audio.c revision 1.93 1 /* $NetBSD: audio.c,v 1.93 2021/04/26 14:02:49 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Locking: there are three locks per device.
67 *
68 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
69 * returned in the second parameter to hw_if->get_locks(). It is known
70 * as the "thread lock".
71 *
72 * It serializes access to state in all places except the
73 * driver's interrupt service routine. This lock is taken from process
74 * context (example: access to /dev/audio). It is also taken from soft
75 * interrupt handlers in this module, primarily to serialize delivery of
76 * wakeups. This lock may be used/provided by modules external to the
77 * audio subsystem, so take care not to introduce a lock order problem.
78 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79 *
80 * - sc_intr_lock, provided by the underlying driver. This may be either a
81 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
83 * is known as the "interrupt lock".
84 *
85 * It provides atomic access to the device's hardware state, and to audio
86 * channel data that may be accessed by the hardware driver's ISR.
87 * In all places outside the ISR, sc_lock must be held before taking
88 * sc_intr_lock. This is to ensure that groups of hardware operations are
89 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90 *
91 * - sc_exlock, private to this module. This is a variable protected by
92 * sc_lock. It is known as the "critical section".
93 * Some operations release sc_lock in order to allocate memory, to wait
94 * for in-flight I/O to complete, to copy to/from user context, etc.
95 * sc_exlock provides a critical section even under the circumstance.
96 * "+" in following list indicates the interfaces which necessary to be
97 * protected by sc_exlock.
98 *
99 * List of hardware interface methods, and which locks are held when each
100 * is called by this module:
101 *
102 * METHOD INTR THREAD NOTES
103 * ----------------------- ------- ------- -------------------------
104 * open x x +
105 * close x x +
106 * query_format - x
107 * set_format - x
108 * round_blocksize - x
109 * commit_settings - x
110 * init_output x x
111 * init_input x x
112 * start_output x x +
113 * start_input x x +
114 * halt_output x x +
115 * halt_input x x +
116 * speaker_ctl x x
117 * getdev - x
118 * set_port - x +
119 * get_port - x +
120 * query_devinfo - x
121 * allocm - - +
122 * freem - - +
123 * round_buffersize - x
124 * get_props - - Called at attach time
125 * trigger_output x x +
126 * trigger_input x x +
127 * dev_ioctl - x
128 * get_locks - - Called at attach time
129 *
130 * In addition, there is an additional lock.
131 *
132 * - track->lock. This is an atomic variable and is similar to the
133 * "interrupt lock". This is one for each track. If any thread context
134 * (and software interrupt context) and hardware interrupt context who
135 * want to access some variables on this track, they must acquire this
136 * lock before. It protects track's consistency between hardware
137 * interrupt context and others.
138 */
139
140 #include <sys/cdefs.h>
141 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.93 2021/04/26 14:02:49 thorpej Exp $");
142
143 #ifdef _KERNEL_OPT
144 #include "audio.h"
145 #include "midi.h"
146 #endif
147
148 #if NAUDIO > 0
149
150 #include <sys/types.h>
151 #include <sys/param.h>
152 #include <sys/atomic.h>
153 #include <sys/audioio.h>
154 #include <sys/conf.h>
155 #include <sys/cpu.h>
156 #include <sys/device.h>
157 #include <sys/fcntl.h>
158 #include <sys/file.h>
159 #include <sys/filedesc.h>
160 #include <sys/intr.h>
161 #include <sys/ioctl.h>
162 #include <sys/kauth.h>
163 #include <sys/kernel.h>
164 #include <sys/kmem.h>
165 #include <sys/malloc.h>
166 #include <sys/mman.h>
167 #include <sys/module.h>
168 #include <sys/poll.h>
169 #include <sys/proc.h>
170 #include <sys/queue.h>
171 #include <sys/select.h>
172 #include <sys/signalvar.h>
173 #include <sys/stat.h>
174 #include <sys/sysctl.h>
175 #include <sys/systm.h>
176 #include <sys/syslog.h>
177 #include <sys/vnode.h>
178
179 #include <dev/audio/audio_if.h>
180 #include <dev/audio/audiovar.h>
181 #include <dev/audio/audiodef.h>
182 #include <dev/audio/linear.h>
183 #include <dev/audio/mulaw.h>
184
185 #include <machine/endian.h>
186
187 #include <uvm/uvm_extern.h>
188
189 #include "ioconf.h"
190
191 /*
192 * 0: No debug logs
193 * 1: action changes like open/close/set_format...
194 * 2: + normal operations like read/write/ioctl...
195 * 3: + TRACEs except interrupt
196 * 4: + TRACEs including interrupt
197 */
198 //#define AUDIO_DEBUG 1
199
200 #if defined(AUDIO_DEBUG)
201
202 int audiodebug = AUDIO_DEBUG;
203 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
204 const char *, va_list);
205 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
206 __printflike(3, 4);
207 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
208 __printflike(3, 4);
209 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
210 __printflike(3, 4);
211
212 /* XXX sloppy memory logger */
213 static void audio_mlog_init(void);
214 static void audio_mlog_free(void);
215 static void audio_mlog_softintr(void *);
216 extern void audio_mlog_flush(void);
217 extern void audio_mlog_printf(const char *, ...);
218
219 static int mlog_refs; /* reference counter */
220 static char *mlog_buf[2]; /* double buffer */
221 static int mlog_buflen; /* buffer length */
222 static int mlog_used; /* used length */
223 static int mlog_full; /* number of dropped lines by buffer full */
224 static int mlog_drop; /* number of dropped lines by busy */
225 static volatile uint32_t mlog_inuse; /* in-use */
226 static int mlog_wpage; /* active page */
227 static void *mlog_sih; /* softint handle */
228
229 static void
230 audio_mlog_init(void)
231 {
232 mlog_refs++;
233 if (mlog_refs > 1)
234 return;
235 mlog_buflen = 4096;
236 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
237 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
238 mlog_used = 0;
239 mlog_full = 0;
240 mlog_drop = 0;
241 mlog_inuse = 0;
242 mlog_wpage = 0;
243 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
244 if (mlog_sih == NULL)
245 printf("%s: softint_establish failed\n", __func__);
246 }
247
248 static void
249 audio_mlog_free(void)
250 {
251 mlog_refs--;
252 if (mlog_refs > 0)
253 return;
254
255 audio_mlog_flush();
256 if (mlog_sih)
257 softint_disestablish(mlog_sih);
258 kmem_free(mlog_buf[0], mlog_buflen);
259 kmem_free(mlog_buf[1], mlog_buflen);
260 }
261
262 /*
263 * Flush memory buffer.
264 * It must not be called from hardware interrupt context.
265 */
266 void
267 audio_mlog_flush(void)
268 {
269 if (mlog_refs == 0)
270 return;
271
272 /* Nothing to do if already in use ? */
273 if (atomic_swap_32(&mlog_inuse, 1) == 1)
274 return;
275
276 int rpage = mlog_wpage;
277 mlog_wpage ^= 1;
278 mlog_buf[mlog_wpage][0] = '\0';
279 mlog_used = 0;
280
281 atomic_swap_32(&mlog_inuse, 0);
282
283 if (mlog_buf[rpage][0] != '\0') {
284 printf("%s", mlog_buf[rpage]);
285 if (mlog_drop > 0)
286 printf("mlog_drop %d\n", mlog_drop);
287 if (mlog_full > 0)
288 printf("mlog_full %d\n", mlog_full);
289 }
290 mlog_full = 0;
291 mlog_drop = 0;
292 }
293
294 static void
295 audio_mlog_softintr(void *cookie)
296 {
297 audio_mlog_flush();
298 }
299
300 void
301 audio_mlog_printf(const char *fmt, ...)
302 {
303 int len;
304 va_list ap;
305
306 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
307 /* already inuse */
308 mlog_drop++;
309 return;
310 }
311
312 va_start(ap, fmt);
313 len = vsnprintf(
314 mlog_buf[mlog_wpage] + mlog_used,
315 mlog_buflen - mlog_used,
316 fmt, ap);
317 va_end(ap);
318
319 mlog_used += len;
320 if (mlog_buflen - mlog_used <= 1) {
321 mlog_full++;
322 }
323
324 atomic_swap_32(&mlog_inuse, 0);
325
326 if (mlog_sih)
327 softint_schedule(mlog_sih);
328 }
329
330 /* trace functions */
331 static void
332 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
333 const char *fmt, va_list ap)
334 {
335 char buf[256];
336 int n;
337
338 n = 0;
339 buf[0] = '\0';
340 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
341 funcname, device_unit(sc->sc_dev), header);
342 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
343
344 if (cpu_intr_p()) {
345 audio_mlog_printf("%s\n", buf);
346 } else {
347 audio_mlog_flush();
348 printf("%s\n", buf);
349 }
350 }
351
352 static void
353 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
354 {
355 va_list ap;
356
357 va_start(ap, fmt);
358 audio_vtrace(sc, funcname, "", fmt, ap);
359 va_end(ap);
360 }
361
362 static void
363 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
364 {
365 char hdr[16];
366 va_list ap;
367
368 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
369 va_start(ap, fmt);
370 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
371 va_end(ap);
372 }
373
374 static void
375 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
376 {
377 char hdr[32];
378 char phdr[16], rhdr[16];
379 va_list ap;
380
381 phdr[0] = '\0';
382 rhdr[0] = '\0';
383 if (file->ptrack)
384 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
385 if (file->rtrack)
386 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
387 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
388
389 va_start(ap, fmt);
390 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
391 va_end(ap);
392 }
393
394 #define DPRINTF(n, fmt...) do { \
395 if (audiodebug >= (n)) { \
396 audio_mlog_flush(); \
397 printf(fmt); \
398 } \
399 } while (0)
400 #define TRACE(n, fmt...) do { \
401 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
402 } while (0)
403 #define TRACET(n, t, fmt...) do { \
404 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
405 } while (0)
406 #define TRACEF(n, f, fmt...) do { \
407 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
408 } while (0)
409
410 struct audio_track_debugbuf {
411 char usrbuf[32];
412 char codec[32];
413 char chvol[32];
414 char chmix[32];
415 char freq[32];
416 char outbuf[32];
417 };
418
419 static void
420 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
421 {
422
423 memset(buf, 0, sizeof(*buf));
424
425 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
426 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
427 if (track->freq.filter)
428 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
429 track->freq.srcbuf.head,
430 track->freq.srcbuf.used,
431 track->freq.srcbuf.capacity);
432 if (track->chmix.filter)
433 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
434 track->chmix.srcbuf.used);
435 if (track->chvol.filter)
436 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
437 track->chvol.srcbuf.used);
438 if (track->codec.filter)
439 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
440 track->codec.srcbuf.used);
441 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
442 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
443 }
444 #else
445 #define DPRINTF(n, fmt...) do { } while (0)
446 #define TRACE(n, fmt, ...) do { } while (0)
447 #define TRACET(n, t, fmt, ...) do { } while (0)
448 #define TRACEF(n, f, fmt, ...) do { } while (0)
449 #endif
450
451 #define SPECIFIED(x) ((x) != ~0)
452 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
453
454 /*
455 * Default hardware blocksize in msec.
456 *
457 * We use 10 msec for most modern platforms. This period is good enough to
458 * play audio and video synchronizely.
459 * In contrast, for very old platforms, this is usually too short and too
460 * severe. Also such platforms usually can not play video confortably, so
461 * it's not so important to make the blocksize shorter. If the platform
462 * defines its own value as __AUDIO_BLK_MS in its <machine/param.h>, it
463 * uses this instead.
464 *
465 * In either case, you can overwrite AUDIO_BLK_MS by your kernel
466 * configuration file if you wish.
467 */
468 #if !defined(AUDIO_BLK_MS)
469 # if defined(__AUDIO_BLK_MS)
470 # define AUDIO_BLK_MS __AUDIO_BLK_MS
471 # else
472 # define AUDIO_BLK_MS (10)
473 # endif
474 #endif
475
476 /* Device timeout in msec */
477 #define AUDIO_TIMEOUT (3000)
478
479 /* #define AUDIO_PM_IDLE */
480 #ifdef AUDIO_PM_IDLE
481 int audio_idle_timeout = 30;
482 #endif
483
484 /* Number of elements of async mixer's pid */
485 #define AM_CAPACITY (4)
486
487 struct portname {
488 const char *name;
489 int mask;
490 };
491
492 static int audiomatch(device_t, cfdata_t, void *);
493 static void audioattach(device_t, device_t, void *);
494 static int audiodetach(device_t, int);
495 static int audioactivate(device_t, enum devact);
496 static void audiochilddet(device_t, device_t);
497 static int audiorescan(device_t, const char *, const int *);
498
499 static int audio_modcmd(modcmd_t, void *);
500
501 #ifdef AUDIO_PM_IDLE
502 static void audio_idle(void *);
503 static void audio_activity(device_t, devactive_t);
504 #endif
505
506 static bool audio_suspend(device_t dv, const pmf_qual_t *);
507 static bool audio_resume(device_t dv, const pmf_qual_t *);
508 static void audio_volume_down(device_t);
509 static void audio_volume_up(device_t);
510 static void audio_volume_toggle(device_t);
511
512 static void audio_mixer_capture(struct audio_softc *);
513 static void audio_mixer_restore(struct audio_softc *);
514
515 static void audio_softintr_rd(void *);
516 static void audio_softintr_wr(void *);
517
518 static void audio_printf(struct audio_softc *, const char *, ...)
519 __printflike(2, 3);
520 static int audio_exlock_mutex_enter(struct audio_softc *);
521 static void audio_exlock_mutex_exit(struct audio_softc *);
522 static int audio_exlock_enter(struct audio_softc *);
523 static void audio_exlock_exit(struct audio_softc *);
524 static void audio_sc_acquire_foropen(struct audio_softc *, struct psref *);
525 static struct audio_softc *audio_sc_acquire_fromfile(audio_file_t *,
526 struct psref *);
527 static void audio_sc_release(struct audio_softc *, struct psref *);
528 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
529
530 static int audioclose(struct file *);
531 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
532 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
533 static int audioioctl(struct file *, u_long, void *);
534 static int audiopoll(struct file *, int);
535 static int audiokqfilter(struct file *, struct knote *);
536 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
537 struct uvm_object **, int *);
538 static int audiostat(struct file *, struct stat *);
539
540 static void filt_audiowrite_detach(struct knote *);
541 static int filt_audiowrite_event(struct knote *, long);
542 static void filt_audioread_detach(struct knote *);
543 static int filt_audioread_event(struct knote *, long);
544
545 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
546 audio_file_t **);
547 static int audio_close(struct audio_softc *, audio_file_t *);
548 static int audio_unlink(struct audio_softc *, audio_file_t *);
549 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
550 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
551 static void audio_file_clear(struct audio_softc *, audio_file_t *);
552 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
553 struct lwp *, audio_file_t *);
554 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
555 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
556 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
557 struct uvm_object **, int *, audio_file_t *);
558
559 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
560
561 static void audio_pintr(void *);
562 static void audio_rintr(void *);
563
564 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
565
566 static __inline int audio_track_readablebytes(const audio_track_t *);
567 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
568 const struct audio_info *);
569 static int audio_track_setinfo_check(audio_track_t *,
570 audio_format2_t *, const struct audio_prinfo *);
571 static void audio_track_setinfo_water(audio_track_t *,
572 const struct audio_info *);
573 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
574 struct audio_info *);
575 static int audio_hw_set_format(struct audio_softc *, int,
576 const audio_format2_t *, const audio_format2_t *,
577 audio_filter_reg_t *, audio_filter_reg_t *);
578 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
579 audio_file_t *);
580 static bool audio_can_playback(struct audio_softc *);
581 static bool audio_can_capture(struct audio_softc *);
582 static int audio_check_params(audio_format2_t *);
583 static int audio_mixers_init(struct audio_softc *sc, int,
584 const audio_format2_t *, const audio_format2_t *,
585 const audio_filter_reg_t *, const audio_filter_reg_t *);
586 static int audio_select_freq(const struct audio_format *);
587 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
588 static int audio_hw_validate_format(struct audio_softc *, int,
589 const audio_format2_t *);
590 static int audio_mixers_set_format(struct audio_softc *,
591 const struct audio_info *);
592 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
593 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
594 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
595 #if defined(AUDIO_DEBUG)
596 static int audio_sysctl_debug(SYSCTLFN_PROTO);
597 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
598 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
599 #endif
600
601 static void *audio_realloc(void *, size_t);
602 static int audio_realloc_usrbuf(audio_track_t *, int);
603 static void audio_free_usrbuf(audio_track_t *);
604
605 static audio_track_t *audio_track_create(struct audio_softc *,
606 audio_trackmixer_t *);
607 static void audio_track_destroy(audio_track_t *);
608 static audio_filter_t audio_track_get_codec(audio_track_t *,
609 const audio_format2_t *, const audio_format2_t *);
610 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
611 static void audio_track_play(audio_track_t *);
612 static int audio_track_drain(struct audio_softc *, audio_track_t *);
613 static void audio_track_record(audio_track_t *);
614 static void audio_track_clear(struct audio_softc *, audio_track_t *);
615
616 static int audio_mixer_init(struct audio_softc *, int,
617 const audio_format2_t *, const audio_filter_reg_t *);
618 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
619 static void audio_pmixer_start(struct audio_softc *, bool);
620 static void audio_pmixer_process(struct audio_softc *);
621 static void audio_pmixer_agc(audio_trackmixer_t *, int);
622 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
623 static void audio_pmixer_output(struct audio_softc *);
624 static int audio_pmixer_halt(struct audio_softc *);
625 static void audio_rmixer_start(struct audio_softc *);
626 static void audio_rmixer_process(struct audio_softc *);
627 static void audio_rmixer_input(struct audio_softc *);
628 static int audio_rmixer_halt(struct audio_softc *);
629
630 static void mixer_init(struct audio_softc *);
631 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
632 static int mixer_close(struct audio_softc *, audio_file_t *);
633 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
634 static void mixer_async_add(struct audio_softc *, pid_t);
635 static void mixer_async_remove(struct audio_softc *, pid_t);
636 static void mixer_signal(struct audio_softc *);
637
638 static int au_portof(struct audio_softc *, char *, int);
639
640 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
641 mixer_devinfo_t *, const struct portname *);
642 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
643 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
644 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
645 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
646 u_int *, u_char *);
647 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
648 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
649 static int au_set_monitor_gain(struct audio_softc *, int);
650 static int au_get_monitor_gain(struct audio_softc *);
651 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
652 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
653
654 static __inline struct audio_params
655 format2_to_params(const audio_format2_t *f2)
656 {
657 audio_params_t p;
658
659 /* validbits/precision <-> precision/stride */
660 p.sample_rate = f2->sample_rate;
661 p.channels = f2->channels;
662 p.encoding = f2->encoding;
663 p.validbits = f2->precision;
664 p.precision = f2->stride;
665 return p;
666 }
667
668 static __inline audio_format2_t
669 params_to_format2(const struct audio_params *p)
670 {
671 audio_format2_t f2;
672
673 /* precision/stride <-> validbits/precision */
674 f2.sample_rate = p->sample_rate;
675 f2.channels = p->channels;
676 f2.encoding = p->encoding;
677 f2.precision = p->validbits;
678 f2.stride = p->precision;
679 return f2;
680 }
681
682 /* Return true if this track is a playback track. */
683 static __inline bool
684 audio_track_is_playback(const audio_track_t *track)
685 {
686
687 return ((track->mode & AUMODE_PLAY) != 0);
688 }
689
690 /* Return true if this track is a recording track. */
691 static __inline bool
692 audio_track_is_record(const audio_track_t *track)
693 {
694
695 return ((track->mode & AUMODE_RECORD) != 0);
696 }
697
698 #if 0 /* XXX Not used yet */
699 /*
700 * Convert 0..255 volume used in userland to internal presentation 0..256.
701 */
702 static __inline u_int
703 audio_volume_to_inner(u_int v)
704 {
705
706 return v < 127 ? v : v + 1;
707 }
708
709 /*
710 * Convert 0..256 internal presentation to 0..255 volume used in userland.
711 */
712 static __inline u_int
713 audio_volume_to_outer(u_int v)
714 {
715
716 return v < 127 ? v : v - 1;
717 }
718 #endif /* 0 */
719
720 static dev_type_open(audioopen);
721 /* XXXMRG use more dev_type_xxx */
722
723 const struct cdevsw audio_cdevsw = {
724 .d_open = audioopen,
725 .d_close = noclose,
726 .d_read = noread,
727 .d_write = nowrite,
728 .d_ioctl = noioctl,
729 .d_stop = nostop,
730 .d_tty = notty,
731 .d_poll = nopoll,
732 .d_mmap = nommap,
733 .d_kqfilter = nokqfilter,
734 .d_discard = nodiscard,
735 .d_flag = D_OTHER | D_MPSAFE
736 };
737
738 const struct fileops audio_fileops = {
739 .fo_name = "audio",
740 .fo_read = audioread,
741 .fo_write = audiowrite,
742 .fo_ioctl = audioioctl,
743 .fo_fcntl = fnullop_fcntl,
744 .fo_stat = audiostat,
745 .fo_poll = audiopoll,
746 .fo_close = audioclose,
747 .fo_mmap = audiommap,
748 .fo_kqfilter = audiokqfilter,
749 .fo_restart = fnullop_restart
750 };
751
752 /* The default audio mode: 8 kHz mono mu-law */
753 static const struct audio_params audio_default = {
754 .sample_rate = 8000,
755 .encoding = AUDIO_ENCODING_ULAW,
756 .precision = 8,
757 .validbits = 8,
758 .channels = 1,
759 };
760
761 static const char *encoding_names[] = {
762 "none",
763 AudioEmulaw,
764 AudioEalaw,
765 "pcm16",
766 "pcm8",
767 AudioEadpcm,
768 AudioEslinear_le,
769 AudioEslinear_be,
770 AudioEulinear_le,
771 AudioEulinear_be,
772 AudioEslinear,
773 AudioEulinear,
774 AudioEmpeg_l1_stream,
775 AudioEmpeg_l1_packets,
776 AudioEmpeg_l1_system,
777 AudioEmpeg_l2_stream,
778 AudioEmpeg_l2_packets,
779 AudioEmpeg_l2_system,
780 AudioEac3,
781 };
782
783 /*
784 * Returns encoding name corresponding to AUDIO_ENCODING_*.
785 * Note that it may return a local buffer because it is mainly for debugging.
786 */
787 const char *
788 audio_encoding_name(int encoding)
789 {
790 static char buf[16];
791
792 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
793 return encoding_names[encoding];
794 } else {
795 snprintf(buf, sizeof(buf), "enc=%d", encoding);
796 return buf;
797 }
798 }
799
800 /*
801 * Supported encodings used by AUDIO_GETENC.
802 * index and flags are set by code.
803 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
804 */
805 static const audio_encoding_t audio_encodings[] = {
806 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
807 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
808 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
809 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
810 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
811 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
812 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
813 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
814 #if defined(AUDIO_SUPPORT_LINEAR24)
815 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
816 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
817 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
818 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
819 #endif
820 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
821 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
822 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
823 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
824 };
825
826 static const struct portname itable[] = {
827 { AudioNmicrophone, AUDIO_MICROPHONE },
828 { AudioNline, AUDIO_LINE_IN },
829 { AudioNcd, AUDIO_CD },
830 { 0, 0 }
831 };
832 static const struct portname otable[] = {
833 { AudioNspeaker, AUDIO_SPEAKER },
834 { AudioNheadphone, AUDIO_HEADPHONE },
835 { AudioNline, AUDIO_LINE_OUT },
836 { 0, 0 }
837 };
838
839 static struct psref_class *audio_psref_class __read_mostly;
840
841 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
842 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
843 audiochilddet, DVF_DETACH_SHUTDOWN);
844
845 static int
846 audiomatch(device_t parent, cfdata_t match, void *aux)
847 {
848 struct audio_attach_args *sa;
849
850 sa = aux;
851 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
852 __func__, sa->type, sa, sa->hwif);
853 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
854 }
855
856 static void
857 audioattach(device_t parent, device_t self, void *aux)
858 {
859 struct audio_softc *sc;
860 struct audio_attach_args *sa;
861 const struct audio_hw_if *hw_if;
862 audio_format2_t phwfmt;
863 audio_format2_t rhwfmt;
864 audio_filter_reg_t pfil;
865 audio_filter_reg_t rfil;
866 const struct sysctlnode *node;
867 void *hdlp;
868 bool has_playback;
869 bool has_capture;
870 bool has_indep;
871 bool has_fulldup;
872 int mode;
873 int error;
874
875 sc = device_private(self);
876 sc->sc_dev = self;
877 sa = (struct audio_attach_args *)aux;
878 hw_if = sa->hwif;
879 hdlp = sa->hdl;
880
881 if (hw_if == NULL) {
882 panic("audioattach: missing hw_if method");
883 }
884 if (hw_if->get_locks == NULL || hw_if->get_props == NULL) {
885 aprint_error(": missing mandatory method\n");
886 return;
887 }
888
889 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
890 sc->sc_props = hw_if->get_props(hdlp);
891
892 has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
893 has_capture = (sc->sc_props & AUDIO_PROP_CAPTURE);
894 has_indep = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
895 has_fulldup = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
896
897 #ifdef DIAGNOSTIC
898 if (hw_if->query_format == NULL ||
899 hw_if->set_format == NULL ||
900 hw_if->getdev == NULL ||
901 hw_if->set_port == NULL ||
902 hw_if->get_port == NULL ||
903 hw_if->query_devinfo == NULL) {
904 aprint_error(": missing mandatory method\n");
905 return;
906 }
907 if (has_playback) {
908 if ((hw_if->start_output == NULL &&
909 hw_if->trigger_output == NULL) ||
910 hw_if->halt_output == NULL) {
911 aprint_error(": missing playback method\n");
912 }
913 }
914 if (has_capture) {
915 if ((hw_if->start_input == NULL &&
916 hw_if->trigger_input == NULL) ||
917 hw_if->halt_input == NULL) {
918 aprint_error(": missing capture method\n");
919 }
920 }
921 #endif
922
923 sc->hw_if = hw_if;
924 sc->hw_hdl = hdlp;
925 sc->hw_dev = parent;
926
927 sc->sc_exlock = 1;
928 sc->sc_blk_ms = AUDIO_BLK_MS;
929 SLIST_INIT(&sc->sc_files);
930 cv_init(&sc->sc_exlockcv, "audiolk");
931 sc->sc_am_capacity = 0;
932 sc->sc_am_used = 0;
933 sc->sc_am = NULL;
934
935 /* MMAP is now supported by upper layer. */
936 sc->sc_props |= AUDIO_PROP_MMAP;
937
938 KASSERT(has_playback || has_capture);
939 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
940 if (!has_playback || !has_capture) {
941 KASSERT(!has_indep);
942 KASSERT(!has_fulldup);
943 }
944
945 mode = 0;
946 if (has_playback) {
947 aprint_normal(": playback");
948 mode |= AUMODE_PLAY;
949 }
950 if (has_capture) {
951 aprint_normal("%c capture", has_playback ? ',' : ':');
952 mode |= AUMODE_RECORD;
953 }
954 if (has_playback && has_capture) {
955 if (has_fulldup)
956 aprint_normal(", full duplex");
957 else
958 aprint_normal(", half duplex");
959
960 if (has_indep)
961 aprint_normal(", independent");
962 }
963
964 aprint_naive("\n");
965 aprint_normal("\n");
966
967 /* probe hw params */
968 memset(&phwfmt, 0, sizeof(phwfmt));
969 memset(&rhwfmt, 0, sizeof(rhwfmt));
970 memset(&pfil, 0, sizeof(pfil));
971 memset(&rfil, 0, sizeof(rfil));
972 if (has_indep) {
973 int perror, rerror;
974
975 /* On independent devices, probe separately. */
976 perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
977 rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
978 if (perror && rerror) {
979 aprint_error_dev(self,
980 "audio_hw_probe failed: perror=%d, rerror=%d\n",
981 perror, rerror);
982 goto bad;
983 }
984 if (perror) {
985 mode &= ~AUMODE_PLAY;
986 aprint_error_dev(self, "audio_hw_probe failed: "
987 "errno=%d, playback disabled\n", perror);
988 }
989 if (rerror) {
990 mode &= ~AUMODE_RECORD;
991 aprint_error_dev(self, "audio_hw_probe failed: "
992 "errno=%d, capture disabled\n", rerror);
993 }
994 } else {
995 /*
996 * On non independent devices or uni-directional devices,
997 * probe once (simultaneously).
998 */
999 audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
1000 error = audio_hw_probe(sc, fmt, mode);
1001 if (error) {
1002 aprint_error_dev(self,
1003 "audio_hw_probe failed: errno=%d\n", error);
1004 goto bad;
1005 }
1006 if (has_playback && has_capture)
1007 rhwfmt = phwfmt;
1008 }
1009
1010 /* Init hardware. */
1011 /* hw_probe() also validates [pr]hwfmt. */
1012 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1013 if (error) {
1014 aprint_error_dev(self,
1015 "audio_hw_set_format failed: errno=%d\n", error);
1016 goto bad;
1017 }
1018
1019 /*
1020 * Init track mixers. If at least one direction is available on
1021 * attach time, we assume a success.
1022 */
1023 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1024 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
1025 aprint_error_dev(self,
1026 "audio_mixers_init failed: errno=%d\n", error);
1027 goto bad;
1028 }
1029
1030 sc->sc_psz = pserialize_create();
1031 psref_target_init(&sc->sc_psref, audio_psref_class);
1032
1033 selinit(&sc->sc_wsel);
1034 selinit(&sc->sc_rsel);
1035
1036 /* Initial parameter of /dev/sound */
1037 sc->sc_sound_pparams = params_to_format2(&audio_default);
1038 sc->sc_sound_rparams = params_to_format2(&audio_default);
1039 sc->sc_sound_ppause = false;
1040 sc->sc_sound_rpause = false;
1041
1042 /* XXX TODO: consider about sc_ai */
1043
1044 mixer_init(sc);
1045 TRACE(2, "inputs ports=0x%x, input master=%d, "
1046 "output ports=0x%x, output master=%d",
1047 sc->sc_inports.allports, sc->sc_inports.master,
1048 sc->sc_outports.allports, sc->sc_outports.master);
1049
1050 sysctl_createv(&sc->sc_log, 0, NULL, &node,
1051 0,
1052 CTLTYPE_NODE, device_xname(sc->sc_dev),
1053 SYSCTL_DESCR("audio test"),
1054 NULL, 0,
1055 NULL, 0,
1056 CTL_HW,
1057 CTL_CREATE, CTL_EOL);
1058
1059 if (node != NULL) {
1060 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1061 CTLFLAG_READWRITE,
1062 CTLTYPE_INT, "blk_ms",
1063 SYSCTL_DESCR("blocksize in msec"),
1064 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1065 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1066
1067 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1068 CTLFLAG_READWRITE,
1069 CTLTYPE_BOOL, "multiuser",
1070 SYSCTL_DESCR("allow multiple user access"),
1071 audio_sysctl_multiuser, 0, (void *)sc, 0,
1072 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1073
1074 #if defined(AUDIO_DEBUG)
1075 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1076 CTLFLAG_READWRITE,
1077 CTLTYPE_INT, "debug",
1078 SYSCTL_DESCR("debug level (0..4)"),
1079 audio_sysctl_debug, 0, (void *)sc, 0,
1080 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1081 #endif
1082 }
1083
1084 #ifdef AUDIO_PM_IDLE
1085 callout_init(&sc->sc_idle_counter, 0);
1086 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1087 #endif
1088
1089 if (!pmf_device_register(self, audio_suspend, audio_resume))
1090 aprint_error_dev(self, "couldn't establish power handler\n");
1091 #ifdef AUDIO_PM_IDLE
1092 if (!device_active_register(self, audio_activity))
1093 aprint_error_dev(self, "couldn't register activity handler\n");
1094 #endif
1095
1096 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1097 audio_volume_down, true))
1098 aprint_error_dev(self, "couldn't add volume down handler\n");
1099 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1100 audio_volume_up, true))
1101 aprint_error_dev(self, "couldn't add volume up handler\n");
1102 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1103 audio_volume_toggle, true))
1104 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1105
1106 #ifdef AUDIO_PM_IDLE
1107 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1108 #endif
1109
1110 #if defined(AUDIO_DEBUG)
1111 audio_mlog_init();
1112 #endif
1113
1114 audiorescan(self, NULL, NULL);
1115 sc->sc_exlock = 0;
1116 return;
1117
1118 bad:
1119 /* Clearing hw_if means that device is attached but disabled. */
1120 sc->hw_if = NULL;
1121 sc->sc_exlock = 0;
1122 aprint_error_dev(sc->sc_dev, "disabled\n");
1123 return;
1124 }
1125
1126 /*
1127 * Initialize hardware mixer.
1128 * This function is called from audioattach().
1129 */
1130 static void
1131 mixer_init(struct audio_softc *sc)
1132 {
1133 mixer_devinfo_t mi;
1134 int iclass, mclass, oclass, rclass;
1135 int record_master_found, record_source_found;
1136
1137 iclass = mclass = oclass = rclass = -1;
1138 sc->sc_inports.index = -1;
1139 sc->sc_inports.master = -1;
1140 sc->sc_inports.nports = 0;
1141 sc->sc_inports.isenum = false;
1142 sc->sc_inports.allports = 0;
1143 sc->sc_inports.isdual = false;
1144 sc->sc_inports.mixerout = -1;
1145 sc->sc_inports.cur_port = -1;
1146 sc->sc_outports.index = -1;
1147 sc->sc_outports.master = -1;
1148 sc->sc_outports.nports = 0;
1149 sc->sc_outports.isenum = false;
1150 sc->sc_outports.allports = 0;
1151 sc->sc_outports.isdual = false;
1152 sc->sc_outports.mixerout = -1;
1153 sc->sc_outports.cur_port = -1;
1154 sc->sc_monitor_port = -1;
1155 /*
1156 * Read through the underlying driver's list, picking out the class
1157 * names from the mixer descriptions. We'll need them to decode the
1158 * mixer descriptions on the next pass through the loop.
1159 */
1160 mutex_enter(sc->sc_lock);
1161 for(mi.index = 0; ; mi.index++) {
1162 if (audio_query_devinfo(sc, &mi) != 0)
1163 break;
1164 /*
1165 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1166 * All the other types describe an actual mixer.
