc->sc_exlock);
6408
6409 if ((mode & AUMODE_PLAY)) {
6410 if (sc->sc_pmixer == NULL) {
6411 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
6412 KM_SLEEP);
6413 } else {
6414 /* destroy() doesn't free memory. */
6415 audio_mixer_destroy(sc, sc->sc_pmixer);
6416 memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
6417 }
6418 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6419 if (error) {
6420 /* audio_mixer_init already displayed error code */
6421 audio_printf(sc, "configuring playback mode failed\n");
6422 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6423 sc->sc_pmixer = NULL;
6424 return error;
6425 }
6426 }
6427 if ((mode & AUMODE_RECORD)) {
6428 if (sc->sc_rmixer == NULL) {
6429 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
6430 KM_SLEEP);
6431 } else {
6432 /* destroy() doesn't free memory. */
6433 audio_mixer_destroy(sc, sc->sc_rmixer);
6434 memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
6435 }
6436 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6437 if (error) {
6438 /* audio_mixer_init already displayed error code */
6439 audio_printf(sc, "configuring record mode failed\n");
6440 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6441 sc->sc_rmixer = NULL;
6442 return error;
6443 }
6444 }
6445
6446 return 0;
6447 }
6448
6449 /*
6450 * Select a frequency.
6451 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6452 * XXX Better algorithm?
6453 */
6454 static int
6455 audio_select_freq(const struct audio_format *fmt)
6456 {
6457 int freq;
6458 int high;
6459 int low;
6460 int j;
6461
6462 if (fmt->frequency_type == 0) {
6463 low = fmt->frequency[0];
6464 high = fmt->frequency[1];
6465 freq = 48000;
6466 if (low <= freq && freq <= high) {
6467 return freq;
6468 }
6469 freq = 44100;
6470 if (low <= freq && freq <= high) {
6471 return freq;
6472 }
6473 return high;
6474 } else {
6475 for (j = 0; j < fmt->frequency_type; j++) {
6476 if (fmt->frequency[j] == 48000) {
6477 return fmt->frequency[j];
6478 }
6479 }
6480 high = 0;
6481 for (j = 0; j < fmt->frequency_type; j++) {
6482 if (fmt->frequency[j] == 44100) {
6483 return fmt->frequency[j];
6484 }
6485 if (fmt->frequency[j] > high) {
6486 high = fmt->frequency[j];
6487 }
6488 }
6489 return high;
6490 }
6491 }
6492
6493 /*
6494 * Choose the most preferred hardware format.
6495 * If successful, it will store the chosen format into *cand and return 0.
6496 * Otherwise, return errno.
6497 * Must be called without sc_lock held.
6498 */
6499 static int
6500 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
6501 {
6502 audio_format_query_t query;
6503 int cand_score;
6504 int score;
6505 int i;
6506 int error;
6507
6508 /*
6509 * Score each formats and choose the highest one.
6510 *
6511 * +---- priority(0-3)
6512 * |+--- encoding/precision
6513 * ||+-- channels
6514 * score = 0x000000PEC
6515 */
6516
6517 cand_score = 0;
6518 for (i = 0; ; i++) {
6519 memset(&query, 0, sizeof(query));
6520 query.index = i;
6521
6522 mutex_enter(sc->sc_lock);
6523 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6524 mutex_exit(sc->sc_lock);
6525 if (error == EINVAL)
6526 break;
6527 if (error)
6528 return error;
6529
6530 #if defined(AUDIO_DEBUG)
6531 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6532 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6533 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6534 query.fmt.priority,
6535 audio_encoding_name(query.fmt.encoding),
6536 query.fmt.validbits,
6537 query.fmt.precision,
6538 query.fmt.channels);
6539 if (query.fmt.frequency_type == 0) {
6540 DPRINTF(1, "{%d-%d",
6541 query.fmt.frequency[0], query.fmt.frequency[1]);
6542 } else {
6543 int j;
6544 for (j = 0; j < query.fmt.frequency_type; j++) {
6545 DPRINTF(1, "%c%d",
6546 (j == 0) ? '{' : ',',
6547 query.fmt.frequency[j]);
6548 }
6549 }
6550 DPRINTF(1, "}\n");
6551 #endif
6552
6553 if ((query.fmt.mode & mode) == 0) {
6554 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6555 mode);
6556 continue;
6557 }
6558
6559 if (query.fmt.priority < 0) {
6560 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6561 continue;
6562 }
6563
6564 /* Score */
6565 score = (query.fmt.priority & 3) * 0x100;
6566 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6567 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6568 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6569 score += 0x20;
6570 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6571 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6572 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6573 score += 0x10;
6574 }
6575 score += query.fmt.channels;
6576
6577 if (score < cand_score) {
6578 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6579 score, cand_score);
6580 continue;
6581 }
6582
6583 /* Update candidate */
6584 cand_score = score;
6585 cand->encoding = query.fmt.encoding;
6586 cand->precision = query.fmt.validbits;
6587 cand->stride = query.fmt.precision;
6588 cand->channels = query.fmt.channels;
6589 cand->sample_rate = audio_select_freq(&query.fmt);
6590 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6591 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6592 cand_score, query.fmt.priority,
6593 audio_encoding_name(query.fmt.encoding),
6594 cand->precision, cand->stride,
6595 cand->channels, cand->sample_rate);
6596 }
6597
6598 if (cand_score == 0) {
6599 DPRINTF(1, "%s no fmt\n", __func__);
6600 return ENXIO;
6601 }
6602 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6603 audio_encoding_name(cand->encoding),
6604 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6605 return 0;
6606 }
6607
6608 /*
6609 * Validate fmt with query_format.
6610 * If fmt is included in the result of query_format, returns 0.
6611 * Otherwise returns EINVAL.
6612 * Must be called without sc_lock held.
6613 */
6614 static int
6615 audio_hw_validate_format(struct audio_softc *sc, int mode,
6616 const audio_format2_t *fmt)
6617 {
6618 audio_format_query_t query;
6619 struct audio_format *q;
6620 int index;
6621 int error;
6622 int j;
6623
6624 for (index = 0; ; index++) {
6625 query.index = index;
6626 mutex_enter(sc->sc_lock);
6627 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6628 mutex_exit(sc->sc_lock);
6629 if (error == EINVAL)
6630 break;
6631 if (error)
6632 return error;
6633
6634 q = &query.fmt;
6635 /*
6636 * Note that fmt is audio_format2_t (precision/stride) but
6637 * q is audio_format_t (validbits/precision).
6638 */
6639 if ((q->mode & mode) == 0) {
6640 continue;
6641 }
6642 if (fmt->encoding != q->encoding) {
6643 continue;
6644 }
6645 if (fmt->precision != q->validbits) {
6646 continue;
6647 }
6648 if (fmt->stride != q->precision) {
6649 continue;
6650 }
6651 if (fmt->channels != q->channels) {
6652 continue;
6653 }
6654 if (q->frequency_type == 0) {
6655 if (fmt->sample_rate < q->frequency[0] ||
6656 fmt->sample_rate > q->frequency[1]) {
6657 continue;
6658 }
6659 } else {
6660 for (j = 0; j < q->frequency_type; j++) {
6661 if (fmt->sample_rate == q->frequency[j])
6662 break;
6663 }
6664 if (j == query.fmt.frequency_type) {
6665 continue;
6666 }
6667 }
6668
6669 /* Matched. */
6670 return 0;
6671 }
6672
6673 return EINVAL;
6674 }
6675
6676 /*
6677 * Set track mixer's format depending on ai->mode.
6678 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6679 * with ai.play.*.
6680 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6681 * with ai.record.*.
6682 * All other fields in ai are ignored.
6683 * If successful returns 0. Otherwise returns errno.
6684 * This function does not roll back even if it fails.
6685 * Must be called with sc_exlock held and without sc_lock held.
6686 */
6687 static int
6688 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6689 {
6690 audio_format2_t phwfmt;
6691 audio_format2_t rhwfmt;
6692 audio_filter_reg_t pfil;
6693 audio_filter_reg_t rfil;
6694 int mode;
6695 int error;
6696
6697 KASSERT(sc->sc_exlock);
6698
6699 /*
6700 * Even when setting either one of playback and recording,
6701 * both must be halted.
6702 */
6703 if (sc->sc_popens + sc->sc_ropens > 0)
6704 return EBUSY;
6705
6706 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6707 return ENOTTY;
6708
6709 mode = ai->mode;
6710 if ((mode & AUMODE_PLAY)) {
6711 phwfmt.encoding = ai->play.encoding;
6712 phwfmt.precision = ai->play.precision;
6713 phwfmt.stride = ai->play.precision;
6714 phwfmt.channels = ai->play.channels;
6715 phwfmt.sample_rate = ai->play.sample_rate;
6716 }
6717 if ((mode & AUMODE_RECORD)) {
6718 rhwfmt.encoding = ai->record.encoding;
6719 rhwfmt.precision = ai->record.precision;
6720 rhwfmt.stride = ai->record.precision;
6721 rhwfmt.channels = ai->record.channels;
6722 rhwfmt.sample_rate = ai->record.sample_rate;
6723 }
6724
6725 /* On non-independent devices, use the same format for both. */
6726 if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
6727 if (mode == AUMODE_RECORD) {
6728 phwfmt = rhwfmt;
6729 } else {
6730 rhwfmt = phwfmt;
6731 }
6732 mode = AUMODE_PLAY | AUMODE_RECORD;
6733 }
6734
6735 /* Then, unset the direction not exist on the hardware. */
6736 if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
6737 mode &= ~AUMODE_PLAY;
6738 if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
6739 mode &= ~AUMODE_RECORD;
6740
6741 /* debug */
6742 if ((mode & AUMODE_PLAY)) {
6743 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6744 audio_encoding_name(phwfmt.encoding),
6745 phwfmt.precision,
6746 phwfmt.stride,
6747 phwfmt.channels,
6748 phwfmt.sample_rate);
6749 }
6750 if ((mode & AUMODE_RECORD)) {
6751 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6752 audio_encoding_name(rhwfmt.encoding),
6753 rhwfmt.precision,
6754 rhwfmt.stride,
6755 rhwfmt.channels,
6756 rhwfmt.sample_rate);
6757 }
6758
6759 /* Check the format */
6760 if ((mode & AUMODE_PLAY)) {
6761 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6762 TRACE(1, "invalid format");
6763 return EINVAL;
6764 }
6765 }
6766 if ((mode & AUMODE_RECORD)) {
6767 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6768 TRACE(1, "invalid format");
6769 return EINVAL;
6770 }
6771 }
6772
6773 /* Configure the mixers. */
6774 memset(&pfil, 0, sizeof(pfil));
6775 memset(&rfil, 0, sizeof(rfil));
6776 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6777 if (error)
6778 return error;
6779
6780 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6781 if (error)
6782 return error;
6783
6784 /*
6785 * Reinitialize the sticky parameters for /dev/sound.
