Home | History | Annotate | Line # | Download | only in audio
audio.c revision 1.96
      1 /*	$NetBSD: audio.c,v 1.96 2021/06/01 21:12:24 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1991-1993 Regents of the University of California.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgement:
     46  *	This product includes software developed by the Computer Systems
     47  *	Engineering Group at Lawrence Berkeley Laboratory.
     48  * 4. Neither the name of the University nor of the Laboratory may be used
     49  *    to endorse or promote products derived from this software without
     50  *    specific prior written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     62  * SUCH DAMAGE.
     63  */
     64 
     65 /*
     66  * Locking: there are three locks per device.
     67  *
     68  * - sc_lock, provided by the underlying driver.  This is an adaptive lock,
     69  *   returned in the second parameter to hw_if->get_locks().  It is known
     70  *   as the "thread lock".
     71  *
     72  *   It serializes access to state in all places except the
     73  *   driver's interrupt service routine.  This lock is taken from process
     74  *   context (example: access to /dev/audio).  It is also taken from soft
     75  *   interrupt handlers in this module, primarily to serialize delivery of
     76  *   wakeups.  This lock may be used/provided by modules external to the
     77  *   audio subsystem, so take care not to introduce a lock order problem.
     78  *   LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
     79  *
     80  * - sc_intr_lock, provided by the underlying driver.  This may be either a
     81  *   spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
     82  *   IPL_SOFT*), returned in the first parameter to hw_if->get_locks().  It
     83  *   is known as the "interrupt lock".
     84  *
     85  *   It provides atomic access to the device's hardware state, and to audio
     86  *   channel data that may be accessed by the hardware driver's ISR.
     87  *   In all places outside the ISR, sc_lock must be held before taking
     88  *   sc_intr_lock.  This is to ensure that groups of hardware operations are
     89  *   made atomically.  SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
     90  *
     91  * - sc_exlock, private to this module.  This is a variable protected by
     92  *   sc_lock.  It is known as the "critical section".
     93  *   Some operations release sc_lock in order to allocate memory, to wait
     94  *   for in-flight I/O to complete, to copy to/from user context, etc.
     95  *   sc_exlock provides a critical section even under the circumstance.
     96  *   "+" in following list indicates the interfaces which necessary to be
     97  *   protected by sc_exlock.
     98  *
     99  * List of hardware interface methods, and which locks are held when each
    100  * is called by this module:
    101  *
    102  *	METHOD			INTR	THREAD  NOTES
    103  *	----------------------- ------- -------	-------------------------
    104  *	open 			x	x +
    105  *	close 			x	x +
    106  *	query_format		-	x
    107  *	set_format		-	x
    108  *	round_blocksize		-	x
    109  *	commit_settings		-	x
    110  *	init_output 		x	x
    111  *	init_input 		x	x
    112  *	start_output 		x	x +
    113  *	start_input 		x	x +
    114  *	halt_output 		x	x +
    115  *	halt_input 		x	x +
    116  *	speaker_ctl 		x	x
    117  *	getdev 			-	x
    118  *	set_port 		-	x +
    119  *	get_port 		-	x +
    120  *	query_devinfo 		-	x
    121  *	allocm 			-	- +
    122  *	freem 			-	- +
    123  *	round_buffersize 	-	x
    124  *	get_props 		-	-	Called at attach time
    125  *	trigger_output 		x	x +
    126  *	trigger_input 		x	x +
    127  *	dev_ioctl 		-	x
    128  *	get_locks 		-	-	Called at attach time
    129  *
    130  * In addition, there is an additional lock.
    131  *
    132  * - track->lock.  This is an atomic variable and is similar to the
    133  *   "interrupt lock".  This is one for each track.  If any thread context
    134  *   (and software interrupt context) and hardware interrupt context who
    135  *   want to access some variables on this track, they must acquire this
    136  *   lock before.  It protects track's consistency between hardware
    137  *   interrupt context and others.