1167 */
1168 if (mi.type == AUDIO_MIXER_CLASS) {
1169 if (strcmp(mi.label.name, AudioCinputs) == 0)
1170 iclass = mi.mixer_class;
1171 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1172 mclass = mi.mixer_class;
1173 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1174 oclass = mi.mixer_class;
1175 if (strcmp(mi.label.name, AudioCrecord) == 0)
1176 rclass = mi.mixer_class;
1177 }
1178 }
1179 mutex_exit(sc->sc_lock);
1180
1181 /* Allocate save area. Ensure non-zero allocation. */
1182 sc->sc_nmixer_states = mi.index;
1183 sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
1184 (sc->sc_nmixer_states + 1), KM_SLEEP);
1185
1186 /*
1187 * This is where we assign each control in the "audio" model, to the
1188 * underlying "mixer" control. We walk through the whole list once,
1189 * assigning likely candidates as we come across them.
1190 */
1191 record_master_found = 0;
1192 record_source_found = 0;
1193 mutex_enter(sc->sc_lock);
1194 for(mi.index = 0; ; mi.index++) {
1195 if (audio_query_devinfo(sc, &mi) != 0)
1196 break;
1197 KASSERT(mi.index < sc->sc_nmixer_states);
1198 if (mi.type == AUDIO_MIXER_CLASS)
1199 continue;
1200 if (mi.mixer_class == iclass) {
1201 /*
1202 * AudioCinputs is only a fallback, when we don't
1203 * find what we're looking for in AudioCrecord, so
1204 * check the flags before accepting one of these.
1205 */
1206 if (strcmp(mi.label.name, AudioNmaster) == 0
1207 && record_master_found == 0)
1208 sc->sc_inports.master = mi.index;
1209 if (strcmp(mi.label.name, AudioNsource) == 0
1210 && record_source_found == 0) {
1211 if (mi.type == AUDIO_MIXER_ENUM) {
1212 int i;
1213 for(i = 0; i < mi.un.e.num_mem; i++)
1214 if (strcmp(mi.un.e.member[i].label.name,
1215 AudioNmixerout) == 0)
1216 sc->sc_inports.mixerout =
1217 mi.un.e.member[i].ord;
1218 }
1219 au_setup_ports(sc, &sc->sc_inports, &mi,
1220 itable);
1221 }
1222 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1223 sc->sc_outports.master == -1)
1224 sc->sc_outports.master = mi.index;
1225 } else if (mi.mixer_class == mclass) {
1226 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1227 sc->sc_monitor_port = mi.index;
1228 } else if (mi.mixer_class == oclass) {
1229 if (strcmp(mi.label.name, AudioNmaster) == 0)
1230 sc->sc_outports.master = mi.index;
1231 if (strcmp(mi.label.name, AudioNselect) == 0)
1232 au_setup_ports(sc, &sc->sc_outports, &mi,
1233 otable);
1234 } else if (mi.mixer_class == rclass) {
1235 /*
1236 * These are the preferred mixers for the audio record
1237 * controls, so set the flags here, but don't check.
1238 */
1239 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1240 sc->sc_inports.master = mi.index;
1241 record_master_found = 1;
1242 }
1243 #if 1 /* Deprecated. Use AudioNmaster. */
1244 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1245 sc->sc_inports.master = mi.index;
1246 record_master_found = 1;
1247 }
1248 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1249 sc->sc_inports.master = mi.index;
1250 record_master_found = 1;
1251 }
1252 #endif
1253 if (strcmp(mi.label.name, AudioNsource) == 0) {
1254 if (mi.type == AUDIO_MIXER_ENUM) {
1255 int i;
1256 for(i = 0; i < mi.un.e.num_mem; i++)
1257 if (strcmp(mi.un.e.member[i].label.name,
1258 AudioNmixerout) == 0)
1259 sc->sc_inports.mixerout =
1260 mi.un.e.member[i].ord;
1261 }
1262 au_setup_ports(sc, &sc->sc_inports, &mi,
1263 itable);
1264 record_source_found = 1;
1265 }
1266 }
1267 }
1268 mutex_exit(sc->sc_lock);
1269 }
1270
1271 static int
1272 audioactivate(device_t self, enum devact act)
1273 {
1274 struct audio_softc *sc = device_private(self);
1275
1276 switch (act) {
1277 case DVACT_DEACTIVATE:
1278 mutex_enter(sc->sc_lock);
1279 sc->sc_dying = true;
1280 cv_broadcast(&sc->sc_exlockcv);
1281 mutex_exit(sc->sc_lock);
1282 return 0;
1283 default:
1284 return EOPNOTSUPP;
1285 }
1286 }
1287
1288 static int
1289 audiodetach(device_t self, int flags)
1290 {
1291 struct audio_softc *sc;
1292 struct audio_file *file;
1293 int error;
1294
1295 sc = device_private(self);
1296 TRACE(2, "flags=%d", flags);
1297
1298 /* device is not initialized */
1299 if (sc->hw_if == NULL)
1300 return 0;
1301
1302 /* Start draining existing accessors of the device. */
1303 error = config_detach_children(self, flags);
1304 if (error)
1305 return error;
1306
1307 /*
1308 * This waits currently running sysctls to finish if exists.
1309 * After this, no more new sysctls will come.
1310 */
1311 sysctl_teardown(&sc->sc_log);
1312
1313 mutex_enter(sc->sc_lock);
1314 sc->sc_dying = true;
1315 cv_broadcast(&sc->sc_exlockcv);
1316 if (sc->sc_pmixer)
1317 cv_broadcast(&sc->sc_pmixer->outcv);
1318 if (sc->sc_rmixer)
1319 cv_broadcast(&sc->sc_rmixer->outcv);
1320
1321 /* Prevent new users */
1322 SLIST_FOREACH(file, &sc->sc_files, entry) {
1323 atomic_store_relaxed(&file->dying, true);
1324 }
1325
1326 /*
1327 * Wait for existing users to drain.
1328 * - pserialize_perform waits for all pserialize_read sections on
1329 * all CPUs; after this, no more new psref_acquire can happen.
1330 * - psref_target_destroy waits for all extant acquired psrefs to
1331 * be psref_released.
1332 */
1333 pserialize_perform(sc->sc_psz);
1334 mutex_exit(sc->sc_lock);
1335 psref_target_destroy(&sc->sc_psref, audio_psref_class);
1336
1337 /*
1338 * We are now guaranteed that there are no calls to audio fileops
1339 * that hold sc, and any new calls with files that were for sc will
1340 * fail. Thus, we now have exclusive access to the softc.
1341 */
1342 sc->sc_exlock = 1;
1343
1344 /*
1345 * Clean up all open instances.
1346 * Here, we no longer need any locks to traverse sc_files.
1347 */
1348 while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
1349 audio_unlink(sc, file);
1350 }
1351
1352 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1353 audio_volume_down, true);
1354 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1355 audio_volume_up, true);
1356 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1357 audio_volume_toggle, true);
1358
1359 #ifdef AUDIO_PM_IDLE
1360 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1361
1362 device_active_deregister(self, audio_activity);
1363 #endif
1364
1365 pmf_device_deregister(self);
1366
1367 /* Free resources */
1368 if (sc->sc_pmixer) {
1369 audio_mixer_destroy(sc, sc->sc_pmixer);
1370 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1371 }
1372 if (sc->sc_rmixer) {
1373 audio_mixer_destroy(sc, sc->sc_rmixer);
1374 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1375 }
1376 if (sc->sc_am)
1377 kern_free(sc->sc_am);
1378
1379 seldestroy(&sc->sc_wsel);
1380 seldestroy(&sc->sc_rsel);
1381
1382 #ifdef AUDIO_PM_IDLE
1383 callout_destroy(&sc->sc_idle_counter);
1384 #endif
1385
1386 cv_destroy(&sc->sc_exlockcv);
1387
1388 #if defined(AUDIO_DEBUG)
1389 audio_mlog_free();
1390 #endif
1391
1392 return 0;
1393 }
1394
1395 static void
1396 audiochilddet(device_t self, device_t child)
1397 {
1398
1399 /* we hold no child references, so do nothing */
1400 }
1401
1402 static int
1403 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1404 {
1405
1406 if (config_probe(parent, cf, aux))
1407 config_attach(parent, cf, aux, NULL,
1408 CFARG_EOL);
1409
1410 return 0;
1411 }
1412
1413 static int
1414 audiorescan(device_t self, const char *ifattr, const int *locators)
1415 {
1416 struct audio_softc *sc = device_private(self);
1417
1418 config_search(sc->sc_dev, NULL,
1419 CFARG_SEARCH, audiosearch,
1420 CFARG_EOL);
1421
1422 return 0;
1423 }
1424
1425 /*
1426 * Called from hardware driver. This is where the MI audio driver gets
1427 * probed/attached to the hardware driver.
1428 */
1429 device_t
1430 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1431 {
1432 struct audio_attach_args arg;
1433
1434 #ifdef DIAGNOSTIC
1435 if (ahwp == NULL) {
1436 aprint_error("audio_attach_mi: NULL\n");
1437 return 0;
1438 }
1439 #endif
1440 arg.type = AUDIODEV_TYPE_AUDIO;
1441 arg.hwif = ahwp;
1442 arg.hdl = hdlp;
1443 return config_found(dev, &arg, audioprint,
1444 CFARG_IATTR, "audiobus",
1445 CFARG_EOL);
1446 }
1447
1448 /*
1449 * audio_printf() outputs fmt... with the audio device name and MD device
1450 * name prefixed. If the message is considered to be related to the MD
1451 * driver, use this one instead of device_printf().
1452 */
1453 static void
1454 audio_printf(struct audio_softc *sc, const char *fmt, ...)
1455 {
1456 va_list ap;
1457
1458 printf("%s(%s): ", device_xname(sc->sc_dev), device_xname(sc->hw_dev));
1459 va_start(ap, fmt);
1460 vprintf(fmt, ap);
1461 va_end(ap);
1462 }
1463
1464 /*
1465 * Enter critical section and also keep sc_lock.
1466 * If successful, returns 0 with sc_lock held. Otherwise returns errno.
1467 * Must be called without sc_lock held.
1468 */
1469 static int
1470 audio_exlock_mutex_enter(struct audio_softc *sc)
1471 {
1472 int error;
1473
1474 mutex_enter(sc->sc_lock);
1475 if (sc->sc_dying) {
1476 mutex_exit(sc->sc_lock);
1477 return EIO;
1478 }
1479
1480 while (__predict_false(sc->sc_exlock != 0)) {
1481 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1482 if (sc->sc_dying)
1483 error = EIO;
1484 if (error) {
1485 mutex_exit(sc->sc_lock);
1486 return error;
1487 }
1488 }
1489
1490 /* Acquire */
1491 sc->sc_exlock = 1;
1492 return 0;
1493 }
1494
1495 /*
1496 * Exit critical section and exit sc_lock.
1497 * Must be called with sc_lock held.
1498 */
1499 static void
1500 audio_exlock_mutex_exit(struct audio_softc *sc)
1501 {
1502
1503 KASSERT(mutex_owned(sc->sc_lock));
1504
1505 sc->sc_exlock = 0;
1506 cv_broadcast(&sc->sc_exlockcv);
1507 mutex_exit(sc->sc_lock);
1508 }
1509
1510 /*
1511 * Enter critical section.
1512 * If successful, it returns 0. Otherwise returns errno.
1513 * Must be called without sc_lock held.
1514 * This function returns without sc_lock held.
1515 */
1516 static int
1517 audio_exlock_enter(struct audio_softc *sc)
1518 {
1519 int error;
1520
1521 error = audio_exlock_mutex_enter(sc);
1522 if (error)
1523 return error;
1524 mutex_exit(sc->sc_lock);
1525 return 0;
1526 }
1527
1528 /*
1529 * Exit critical section.
1530 * Must be called without sc_lock held.
1531 */
1532 static void
1533 audio_exlock_exit(struct audio_softc *sc)
1534 {
1535
1536 mutex_enter(sc->sc_lock);
1537 audio_exlock_mutex_exit(sc);
1538 }
1539
1540 /*
1541 * Increment reference counter for this sc.
1542 * This is intended to be used for open.
1543 */
1544 void
1545 audio_sc_acquire_foropen(struct audio_softc *sc, struct psref *refp)
1546 {
1547 int s;
1548
1549 /* Block audiodetach while we acquire a reference */
1550 s = pserialize_read_enter();
1551
1552 /*
1553 * We don't examine sc_dying here. However, all open methods
1554 * call audio_exlock_enter() right after this, so we can examine
1555 * sc_dying in it.
1556 */
1557
1558 /* Acquire a reference */
1559 psref_acquire(refp, &sc->sc_psref, audio_psref_class);
1560
1561 /* Now sc won't go away until we drop the reference count */
1562 pserialize_read_exit(s);
1563 }
1564
1565 /*
1566 * Get sc from file, and increment reference counter for this sc.
1567 * This is intended to be used for methods other than open.
1568 * If successful, returns sc. Otherwise returns NULL.
1569 */
1570 struct audio_softc *
1571 audio_sc_acquire_fromfile(audio_file_t *file, struct psref *refp)
1572 {
1573 int s;
1574 bool dying;
1575
1576 /* Block audiodetach while we acquire a reference */
1577 s = pserialize_read_enter();
1578
1579 /* If close or audiodetach already ran, tough -- no more audio */
1580 dying = atomic_load_relaxed(&file->dying);
1581 if (dying) {
1582 pserialize_read_exit(s);
1583 return NULL;
1584 }
1585
1586 /* Acquire a reference */
1587 psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
1588
1589 /* Now sc won't go away until we drop the reference count */
1590 pserialize_read_exit(s);
1591
1592 return file->sc;
1593 }
1594
1595 /*
1596 * Decrement reference counter for this sc.
1597 */
1598 void
1599 audio_sc_release(struct audio_softc *sc, struct psref *refp)
1600 {
1601
1602 psref_release(refp, &sc->sc_psref, audio_psref_class);
1603 }
1604
1605 /*
1606 * Wait for I/O to complete, releasing sc_lock.
1607 * Must be called with sc_lock held.
1608 */
1609 static int
1610 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1611 {
1612 int error;
1613
1614 KASSERT(track);
1615 KASSERT(mutex_owned(sc->sc_lock));
1616
1617 /* Wait for pending I/O to complete. */
1618 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1619 mstohz(AUDIO_TIMEOUT));
1620 if (sc->sc_suspending) {
1621 /* If it's about to suspend, ignore timeout error. */
1622 if (error == EWOULDBLOCK) {
1623 TRACET(2, track, "timeout (suspending)");
1624 return 0;
1625 }
1626 }
1627 if (sc->sc_dying) {
1628 error = EIO;
1629 }
1630 if (error) {
1631 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1632 if (error == EWOULDBLOCK)
1633 audio_printf(sc, "device timeout\n");
1634 } else {
1635 TRACET(3, track, "wakeup");
1636 }
1637 return error;
1638 }
1639
1640 /*
1641 * Try to acquire track lock.
1642 * It doesn't block if the track lock is already aquired.
1643 * Returns true if the track lock was acquired, or false if the track
1644 * lock was already acquired.
1645 */
1646 static __inline bool
1647 audio_track_lock_tryenter(audio_track_t *track)
1648 {
1649 return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1650 }
1651
1652 /*
1653 * Acquire track lock.
1654 */
1655 static __inline void
1656 audio_track_lock_enter(audio_track_t *track)
1657 {
1658 /* Don't sleep here. */
1659 while (audio_track_lock_tryenter(track) == false)
1660 ;
1661 }
1662
1663 /*
1664 * Release track lock.
1665 */
1666 static __inline void
1667 audio_track_lock_exit(audio_track_t *track)
1668 {
1669 atomic_swap_uint(&track->lock, 0);
1670 }
1671
1672
1673 static int
1674 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1675 {
1676 struct audio_softc *sc;
1677 struct psref sc_ref;
1678 int bound;
1679 int error;
1680
1681 /* Find the device */
1682 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1683 if (sc == NULL || sc->hw_if == NULL)
1684 return ENXIO;
1685
1686 bound = curlwp_bind();
1687 audio_sc_acquire_foropen(sc, &sc_ref);
1688
1689 error = audio_exlock_enter(sc);
1690 if (error)
1691 goto done;
1692
1693 device_active(sc->sc_dev, DVA_SYSTEM);
1694 switch (AUDIODEV(dev)) {
1695 case SOUND_DEVICE:
1696 case AUDIO_DEVICE:
1697 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1698 break;
1699 case AUDIOCTL_DEVICE:
1700 error = audioctl_open(dev, sc, flags, ifmt, l);
1701 break;
1702 case MIXER_DEVICE:
1703 error = mixer_open(dev, sc, flags, ifmt, l);
1704 break;
1705 default:
1706 error = ENXIO;
1707 break;
1708 }
1709 audio_exlock_exit(sc);
1710
1711 done:
1712 audio_sc_release(sc, &sc_ref);
1713 curlwp_bindx(bound);
1714 return error;
1715 }
1716
1717 static int
1718 audioclose(struct file *fp)
1719 {
1720 struct audio_softc *sc;
1721 struct psref sc_ref;
1722 audio_file_t *file;
1723 int bound;
1724 int error;
1725 dev_t dev;
1726
1727 KASSERT(fp->f_audioctx);
1728 file = fp->f_audioctx;
1729 dev = file->dev;
1730 error = 0;
1731
1732 /*
1733 * audioclose() must
1734 * - unplug track from the trackmixer (and unplug anything from softc),
1735 * if sc exists.
1736 * - free all memory objects, regardless of sc.
1737 */
1738
1739 bound = curlwp_bind();
1740 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1741 if (sc) {
1742 switch (AUDIODEV(dev)) {
1743 case SOUND_DEVICE:
1744 case AUDIO_DEVICE:
1745 error = audio_close(sc, file);
1746 break;
1747 case AUDIOCTL_DEVICE:
1748 error = 0;
1749 break;
1750 case MIXER_DEVICE:
1751 error = mixer_close(sc, file);
1752 break;
1753 default:
1754 error = ENXIO;
1755 break;
1756 }
1757
1758 audio_sc_release(sc, &sc_ref);
1759 }
1760 curlwp_bindx(bound);
1761
1762 /* Free memory objects anyway */
1763 TRACEF(2, file, "free memory");
1764 if (file->ptrack)
1765 audio_track_destroy(file->ptrack);
1766 if (file->rtrack)
1767 audio_track_destroy(file->rtrack);
1768 kmem_free(file, sizeof(*file));
1769 fp->f_audioctx = NULL;
1770
1771 return error;
1772 }
1773
1774 static int
1775 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1776 int ioflag)
1777 {
1778 struct audio_softc *sc;
1779 struct psref sc_ref;
1780 audio_file_t *file;
1781 int bound;
1782 int error;
1783 dev_t dev;
1784
1785 KASSERT(fp->f_audioctx);
1786 file = fp->f_audioctx;
1787 dev = file->dev;
1788
1789 bound = curlwp_bind();
1790 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1791 if (sc == NULL) {
1792 error = EIO;
1793 goto done;
1794 }
1795
1796 if (fp->f_flag & O_NONBLOCK)
1797 ioflag |= IO_NDELAY;
1798
1799 switch (AUDIODEV(dev)) {
1800 case SOUND_DEVICE:
1801 case AUDIO_DEVICE:
1802 error = audio_read(sc, uio, ioflag, file);
1803 break;
1804 case AUDIOCTL_DEVICE:
1805 case MIXER_DEVICE:
1806 error = ENODEV;
1807 break;
1808 default:
1809 error = ENXIO;
1810 break;
1811 }
1812
1813 audio_sc_release(sc, &sc_ref);
1814 done:
1815 curlwp_bindx(bound);
1816 return error;
1817 }
1818
1819 static int
1820 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1821 int ioflag)
1822 {
1823 struct audio_softc *sc;
1824 struct psref sc_ref;
1825 audio_file_t *file;
1826 int bound;
1827 int error;
1828 dev_t dev;
1829
1830 KASSERT(fp->f_audioctx);
1831 file = fp->f_audioctx;
1832 dev = file->dev;
1833
1834 bound = curlwp_bind();
1835 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1836 if (sc == NULL) {
1837 error = EIO;
1838 goto done;
1839 }
1840
1841 if (fp->f_flag & O_NONBLOCK)
1842 ioflag |= IO_NDELAY;
1843
1844 switch (AUDIODEV(dev)) {
1845 case SOUND_DEVICE:
1846 case AUDIO_DEVICE:
1847 error = audio_write(sc, uio, ioflag, file);
1848 break;
1849 case AUDIOCTL_DEVICE:
1850 case MIXER_DEVICE:
1851 error = ENODEV;
1852 break;
1853 default:
1854 error = ENXIO;
1855 break;
1856 }
1857
1858 audio_sc_release(sc, &sc_ref);
1859 done:
1860 curlwp_bindx(bound);
1861 return error;
1862 }
1863
1864 static int
1865 audioioctl(struct file *fp, u_long cmd, void *addr)
1866 {
1867 struct audio_softc *sc;
1868 struct psref sc_ref;
1869 audio_file_t *file;
1870 struct lwp *l = curlwp;
1871 int bound;
1872 int error;
1873 dev_t dev;
1874
1875 KASSERT(fp->f_audioctx);
1876 file = fp->f_audioctx;
1877 dev = file->dev;
1878
1879 bound = curlwp_bind();
1880 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1881 if (sc == NULL) {
1882 error = EIO;
1883 goto done;
1884 }
1885
1886 switch (AUDIODEV(dev)) {
1887 case SOUND_DEVICE:
1888 case AUDIO_DEVICE:
1889 case AUDIOCTL_DEVICE:
1890 mutex_enter(sc->sc_lock);
1891 device_active(sc->sc_dev, DVA_SYSTEM);
1892 mutex_exit(sc->sc_lock);
1893 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1894 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1895 else
1896 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1897 file);
1898 break;
1899 case MIXER_DEVICE:
1900 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1901 break;
1902 default:
1903 error = ENXIO;
1904 break;
1905 }
1906
1907 audio_sc_release(sc, &sc_ref);
1908 done:
1909 curlwp_bindx(bound);
1910 return error;
1911 }
1912
1913 static int
1914 audiostat(struct file *fp, struct stat *st)
1915 {
1916 struct audio_softc *sc;
1917 struct psref sc_ref;
1918 audio_file_t *file;
1919 int bound;
1920 int error;
1921
1922 KASSERT(fp->f_audioctx);
1923 file = fp->f_audioctx;
1924
1925 bound = curlwp_bind();
1926 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1927 if (sc == NULL) {
1928 error = EIO;
1929 goto done;
1930 }
1931
1932 error = 0;
1933 memset(st, 0, sizeof(*st));
1934
1935 st->st_dev = file->dev;
1936 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1937 st->st_gid = kauth_cred_getegid(fp->f_cred);
1938 st->st_mode = S_IFCHR;
1939
1940 audio_sc_release(sc, &sc_ref);
1941 done:
1942 curlwp_bindx(bound);
1943 return error;
1944 }
1945
1946 static int
1947 audiopoll(struct file *fp, int events)
1948 {
1949 struct audio_softc *sc;
1950 struct psref sc_ref;
1951 audio_file_t *file;
1952 struct lwp *l = curlwp;
1953 int bound;
1954 int revents;
1955 dev_t dev;
1956
1957 KASSERT(fp->f_audioctx);
1958 file = fp->f_audioctx;
1959 dev = file->dev;
1960
1961 bound = curlwp_bind();
1962 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1963 if (sc == NULL) {
1964 revents = POLLERR;
1965 goto done;
1966 }
1967
1968 switch (AUDIODEV(dev)) {
1969 case SOUND_DEVICE:
1970 case AUDIO_DEVICE:
1971 revents = audio_poll(sc, events, l, file);
1972 break;
1973 case AUDIOCTL_DEVICE:
1974 case MIXER_DEVICE:
1975 revents = 0;
1976 break;
1977 default:
1978 revents = POLLERR;
1979 break;
1980 }
1981
1982 audio_sc_release(sc, &sc_ref);
1983 done:
1984 curlwp_bindx(bound);
1985 return revents;
1986 }
1987
1988 static int
1989 audiokqfilter(struct file *fp, struct knote *kn)
1990 {
1991 struct audio_softc *sc;
1992 struct psref sc_ref;
1993 audio_file_t *file;
1994 dev_t dev;
1995 int bound;
1996 int error;
1997
1998 KASSERT(fp->f_audioctx);
1999 file = fp->f_audioctx;
2000 dev = file->dev;
2001
2002 bound = curlwp_bind();
2003 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2004 if (sc == NULL) {
2005 error = EIO;
2006 goto done;
2007 }
2008
2009 switch (AUDIODEV(dev)) {
2010 case SOUND_DEVICE:
2011 case AUDIO_DEVICE:
2012 error = audio_kqfilter(sc, file, kn);
2013 break;
2014 case AUDIOCTL_DEVICE:
2015 case MIXER_DEVICE:
2016 error = ENODEV;
2017 break;
2018 default:
2019 error = ENXIO;
2020 break;
2021 }
2022
2023 audio_sc_release(sc, &sc_ref);
2024 done:
2025 curlwp_bindx(bound);
2026 return error;
2027 }
2028
2029 static int
2030 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
2031 int *advicep, struct uvm_object **uobjp, int *maxprotp)
2032 {
2033 struct audio_softc *sc;
2034 struct psref sc_ref;
2035 audio_file_t *file;
2036 dev_t dev;
2037 int bound;
2038 int error;
2039
2040 KASSERT(fp->f_audioctx);
2041 file = fp->f_audioctx;
2042 dev = file->dev;
2043
2044 bound = curlwp_bind();
2045 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2046 if (sc == NULL) {
2047 error = EIO;
2048 goto done;
2049 }
2050
2051 mutex_enter(sc->sc_lock);
2052 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
2053 mutex_exit(sc->sc_lock);
2054
2055 switch (AUDIODEV(dev)) {
2056 case SOUND_DEVICE:
2057 case AUDIO_DEVICE:
2058 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
2059 uobjp, maxprotp, file);
2060 break;
2061 case AUDIOCTL_DEVICE:
2062 case MIXER_DEVICE:
2063 default:
2064 error = ENOTSUP;
2065 break;
2066 }
2067
2068 audio_sc_release(sc, &sc_ref);
2069 done:
2070 curlwp_bindx(bound);
2071 return error;
2072 }
2073
2074
2075 /* Exported interfaces for audiobell. */
2076
2077 /*
2078 * Open for audiobell.
2079 * It stores allocated file to *filep.
2080 * If successful returns 0, otherwise errno.
2081 */
2082 int
2083 audiobellopen(dev_t dev, audio_file_t **filep)
2084 {
2085 struct audio_softc *sc;
2086 struct psref sc_ref;
2087 int bound;
2088 int error;
2089
2090 /* Find the device */
2091 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
2092 if (sc == NULL || sc->hw_if == NULL)
2093 return ENXIO;
2094
2095 bound = curlwp_bind();
2096 audio_sc_acquire_foropen(sc, &sc_ref);
2097
2098 error = audio_exlock_enter(sc);
2099 if (error)
2100 goto done;
2101
2102 device_active(sc->sc_dev, DVA_SYSTEM);
2103 error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
2104
2105 audio_exlock_exit(sc);
2106 done:
2107 audio_sc_release(sc, &sc_ref);
2108 curlwp_bindx(bound);
2109 return error;
2110 }
2111
2112 /* Close for audiobell */
2113 int
2114 audiobellclose(audio_file_t *file)
2115 {
2116 struct audio_softc *sc;
2117 struct psref sc_ref;
2118 int bound;
2119 int error;
2120
2121 error = 0;
2122 /*
2123 * audiobellclose() must
2124 * - unplug track from the trackmixer if sc exist.
2125 * - free all memory objects, regardless of sc.
2126 */
2127 bound = curlwp_bind();
2128 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2129 if (sc) {
2130 error = audio_close(sc, file);
2131 audio_sc_release(sc, &sc_ref);
2132 }
2133 curlwp_bindx(bound);
2134
2135 /* Free memory objects anyway */
2136 KASSERT(file->ptrack);
2137 audio_track_destroy(file->ptrack);
2138 KASSERT(file->rtrack == NULL);
2139 kmem_free(file, sizeof(*file));
2140 return error;
2141 }
2142
2143 /* Set sample rate for audiobell */
2144 int
2145 audiobellsetrate(audio_file_t *file, u_int sample_rate)
2146 {
2147 struct audio_softc *sc;
2148 struct psref sc_ref;
2149 struct audio_info ai;
2150 int bound;
2151 int error;
2152
2153 bound = curlwp_bind();
2154 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2155 if (sc == NULL) {
2156 error = EIO;
2157 goto done1;
2158 }
2159
2160 AUDIO_INITINFO(&ai);
2161 ai.play.sample_rate = sample_rate;
2162
2163 error = audio_exlock_enter(sc);
2164 if (error)
2165 goto done2;
2166 error = audio_file_setinfo(sc, file, &ai);
2167 audio_exlock_exit(sc);
2168
2169 done2:
2170 audio_sc_release(sc, &sc_ref);
2171 done1:
2172 curlwp_bindx(bound);
2173 return error;
2174 }
2175
2176 /* Playback for audiobell */
2177 int
2178 audiobellwrite(audio_file_t *file, struct uio *uio)
2179 {
2180 struct audio_softc *sc;
2181 struct psref sc_ref;
2182 int bound;
2183 int error;
2184
2185 bound = curlwp_bind();
2186 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2187 if (sc == NULL) {
2188 error = EIO;
2189 goto done;
2190 }
2191
2192 error = audio_write(sc, uio, 0, file);
2193
2194 audio_sc_release(sc, &sc_ref);
2195 done:
2196 curlwp_bindx(bound);
2197 return error;
2198 }
2199
2200
2201 /*
2202 * Audio driver
2203 */
2204
2205 /*
2206 * Must be called with sc_exlock held and without sc_lock held.
2207 */
2208 int
2209 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
2210 struct lwp *l, audio_file_t **bellfile)
2211 {
2212 struct audio_info ai;
2213 struct file *fp;
2214 audio_file_t *af;
2215 audio_ring_t *hwbuf;
2216 bool fullduplex;
2217 bool cred_held;
2218 bool hw_opened;
2219 bool rmixer_started;
2220 bool inserted;
2221 int fd;
2222 int error;
2223
2224 KASSERT(sc->sc_exlock);
2225
2226 TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
2227 (audiodebug >= 3) ? "start " : "",
2228 ISDEVSOUND(dev) ? "sound" : "audio",
2229 flags, sc->sc_popens, sc->sc_ropens);
2230
2231 fp = NULL;
2232 cred_held = false;
2233 hw_opened = false;
2234 rmixer_started = false;
2235 inserted = false;
2236
2237 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
2238 af->sc = sc;
2239 af->dev = dev;
2240 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
2241 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
2242 if ((flags & FREAD) != 0 && audio_can_capture(sc))
2243 af->mode |= AUMODE_RECORD;
2244 if (af->mode == 0) {
2245 error = ENXIO;
2246 goto bad;
2247 }
2248
2249 fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
2250
2251 /*
2252 * On half duplex hardware,
2253 * 1. if mode is (PLAY | REC), let mode PLAY.
2254 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
2255 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
2256 */
2257 if (fullduplex == false) {
2258 if ((af->mode & AUMODE_PLAY)) {
2259 if (sc->sc_ropens != 0) {
2260 TRACE(1, "record track already exists");
2261 error = ENODEV;
2262 goto bad;
2263 }
2264 /* Play takes precedence */
2265 af->mode &= ~AUMODE_RECORD;
2266 }
2267 if ((af->mode & AUMODE_RECORD)) {
2268 if (sc->sc_popens != 0) {
2269 TRACE(1, "play track already exists");
2270 error = ENODEV;
2271 goto bad;
2272 }
2273 }
2274 }
2275
2276 /* Create tracks */
2277 if ((af->mode & AUMODE_PLAY))
2278 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
2279 if ((af->mode & AUMODE_RECORD))
2280 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
2281
2282 /* Set parameters */
2283 AUDIO_INITINFO(&ai);
2284 if (bellfile) {
2285 /* If audiobell, only sample_rate will be set later. */
2286 ai.play.sample_rate = audio_default.sample_rate;
2287 ai.play.encoding = AUDIO_ENCODING_SLINEAR_NE;
2288 ai.play.channels = 1;
2289 ai.play.precision = 16;
2290 ai.play.pause = 0;
2291 } else if (ISDEVAUDIO(dev)) {
2292 /* If /dev/audio, initialize everytime. */
2293 ai.play.sample_rate = audio_default.sample_rate;
2294 ai.play.encoding = audio_default.encoding;
2295 ai.play.channels = audio_default.channels;
2296 ai.play.precision = audio_default.precision;
2297 ai.play.pause = 0;
2298 ai.record.sample_rate = audio_default.sample_rate;
2299 ai.record.encoding = audio_default.encoding;
2300 ai.record.channels = audio_default.channels;
2301 ai.record.precision = audio_default.precision;
2302 ai.record.pause = 0;
2303 } else {
2304 /* If /dev/sound, take over the previous parameters. */
2305 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2306 ai.play.encoding = sc->sc_sound_pparams.encoding;
2307 ai.play.channels = sc->sc_sound_pparams.channels;
2308 ai.play.precision = sc->sc_sound_pparams.precision;
2309 ai.play.pause = sc->sc_sound_ppause;
2310 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2311 ai.record.encoding = sc->sc_sound_rparams.encoding;
2312 ai.record.channels = sc->sc_sound_rparams.channels;
2313 ai.record.precision = sc->sc_sound_rparams.precision;
2314 ai.record.pause = sc->sc_sound_rpause;
2315 }
2316 error = audio_file_setinfo(sc, af, &ai);
2317 if (error)
2318 goto bad;
2319
2320 if (sc->sc_popens + sc->sc_ropens == 0) {
2321 /* First open */
2322
2323 sc->sc_cred = kauth_cred_get();
2324 kauth_cred_hold(sc->sc_cred);
2325 cred_held = true;
2326
2327 if (sc->hw_if->open) {
2328 int hwflags;
2329
2330 /*
2331 * Call hw_if->open() only at first open of
2332 * combination of playback and recording.
2333 * On full duplex hardware, the flags passed to
2334 * hw_if->open() is always (FREAD | FWRITE)
2335 * regardless of this open()'s flags.
2336 * see also dev/isa/aria.c
2337 * On half duplex hardware, the flags passed to
2338 * hw_if->open() is either FREAD or FWRITE.