6786 * If the number of the hardware channels becomes less than the number
6787 * of channels that sticky parameters remember, subsequent /dev/sound
6788 * open will fail. To prevent this, reinitialize the sticky
6789 * parameters whenever the hardware format is changed.
6790 */
6791 sc->sc_sound_pparams = params_to_format2(&audio_default);
6792 sc->sc_sound_rparams = params_to_format2(&audio_default);
6793 sc->sc_sound_ppause = false;
6794 sc->sc_sound_rpause = false;
6795
6796 return 0;
6797 }
6798
6799 /*
6800 * Store current mixers format into *ai.
6801 * Must be called with sc_exlock held.
6802 */
6803 static void
6804 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6805 {
6806
6807 KASSERT(sc->sc_exlock);
6808
6809 /*
6810 * There is no stride information in audio_info but it doesn't matter.
6811 * trackmixer always treats stride and precision as the same.
6812 */
6813 AUDIO_INITINFO(ai);
6814 ai->mode = 0;
6815 if (sc->sc_pmixer) {
6816 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6817 ai->play.encoding = fmt->encoding;
6818 ai->play.precision = fmt->precision;
6819 ai->play.channels = fmt->channels;
6820 ai->play.sample_rate = fmt->sample_rate;
6821 ai->mode |= AUMODE_PLAY;
6822 }
6823 if (sc->sc_rmixer) {
6824 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6825 ai->record.encoding = fmt->encoding;
6826 ai->record.precision = fmt->precision;
6827 ai->record.channels = fmt->channels;
6828 ai->record.sample_rate = fmt->sample_rate;
6829 ai->mode |= AUMODE_RECORD;
6830 }
6831 }
6832
6833 /*
6834 * audio_info details:
6835 *
6836 * ai.{play,record}.sample_rate (R/W)
6837 * ai.{play,record}.encoding (R/W)
6838 * ai.{play,record}.precision (R/W)
6839 * ai.{play,record}.channels (R/W)
6840 * These specify the playback or recording format.
6841 * Ignore members within an inactive track.
6842 *
6843 * ai.mode (R/W)
6844 * It specifies the playback or recording mode, AUMODE_*.
6845 * Currently, a mode change operation by ai.mode after opening is
6846 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
6847 * However, it's possible to get or to set for backward compatibility.
6848 *
6849 * ai.{hiwat,lowat} (R/W)
6850 * These specify the high water mark and low water mark for playback
6851 * track. The unit is block.
6852 *
6853 * ai.{play,record}.gain (R/W)
6854 * It specifies the HW mixer volume in 0-255.
6855 * It is historical reason that the gain is connected to HW mixer.
6856 *
6857 * ai.{play,record}.balance (R/W)
6858 * It specifies the left-right balance of HW mixer in 0-64.
6859 * 32 means the center.
6860 * It is historical reason that the balance is connected to HW mixer.
6861 *
6862 * ai.{play,record}.port (R/W)
6863 * It specifies the input/output port of HW mixer.
6864 *
6865 * ai.monitor_gain (R/W)
6866 * It specifies the recording monitor gain(?) of HW mixer.
6867 *
6868 * ai.{play,record}.pause (R/W)
6869 * Non-zero means the track is paused.
6870 *
6871 * ai.play.seek (R/-)
6872 * It indicates the number of bytes written but not processed.
6873 * ai.record.seek (R/-)
6874 * It indicates the number of bytes to be able to read.
6875 *
6876 * ai.{play,record}.avail_ports (R/-)
6877 * Mixer info.
6878 *
6879 * ai.{play,record}.buffer_size (R/-)
6880 * It indicates the buffer size in bytes. Internally it means usrbuf.
6881 *
6882 * ai.{play,record}.samples (R/-)
6883 * It indicates the total number of bytes played or recorded.
6884 *
6885 * ai.{play,record}.eof (R/-)
6886 * It indicates the number of times reached EOF(?).
6887 *
6888 * ai.{play,record}.error (R/-)
6889 * Non-zero indicates overflow/underflow has occured.
6890 *
6891 * ai.{play,record}.waiting (R/-)
6892 * Non-zero indicates that other process waits to open.
6893 * It will never happen anymore.
6894 *
6895 * ai.{play,record}.open (R/-)
6896 * Non-zero indicates the direction is opened by this process(?).
6897 * XXX Is this better to indicate that "the device is opened by
6898 * at least one process"?
6899 *
6900 * ai.{play,record}.active (R/-)
6901 * Non-zero indicates that I/O is currently active.
6902 *
6903 * ai.blocksize (R/-)
6904 * It indicates the block size in bytes.
6905 * XXX The blocksize of playback and recording may be different.
6906 */
6907
6908 /*
6909 * Pause consideration:
6910 *
6911 * Pausing/unpausing never affect [pr]mixer. This single rule makes
6912 * operation simple. Note that playback and recording are asymmetric.
6913 *
6914 * For playback,
6915 * 1. Any playback open doesn't start pmixer regardless of initial pause
6916 * state of this track.
6917 * 2. The first write access among playback tracks only starts pmixer
6918 * regardless of this track's pause state.
6919 * 3. Even a pause of the last playback track doesn't stop pmixer.
6920 * 4. The last close of all playback tracks only stops pmixer.
6921 *
6922 * For recording,
6923 * 1. The first recording open only starts rmixer regardless of initial
6924 * pause state of this track.
6925 * 2. Even a pause of the last track doesn't stop rmixer.
6926 * 3. The last close of all recording tracks only stops rmixer.
6927 */
6928
6929 /*
6930 * Set both track's parameters within a file depending on ai.
6931 * Update sc_sound_[pr]* if set.
6932 * Must be called with sc_exlock held and without sc_lock held.
6933 */
6934 static int
6935 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6936 const struct audio_info *ai)
6937 {
6938 const struct audio_prinfo *pi;
6939 const struct audio_prinfo *ri;
6940 audio_track_t *ptrack;
6941 audio_track_t *rtrack;
6942 audio_format2_t pfmt;
6943 audio_format2_t rfmt;
6944 int pchanges;
6945 int rchanges;
6946 int mode;
6947 struct audio_info saved_ai;
6948 audio_format2_t saved_pfmt;
6949 audio_format2_t saved_rfmt;
6950 int error;
6951
6952 KASSERT(sc->sc_exlock);
6953
6954 pi = &ai->play;
6955 ri = &ai->record;
6956 pchanges = 0;
6957 rchanges = 0;
6958
6959 ptrack = file->ptrack;
6960 rtrack = file->rtrack;
6961
6962 #if defined(AUDIO_DEBUG)
6963 if (audiodebug >= 2) {
6964 char buf[256];
6965 char p[64];
6966 int buflen;
6967 int plen;
6968 #define SPRINTF(var, fmt...) do { \
6969 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
6970 } while (0)
6971
6972 buflen = 0;
6973 plen = 0;
6974 if (SPECIFIED(pi->encoding))
6975 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
6976 if (SPECIFIED(pi->precision))
6977 SPRINTF(p, "/%dbit", pi->precision);
6978 if (SPECIFIED(pi->channels))
6979 SPRINTF(p, "/%dch", pi->channels);
6980 if (SPECIFIED(pi->sample_rate))
6981 SPRINTF(p, "/%dHz", pi->sample_rate);
6982 if (plen > 0)
6983 SPRINTF(buf, ",play.param=%s", p + 1);
6984
6985 plen = 0;
6986 if (SPECIFIED(ri->encoding))
6987 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
6988 if (SPECIFIED(ri->precision))
6989 SPRINTF(p, "/%dbit", ri->precision);
6990 if (SPECIFIED(ri->channels))
6991 SPRINTF(p, "/%dch", ri->channels);
6992 if (SPECIFIED(ri->sample_rate))
6993 SPRINTF(p, "/%dHz", ri->sample_rate);
6994 if (plen > 0)
6995 SPRINTF(buf, ",record.param=%s", p + 1);
6996
6997 if (SPECIFIED(ai->mode))
6998 SPRINTF(buf, ",mode=%d", ai->mode);
6999 if (SPECIFIED(ai->hiwat))
7000 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
7001 if (SPECIFIED(ai->lowat))
7002 SPRINTF(buf, ",lowat=%d", ai->lowat);
7003 if (SPECIFIED(ai->play.gain))
7004 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
7005 if (SPECIFIED(ai->record.gain))
7006 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
7007 if (SPECIFIED_CH(ai->play.balance))
7008 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
7009 if (SPECIFIED_CH(ai->record.balance))
7010 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
7011 if (SPECIFIED(ai->play.port))
7012 SPRINTF(buf, ",play.port=%d", ai->play.port);
7013 if (SPECIFIED(ai->record.port))
7014 SPRINTF(buf, ",record.port=%d", ai->record.port);
7015 if (SPECIFIED(ai->monitor_gain))
7016 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
7017 if (SPECIFIED_CH(ai->play.pause))
7018 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
7019 if (SPECIFIED_CH(ai->record.pause))
7020 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
7021
7022 if (buflen > 0)
7023 TRACE(2, "specified %s", buf + 1);
7024 }
7025 #endif
7026
7027 AUDIO_INITINFO(&saved_ai);
7028 /* XXX shut up gcc */
7029 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
7030 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
7031
7032 /*
7033 * Set default value and save current parameters.
7034 * For backward compatibility, use sticky parameters for nonexistent
7035 * track.