    138  */
    139 
    140 #include <sys/cdefs.h>
    141 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.96 2021/06/01 21:12:24 riastradh Exp $");
    142 
    143 #ifdef _KERNEL_OPT
    144 #include "audio.h"
    145 #include "midi.h"
    146 #endif
    147 
    148 #if NAUDIO > 0
    149 
    150 #include <sys/types.h>
    151 #include <sys/param.h>
    152 #include <sys/atomic.h>
    153 #include <sys/audioio.h>
    154 #include <sys/conf.h>
    155 #include <sys/cpu.h>
    156 #include <sys/device.h>
    157 #include <sys/fcntl.h>
    158 #include <sys/file.h>
    159 #include <sys/filedesc.h>
    160 #include <sys/intr.h>
    161 #include <sys/ioctl.h>
    162 #include <sys/kauth.h>
    163 #include <sys/kernel.h>
    164 #include <sys/kmem.h>
    165 #include <sys/malloc.h>
    166 #include <sys/mman.h>
    167 #include <sys/module.h>
    168 #include <sys/poll.h>
    169 #include <sys/proc.h>
    170 #include <sys/queue.h>
    171 #include <sys/select.h>
    172 #include <sys/signalvar.h>
    173 #include <sys/stat.h>
    174 #include <sys/sysctl.h>
    175 #include <sys/systm.h>
    176 #include <sys/syslog.h>
    177 #include <sys/vnode.h>
    178 
    179 #include <dev/audio/audio_if.h>
    180 #include <dev/audio/audiovar.h>
    181 #include <dev/audio/audiodef.h>
    182 #include <dev/audio/linear.h>
    183 #include <dev/audio/mulaw.h>
    184 
    185 #include <machine/endian.h>
    186 
    187 #include <uvm/uvm_extern.h>
    188 
    189 #include "ioconf.h"
    190 
    191 /*
    192  * 0: No debug logs
    193  * 1: action changes like open/close/set_format...
    194  * 2: + normal operations like read/write/ioctl...
    195  * 3: + TRACEs except interrupt
    196  * 4: + TRACEs including interrupt
    197  */
    198 //#define AUDIO_DEBUG 1
    199 
    200 #if defined(AUDIO_DEBUG)
    201 
    202 int audiodebug = AUDIO_DEBUG;
    203 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
    204 	const char *, va_list);
    205 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
    206 	__printflike(3, 4);
    207 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
    208 	__printflike(3, 4);
    209 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
    210 	__printflike(3, 4);
    211 
    212 /* XXX sloppy memory logger */
    213 static void audio_mlog_init(void);
    214 static void audio_mlog_free(void);
    215 static void audio_mlog_softintr(void *);
    216 extern void audio_mlog_flush(void);
    217 extern void audio_mlog_printf(const char *, ...);
    218 
    219 static int mlog_refs;		/* reference counter */
    220 static char *mlog_buf[2];	/* double buffer */
    221 static int mlog_buflen;		/* buffer length */
    222 static int mlog_used;		/* used length */
    223 static int mlog_full;		/* number of dropped lines by buffer full */
    224 static int mlog_drop;		/* number of dropped lines by busy */
    225 static volatile uint32_t mlog_inuse;	/* in-use */
    226 static int mlog_wpage;		/* active page */
    227 static void *mlog_sih;		/* softint handle */
    228 
    229 static void
    230 audio_mlog_init(void)
    231 {
    232 	mlog_refs++;
    233 	if (mlog_refs > 1)
    234 		return;
    235 	mlog_buflen = 4096;
    236 	mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
    237 	mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
    238 	mlog_used = 0;
    239 	mlog_full = 0;
    240 	mlog_drop = 0;
    241 	mlog_inuse = 0;
    242 	mlog_wpage = 0;
    243 	mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
    244 	if (mlog_sih == NULL)
    245 		printf("%s: softint_establish failed\n", __func__);
    246 }
    247 
    248 static void
    249 audio_mlog_free(void)
    250 {
    251 	mlog_refs--;
    252 	if (mlog_refs > 0)
    253 		return;
    254 
    255 	audio_mlog_flush();
    256 	if (mlog_sih)
    257 		softint_disestablish(mlog_sih);
    258 	kmem_free(mlog_buf[0], mlog_buflen);
    259 	kmem_free(mlog_buf[1], mlog_buflen);
    260 }
    261 
    262 /*
    263  * Flush memory buffer.