2339 * see also arch/evbarm/mini2440/audio_mini2440.c
2340 */
2341 if (fullduplex) {
2342 hwflags = FREAD | FWRITE;
2343 } else {
2344 /* Construct hwflags from af->mode. */
2345 hwflags = 0;
2346 if ((af->mode & AUMODE_PLAY) != 0)
2347 hwflags |= FWRITE;
2348 if ((af->mode & AUMODE_RECORD) != 0)
2349 hwflags |= FREAD;
2350 }
2351
2352 mutex_enter(sc->sc_lock);
2353 mutex_enter(sc->sc_intr_lock);
2354 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2355 mutex_exit(sc->sc_intr_lock);
2356 mutex_exit(sc->sc_lock);
2357 if (error)
2358 goto bad;
2359 }
2360 /*
2361 * Regardless of whether we called hw_if->open (whether
2362 * hw_if->open exists) or not, we move to the Opened phase
2363 * here. Therefore from this point, we have to call
2364 * hw_if->close (if exists) whenever abort.
2365 * Note that both of hw_if->{open,close} are optional.
2366 */
2367 hw_opened = true;
2368
2369 /*
2370 * Set speaker mode when a half duplex.
2371 * XXX I'm not sure this is correct.
2372 */
2373 if (1/*XXX*/) {
2374 if (sc->hw_if->speaker_ctl) {
2375 int on;
2376 if (af->ptrack) {
2377 on = 1;
2378 } else {
2379 on = 0;
2380 }
2381 mutex_enter(sc->sc_lock);
2382 mutex_enter(sc->sc_intr_lock);
2383 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2384 mutex_exit(sc->sc_intr_lock);
2385 mutex_exit(sc->sc_lock);
2386 if (error)
2387 goto bad;
2388 }
2389 }
2390 } else if (sc->sc_multiuser == false) {
2391 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2392 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2393 error = EPERM;
2394 goto bad;
2395 }
2396 }
2397
2398 /* Call init_output if this is the first playback open. */
2399 if (af->ptrack && sc->sc_popens == 0) {
2400 if (sc->hw_if->init_output) {
2401 hwbuf = &sc->sc_pmixer->hwbuf;
2402 mutex_enter(sc->sc_lock);
2403 mutex_enter(sc->sc_intr_lock);
2404 error = sc->hw_if->init_output(sc->hw_hdl,
2405 hwbuf->mem,
2406 hwbuf->capacity *
2407 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2408 mutex_exit(sc->sc_intr_lock);
2409 mutex_exit(sc->sc_lock);
2410 if (error)
2411 goto bad;
2412 }
2413 }
2414 /*
2415 * Call init_input and start rmixer, if this is the first recording
2416 * open. See pause consideration notes.
2417 */
2418 if (af->rtrack && sc->sc_ropens == 0) {
2419 if (sc->hw_if->init_input) {
2420 hwbuf = &sc->sc_rmixer->hwbuf;
2421 mutex_enter(sc->sc_lock);
2422 mutex_enter(sc->sc_intr_lock);
2423 error = sc->hw_if->init_input(sc->hw_hdl,
2424 hwbuf->mem,
2425 hwbuf->capacity *
2426 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2427 mutex_exit(sc->sc_intr_lock);
2428 mutex_exit(sc->sc_lock);
2429 if (error)
2430 goto bad;
2431 }
2432
2433 mutex_enter(sc->sc_lock);
2434 audio_rmixer_start(sc);
2435 mutex_exit(sc->sc_lock);
2436 rmixer_started = true;
2437 }
2438
2439 /*
2440 * This is the last sc_lock section in the function, so we have to
2441 * examine sc_dying again before starting the rest tasks. Because
2442 * audiodeatch() may have been invoked (and it would set sc_dying)
2443 * from the time audioopen() was executed until now. If it happens,
2444 * audiodetach() may already have set file->dying for all sc_files
2445 * that exist at that point, so that audioopen() must abort without
2446 * inserting af to sc_files, in order to keep consistency.
2447 */
2448 mutex_enter(sc->sc_lock);
2449 if (sc->sc_dying) {
2450 mutex_exit(sc->sc_lock);
2451 goto bad;
2452 }
2453
2454 /* Count up finally */
2455 if (af->ptrack)
2456 sc->sc_popens++;
2457 if (af->rtrack)
2458 sc->sc_ropens++;
2459 mutex_enter(sc->sc_intr_lock);
2460 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2461 mutex_exit(sc->sc_intr_lock);
2462 mutex_exit(sc->sc_lock);
2463 inserted = true;
2464
2465 if (bellfile) {
2466 *bellfile = af;
2467 } else {
2468 error = fd_allocfile(&fp, &fd);
2469 if (error)
2470 goto bad;
2471
2472 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2473 KASSERTMSG(error == EMOVEFD, "error=%d", error);
2474 }
2475
2476 /* Be nothing else after fd_clone */
2477
2478 TRACEF(3, af, "done");
2479 return error;
2480
2481 bad:
2482 if (inserted) {
2483 mutex_enter(sc->sc_lock);
2484 mutex_enter(sc->sc_intr_lock);
2485 SLIST_REMOVE(&sc->sc_files, af, audio_file, entry);
2486 mutex_exit(sc->sc_intr_lock);
2487 if (af->ptrack)
2488 sc->sc_popens--;
2489 if (af->rtrack)
2490 sc->sc_ropens--;
2491 mutex_exit(sc->sc_lock);
2492 }
2493
2494 if (rmixer_started) {
2495 mutex_enter(sc->sc_lock);
2496 audio_rmixer_halt(sc);
2497 mutex_exit(sc->sc_lock);
2498 }
2499
2500 if (hw_opened) {
2501 if (sc->hw_if->close) {
2502 mutex_enter(sc->sc_lock);
2503 mutex_enter(sc->sc_intr_lock);
2504 sc->hw_if->close(sc->hw_hdl);
2505 mutex_exit(sc->sc_intr_lock);
2506 mutex_exit(sc->sc_lock);
2507 }
2508 }
2509 if (cred_held) {
2510 kauth_cred_free(sc->sc_cred);
2511 }
2512
2513 /*
2514 * Since track here is not yet linked to sc_files,
2515 * you can call track_destroy() without sc_intr_lock.
2516 */
2517 if (af->rtrack) {
2518 audio_track_destroy(af->rtrack);
2519 af->rtrack = NULL;
2520 }
2521 if (af->ptrack) {
2522 audio_track_destroy(af->ptrack);
2523 af->ptrack = NULL;
2524 }
2525
2526 kmem_free(af, sizeof(*af));
2527 return error;
2528 }
2529
2530 /*
2531 * Must be called without sc_lock nor sc_exlock held.
2532 */
2533 int
2534 audio_close(struct audio_softc *sc, audio_file_t *file)
2535 {
2536 int error;
2537
2538 /* Protect entering new fileops to this file */
2539 atomic_store_relaxed(&file->dying, true);
2540
2541 /*
2542 * Drain first.
2543 * It must be done before unlinking(acquiring exlock).
2544 */
2545 if (file->ptrack) {
2546 mutex_enter(sc->sc_lock);
2547 audio_track_drain(sc, file->ptrack);
2548 mutex_exit(sc->sc_lock);
2549 }
2550
2551 error = audio_exlock_enter(sc);
2552 if (error) {
2553 /*
2554 * If EIO, this sc is about to detach. In this case, even if
2555 * we don't do subsequent _unlink(), audiodetach() will do it.
2556 */
2557 if (error == EIO)
2558 return error;
2559
2560 /* XXX This should not happen but what should I do ? */
2561 panic("%s: can't acquire exlock: errno=%d", __func__, error);
2562 }
2563 error = audio_unlink(sc, file);
2564 audio_exlock_exit(sc);
2565
2566 return error;
2567 }
2568
2569 /*
2570 * Unlink this file, but not freeing memory here.
2571 * Must be called with sc_exlock held and without sc_lock held.
2572 */
2573 int
2574 audio_unlink(struct audio_softc *sc, audio_file_t *file)
2575 {
2576 int error;
2577
2578 mutex_enter(sc->sc_lock);
2579
2580 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2581 (audiodebug >= 3) ? "start " : "",
2582 (int)curproc->p_pid, (int)curlwp->l_lid,
2583 sc->sc_popens, sc->sc_ropens);
2584 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2585 "sc->sc_popens=%d, sc->sc_ropens=%d",
2586 sc->sc_popens, sc->sc_ropens);
2587
2588 device_active(sc->sc_dev, DVA_SYSTEM);
2589
2590 mutex_enter(sc->sc_intr_lock);
2591 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2592 mutex_exit(sc->sc_intr_lock);
2593
2594 if (file->ptrack) {
2595 TRACET(3, file->ptrack, "dropframes=%" PRIu64,
2596 file->ptrack->dropframes);
2597
2598 KASSERT(sc->sc_popens > 0);
2599 sc->sc_popens--;
2600
2601 /* Call hw halt_output if this is the last playback track. */
2602 if (sc->sc_popens == 0 && sc->sc_pbusy) {
2603 error = audio_pmixer_halt(sc);
2604 if (error) {
2605 audio_printf(sc,
2606 "halt_output failed: errno=%d (ignored)\n",
2607 error);
2608 }
2609 }
2610
2611 /* Restore mixing volume if all tracks are gone. */
2612 if (sc->sc_popens == 0) {
2613 /* intr_lock is not necessary, but just manners. */
2614 mutex_enter(sc->sc_intr_lock);
2615 sc->sc_pmixer->volume = 256;
2616 sc->sc_pmixer->voltimer = 0;
2617 mutex_exit(sc->sc_intr_lock);
2618 }
2619 }
2620 if (file->rtrack) {
2621 TRACET(3, file->rtrack, "dropframes=%" PRIu64,
2622 file->rtrack->dropframes);
2623
2624 KASSERT(sc->sc_ropens > 0);
2625 sc->sc_ropens--;
2626
2627 /* Call hw halt_input if this is the last recording track. */
2628 if (sc->sc_ropens == 0 && sc->sc_rbusy) {
2629 error = audio_rmixer_halt(sc);
2630 if (error) {
2631 audio_printf(sc,
2632 "halt_input failed: errno=%d (ignored)\n",
2633 error);
2634 }
2635 }
2636
2637 }
2638
2639 /* Call hw close if this is the last track. */
2640 if (sc->sc_popens + sc->sc_ropens == 0) {
2641 if (sc->hw_if->close) {
2642 TRACE(2, "hw_if close");
2643 mutex_enter(sc->sc_intr_lock);
2644 sc->hw_if->close(sc->hw_hdl);
2645 mutex_exit(sc->sc_intr_lock);
2646 }
2647 }
2648
2649 mutex_exit(sc->sc_lock);
2650 if (sc->sc_popens + sc->sc_ropens == 0)
2651 kauth_cred_free(sc->sc_cred);
2652
2653 TRACE(3, "done");
2654
2655 return 0;
2656 }
2657
2658 /*
2659 * Must be called without sc_lock nor sc_exlock held.
2660 */
2661 int
2662 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2663 audio_file_t *file)
2664 {
2665 audio_track_t *track;
2666 audio_ring_t *usrbuf;
2667 audio_ring_t *input;
2668 int error;
2669
2670 /*
2671 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2672 * However read() system call itself can be called because it's
2673 * opened with O_RDWR. So in this case, deny this read().
2674 */
2675 track = file->rtrack;
2676 if (track == NULL) {
2677 return EBADF;
2678 }
2679
2680 /* I think it's better than EINVAL. */
2681 if (track->mmapped)
2682 return EPERM;
2683
2684 TRACET(2, track, "resid=%zd ioflag=0x%x", uio->uio_resid, ioflag);
2685
2686 #ifdef AUDIO_PM_IDLE
2687 error = audio_exlock_mutex_enter(sc);
2688 if (error)
2689 return error;
2690
2691 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2692 device_active(&sc->sc_dev, DVA_SYSTEM);
2693
2694 /* In recording, unlike playback, read() never operates rmixer. */
2695
2696 audio_exlock_mutex_exit(sc);
2697 #endif
2698
2699 usrbuf = &track->usrbuf;
2700 input = track->input;
2701 error = 0;
2702
2703 while (uio->uio_resid > 0 && error == 0) {
2704 int bytes;
2705
2706 TRACET(3, track,
2707 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2708 uio->uio_resid,
2709 input->head, input->used, input->capacity,
2710 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2711
2712 /* Wait when buffers are empty. */
2713 mutex_enter(sc->sc_lock);
2714 for (;;) {
2715 bool empty;
2716 audio_track_lock_enter(track);
2717 empty = (input->used == 0 && usrbuf->used == 0);
2718 audio_track_lock_exit(track);
2719 if (!empty)
2720 break;
2721
2722 if ((ioflag & IO_NDELAY)) {
2723 mutex_exit(sc->sc_lock);
2724 return EWOULDBLOCK;
2725 }
2726
2727 TRACET(3, track, "sleep");
2728 error = audio_track_waitio(sc, track);
2729 if (error) {
2730 mutex_exit(sc->sc_lock);
2731 return error;
2732 }
2733 }
2734 mutex_exit(sc->sc_lock);
2735
2736 audio_track_lock_enter(track);
2737 audio_track_record(track);
2738
2739 /* uiomove from usrbuf as much as possible. */
2740 bytes = uimin(usrbuf->used, uio->uio_resid);
2741 while (bytes > 0) {
2742 int head = usrbuf->head;
2743 int len = uimin(bytes, usrbuf->capacity - head);
2744 error = uiomove((uint8_t *)usrbuf->mem + head, len,
2745 uio);
2746 if (error) {
2747 audio_track_lock_exit(track);
2748 device_printf(sc->sc_dev,
2749 "%s: uiomove(%d) failed: errno=%d\n",
2750 __func__, len, error);
2751 goto abort;
2752 }
2753 auring_take(usrbuf, len);
2754 track->useriobytes += len;
2755 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2756 len,
2757 usrbuf->head, usrbuf->used, usrbuf->capacity);
2758 bytes -= len;
2759 }
2760
2761 audio_track_lock_exit(track);
2762 }
2763
2764 abort:
2765 return error;
2766 }
2767
2768
2769 /*
2770 * Clear file's playback and/or record track buffer immediately.
2771 */
2772 static void
2773 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2774 {
2775
2776 if (file->ptrack)
2777 audio_track_clear(sc, file->ptrack);
2778 if (file->rtrack)
2779 audio_track_clear(sc, file->rtrack);
2780 }
2781
2782 /*
2783 * Must be called without sc_lock nor sc_exlock held.
2784 */
2785 int
2786 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2787 audio_file_t *file)
2788 {
2789 audio_track_t *track;
2790 audio_ring_t *usrbuf;
2791 audio_ring_t *outbuf;
2792 int error;
2793
2794 track = file->ptrack;
2795 KASSERT(track);
2796
2797 /* I think it's better than EINVAL. */
2798 if (track->mmapped)
2799 return EPERM;
2800
2801 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2802 audiodebug >= 3 ? "begin " : "",
2803 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2804
2805 if (uio->uio_resid == 0) {
2806 track->eofcounter++;
2807 return 0;
2808 }
2809
2810 error = audio_exlock_mutex_enter(sc);
2811 if (error)
2812 return error;
2813
2814 #ifdef AUDIO_PM_IDLE
2815 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2816 device_active(&sc->sc_dev, DVA_SYSTEM);
2817 #endif
2818
2819 /*
2820 * The first write starts pmixer.
2821 */
2822 if (sc->sc_pbusy == false)
2823 audio_pmixer_start(sc, false);
2824 audio_exlock_mutex_exit(sc);
2825
2826 usrbuf = &track->usrbuf;
2827 outbuf = &track->outbuf;
2828 track->pstate = AUDIO_STATE_RUNNING;
2829 error = 0;
2830
2831 while (uio->uio_resid > 0 && error == 0) {
2832 int bytes;
2833
2834 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2835 uio->uio_resid,
2836 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2837
2838 /* Wait when buffers are full. */
2839 mutex_enter(sc->sc_lock);
2840 for (;;) {
2841 bool full;
2842 audio_track_lock_enter(track);
2843 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2844 outbuf->used >= outbuf->capacity);
2845 audio_track_lock_exit(track);
2846 if (!full)
2847 break;
2848
2849 if ((ioflag & IO_NDELAY)) {
2850 error = EWOULDBLOCK;
2851 mutex_exit(sc->sc_lock);
2852 goto abort;
2853 }
2854
2855 TRACET(3, track, "sleep usrbuf=%d/H%d",
2856 usrbuf->used, track->usrbuf_usedhigh);
2857 error = audio_track_waitio(sc, track);
2858 if (error) {
2859 mutex_exit(sc->sc_lock);
2860 goto abort;
2861 }
2862 }
2863 mutex_exit(sc->sc_lock);
2864
2865 audio_track_lock_enter(track);
2866
2867 /* uiomove to usrbuf as much as possible. */
2868 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2869 uio->uio_resid);
2870 while (bytes > 0) {
2871 int tail = auring_tail(usrbuf);
2872 int len = uimin(bytes, usrbuf->capacity - tail);
2873 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2874 uio);
2875 if (error) {
2876 audio_track_lock_exit(track);
2877 device_printf(sc->sc_dev,
2878 "%s: uiomove(%d) failed: errno=%d\n",
2879 __func__, len, error);
2880 goto abort;
2881 }
2882 auring_push(usrbuf, len);
2883 track->useriobytes += len;
2884 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2885 len,
2886 usrbuf->head, usrbuf->used, usrbuf->capacity);
2887 bytes -= len;
2888 }
2889
2890 /* Convert them as much as possible. */
2891 while (usrbuf->used >= track->usrbuf_blksize &&
2892 outbuf->used < outbuf->capacity) {
2893 audio_track_play(track);
2894 }
2895
2896 audio_track_lock_exit(track);
2897 }
2898
2899 abort:
2900 TRACET(3, track, "done error=%d", error);
2901 return error;
2902 }
2903
2904 /*
2905 * Must be called without sc_lock nor sc_exlock held.
2906 */
2907 int
2908 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2909 struct lwp *l, audio_file_t *file)
2910 {
2911 struct audio_offset *ao;
2912 struct audio_info ai;
2913 audio_track_t *track;
2914 audio_encoding_t *ae;
2915 audio_format_query_t *query;
2916 u_int stamp;
2917 u_int offs;
2918 int fd;
2919 int index;
2920 int error;
2921
2922 #if defined(AUDIO_DEBUG)
2923 const char *ioctlnames[] = {
2924 " AUDIO_GETINFO", /* 21 */
2925 " AUDIO_SETINFO", /* 22 */
2926 " AUDIO_DRAIN", /* 23 */
2927 " AUDIO_FLUSH", /* 24 */
2928 " AUDIO_WSEEK", /* 25 */
2929 " AUDIO_RERROR", /* 26 */
2930 " AUDIO_GETDEV", /* 27 */
2931 " AUDIO_GETENC", /* 28 */
2932 " AUDIO_GETFD", /* 29 */
2933 " AUDIO_SETFD", /* 30 */
2934 " AUDIO_PERROR", /* 31 */
2935 " AUDIO_GETIOFFS", /* 32 */
2936 " AUDIO_GETOOFFS", /* 33 */
2937 " AUDIO_GETPROPS", /* 34 */
2938 " AUDIO_GETBUFINFO", /* 35 */
2939 " AUDIO_SETCHAN", /* 36 */
2940 " AUDIO_GETCHAN", /* 37 */
2941 " AUDIO_QUERYFORMAT", /* 38 */
2942 " AUDIO_GETFORMAT", /* 39 */
2943 " AUDIO_SETFORMAT", /* 40 */
2944 };
2945 int nameidx = (cmd & 0xff);
2946 const char *ioctlname = "";
2947 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2948 ioctlname = ioctlnames[nameidx - 21];
2949 TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2950 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2951 (int)curproc->p_pid, (int)l->l_lid);
2952 #endif
2953
2954 error = 0;
2955 switch (cmd) {
2956 case FIONBIO:
2957 /* All handled in the upper FS layer. */
2958 break;
2959
2960 case FIONREAD:
2961 /* Get the number of bytes that can be read. */
2962 if (file->rtrack) {
2963 *(int *)addr = audio_track_readablebytes(file->rtrack);
2964 } else {
2965 *(int *)addr = 0;
2966 }
2967 break;
2968
2969 case FIOASYNC:
2970 /* Set/Clear ASYNC I/O. */
2971 if (*(int *)addr) {
2972 file->async_audio = curproc->p_pid;
2973 TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2974 } else {
2975 file->async_audio = 0;
2976 TRACEF(2, file, "FIOASYNC off");
2977 }
2978 break;
2979
2980 case AUDIO_FLUSH:
2981 /* XXX TODO: clear errors and restart? */
2982 audio_file_clear(sc, file);
2983 break;
2984
2985 case AUDIO_RERROR:
2986 /*
2987 * Number of read bytes dropped. We don't know where
2988 * or when they were dropped (including conversion stage).
2989 * Therefore, the number of accurate bytes or samples is
2990 * also unknown.
2991 */
2992 track = file->rtrack;
2993 if (track) {
2994 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2995 track->dropframes);
2996 }
2997 break;
2998
2999 case AUDIO_PERROR:
3000 /*
3001 * Number of write bytes dropped. We don't know where
3002 * or when they were dropped (including conversion stage).
3003 * Therefore, the number of accurate bytes or samples is
3004 * also unknown.
3005 */
3006 track = file->ptrack;
3007 if (track) {
3008 *(int *)addr = frametobyte(&track->usrbuf.fmt,
3009 track->dropframes);
3010 }
3011 break;
3012
3013 case AUDIO_GETIOFFS:
3014 /* XXX TODO */
3015 ao = (struct audio_offset *)addr;
3016 ao->samples = 0;
3017 ao->deltablks = 0;
3018 ao->offset = 0;
3019 break;
3020
3021 case AUDIO_GETOOFFS:
3022 ao = (struct audio_offset *)addr;
3023 track = file->ptrack;
3024 if (track == NULL) {
3025 ao->samples = 0;
3026 ao->deltablks = 0;
3027 ao->offset = 0;
3028 break;
3029 }
3030 mutex_enter(sc->sc_lock);
3031 mutex_enter(sc->sc_intr_lock);
3032 /* figure out where next DMA will start */
3033 stamp = track->usrbuf_stamp;
3034 offs = track->usrbuf.head;
3035 mutex_exit(sc->sc_intr_lock);
3036 mutex_exit(sc->sc_lock);
3037
3038 ao->samples = stamp;
3039 ao->deltablks = (stamp / track->usrbuf_blksize) -
3040 (track->usrbuf_stamp_last / track->usrbuf_blksize);
3041 track->usrbuf_stamp_last = stamp;
3042 offs = rounddown(offs, track->usrbuf_blksize)
3043 + track->usrbuf_blksize;
3044 if (offs >= track->usrbuf.capacity)
3045 offs -= track->usrbuf.capacity;
3046 ao->offset = offs;
3047
3048 TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
3049 ao->samples, ao->deltablks, ao->offset);
3050 break;
3051
3052 case AUDIO_WSEEK:
3053 /* XXX return value does not include outbuf one. */
3054 if (file->ptrack)
3055 *(u_long *)addr = file->ptrack->usrbuf.used;
3056 break;
3057
3058 case AUDIO_SETINFO:
3059 error = audio_exlock_enter(sc);
3060 if (error)
3061 break;
3062 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
3063 if (error) {
3064 audio_exlock_exit(sc);
3065 break;
3066 }
3067 /* XXX TODO: update last_ai if /dev/sound ? */
3068 if (ISDEVSOUND(dev))
3069 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
3070 audio_exlock_exit(sc);
3071 break;
3072
3073 case AUDIO_GETINFO:
3074 error = audio_exlock_enter(sc);
3075 if (error)
3076 break;
3077 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
3078 audio_exlock_exit(sc);
3079 break;
3080
3081 case AUDIO_GETBUFINFO:
3082 error = audio_exlock_enter(sc);
3083 if (error)
3084 break;
3085 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
3086 audio_exlock_exit(sc);
3087 break;
3088
3089 case AUDIO_DRAIN:
3090 if (file->ptrack) {
3091 mutex_enter(sc->sc_lock);
3092 error = audio_track_drain(sc, file->ptrack);
3093 mutex_exit(sc->sc_lock);
3094 }
3095 break;
3096
3097 case AUDIO_GETDEV:
3098 mutex_enter(sc->sc_lock);
3099 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
3100 mutex_exit(sc->sc_lock);
3101 break;
3102
3103 case AUDIO_GETENC:
3104 ae = (audio_encoding_t *)addr;
3105 index = ae->index;
3106 if (index < 0 || index >= __arraycount(audio_encodings)) {
3107 error = EINVAL;
3108 break;
3109 }
3110 *ae = audio_encodings[index];
3111 ae->index = index;
3112 /*
3113 * EMULATED always.
3114 * EMULATED flag at that time used to mean that it could
3115 * not be passed directly to the hardware as-is. But
3116 * currently, all formats including hardware native is not
3117 * passed directly to the hardware. So I set EMULATED
3118 * flag for all formats.
3119 */
3120 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
3121 break;
3122
3123 case AUDIO_GETFD:
3124 /*
3125 * Returns the current setting of full duplex mode.
3126 * If HW has full duplex mode and there are two mixers,
3127 * it is full duplex. Otherwise half duplex.
3128 */
3129 error = audio_exlock_enter(sc);
3130 if (error)
3131 break;
3132 fd = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
3133 && (sc->sc_pmixer && sc->sc_rmixer);
3134 audio_exlock_exit(sc);
3135 *(int *)addr = fd;
3136 break;
3137
3138 case AUDIO_GETPROPS:
3139 *(int *)addr = sc->sc_props;
3140 break;
3141
3142 case AUDIO_QUERYFORMAT:
3143 query = (audio_format_query_t *)addr;
3144 mutex_enter(sc->sc_lock);
3145 error = sc->hw_if->query_format(sc->hw_hdl, query);
3146 mutex_exit(sc->sc_lock);
3147 /* Hide internal information */
3148 query->fmt.driver_data = NULL;
3149 break;
3150
3151 case AUDIO_GETFORMAT:
3152 error = audio_exlock_enter(sc);
3153 if (error)
3154 break;
3155 audio_mixers_get_format(sc, (struct audio_info *)addr);
3156 audio_exlock_exit(sc);
3157 break;
3158
3159 case AUDIO_SETFORMAT:
3160 error = audio_exlock_enter(sc);
3161 audio_mixers_get_format(sc, &ai);
3162 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
3163 if (error) {
3164 /* Rollback */
3165 audio_mixers_set_format(sc, &ai);
3166 }
3167 audio_exlock_exit(sc);
3168 break;
3169
3170 case AUDIO_SETFD:
3171 case AUDIO_SETCHAN:
3172 case AUDIO_GETCHAN:
3173 /* Obsoleted */
3174 break;
3175
3176 default:
3177 if (sc->hw_if->dev_ioctl) {
3178 mutex_enter(sc->sc_lock);
3179 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
3180 cmd, addr, flag, l);
3181 mutex_exit(sc->sc_lock);
3182 } else {
3183 TRACEF(2, file, "unknown ioctl");
3184 error = EINVAL;
3185 }
3186 break;
3187 }
3188 TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
3189 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
3190 error);
3191 return error;
3192 }
3193
3194 /*
3195 * Returns the number of bytes that can be read on recording buffer.
3196 */
3197 static __inline int
3198 audio_track_readablebytes(const audio_track_t *track)
3199 {
3200 int bytes;
3201
3202 KASSERT(track);
3203 KASSERT(track->mode == AUMODE_RECORD);
3204
3205 /*
3206 * Although usrbuf is primarily readable data, recorded data
3207 * also stays in track->input until reading. So it is necessary
3208 * to add it. track->input is in frame, usrbuf is in byte.
3209 */
3210 bytes = track->usrbuf.used +
3211 track->input->used * frametobyte(&track->usrbuf.fmt, 1);
3212 return bytes;
3213 }
3214
3215 /*
3216 * Must be called without sc_lock nor sc_exlock held.
3217 */
3218 int
3219 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
3220 audio_file_t *file)
3221 {
3222 audio_track_t *track;
3223 int revents;
3224 bool in_is_valid;
3225 bool out_is_valid;
3226
3227 #if defined(AUDIO_DEBUG)
3228 #define POLLEV_BITMAP "\177\020" \
3229 "b\10WRBAND\0" \
3230 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
3231 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
3232 char evbuf[64];
3233 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
3234 TRACEF(2, file, "pid=%d.%d events=%s",
3235 (int)curproc->p_pid, (int)l->l_lid, evbuf);
3236 #endif
3237
3238 revents = 0;
3239 in_is_valid = false;
3240 out_is_valid = false;
3241 if (events & (POLLIN | POLLRDNORM)) {
3242 track = file->rtrack;
3243 if (track) {
3244 int used;
3245 in_is_valid = true;
3246 used = audio_track_readablebytes(track);
3247 if (used > 0)
3248 revents |= events & (POLLIN | POLLRDNORM);
3249 }
3250 }
3251 if (events & (POLLOUT | POLLWRNORM)) {
3252 track = file->ptrack;
3253 if (track) {
3254 out_is_valid = true;
3255 if (track->usrbuf.used <= track->usrbuf_usedlow)
3256 revents |= events & (POLLOUT | POLLWRNORM);
3257 }
3258 }
3259
3260 if (revents == 0) {
3261 mutex_enter(sc->sc_lock);
3262 if (in_is_valid) {
3263 TRACEF(3, file, "selrecord rsel");
3264 selrecord(l, &sc->sc_rsel);
3265 }
3266 if (out_is_valid) {
3267 TRACEF(3, file, "selrecord wsel");
3268 selrecord(l, &sc->sc_wsel);
3269 }
3270 mutex_exit(sc->sc_lock);
3271 }
3272
3273 #if defined(AUDIO_DEBUG)
3274 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
3275 TRACEF(2, file, "revents=%s", evbuf);
3276 #endif
3277 return revents;
3278 }
3279
3280 static const struct filterops audioread_filtops = {
3281 .f_isfd = 1,
3282 .f_attach = NULL,
3283 .f_detach = filt_audioread_detach,
3284 .f_event = filt_audioread_event,
3285 };
3286
3287 static void
3288 filt_audioread_detach(struct knote *kn)
3289 {
3290 struct audio_softc *sc;
3291 audio_file_t *file;
3292
3293 file = kn->kn_hook;
3294 sc = file->sc;
3295 TRACEF(3, file, "called");
3296
3297 mutex_enter(sc->sc_lock);
3298 selremove_knote(&sc->sc_rsel, kn);
3299 mutex_exit(sc->sc_lock);
3300 }
3301
3302 static int
3303 filt_audioread_event(struct knote *kn, long hint)
3304 {
3305 audio_file_t *file;
3306 audio_track_t *track;
3307
3308 file = kn->kn_hook;
3309 track = file->rtrack;
3310
3311 /*
3312 * kn_data must contain the number of bytes can be read.
3313 * The return value indicates whether the event occurs or not.
3314 */
3315
3316 if (track == NULL) {
3317 /* can not read with this descriptor. */
3318 kn->kn_data = 0;
3319 return 0;
3320 }
3321
3322 kn->kn_data = audio_track_readablebytes(track);
3323 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3324 return kn->kn_data > 0;
3325 }
3326
3327 static const struct filterops audiowrite_filtops = {
3328 .f_isfd = 1,
3329 .f_attach = NULL,
3330 .f_detach = filt_audiowrite_detach,
3331 .f_event = filt_audiowrite_event,
3332 };
3333
3334 static void
3335 filt_audiowrite_detach(struct knote *kn)
3336 {
3337 struct audio_softc *sc;
3338 audio_file_t *file;
3339
3340 file = kn->kn_hook;
3341 sc = file->sc;
3342 TRACEF(3, file, "called");
3343
3344 mutex_enter(sc->sc_lock);
3345 selremove_knote(&sc->sc_wsel, kn);
3346 mutex_exit(sc->sc_lock);
3347 }
3348
3349 static int
3350 filt_audiowrite_event(struct knote *kn, long hint)
3351 {
3352 audio_file_t *file;
3353 audio_track_t *track;
3354
3355 file = kn->kn_hook;
3356 track = file->ptrack;
3357
3358 /*
3359 * kn_data must contain the number of bytes can be write.
3360 * The return value indicates whether the event occurs or not.
3361 */
3362
3363 if (track == NULL) {
3364 /* can not write with this descriptor. */
3365 kn->kn_data = 0;
3366 return 0;
3367 }
3368
3369 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
3370 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3371 return (track->usrbuf.used < track->usrbuf_usedlow);
3372 }
3373
3374 /*
3375 * Must be called without sc_lock nor sc_exlock held.
3376 */
3377 int
3378 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3379 {
3380 struct selinfo *sip;
3381
3382 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3383
3384 switch (kn->kn_filter) {
3385 case EVFILT_READ:
3386 sip = &sc->sc_rsel;
3387 kn->kn_fop = &audioread_filtops;
3388 break;
3389
3390 case EVFILT_WRITE:
3391 sip = &sc->sc_wsel;
3392 kn->kn_fop = &audiowrite_filtops;
3393 break;
3394
3395 default:
3396 return EINVAL;
3397 }
3398
3399 kn->kn_hook = file;
3400
3401 mutex_enter(sc->sc_lock);
3402 selrecord_knote(sip, kn);
3403 mutex_exit(sc->sc_lock);
3404
3405 return 0;
3406 }
3407
3408 /*
3409 * Must be called without sc_lock nor sc_exlock held.
3410 */
3411 int
3412 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3413 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3414 audio_file_t *file)
3415 {
3416 audio_track_t *track;
3417 vsize_t vsize;
3418 int error;
3419
3420 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3421
3422 if (*offp < 0)
3423 return EINVAL;
3424
3425 #if 0
3426 /* XXX
3427 * The idea here was to use the protection to determine if
3428 * we are mapping the read or write buffer, but it fails.
3429 * The VM system is broken in (at least) two ways.
3430 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3431 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3432 * has to be used for mmapping the play buffer.
3433 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3434 * audio_mmap will get called at some point with VM_PROT_READ
3435 * only.
3436 * So, alas, we always map the play buffer for now.