7036 */
7037 if (ptrack) {
7038 pfmt = ptrack->usrbuf.fmt;
7039 saved_pfmt = ptrack->usrbuf.fmt;
7040 saved_ai.play.pause = ptrack->is_pause;
7041 } else {
7042 pfmt = sc->sc_sound_pparams;
7043 }
7044 if (rtrack) {
7045 rfmt = rtrack->usrbuf.fmt;
7046 saved_rfmt = rtrack->usrbuf.fmt;
7047 saved_ai.record.pause = rtrack->is_pause;
7048 } else {
7049 rfmt = sc->sc_sound_rparams;
7050 }
7051 saved_ai.mode = file->mode;
7052
7053 /*
7054 * Overwrite if specified.
7055 */
7056 mode = file->mode;
7057 if (SPECIFIED(ai->mode)) {
7058 /*
7059 * Setting ai->mode no longer does anything because it's
7060 * prohibited to change playback/recording mode after open
7061 * and AUMODE_PLAY_ALL is obsoleted. However, it still
7062 * keeps the state of AUMODE_PLAY_ALL itself for backward
7063 * compatibility.
7064 * In the internal, only file->mode has the state of
7065 * AUMODE_PLAY_ALL flag and track->mode in both track does
7066 * not have.
7067 */
7068 if ((file->mode & AUMODE_PLAY)) {
7069 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
7070 | (ai->mode & AUMODE_PLAY_ALL);
7071 }
7072 }
7073
7074 pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
7075 if (pchanges == -1) {
7076 #if defined(AUDIO_DEBUG)
7077 TRACEF(1, file, "check play.params failed: "
7078 "%s %ubit %uch %uHz",
7079 audio_encoding_name(pi->encoding),
7080 pi->precision,
7081 pi->channels,
7082 pi->sample_rate);
7083 #endif
7084 return EINVAL;
7085 }
7086
7087 rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
7088 if (rchanges == -1) {
7089 #if defined(AUDIO_DEBUG)
7090 TRACEF(1, file, "check record.params failed: "
7091 "%s %ubit %uch %uHz",
7092 audio_encoding_name(ri->encoding),
7093 ri->precision,
7094 ri->channels,
7095 ri->sample_rate);
7096 #endif
7097 return EINVAL;
7098 }
7099
7100 if (SPECIFIED(ai->mode)) {
7101 pchanges = 1;
7102 rchanges = 1;
7103 }
7104
7105 /*
7106 * Even when setting either one of playback and recording,
7107 * both track must be halted.
7108 */
7109 if (pchanges || rchanges) {
7110 audio_file_clear(sc, file);
7111 #if defined(AUDIO_DEBUG)
7112 char nbuf[16];
7113 char fmtbuf[64];
7114 if (pchanges) {
7115 if (ptrack) {
7116 snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
7117 } else {
7118 snprintf(nbuf, sizeof(nbuf), "-");
7119 }
7120 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
7121 DPRINTF(1, "audio track#%s play mode: %s\n",
7122 nbuf, fmtbuf);
7123 }
7124 if (rchanges) {
7125 if (rtrack) {
7126 snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
7127 } else {
7128 snprintf(nbuf, sizeof(nbuf), "-");
7129 }
7130 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
7131 DPRINTF(1, "audio track#%s rec mode: %s\n",
7132 nbuf, fmtbuf);
7133 }
7134 #endif
7135 }
7136
7137 /* Set mixer parameters */
7138 mutex_enter(sc->sc_lock);
7139 error = audio_hw_setinfo(sc, ai, &saved_ai);
7140 mutex_exit(sc->sc_lock);
7141 if (error)
7142 goto abort1;
7143
7144 /*
7145 * Set to track and update sticky parameters.
7146 */
7147 error = 0;
7148 file->mode = mode;
7149
7150 if (SPECIFIED_CH(pi->pause)) {
7151 if (ptrack)
7152 ptrack->is_pause = pi->pause;
7153 sc->sc_sound_ppause = pi->pause;
7154 }
7155 if (pchanges) {
7156 if (ptrack) {
7157 audio_track_lock_enter(ptrack);
7158 error = audio_track_set_format(ptrack, &pfmt);
7159 audio_track_lock_exit(ptrack);
7160 if (error) {
7161 TRACET(1, ptrack, "set play.params failed");
7162 goto abort2;
7163 }
7164 }
7165 sc->sc_sound_pparams = pfmt;
7166 }
7167 /* Change water marks after initializing the buffers. */
7168 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7169 if (ptrack)
7170 audio_track_setinfo_water(ptrack, ai);
7171 }
7172
7173 if (SPECIFIED_CH(ri->pause)) {
7174 if (rtrack)
7175 rtrack->is_pause = ri->pause;
7176 sc->sc_sound_rpause = ri->pause;
7177 }
7178 if (rchanges) {
7179 if (rtrack) {
7180 audio_track_lock_enter(rtrack);
7181 error = audio_track_set_format(rtrack, &rfmt);
7182 audio_track_lock_exit(rtrack);
7183 if (error) {
7184 TRACET(1, rtrack, "set record.params failed");
7185 goto abort3;
7186 }
7187 }
7188 sc->sc_sound_rparams = rfmt;
7189 }
7190
7191 return 0;
7192
7193 /* Rollback */
7194 abort3:
7195 if (error != ENOMEM) {
7196 rtrack->is_pause = saved_ai.record.pause;
7197 audio_track_lock_enter(rtrack);
7198 audio_track_set_format(rtrack, &saved_rfmt);
7199 audio_track_lock_exit(rtrack);
7200 }
7201 sc->sc_sound_rpause = saved_ai.record.pause;
7202 sc->sc_sound_rparams = saved_rfmt;
7203 abort2:
7204 if (ptrack && error != ENOMEM) {
7205 ptrack->is_pause = saved_ai.play.pause;
7206 audio_track_lock_enter(ptrack);
7207 audio_track_set_format(ptrack, &saved_pfmt);
7208 audio_track_lock_exit(ptrack);
7209 }
7210 sc->sc_sound_ppause = saved_ai.play.pause;
7211 sc->sc_sound_pparams = saved_pfmt;
7212 file->mode = saved_ai.mode;
7213 abort1:
7214 mutex_enter(sc->sc_lock);
7215 audio_hw_setinfo(sc, &saved_ai, NULL);
7216 mutex_exit(sc->sc_lock);
7217
7218 return error;
7219 }
7220
7221 /*
7222 * Write SPECIFIED() parameters within info back to fmt.
7223 * Note that track can be NULL here.
7224 * Return value of 1 indicates that fmt is modified.
7225 * Return value of 0 indicates that fmt is not modified.
7226 * Return value of -1 indicates that error EINVAL has occurred.
7227 */
7228 static int
7229 audio_track_setinfo_check(audio_track_t *track,
7230 audio_format2_t *fmt, const struct audio_prinfo *info)
7231 {
7232 const audio_format2_t *hwfmt;
7233 int changes;
7234
7235 changes = 0;
7236 if (SPECIFIED(info->sample_rate)) {
7237 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
7238 return -1;
7239 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
7240 return -1;
7241 fmt->sample_rate = info->sample_rate;
7242 changes = 1;
7243 }
7244 if (SPECIFIED(info->encoding)) {
7245 fmt->encoding = info->encoding;
7246 changes = 1;
7247 }
7248 if (SPECIFIED(info->precision)) {
7249 fmt->precision = info->precision;
7250 /* we don't have API to specify stride */
7251 fmt->stride = info->precision;
7252 changes = 1;
7253 }
7254 if (SPECIFIED(info->channels)) {
7255 /*
7256 * We can convert between monaural and stereo each other.
7257 * We can reduce than the number of channels that the hardware
7258 * supports.
7259 */
7260 if (info->channels > 2) {
7261 if (track) {
7262 hwfmt = &track->mixer->hwbuf.fmt;
7263 if (info->channels > hwfmt->channels)
7264 return -1;
7265 } else {
7266 /*
7267 * This should never happen.
7268 * If track == NULL, channels should be <= 2.
7269 */
7270 return -1;
7271 }
7272 }
7273 fmt->channels = info->channels;
7274 changes = 1;
7275 }
7276
7277 if (changes) {
7278 if (audio_check_params(fmt) != 0)
7279 return -1;
7280 }
7281
7282 return changes;
7283 }
7284
7285 /*
7286 * Change water marks for playback track if specfied.
7287 */
7288 static void
7289 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
7290 {
7291 u_int blks;
7292 u_int maxblks;
7293 u_int blksize;
7294
7295 KASSERT(audio_track_is_playback(track));
7296
7297 blksize = track->usrbuf_blksize;
7298 maxblks = track->usrbuf.capacity / blksize;
7299
7300 if (SPECIFIED(ai->hiwat)) {
7301 blks = ai->hiwat;
7302 if (blks > maxblks)
7303 blks = maxblks;
7304 if (blks < 2)
7305 blks = 2;
7306 track->usrbuf_usedhigh = blks * blksize;
7307 }
7308 if (SPECIFIED(ai->lowat)) {
7309 blks = ai->lowat;
7310 if (blks > maxblks - 1)
7311 blks = maxblks - 1;
7312 track->usrbuf_usedlow = blks * blksize;
7313 }
7314 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7315 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
7316 track->usrbuf_usedlow = track->usrbuf_usedhigh -
7317 blksize;
7318 }
7319 }
7320 }
7321
7322 /*
7323 * Set hardware part of *newai.
7324 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
7325 * If oldai is specified, previous parameters are stored.
7326 * This function itself does not roll back if error occurred.
7327 * Must be called with sc_lock && sc_exlock held.
7328 */
7329 static int
7330 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
7331 struct audio_info *oldai)
7332 {
7333 const struct audio_prinfo *newpi;
7334 const struct audio_prinfo *newri;
7335 struct audio_prinfo *oldpi;
7336 struct audio_prinfo *oldri;
7337 u_int pgain;
7338 u_int rgain;
7339 u_char pbalance;
7340 u_char rbalance;
7341 int error;
7342
7343 KASSERT(mutex_owned(sc->sc_lock));
7344 KASSERT(sc->sc_exlock);
7345
7346 /* XXX shut up gcc */
7347 oldpi = NULL;
7348 oldri = NULL;
7349
7350 newpi = &newai->play;
7351 newri = &newai->record;
7352 if (oldai) {
7353 oldpi = &oldai->play;
7354 oldri = &oldai->record;
7355 }
7356 error = 0;
7357
7358 /*
7359 * It looks like unnecessary to halt HW mixers to set HW mixers.