3437 */
3438 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3439 prot == VM_PROT_WRITE)
3440 track = file->ptrack;
3441 else if (prot == VM_PROT_READ)
3442 track = file->rtrack;
3443 else
3444 return EINVAL;
3445 #else
3446 track = file->ptrack;
3447 #endif
3448 if (track == NULL)
3449 return EACCES;
3450
3451 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3452 if (len > vsize)
3453 return EOVERFLOW;
3454 if (*offp > (uint)(vsize - len))
3455 return EOVERFLOW;
3456
3457 /* XXX TODO: what happens when mmap twice. */
3458 if (!track->mmapped) {
3459 track->mmapped = true;
3460
3461 if (!track->is_pause) {
3462 error = audio_exlock_mutex_enter(sc);
3463 if (error)
3464 return error;
3465 if (sc->sc_pbusy == false)
3466 audio_pmixer_start(sc, true);
3467 audio_exlock_mutex_exit(sc);
3468 }
3469 /* XXX mmapping record buffer is not supported */
3470 }
3471
3472 /* get ringbuffer */
3473 *uobjp = track->uobj;
3474
3475 /* Acquire a reference for the mmap. munmap will release. */
3476 uao_reference(*uobjp);
3477 *maxprotp = prot;
3478 *advicep = UVM_ADV_RANDOM;
3479 *flagsp = MAP_SHARED;
3480 return 0;
3481 }
3482
3483 /*
3484 * /dev/audioctl has to be able to open at any time without interference
3485 * with any /dev/audio or /dev/sound.
3486 * Must be called with sc_exlock held and without sc_lock held.
3487 */
3488 static int
3489 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3490 struct lwp *l)
3491 {
3492 struct file *fp;
3493 audio_file_t *af;
3494 int fd;
3495 int error;
3496
3497 KASSERT(sc->sc_exlock);
3498
3499 TRACE(1, "called");
3500
3501 error = fd_allocfile(&fp, &fd);
3502 if (error)
3503 return error;
3504
3505 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
3506 af->sc = sc;
3507 af->dev = dev;
3508
3509 /* Not necessary to insert sc_files. */
3510
3511 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3512 KASSERTMSG(error == EMOVEFD, "error=%d", error);
3513
3514 return error;
3515 }
3516
3517 /*
3518 * Free 'mem' if available, and initialize the pointer.
3519 * For this reason, this is implemented as macro.
3520 */
3521 #define audio_free(mem) do { \
3522 if (mem != NULL) { \
3523 kern_free(mem); \
3524 mem = NULL; \
3525 } \
3526 } while (0)
3527
3528 /*
3529 * (Re)allocate 'memblock' with specified 'bytes'.
3530 * bytes must not be 0.
3531 * This function never returns NULL.
3532 */
3533 static void *
3534 audio_realloc(void *memblock, size_t bytes)
3535 {
3536
3537 KASSERT(bytes != 0);
3538 audio_free(memblock);
3539 return kern_malloc(bytes, M_WAITOK);
3540 }
3541
3542 /*
3543 * (Re)allocate usrbuf with 'newbufsize' bytes.
3544 * Use this function for usrbuf because only usrbuf can be mmapped.
3545 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3546 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3547 * and returns errno.
3548 * It must be called before updating usrbuf.capacity.
3549 */
3550 static int
3551 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3552 {
3553 struct audio_softc *sc;
3554 vaddr_t vstart;
3555 vsize_t oldvsize;
3556 vsize_t newvsize;
3557 int error;
3558
3559 KASSERT(newbufsize > 0);
3560 sc = track->mixer->sc;
3561
3562 /* Get a nonzero multiple of PAGE_SIZE */
3563 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3564
3565 if (track->usrbuf.mem != NULL) {
3566 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3567 PAGE_SIZE);
3568 if (oldvsize == newvsize) {
3569 track->usrbuf.capacity = newbufsize;
3570 return 0;
3571 }
3572 vstart = (vaddr_t)track->usrbuf.mem;
3573 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3574 /* uvm_unmap also detach uobj */
3575 track->uobj = NULL; /* paranoia */
3576 track->usrbuf.mem = NULL;
3577 }
3578
3579 /* Create a uvm anonymous object */
3580 track->uobj = uao_create(newvsize, 0);
3581
3582 /* Map it into the kernel virtual address space */
3583 vstart = 0;
3584 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3585 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3586 UVM_ADV_RANDOM, 0));
3587 if (error) {
3588 device_printf(sc->sc_dev, "uvm_map failed: errno=%d\n", error);
3589 uao_detach(track->uobj); /* release reference */
3590 goto abort;
3591 }
3592
3593 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3594 false, 0);
3595 if (error) {
3596 device_printf(sc->sc_dev, "uvm_map_pageable failed: errno=%d\n",
3597 error);
3598 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3599 /* uvm_unmap also detach uobj */
3600 goto abort;
3601 }
3602
3603 track->usrbuf.mem = (void *)vstart;
3604 track->usrbuf.capacity = newbufsize;
3605 memset(track->usrbuf.mem, 0, newvsize);
3606 return 0;
3607
3608 /* failure */
3609 abort:
3610 track->uobj = NULL; /* paranoia */
3611 track->usrbuf.mem = NULL;
3612 track->usrbuf.capacity = 0;
3613 return error;
3614 }
3615
3616 /*
3617 * Free usrbuf (if available).
3618 */
3619 static void
3620 audio_free_usrbuf(audio_track_t *track)
3621 {
3622 vaddr_t vstart;
3623 vsize_t vsize;
3624
3625 vstart = (vaddr_t)track->usrbuf.mem;
3626 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3627 if (track->usrbuf.mem != NULL) {
3628 /*
3629 * Unmap the kernel mapping. uvm_unmap releases the
3630 * reference to the uvm object, and this should be the
3631 * last virtual mapping of the uvm object, so no need
3632 * to explicitly release (`detach') the object.
3633 */
3634 uvm_unmap(kernel_map, vstart, vstart + vsize);
3635
3636 track->uobj = NULL;
3637 track->usrbuf.mem = NULL;
3638 track->usrbuf.capacity = 0;
3639 }
3640 }
3641
3642 /*
3643 * This filter changes the volume for each channel.
3644 * arg->context points track->ch_volume[].
3645 */
3646 static void
3647 audio_track_chvol(audio_filter_arg_t *arg)
3648 {
3649 int16_t *ch_volume;
3650 const aint_t *s;
3651 aint_t *d;
3652 u_int i;
3653 u_int ch;
3654 u_int channels;
3655
3656 DIAGNOSTIC_filter_arg(arg);
3657 KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3658 "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3659 arg->srcfmt->channels, arg->dstfmt->channels);
3660 KASSERT(arg->context != NULL);
3661 KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3662 "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3663
3664 s = arg->src;
3665 d = arg->dst;
3666 ch_volume = arg->context;
3667
3668 channels = arg->srcfmt->channels;
3669 for (i = 0; i < arg->count; i++) {
3670 for (ch = 0; ch < channels; ch++) {
3671 aint2_t val;
3672 val = *s++;
3673 val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3674 *d++ = (aint_t)val;
3675 }
3676 }
3677 }
3678
3679 /*
3680 * This filter performs conversion from stereo (or more channels) to mono.
3681 */
3682 static void
3683 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3684 {
3685 const aint_t *s;
3686 aint_t *d;
3687 u_int i;
3688
3689 DIAGNOSTIC_filter_arg(arg);
3690
3691 s = arg->src;
3692 d = arg->dst;
3693
3694 for (i = 0; i < arg->count; i++) {
3695 *d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3696 s += arg->srcfmt->channels;
3697 }
3698 }
3699
3700 /*
3701 * This filter performs conversion from mono to stereo (or more channels).
3702 */
3703 static void
3704 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3705 {
3706 const aint_t *s;
3707 aint_t *d;
3708 u_int i;
3709 u_int ch;
3710 u_int dstchannels;
3711
3712 DIAGNOSTIC_filter_arg(arg);
3713
3714 s = arg->src;
3715 d = arg->dst;
3716 dstchannels = arg->dstfmt->channels;
3717
3718 for (i = 0; i < arg->count; i++) {
3719 d[0] = s[0];
3720 d[1] = s[0];
3721 s++;
3722 d += dstchannels;
3723 }
3724 if (dstchannels > 2) {
3725 d = arg->dst;
3726 for (i = 0; i < arg->count; i++) {
3727 for (ch = 2; ch < dstchannels; ch++) {
3728 d[ch] = 0;
3729 }
3730 d += dstchannels;
3731 }
3732 }
3733 }
3734
3735 /*
3736 * This filter shrinks M channels into N channels.
3737 * Extra channels are discarded.
3738 */
3739 static void
3740 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3741 {
3742 const aint_t *s;
3743 aint_t *d;
3744 u_int i;
3745 u_int ch;
3746
3747 DIAGNOSTIC_filter_arg(arg);
3748
3749 s = arg->src;
3750 d = arg->dst;
3751
3752 for (i = 0; i < arg->count; i++) {
3753 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3754 *d++ = s[ch];
3755 }
3756 s += arg->srcfmt->channels;
3757 }
3758 }
3759
3760 /*
3761 * This filter expands M channels into N channels.
3762 * Silence is inserted for missing channels.
3763 */
3764 static void
3765 audio_track_chmix_expand(audio_filter_arg_t *arg)
3766 {
3767 const aint_t *s;
3768 aint_t *d;
3769 u_int i;
3770 u_int ch;
3771 u_int srcchannels;
3772 u_int dstchannels;
3773
3774 DIAGNOSTIC_filter_arg(arg);
3775
3776 s = arg->src;
3777 d = arg->dst;
3778
3779 srcchannels = arg->srcfmt->channels;
3780 dstchannels = arg->dstfmt->channels;
3781 for (i = 0; i < arg->count; i++) {
3782 for (ch = 0; ch < srcchannels; ch++) {
3783 *d++ = *s++;
3784 }
3785 for (; ch < dstchannels; ch++) {
3786 *d++ = 0;
3787 }
3788 }
3789 }
3790
3791 /*
3792 * This filter performs frequency conversion (up sampling).
3793 * It uses linear interpolation.
3794 */
3795 static void
3796 audio_track_freq_up(audio_filter_arg_t *arg)
3797 {
3798 audio_track_t *track;
3799 audio_ring_t *src;
3800 audio_ring_t *dst;
3801 const aint_t *s;
3802 aint_t *d;
3803 aint_t prev[AUDIO_MAX_CHANNELS];
3804 aint_t curr[AUDIO_MAX_CHANNELS];
3805 aint_t grad[AUDIO_MAX_CHANNELS];
3806 u_int i;
3807 u_int t;
3808 u_int step;
3809 u_int channels;
3810 u_int ch;
3811 int srcused;
3812
3813 track = arg->context;
3814 KASSERT(track);
3815 src = &track->freq.srcbuf;
3816 dst = track->freq.dst;
3817 DIAGNOSTIC_ring(dst);
3818 DIAGNOSTIC_ring(src);
3819 KASSERT(src->used > 0);
3820 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3821 "src->fmt.channels=%d dst->fmt.channels=%d",
3822 src->fmt.channels, dst->fmt.channels);
3823 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3824 "src->head=%d track->mixer->frames_per_block=%d",
3825 src->head, track->mixer->frames_per_block);
3826
3827 s = arg->src;
3828 d = arg->dst;
3829
3830 /*
3831 * In order to faciliate interpolation for each block, slide (delay)
3832 * input by one sample. As a result, strictly speaking, the output
3833 * phase is delayed by 1/dstfreq. However, I believe there is no
3834 * observable impact.
3835 *
3836 * Example)
3837 * srcfreq:dstfreq = 1:3
3838 *
3839 * A - -
3840 * |
3841 * |
3842 * | B - -
3843 * +-----+-----> input timeframe
3844 * 0 1
3845 *
3846 * 0 1
3847 * +-----+-----> input timeframe
3848 * | A
3849 * | x x
3850 * | x x
3851 * x (B)
3852 * +-+-+-+-+-+-> output timeframe
3853 * 0 1 2 3 4 5
3854 */
3855
3856 /* Last samples in previous block */
3857 channels = src->fmt.channels;
3858 for (ch = 0; ch < channels; ch++) {
3859 prev[ch] = track->freq_prev[ch];
3860 curr[ch] = track->freq_curr[ch];
3861 grad[ch] = curr[ch] - prev[ch];
3862 }
3863
3864 step = track->freq_step;
3865 t = track->freq_current;
3866 //#define FREQ_DEBUG
3867 #if defined(FREQ_DEBUG)
3868 #define PRINTF(fmt...) printf(fmt)
3869 #else
3870 #define PRINTF(fmt...) do { } while (0)
3871 #endif
3872 srcused = src->used;
3873 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3874 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3875 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3876 PRINTF(" t=%d\n", t);
3877
3878 for (i = 0; i < arg->count; i++) {
3879 PRINTF("i=%d t=%5d", i, t);
3880 if (t >= 65536) {
3881 for (ch = 0; ch < channels; ch++) {
3882 prev[ch] = curr[ch];
3883 curr[ch] = *s++;
3884 grad[ch] = curr[ch] - prev[ch];
3885 }
3886 PRINTF(" prev=%d s[%d]=%d",
3887 prev[0], src->used - srcused, curr[0]);
3888
3889 /* Update */
3890 t -= 65536;
3891 srcused--;
3892 if (srcused < 0) {
3893 PRINTF(" break\n");
3894 break;
3895 }
3896 }
3897
3898 for (ch = 0; ch < channels; ch++) {
3899 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3900 #if defined(FREQ_DEBUG)
3901 if (ch == 0)
3902 printf(" t=%5d *d=%d", t, d[-1]);
3903 #endif
3904 }
3905 t += step;
3906
3907 PRINTF("\n");
3908 }
3909 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3910
3911 auring_take(src, src->used);
3912 auring_push(dst, i);
3913
3914 /* Adjust */
3915 t += track->freq_leap;
3916
3917 track->freq_current = t;
3918 for (ch = 0; ch < channels; ch++) {
3919 track->freq_prev[ch] = prev[ch];
3920 track->freq_curr[ch] = curr[ch];
3921 }
3922 }
3923
3924 /*
3925 * This filter performs frequency conversion (down sampling).
3926 * It uses simple thinning.
3927 */
3928 static void
3929 audio_track_freq_down(audio_filter_arg_t *arg)
3930 {
3931 audio_track_t *track;
3932 audio_ring_t *src;
3933 audio_ring_t *dst;
3934 const aint_t *s0;
3935 aint_t *d;
3936 u_int i;
3937 u_int t;
3938 u_int step;
3939 u_int ch;
3940 u_int channels;
3941
3942 track = arg->context;
3943 KASSERT(track);
3944 src = &track->freq.srcbuf;
3945 dst = track->freq.dst;
3946
3947 DIAGNOSTIC_ring(dst);
3948 DIAGNOSTIC_ring(src);
3949 KASSERT(src->used > 0);
3950 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3951 "src->fmt.channels=%d dst->fmt.channels=%d",
3952 src->fmt.channels, dst->fmt.channels);
3953 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3954 "src->head=%d track->mixer->frames_per_block=%d",
3955 src->head, track->mixer->frames_per_block);
3956
3957 s0 = arg->src;
3958 d = arg->dst;
3959 t = track->freq_current;
3960 step = track->freq_step;
3961 channels = dst->fmt.channels;
3962 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3963 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3964 PRINTF(" t=%d\n", t);
3965
3966 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3967 const aint_t *s;
3968 PRINTF("i=%4d t=%10d", i, t);
3969 s = s0 + (t / 65536) * channels;
3970 PRINTF(" s=%5ld", (s - s0) / channels);
3971 for (ch = 0; ch < channels; ch++) {
3972 if (ch == 0) PRINTF(" *s=%d", s[ch]);
3973 *d++ = s[ch];
3974 }
3975 PRINTF("\n");
3976 t += step;
3977 }
3978 t += track->freq_leap;
3979 PRINTF("end t=%d\n", t);
3980 auring_take(src, src->used);
3981 auring_push(dst, i);
3982 track->freq_current = t % 65536;
3983 }
3984
3985 /*
3986 * Creates track and returns it.
3987 * Must be called without sc_lock held.
3988 */
3989 audio_track_t *
3990 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
3991 {
3992 audio_track_t *track;
3993 static int newid = 0;
3994
3995 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
3996
3997 track->id = newid++;
3998 track->mixer = mixer;
3999 track->mode = mixer->mode;
4000
4001 /* Do TRACE after id is assigned. */
4002 TRACET(3, track, "for %s",
4003 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
4004
4005 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
4006 track->volume = 256;
4007 #endif
4008 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
4009 track->ch_volume[i] = 256;
4010 }
4011
4012 return track;
4013 }
4014
4015 /*
4016 * Release all resources of the track and track itself.
4017 * track must not be NULL. Don't specify the track within the file
4018 * structure linked from sc->sc_files.
4019 */
4020 static void
4021 audio_track_destroy(audio_track_t *track)
4022 {
4023
4024 KASSERT(track);
4025
4026 audio_free_usrbuf(track);
4027 audio_free(track->codec.srcbuf.mem);
4028 audio_free(track->chvol.srcbuf.mem);
4029 audio_free(track->chmix.srcbuf.mem);
4030 audio_free(track->freq.srcbuf.mem);
4031 audio_free(track->outbuf.mem);
4032
4033 kmem_free(track, sizeof(*track));
4034 }
4035
4036 /*
4037 * It returns encoding conversion filter according to src and dst format.
4038 * If it is not a convertible pair, it returns NULL. Either src or dst
4039 * must be internal format.
4040 */
4041 static audio_filter_t
4042 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
4043 const audio_format2_t *dst)
4044 {
4045
4046 if (audio_format2_is_internal(src)) {
4047 if (dst->encoding == AUDIO_ENCODING_ULAW) {
4048 return audio_internal_to_mulaw;
4049 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
4050 return audio_internal_to_alaw;
4051 } else if (audio_format2_is_linear(dst)) {
4052 switch (dst->stride) {
4053 case 8:
4054 return audio_internal_to_linear8;
4055 case 16:
4056 return audio_internal_to_linear16;
4057 #if defined(AUDIO_SUPPORT_LINEAR24)
4058 case 24:
4059 return audio_internal_to_linear24;
4060 #endif
4061 case 32:
4062 return audio_internal_to_linear32;
4063 default:
4064 TRACET(1, track, "unsupported %s stride %d",
4065 "dst", dst->stride);
4066 goto abort;
4067 }
4068 }
4069 } else if (audio_format2_is_internal(dst)) {
4070 if (src->encoding == AUDIO_ENCODING_ULAW) {
4071 return audio_mulaw_to_internal;
4072 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
4073 return audio_alaw_to_internal;
4074 } else if (audio_format2_is_linear(src)) {
4075 switch (src->stride) {
4076 case 8:
4077 return audio_linear8_to_internal;
4078 case 16:
4079 return audio_linear16_to_internal;
4080 #if defined(AUDIO_SUPPORT_LINEAR24)
4081 case 24:
4082 return audio_linear24_to_internal;
4083 #endif
4084 case 32:
4085 return audio_linear32_to_internal;
4086 default:
4087 TRACET(1, track, "unsupported %s stride %d",
4088 "src", src->stride);
4089 goto abort;
4090 }
4091 }
4092 }
4093
4094 TRACET(1, track, "unsupported encoding");
4095 abort:
4096 #if defined(AUDIO_DEBUG)
4097 if (audiodebug >= 2) {
4098 char buf[100];
4099 audio_format2_tostr(buf, sizeof(buf), src);
4100 TRACET(2, track, "src %s", buf);
4101 audio_format2_tostr(buf, sizeof(buf), dst);
4102 TRACET(2, track, "dst %s", buf);
4103 }
4104 #endif
4105 return NULL;
4106 }
4107
4108 /*
4109 * Initialize the codec stage of this track as necessary.
4110 * If successful, it initializes the codec stage as necessary, stores updated
4111 * last_dst in *last_dstp in any case, and returns 0.
4112 * Otherwise, it returns errno without modifying *last_dstp.
4113 */
4114 static int
4115 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
4116 {
4117 audio_ring_t *last_dst;
4118 audio_ring_t *srcbuf;
4119 audio_format2_t *srcfmt;
4120 audio_format2_t *dstfmt;
4121 audio_filter_arg_t *arg;
4122 u_int len;
4123 int error;
4124
4125 KASSERT(track);
4126
4127 last_dst = *last_dstp;
4128 dstfmt = &last_dst->fmt;
4129 srcfmt = &track->inputfmt;
4130 srcbuf = &track->codec.srcbuf;
4131 error = 0;
4132
4133 if (srcfmt->encoding != dstfmt->encoding
4134 || srcfmt->precision != dstfmt->precision
4135 || srcfmt->stride != dstfmt->stride) {
4136 track->codec.dst = last_dst;
4137
4138 srcbuf->fmt = *dstfmt;
4139 srcbuf->fmt.encoding = srcfmt->encoding;
4140 srcbuf->fmt.precision = srcfmt->precision;
4141 srcbuf->fmt.stride = srcfmt->stride;
4142
4143 track->codec.filter = audio_track_get_codec(track,
4144 &srcbuf->fmt, dstfmt);
4145 if (track->codec.filter == NULL) {
4146 error = EINVAL;
4147 goto abort;
4148 }
4149
4150 srcbuf->head = 0;
4151 srcbuf->used = 0;
4152 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4153 len = auring_bytelen(srcbuf);
4154 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4155
4156 arg = &track->codec.arg;
4157 arg->srcfmt = &srcbuf->fmt;
4158 arg->dstfmt = dstfmt;
4159 arg->context = NULL;
4160
4161 *last_dstp = srcbuf;
4162 return 0;
4163 }
4164
4165 abort:
4166 track->codec.filter = NULL;
4167 audio_free(srcbuf->mem);
4168 return error;
4169 }
4170
4171 /*
4172 * Initialize the chvol stage of this track as necessary.
4173 * If successful, it initializes the chvol stage as necessary, stores updated
4174 * last_dst in *last_dstp in any case, and returns 0.
4175 * Otherwise, it returns errno without modifying *last_dstp.
4176 */
4177 static int
4178 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
4179 {
4180 audio_ring_t *last_dst;
4181 audio_ring_t *srcbuf;
4182 audio_format2_t *srcfmt;
4183 audio_format2_t *dstfmt;
4184 audio_filter_arg_t *arg;
4185 u_int len;
4186 int error;
4187
4188 KASSERT(track);
4189
4190 last_dst = *last_dstp;
4191 dstfmt = &last_dst->fmt;
4192 srcfmt = &track->inputfmt;
4193 srcbuf = &track->chvol.srcbuf;
4194 error = 0;
4195
4196 /* Check whether channel volume conversion is necessary. */
4197 bool use_chvol = false;
4198 for (int ch = 0; ch < srcfmt->channels; ch++) {
4199 if (track->ch_volume[ch] != 256) {
4200 use_chvol = true;
4201 break;
4202 }
4203 }
4204
4205 if (use_chvol == true) {
4206 track->chvol.dst = last_dst;
4207 track->chvol.filter = audio_track_chvol;
4208
4209 srcbuf->fmt = *dstfmt;
4210 /* no format conversion occurs */
4211
4212 srcbuf->head = 0;
4213 srcbuf->used = 0;
4214 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4215 len = auring_bytelen(srcbuf);
4216 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4217
4218 arg = &track->chvol.arg;
4219 arg->srcfmt = &srcbuf->fmt;
4220 arg->dstfmt = dstfmt;
4221 arg->context = track->ch_volume;
4222
4223 *last_dstp = srcbuf;
4224 return 0;
4225 }
4226
4227 track->chvol.filter = NULL;
4228 audio_free(srcbuf->mem);
4229 return error;
4230 }
4231
4232 /*
4233 * Initialize the chmix stage of this track as necessary.
4234 * If successful, it initializes the chmix stage as necessary, stores updated
4235 * last_dst in *last_dstp in any case, and returns 0.
4236 * Otherwise, it returns errno without modifying *last_dstp.
4237 */
4238 static int
4239 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
4240 {
4241 audio_ring_t *last_dst;
4242 audio_ring_t *srcbuf;
4243 audio_format2_t *srcfmt;
4244 audio_format2_t *dstfmt;
4245 audio_filter_arg_t *arg;
4246 u_int srcch;
4247 u_int dstch;
4248 u_int len;
4249 int error;
4250
4251 KASSERT(track);
4252
4253 last_dst = *last_dstp;
4254 dstfmt = &last_dst->fmt;
4255 srcfmt = &track->inputfmt;
4256 srcbuf = &track->chmix.srcbuf;
4257 error = 0;
4258
4259 srcch = srcfmt->channels;
4260 dstch = dstfmt->channels;
4261 if (srcch != dstch) {
4262 track->chmix.dst = last_dst;
4263
4264 if (srcch >= 2 && dstch == 1) {
4265 track->chmix.filter = audio_track_chmix_mixLR;
4266 } else if (srcch == 1 && dstch >= 2) {
4267 track->chmix.filter = audio_track_chmix_dupLR;
4268 } else if (srcch > dstch) {
4269 track->chmix.filter = audio_track_chmix_shrink;
4270 } else {
4271 track->chmix.filter = audio_track_chmix_expand;
4272 }
4273
4274 srcbuf->fmt = *dstfmt;
4275 srcbuf->fmt.channels = srcch;
4276
4277 srcbuf->head = 0;
4278 srcbuf->used = 0;
4279 /* XXX The buffer size should be able to calculate. */
4280 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4281 len = auring_bytelen(srcbuf);
4282 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4283
4284 arg = &track->chmix.arg;
4285 arg->srcfmt = &srcbuf->fmt;
4286 arg->dstfmt = dstfmt;
4287 arg->context = NULL;
4288
4289 *last_dstp = srcbuf;
4290 return 0;
4291 }
4292
4293 track->chmix.filter = NULL;
4294 audio_free(srcbuf->mem);
4295 return error;
4296 }
4297
4298 /*
4299 * Initialize the freq stage of this track as necessary.
4300 * If successful, it initializes the freq stage as necessary, stores updated
4301 * last_dst in *last_dstp in any case, and returns 0.
4302 * Otherwise, it returns errno without modifying *last_dstp.
4303 */
4304 static int
4305 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
4306 {
4307 audio_ring_t *last_dst;
4308 audio_ring_t *srcbuf;
4309 audio_format2_t *srcfmt;
4310 audio_format2_t *dstfmt;
4311 audio_filter_arg_t *arg;
4312 uint32_t srcfreq;
4313 uint32_t dstfreq;
4314 u_int dst_capacity;
4315 u_int mod;
4316 u_int len;
4317 int error;
4318
4319 KASSERT(track);
4320
4321 last_dst = *last_dstp;
4322 dstfmt = &last_dst->fmt;
4323 srcfmt = &track->inputfmt;
4324 srcbuf = &track->freq.srcbuf;
4325 error = 0;
4326
4327 srcfreq = srcfmt->sample_rate;
4328 dstfreq = dstfmt->sample_rate;
4329 if (srcfreq != dstfreq) {
4330 track->freq.dst = last_dst;
4331
4332 memset(track->freq_prev, 0, sizeof(track->freq_prev));
4333 memset(track->freq_curr, 0, sizeof(track->freq_curr));
4334
4335 /* freq_step is the ratio of src/dst when let dst 65536. */
4336 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4337
4338 dst_capacity = frame_per_block(track->mixer, dstfmt);
4339 mod = (uint64_t)srcfreq * 65536 % dstfreq;
4340 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4341
4342 if (track->freq_step < 65536) {
4343 track->freq.filter = audio_track_freq_up;
4344 /* In order to carry at the first time. */
4345 track->freq_current = 65536;
4346 } else {
4347 track->freq.filter = audio_track_freq_down;
4348 track->freq_current = 0;
4349 }
4350
4351 srcbuf->fmt = *dstfmt;
4352 srcbuf->fmt.sample_rate = srcfreq;
4353
4354 srcbuf->head = 0;
4355 srcbuf->used = 0;
4356 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4357 len = auring_bytelen(srcbuf);
4358 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4359
4360 arg = &track->freq.arg;
4361 arg->srcfmt = &srcbuf->fmt;
4362 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
4363 arg->context = track;
4364
4365 *last_dstp = srcbuf;
4366 return 0;
4367 }
4368
4369 track->freq.filter = NULL;
4370 audio_free(srcbuf->mem);
4371 return error;
4372 }
4373
4374 /*
4375 * When playing back: (e.g. if codec and freq stage are valid)
4376 *
4377 * write
4378 * | uiomove
4379 * v
4380 * usrbuf [...............] byte ring buffer (mmap-able)
4381 * | memcpy
4382 * v
4383 * codec.srcbuf[....] 1 block (ring) buffer <-- stage input
4384 * .dst ----+
4385 * | convert
4386 * v
4387 * freq.srcbuf [....] 1 block (ring) buffer
4388 * .dst ----+
4389 * | convert
4390 * v
4391 * outbuf [...............] NBLKOUT blocks ring buffer
4392 *
4393 *
4394 * When recording:
4395 *
4396 * freq.srcbuf [...............] NBLKOUT blocks ring buffer <-- stage input
4397 * .dst ----+
4398 * | convert
4399 * v
4400 * codec.srcbuf[.....] 1 block (ring) buffer
4401 * .dst ----+
4402 * | convert
4403 * v
4404 * outbuf [.....] 1 block (ring) buffer
4405 * | memcpy
4406 * v
4407 * usrbuf [...............] byte ring buffer (mmap-able *)
4408 * | uiomove
4409 * v
4410 * read
4411 *
4412 * *: usrbuf for recording is also mmap-able due to symmetry with
4413 * playback buffer, but for now mmap will never happen for recording.
4414 */
4415
4416 /*
4417 * Set the userland format of this track.
4418 * usrfmt argument should have been previously verified by
4419 * audio_track_setinfo_check().
4420 * This function may release and reallocate all internal conversion buffers.
4421 * It returns 0 if successful. Otherwise it returns errno with clearing all
4422 * internal buffers.
4423 * It must be called without sc_intr_lock since uvm_* routines require non
4424 * intr_lock state.
4425 * It must be called with track lock held since it may release and reallocate
4426 * outbuf.
4427 */
4428 static int
4429 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4430 {
4431 struct audio_softc *sc;
4432 u_int newbufsize;
4433 u_int oldblksize;
4434 u_int len;
4435 int error;
4436
4437 KASSERT(track);
4438 sc = track->mixer->sc;
4439
4440 /* usrbuf is the closest buffer to the userland. */
4441 track->usrbuf.fmt = *usrfmt;
4442
4443 /*
4444 * For references, one block size (in 40msec) is:
4445 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4446 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4447 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4448 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4449 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4450 *
4451 * For example,
4452 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4453 * newbufsize = rounddown(65536 / 7056) = 63504
4454 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4455 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4456 *
4457 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4458 * newbufsize = rounddown(65536 / 7680) = 61440
4459 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4460 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4461 */
4462 oldblksize = track->usrbuf_blksize;
4463 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4464 frame_per_block(track->mixer, &track->usrbuf.fmt));
4465 track->usrbuf.head = 0;
4466 track->usrbuf.used = 0;
4467 newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4468 newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4469 error = audio_realloc_usrbuf(track, newbufsize);
4470 if (error) {
4471 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4472 newbufsize);
4473 goto error;
4474 }
4475
4476 /* Recalc water mark. */
4477 if (track->usrbuf_blksize != oldblksize) {
4478 if (audio_track_is_playback(track)) {
4479 /* Set high at 100%, low at 75%. */
4480 track->usrbuf_usedhigh = track->usrbuf.capacity;
4481 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4482 } else {
4483 /* Set high at 100% minus 1block(?), low at 0% */
4484 track->usrbuf_usedhigh = track->usrbuf.capacity -
4485 track->usrbuf_blksize;
4486 track->usrbuf_usedlow = 0;
4487 }
4488 }
4489
4490 /* Stage buffer */
4491 audio_ring_t *last_dst = &track->outbuf;
4492 if (audio_track_is_playback(track)) {
4493 /* On playback, initialize from the mixer side in order. */
4494 track->inputfmt = *usrfmt;
4495 track->outbuf.fmt = track->mixer->track_fmt;
4496
4497 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4498 goto error;
4499 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4500 goto error;
4501 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4502 goto error;
4503 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4504 goto error;
4505 } else {
4506 /* On recording, initialize from userland side in order. */
4507 track->inputfmt = track->mixer->track_fmt;
4508 track->outbuf.fmt = *usrfmt;
4509
4510 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4511 goto error;
4512 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4513 goto error;
4514 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4515 goto error;
4516 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4517 goto error;
4518 }
4519 #if 0
4520 /* debug */
4521 if (track->freq.filter) {
4522 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4523 audio_print_format2("freq dst", &track->freq.dst->fmt);
4524 }
4525 if (track->chmix.filter) {
4526 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4527 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4528 }
4529 if (track->chvol.filter) {
4530 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4531 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4532 }
4533 if (track->codec.filter) {
4534 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4535 audio_print_format2("codec dst", &track->codec.dst->fmt);
4536 }
4537 #endif
4538
4539 /* Stage input buffer */
4540 track->input = last_dst;
4541
4542 /*
4543 * On the recording track, make the first stage a ring buffer.
4544 * XXX is there a better way?
4545 */
4546 if (audio_track_is_record(track)) {
4547 track->input->capacity = NBLKOUT *
4548 frame_per_block(track->mixer, &track->input->fmt);
4549 len = auring_bytelen(track->input);
4550 track->input->mem = audio_realloc(track->input->mem, len);
4551 }
4552
4553 /*
4554 * Output buffer.
4555 * On the playback track, its capacity is NBLKOUT blocks.
4556 * On the recording track, its capacity is 1 block.
4557 */
4558 track->outbuf.head = 0;
4559 track->outbuf.used = 0;
4560 track->outbuf.capacity = frame_per_block(track->mixer,
4561 &track->outbuf.fmt);
4562 if (audio_track_is_playback(track))
4563 track->outbuf.capacity *= NBLKOUT;
4564 len = auring_bytelen(&track->outbuf);
4565 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4566 if (track->outbuf.mem == NULL) {
4567 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4568 error = ENOMEM;
4569 goto error;
4570 }
4571
4572 #if defined(AUDIO_DEBUG)
4573 if (audiodebug >= 3) {
4574 struct audio_track_debugbuf m;
4575
4576 memset(&m, 0, sizeof(m));
4577 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4578 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4579 if (track->freq.filter)
4580 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4581 track->freq.srcbuf.capacity *
4582 frametobyte(&track->freq.srcbuf.fmt, 1));
4583 if (track->chmix.filter)
4584 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4585 track->chmix.srcbuf.capacity *
4586 frametobyte(&track->chmix.srcbuf.fmt, 1));
4587 if (track->chvol.filter)
4588 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4589 track->chvol.srcbuf.capacity *
4590 frametobyte(&track->chvol.srcbuf.fmt, 1));
4591 if (track->codec.filter)
4592 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4593 track->codec.srcbuf.capacity *
4594 frametobyte(&track->codec.srcbuf.fmt, 1));
4595 snprintf(m.usrbuf, sizeof(m.usrbuf),
4596 " usr=%d", track->usrbuf.capacity);
4597
4598 if (audio_track_is_playback(track)) {
4599 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4600 m.outbuf, m.freq, m.chmix,
4601 m.chvol, m.codec, m.usrbuf);
4602 } else {
4603 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4604 m.freq, m.chmix, m.chvol,
4605 m.codec, m.outbuf, m.usrbuf);
4606 }
4607 }
4608 #endif
4609 return 0;
4610
4611 error:
4612 audio_free_usrbuf(track);
4613 audio_free(track->codec.srcbuf.mem);
4614 audio_free(track->chvol.srcbuf.mem);
4615 audio_free(track->chmix.srcbuf.mem);
4616 audio_free(track->freq.srcbuf.mem);
4617 audio_free(track->outbuf.mem);
4618 return error;
4619 }
4620
4621 /*
4622 * Fill silence frames (as the internal format) up to 1 block
4623 * if the ring is not empty and less than 1 block.
4624 * It returns the number of appended frames.
4625 */
4626 static int
4627 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4628 {
4629 int fpb;
4630 int n;
4631
4632 KASSERT(track);
4633 KASSERT(audio_format2_is_internal(&ring->fmt));
4634
4635 /* XXX is n correct? */
4636 /* XXX memset uses frametobyte()? */
4637
4638 if (ring->used == 0)
4639 return 0;
4640
4641 fpb = frame_per_block(track->mixer, &ring->fmt);
4642 if (ring->used >= fpb)
4643 return 0;
4644
4645 n = (ring->capacity - ring->used) % fpb;
4646
4647 KASSERTMSG(auring_get_contig_free(ring) >= n,
4648 "auring_get_contig_free(ring)=%d n=%d",
4649 auring_get_contig_free(ring), n);
4650
4651 memset(auring_tailptr_aint(ring), 0,
4652 n * ring->fmt.channels * sizeof(aint_t));
4653 auring_push(ring, n);
4654 return n;
4655 }
4656
4657 /*
4658 * Execute the conversion stage.
4659 * It prepares arg from this stage and executes stage->filter.
4660 * It must be called only if stage->filter is not NULL.
4661 *
4662 * For stages other than frequency conversion, the function increments
4663 * src and dst counters here. For frequency conversion stage, on the
4664 * other hand, the function does not touch src and dst counters and
4665 * filter side has to increment them.
4666 */
4667 static void
4668 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4669 {
4670 audio_filter_arg_t *arg;
4671 int srccount;
4672 int dstcount;
4673 int count;
4674
4675 KASSERT(track);
4676 KASSERT(stage->filter);
4677
4678 srccount = auring_get_contig_used(&stage->srcbuf);
4679 dstcount = auring_get_contig_free(stage->dst);
4680
4681 if (isfreq) {
4682 KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4683 count = uimin(dstcount, track->mixer->frames_per_block);
4684 } else {
4685 count = uimin(srccount, dstcount);
4686 }
4687
4688 if (count > 0) {
4689 arg = &stage->arg;
4690 arg->src = auring_headptr(&stage->srcbuf);
4691 arg->dst = auring_tailptr(stage->dst);
4692 arg->count = count;
4693
4694 stage->filter(arg);
4695
4696 if (!isfreq) {
4697 auring_take(&stage->srcbuf, count);
4698 auring_push(stage->dst, count);
4699 }
4700 }
4701 }
4702
4703 /*
4704 * Produce output buffer for playback from user input buffer.
4705 * It must be called only if usrbuf is not empty and outbuf is
4706 * available at least one free block.
4707 */
4708 static void
4709 audio_track_play(audio_track_t *track)
4710 {
4711 audio_ring_t *usrbuf;
4712 audio_ring_t *input;
4713 int count;
4714 int framesize;
4715 int bytes;
4716
4717 KASSERT(track);
4718 KASSERT(track->lock);
4719 TRACET(4, track, "start pstate=%d", track->pstate);
4720
4721 /* At this point usrbuf must not be empty. */
4722 KASSERT(track->usrbuf.used > 0);
4723 /* Also, outbuf must be available at least one block. */
4724 count = auring_get_contig_free(&track->outbuf);
4725 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4726 "count=%d fpb=%d",
4727 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4728
4729 /* XXX TODO: is this necessary for now? */
4730 int track_count_0 = track->outbuf.used;
4731
4732 usrbuf = &track->usrbuf;
4733 input = track->input;
4734
4735 /*
4736 * framesize is always 1 byte or more since all formats supported as
4737 * usrfmt(=input) have 8bit or more stride.
4738 */
4739 framesize = frametobyte(&input->fmt, 1);
4740 KASSERT(framesize >= 1);
4741
4742 /* The next stage of usrbuf (=input) must be available. */
4743 KASSERT(auring_get_contig_free(input) > 0);
4744
4745 /*
4746 * Copy usrbuf up to 1block to input buffer.
4747 * count is the number of frames to copy from usrbuf.
4748 * bytes is the number of bytes to copy from usrbuf. However it is
4749 * not copied less than one frame.
4750 */
4751 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4752 bytes = count * framesize;
4753
4754 track->usrbuf_stamp += bytes;
4755
4756 if (usrbuf->head + bytes < usrbuf->capacity) {
4757 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4758 (uint8_t *)usrbuf->mem + usrbuf->head,
4759 bytes);
4760 auring_push(input, count);
4761 auring_take(usrbuf, bytes);
4762 } else {
4763 int bytes1;
4764 int bytes2;
4765
4766 bytes1 = auring_get_contig_used(usrbuf);
4767 KASSERTMSG(bytes1 % framesize == 0,
4768 "bytes1=%d framesize=%d", bytes1, framesize);
4769 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4770 (uint8_t *)usrbuf->mem + usrbuf->head,
4771 bytes1);
4772 auring_push(input, bytes1 / framesize);
4773 auring_take(usrbuf, bytes1);
4774
4775 bytes2 = bytes - bytes1;
4776 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4777 (uint8_t *)usrbuf->mem + usrbuf->head,
4778 bytes2);
4779 auring_push(input, bytes2 / framesize);
4780 auring_take(usrbuf, bytes2);
4781 }
4782
4783 /* Encoding conversion */
4784 if (track->codec.filter)
4785 audio_apply_stage(track, &track->codec, false);
4786
4787 /* Channel volume */
4788 if (track->chvol.filter)
4789 audio_apply_stage(track, &track->chvol, false);
4790
4791 /* Channel mix */
4792 if (track->chmix.filter)
4793 audio_apply_stage(track, &track->chmix, false);
4794
4795 /* Frequency conversion */
4796 /*
4797 * Since the frequency conversion needs correction for each block,
4798 * it rounds up to 1 block.
4799 */
4800 if (track->freq.filter) {
4801 int n;
4802 n = audio_append_silence(track, &track->freq.srcbuf);
4803 if (n > 0) {
4804 TRACET(4, track,
4805 "freq.srcbuf add silence %d -> %d/%d/%d",
4806 n,
4807 track->freq.srcbuf.head,
4808 track->freq.srcbuf.used,
4809 track->freq.srcbuf.capacity);
4810 }
4811 if (track->freq.srcbuf.used > 0) {
4812 audio_apply_stage(track, &track->freq, true);
4813 }
4814 }
4815
4816 if (bytes < track->usrbuf_blksize) {
4817 /*
4818 * Clear all conversion buffer pointer if the conversion was
4819 * not exactly one block. These conversion stage buffers are
4820 * certainly circular buffers because of symmetry with the
4821 * previous and next stage buffer. However, since they are
4822 * treated as simple contiguous buffers in operation, so head
4823 * always should point 0. This may happen during drain-age.
4824 */
4825 TRACET(4, track, "reset stage");
4826 if (track->codec.filter) {
4827 KASSERT(track->codec.srcbuf.used == 0);
4828 track->codec.srcbuf.head = 0;
4829 }
4830 if (track->chvol.filter) {
4831 KASSERT(track->chvol.srcbuf.used == 0);
4832 track->chvol.srcbuf.head = 0;
4833 }
4834 if (track->chmix.filter) {
4835 KASSERT(track->chmix.srcbuf.used == 0);
4836 track->chmix.srcbuf.head = 0;
4837 }
4838 if (track->freq.filter) {
4839 KASSERT(track->freq.srcbuf.used == 0);
4840 track->freq.srcbuf.head = 0;
4841 }
4842 }
4843
4844 if (track->input == &track->outbuf) {
4845 track->outputcounter = track->inputcounter;
4846 } else {
4847 track->outputcounter += track->outbuf.used - track_count_0;
4848 }
4849
4850 #if defined(AUDIO_DEBUG)
4851 if (audiodebug >= 3) {
4852 struct audio_track_debugbuf m;
4853 audio_track_bufstat(track, &m);
4854 TRACET(0, track, "end%s%s%s%s%s%s",
4855 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4856 }
4857 #endif
4858 }
4859
4860 /*
4861 * Produce user output buffer for recording from input buffer.
4862 */
4863 static void
4864 audio_track_record(audio_track_t *track)
4865 {
4866 audio_ring_t *outbuf;
4867 audio_ring_t *usrbuf;
4868 int count;
4869 int bytes;
4870 int framesize;
4871
4872 KASSERT(track);
4873 KASSERT(track->lock);
4874
4875 /* Number of frames to process */
4876 count = auring_get_contig_used(track->input);
4877 count = uimin(count, track->mixer->frames_per_block);
4878 if (count == 0) {
4879 TRACET(4, track, "count == 0");
4880 return;
4881 }
4882
4883 /* Frequency conversion */
4884 if (track->freq.filter) {
4885 if (track->freq.srcbuf.used > 0) {
4886 audio_apply_stage(track, &track->freq, true);
4887 /* XXX should input of freq be from beginning of buf? */
4888 }
4889 }
4890
4891 /* Channel mix */
4892 if (track->chmix.filter)
4893 audio_apply_stage(track, &track->chmix, false);
4894
4895 /* Channel volume */
4896 if (track->chvol.filter)
4897 audio_apply_stage(track, &track->chvol, false);
4898
4899 /* Encoding conversion */
4900 if (track->codec.filter)
4901 audio_apply_stage(track, &track->codec, false);
4902
4903 /* Copy outbuf to usrbuf */
4904 outbuf = &track->outbuf;
4905 usrbuf = &track->usrbuf;
4906 /*
4907 * framesize is always 1 byte or more since all formats supported
4908 * as usrfmt(=output) have 8bit or more stride.
4909 */
4910 framesize = frametobyte(&outbuf->fmt, 1);
4911 KASSERT(framesize >= 1);
4912 /*
4913 * count is the number of frames to copy to usrbuf.
4914 * bytes is the number of bytes to copy to usrbuf.
4915 */
4916 count = outbuf->used;
4917 count = uimin(count,
4918 (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4919 bytes = count * framesize;
4920 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4921 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4922 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4923 bytes);
4924 auring_push(usrbuf, bytes);
4925 auring_take(outbuf, count);
4926 } else {
4927 int bytes1;
4928 int bytes2;
4929
4930 bytes1 = auring_get_contig_free(usrbuf);
4931 KASSERTMSG(bytes1 % framesize == 0,
4932 "bytes1=%d framesize=%d", bytes1, framesize);
4933 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4934 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4935 bytes1);
4936 auring_push(usrbuf, bytes1);
4937 auring_take(outbuf, bytes1 / framesize);
4938
4939 bytes2 = bytes - bytes1;
4940 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4941 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4942 bytes2);
4943 auring_push(usrbuf, bytes2);
4944 auring_take(outbuf, bytes2 / framesize);
4945 }
4946
4947 /* XXX TODO: any counters here? */
4948
4949 #if defined(AUDIO_DEBUG)
4950 if (audiodebug >= 3) {
4951 struct audio_track_debugbuf m;
4952 audio_track_bufstat(track, &m);
4953 TRACET(0, track, "end%s%s%s%s%s%s",
4954 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4955 }
4956 #endif
4957 }
4958
4959 /*
4960 * Calculate blktime [msec] from mixer(.hwbuf.fmt).
4961 * Must be called with sc_exlock held.
4962 */
4963 static u_int
4964 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4965 {
4966 audio_format2_t *fmt;
4967 u_int blktime;
4968 u_int frames_per_block;
4969
4970 KASSERT(sc->sc_exlock);
4971
4972 fmt = &mixer->hwbuf.fmt;
4973 blktime = sc->sc_blk_ms;
4974
4975 /*
4976 * If stride is not multiples of 8, special treatment is necessary.
4977 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
4978 */
4979 if (fmt->stride == 4) {
4980 frames_per_block = fmt->sample_rate * blktime / 1000;
4981 if ((frames_per_block & 1) != 0)
4982 blktime *= 2;
4983 }
4984 #ifdef DIAGNOSTIC
4985 else if (fmt->stride % NBBY != 0) {
4986 panic("unsupported HW stride %d", fmt->stride);
4987 }
4988 #endif
4989
4990 return blktime;
4991 }
4992
4993 /*
4994 * Initialize the mixer corresponding to the mode.
4995 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
4996 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
4997 * This function returns 0 on successful. Otherwise returns errno.
4998 * Must be called with sc_exlock held and without sc_lock held.
4999 */
5000 static int
5001 audio_mixer_init(struct audio_softc *sc, int mode,
5002 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
5003 {
5004 char codecbuf[64];
5005 char blkdmsbuf[8];
5006 audio_trackmixer_t *mixer;
5007 void (*softint_handler)(void *);
5008 int len;
5009 int blksize;
5010 int capacity;
5011 size_t bufsize;
5012 int hwblks;
5013 int blkms;
5014 int blkdms;
5015 int error;
5016
5017 KASSERT(hwfmt != NULL);
5018 KASSERT(reg != NULL);
5019 KASSERT(sc->sc_exlock);
5020
5021 error = 0;
5022 if (mode == AUMODE_PLAY)
5023 mixer = sc->sc_pmixer;
5024 else
5025 mixer = sc->sc_rmixer;
5026
5027 mixer->sc = sc;
5028 mixer->mode = mode;
5029
5030 mixer->hwbuf.fmt = *hwfmt;
5031 mixer->volume = 256;
5032 mixer->blktime_d = 1000;
5033 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
5034 sc->sc_blk_ms = mixer->blktime_n;
5035 hwblks = NBLKHW;
5036
5037 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
5038 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5039 if (sc->hw_if->round_blocksize) {
5040 int rounded;
5041 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
5042 mutex_enter(sc->sc_lock);
5043 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
5044 mode, &p);
5045 mutex_exit(sc->sc_lock);
5046 TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
5047 if (rounded != blksize) {
5048 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
5049 mixer->hwbuf.fmt.channels) != 0) {
5050 audio_printf(sc,
5051 "round_blocksize returned blocksize "
5052 "indivisible by framesize: "
5053 "blksize=%d rounded=%d "
5054 "stride=%ubit channels=%u\n",
5055 blksize, rounded,
5056 mixer->hwbuf.fmt.stride,
5057 mixer->hwbuf.fmt.channels);
5058 return EINVAL;
5059 }
5060 /* Recalculation */
5061 blksize = rounded;
5062 mixer->frames_per_block = blksize * NBBY /
5063 (mixer->hwbuf.fmt.stride *
5064 mixer->hwbuf.fmt.channels);
5065 }
5066 }
5067 mixer->blktime_n = mixer->frames_per_block;
5068 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
5069
5070 capacity = mixer->frames_per_block * hwblks;
5071 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
5072 if (sc->hw_if->round_buffersize) {
5073 size_t rounded;
5074 mutex_enter(sc->sc_lock);
5075 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
5076 bufsize);
5077 mutex_exit(sc->sc_lock);
5078 TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
5079 if (rounded < bufsize) {
5080 /* buffersize needs NBLKHW blocks at least. */
5081 audio_printf(sc,
5082 "round_buffersize returned too small buffersize: "
5083 "buffersize=%zd blksize=%d\n",
5084 rounded, blksize);
5085 return EINVAL;
5086 }
5087 if (rounded % blksize != 0) {
5088 /* buffersize/blksize constraint mismatch? */
5089 audio_printf(sc,
5090 "round_buffersize returned buffersize indivisible "
5091 "by blksize: buffersize=%zu blksize=%d\n",
5092 rounded, blksize);
5093 return EINVAL;
5094 }
5095 if (rounded != bufsize) {
5096 /* Recalculation */
5097 bufsize = rounded;
5098 hwblks = bufsize / blksize;
5099 capacity = mixer->frames_per_block * hwblks;
5100 }
5101 }
5102 TRACE(1, "buffersize for %s = %zu",
5103 (mode == AUMODE_PLAY) ? "playback" : "recording",
5104 bufsize);
5105 mixer->hwbuf.capacity = capacity;
5106
5107 if (sc->hw_if->allocm) {
5108 /* sc_lock is not necessary for allocm */
5109 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
5110 if (mixer->hwbuf.mem == NULL) {
5111 audio_printf(sc, "allocm(%zu) failed\n", bufsize);
5112 return ENOMEM;
5113 }
5114 } else {
5115 mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
5116 }
5117
5118 /* From here, audio_mixer_destroy is necessary to exit. */
5119 if (mode == AUMODE_PLAY) {
5120 cv_init(&mixer->outcv, "audiowr");
5121 } else {
5122 cv_init(&mixer->outcv, "audiord");
5123 }
5124
5125 if (mode == AUMODE_PLAY) {
5126 softint_handler = audio_softintr_wr;
5127 } else {
5128 softint_handler = audio_softintr_rd;
5129 }
5130 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
5131 softint_handler, sc);
5132 if (mixer->sih == NULL) {
5133 device_printf(sc->sc_dev, "softint_establish failed\n");
5134 goto abort;
5135 }
5136
5137 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
5138 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
5139 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
5140 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
5141 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
5142
5143 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
5144 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
5145 mixer->swap_endian = true;
5146 TRACE(1, "swap_endian");
5147 }
5148
5149 if (mode == AUMODE_PLAY) {
5150 /* Mixing buffer */
5151 mixer->mixfmt = mixer->track_fmt;
5152 mixer->mixfmt.precision *= 2;
5153 mixer->mixfmt.stride *= 2;
5154 /* XXX TODO: use some macros? */
5155 len = mixer->frames_per_block * mixer->mixfmt.channels *
5156 mixer->mixfmt.stride / NBBY;
5157 mixer->mixsample = audio_realloc(mixer->mixsample, len);
5158 } else {
5159 /* No mixing buffer for recording */
5160 }
5161
5162 if (reg->codec) {
5163 mixer->codec = reg->codec;
5164 mixer->codecarg.context = reg->context;
5165 if (mode == AUMODE_PLAY) {
5166 mixer->codecarg.srcfmt = &mixer->track_fmt;
5167 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
5168 } else {
5169 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
5170 mixer->codecarg.dstfmt = &mixer->track_fmt;
5171 }
5172 mixer->codecbuf.fmt = mixer->track_fmt;
5173 mixer->codecbuf.capacity = mixer->frames_per_block;
5174 len = auring_bytelen(&mixer->codecbuf);
5175 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
5176 if (mixer->codecbuf.mem == NULL) {
5177 device_printf(sc->sc_dev,
5178 "malloc codecbuf(%d) failed\n", len);
5179 error = ENOMEM;
5180 goto abort;
5181 }
5182 }
5183
5184 /* Succeeded so display it. */
5185 codecbuf[0] = '\0';
5186 if (mixer->codec || mixer->swap_endian) {
5187 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
5188 (mode == AUMODE_PLAY) ? "->" : "<-",
5189 audio_encoding_name(mixer->hwbuf.fmt.encoding),
5190 mixer->hwbuf.fmt.precision);
5191 }
5192 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
5193 blkdms = (mixer->blktime_n * 10000 / mixer->blktime_d) % 10;
5194 blkdmsbuf[0] = '\0';
5195 if (blkdms != 0) {
5196 snprintf(blkdmsbuf, sizeof(blkdmsbuf), ".%1d", blkdms);
5197 }
5198 aprint_normal_dev(sc->sc_dev,
5199 "%s:%d%s %dch %dHz, blk %d bytes (%d%sms) for %s\n",
5200 audio_encoding_name(mixer->track_fmt.encoding),
5201 mixer->track_fmt.precision,
5202 codecbuf,
5203 mixer->track_fmt.channels,
5204 mixer->track_fmt.sample_rate,
5205 blksize,
5206 blkms, blkdmsbuf,
5207 (mode == AUMODE_PLAY) ? "playback" : "recording");
5208
5209 return 0;
5210
5211 abort:
5212 audio_mixer_destroy(sc, mixer);
5213 return error;
5214 }
5215
5216 /*
5217 * Releases all resources of 'mixer'.
5218 * Note that it does not release the memory area of 'mixer' itself.
5219 * Must be called with sc_exlock held and without sc_lock held.
5220 */
5221 static void
5222 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
5223 {
5224 int bufsize;
5225
5226 KASSERT(sc->sc_exlock == 1);
5227
5228 bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
5229
5230 if (mixer->hwbuf.mem != NULL) {
5231 if (sc->hw_if->freem) {
5232 /* sc_lock is not necessary for freem */
5233 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
5234 } else {
5235 kmem_free(mixer->hwbuf.mem, bufsize);
5236 }
5237 mixer->hwbuf.mem = NULL;
5238 }
5239
5240 audio_free(mixer->codecbuf.mem);
5241 audio_free(mixer->mixsample);
5242
5243 cv_destroy(&mixer->outcv);
5244
5245 if (mixer->sih) {
5246 softint_disestablish(mixer->sih);
5247 mixer->sih = NULL;
5248 }
5249 }
5250
5251 /*
5252 * Starts playback mixer.
5253 * Must be called only if sc_pbusy is false.
5254 * Must be called with sc_lock && sc_exlock held.
5255 * Must not be called from the interrupt context.
5256 */
5257 static void
5258 audio_pmixer_start(struct audio_softc *sc, bool force)
5259 {
5260 audio_trackmixer_t *mixer;
5261 int minimum;
5262
5263 KASSERT(mutex_owned(sc->sc_lock));
5264 KASSERT(sc->sc_exlock);
5265 KASSERT(sc->sc_pbusy == false);
5266
5267 mutex_enter(sc->sc_intr_lock);
5268
5269 mixer = sc->sc_pmixer;
5270 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
5271 (audiodebug >= 3) ? "begin " : "",
5272 (int)mixer->mixseq, (int)mixer->hwseq,
5273 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5274 force ? " force" : "");
5275
5276 /* Need two blocks to start normally. */
5277 minimum = (force) ? 1 : 2;
5278 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
5279 audio_pmixer_process(sc);
5280 }
5281
5282 /* Start output */
5283 audio_pmixer_output(sc);
5284 sc->sc_pbusy = true;
5285
5286 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
5287 (int)mixer->mixseq, (int)mixer->hwseq,
5288 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5289
5290 mutex_exit(sc->sc_intr_lock);
5291 }
5292
5293 /*
5294 * When playing back with MD filter:
5295 *
5296 * track track ...
5297 * v v
5298 * + mix (with aint2_t)
5299 * | master volume (with aint2_t)
5300 * v
5301 * mixsample [::::] wide-int 1 block (ring) buffer
5302 * |
5303 * | convert aint2_t -> aint_t
5304 * v
5305 * codecbuf [....] 1 block (ring) buffer
5306 * |
5307 * | convert to hw format
5308 * v
5309 * hwbuf [............] NBLKHW blocks ring buffer
5310 *
5311 * When playing back without MD filter:
5312 *
5313 * mixsample [::::] wide-int 1 block (ring) buffer
5314 * |
5315 * | convert aint2_t -> aint_t
5316 * | (with byte swap if necessary)
5317 * v
5318 * hwbuf [............] NBLKHW blocks ring buffer
5319 *
5320 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5321 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5322 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5323 */
5324
5325 /*
5326 * Performs track mixing and converts it to hwbuf.
5327 * Note that this function doesn't transfer hwbuf to hardware.
5328 * Must be called with sc_intr_lock held.
5329 */
5330 static void
5331 audio_pmixer_process(struct audio_softc *sc)
5332 {
5333 audio_trackmixer_t *mixer;
5334 audio_file_t *f;
5335 int frame_count;
5336 int sample_count;
5337 int mixed;
5338 int i;
5339 aint2_t *m;
5340 aint_t *h;
5341
5342 mixer = sc->sc_pmixer;
5343
5344 frame_count = mixer->frames_per_block;
5345 KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
5346 "auring_get_contig_free()=%d frame_count=%d",
5347 auring_get_contig_free(&mixer->hwbuf), frame_count);
5348 sample_count = frame_count * mixer->mixfmt.channels;
5349
5350 mixer->mixseq++;
5351
5352 /* Mix all tracks */
5353 mixed = 0;
5354 SLIST_FOREACH(f, &sc->sc_files, entry) {
5355 audio_track_t *track = f->ptrack;
5356
5357 if (track == NULL)
5358 continue;
5359
5360 if (track->is_pause) {
5361 TRACET(4, track, "skip; paused");
5362 continue;
5363 }
5364
5365 /* Skip if the track is used by process context. */
5366 if (audio_track_lock_tryenter(track) == false) {
5367 TRACET(4, track, "skip; in use");
5368 continue;
5369 }
5370
5371 /* Emulate mmap'ped track */
5372 if (track->mmapped) {
5373 auring_push(&track->usrbuf, track->usrbuf_blksize);
5374 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5375 track->usrbuf.head,
5376 track->usrbuf.used,
5377 track->usrbuf.capacity);
5378 }
5379
5380 if (track->outbuf.used < mixer->frames_per_block &&
5381 track->usrbuf.used > 0) {
5382 TRACET(4, track, "process");
5383 audio_track_play(track);
5384 }
5385
5386 if (track->outbuf.used > 0) {
5387 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5388 } else {
5389 TRACET(4, track, "skip; empty");
5390 }
5391
5392 audio_track_lock_exit(track);
5393 }
5394
5395 if (mixed == 0) {
5396 /* Silence */
5397 memset(mixer->mixsample, 0,
5398 frametobyte(&mixer->mixfmt, frame_count));
5399 } else {
5400 if (mixed > 1) {
5401 /* If there are multiple tracks, do auto gain control */
5402 audio_pmixer_agc(mixer, sample_count);
5403 }
5404
5405 /* Apply master volume */
5406 if (mixer->volume < 256) {
5407 m = mixer->mixsample;
5408 for (i = 0; i < sample_count; i++) {
5409 *m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
5410 m++;
5411 }
5412
5413 /*
5414 * Recover the volume gradually at the pace of
5415 * several times per second. If it's too fast, you
5416 * can recognize that the volume changes up and down
5417 * quickly and it's not so comfortable.
5418 */
5419 mixer->voltimer += mixer->blktime_n;
5420 if (mixer->voltimer * 4 >= mixer->blktime_d) {
5421 mixer->volume++;
5422 mixer->voltimer = 0;
5423 #if defined(AUDIO_DEBUG_AGC)
5424 TRACE(1, "volume recover: %d", mixer->volume);
5425 #endif
5426 }
5427 }
5428 }
5429
5430 /*
5431 * The rest is the hardware part.
5432 */
5433
5434 if (mixer->codec) {
5435 h = auring_tailptr_aint(&mixer->codecbuf);
5436 } else {
5437 h = auring_tailptr_aint(&mixer->hwbuf);
5438 }
5439
5440 m = mixer->mixsample;
5441 if (mixer->swap_endian) {
5442 for (i = 0; i < sample_count; i++) {
5443 *h++ = bswap16(*m++);
5444 }
5445 } else {
5446 for (i = 0; i < sample_count; i++) {
5447 *h++ = *m++;
5448 }
5449 }
5450
5451 /* Hardware driver's codec */
5452 if (mixer->codec) {
5453 auring_push(&mixer->codecbuf, frame_count);
5454 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5455 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5456 mixer->codecarg.count = frame_count;
5457 mixer->codec(&mixer->codecarg);
5458 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5459 }
5460
5461 auring_push(&mixer->hwbuf, frame_count);
5462
5463 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5464 (int)mixer->mixseq,
5465 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5466 (mixed == 0) ? " silent" : "");
5467 }
5468
5469 /*
5470 * Do auto gain control.
5471 * Must be called sc_intr_lock held.
5472 */
5473 static void
5474 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5475 {
5476 struct audio_softc *sc __unused;
5477 aint2_t val;
5478 aint2_t maxval;
5479 aint2_t minval;
5480 aint2_t over_plus;
5481 aint2_t over_minus;
5482 aint2_t *m;
5483 int newvol;
5484 int i;
5485
5486 sc = mixer->sc;
5487
5488 /* Overflow detection */
5489 maxval = AINT_T_MAX;
5490 minval = AINT_T_MIN;
5491 m = mixer->mixsample;
5492 for (i = 0; i < sample_count; i++) {
5493 val = *m++;
5494 if (val > maxval)
5495 maxval = val;
5496 else if (val < minval)
5497 minval = val;
5498 }
5499
5500 /* Absolute value of overflowed amount */
5501 over_plus = maxval - AINT_T_MAX;
5502 over_minus = AINT_T_MIN - minval;
5503
5504 if (over_plus > 0 || over_minus > 0) {
5505 if (over_plus > over_minus) {
5506 newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5507 } else {
5508 newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5509 }
5510
5511 /*
5512 * Change the volume only if new one is smaller.
5513 * Reset the timer even if the volume isn't changed.
5514 */
5515 if (newvol <= mixer->volume) {
5516 mixer->volume = newvol;
5517 mixer->voltimer = 0;
5518 #if defined(AUDIO_DEBUG_AGC)
5519 TRACE(1, "auto volume adjust: %d", mixer->volume);
5520 #endif
5521 }
5522 }
5523 }
5524
5525 /*
5526 * Mix one track.
5527 * 'mixed' specifies the number of tracks mixed so far.
5528 * It returns the number of tracks mixed. In other words, it returns
5529 * mixed + 1 if this track is mixed.
5530 */
5531 static int
5532 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5533 int mixed)
5534 {
5535 int count;
5536 int sample_count;
5537 int remain;
5538 int i;
5539 const aint_t *s;
5540 aint2_t *d;
5541
5542 /* XXX TODO: Is this necessary for now? */
5543 if (mixer->mixseq < track->seq)
5544 return mixed;
5545
5546 count = auring_get_contig_used(&track->outbuf);
5547 count = uimin(count, mixer->frames_per_block);
5548
5549 s = auring_headptr_aint(&track->outbuf);
5550 d = mixer->mixsample;
5551
5552 /*
5553 * Apply track volume with double-sized integer and perform
5554 * additive synthesis.
5555 *
5556 * XXX If you limit the track volume to 1.0 or less (<= 256),
5557 * it would be better to do this in the track conversion stage
5558 * rather than here. However, if you accept the volume to
5559 * be greater than 1.0 (> 256), it's better to do it here.
5560 * Because the operation here is done by double-sized integer.
5561 */
5562 sample_count = count * mixer->mixfmt.channels;
5563 if (mixed == 0) {
5564 /* If this is the first track, assignment can be used. */
5565 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5566 if (track->volume != 256) {
5567 for (i = 0; i < sample_count; i++) {
5568 aint2_t v;
5569 v = *s++;
5570 *d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5571 }
5572 } else
5573 #endif
5574 {
5575 for (i = 0; i < sample_count; i++) {
5576 *d++ = ((aint2_t)*s++);
5577 }
5578 }
5579 /* Fill silence if the first track is not filled. */
5580 for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5581 *d++ = 0;
5582 } else {
5583 /* If this is the second or later, add it. */
5584 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5585 if (track->volume != 256) {
5586 for (i = 0; i < sample_count; i++) {
5587 aint2_t v;
5588 v = *s++;
5589 *d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5590 }
5591 } else
5592 #endif
5593 {
5594 for (i = 0; i < sample_count; i++) {
5595 *d++ += ((aint2_t)*s++);
5596 }
5597 }
5598 }
5599
5600 auring_take(&track->outbuf, count);
5601 /*
5602 * The counters have to align block even if outbuf is less than
5603 * one block. XXX Is this still necessary?
5604 */
5605 remain = mixer->frames_per_block - count;
5606 if (__predict_false(remain != 0)) {
5607 auring_push(&track->outbuf, remain);
5608 auring_take(&track->outbuf, remain);
5609 }
5610
5611 /*
5612 * Update track sequence.
5613 * mixseq has previous value yet at this point.
5614 */
5615 track->seq = mixer->mixseq + 1;
5616
5617 return mixed + 1;
5618 }
5619
5620 /*
5621 * Output one block from hwbuf to HW.
5622 * Must be called with sc_intr_lock held.
5623 */
5624 static void
5625 audio_pmixer_output(struct audio_softc *sc)
5626 {
5627 audio_trackmixer_t *mixer;
5628 audio_params_t params;
5629 void *start;
5630 void *end;
5631 int blksize;
5632 int error;
5633
5634 mixer = sc->sc_pmixer;
5635 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5636 sc->sc_pbusy,
5637 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5638 KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5639 "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5640 mixer->hwbuf.used, mixer->frames_per_block);
5641
5642 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5643
5644 if (sc->hw_if->trigger_output) {
5645 /* trigger (at once) */
5646 if (!sc->sc_pbusy) {
5647 start = mixer->hwbuf.mem;
5648 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5649 params = format2_to_params(&mixer->hwbuf.fmt);
5650
5651 error = sc->hw_if->trigger_output(sc->hw_hdl,
5652 start, end, blksize, audio_pintr, sc, ¶ms);
5653 if (error) {
5654 audio_printf(sc,
5655 "trigger_output failed: errno=%d\n",
5656 error);
5657 return;
5658 }
5659 }
5660 } else {
5661 /* start (everytime) */
5662 start = auring_headptr(&mixer->hwbuf);
5663
5664 error = sc->hw_if->start_output(sc->hw_hdl,
5665 start, blksize, audio_pintr, sc);
5666 if (error) {
5667 audio_printf(sc,
5668 "start_output failed: errno=%d\n", error);
5669 return;
5670 }
5671 }
5672 }
5673
5674 /*
5675 * This is an interrupt handler for playback.
5676 * It is called with sc_intr_lock held.
5677 *
5678 * It is usually called from hardware interrupt. However, note that
5679 * for some drivers (e.g. uaudio) it is called from software interrupt.