7360 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
7361 */
7362
7363 if (SPECIFIED(newpi->port)) {
7364 if (oldai)
7365 oldpi->port = au_get_port(sc, &sc->sc_outports);
7366 error = au_set_port(sc, &sc->sc_outports, newpi->port);
7367 if (error) {
7368 audio_printf(sc,
7369 "setting play.port=%d failed: errno=%d\n",
7370 newpi->port, error);
7371 goto abort;
7372 }
7373 }
7374 if (SPECIFIED(newri->port)) {
7375 if (oldai)
7376 oldri->port = au_get_port(sc, &sc->sc_inports);
7377 error = au_set_port(sc, &sc->sc_inports, newri->port);
7378 if (error) {
7379 audio_printf(sc,
7380 "setting record.port=%d failed: errno=%d\n",
7381 newri->port, error);
7382 goto abort;
7383 }
7384 }
7385
7386 /* Backup play.{gain,balance} */
7387 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7388 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7389 if (oldai) {
7390 oldpi->gain = pgain;
7391 oldpi->balance = pbalance;
7392 }
7393 }
7394 /* Backup record.{gain,balance} */
7395 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7396 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7397 if (oldai) {
7398 oldri->gain = rgain;
7399 oldri->balance = rbalance;
7400 }
7401 }
7402 if (SPECIFIED(newpi->gain)) {
7403 error = au_set_gain(sc, &sc->sc_outports,
7404 newpi->gain, pbalance);
7405 if (error) {
7406 audio_printf(sc,
7407 "setting play.gain=%d failed: errno=%d\n",
7408 newpi->gain, error);
7409 goto abort;
7410 }
7411 }
7412 if (SPECIFIED(newri->gain)) {
7413 error = au_set_gain(sc, &sc->sc_inports,
7414 newri->gain, rbalance);
7415 if (error) {
7416 audio_printf(sc,
7417 "setting record.gain=%d failed: errno=%d\n",
7418 newri->gain, error);
7419 goto abort;
7420 }
7421 }
7422 if (SPECIFIED_CH(newpi->balance)) {
7423 error = au_set_gain(sc, &sc->sc_outports,
7424 pgain, newpi->balance);
7425 if (error) {
7426 audio_printf(sc,
7427 "setting play.balance=%d failed: errno=%d\n",
7428 newpi->balance, error);
7429 goto abort;
7430 }
7431 }
7432 if (SPECIFIED_CH(newri->balance)) {
7433 error = au_set_gain(sc, &sc->sc_inports,
7434 rgain, newri->balance);
7435 if (error) {
7436 audio_printf(sc,
7437 "setting record.balance=%d failed: errno=%d\n",
7438 newri->balance, error);
7439 goto abort;
7440 }
7441 }
7442
7443 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7444 if (oldai)
7445 oldai->monitor_gain = au_get_monitor_gain(sc);
7446 error = au_set_monitor_gain(sc, newai->monitor_gain);
7447 if (error) {
7448 audio_printf(sc,
7449 "setting monitor_gain=%d failed: errno=%d\n",
7450 newai->monitor_gain, error);
7451 goto abort;
7452 }
7453 }
7454
7455 /* XXX TODO */
7456 /* sc->sc_ai = *ai; */
7457
7458 error = 0;
7459 abort:
7460 return error;
7461 }
7462
7463 /*
7464 * Setup the hardware with mixer format phwfmt, rhwfmt.
7465 * The arguments have following restrictions:
7466 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7467 * or both.
7468 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7469 * - On non-independent devices, phwfmt and rhwfmt must have the same
7470 * parameters.
7471 * - pfil and rfil must be zero-filled.
7472 * If successful,
7473 * - pfil, rfil will be filled with filter information specified by the
7474 * hardware driver if necessary.
7475 * and then returns 0. Otherwise returns errno.
7476 * Must be called without sc_lock held.
7477 */
7478 static int
7479 audio_hw_set_format(struct audio_softc *sc, int setmode,
7480 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
7481 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7482 {
7483 audio_params_t pp, rp;
7484 int error;
7485
7486 KASSERT(phwfmt != NULL);
7487 KASSERT(rhwfmt != NULL);
7488
7489 pp = format2_to_params(phwfmt);
7490 rp = format2_to_params(rhwfmt);
7491
7492 mutex_enter(sc->sc_lock);
7493 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7494 &pp, &rp, pfil, rfil);
7495 if (error) {
7496 mutex_exit(sc->sc_lock);
7497 audio_printf(sc, "set_format failed: errno=%d\n", error);
7498 return error;
7499 }
7500
7501 if (sc->hw_if->commit_settings) {
7502 error = sc->hw_if->commit_settings(sc->hw_hdl);
7503 if (error) {
7504 mutex_exit(sc->sc_lock);
7505 audio_printf(sc,
7506 "commit_settings failed: errno=%d\n", error);
7507 return error;
7508 }
7509 }
7510 mutex_exit(sc->sc_lock);
7511
7512 return 0;
7513 }
7514
7515 /*
7516 * Fill audio_info structure. If need_mixerinfo is true, it will also
7517 * fill the hardware mixer information.
7518 * Must be called with sc_exlock held and without sc_lock held.
7519 */
7520 static int
7521 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7522 audio_file_t *file)
7523 {
7524 struct audio_prinfo *ri, *pi;
7525 audio_track_t *track;
7526 audio_track_t *ptrack;
7527 audio_track_t *rtrack;
7528 int gain;
7529
7530 KASSERT(sc->sc_exlock);
7531
7532 ri = &ai->record;
7533 pi = &ai->play;
7534 ptrack = file->ptrack;
7535 rtrack = file->rtrack;
7536
7537 memset(ai, 0, sizeof(*ai));
7538
7539 if (ptrack) {
7540 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7541 pi->channels = ptrack->usrbuf.fmt.channels;
7542 pi->precision = ptrack->usrbuf.fmt.precision;
7543 pi->encoding = ptrack->usrbuf.fmt.encoding;
7544 pi->pause = ptrack->is_pause;
7545 } else {
7546 /* Use sticky parameters if the track is not available. */
7547 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7548 pi->channels = sc->sc_sound_pparams.channels;
7549 pi->precision = sc->sc_sound_pparams.precision;
7550 pi->encoding = sc->sc_sound_pparams.encoding;
7551 pi->pause = sc->sc_sound_ppause;
7552 }
7553 if (rtrack) {
7554 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7555 ri->channels = rtrack->usrbuf.fmt.channels;
7556 ri->precision = rtrack->usrbuf.fmt.precision;
7557 ri->encoding = rtrack->usrbuf.fmt.encoding;
7558 ri->pause = rtrack->is_pause;
7559 } else {
7560 /* Use sticky parameters if the track is not available. */
7561 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7562 ri->channels = sc->sc_sound_rparams.channels;
7563 ri->precision = sc->sc_sound_rparams.precision;
7564 ri->encoding = sc->sc_sound_rparams.encoding;
7565 ri->pause = sc->sc_sound_rpause;
7566 }
7567
7568 if (ptrack) {
7569 pi->seek = ptrack->usrbuf.used;
7570 pi->samples = ptrack->usrbuf_stamp;
7571 pi->eof = ptrack->eofcounter;
7572 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7573 pi->open = 1;
7574 pi->buffer_size = ptrack->usrbuf.capacity;
7575 }
7576 pi->waiting = 0; /* open never hangs */
7577 pi->active = sc->sc_pbusy;
7578
7579 if (rtrack) {
7580 ri->seek = rtrack->usrbuf.used;
7581 ri->samples = rtrack->usrbuf_stamp;
7582 ri->eof = 0;
7583 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7584 ri->open = 1;
7585 ri->buffer_size = rtrack->usrbuf.capacity;
7586 }
7587 ri->waiting = 0; /* open never hangs */
7588 ri->active = sc->sc_rbusy;
7589
7590 /*
7591 * XXX There may be different number of channels between playback
7592 * and recording, so that blocksize also may be different.
7593 * But struct audio_info has an united blocksize...
7594 * Here, I use play info precedencely if ptrack is available,
7595 * otherwise record info.
7596 *
7597 * XXX hiwat/lowat is a playback-only parameter. What should I
7598 * return for a record-only descriptor?
7599 */
7600 track = ptrack ? ptrack : rtrack;
7601 if (track) {
7602 ai->blocksize = track->usrbuf_blksize;
7603 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7604 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7605 }
7606 ai->mode = file->mode;
7607
7608 /*
7609 * For backward compatibility, we have to pad these five fields
7610 * a fake non-zero value even if there are no tracks.
7611 */
7612 if (ptrack == NULL)
7613 pi->buffer_size = 65536;
7614 if (rtrack == NULL)
7615 ri->buffer_size = 65536;
7616 if (ptrack == NULL && rtrack == NULL) {
7617 ai->blocksize = 2048;
7618 ai->hiwat = ai->play.buffer_size / ai->blocksize;
7619 ai->lowat = ai->hiwat * 3 / 4;
7620 }
7621
7622 if (need_mixerinfo) {
7623 mutex_enter(sc->sc_lock);
7624
7625 pi->port = au_get_port(sc, &sc->sc_outports);
7626 ri->port = au_get_port(sc, &sc->sc_inports);
7627
7628 pi->avail_ports = sc->sc_outports.allports;
7629 ri->avail_ports = sc->sc_inports.allports;
7630
7631 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7632 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7633
7634 if (sc->sc_monitor_port != -1) {
7635 gain = au_get_monitor_gain(sc);
7636 if (gain != -1)
7637 ai->monitor_gain = gain;
7638 }
7639 mutex_exit(sc->sc_lock);
7640 }
7641
7642 return 0;
7643 }
7644
7645 /*
7646 * Return true if playback is configured.
7647 * This function can be used after audioattach.
7648 */
7649 static bool
7650 audio_can_playback(struct audio_softc *sc)
7651 {
7652
7653 return (sc->sc_pmixer != NULL);
7654 }
7655
7656 /*
7657 * Return true if recording is configured.
7658 * This function can be used after audioattach.
7659 */
7660 static bool
7661 audio_can_capture(struct audio_softc *sc)
7662 {
7663
7664 return (sc->sc_rmixer != NULL);
7665 }
7666
7667 /*
7668 * Get the afp->index'th item from the valid one of format[].
7669 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7670 *
7671 * This is common routines for query_format.
7672 * If your hardware driver has struct audio_format[], the simplest case
7673 * you can write your query_format interface as follows:
7674 *
7675 * struct audio_format foo_format[] = { ... };
7676 *
7677 * int
7678 * foo_query_format(void *hdl, audio_format_query_t *afp)
7679 * {
7680 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7681 * }
7682 */
7683 int
7684 audio_query_format(const struct audio_format *format, int nformats,
7685 audio_format_query_t *afp)
7686 {
7687 const struct audio_format *f;
7688 int idx;
7689 int i;
7690
7691 idx = 0;
7692 for (i = 0; i < nformats; i++) {
7693 f = &format[i];
7694 if (!AUFMT_IS_VALID(f))
7695 continue;
7696 if (afp->index == idx) {
7697 afp->fmt = *f;
7698 return 0;
7699 }
7700 idx++;
7701 }
7702 return EINVAL;
7703 }
7704
7705 /*
7706 * This function is provided for the hardware driver's set_format() to
7707 * find index matches with 'param' from array of audio_format_t 'formats'.
7708 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7709 * It returns the matched index and never fails. Because param passed to
7710 * set_format() is selected from query_format().
7711 * This function will be an alternative to auconv_set_converter() to
7712 * find index.
7713 */
7714 int
7715 audio_indexof_format(const struct audio_format *formats, int nformats,
7716 int mode, const audio_params_t *param)
7717 {
7718 const struct audio_format *f;
7719 int index;
7720 int j;
7721
7722 for (index = 0; index < nformats; index++) {
7723 f = &formats[index];
7724
7725 if (!AUFMT_IS_VALID(f))
7726 continue;
7727 if ((f->mode & mode) == 0)
7728 continue;
7729 if (f->encoding != param->encoding)
7730 continue;
7731 if (f->validbits != param->precision)
7732 continue;
7733 if (f->channels != param->channels)
7734 continue;
7735
7736 if (f->frequency_type == 0) {
7737 if (param->sample_rate < f->frequency[0] ||
7738 param->sample_rate > f->frequency[1])
7739 continue;
7740 } else {
7741 for (j = 0; j < f->frequency_type; j++) {
7742 if (param->sample_rate == f->frequency[j])
7743 break;
7744 }
7745 if (j == f->frequency_type)
7746 continue;
7747 }
7748
7749 /* Then, matched */
7750 return index;
7751 }
7752
7753 /* Not matched. This should not be happened. */
7754 panic("%s: cannot find matched format\n", __func__);
7755 }
7756
7757 /*
7758 * Get or set hardware blocksize in msec.
7759 * XXX It's for debug.
7760 */
7761 static int
7762 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7763 {
7764 struct sysctlnode node;
7765 struct audio_softc *sc;
7766 audio_format2_t phwfmt;
7767 audio_format2_t rhwfmt;
7768 audio_filter_reg_t pfil;
7769 audio_filter_reg_t rfil;
7770 int t;
7771 int old_blk_ms;
7772 int mode;
7773 int error;
7774
7775 node = *rnode;
7776 sc = node.sysctl_data;
7777
7778 error = audio_exlock_enter(sc);
7779 if (error)
7780 return error;
7781
7782 old_blk_ms = sc->sc_blk_ms;
7783 t = old_blk_ms;
7784 node.sysctl_data = &t;
7785 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7786 if (error || newp == NULL)
7787 goto abort;
7788
7789 if (t < 0) {
7790 error = EINVAL;
7791 goto abort;
7792 }
7793
7794 if (sc->sc_popens + sc->sc_ropens > 0) {
7795 error = EBUSY;
7796 goto abort;
7797 }
7798 sc->sc_blk_ms = t;
7799 mode = 0;
7800 if (sc->sc_pmixer) {
7801 mode |= AUMODE_PLAY;
7802 phwfmt = sc->sc_pmixer->hwbuf.fmt;
7803 }
7804 if (sc->sc_rmixer) {
7805 mode |= AUMODE_RECORD;
7806 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7807 }
7808
7809 /* re-init hardware */
7810 memset(&pfil, 0, sizeof(pfil));
7811 memset(&rfil, 0, sizeof(rfil));
7812 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7813 if (error) {
7814 goto abort;
7815 }
7816
7817 /* re-init track mixer */
7818 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7819 if (error) {
7820 /* Rollback */
7821 sc->sc_blk_ms = old_blk_ms;
7822 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7823 goto abort;
7824 }
7825 error = 0;
7826 abort:
7827 audio_exlock_exit(sc);
7828 return error;
7829 }
7830
7831 /*
7832 * Get or set multiuser mode.
7833 */
7834 static int
7835 audio_sysctl_multiuser(SYSCTLFN_ARGS)
7836 {
7837 struct sysctlnode node;
7838 struct audio_softc *sc;
7839 bool t;
7840 int error;
7841
7842 node = *rnode;
7843 sc = node.sysctl_data;
7844
7845 error = audio_exlock_enter(sc);
7846 if (error)
7847 return error;
7848
7849 t = sc->sc_multiuser;
7850 node.sysctl_data = &t;
7851 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7852 if (error || newp == NULL)
7853 goto abort;
7854
7855 sc->sc_multiuser = t;
7856 error = 0;
7857 abort:
7858 audio_exlock_exit(sc);
7859 return error;
7860 }
7861
7862 #if defined(AUDIO_DEBUG)
7863 /*
7864 * Get or set debug verbose level. (0..4)
7865 * XXX It's for debug.
7866 * XXX It is not separated per device.
7867 */
7868 static int
7869 audio_sysctl_debug(SYSCTLFN_ARGS)
7870 {
7871 struct sysctlnode node;
7872 int t;
7873 int error;
7874
7875 node = *rnode;
7876 t = audiodebug;
7877 node.sysctl_data = &t;
7878 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7879 if (error || newp == NULL)
7880 return error;
7881
7882 if (t < 0 || t > 4)
7883 return EINVAL;
7884 audiodebug = t;
7885 printf("audio: audiodebug = %d\n", audiodebug);
7886 return 0;
7887 }
7888 #endif /* AUDIO_DEBUG */
7889
7890 #ifdef AUDIO_PM_IDLE
7891 static void
7892 audio_idle(void *arg)
7893 {
7894 device_t dv = arg;
7895 struct audio_softc *sc = device_private(dv);
7896
7897 #ifdef PNP_DEBUG
7898 extern int pnp_debug_idle;
7899 if (pnp_debug_idle)
7900 printf("%s: idle handler called\n", device_xname(dv));
7901 #endif
7902
7903 sc->sc_idle = true;
7904
7905 /* XXX joerg Make pmf_device_suspend handle children? */
7906 if (!pmf_device_suspend(dv, PMF_Q_SELF))
7907 return;
7908
7909 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7910 pmf_device_resume(dv, PMF_Q_SELF);
7911 }
7912
7913 static void
7914 audio_activity(device_t dv, devactive_t type)
7915 {
7916 struct audio_softc *sc = device_private(dv);
7917
7918 if (type != DVA_SYSTEM)
7919 return;
7920
7921 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7922
7923 sc->sc_idle = false;
7924 if (!device_is_active(dv)) {
7925 /* XXX joerg How to deal with a failing resume... */
7926 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7927 pmf_device_resume(dv, PMF_Q_SELF);
7928 }
7929 }
7930 #endif
7931
7932 static bool
7933 audio_suspend(device_t dv, const pmf_qual_t *qual)
7934 {
7935 struct audio_softc *sc = device_private(dv);
7936 int error;
7937
7938 error = audio_exlock_mutex_enter(sc);
7939 if (error)
7940 return error;
7941 sc->sc_suspending = true;
7942 audio_mixer_capture(sc);
7943
7944 if (sc->sc_pbusy) {
7945 audio_pmixer_halt(sc);
7946 /* Reuse this as need-to-restart flag while suspending */
7947 sc->sc_pbusy = true;
7948 }
7949 if (sc->sc_rbusy) {
7950 audio_rmixer_halt(sc);
7951 /* Reuse this as need-to-restart flag while suspending */
7952 sc->sc_rbusy = true;
7953 }
7954
7955 #ifdef AUDIO_PM_IDLE
7956 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7957 #endif
7958 audio_exlock_mutex_exit(sc);
7959
7960 return true;
7961 }
7962
7963 static bool
7964 audio_resume(device_t dv, const pmf_qual_t *qual)
7965 {
7966 struct audio_softc *sc = device_private(dv);
7967 struct audio_info ai;
7968 int error;
7969
7970 error = audio_exlock_mutex_enter(sc);
7971 if (error)
7972 return error;
7973
7974 sc->sc_suspending = false;
7975 audio_mixer_restore(sc);
7976 /* XXX ? */
7977 AUDIO_INITINFO(&ai);
7978 audio_hw_setinfo(sc, &ai, NULL);
7979
7980 /*
7981 * During from suspend to resume here, sc_[pr]busy is used as
7982 * need-to-restart flag temporarily. After this point,
7983 * sc_[pr]busy is returned to its original usage (busy flag).
7984 * And note that sc_[pr]busy must be false to call [pr]mixer_start().