5680 */
5681 static void
5682 audio_pintr(void *arg)
5683 {
5684 struct audio_softc *sc;
5685 audio_trackmixer_t *mixer;
5686
5687 sc = arg;
5688 KASSERT(mutex_owned(sc->sc_intr_lock));
5689
5690 if (sc->sc_dying)
5691 return;
5692 if (sc->sc_pbusy == false) {
5693 #if defined(DIAGNOSTIC)
5694 audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
5695 device_xname(sc->hw_dev));
5696 #endif
5697 return;
5698 }
5699
5700 mixer = sc->sc_pmixer;
5701 mixer->hw_complete_counter += mixer->frames_per_block;
5702 mixer->hwseq++;
5703
5704 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5705
5706 TRACE(4,
5707 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5708 mixer->hwseq, mixer->hw_complete_counter,
5709 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5710
5711 #if defined(AUDIO_HW_SINGLE_BUFFER)
5712 /*
5713 * Create a new block here and output it immediately.
5714 * It makes a latency lower but needs machine power.
5715 */
5716 audio_pmixer_process(sc);
5717 audio_pmixer_output(sc);
5718 #else
5719 /*
5720 * It is called when block N output is done.
5721 * Output immediately block N+1 created by the last interrupt.
5722 * And then create block N+2 for the next interrupt.
5723 * This method makes playback robust even on slower machines.
5724 * Instead the latency is increased by one block.
5725 */
5726
5727 /* At first, output ready block. */
5728 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5729 audio_pmixer_output(sc);
5730 }
5731
5732 bool later = false;
5733
5734 if (mixer->hwbuf.used < mixer->frames_per_block) {
5735 later = true;
5736 }
5737
5738 /* Then, process next block. */
5739 audio_pmixer_process(sc);
5740
5741 if (later) {
5742 audio_pmixer_output(sc);
5743 }
5744 #endif
5745
5746 /*
5747 * When this interrupt is the real hardware interrupt, disabling
5748 * preemption here is not necessary. But some drivers (e.g. uaudio)
5749 * emulate it by software interrupt, so kpreempt_disable is necessary.
5750 */
5751 kpreempt_disable();
5752 softint_schedule(mixer->sih);
5753 kpreempt_enable();
5754 }
5755
5756 /*
5757 * Starts record mixer.
5758 * Must be called only if sc_rbusy is false.
5759 * Must be called with sc_lock && sc_exlock held.
5760 * Must not be called from the interrupt context.
5761 */
5762 static void
5763 audio_rmixer_start(struct audio_softc *sc)
5764 {
5765
5766 KASSERT(mutex_owned(sc->sc_lock));
5767 KASSERT(sc->sc_exlock);
5768 KASSERT(sc->sc_rbusy == false);
5769
5770 mutex_enter(sc->sc_intr_lock);
5771
5772 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5773 audio_rmixer_input(sc);
5774 sc->sc_rbusy = true;
5775 TRACE(3, "end");
5776
5777 mutex_exit(sc->sc_intr_lock);
5778 }
5779
5780 /*
5781 * When recording with MD filter:
5782 *
5783 * hwbuf [............] NBLKHW blocks ring buffer
5784 * |
5785 * | convert from hw format
5786 * v
5787 * codecbuf [....] 1 block (ring) buffer
5788 * | |
5789 * v v
5790 * track track ...
5791 *
5792 * When recording without MD filter:
5793 *
5794 * hwbuf [............] NBLKHW blocks ring buffer
5795 * | |
5796 * v v
5797 * track track ...
5798 *
5799 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5800 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5801 */
5802
5803 /*
5804 * Distribute a recorded block to all recording tracks.
5805 */
5806 static void
5807 audio_rmixer_process(struct audio_softc *sc)
5808 {
5809 audio_trackmixer_t *mixer;
5810 audio_ring_t *mixersrc;
5811 audio_file_t *f;
5812 aint_t *p;
5813 int count;
5814 int bytes;
5815 int i;
5816
5817 mixer = sc->sc_rmixer;
5818
5819 /*
5820 * count is the number of frames to be retrieved this time.
5821 * count should be one block.
5822 */
5823 count = auring_get_contig_used(&mixer->hwbuf);
5824 count = uimin(count, mixer->frames_per_block);
5825 if (count <= 0) {
5826 TRACE(4, "count %d: too short", count);
5827 return;
5828 }
5829 bytes = frametobyte(&mixer->track_fmt, count);
5830
5831 /* Hardware driver's codec */
5832 if (mixer->codec) {
5833 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5834 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5835 mixer->codecarg.count = count;
5836 mixer->codec(&mixer->codecarg);
5837 auring_take(&mixer->hwbuf, mixer->codecarg.count);
5838 auring_push(&mixer->codecbuf, mixer->codecarg.count);
5839 mixersrc = &mixer->codecbuf;
5840 } else {
5841 mixersrc = &mixer->hwbuf;
5842 }
5843
5844 if (mixer->swap_endian) {
5845 /* inplace conversion */
5846 p = auring_headptr_aint(mixersrc);
5847 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5848 *p = bswap16(*p);
5849 }
5850 }
5851
5852 /* Distribute to all tracks. */
5853 SLIST_FOREACH(f, &sc->sc_files, entry) {
5854 audio_track_t *track = f->rtrack;
5855 audio_ring_t *input;
5856
5857 if (track == NULL)
5858 continue;
5859
5860 if (track->is_pause) {
5861 TRACET(4, track, "skip; paused");
5862 continue;
5863 }
5864
5865 if (audio_track_lock_tryenter(track) == false) {
5866 TRACET(4, track, "skip; in use");
5867 continue;
5868 }
5869
5870 /* If the track buffer is full, discard the oldest one? */
5871 input = track->input;
5872 if (input->capacity - input->used < mixer->frames_per_block) {
5873 int drops = mixer->frames_per_block -
5874 (input->capacity - input->used);
5875 track->dropframes += drops;
5876 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5877 drops,
5878 input->head, input->used, input->capacity);
5879 auring_take(input, drops);
5880 }
5881 KASSERTMSG(input->used % mixer->frames_per_block == 0,
5882 "input->used=%d mixer->frames_per_block=%d",
5883 input->used, mixer->frames_per_block);
5884
5885 memcpy(auring_tailptr_aint(input),
5886 auring_headptr_aint(mixersrc),
5887 bytes);
5888 auring_push(input, count);
5889
5890 /* XXX sequence counter? */
5891
5892 audio_track_lock_exit(track);
5893 }
5894
5895 auring_take(mixersrc, count);
5896 }
5897
5898 /*
5899 * Input one block from HW to hwbuf.
5900 * Must be called with sc_intr_lock held.
5901 */
5902 static void
5903 audio_rmixer_input(struct audio_softc *sc)
5904 {
5905 audio_trackmixer_t *mixer;
5906 audio_params_t params;
5907 void *start;
5908 void *end;
5909 int blksize;
5910 int error;
5911
5912 mixer = sc->sc_rmixer;
5913 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5914
5915 if (sc->hw_if->trigger_input) {
5916 /* trigger (at once) */
5917 if (!sc->sc_rbusy) {
5918 start = mixer->hwbuf.mem;
5919 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5920 params = format2_to_params(&mixer->hwbuf.fmt);
5921
5922 error = sc->hw_if->trigger_input(sc->hw_hdl,
5923 start, end, blksize, audio_rintr, sc, ¶ms);
5924 if (error) {
5925 audio_printf(sc,
5926 "trigger_input failed: errno=%d\n",
5927 error);
5928 return;
5929 }
5930 }
5931 } else {
5932 /* start (everytime) */
5933 start = auring_tailptr(&mixer->hwbuf);
5934
5935 error = sc->hw_if->start_input(sc->hw_hdl,
5936 start, blksize, audio_rintr, sc);
5937 if (error) {
5938 audio_printf(sc,
5939 "start_input failed: errno=%d\n", error);
5940 return;
5941 }
5942 }
5943 }
5944
5945 /*
5946 * This is an interrupt handler for recording.
5947 * It is called with sc_intr_lock.
5948 *
5949 * It is usually called from hardware interrupt. However, note that
5950 * for some drivers (e.g. uaudio) it is called from software interrupt.
5951 */
5952 static void
5953 audio_rintr(void *arg)
5954 {
5955 struct audio_softc *sc;
5956 audio_trackmixer_t *mixer;
5957
5958 sc = arg;
5959 KASSERT(mutex_owned(sc->sc_intr_lock));
5960
5961 if (sc->sc_dying)
5962 return;
5963 if (sc->sc_rbusy == false) {
5964 #if defined(DIAGNOSTIC)
5965 audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
5966 device_xname(sc->hw_dev));
5967 #endif
5968 return;
5969 }
5970
5971 mixer = sc->sc_rmixer;
5972 mixer->hw_complete_counter += mixer->frames_per_block;
5973 mixer->hwseq++;
5974
5975 auring_push(&mixer->hwbuf, mixer->frames_per_block);
5976
5977 TRACE(4,
5978 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5979 mixer->hwseq, mixer->hw_complete_counter,
5980 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5981
5982 /* Distrubute recorded block */
5983 audio_rmixer_process(sc);
5984
5985 /* Request next block */
5986 audio_rmixer_input(sc);
5987
5988 /*
5989 * When this interrupt is the real hardware interrupt, disabling
5990 * preemption here is not necessary. But some drivers (e.g. uaudio)
5991 * emulate it by software interrupt, so kpreempt_disable is necessary.
5992 */
5993 kpreempt_disable();
5994 softint_schedule(mixer->sih);
5995 kpreempt_enable();
5996 }
5997
5998 /*
5999 * Halts playback mixer.
6000 * This function also clears related parameters, so call this function
6001 * instead of calling halt_output directly.
6002 * Must be called only if sc_pbusy is true.
6003 * Must be called with sc_lock && sc_exlock held.
6004 */
6005 static int
6006 audio_pmixer_halt(struct audio_softc *sc)
6007 {
6008 int error;
6009
6010 TRACE(2, "called");
6011 KASSERT(mutex_owned(sc->sc_lock));
6012 KASSERT(sc->sc_exlock);
6013
6014 mutex_enter(sc->sc_intr_lock);
6015 error = sc->hw_if->halt_output(sc->hw_hdl);
6016
6017 /* Halts anyway even if some error has occurred. */
6018 sc->sc_pbusy = false;
6019 sc->sc_pmixer->hwbuf.head = 0;
6020 sc->sc_pmixer->hwbuf.used = 0;
6021 sc->sc_pmixer->mixseq = 0;
6022 sc->sc_pmixer->hwseq = 0;
6023 mutex_exit(sc->sc_intr_lock);
6024
6025 return error;
6026 }
6027
6028 /*
6029 * Halts recording mixer.
6030 * This function also clears related parameters, so call this function
6031 * instead of calling halt_input directly.
6032 * Must be called only if sc_rbusy is true.
6033 * Must be called with sc_lock && sc_exlock held.
6034 */
6035 static int
6036 audio_rmixer_halt(struct audio_softc *sc)
6037 {
6038 int error;
6039
6040 TRACE(2, "called");
6041 KASSERT(mutex_owned(sc->sc_lock));
6042 KASSERT(sc->sc_exlock);
6043
6044 mutex_enter(sc->sc_intr_lock);
6045 error = sc->hw_if->halt_input(sc->hw_hdl);
6046
6047 /* Halts anyway even if some error has occurred. */
6048 sc->sc_rbusy = false;
6049 sc->sc_rmixer->hwbuf.head = 0;
6050 sc->sc_rmixer->hwbuf.used = 0;
6051 sc->sc_rmixer->mixseq = 0;
6052 sc->sc_rmixer->hwseq = 0;
6053 mutex_exit(sc->sc_intr_lock);
6054
6055 return error;
6056 }
6057
6058 /*
6059 * Flush this track.
6060 * Halts all operations, clears all buffers, reset error counters.
6061 * XXX I'm not sure...
6062 */
6063 static void
6064 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
6065 {
6066
6067 KASSERT(track);
6068 TRACET(3, track, "clear");
6069
6070 audio_track_lock_enter(track);
6071
6072 track->usrbuf.used = 0;
6073 /* Clear all internal parameters. */
6074 if (track->codec.filter) {
6075 track->codec.srcbuf.used = 0;
6076 track->codec.srcbuf.head = 0;
6077 }
6078 if (track->chvol.filter) {
6079 track->chvol.srcbuf.used = 0;
6080 track->chvol.srcbuf.head = 0;
6081 }
6082 if (track->chmix.filter) {
6083 track->chmix.srcbuf.used = 0;
6084 track->chmix.srcbuf.head = 0;
6085 }
6086 if (track->freq.filter) {
6087 track->freq.srcbuf.used = 0;
6088 track->freq.srcbuf.head = 0;
6089 if (track->freq_step < 65536)
6090 track->freq_current = 65536;
6091 else
6092 track->freq_current = 0;
6093 memset(track->freq_prev, 0, sizeof(track->freq_prev));
6094 memset(track->freq_curr, 0, sizeof(track->freq_curr));
6095 }
6096 /* Clear buffer, then operation halts naturally. */
6097 track->outbuf.used = 0;
6098
6099 /* Clear counters. */
6100 track->dropframes = 0;
6101
6102 audio_track_lock_exit(track);
6103 }
6104
6105 /*
6106 * Drain the track.
6107 * track must be present and for playback.
6108 * If successful, it returns 0. Otherwise returns errno.
6109 * Must be called with sc_lock held.
6110 */
6111 static int
6112 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
6113 {
6114 audio_trackmixer_t *mixer;
6115 int done;
6116 int error;
6117
6118 KASSERT(track);
6119 TRACET(3, track, "start");
6120 mixer = track->mixer;
6121 KASSERT(mutex_owned(sc->sc_lock));
6122
6123 /* Ignore them if pause. */
6124 if (track->is_pause) {
6125 TRACET(3, track, "pause -> clear");
6126 track->pstate = AUDIO_STATE_CLEAR;
6127 }
6128 /* Terminate early here if there is no data in the track. */
6129 if (track->pstate == AUDIO_STATE_CLEAR) {
6130 TRACET(3, track, "no need to drain");
6131 return 0;
6132 }
6133 track->pstate = AUDIO_STATE_DRAINING;
6134
6135 for (;;) {
6136 /* I want to display it before condition evaluation. */
6137 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
6138 (int)curproc->p_pid, (int)curlwp->l_lid,
6139 (int)track->seq, (int)mixer->hwseq,
6140 track->outbuf.head, track->outbuf.used,
6141 track->outbuf.capacity);
6142
6143 /* Condition to terminate */
6144 audio_track_lock_enter(track);
6145 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
6146 track->outbuf.used == 0 &&
6147 track->seq <= mixer->hwseq);
6148 audio_track_lock_exit(track);
6149 if (done)
6150 break;
6151
6152 TRACET(3, track, "sleep");
6153 error = audio_track_waitio(sc, track);
6154 if (error)
6155 return error;
6156
6157 /* XXX call audio_track_play here ? */
6158 }
6159
6160 track->pstate = AUDIO_STATE_CLEAR;
6161 TRACET(3, track, "done trk_inp=%d trk_out=%d",
6162 (int)track->inputcounter, (int)track->outputcounter);
6163 return 0;
6164 }
6165
6166 /*
6167 * Send signal to process.
6168 * This is intended to be called only from audio_softintr_{rd,wr}.
6169 * Must be called without sc_intr_lock held.
6170 */
6171 static inline void
6172 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
6173 {
6174 proc_t *p;
6175
6176 KASSERT(pid != 0);
6177
6178 /*
6179 * psignal() must be called without spin lock held.
6180 */
6181
6182 mutex_enter(&proc_lock);
6183 p = proc_find(pid);
6184 if (p)
6185 psignal(p, signum);
6186 mutex_exit(&proc_lock);
6187 }
6188
6189 /*
6190 * This is software interrupt handler for record.
6191 * It is called from recording hardware interrupt everytime.
6192 * It does:
6193 * - Deliver SIGIO for all async processes.
6194 * - Notify to audio_read() that data has arrived.
6195 * - selnotify() for select/poll-ing processes.
6196 */
6197 /*
6198 * XXX If a process issues FIOASYNC between hardware interrupt and
6199 * software interrupt, (stray) SIGIO will be sent to the process
6200 * despite the fact that it has not receive recorded data yet.
6201 */
6202 static void
6203 audio_softintr_rd(void *cookie)
6204 {
6205 struct audio_softc *sc = cookie;
6206 audio_file_t *f;
6207 pid_t pid;
6208
6209 mutex_enter(sc->sc_lock);
6210
6211 SLIST_FOREACH(f, &sc->sc_files, entry) {
6212 audio_track_t *track = f->rtrack;
6213
6214 if (track == NULL)
6215 continue;
6216
6217 TRACET(4, track, "broadcast; inp=%d/%d/%d",
6218 track->input->head,
6219 track->input->used,
6220 track->input->capacity);
6221
6222 pid = f->async_audio;
6223 if (pid != 0) {
6224 TRACEF(4, f, "sending SIGIO %d", pid);
6225 audio_psignal(sc, pid, SIGIO);
6226 }
6227 }
6228
6229 /* Notify that data has arrived. */
6230 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
6231 cv_broadcast(&sc->sc_rmixer->outcv);
6232
6233 mutex_exit(sc->sc_lock);
6234 }
6235
6236 /*
6237 * This is software interrupt handler for playback.
6238 * It is called from playback hardware interrupt everytime.
6239 * It does:
6240 * - Deliver SIGIO for all async and writable (used < lowat) processes.
6241 * - Notify to audio_write() that outbuf block available.
6242 * - selnotify() for select/poll-ing processes if there are any writable
6243 * (used < lowat) processes. Checking each descriptor will be done by
6244 * filt_audiowrite_event().
6245 */
6246 static void
6247 audio_softintr_wr(void *cookie)
6248 {
6249 struct audio_softc *sc = cookie;
6250 audio_file_t *f;
6251 bool found;
6252 pid_t pid;
6253
6254 TRACE(4, "called");
6255 found = false;
6256
6257 mutex_enter(sc->sc_lock);
6258
6259 SLIST_FOREACH(f, &sc->sc_files, entry) {
6260 audio_track_t *track = f->ptrack;
6261
6262 if (track == NULL)
6263 continue;
6264
6265 TRACET(4, track, "broadcast; trkseq=%d out=%d/%d/%d",
6266 (int)track->seq,
6267 track->outbuf.head,
6268 track->outbuf.used,
6269 track->outbuf.capacity);
6270
6271 /*
6272 * Send a signal if the process is async mode and
6273 * used is lower than lowat.
6274 */
6275 if (track->usrbuf.used <= track->usrbuf_usedlow &&
6276 !track->is_pause) {
6277 /* For selnotify */
6278 found = true;
6279 /* For SIGIO */
6280 pid = f->async_audio;
6281 if (pid != 0) {
6282 TRACEF(4, f, "sending SIGIO %d", pid);
6283 audio_psignal(sc, pid, SIGIO);
6284 }
6285 }
6286 }
6287
6288 /*
6289 * Notify for select/poll when someone become writable.
6290 * It needs sc_lock (and not sc_intr_lock).
6291 */
6292 if (found) {
6293 TRACE(4, "selnotify");
6294 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
6295 }
6296
6297 /* Notify to audio_write() that outbuf available. */
6298 cv_broadcast(&sc->sc_pmixer->outcv);
6299
6300 mutex_exit(sc->sc_lock);
6301 }
6302
6303 /*
6304 * Check (and convert) the format *p came from userland.
6305 * If successful, it writes back the converted format to *p if necessary and
6306 * returns 0. Otherwise returns errno (*p may be changed even in this case).
6307 */
6308 static int
6309 audio_check_params(audio_format2_t *p)
6310 {
6311
6312 /*
6313 * Convert obsolete AUDIO_ENCODING_PCM encodings.
6314 *
6315 * AUDIO_ENCODING_PCM16 == AUDIO_ENCODING_LINEAR
6316 * So, it's always signed, as in SunOS.
6317 *
6318 * AUDIO_ENCODING_PCM8 == AUDIO_ENCODING_LINEAR8
6319 * So, it's always unsigned, as in SunOS.
6320 */
6321 if (p->encoding == AUDIO_ENCODING_PCM16) {
6322 p->encoding = AUDIO_ENCODING_SLINEAR;
6323 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
6324 if (p->precision == 8)
6325 p->encoding = AUDIO_ENCODING_ULINEAR;
6326 else
6327 return EINVAL;
6328 }
6329
6330 /*
6331 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
6332 * suffix.
6333 */
6334 if (p->encoding == AUDIO_ENCODING_SLINEAR)
6335 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6336 if (p->encoding == AUDIO_ENCODING_ULINEAR)
6337 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6338
6339 switch (p->encoding) {
6340 case AUDIO_ENCODING_ULAW:
6341 case AUDIO_ENCODING_ALAW:
6342 if (p->precision != 8)
6343 return EINVAL;
6344 break;
6345 case AUDIO_ENCODING_ADPCM:
6346 if (p->precision != 4 && p->precision != 8)
6347 return EINVAL;
6348 break;
6349 case AUDIO_ENCODING_SLINEAR_LE:
6350 case AUDIO_ENCODING_SLINEAR_BE:
6351 case AUDIO_ENCODING_ULINEAR_LE:
6352 case AUDIO_ENCODING_ULINEAR_BE:
6353 if (p->precision != 8 && p->precision != 16 &&
6354 p->precision != 24 && p->precision != 32)
6355 return EINVAL;
6356
6357 /* 8bit format does not have endianness. */
6358 if (p->precision == 8) {
6359 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6360 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6361 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6362 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6363 }
6364
6365 if (p->precision > p->stride)
6366 return EINVAL;
6367 break;
6368 case AUDIO_ENCODING_MPEG_L1_STREAM:
6369 case AUDIO_ENCODING_MPEG_L1_PACKETS:
6370 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6371 case AUDIO_ENCODING_MPEG_L2_STREAM:
6372 case AUDIO_ENCODING_MPEG_L2_PACKETS:
6373 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6374 case AUDIO_ENCODING_AC3:
6375 break;
6376 default:
6377 return EINVAL;
6378 }
6379
6380 /* sanity check # of channels*/
6381 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6382 return EINVAL;
6383
6384 return 0;
6385 }
6386
6387 /*
6388 * Initialize playback and record mixers.
6389 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
6390 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6391 * the filter registration information. These four must not be NULL.
6392 * If successful returns 0. Otherwise returns errno.
6393 * Must be called with sc_exlock held and without sc_lock held.
6394 * Must not be called if there are any tracks.
6395 * Caller should check that the initialization succeed by whether
6396 * sc_[pr]mixer is not NULL.
6397 */
6398 static int
6399 audio_mixers_init(struct audio_softc *sc, int mode,
6400 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6401 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6402 {
6403 int error;
6404
6405 KASSERT(phwfmt != NULL);
6406 KASSERT(rhwfmt != NULL);
6407 KASSERT(pfil != NULL);
6408 KASSERT(rfil != NULL);
6409 KASSERT(sc->sc_exlock);
6410
6411 if ((mode & AUMODE_PLAY)) {
6412 if (sc->sc_pmixer == NULL) {
6413 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
6414 KM_SLEEP);
6415 } else {
6416 /* destroy() doesn't free memory. */
6417 audio_mixer_destroy(sc, sc->sc_pmixer);
6418 memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
6419 }
6420 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6421 if (error) {
6422 /* audio_mixer_init already displayed error code */
6423 audio_printf(sc, "configuring playback mode failed\n");
6424 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6425 sc->sc_pmixer = NULL;
6426 return error;
6427 }
6428 }
6429 if ((mode & AUMODE_RECORD)) {
6430 if (sc->sc_rmixer == NULL) {
6431 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
6432 KM_SLEEP);
6433 } else {
6434 /* destroy() doesn't free memory. */
6435 audio_mixer_destroy(sc, sc->sc_rmixer);
6436 memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
6437 }
6438 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6439 if (error) {
6440 /* audio_mixer_init already displayed error code */
6441 audio_printf(sc, "configuring record mode failed\n");
6442 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6443 sc->sc_rmixer = NULL;
6444 return error;
6445 }
6446 }
6447
6448 return 0;
6449 }
6450
6451 /*
6452 * Select a frequency.
6453 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6454 * XXX Better algorithm?
6455 */
6456 static int
6457 audio_select_freq(const struct audio_format *fmt)
6458 {
6459 int freq;
6460 int high;
6461 int low;
6462 int j;
6463
6464 if (fmt->frequency_type == 0) {
6465 low = fmt->frequency[0];
6466 high = fmt->frequency[1];
6467 freq = 48000;
6468 if (low <= freq && freq <= high) {
6469 return freq;
6470 }
6471 freq = 44100;
6472 if (low <= freq && freq <= high) {
6473 return freq;
6474 }
6475 return high;
6476 } else {
6477 for (j = 0; j < fmt->frequency_type; j++) {
6478 if (fmt->frequency[j] == 48000) {
6479 return fmt->frequency[j];
6480 }
6481 }
6482 high = 0;
6483 for (j = 0; j < fmt->frequency_type; j++) {
6484 if (fmt->frequency[j] == 44100) {
6485 return fmt->frequency[j];
6486 }
6487 if (fmt->frequency[j] > high) {
6488 high = fmt->frequency[j];
6489 }
6490 }
6491 return high;
6492 }
6493 }
6494
6495 /*
6496 * Choose the most preferred hardware format.
6497 * If successful, it will store the chosen format into *cand and return 0.
6498 * Otherwise, return errno.
6499 * Must be called without sc_lock held.
6500 */
6501 static int
6502 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
6503 {
6504 audio_format_query_t query;
6505 int cand_score;
6506 int score;
6507 int i;
6508 int error;
6509
6510 /*
6511 * Score each formats and choose the highest one.
6512 *
6513 * +---- priority(0-3)
6514 * |+--- encoding/precision
6515 * ||+-- channels
6516 * score = 0x000000PEC
6517 */
6518
6519 cand_score = 0;
6520 for (i = 0; ; i++) {
6521 memset(&query, 0, sizeof(query));
6522 query.index = i;
6523
6524 mutex_enter(sc->sc_lock);
6525 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6526 mutex_exit(sc->sc_lock);
6527 if (error == EINVAL)
6528 break;
6529 if (error)
6530 return error;
6531
6532 #if defined(AUDIO_DEBUG)
6533 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6534 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6535 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6536 query.fmt.priority,
6537 audio_encoding_name(query.fmt.encoding),
6538 query.fmt.validbits,
6539 query.fmt.precision,
6540 query.fmt.channels);
6541 if (query.fmt.frequency_type == 0) {
6542 DPRINTF(1, "{%d-%d",
6543 query.fmt.frequency[0], query.fmt.frequency[1]);
6544 } else {
6545 int j;
6546 for (j = 0; j < query.fmt.frequency_type; j++) {
6547 DPRINTF(1, "%c%d",
6548 (j == 0) ? '{' : ',',
6549 query.fmt.frequency[j]);
6550 }
6551 }
6552 DPRINTF(1, "}\n");
6553 #endif
6554
6555 if ((query.fmt.mode & mode) == 0) {
6556 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6557 mode);
6558 continue;
6559 }
6560
6561 if (query.fmt.priority < 0) {
6562 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6563 continue;
6564 }
6565
6566 /* Score */
6567 score = (query.fmt.priority & 3) * 0x100;
6568 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6569 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6570 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6571 score += 0x20;
6572 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6573 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6574 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6575 score += 0x10;
6576 }
6577 score += query.fmt.channels;
6578
6579 if (score < cand_score) {
6580 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6581 score, cand_score);
6582 continue;
6583 }
6584
6585 /* Update candidate */
6586 cand_score = score;
6587 cand->encoding = query.fmt.encoding;
6588 cand->precision = query.fmt.validbits;
6589 cand->stride = query.fmt.precision;
6590 cand->channels = query.fmt.channels;
6591 cand->sample_rate = audio_select_freq(&query.fmt);
6592 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6593 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6594 cand_score, query.fmt.priority,
6595 audio_encoding_name(query.fmt.encoding),
6596 cand->precision, cand->stride,
6597 cand->channels, cand->sample_rate);
6598 }
6599
6600 if (cand_score == 0) {
6601 DPRINTF(1, "%s no fmt\n", __func__);
6602 return ENXIO;
6603 }
6604 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6605 audio_encoding_name(cand->encoding),
6606 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6607 return 0;
6608 }
6609
6610 /*
6611 * Validate fmt with query_format.
6612 * If fmt is included in the result of query_format, returns 0.
6613 * Otherwise returns EINVAL.
6614 * Must be called without sc_lock held.
6615 */
6616 static int
6617 audio_hw_validate_format(struct audio_softc *sc, int mode,
6618 const audio_format2_t *fmt)
6619 {
6620 audio_format_query_t query;
6621 struct audio_format *q;
6622 int index;
6623 int error;
6624 int j;
6625
6626 for (index = 0; ; index++) {
6627 query.index = index;
6628 mutex_enter(sc->sc_lock);
6629 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6630 mutex_exit(sc->sc_lock);
6631 if (error == EINVAL)
6632 break;
6633 if (error)
6634 return error;
6635
6636 q = &query.fmt;
6637 /*
6638 * Note that fmt is audio_format2_t (precision/stride) but
6639 * q is audio_format_t (validbits/precision).
6640 */
6641 if ((q->mode & mode) == 0) {
6642 continue;
6643 }
6644 if (fmt->encoding != q->encoding) {
6645 continue;
6646 }
6647 if (fmt->precision != q->validbits) {
6648 continue;
6649 }
6650 if (fmt->stride != q->precision) {
6651 continue;
6652 }
6653 if (fmt->channels != q->channels) {
6654 continue;
6655 }
6656 if (q->frequency_type == 0) {
6657 if (fmt->sample_rate < q->frequency[0] ||
6658 fmt->sample_rate > q->frequency[1]) {
6659 continue;
6660 }
6661 } else {
6662 for (j = 0; j < q->frequency_type; j++) {
6663 if (fmt->sample_rate == q->frequency[j])
6664 break;
6665 }
6666 if (j == query.fmt.frequency_type) {
6667 continue;
6668 }
6669 }
6670
6671 /* Matched. */
6672 return 0;
6673 }
6674
6675 return EINVAL;
6676 }
6677
6678 /*
6679 * Set track mixer's format depending on ai->mode.
6680 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6681 * with ai.play.*.
6682 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6683 * with ai.record.*.
6684 * All other fields in ai are ignored.
6685 * If successful returns 0. Otherwise returns errno.
6686 * This function does not roll back even if it fails.
6687 * Must be called with sc_exlock held and without sc_lock held.
6688 */
6689 static int
6690 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6691 {
6692 audio_format2_t phwfmt;
6693 audio_format2_t rhwfmt;
6694 audio_filter_reg_t pfil;
6695 audio_filter_reg_t rfil;
6696 int mode;
6697 int error;
6698
6699 KASSERT(sc->sc_exlock);
6700
6701 /*
6702 * Even when setting either one of playback and recording,
6703 * both must be halted.
6704 */
6705 if (sc->sc_popens + sc->sc_ropens > 0)
6706 return EBUSY;
6707
6708 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6709 return ENOTTY;
6710
6711 mode = ai->mode;
6712 if ((mode & AUMODE_PLAY)) {
6713 phwfmt.encoding = ai->play.encoding;
6714 phwfmt.precision = ai->play.precision;
6715 phwfmt.stride = ai->play.precision;
6716 phwfmt.channels = ai->play.channels;
6717 phwfmt.sample_rate = ai->play.sample_rate;
6718 }
6719 if ((mode & AUMODE_RECORD)) {
6720 rhwfmt.encoding = ai->record.encoding;
6721 rhwfmt.precision = ai->record.precision;
6722 rhwfmt.stride = ai->record.precision;
6723 rhwfmt.channels = ai->record.channels;
6724 rhwfmt.sample_rate = ai->record.sample_rate;
6725 }
6726
6727 /* On non-independent devices, use the same format for both. */
6728 if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
6729 if (mode == AUMODE_RECORD) {
6730 phwfmt = rhwfmt;
6731 } else {
6732 rhwfmt = phwfmt;
6733 }
6734 mode = AUMODE_PLAY | AUMODE_RECORD;
6735 }
6736
6737 /* Then, unset the direction not exist on the hardware. */
6738 if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
6739 mode &= ~AUMODE_PLAY;
6740 if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
6741 mode &= ~AUMODE_RECORD;
6742
6743 /* debug */
6744 if ((mode & AUMODE_PLAY)) {
6745 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6746 audio_encoding_name(phwfmt.encoding),
6747 phwfmt.precision,
6748 phwfmt.stride,
6749 phwfmt.channels,
6750 phwfmt.sample_rate);
6751 }
6752 if ((mode & AUMODE_RECORD)) {
6753 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6754 audio_encoding_name(rhwfmt.encoding),
6755 rhwfmt.precision,
6756 rhwfmt.stride,
6757 rhwfmt.channels,
6758 rhwfmt.sample_rate);
6759 }
6760
6761 /* Check the format */
6762 if ((mode & AUMODE_PLAY)) {
6763 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6764 TRACE(1, "invalid format");
6765 return EINVAL;
6766 }
6767 }
6768 if ((mode & AUMODE_RECORD)) {
6769 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6770 TRACE(1, "invalid format");
6771 return EINVAL;
6772 }
6773 }
6774
6775 /* Configure the mixers. */
6776 memset(&pfil, 0, sizeof(pfil));
6777 memset(&rfil, 0, sizeof(rfil));
6778 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6779 if (error)
6780 return error;
6781
6782 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6783 if (error)
6784 return error;
6785
6786 /*
6787 * Reinitialize the sticky parameters for /dev/sound.
6788 * If the number of the hardware channels becomes less than the number
6789 * of channels that sticky parameters remember, subsequent /dev/sound
6790 * open will fail. To prevent this, reinitialize the sticky
6791 * parameters whenever the hardware format is changed.
6792 */
6793 sc->sc_sound_pparams = params_to_format2(&audio_default);
6794 sc->sc_sound_rparams = params_to_format2(&audio_default);
6795 sc->sc_sound_ppause = false;
6796 sc->sc_sound_rpause = false;
6797
6798 return 0;
6799 }
6800
6801 /*
6802 * Store current mixers format into *ai.
6803 * Must be called with sc_exlock held.
6804 */
6805 static void
6806 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6807 {
6808
6809 KASSERT(sc->sc_exlock);
6810
6811 /*
6812 * There is no stride information in audio_info but it doesn't matter.
6813 * trackmixer always treats stride and precision as the same.
6814 */
6815 AUDIO_INITINFO(ai);
6816 ai->mode = 0;
6817 if (sc->sc_pmixer) {
6818 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6819 ai->play.encoding = fmt->encoding;
6820 ai->play.precision = fmt->precision;
6821 ai->play.channels = fmt->channels;
6822 ai->play.sample_rate = fmt->sample_rate;
6823 ai->mode |= AUMODE_PLAY;
6824 }
6825 if (sc->sc_rmixer) {
6826 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6827 ai->record.encoding = fmt->encoding;
6828 ai->record.precision = fmt->precision;
6829 ai->record.channels = fmt->channels;
6830 ai->record.sample_rate = fmt->sample_rate;
6831 ai->mode |= AUMODE_RECORD;
6832 }
6833 }
6834
6835 /*
6836 * audio_info details:
6837 *
6838 * ai.{play,record}.sample_rate (R/W)
6839 * ai.{play,record}.encoding (R/W)
6840 * ai.{play,record}.precision (R/W)
6841 * ai.{play,record}.channels (R/W)
6842 * These specify the playback or recording format.
6843 * Ignore members within an inactive track.
6844 *
6845 * ai.mode (R/W)
6846 * It specifies the playback or recording mode, AUMODE_*.
6847 * Currently, a mode change operation by ai.mode after opening is
6848 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
6849 * However, it's possible to get or to set for backward compatibility.
6850 *
6851 * ai.{hiwat,lowat} (R/W)
6852 * These specify the high water mark and low water mark for playback
6853 * track. The unit is block.
6854 *
6855 * ai.{play,record}.gain (R/W)
6856 * It specifies the HW mixer volume in 0-255.
6857 * It is historical reason that the gain is connected to HW mixer.
6858 *
6859 * ai.{play,record}.balance (R/W)
6860 * It specifies the left-right balance of HW mixer in 0-64.
6861 * 32 means the center.
6862 * It is historical reason that the balance is connected to HW mixer.
6863 *
6864 * ai.{play,record}.port (R/W)
6865 * It specifies the input/output port of HW mixer.
6866 *
6867 * ai.monitor_gain (R/W)
6868 * It specifies the recording monitor gain(?) of HW mixer.
6869 *
6870 * ai.{play,record}.pause (R/W)
6871 * Non-zero means the track is paused.
6872 *
6873 * ai.play.seek (R/-)
6874 * It indicates the number of bytes written but not processed.
6875 * ai.record.seek (R/-)
6876 * It indicates the number of bytes to be able to read.
6877 *
6878 * ai.{play,record}.avail_ports (R/-)
6879 * Mixer info.
6880 *
6881 * ai.{play,record}.buffer_size (R/-)
6882 * It indicates the buffer size in bytes. Internally it means usrbuf.
6883 *
6884 * ai.{play,record}.samples (R/-)
6885 * It indicates the total number of bytes played or recorded.
6886 *
6887 * ai.{play,record}.eof (R/-)
6888 * It indicates the number of times reached EOF(?).
6889 *
6890 * ai.{play,record}.error (R/-)
6891 * Non-zero indicates overflow/underflow has occured.
6892 *
6893 * ai.{play,record}.waiting (R/-)
6894 * Non-zero indicates that other process waits to open.
6895 * It will never happen anymore.
6896 *
6897 * ai.{play,record}.open (R/-)
6898 * Non-zero indicates the direction is opened by this process(?).
6899 * XXX Is this better to indicate that "the device is opened by
6900 * at least one process"?
6901 *
6902 * ai.{play,record}.active (R/-)
6903 * Non-zero indicates that I/O is currently active.
6904 *
6905 * ai.blocksize (R/-)
6906 * It indicates the block size in bytes.
6907 * XXX The blocksize of playback and recording may be different.
6908 */
6909
6910 /*
6911 * Pause consideration:
6912 *
6913 * Pausing/unpausing never affect [pr]mixer. This single rule makes
6914 * operation simple. Note that playback and recording are asymmetric.
6915 *
6916 * For playback,
6917 * 1. Any playback open doesn't start pmixer regardless of initial pause
6918 * state of this track.
6919 * 2. The first write access among playback tracks only starts pmixer
6920 * regardless of this track's pause state.
6921 * 3. Even a pause of the last playback track doesn't stop pmixer.
6922 * 4. The last close of all playback tracks only stops pmixer.
6923 *
6924 * For recording,
6925 * 1. The first recording open only starts rmixer regardless of initial
6926 * pause state of this track.
6927 * 2. Even a pause of the last track doesn't stop rmixer.
6928 * 3. The last close of all recording tracks only stops rmixer.
6929 */
6930
6931 /*
6932 * Set both track's parameters within a file depending on ai.
6933 * Update sc_sound_[pr]* if set.
6934 * Must be called with sc_exlock held and without sc_lock held.
6935 */
6936 static int
6937 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6938 const struct audio_info *ai)
6939 {
6940 const struct audio_prinfo *pi;
6941 const struct audio_prinfo *ri;
6942 audio_track_t *ptrack;
6943 audio_track_t *rtrack;
6944 audio_format2_t pfmt;
6945 audio_format2_t rfmt;
6946 int pchanges;
6947 int rchanges;
6948 int mode;
6949 struct audio_info saved_ai;
6950 audio_format2_t saved_pfmt;
6951 audio_format2_t saved_rfmt;
6952 int error;
6953
6954 KASSERT(sc->sc_exlock);
6955
6956 pi = &ai->play;
6957 ri = &ai->record;
6958 pchanges = 0;
6959 rchanges = 0;
6960
6961 ptrack = file->ptrack;
6962 rtrack = file->rtrack;
6963
6964 #if defined(AUDIO_DEBUG)
6965 if (audiodebug >= 2) {
6966 char buf[256];
6967 char p[64];
6968 int buflen;
6969 int plen;
6970 #define SPRINTF(var, fmt...) do { \
6971 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
6972 } while (0)
6973
6974 buflen = 0;
6975 plen = 0;
6976 if (SPECIFIED(pi->encoding))
6977 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
6978 if (SPECIFIED(pi->precision))
6979 SPRINTF(p, "/%dbit", pi->precision);
6980 if (SPECIFIED(pi->channels))
6981 SPRINTF(p, "/%dch", pi->channels);
6982 if (SPECIFIED(pi->sample_rate))
6983 SPRINTF(p, "/%dHz", pi->sample_rate);
6984 if (plen > 0)
6985 SPRINTF(buf, ",play.param=%s", p + 1);
6986
6987 plen = 0;
6988 if (SPECIFIED(ri->encoding))
6989 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
6990 if (SPECIFIED(ri->precision))
6991 SPRINTF(p, "/%dbit", ri->precision);
6992 if (SPECIFIED(ri->channels))
6993 SPRINTF(p, "/%dch", ri->channels);
6994 if (SPECIFIED(ri->sample_rate))
6995 SPRINTF(p, "/%dHz", ri->sample_rate);
6996 if (plen > 0)
6997 SPRINTF(buf, ",record.param=%s", p + 1);
6998
6999 if (SPECIFIED(ai->mode))
7000 SPRINTF(buf, ",mode=%d", ai->mode);
7001 if (SPECIFIED(ai->hiwat))
7002 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
7003 if (SPECIFIED(ai->lowat))
7004 SPRINTF(buf, ",lowat=%d", ai->lowat);
7005 if (SPECIFIED(ai->play.gain))
7006 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
7007 if (SPECIFIED(ai->record.gain))
7008 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
7009 if (SPECIFIED_CH(ai->play.balance))
7010 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
7011 if (SPECIFIED_CH(ai->record.balance))
7012 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
7013 if (SPECIFIED(ai->play.port))
7014 SPRINTF(buf, ",play.port=%d", ai->play.port);
7015 if (SPECIFIED(ai->record.port))
7016 SPRINTF(buf, ",record.port=%d", ai->record.port);
7017 if (SPECIFIED(ai->monitor_gain))
7018 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
7019 if (SPECIFIED_CH(ai->play.pause))
7020 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
7021 if (SPECIFIED_CH(ai->record.pause))
7022 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
7023
7024 if (buflen > 0)
7025 TRACE(2, "specified %s", buf + 1);
7026 }
7027 #endif
7028
7029 AUDIO_INITINFO(&saved_ai);
7030 /* XXX shut up gcc */
7031 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
7032 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
7033
7034 /*
7035 * Set default value and save current parameters.
7036 * For backward compatibility, use sticky parameters for nonexistent
7037 * track.
7038 */
7039 if (ptrack) {
7040 pfmt = ptrack->usrbuf.fmt;
7041 saved_pfmt = ptrack->usrbuf.fmt;
7042 saved_ai.play.pause = ptrack->is_pause;
7043 } else {
7044 pfmt = sc->sc_sound_pparams;
7045 }
7046 if (rtrack) {
7047 rfmt = rtrack->usrbuf.fmt;
7048 saved_rfmt = rtrack->usrbuf.fmt;
7049 saved_ai.record.pause = rtrack->is_pause;
7050 } else {
7051 rfmt = sc->sc_sound_rparams;
7052 }
7053 saved_ai.mode = file->mode;
7054
7055 /*
7056 * Overwrite if specified.
7057 */
7058 mode = file->mode;
7059 if (SPECIFIED(ai->mode)) {
7060 /*
7061 * Setting ai->mode no longer does anything because it's
7062 * prohibited to change playback/recording mode after open
7063 * and AUMODE_PLAY_ALL is obsoleted. However, it still
7064 * keeps the state of AUMODE_PLAY_ALL itself for backward
7065 * compatibility.
7066 * In the internal, only file->mode has the state of
7067 * AUMODE_PLAY_ALL flag and track->mode in both track does
7068 * not have.
7069 */
7070 if ((file->mode & AUMODE_PLAY)) {
7071 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
7072 | (ai->mode & AUMODE_PLAY_ALL);
7073 }
7074 }
7075
7076 pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
7077 if (pchanges == -1) {
7078 #if defined(AUDIO_DEBUG)
7079 TRACEF(1, file, "check play.params failed: "
7080 "%s %ubit %uch %uHz",
7081 audio_encoding_name(pi->encoding),
7082 pi->precision,
7083 pi->channels,
7084 pi->sample_rate);
7085 #endif
7086 return EINVAL;
7087 }
7088
7089 rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
7090 if (rchanges == -1) {
7091 #if defined(AUDIO_DEBUG)
7092 TRACEF(1, file, "check record.params failed: "
7093 "%s %ubit %uch %uHz",
7094 audio_encoding_name(ri->encoding),
7095 ri->precision,
7096 ri->channels,
7097 ri->sample_rate);
7098 #endif
7099 return EINVAL;
7100 }
7101
7102 if (SPECIFIED(ai->mode)) {
7103 pchanges = 1;
7104 rchanges = 1;
7105 }
7106
7107 /*
7108 * Even when setting either one of playback and recording,
7109 * both track must be halted.
7110 */
7111 if (pchanges || rchanges) {
7112 audio_file_clear(sc, file);
7113 #if defined(AUDIO_DEBUG)
7114 char nbuf[16];
7115 char fmtbuf[64];
7116 if (pchanges) {
7117 if (ptrack) {
7118 snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
7119 } else {
7120 snprintf(nbuf, sizeof(nbuf), "-");
7121 }
7122 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
7123 DPRINTF(1, "audio track#%s play mode: %s\n",
7124 nbuf, fmtbuf);
7125 }
7126 if (rchanges) {
7127 if (rtrack) {
7128 snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
7129 } else {
7130 snprintf(nbuf, sizeof(nbuf), "-");
7131 }
7132 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
7133 DPRINTF(1, "audio track#%s rec mode: %s\n",
7134 nbuf, fmtbuf);
7135 }
7136 #endif
7137 }
7138
7139 /* Set mixer parameters */
7140 mutex_enter(sc->sc_lock);
7141 error = audio_hw_setinfo(sc, ai, &saved_ai);
7142 mutex_exit(sc->sc_lock);
7143 if (error)
7144 goto abort1;
7145
7146 /*
7147 * Set to track and update sticky parameters.
7148 */
7149 error = 0;
7150 file->mode = mode;
7151
7152 if (SPECIFIED_CH(pi->pause)) {
7153 if (ptrack)
7154 ptrack->is_pause = pi->pause;
7155 sc->sc_sound_ppause = pi->pause;
7156 }
7157 if (pchanges) {
7158 if (ptrack) {
7159 audio_track_lock_enter(ptrack);
7160 error = audio_track_set_format(ptrack, &pfmt);
7161 audio_track_lock_exit(ptrack);
7162 if (error) {
7163 TRACET(1, ptrack, "set play.params failed");
7164 goto abort2;
7165 }
7166 }
7167 sc->sc_sound_pparams = pfmt;
7168 }
7169 /* Change water marks after initializing the buffers. */
7170 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7171 if (ptrack)
7172 audio_track_setinfo_water(ptrack, ai);
7173 }
7174
7175 if (SPECIFIED_CH(ri->pause)) {
7176 if (rtrack)
7177 rtrack->is_pause = ri->pause;
7178 sc->sc_sound_rpause = ri->pause;
7179 }
7180 if (rchanges) {
7181 if (rtrack) {
7182 audio_track_lock_enter(rtrack);
7183 error = audio_track_set_format(rtrack, &rfmt);
7184 audio_track_lock_exit(rtrack);
7185 if (error) {
7186 TRACET(1, rtrack, "set record.params failed");
7187 goto abort3;
7188 }
7189 }
7190 sc->sc_sound_rparams = rfmt;
7191 }
7192
7193 return 0;
7194
7195 /* Rollback */
7196 abort3:
7197 if (error != ENOMEM) {
7198 rtrack->is_pause = saved_ai.record.pause;
7199 audio_track_lock_enter(rtrack);
7200 audio_track_set_format(rtrack, &saved_rfmt);
7201 audio_track_lock_exit(rtrack);
7202 }
7203 sc->sc_sound_rpause = saved_ai.record.pause;
7204 sc->sc_sound_rparams = saved_rfmt;
7205 abort2:
7206 if (ptrack && error != ENOMEM) {
7207 ptrack->is_pause = saved_ai.play.pause;
7208 audio_track_lock_enter(ptrack);
7209 audio_track_set_format(ptrack, &saved_pfmt);
7210 audio_track_lock_exit(ptrack);
7211 }
7212 sc->sc_sound_ppause = saved_ai.play.pause;
7213 sc->sc_sound_pparams = saved_pfmt;
7214 file->mode = saved_ai.mode;
7215 abort1:
7216 mutex_enter(sc->sc_lock);
7217 audio_hw_setinfo(sc, &saved_ai, NULL);
7218 mutex_exit(sc->sc_lock);
7219
7220 return error;
7221 }
7222
7223 /*
7224 * Write SPECIFIED() parameters within info back to fmt.
7225 * Note that track can be NULL here.
7226 * Return value of 1 indicates that fmt is modified.
7227 * Return value of 0 indicates that fmt is not modified.
7228 * Return value of -1 indicates that error EINVAL has occurred.
7229 */
7230 static int
7231 audio_track_setinfo_check(audio_track_t *track,
7232 audio_format2_t *fmt, const struct audio_prinfo *info)
7233 {
7234 const audio_format2_t *hwfmt;
7235 int changes;
7236
7237 changes = 0;
7238 if (SPECIFIED(info->sample_rate)) {
7239 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
7240 return -1;
7241 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
7242 return -1;
7243 fmt->sample_rate = info->sample_rate;
7244 changes = 1;
7245 }
7246 if (SPECIFIED(info->encoding)) {
7247 fmt->encoding = info->encoding;
7248 changes = 1;
7249 }
7250 if (SPECIFIED(info->precision)) {
7251 fmt->precision = info->precision;
7252 /* we don't have API to specify stride */
7253 fmt->stride = info->precision;
7254 changes = 1;
7255 }
7256 if (SPECIFIED(info->channels)) {
7257 /*
7258 * We can convert between monaural and stereo each other.
7259 * We can reduce than the number of channels that the hardware
7260 * supports.
7261 */
7262 if (info->channels > 2) {
7263 if (track) {
7264 hwfmt = &track->mixer->hwbuf.fmt;
7265 if (info->channels > hwfmt->channels)
7266 return -1;
7267 } else {
7268 /*
7269 * This should never happen.
7270 * If track == NULL, channels should be <= 2.
7271 */
7272 return -1;
7273 }
7274 }
7275 fmt->channels = info->channels;
7276 changes = 1;
7277 }
7278
7279 if (changes) {
7280 if (audio_check_params(fmt) != 0)
7281 return -1;
7282 }
7283
7284 return changes;
7285 }
7286
7287 /*
7288 * Change water marks for playback track if specfied.
7289 */
7290 static void
7291 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
7292 {
7293 u_int blks;
7294 u_int maxblks;
7295 u_int blksize;
7296
7297 KASSERT(audio_track_is_playback(track));
7298
7299 blksize = track->usrbuf_blksize;
7300 maxblks = track->usrbuf.capacity / blksize;
7301
7302 if (SPECIFIED(ai->hiwat)) {
7303 blks = ai->hiwat;
7304 if (blks > maxblks)
7305 blks = maxblks;
7306 if (blks < 2)
7307 blks = 2;
7308 track->usrbuf_usedhigh = blks * blksize;
7309 }
7310 if (SPECIFIED(ai->lowat)) {
7311 blks = ai->lowat;
7312 if (blks > maxblks - 1)
7313 blks = maxblks - 1;
7314 track->usrbuf_usedlow = blks * blksize;
7315 }
7316 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7317 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
7318 track->usrbuf_usedlow = track->usrbuf_usedhigh -
7319 blksize;
7320 }
7321 }
7322 }
7323
7324 /*
7325 * Set hardware part of *newai.
7326 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
7327 * If oldai is specified, previous parameters are stored.
7328 * This function itself does not roll back if error occurred.
7329 * Must be called with sc_lock && sc_exlock held.
7330 */
7331 static int
7332 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
7333 struct audio_info *oldai)
7334 {
7335 const struct audio_prinfo *newpi;
7336 const struct audio_prinfo *newri;
7337 struct audio_prinfo *oldpi;
7338 struct audio_prinfo *oldri;
7339 u_int pgain;
7340 u_int rgain;
7341 u_char pbalance;
7342 u_char rbalance;
7343 int error;
7344
7345 KASSERT(mutex_owned(sc->sc_lock));
7346 KASSERT(sc->sc_exlock);
7347
7348 /* XXX shut up gcc */
7349 oldpi = NULL;
7350 oldri = NULL;
7351
7352 newpi = &newai->play;
7353 newri = &newai->record;
7354 if (oldai) {
7355 oldpi = &oldai->play;
7356 oldri = &oldai->record;
7357 }
7358 error = 0;
7359
7360 /*
7361 * It looks like unnecessary to halt HW mixers to set HW mixers.
7362 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
7363 */
7364
7365 if (SPECIFIED(newpi->port)) {
7366 if (oldai)
7367 oldpi->port = au_get_port(sc, &sc->sc_outports);
7368 error = au_set_port(sc, &sc->sc_outports, newpi->port);
7369 if (error) {
7370 audio_printf(sc,
7371 "setting play.port=%d failed: errno=%d\n",
7372 newpi->port, error);
7373 goto abort;
7374 }
7375 }
7376 if (SPECIFIED(newri->port)) {
7377 if (oldai)
7378 oldri->port = au_get_port(sc, &sc->sc_inports);
7379 error = au_set_port(sc, &sc->sc_inports, newri->port);
7380 if (error) {
7381 audio_printf(sc,
7382 "setting record.port=%d failed: errno=%d\n",
7383 newri->port, error);
7384 goto abort;
7385 }
7386 }
7387
7388 /* Backup play.{gain,balance} */
7389 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7390 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7391 if (oldai) {
7392 oldpi->gain = pgain;
7393 oldpi->balance = pbalance;
7394 }
7395 }
7396 /* Backup record.{gain,balance} */
7397 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7398 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7399 if (oldai) {
7400 oldri->gain = rgain;
7401 oldri->balance = rbalance;
7402 }
7403 }
7404 if (SPECIFIED(newpi->gain)) {
7405 error = au_set_gain(sc, &sc->sc_outports,
7406 newpi->gain, pbalance);
7407 if (error) {
7408 audio_printf(sc,
7409 "setting play.gain=%d failed: errno=%d\n",
7410 newpi->gain, error);
7411 goto abort;
7412 }
7413 }
7414 if (SPECIFIED(newri->gain)) {
7415 error = au_set_gain(sc, &sc->sc_inports,
7416 newri->gain, rbalance);
7417 if (error) {
7418 audio_printf(sc,
7419 "setting record.gain=%d failed: errno=%d\n",
7420 newri->gain, error);
7421 goto abort;
7422 }
7423 }
7424 if (SPECIFIED_CH(newpi->balance)) {
7425 error = au_set_gain(sc, &sc->sc_outports,
7426 pgain, newpi->balance);
7427 if (error) {
7428 audio_printf(sc,
7429 "setting play.balance=%d failed: errno=%d\n",
7430 newpi->balance, error);
7431 goto abort;
7432 }
7433 }
7434 if (SPECIFIED_CH(newri->balance)) {
7435 error = au_set_gain(sc, &sc->sc_inports,
7436 rgain, newri->balance);
7437 if (error) {
7438 audio_printf(sc,
7439 "setting record.balance=%d failed: errno=%d\n",
7440 newri->balance, error);
7441 goto abort;
7442 }
7443 }
7444
7445 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7446 if (oldai)
7447 oldai->monitor_gain = au_get_monitor_gain(sc);
7448 error = au_set_monitor_gain(sc, newai->monitor_gain);
7449 if (error) {
7450 audio_printf(sc,
7451 "setting monitor_gain=%d failed: errno=%d\n",
7452 newai->monitor_gain, error);
7453 goto abort;
7454 }
7455 }
7456
7457 /* XXX TODO */
7458 /* sc->sc_ai = *ai; */
7459
7460 error = 0;
7461 abort:
7462 return error;
7463 }
7464
7465 /*
7466 * Setup the hardware with mixer format phwfmt, rhwfmt.
7467 * The arguments have following restrictions:
7468 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7469 * or both.
7470 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7471 * - On non-independent devices, phwfmt and rhwfmt must have the same
7472 * parameters.
7473 * - pfil and rfil must be zero-filled.
7474 * If successful,
7475 * - pfil, rfil will be filled with filter information specified by the
7476 * hardware driver if necessary.
7477 * and then returns 0. Otherwise returns errno.
7478 * Must be called without sc_lock held.
7479 */
7480 static int
7481 audio_hw_set_format(struct audio_softc *sc, int setmode,
7482 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
7483 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7484 {
7485 audio_params_t pp, rp;
7486 int error;
7487
7488 KASSERT(phwfmt != NULL);
7489 KASSERT(rhwfmt != NULL);
7490
7491 pp = format2_to_params(phwfmt);
7492 rp = format2_to_params(rhwfmt);
7493
7494 mutex_enter(sc->sc_lock);
7495 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7496 &pp, &rp, pfil, rfil);
7497 if (error) {
7498 mutex_exit(sc->sc_lock);
7499 audio_printf(sc, "set_format failed: errno=%d\n", error);
7500 return error;
7501 }
7502
7503 if (sc->hw_if->commit_settings) {
7504 error = sc->hw_if->commit_settings(sc->hw_hdl);
7505 if (error) {
7506 mutex_exit(sc->sc_lock);
7507 audio_printf(sc,
7508 "commit_settings failed: errno=%d\n", error);
7509 return error;
7510 }
7511 }
7512 mutex_exit(sc->sc_lock);
7513
7514 return 0;
7515 }
7516
7517 /*
7518 * Fill audio_info structure. If need_mixerinfo is true, it will also
7519 * fill the hardware mixer information.
7520 * Must be called with sc_exlock held and without sc_lock held.
7521 */
7522 static int
7523 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7524 audio_file_t *file)
7525 {
7526 struct audio_prinfo *ri, *pi;
7527 audio_track_t *track;
7528 audio_track_t *ptrack;
7529 audio_track_t *rtrack;
7530 int gain;
7531
7532 KASSERT(sc->sc_exlock);
7533
7534 ri = &ai->record;
7535 pi = &ai->play;
7536 ptrack = file->ptrack;
7537 rtrack = file->rtrack;
7538
7539 memset(ai, 0, sizeof(*ai));
7540
7541 if (ptrack) {
7542 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7543 pi->channels = ptrack->usrbuf.fmt.channels;
7544 pi->precision = ptrack->usrbuf.fmt.precision;
7545 pi->encoding = ptrack->usrbuf.fmt.encoding;
7546 pi->pause = ptrack->is_pause;
7547 } else {
7548 /* Use sticky parameters if the track is not available. */
7549 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7550 pi->channels = sc->sc_sound_pparams.channels;
7551 pi->precision = sc->sc_sound_pparams.precision;
7552 pi->encoding = sc->sc_sound_pparams.encoding;
7553 pi->pause = sc->sc_sound_ppause;
7554 }
7555 if (rtrack) {
7556 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7557 ri->channels = rtrack->usrbuf.fmt.channels;
7558 ri->precision = rtrack->usrbuf.fmt.precision;
7559 ri->encoding = rtrack->usrbuf.fmt.encoding;
7560 ri->pause = rtrack->is_pause;
7561 } else {
7562 /* Use sticky parameters if the track is not available. */
7563 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7564 ri->channels = sc->sc_sound_rparams.channels;
7565 ri->precision = sc->sc_sound_rparams.precision;
7566 ri->encoding = sc->sc_sound_rparams.encoding;
7567 ri->pause = sc->sc_sound_rpause;
7568 }
7569
7570 if (ptrack) {
7571 pi->seek = ptrack->usrbuf.used;
7572 pi->samples = ptrack->usrbuf_stamp;
7573 pi->eof = ptrack->eofcounter;
7574 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7575 pi->open = 1;
7576 pi->buffer_size = ptrack->usrbuf.capacity;
7577 }
7578 pi->waiting = 0; /* open never hangs */
7579 pi->active = sc->sc_pbusy;
7580
7581 if (rtrack) {
7582 ri->seek = rtrack->usrbuf.used;
7583 ri->samples = rtrack->usrbuf_stamp;
7584 ri->eof = 0;
7585 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7586 ri->open = 1;
7587 ri->buffer_size = rtrack->usrbuf.capacity;
7588 }
7589 ri->waiting = 0; /* open never hangs */
7590 ri->active = sc->sc_rbusy;
7591
7592 /*
7593 * XXX There may be different number of channels between playback
7594 * and recording, so that blocksize also may be different.
7595 * But struct audio_info has an united blocksize...
7596 * Here, I use play info precedencely if ptrack is available,
7597 * otherwise record info.
7598 *
7599 * XXX hiwat/lowat is a playback-only parameter. What should I
7600 * return for a record-only descriptor?
7601 */
7602 track = ptrack ? ptrack : rtrack;
7603 if (track) {
7604 ai->blocksize = track->usrbuf_blksize;
7605 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7606 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7607 }
7608 ai->mode = file->mode;
7609
7610 /*
7611 * For backward compatibility, we have to pad these five fields
7612 * a fake non-zero value even if there are no tracks.
7613 */
7614 if (ptrack == NULL)
7615 pi->buffer_size = 65536;
7616 if (rtrack == NULL)
7617 ri->buffer_size = 65536;
7618 if (ptrack == NULL && rtrack == NULL) {
7619 ai->blocksize = 2048;
7620 ai->hiwat = ai->play.buffer_size / ai->blocksize;
7621 ai->lowat = ai->hiwat * 3 / 4;
7622 }
7623
7624 if (need_mixerinfo) {
7625 mutex_enter(sc->sc_lock);
7626
7627 pi->port = au_get_port(sc, &sc->sc_outports);
7628 ri->port = au_get_port(sc, &sc->sc_inports);
7629
7630 pi->avail_ports = sc->sc_outports.allports;
7631 ri->avail_ports = sc->sc_inports.allports;
7632
7633 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7634 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7635
7636 if (sc->sc_monitor_port != -1) {
7637 gain = au_get_monitor_gain(sc);
7638 if (gain != -1)
7639 ai->monitor_gain = gain;
7640 }
7641 mutex_exit(sc->sc_lock);
7642 }
7643
7644 return 0;
7645 }
7646
7647 /*
7648 * Return true if playback is configured.
7649 * This function can be used after audioattach.
7650 */
7651 static bool
7652 audio_can_playback(struct audio_softc *sc)
7653 {
7654
7655 return (sc->sc_pmixer != NULL);
7656 }
7657
7658 /*
7659 * Return true if recording is configured.
7660 * This function can be used after audioattach.
7661 */
7662 static bool
7663 audio_can_capture(struct audio_softc *sc)
7664 {
7665
7666 return (sc->sc_rmixer != NULL);
7667 }
7668
7669 /*
7670 * Get the afp->index'th item from the valid one of format[].
7671 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7672 *
7673 * This is common routines for query_format.
7674 * If your hardware driver has struct audio_format[], the simplest case
7675 * you can write your query_format interface as follows:
7676 *
7677 * struct audio_format foo_format[] = { ... };
7678 *
7679 * int
7680 * foo_query_format(void *hdl, audio_format_query_t *afp)
7681 * {
7682 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7683 * }
7684 */
7685 int
7686 audio_query_format(const struct audio_format *format, int nformats,
7687 audio_format_query_t *afp)
7688 {
7689 const struct audio_format *f;
7690 int idx;
7691 int i;
7692
7693 idx = 0;
7694 for (i = 0; i < nformats; i++) {
7695 f = &format[i];
7696 if (!AUFMT_IS_VALID(f))
7697 continue;
7698 if (afp->index == idx) {
7699 afp->fmt = *f;
7700 return 0;
7701 }
7702 idx++;
7703 }
7704 return EINVAL;
7705 }
7706
7707 /*
7708 * This function is provided for the hardware driver's set_format() to
7709 * find index matches with 'param' from array of audio_format_t 'formats'.
7710 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7711 * It returns the matched index and never fails. Because param passed to
7712 * set_format() is selected from query_format().
7713 * This function will be an alternative to auconv_set_converter() to
7714 * find index.
7715 */
7716 int
7717 audio_indexof_format(const struct audio_format *formats, int nformats,
7718 int mode, const audio_params_t *param)
7719 {
7720 const struct audio_format *f;
7721 int index;
7722 int j;
7723
7724 for (index = 0; index < nformats; index++) {
7725 f = &formats[index];
7726
7727 if (!AUFMT_IS_VALID(f))
7728 continue;
7729 if ((f->mode & mode) == 0)
7730 continue;
7731 if (f->encoding != param->encoding)
7732 continue;
7733 if (f->validbits != param->precision)
7734 continue;
7735 if (f->channels != param->channels)
7736 continue;
7737
7738 if (f->frequency_type == 0) {
7739 if (param->sample_rate < f->frequency[0] ||
7740 param->sample_rate > f->frequency[1])
7741 continue;
7742 } else {
7743 for (j = 0; j < f->frequency_type; j++) {
7744 if (param->sample_rate == f->frequency[j])
7745 break;
7746 }
7747 if (j == f->frequency_type)
7748 continue;
7749 }
7750
7751 /* Then, matched */
7752 return index;
7753 }
7754
7755 /* Not matched. This should not be happened. */
7756 panic("%s: cannot find matched format\n", __func__);
7757 }
7758
7759 /*
7760 * Get or set hardware blocksize in msec.
7761 * XXX It's for debug.
7762 */
7763 static int
7764 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7765 {
7766 struct sysctlnode node;
7767 struct audio_softc *sc;
7768 audio_format2_t phwfmt;
7769 audio_format2_t rhwfmt;
7770 audio_filter_reg_t pfil;
7771 audio_filter_reg_t rfil;
7772 int t;
7773 int old_blk_ms;
7774 int mode;
7775 int error;
7776
7777 node = *rnode;
7778 sc = node.sysctl_data;
7779
7780 error = audio_exlock_enter(sc);
7781 if (error)
7782 return error;
7783
7784 old_blk_ms = sc->sc_blk_ms;
7785 t = old_blk_ms;
7786 node.sysctl_data = &t;
7787 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7788 if (error || newp == NULL)
7789 goto abort;
7790
7791 if (t < 0) {
7792 error = EINVAL;
7793 goto abort;
7794 }
7795
7796 if (sc->sc_popens + sc->sc_ropens > 0) {
7797 error = EBUSY;
7798 goto abort;
7799 }
7800 sc->sc_blk_ms = t;
7801 mode = 0;
7802 if (sc->sc_pmixer) {
7803 mode |= AUMODE_PLAY;
7804 phwfmt = sc->sc_pmixer->hwbuf.fmt;
7805 }
7806 if (sc->sc_rmixer) {
7807 mode |= AUMODE_RECORD;
7808 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7809 }
7810
7811 /* re-init hardware */
7812 memset(&pfil, 0, sizeof(pfil));
7813 memset(&rfil, 0, sizeof(rfil));
7814 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7815 if (error) {
7816 goto abort;
7817 }
7818
7819 /* re-init track mixer */
7820 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7821 if (error) {
7822 /* Rollback */
7823 sc->sc_blk_ms = old_blk_ms;
7824 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7825 goto abort;
7826 }
7827 error = 0;
7828 abort:
7829 audio_exlock_exit(sc);
7830 return error;
7831 }
7832
7833 /*
7834 * Get or set multiuser mode.
7835 */
7836 static int
7837 audio_sysctl_multiuser(SYSCTLFN_ARGS)
7838 {
7839 struct sysctlnode node;
7840 struct audio_softc *sc;
7841 bool t;
7842 int error;
7843
7844 node = *rnode;
7845 sc = node.sysctl_data;
7846
7847 error = audio_exlock_enter(sc);
7848 if (error)
7849 return error;
7850
7851 t = sc->sc_multiuser;
7852 node.sysctl_data = &t;
7853 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7854 if (error || newp == NULL)
7855 goto abort;
7856
7857 sc->sc_multiuser = t;
7858 error = 0;
7859 abort:
7860 audio_exlock_exit(sc);
7861 return error;
7862 }
7863
7864 #if defined(AUDIO_DEBUG)
7865 /*
7866 * Get or set debug verbose level. (0..4)
7867 * XXX It's for debug.
7868 * XXX It is not separated per device.