7985 */
7986 if (sc->sc_pbusy) {
7987 /* pmixer_start() requires pbusy is false */
7988 sc->sc_pbusy = false;
7989 audio_pmixer_start(sc, true);
7990 }
7991 if (sc->sc_rbusy) {
7992 /* rmixer_start() requires rbusy is false */
7993 sc->sc_rbusy = false;
7994 audio_rmixer_start(sc);
7995 }
7996
7997 audio_exlock_mutex_exit(sc);
7998
7999 return true;
8000 }
8001
8002 #if defined(AUDIO_DEBUG)
8003 static void
8004 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
8005 {
8006 int n;
8007
8008 n = 0;
8009 n += snprintf(buf + n, bufsize - n, "%s",
8010 audio_encoding_name(fmt->encoding));
8011 if (fmt->precision == fmt->stride) {
8012 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
8013 } else {
8014 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
8015 fmt->precision, fmt->stride);
8016 }
8017
8018 snprintf(buf + n, bufsize - n, " %uch %uHz",
8019 fmt->channels, fmt->sample_rate);
8020 }
8021 #endif
8022
8023 #if defined(AUDIO_DEBUG)
8024 static void
8025 audio_print_format2(const char *s, const audio_format2_t *fmt)
8026 {
8027 char fmtstr[64];
8028
8029 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
8030 printf("%s %s\n", s, fmtstr);
8031 }
8032 #endif
8033
8034 #ifdef DIAGNOSTIC
8035 void
8036 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
8037 {
8038
8039 KASSERTMSG(fmt, "called from %s", where);
8040
8041 /* XXX MSM6258 vs(4) only has 4bit stride format. */
8042 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
8043 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
8044 "called from %s: fmt->stride=%d", where, fmt->stride);
8045 } else {
8046 KASSERTMSG(fmt->stride % NBBY == 0,
8047 "called from %s: fmt->stride=%d", where, fmt->stride);
8048 }
8049 KASSERTMSG(fmt->precision <= fmt->stride,
8050 "called from %s: fmt->precision=%d fmt->stride=%d",
8051 where, fmt->precision, fmt->stride);
8052 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
8053 "called from %s: fmt->channels=%d", where, fmt->channels);
8054
8055 /* XXX No check for encodings? */
8056 }
8057
8058 void
8059 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
8060 {
8061
8062 KASSERT(arg != NULL);
8063 KASSERT(arg->src != NULL);
8064 KASSERT(arg->dst != NULL);
8065 audio_diagnostic_format2(where, arg->srcfmt);
8066 audio_diagnostic_format2(where, arg->dstfmt);
8067 KASSERT(arg->count > 0);
8068 }
8069
8070 void
8071 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
8072 {
8073
8074 KASSERTMSG(ring, "called from %s", where);
8075 audio_diagnostic_format2(where, &ring->fmt);
8076 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
8077 "called from %s: ring->capacity=%d", where, ring->capacity);
8078 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
8079 "called from %s: ring->used=%d ring->capacity=%d",
8080 where, ring->used, ring->capacity);
8081 if (ring->capacity == 0) {
8082 KASSERTMSG(ring->mem == NULL,
8083 "called from %s: capacity == 0 but mem != NULL", where);
8084 } else {
8085 KASSERTMSG(ring->mem != NULL,
8086 "called from %s: capacity != 0 but mem == NULL", where);
8087 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
8088 "called from %s: ring->head=%d ring->capacity=%d",
8089 where, ring->head, ring->capacity);
8090 }
8091 }
8092 #endif /* DIAGNOSTIC */
8093
8094
8095 /*
8096 * Mixer driver
8097 */
8098
8099 /*
8100 * Must be called without sc_lock held.
8101 */
8102 int
8103 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
8104 struct lwp *l)
8105 {
8106 struct file *fp;
8107 audio_file_t *af;
8108 int error, fd;
8109
8110 TRACE(1, "flags=0x%x", flags);
8111
8112 error = fd_allocfile(&fp, &fd);
8113 if (error)
8114 return error;
8115
8116 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
8117 af->sc = sc;
8118 af->dev = dev;
8119
8120 error = fd_clone(fp, fd, flags, &audio_fileops, af);
8121 KASSERT(error == EMOVEFD);
8122
8123 return error;
8124 }
8125
8126 /*
8127 * Add a process to those to be signalled on mixer activity.
8128 * If the process has already been added, do nothing.
8129 * Must be called with sc_exlock held and without sc_lock held.
8130 */
8131 static void
8132 mixer_async_add(struct audio_softc *sc, pid_t pid)
8133 {
8134 int i;
8135
8136 KASSERT(sc->sc_exlock);
8137
8138 /* If already exists, returns without doing anything. */
8139 for (i = 0; i < sc->sc_am_used; i++) {
8140 if (sc->sc_am[i] == pid)
8141 return;
8142 }
8143
8144 /* Extend array if necessary. */
8145 if (sc->sc_am_used >= sc->sc_am_capacity) {
8146 sc->sc_am_capacity += AM_CAPACITY;
8147 sc->sc_am = kern_realloc(sc->sc_am,
8148 sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
8149 TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
8150 }
8151
8152 TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
8153 sc->sc_am[sc->sc_am_used++] = pid;
8154 }
8155
8156 /*
8157 * Remove a process from those to be signalled on mixer activity.
8158 * If the process has not been added, do nothing.
8159 * Must be called with sc_exlock held and without sc_lock held.
8160 */
8161 static void
8162 mixer_async_remove(struct audio_softc *sc, pid_t pid)
8163 {
8164 int i;
8165
8166 KASSERT(sc->sc_exlock);
8167
8168 for (i = 0; i < sc->sc_am_used; i++) {
8169 if (sc->sc_am[i] == pid) {
8170 sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
8171 TRACE(2, "am[%d](%d) removed, used=%d",
8172 i, (int)pid, sc->sc_am_used);
8173
8174 /* Empty array if no longer necessary. */
8175 if (sc->sc_am_used == 0) {
8176 kern_free(sc->sc_am);
8177 sc->sc_am = NULL;
8178 sc->sc_am_capacity = 0;
8179 TRACE(2, "released");
8180 }
8181 return;
8182 }
8183 }
8184 }
8185
8186 /*
8187 * Signal all processes waiting for the mixer.
8188 * Must be called with sc_exlock held.
8189 */
8190 static void
8191 mixer_signal(struct audio_softc *sc)
8192 {
8193 proc_t *p;
8194 int i;
8195
8196 KASSERT(sc->sc_exlock);
8197
8198 for (i = 0; i < sc->sc_am_used; i++) {
8199 mutex_enter(&proc_lock);
8200 p = proc_find(sc->sc_am[i]);
8201 if (p)
8202 psignal(p, SIGIO);
8203 mutex_exit(&proc_lock);
8204 }
8205 }
8206
8207 /*
8208 * Close a mixer device
8209 */
8210 int
8211 mixer_close(struct audio_softc *sc, audio_file_t *file)
8212 {
8213 int error;
8214
8215 error = audio_exlock_enter(sc);
8216 if (error)
8217 return error;
8218 TRACE(1, "called");
8219 mixer_async_remove(sc, curproc->p_pid);
8220 audio_exlock_exit(sc);
8221
8222 return 0;
8223 }
8224
8225 /*
8226 * Must be called without sc_lock nor sc_exlock held.
8227 */
8228 int
8229 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
8230 struct lwp *l)
8231 {
8232 mixer_devinfo_t *mi;
8233 mixer_ctrl_t *mc;
8234 int error;
8235
8236 TRACE(2, "(%lu,'%c',%lu)",
8237 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
8238 error = EINVAL;
8239
8240 /* we can return cached values if we are sleeping */
8241 if (cmd != AUDIO_MIXER_READ) {
8242 mutex_enter(sc->sc_lock);
8243 device_active(sc->sc_dev, DVA_SYSTEM);
8244 mutex_exit(sc->sc_lock);
8245 }
8246
8247 switch (cmd) {
8248 case FIOASYNC:
8249 error = audio_exlock_enter(sc);
8250 if (error)
8251 break;
8252 if (*(int *)addr) {
8253 mixer_async_add(sc, curproc->p_pid);
8254 } else {
8255 mixer_async_remove(sc, curproc->p_pid);
8256 }
8257 audio_exlock_exit(sc);
8258 break;
8259
8260 case AUDIO_GETDEV:
8261 TRACE(2, "AUDIO_GETDEV");
8262 mutex_enter(sc->sc_lock);
8263 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
8264 mutex_exit(sc->sc_lock);
8265 break;
8266
8267 case AUDIO_MIXER_DEVINFO:
8268 TRACE(2, "AUDIO_MIXER_DEVINFO");
8269 mi = (mixer_devinfo_t *)addr;
8270
8271 mi->un.v.delta = 0; /* default */
8272 mutex_enter(sc->sc_lock);
8273 error = audio_query_devinfo(sc, mi);
8274 mutex_exit(sc->sc_lock);
8275 break;
8276
8277 case AUDIO_MIXER_READ:
8278 TRACE(2, "AUDIO_MIXER_READ");
8279 mc = (mixer_ctrl_t *)addr;
8280
8281 error = audio_exlock_mutex_enter(sc);
8282 if (error)
8283 break;
8284 if (device_is_active(sc->hw_dev))
8285 error = audio_get_port(sc, mc);
8286 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
8287 error = ENXIO;
8288 else {
8289 int dev = mc->dev;
8290 memcpy(mc, &sc->sc_mixer_state[dev],
8291 sizeof(mixer_ctrl_t));
8292 error = 0;
8293 }
8294 audio_exlock_mutex_exit(sc);
8295 break;
8296
8297 case AUDIO_MIXER_WRITE:
8298 TRACE(2, "AUDIO_MIXER_WRITE");
8299 error = audio_exlock_mutex_enter(sc);
8300 if (error)
8301 break;
8302 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
8303 if (error) {
8304 audio_exlock_mutex_exit(sc);
8305 break;
8306 }
8307
8308 if (sc->hw_if->commit_settings) {
8309 error = sc->hw_if->commit_settings(sc->hw_hdl);
8310 if (error) {
8311 audio_exlock_mutex_exit(sc);
8312 break;
8313 }
8314 }
8315 mutex_exit(sc->sc_lock);
8316 mixer_signal(sc);
8317 audio_exlock_exit(sc);
8318 break;
8319
8320 default:
8321 if (sc->hw_if->dev_ioctl) {
8322 mutex_enter(sc->sc_lock);
8323 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
8324 cmd, addr, flag, l);
8325 mutex_exit(sc->sc_lock);
8326 } else
8327 error = EINVAL;
8328 break;
8329 }
8330 TRACE(2, "(%lu,'%c',%lu) result %d",
8331 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
8332 return error;
8333 }
8334
8335 /*
8336 * Must be called with sc_lock held.
8337 */
8338 int
8339 au_portof(struct audio_softc *sc, char *name, int class)
8340 {
8341 mixer_devinfo_t mi;
8342
8343 KASSERT(mutex_owned(sc->sc_lock));
8344
8345 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
8346 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
8347 return mi.index;
8348 }
8349 return -1;
8350 }
8351
8352 /*
8353 * Must be called with sc_lock held.
8354 */
8355 void
8356 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
8357 mixer_devinfo_t *mi, const struct portname *tbl)
8358 {
8359 int i, j;
8360
8361 KASSERT(mutex_owned(sc->sc_lock));
8362
8363 ports->index = mi->index;
8364 if (mi->type == AUDIO_MIXER_ENUM) {
8365 ports->isenum = true;
8366 for(i = 0; tbl[i].name; i++)
8367 for(j = 0; j < mi->un.e.num_mem; j++)
8368 if (strcmp(mi->un.e.member[j].label.name,
8369 tbl[i].name) == 0) {
8370 ports->allports |= tbl[i].mask;
8371 ports->aumask[ports->nports] = tbl[i].mask;
8372 ports->misel[ports->nports] =
8373 mi->un.e.member[j].ord;
8374 ports->miport[ports->nports] =
8375 au_portof(sc, mi->un.e.member[j].label.name,
8376 mi->mixer_class);
8377 if (ports->mixerout != -1 &&
8378 ports->miport[ports->nports] != -1)
8379 ports->isdual = true;
8380 ++ports->nports;
8381 }
8382 } else if (mi->type == AUDIO_MIXER_SET) {
8383 for(i = 0; tbl[i].name; i++)
8384 for(j = 0; j < mi->un.s.num_mem; j++)
8385 if (strcmp(mi->un.s.member[j].label.name,
8386 tbl[i].name) == 0) {
8387 ports->allports |= tbl[i].mask;
8388 ports->aumask[ports->nports] = tbl[i].mask;
8389 ports->misel[ports->nports] =
8390 mi->un.s.member[j].mask;
8391 ports->miport[ports->nports] =
8392 au_portof(sc, mi->un.s.member[j].label.name,
8393 mi->mixer_class);
8394 ++ports->nports;
8395 }
8396 }
8397 }
8398
8399 /*
8400 * Must be called with sc_lock && sc_exlock held.
8401 */
8402 int
8403 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8404 {
8405
8406 KASSERT(mutex_owned(sc->sc_lock));
8407 KASSERT(sc->sc_exlock);
8408
8409 ct->type = AUDIO_MIXER_VALUE;
8410 ct->un.value.num_channels = 2;
8411 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8412 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8413 if (audio_set_port(sc, ct) == 0)
8414 return 0;
8415 ct->un.value.num_channels = 1;
8416 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8417 return audio_set_port(sc, ct);
8418 }
8419
8420 /*
8421 * Must be called with sc_lock && sc_exlock held.
8422 */
8423 int
8424 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8425 {
8426 int error;
8427
8428 KASSERT(mutex_owned(sc->sc_lock));
8429 KASSERT(sc->sc_exlock);
8430
8431 ct->un.value.num_channels = 2;
8432 if (audio_get_port(sc, ct) == 0) {
8433 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8434 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8435 } else {
8436 ct->un.value.num_channels = 1;
8437 error = audio_get_port(sc, ct);
8438 if (error)
8439 return error;
8440 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8441 }
8442 return 0;
8443 }
8444
8445 /*
8446 * Must be called with sc_lock && sc_exlock held.
8447 */
8448 int
8449 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8450 int gain, int balance)
8451 {
8452 mixer_ctrl_t ct;
8453 int i, error;
8454 int l, r;
8455 u_int mask;
8456 int nset;
8457
8458 KASSERT(mutex_owned(sc->sc_lock));
8459 KASSERT(sc->sc_exlock);
8460
8461 if (balance == AUDIO_MID_BALANCE) {
8462 l = r = gain;
8463 } else if (balance < AUDIO_MID_BALANCE) {
8464 l = gain;
8465 r = (balance * gain) / AUDIO_MID_BALANCE;
8466 } else {
8467 r = gain;
8468 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8469 / AUDIO_MID_BALANCE;
8470 }
8471 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8472
8473 if (ports->index == -1) {
8474 usemaster:
8475 if (ports->master == -1)
8476 return 0; /* just ignore it silently */
8477 ct.dev = ports->master;
8478 error = au_set_lr_value(sc, &ct, l, r);
8479 } else {
8480 ct.dev = ports->index;
8481 if (ports->isenum) {
8482 ct.type = AUDIO_MIXER_ENUM;
8483 error = audio_get_port(sc, &ct);
8484 if (error)
8485 return error;
8486 if (ports->isdual) {
8487 if (ports->cur_port == -1)
8488 ct.dev = ports->master;
8489 else
8490 ct.dev = ports->miport[ports->cur_port];
8491 error = au_set_lr_value(sc, &ct, l, r);
8492 } else {
8493 for(i = 0; i < ports->nports; i++)
8494 if (ports->misel[i] == ct.un.ord) {
8495 ct.dev = ports->miport[i];
8496 if (ct.dev == -1 ||
8497 au_set_lr_value(sc, &ct, l, r))
8498 goto usemaster;
8499 else
8500 break;
8501 }
8502 }
8503 } else {
8504 ct.type = AUDIO_MIXER_SET;
8505 error = audio_get_port(sc, &ct);
8506 if (error)
8507 return error;
8508 mask = ct.un.mask;
8509 nset = 0;
8510 for(i = 0; i < ports->nports; i++) {
8511 if (ports->misel[i] & mask) {
8512 ct.dev = ports->miport[i];
8513 if (ct.dev != -1 &&
8514 au_set_lr_value(sc, &ct, l, r) == 0)
8515 nset++;
8516 }
8517 }
8518 if (nset == 0)
8519 goto usemaster;
8520 }
8521 }
8522 if (!error)
8523 mixer_signal(sc);
8524 return error;
8525 }
8526
8527 /*
8528 * Must be called with sc_lock && sc_exlock held.
8529 */
8530 void
8531 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8532 u_int *pgain, u_char *pbalance)
8533 {
8534 mixer_ctrl_t ct;
8535 int i, l, r, n;
8536 int lgain, rgain;
8537
8538 KASSERT(mutex_owned(sc->sc_lock));
8539 KASSERT(sc->sc_exlock);
8540
8541 lgain = AUDIO_MAX_GAIN / 2;
8542 rgain = AUDIO_MAX_GAIN / 2;
8543 if (ports->index == -1) {
8544 usemaster:
8545 if (ports->master == -1)
8546 goto bad;
8547 ct.dev = ports->master;
8548 ct.type = AUDIO_MIXER_VALUE;
8549 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8550 goto bad;
8551 } else {
8552 ct.dev = ports->index;
8553 if (ports->isenum) {
8554 ct.type = AUDIO_MIXER_ENUM;
8555 if (audio_get_port(sc, &ct))
8556 goto bad;
8557 ct.type = AUDIO_MIXER_VALUE;
8558 if (ports->isdual) {
8559 if (ports->cur_port == -1)
8560 ct.dev = ports->master;
8561 else
8562 ct.dev = ports->miport[ports->cur_port];
8563 au_get_lr_value(sc, &ct, &lgain, &rgain);
8564 } else {
8565 for(i = 0; i < ports->nports; i++)
8566 if (ports->misel[i] == ct.un.ord) {
8567 ct.dev = ports->miport[i];
8568 if (ct.dev == -1 ||
8569 au_get_lr_value(sc, &ct,
8570 &lgain, &rgain))
8571 goto usemaster;
8572 else
8573 break;
8574 }
8575 }
8576 } else {
8577 ct.type = AUDIO_MIXER_SET;
8578 if (audio_get_port(sc, &ct))
8579 goto bad;
8580 ct.type = AUDIO_MIXER_VALUE;
8581 lgain = rgain = n = 0;
8582 for(i = 0; i < ports->nports; i++) {
8583 if (ports->misel[i] & ct.un.mask) {
8584 ct.dev = ports->miport[i];
8585 if (ct.dev == -1 ||
8586 au_get_lr_value(sc, &ct, &l, &r))
8587 goto usemaster;
8588 else {
8589 lgain += l;
8590 rgain += r;
8591 n++;
8592 }
8593 }
8594 }
8595 if (n != 0) {
8596 lgain /= n;
8597 rgain /= n;
8598 }
8599 }
8600 }
8601 bad:
8602 if (lgain == rgain) { /* handles lgain==rgain==0 */
8603 *pgain = lgain;
8604 *pbalance = AUDIO_MID_BALANCE;
8605 } else if (lgain < rgain) {
8606 *pgain = rgain;
8607 /* balance should be > AUDIO_MID_BALANCE */
8608 *pbalance = AUDIO_RIGHT_BALANCE -
8609 (AUDIO_MID_BALANCE * lgain) / rgain;
8610 } else /* lgain > rgain */ {
8611 *pgain = lgain;
8612 /* balance should be < AUDIO_MID_BALANCE */
8613 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8614 }
8615 }
8616
8617 /*
8618 * Must be called with sc_lock && sc_exlock held.
8619 */
8620 int
8621 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8622 {
8623 mixer_ctrl_t ct;
8624 int i, error, use_mixerout;
8625
8626 KASSERT(mutex_owned(sc->sc_lock));
8627 KASSERT(sc->sc_exlock);
8628
8629 use_mixerout = 1;
8630 if (port == 0) {
8631 if (ports->allports == 0)
8632 return 0; /* Allow this special case. */
8633 else if (ports->isdual) {
8634 if (ports->cur_port == -1) {
8635 return 0;
8636 } else {
8637 port = ports->aumask[ports->cur_port];
8638 ports->cur_port = -1;
8639 use_mixerout = 0;
8640 }
8641 }
8642 }
8643 if (ports->index == -1)
8644 return EINVAL;
8645 ct.dev = ports->index;
8646 if (ports->isenum) {
8647 if (port & (port-1))
8648 return EINVAL; /* Only one port allowed */
8649 ct.type = AUDIO_MIXER_ENUM;
8650 error = EINVAL;
8651 for(i = 0; i < ports->nports; i++)
8652 if (ports->aumask[i] == port) {
8653 if (ports->isdual && use_mixerout) {
8654 ct.un.ord = ports->mixerout;
8655 ports->cur_port = i;
8656 } else {
8657 ct.un.ord = ports->misel[i];
8658 }
8659 error = audio_set_port(sc, &ct);
8660 break;
8661 }
8662 } else {
8663 ct.type = AUDIO_MIXER_SET;
8664 ct.un.mask = 0;
8665 for(i = 0; i < ports->nports; i++)
8666 if (ports->aumask[i] & port)
8667 ct.un.mask |= ports->misel[i];
8668 if (port != 0 && ct.un.mask == 0)
8669 error = EINVAL;
8670 else
8671 error = audio_set_port(sc, &ct);
8672 }
8673 if (!error)
8674 mixer_signal(sc);
8675 return error;
8676 }
8677
8678 /*
8679 * Must be called with sc_lock && sc_exlock held.