7869 */
7870 static int
7871 audio_sysctl_debug(SYSCTLFN_ARGS)
7872 {
7873 struct sysctlnode node;
7874 int t;
7875 int error;
7876
7877 node = *rnode;
7878 t = audiodebug;
7879 node.sysctl_data = &t;
7880 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7881 if (error || newp == NULL)
7882 return error;
7883
7884 if (t < 0 || t > 4)
7885 return EINVAL;
7886 audiodebug = t;
7887 printf("audio: audiodebug = %d\n", audiodebug);
7888 return 0;
7889 }
7890 #endif /* AUDIO_DEBUG */
7891
7892 #ifdef AUDIO_PM_IDLE
7893 static void
7894 audio_idle(void *arg)
7895 {
7896 device_t dv = arg;
7897 struct audio_softc *sc = device_private(dv);
7898
7899 #ifdef PNP_DEBUG
7900 extern int pnp_debug_idle;
7901 if (pnp_debug_idle)
7902 printf("%s: idle handler called\n", device_xname(dv));
7903 #endif
7904
7905 sc->sc_idle = true;
7906
7907 /* XXX joerg Make pmf_device_suspend handle children? */
7908 if (!pmf_device_suspend(dv, PMF_Q_SELF))
7909 return;
7910
7911 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7912 pmf_device_resume(dv, PMF_Q_SELF);
7913 }
7914
7915 static void
7916 audio_activity(device_t dv, devactive_t type)
7917 {
7918 struct audio_softc *sc = device_private(dv);
7919
7920 if (type != DVA_SYSTEM)
7921 return;
7922
7923 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7924
7925 sc->sc_idle = false;
7926 if (!device_is_active(dv)) {
7927 /* XXX joerg How to deal with a failing resume... */
7928 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7929 pmf_device_resume(dv, PMF_Q_SELF);
7930 }
7931 }
7932 #endif
7933
7934 static bool
7935 audio_suspend(device_t dv, const pmf_qual_t *qual)
7936 {
7937 struct audio_softc *sc = device_private(dv);
7938 int error;
7939
7940 error = audio_exlock_mutex_enter(sc);
7941 if (error)
7942 return error;
7943 sc->sc_suspending = true;
7944 audio_mixer_capture(sc);
7945
7946 if (sc->sc_pbusy) {
7947 audio_pmixer_halt(sc);
7948 /* Reuse this as need-to-restart flag while suspending */
7949 sc->sc_pbusy = true;
7950 }
7951 if (sc->sc_rbusy) {
7952 audio_rmixer_halt(sc);
7953 /* Reuse this as need-to-restart flag while suspending */
7954 sc->sc_rbusy = true;
7955 }
7956
7957 #ifdef AUDIO_PM_IDLE
7958 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7959 #endif
7960 audio_exlock_mutex_exit(sc);
7961
7962 return true;
7963 }
7964
7965 static bool
7966 audio_resume(device_t dv, const pmf_qual_t *qual)
7967 {
7968 struct audio_softc *sc = device_private(dv);
7969 struct audio_info ai;
7970 int error;
7971
7972 error = audio_exlock_mutex_enter(sc);
7973 if (error)
7974 return error;
7975
7976 sc->sc_suspending = false;
7977 audio_mixer_restore(sc);
7978 /* XXX ? */
7979 AUDIO_INITINFO(&ai);
7980 audio_hw_setinfo(sc, &ai, NULL);
7981
7982 /*
7983 * During from suspend to resume here, sc_[pr]busy is used as
7984 * need-to-restart flag temporarily. After this point,
7985 * sc_[pr]busy is returned to its original usage (busy flag).
7986 * And note that sc_[pr]busy must be false to call [pr]mixer_start().
7987 */
7988 if (sc->sc_pbusy) {
7989 /* pmixer_start() requires pbusy is false */
7990 sc->sc_pbusy = false;
7991 audio_pmixer_start(sc, true);
7992 }
7993 if (sc->sc_rbusy) {
7994 /* rmixer_start() requires rbusy is false */
7995 sc->sc_rbusy = false;
7996 audio_rmixer_start(sc);
7997 }
7998
7999 audio_exlock_mutex_exit(sc);
8000
8001 return true;
8002 }
8003
8004 #if defined(AUDIO_DEBUG)
8005 static void
8006 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
8007 {
8008 int n;
8009
8010 n = 0;
8011 n += snprintf(buf + n, bufsize - n, "%s",
8012 audio_encoding_name(fmt->encoding));
8013 if (fmt->precision == fmt->stride) {
8014 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
8015 } else {
8016 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
8017 fmt->precision, fmt->stride);
8018 }
8019
8020 snprintf(buf + n, bufsize - n, " %uch %uHz",
8021 fmt->channels, fmt->sample_rate);
8022 }
8023 #endif
8024
8025 #if defined(AUDIO_DEBUG)
8026 static void
8027 audio_print_format2(const char *s, const audio_format2_t *fmt)
8028 {
8029 char fmtstr[64];
8030
8031 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
8032 printf("%s %s\n", s, fmtstr);
8033 }
8034 #endif
8035
8036 #ifdef DIAGNOSTIC
8037 void
8038 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
8039 {
8040
8041 KASSERTMSG(fmt, "called from %s", where);
8042
8043 /* XXX MSM6258 vs(4) only has 4bit stride format. */
8044 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
8045 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
8046 "called from %s: fmt->stride=%d", where, fmt->stride);
8047 } else {
8048 KASSERTMSG(fmt->stride % NBBY == 0,
8049 "called from %s: fmt->stride=%d", where, fmt->stride);
8050 }
8051 KASSERTMSG(fmt->precision <= fmt->stride,
8052 "called from %s: fmt->precision=%d fmt->stride=%d",
8053 where, fmt->precision, fmt->stride);
8054 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
8055 "called from %s: fmt->channels=%d", where, fmt->channels);
8056
8057 /* XXX No check for encodings? */
8058 }
8059
8060 void
8061 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
8062 {
8063
8064 KASSERT(arg != NULL);
8065 KASSERT(arg->src != NULL);
8066 KASSERT(arg->dst != NULL);
8067 audio_diagnostic_format2(where, arg->srcfmt);
8068 audio_diagnostic_format2(where, arg->dstfmt);
8069 KASSERT(arg->count > 0);
8070 }
8071
8072 void
8073 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
8074 {
8075
8076 KASSERTMSG(ring, "called from %s", where);
8077 audio_diagnostic_format2(where, &ring->fmt);
8078 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
8079 "called from %s: ring->capacity=%d", where, ring->capacity);
8080 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
8081 "called from %s: ring->used=%d ring->capacity=%d",
8082 where, ring->used, ring->capacity);
8083 if (ring->capacity == 0) {
8084 KASSERTMSG(ring->mem == NULL,
8085 "called from %s: capacity == 0 but mem != NULL", where);
8086 } else {
8087 KASSERTMSG(ring->mem != NULL,
8088 "called from %s: capacity != 0 but mem == NULL", where);
8089 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
8090 "called from %s: ring->head=%d ring->capacity=%d",
8091 where, ring->head, ring->capacity);
8092 }
8093 }
8094 #endif /* DIAGNOSTIC */
8095
8096
8097 /*
8098 * Mixer driver
8099 */
8100
8101 /*
8102 * Must be called without sc_lock held.
8103 */
8104 int
8105 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
8106 struct lwp *l)
8107 {
8108 struct file *fp;
8109 audio_file_t *af;
8110 int error, fd;
8111
8112 TRACE(1, "flags=0x%x", flags);
8113
8114 error = fd_allocfile(&fp, &fd);
8115 if (error)
8116 return error;
8117
8118 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
8119 af->sc = sc;
8120 af->dev = dev;
8121
8122 error = fd_clone(fp, fd, flags, &audio_fileops, af);
8123 KASSERT(error == EMOVEFD);
8124
8125 return error;
8126 }
8127
8128 /*
8129 * Add a process to those to be signalled on mixer activity.
8130 * If the process has already been added, do nothing.
8131 * Must be called with sc_exlock held and without sc_lock held.
8132 */
8133 static void
8134 mixer_async_add(struct audio_softc *sc, pid_t pid)
8135 {
8136 int i;
8137
8138 KASSERT(sc->sc_exlock);
8139
8140 /* If already exists, returns without doing anything. */
8141 for (i = 0; i < sc->sc_am_used; i++) {
8142 if (sc->sc_am[i] == pid)
8143 return;
8144 }
8145
8146 /* Extend array if necessary. */
8147 if (sc->sc_am_used >= sc->sc_am_capacity) {
8148 sc->sc_am_capacity += AM_CAPACITY;
8149 sc->sc_am = kern_realloc(sc->sc_am,
8150 sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
8151 TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
8152 }
8153
8154 TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
8155 sc->sc_am[sc->sc_am_used++] = pid;
8156 }
8157
8158 /*
8159 * Remove a process from those to be signalled on mixer activity.
8160 * If the process has not been added, do nothing.
8161 * Must be called with sc_exlock held and without sc_lock held.
8162 */
8163 static void
8164 mixer_async_remove(struct audio_softc *sc, pid_t pid)
8165 {
8166 int i;
8167
8168 KASSERT(sc->sc_exlock);
8169
8170 for (i = 0; i < sc->sc_am_used; i++) {
8171 if (sc->sc_am[i] == pid) {
8172 sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
8173 TRACE(2, "am[%d](%d) removed, used=%d",
8174 i, (int)pid, sc->sc_am_used);
8175
8176 /* Empty array if no longer necessary. */
8177 if (sc->sc_am_used == 0) {
8178 kern_free(sc->sc_am);
8179 sc->sc_am = NULL;
8180 sc->sc_am_capacity = 0;
8181 TRACE(2, "released");
8182 }
8183 return;
8184 }
8185 }
8186 }
8187
8188 /*
8189 * Signal all processes waiting for the mixer.
8190 * Must be called with sc_exlock held.
8191 */
8192 static void
8193 mixer_signal(struct audio_softc *sc)
8194 {
8195 proc_t *p;
8196 int i;
8197
8198 KASSERT(sc->sc_exlock);
8199
8200 for (i = 0; i < sc->sc_am_used; i++) {
8201 mutex_enter(&proc_lock);
8202 p = proc_find(sc->sc_am[i]);
8203 if (p)
8204 psignal(p, SIGIO);
8205 mutex_exit(&proc_lock);
8206 }
8207 }
8208
8209 /*
8210 * Close a mixer device
8211 */
8212 int
8213 mixer_close(struct audio_softc *sc, audio_file_t *file)
8214 {
8215 int error;
8216
8217 error = audio_exlock_enter(sc);
8218 if (error)
8219 return error;
8220 TRACE(1, "called");
8221 mixer_async_remove(sc, curproc->p_pid);
8222 audio_exlock_exit(sc);
8223
8224 return 0;
8225 }
8226
8227 /*
8228 * Must be called without sc_lock nor sc_exlock held.
8229 */
8230 int
8231 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
8232 struct lwp *l)
8233 {
8234 mixer_devinfo_t *mi;
8235 mixer_ctrl_t *mc;
8236 int error;
8237
8238 TRACE(2, "(%lu,'%c',%lu)",
8239 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
8240 error = EINVAL;
8241
8242 /* we can return cached values if we are sleeping */
8243 if (cmd != AUDIO_MIXER_READ) {
8244 mutex_enter(sc->sc_lock);
8245 device_active(sc->sc_dev, DVA_SYSTEM);
8246 mutex_exit(sc->sc_lock);
8247 }
8248
8249 switch (cmd) {
8250 case FIOASYNC:
8251 error = audio_exlock_enter(sc);
8252 if (error)
8253 break;
8254 if (*(int *)addr) {
8255 mixer_async_add(sc, curproc->p_pid);
8256 } else {
8257 mixer_async_remove(sc, curproc->p_pid);
8258 }
8259 audio_exlock_exit(sc);
8260 break;
8261
8262 case AUDIO_GETDEV:
8263 TRACE(2, "AUDIO_GETDEV");
8264 mutex_enter(sc->sc_lock);
8265 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
8266 mutex_exit(sc->sc_lock);
8267 break;
8268
8269 case AUDIO_MIXER_DEVINFO:
8270 TRACE(2, "AUDIO_MIXER_DEVINFO");
8271 mi = (mixer_devinfo_t *)addr;
8272
8273 mi->un.v.delta = 0; /* default */
8274 mutex_enter(sc->sc_lock);
8275 error = audio_query_devinfo(sc, mi);
8276 mutex_exit(sc->sc_lock);
8277 break;
8278
8279 case AUDIO_MIXER_READ:
8280 TRACE(2, "AUDIO_MIXER_READ");
8281 mc = (mixer_ctrl_t *)addr;
8282
8283 error = audio_exlock_mutex_enter(sc);
8284 if (error)
8285 break;
8286 if (device_is_active(sc->hw_dev))
8287 error = audio_get_port(sc, mc);
8288 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
8289 error = ENXIO;
8290 else {
8291 int dev = mc->dev;
8292 memcpy(mc, &sc->sc_mixer_state[dev],
8293 sizeof(mixer_ctrl_t));
8294 error = 0;
8295 }
8296 audio_exlock_mutex_exit(sc);
8297 break;
8298
8299 case AUDIO_MIXER_WRITE:
8300 TRACE(2, "AUDIO_MIXER_WRITE");
8301 error = audio_exlock_mutex_enter(sc);
8302 if (error)
8303 break;
8304 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
8305 if (error) {
8306 audio_exlock_mutex_exit(sc);
8307 break;
8308 }
8309
8310 if (sc->hw_if->commit_settings) {
8311 error = sc->hw_if->commit_settings(sc->hw_hdl);
8312 if (error) {
8313 audio_exlock_mutex_exit(sc);
8314 break;
8315 }
8316 }
8317 mutex_exit(sc->sc_lock);
8318 mixer_signal(sc);
8319 audio_exlock_exit(sc);
8320 break;
8321
8322 default:
8323 if (sc->hw_if->dev_ioctl) {
8324 mutex_enter(sc->sc_lock);
8325 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
8326 cmd, addr, flag, l);
8327 mutex_exit(sc->sc_lock);
8328 } else
8329 error = EINVAL;
8330 break;
8331 }
8332 TRACE(2, "(%lu,'%c',%lu) result %d",
8333 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
8334 return error;
8335 }
8336
8337 /*
8338 * Must be called with sc_lock held.
8339 */
8340 int
8341 au_portof(struct audio_softc *sc, char *name, int class)
8342 {
8343 mixer_devinfo_t mi;
8344
8345 KASSERT(mutex_owned(sc->sc_lock));
8346
8347 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
8348 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
8349 return mi.index;
8350 }
8351 return -1;
8352 }
8353
8354 /*
8355 * Must be called with sc_lock held.
8356 */
8357 void
8358 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
8359 mixer_devinfo_t *mi, const struct portname *tbl)
8360 {
8361 int i, j;
8362
8363 KASSERT(mutex_owned(sc->sc_lock));
8364
8365 ports->index = mi->index;
8366 if (mi->type == AUDIO_MIXER_ENUM) {
8367 ports->isenum = true;
8368 for(i = 0; tbl[i].name; i++)
8369 for(j = 0; j < mi->un.e.num_mem; j++)
8370 if (strcmp(mi->un.e.member[j].label.name,
8371 tbl[i].name) == 0) {
8372 ports->allports |= tbl[i].mask;
8373 ports->aumask[ports->nports] = tbl[i].mask;
8374 ports->misel[ports->nports] =
8375 mi->un.e.member[j].ord;
8376 ports->miport[ports->nports] =
8377 au_portof(sc, mi->un.e.member[j].label.name,
8378 mi->mixer_class);
8379 if (ports->mixerout != -1 &&
8380 ports->miport[ports->nports] != -1)
8381 ports->isdual = true;
8382 ++ports->nports;
8383 }
8384 } else if (mi->type == AUDIO_MIXER_SET) {
8385 for(i = 0; tbl[i].name; i++)
8386 for(j = 0; j < mi->un.s.num_mem; j++)
8387 if (strcmp(mi->un.s.member[j].label.name,
8388 tbl[i].name) == 0) {
8389 ports->allports |= tbl[i].mask;
8390 ports->aumask[ports->nports] = tbl[i].mask;
8391 ports->misel[ports->nports] =
8392 mi->un.s.member[j].mask;
8393 ports->miport[ports->nports] =
8394 au_portof(sc, mi->un.s.member[j].label.name,
8395 mi->mixer_class);
8396 ++ports->nports;
8397 }
8398 }
8399 }
8400
8401 /*
8402 * Must be called with sc_lock && sc_exlock held.
8403 */
8404 int
8405 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8406 {
8407
8408 KASSERT(mutex_owned(sc->sc_lock));
8409 KASSERT(sc->sc_exlock);
8410
8411 ct->type = AUDIO_MIXER_VALUE;
8412 ct->un.value.num_channels = 2;
8413 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8414 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8415 if (audio_set_port(sc, ct) == 0)
8416 return 0;
8417 ct->un.value.num_channels = 1;
8418 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8419 return audio_set_port(sc, ct);
8420 }
8421
8422 /*
8423 * Must be called with sc_lock && sc_exlock held.
8424 */
8425 int
8426 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8427 {
8428 int error;
8429
8430 KASSERT(mutex_owned(sc->sc_lock));
8431 KASSERT(sc->sc_exlock);
8432
8433 ct->un.value.num_channels = 2;
8434 if (audio_get_port(sc, ct) == 0) {
8435 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8436 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8437 } else {
8438 ct->un.value.num_channels = 1;
8439 error = audio_get_port(sc, ct);
8440 if (error)
8441 return error;
8442 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8443 }
8444 return 0;
8445 }
8446
8447 /*
8448 * Must be called with sc_lock && sc_exlock held.
8449 */
8450 int
8451 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8452 int gain, int balance)
8453 {
8454 mixer_ctrl_t ct;
8455 int i, error;
8456 int l, r;
8457 u_int mask;
8458 int nset;
8459
8460 KASSERT(mutex_owned(sc->sc_lock));
8461 KASSERT(sc->sc_exlock);
8462
8463 if (balance == AUDIO_MID_BALANCE) {
8464 l = r = gain;
8465 } else if (balance < AUDIO_MID_BALANCE) {
8466 l = gain;
8467 r = (balance * gain) / AUDIO_MID_BALANCE;
8468 } else {
8469 r = gain;
8470 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8471 / AUDIO_MID_BALANCE;
8472 }
8473 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8474
8475 if (ports->index == -1) {
8476 usemaster:
8477 if (ports->master == -1)
8478 return 0; /* just ignore it silently */
8479 ct.dev = ports->master;
8480 error = au_set_lr_value(sc, &ct, l, r);
8481 } else {
8482 ct.dev = ports->index;
8483 if (ports->isenum) {
8484 ct.type = AUDIO_MIXER_ENUM;
8485 error = audio_get_port(sc, &ct);
8486 if (error)
8487 return error;
8488 if (ports->isdual) {
8489 if (ports->cur_port == -1)
8490 ct.dev = ports->master;
8491 else
8492 ct.dev = ports->miport[ports->cur_port];
8493 error = au_set_lr_value(sc, &ct, l, r);
8494 } else {
8495 for(i = 0; i < ports->nports; i++)
8496 if (ports->misel[i] == ct.un.ord) {
8497 ct.dev = ports->miport[i];
8498 if (ct.dev == -1 ||
8499 au_set_lr_value(sc, &ct, l, r))
8500 goto usemaster;
8501 else
8502 break;
8503 }
8504 }
8505 } else {
8506 ct.type = AUDIO_MIXER_SET;
8507 error = audio_get_port(sc, &ct);
8508 if (error)
8509 return error;
8510 mask = ct.un.mask;
8511 nset = 0;
8512 for(i = 0; i < ports->nports; i++) {
8513 if (ports->misel[i] & mask) {
8514 ct.dev = ports->miport[i];
8515 if (ct.dev != -1 &&
8516 au_set_lr_value(sc, &ct, l, r) == 0)
8517 nset++;
8518 }
8519 }
8520 if (nset == 0)
8521 goto usemaster;
8522 }
8523 }
8524 if (!error)
8525 mixer_signal(sc);
8526 return error;
8527 }
8528
8529 /*
8530 * Must be called with sc_lock && sc_exlock held.
8531 */
8532 void
8533 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8534 u_int *pgain, u_char *pbalance)
8535 {
8536 mixer_ctrl_t ct;
8537 int i, l, r, n;
8538 int lgain, rgain;
8539
8540 KASSERT(mutex_owned(sc->sc_lock));
8541 KASSERT(sc->sc_exlock);
8542
8543 lgain = AUDIO_MAX_GAIN / 2;
8544 rgain = AUDIO_MAX_GAIN / 2;
8545 if (ports->index == -1) {
8546 usemaster:
8547 if (ports->master == -1)
8548 goto bad;
8549 ct.dev = ports->master;
8550 ct.type = AUDIO_MIXER_VALUE;
8551 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8552 goto bad;
8553 } else {
8554 ct.dev = ports->index;
8555 if (ports->isenum) {
8556 ct.type = AUDIO_MIXER_ENUM;
8557 if (audio_get_port(sc, &ct))
8558 goto bad;
8559 ct.type = AUDIO_MIXER_VALUE;
8560 if (ports->isdual) {
8561 if (ports->cur_port == -1)
8562 ct.dev = ports->master;
8563 else
8564 ct.dev = ports->miport[ports->cur_port];
8565 au_get_lr_value(sc, &ct, &lgain, &rgain);
8566 } else {
8567 for(i = 0; i < ports->nports; i++)
8568 if (ports->misel[i] == ct.un.ord) {
8569 ct.dev = ports->miport[i];
8570 if (ct.dev == -1 ||
8571 au_get_lr_value(sc, &ct,
8572 &lgain, &rgain))
8573 goto usemaster;
8574 else
8575 break;
8576 }
8577 }
8578 } else {
8579 ct.type = AUDIO_MIXER_SET;
8580 if (audio_get_port(sc, &ct))
8581 goto bad;
8582 ct.type = AUDIO_MIXER_VALUE;
8583 lgain = rgain = n = 0;
8584 for(i = 0; i < ports->nports; i++) {
8585 if (ports->misel[i] & ct.un.mask) {
8586 ct.dev = ports->miport[i];
8587 if (ct.dev == -1 ||
8588 au_get_lr_value(sc, &ct, &l, &r))
8589 goto usemaster;
8590 else {
8591 lgain += l;
8592 rgain += r;
8593 n++;
8594 }
8595 }
8596 }
8597 if (n != 0) {
8598 lgain /= n;
8599 rgain /= n;
8600 }
8601 }
8602 }
8603 bad:
8604 if (lgain == rgain) { /* handles lgain==rgain==0 */
8605 *pgain = lgain;
8606 *pbalance = AUDIO_MID_BALANCE;
8607 } else if (lgain < rgain) {
8608 *pgain = rgain;
8609 /* balance should be > AUDIO_MID_BALANCE */
8610 *pbalance = AUDIO_RIGHT_BALANCE -
8611 (AUDIO_MID_BALANCE * lgain) / rgain;
8612 } else /* lgain > rgain */ {
8613 *pgain = lgain;
8614 /* balance should be < AUDIO_MID_BALANCE */
8615 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8616 }
8617 }
8618
8619 /*
8620 * Must be called with sc_lock && sc_exlock held.
8621 */
8622 int
8623 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8624 {
8625 mixer_ctrl_t ct;
8626 int i, error, use_mixerout;
8627
8628 KASSERT(mutex_owned(sc->sc_lock));
8629 KASSERT(sc->sc_exlock);
8630
8631 use_mixerout = 1;
8632 if (port == 0) {
8633 if (ports->allports == 0)
8634 return 0; /* Allow this special case. */
8635 else if (ports->isdual) {
8636 if (ports->cur_port == -1) {
8637 return 0;
8638 } else {
8639 port = ports->aumask[ports->cur_port];
8640 ports->cur_port = -1;
8641 use_mixerout = 0;
8642 }
8643 }
8644 }
8645 if (ports->index == -1)
8646 return EINVAL;
8647 ct.dev = ports->index;
8648 if (ports->isenum) {
8649 if (port & (port-1))
8650 return EINVAL; /* Only one port allowed */
8651 ct.type = AUDIO_MIXER_ENUM;
8652 error = EINVAL;
8653 for(i = 0; i < ports->nports; i++)
8654 if (ports->aumask[i] == port) {
8655 if (ports->isdual && use_mixerout) {
8656 ct.un.ord = ports->mixerout;
8657 ports->cur_port = i;
8658 } else {
8659 ct.un.ord = ports->misel[i];
8660 }
8661 error = audio_set_port(sc, &ct);
8662 break;
8663 }
8664 } else {
8665 ct.type = AUDIO_MIXER_SET;
8666 ct.un.mask = 0;
8667 for(i = 0; i < ports->nports; i++)
8668 if (ports->aumask[i] & port)
8669 ct.un.mask |= ports->misel[i];
8670 if (port != 0 && ct.un.mask == 0)
8671 error = EINVAL;
8672 else
8673 error = audio_set_port(sc, &ct);
8674 }
8675 if (!error)
8676 mixer_signal(sc);
8677 return error;
8678 }
8679
8680 /*
8681 * Must be called with sc_lock && sc_exlock held.
8682 */
8683 int
8684 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8685 {
8686 mixer_ctrl_t ct;
8687 int i, aumask;
8688
8689 KASSERT(mutex_owned(sc->sc_lock));
8690 KASSERT(sc->sc_exlock);
8691
8692 if (ports->index == -1)
8693 return 0;
8694 ct.dev = ports->index;
8695 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8696 if (audio_get_port(sc, &ct))
8697 return 0;
8698 aumask = 0;
8699 if (ports->isenum) {
8700 if (ports->isdual && ports->cur_port != -1) {
8701 if (ports->mixerout == ct.un.ord)
8702 aumask = ports->aumask[ports->cur_port];
8703 else
8704 ports->cur_port = -1;
8705 }
8706 if (aumask == 0)
8707 for(i = 0; i < ports->nports; i++)
8708 if (ports->misel[i] == ct.un.ord)
8709 aumask = ports->aumask[i];
8710 } else {
8711 for(i = 0; i < ports->nports; i++)
8712 if (ct.un.mask & ports->misel[i])
8713 aumask |= ports->aumask[i];
8714 }
8715 return aumask;
8716 }
8717
8718 /*
8719 * It returns 0 if success, otherwise errno.
8720 * Must be called only if sc->sc_monitor_port != -1.
8721 * Must be called with sc_lock && sc_exlock held.
8722 */
8723 static int
8724 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8725 {
8726 mixer_ctrl_t ct;
8727
8728 KASSERT(mutex_owned(sc->sc_lock));
8729 KASSERT(sc->sc_exlock);
8730
8731 ct.dev = sc->sc_monitor_port;
8732 ct.type = AUDIO_MIXER_VALUE;
8733 ct.un.value.num_channels = 1;
8734 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8735 return audio_set_port(sc, &ct);
8736 }
8737
8738 /*
8739 * It returns monitor gain if success, otherwise -1.
8740 * Must be called only if sc->sc_monitor_port != -1.
8741 * Must be called with sc_lock && sc_exlock held.
8742 */
8743 static int
8744 au_get_monitor_gain(struct audio_softc *sc)
8745 {
8746 mixer_ctrl_t ct;
8747
8748 KASSERT(mutex_owned(sc->sc_lock));
8749 KASSERT(sc->sc_exlock);
8750
8751 ct.dev = sc->sc_monitor_port;
8752 ct.type = AUDIO_MIXER_VALUE;
8753 ct.un.value.num_channels = 1;
8754 if (audio_get_port(sc, &ct))
8755 return -1;
8756 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8757 }
8758
8759 /*
8760 * Must be called with sc_lock && sc_exlock held.
8761 */
8762 static int
8763 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8764 {
8765
8766 KASSERT(mutex_owned(sc->sc_lock));
8767 KASSERT(sc->sc_exlock);
8768
8769 return sc->hw_if->set_port(sc->hw_hdl, mc);
8770 }
8771
8772 /*
8773 * Must be called with sc_lock && sc_exlock held.
8774 */
8775 static int
8776 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8777 {
8778
8779 KASSERT(mutex_owned(sc->sc_lock));
8780 KASSERT(sc->sc_exlock);
8781
8782 return sc->hw_if->get_port(sc->hw_hdl, mc);
8783 }
8784
8785 /*
8786 * Must be called with sc_lock && sc_exlock held.
8787 */
8788 static void
8789 audio_mixer_capture(struct audio_softc *sc)
8790 {
8791 mixer_devinfo_t mi;
8792 mixer_ctrl_t *mc;
8793
8794 KASSERT(mutex_owned(sc->sc_lock));
8795 KASSERT(sc->sc_exlock);
8796
8797 for (mi.index = 0;; mi.index++) {
8798 if (audio_query_devinfo(sc, &mi) != 0)
8799 break;
8800 KASSERT(mi.index < sc->sc_nmixer_states);
8801 if (mi.type == AUDIO_MIXER_CLASS)
8802 continue;
8803 mc = &sc->sc_mixer_state[mi.index];
8804 mc->dev = mi.index;
8805 mc->type = mi.type;
8806 mc->un.value.num_channels = mi.un.v.num_channels;
8807 (void)audio_get_port(sc, mc);
8808 }
8809
8810 return;
8811 }
8812
8813 /*
8814 * Must be called with sc_lock && sc_exlock held.
8815 */
8816 static void
8817 audio_mixer_restore(struct audio_softc *sc)
8818 {
8819 mixer_devinfo_t mi;
8820 mixer_ctrl_t *mc;
8821
8822 KASSERT(mutex_owned(sc->sc_lock));
8823 KASSERT(sc->sc_exlock);
8824
8825 for (mi.index = 0; ; mi.index++) {
8826 if (audio_query_devinfo(sc, &mi) != 0)
8827 break;
8828 if (mi.type == AUDIO_MIXER_CLASS)
8829 continue;
8830 mc = &sc->sc_mixer_state[mi.index];
8831 (void)audio_set_port(sc, mc);
8832 }
8833 if (sc->hw_if->commit_settings)
8834 sc->hw_if->commit_settings(sc->hw_hdl);
8835
8836 return;
8837 }
8838
8839 static void
8840 audio_volume_down(device_t dv)
8841 {
8842 struct audio_softc *sc = device_private(dv);
8843 mixer_devinfo_t mi;
8844 int newgain;
8845 u_int gain;
8846 u_char balance;
8847
8848 if (audio_exlock_mutex_enter(sc) != 0)
8849 return;
8850 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8851 mi.index = sc->sc_outports.master;
8852 mi.un.v.delta = 0;
8853 if (audio_query_devinfo(sc, &mi) == 0) {
8854 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8855 newgain = gain - mi.un.v.delta;
8856 if (newgain < AUDIO_MIN_GAIN)
8857 newgain = AUDIO_MIN_GAIN;
8858 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8859 }
8860 }
8861 audio_exlock_mutex_exit(sc);
8862 }
8863
8864 static void
8865 audio_volume_up(device_t dv)
8866 {
8867 struct audio_softc *sc = device_private(dv);
8868 mixer_devinfo_t mi;
8869 u_int gain, newgain;
8870 u_char balance;
8871
8872 if (audio_exlock_mutex_enter(sc) != 0)
8873 return;
8874 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8875 mi.index = sc->sc_outports.master;
8876 mi.un.v.delta = 0;
8877 if (audio_query_devinfo(sc, &mi) == 0) {
8878 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8879 newgain = gain + mi.un.v.delta;
8880 if (newgain > AUDIO_MAX_GAIN)
8881 newgain = AUDIO_MAX_GAIN;
8882 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8883 }
8884 }
8885 audio_exlock_mutex_exit(sc);
8886 }
8887
8888 static void
8889 audio_volume_toggle(device_t dv)
8890 {
8891 struct audio_softc *sc = device_private(dv);
8892 u_int gain, newgain;
8893 u_char balance;
8894
8895 if (audio_exlock_mutex_enter(sc) != 0)
8896 return;
8897 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8898 if (gain != 0) {
8899 sc->sc_lastgain = gain;
8900 newgain = 0;
8901 } else
8902 newgain = sc->sc_lastgain;
8903 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8904 audio_exlock_mutex_exit(sc);
8905 }
8906
8907 /*
8908 * Must be called with sc_lock held.
8909 */
8910 static int
8911 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8912 {
8913
8914 KASSERT(mutex_owned(sc->sc_lock));
8915
8916 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8917 }
8918
8919 #endif /* NAUDIO > 0 */
8920
8921 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8922 #include <sys/param.h>
8923 #include <sys/systm.h>
8924 #include <sys/device.h>
8925 #include <sys/audioio.h>
8926 #include <dev/audio/audio_if.h>
8927 #endif
8928
8929 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8930 int
8931 audioprint(void *aux, const char *pnp)
8932 {
8933 struct audio_attach_args *arg;
8934 const char *type;
8935
8936 if (pnp != NULL) {
8937 arg = aux;
8938 switch (arg->type) {
8939 case AUDIODEV_TYPE_AUDIO:
8940 type = "audio";
8941 break;
8942 case AUDIODEV_TYPE_MIDI:
8943 type = "midi";
8944 break;
8945 case AUDIODEV_TYPE_OPL:
8946 type = "opl";
8947 break;
8948 case AUDIODEV_TYPE_MPU:
8949 type = "mpu";
8950 break;
8951 default:
8952 panic("audioprint: unknown type %d", arg->type);
8953 }
8954 aprint_normal("%s at %s", type, pnp);
8955 }
8956 return UNCONF;
8957 }
8958
8959 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8960
8961 #ifdef _MODULE
8962
8963 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8964
8965 #include "ioconf.c"
8966
8967 #endif
8968
8969 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
8970
8971 static int
8972 audio_modcmd(modcmd_t cmd, void *arg)
8973 {
8974 int error = 0;
8975
8976 switch (cmd) {
8977 case MODULE_CMD_INIT:
8978 /* XXX interrupt level? */
8979 audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
8980 #ifdef _MODULE
8981 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8982 &audio_cdevsw, &audio_cmajor);
8983 if (error)
8984 break;
8985
8986 error = config_init_component(cfdriver_ioconf_audio,
8987 cfattach_ioconf_audio, cfdata_ioconf_audio);
8988 if (error) {
8989 devsw_detach(NULL, &audio_cdevsw);
8990 }
8991 #endif
8992 break;
8993 case MODULE_CMD_FINI:
8994 #ifdef _MODULE
8995 devsw_detach(NULL, &audio_cdevsw);
8996 error = config_fini_component(cfdriver_ioconf_audio,
8997 cfattach_ioconf_audio, cfdata_ioconf_audio);
8998 if (error)
8999 devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
9000 &audio_cdevsw, &audio_cmajor);
9001 #endif
9002 psref_class_destroy(audio_psref_class);
9003 break;
9004 default:
9005 error = ENOTTY;
9006 break;
9007 }
9008
9009 return error;
9010 }
9011