8680 */
8681 int
8682 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8683 {
8684 mixer_ctrl_t ct;
8685 int i, aumask;
8686
8687 KASSERT(mutex_owned(sc->sc_lock));
8688 KASSERT(sc->sc_exlock);
8689
8690 if (ports->index == -1)
8691 return 0;
8692 ct.dev = ports->index;
8693 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8694 if (audio_get_port(sc, &ct))
8695 return 0;
8696 aumask = 0;
8697 if (ports->isenum) {
8698 if (ports->isdual && ports->cur_port != -1) {
8699 if (ports->mixerout == ct.un.ord)
8700 aumask = ports->aumask[ports->cur_port];
8701 else
8702 ports->cur_port = -1;
8703 }
8704 if (aumask == 0)
8705 for(i = 0; i < ports->nports; i++)
8706 if (ports->misel[i] == ct.un.ord)
8707 aumask = ports->aumask[i];
8708 } else {
8709 for(i = 0; i < ports->nports; i++)
8710 if (ct.un.mask & ports->misel[i])
8711 aumask |= ports->aumask[i];
8712 }
8713 return aumask;
8714 }
8715
8716 /*
8717 * It returns 0 if success, otherwise errno.
8718 * Must be called only if sc->sc_monitor_port != -1.
8719 * Must be called with sc_lock && sc_exlock held.
8720 */
8721 static int
8722 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8723 {
8724 mixer_ctrl_t ct;
8725
8726 KASSERT(mutex_owned(sc->sc_lock));
8727 KASSERT(sc->sc_exlock);
8728
8729 ct.dev = sc->sc_monitor_port;
8730 ct.type = AUDIO_MIXER_VALUE;
8731 ct.un.value.num_channels = 1;
8732 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8733 return audio_set_port(sc, &ct);
8734 }
8735
8736 /*
8737 * It returns monitor gain if success, otherwise -1.
8738 * Must be called only if sc->sc_monitor_port != -1.
8739 * Must be called with sc_lock && sc_exlock held.
8740 */
8741 static int
8742 au_get_monitor_gain(struct audio_softc *sc)
8743 {
8744 mixer_ctrl_t ct;
8745
8746 KASSERT(mutex_owned(sc->sc_lock));
8747 KASSERT(sc->sc_exlock);
8748
8749 ct.dev = sc->sc_monitor_port;
8750 ct.type = AUDIO_MIXER_VALUE;
8751 ct.un.value.num_channels = 1;
8752 if (audio_get_port(sc, &ct))
8753 return -1;
8754 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8755 }
8756
8757 /*
8758 * Must be called with sc_lock && sc_exlock held.
8759 */
8760 static int
8761 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8762 {
8763
8764 KASSERT(mutex_owned(sc->sc_lock));
8765 KASSERT(sc->sc_exlock);
8766
8767 return sc->hw_if->set_port(sc->hw_hdl, mc);
8768 }
8769
8770 /*
8771 * Must be called with sc_lock && sc_exlock held.
8772 */
8773 static int
8774 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8775 {
8776
8777 KASSERT(mutex_owned(sc->sc_lock));
8778 KASSERT(sc->sc_exlock);
8779
8780 return sc->hw_if->get_port(sc->hw_hdl, mc);
8781 }
8782
8783 /*
8784 * Must be called with sc_lock && sc_exlock held.
8785 */
8786 static void
8787 audio_mixer_capture(struct audio_softc *sc)
8788 {
8789 mixer_devinfo_t mi;
8790 mixer_ctrl_t *mc;
8791
8792 KASSERT(mutex_owned(sc->sc_lock));
8793 KASSERT(sc->sc_exlock);
8794
8795 for (mi.index = 0;; mi.index++) {
8796 if (audio_query_devinfo(sc, &mi) != 0)
8797 break;
8798 KASSERT(mi.index < sc->sc_nmixer_states);
8799 if (mi.type == AUDIO_MIXER_CLASS)
8800 continue;
8801 mc = &sc->sc_mixer_state[mi.index];
8802 mc->dev = mi.index;
8803 mc->type = mi.type;
8804 mc->un.value.num_channels = mi.un.v.num_channels;
8805 (void)audio_get_port(sc, mc);
8806 }
8807
8808 return;
8809 }
8810
8811 /*
8812 * Must be called with sc_lock && sc_exlock held.
8813 */
8814 static void
8815 audio_mixer_restore(struct audio_softc *sc)
8816 {
8817 mixer_devinfo_t mi;
8818 mixer_ctrl_t *mc;
8819
8820 KASSERT(mutex_owned(sc->sc_lock));
8821 KASSERT(sc->sc_exlock);
8822
8823 for (mi.index = 0; ; mi.index++) {
8824 if (audio_query_devinfo(sc, &mi) != 0)
8825 break;
8826 if (mi.type == AUDIO_MIXER_CLASS)
8827 continue;
8828 mc = &sc->sc_mixer_state[mi.index];
8829 (void)audio_set_port(sc, mc);
8830 }
8831 if (sc->hw_if->commit_settings)
8832 sc->hw_if->commit_settings(sc->hw_hdl);
8833
8834 return;
8835 }
8836
8837 static void
8838 audio_volume_down(device_t dv)
8839 {
8840 struct audio_softc *sc = device_private(dv);
8841 mixer_devinfo_t mi;
8842 int newgain;
8843 u_int gain;
8844 u_char balance;
8845
8846 if (audio_exlock_mutex_enter(sc) != 0)
8847 return;
8848 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8849 mi.index = sc->sc_outports.master;
8850 mi.un.v.delta = 0;
8851 if (audio_query_devinfo(sc, &mi) == 0) {
8852 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8853 newgain = gain - mi.un.v.delta;
8854 if (newgain < AUDIO_MIN_GAIN)
8855 newgain = AUDIO_MIN_GAIN;
8856 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8857 }
8858 }
8859 audio_exlock_mutex_exit(sc);
8860 }
8861
8862 static void
8863 audio_volume_up(device_t dv)
8864 {
8865 struct audio_softc *sc = device_private(dv);
8866 mixer_devinfo_t mi;
8867 u_int gain, newgain;
8868 u_char balance;
8869
8870 if (audio_exlock_mutex_enter(sc) != 0)
8871 return;
8872 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8873 mi.index = sc->sc_outports.master;
8874 mi.un.v.delta = 0;
8875 if (audio_query_devinfo(sc, &mi) == 0) {
8876 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8877 newgain = gain + mi.un.v.delta;
8878 if (newgain > AUDIO_MAX_GAIN)
8879 newgain = AUDIO_MAX_GAIN;
8880 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8881 }
8882 }
8883 audio_exlock_mutex_exit(sc);
8884 }
8885
8886 static void
8887 audio_volume_toggle(device_t dv)
8888 {
8889 struct audio_softc *sc = device_private(dv);
8890 u_int gain, newgain;
8891 u_char balance;
8892
8893 if (audio_exlock_mutex_enter(sc) != 0)
8894 return;
8895 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8896 if (gain != 0) {
8897 sc->sc_lastgain = gain;
8898 newgain = 0;
8899 } else
8900 newgain = sc->sc_lastgain;
8901 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8902 audio_exlock_mutex_exit(sc);
8903 }
8904
8905 /*
8906 * Must be called with sc_lock held.
8907 */
8908 static int
8909 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8910 {
8911
8912 KASSERT(mutex_owned(sc->sc_lock));
8913
8914 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8915 }
8916
8917 #endif /* NAUDIO > 0 */
8918
8919 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8920 #include <sys/param.h>
8921 #include <sys/systm.h>
8922 #include <sys/device.h>
8923 #include <sys/audioio.h>
8924 #include <dev/audio/audio_if.h>
8925 #endif
8926
8927 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8928 int
8929 audioprint(void *aux, const char *pnp)
8930 {
8931 struct audio_attach_args *arg;
8932 const char *type;
8933
8934 if (pnp != NULL) {
8935 arg = aux;
8936 switch (arg->type) {
8937 case AUDIODEV_TYPE_AUDIO:
8938 type = "audio";
8939 break;
8940 case AUDIODEV_TYPE_MIDI:
8941 type = "midi";
8942 break;
8943 case AUDIODEV_TYPE_OPL:
8944 type = "opl";
8945 break;
8946 case AUDIODEV_TYPE_MPU:
8947 type = "mpu";
8948 break;
8949 default:
8950 panic("audioprint: unknown type %d", arg->type);
8951 }
8952 aprint_normal("%s at %s", type, pnp);
8953 }
8954 return UNCONF;
8955 }
8956
8957 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8958
8959 #ifdef _MODULE
8960
8961 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8962
8963 #include "ioconf.c"
8964
8965 #endif
8966
8967 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
8968
8969 static int
8970 audio_modcmd(modcmd_t cmd, void *arg)
8971 {
8972 int error = 0;
8973
8974 switch (cmd) {
8975 case MODULE_CMD_INIT:
8976 /* XXX interrupt level? */
8977 audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
8978 #ifdef _MODULE
8979 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8980 &audio_cdevsw, &audio_cmajor);
8981 if (error)
8982 break;
8983
8984 error = config_init_component(cfdriver_ioconf_audio,
8985 cfattach_ioconf_audio, cfdata_ioconf_audio);
8986 if (error) {
8987 devsw_detach(NULL, &audio_cdevsw);
8988 }
8989 #endif
8990 break;
8991 case MODULE_CMD_FINI:
8992 #ifdef _MODULE
8993 devsw_detach(NULL, &audio_cdevsw);
8994 error = config_fini_component(cfdriver_ioconf_audio,
8995 cfattach_ioconf_audio, cfdata_ioconf_audio);
8996 if (error)
8997 devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8998 &audio_cdevsw, &audio_cmajor);
8999 #endif
9000 psref_class_destroy(audio_psref_class);
9001 break;
9002 default:
9003 error = ENOTTY;
9004 break;
9005 }
9006
9007 return error;
9008 }
9009