    264  * It must not be called from hardware interrupt context.
    265  */
    266 void
    267 audio_mlog_flush(void)
    268 {
    269 	if (mlog_refs == 0)
    270 		return;
    271 
    272 	/* Nothing to do if already in use ? */
    273 	if (atomic_swap_32(&mlog_inuse, 1) == 1)
    274 		return;
    275 
    276 	int rpage = mlog_wpage;
    277 	mlog_wpage ^= 1;
    278 	mlog_buf[mlog_wpage][0] = '\0';
    279 	mlog_used = 0;
    280 
    281 	atomic_swap_32(&mlog_inuse, 0);
    282 
    283 	if (mlog_buf[rpage][0] != '\0') {
    284 		printf("%s", mlog_buf[rpage]);
    285 		if (mlog_drop > 0)
    286 			printf("mlog_drop %d\n", mlog_drop);
    287 		if (mlog_full > 0)
    288 			printf("mlog_full %d\n", mlog_full);
    289 	}
    290 	mlog_full = 0;
    291 	mlog_drop = 0;
    292 }
    293 
    294 static void
    295 audio_mlog_softintr(void *cookie)
    296 {
    297 	audio_mlog_flush();
    298 }
    299 
    300 void
    301 audio_mlog_printf(const char *fmt, ...)
    302 {
    303 	int len;
    304 	va_list ap;
    305 
    306 	if (atomic_swap_32(&mlog_inuse, 1) == 1) {
    307 		/* already inuse */
    308 		mlog_drop++;
    309 		return;
    310 	}
    311 
    312 	va_start(ap, fmt);
    313 	len = vsnprintf(
    314 	    mlog_buf[mlog_wpage] + mlog_used,
    315 	    mlog_buflen - mlog_used,
    316 	    fmt, ap);
    317 	va_end(ap);
    318 
    319 	mlog_used += len;
    320 	if (mlog_buflen - mlog_used <= 1) {
    321 		mlog_full++;
    322 	}
    323 
    324 	atomic_swap_32(&mlog_inuse, 0);
    325 
    326 	if (mlog_sih)
    327 		softint_schedule(mlog_sih);
    328 }
    329 
    330 /* trace functions */
    331 static void
    332 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
    333 	const char *fmt, va_list ap)
    334 {
    335 	char buf[256];
    336 	int n;
    337 
    338 	n = 0;
    339 	buf[0] = '\0';
    340 	n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
    341 	    funcname, device_unit(sc->sc_dev), header);
    342 	n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
    343 
    344 	if (cpu_intr_p()) {
    345 		audio_mlog_printf("%s\n", buf);
    346 	} else {
    347 		audio_mlog_flush();
    348 		printf("%s\n", buf);
    349 	}
    350 }
    351 
    352 static void
    353 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
    354 {
    355 	va_list ap;
    356 
    357 	va_start(ap, fmt);
    358 	audio_vtrace(sc, funcname, "", fmt, ap);
    359 	va_end(ap);
    360 }
    361 
    362 static void
    363 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
    364 {
    365 	char hdr[16];
    366 	va_list ap;
    367 
    368 	snprintf(hdr, sizeof(hdr), "#%d ", track->id);
    369 	va_start(ap, fmt);
    370 	audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
    371 	va_end(ap);
    372 }
    373 
    374 static void
    375 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
    376 {
    377 	char hdr[32];
    378 	char phdr[16], rhdr[16];
    379 	va_list ap;
    380 
    381 	phdr[0] = '\0';
    382 	rhdr[0] = '\0';
    383 	if (file->ptrack)
    384 		snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
    385 	if (file->rtrack)
    386 		snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
    387 	snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
    388 
    389 	va_start(ap, fmt);
    390 	audio_vtrace(file->sc, funcname, hdr, fmt, ap);
    391 	va_end(ap);
    392 }
    393 
    394 #define DPRINTF(n, fmt...)	do {	\
    395 	if (audiodebug >= (n)) {	\
    396 		audio_mlog_flush();	\
    397 		printf(fmt);		\
    398 	}				\
    399 } while (0)
    400 #define TRACE(n, fmt...)	do { \
    401 	if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
    402 } while (0)
    403 #define TRACET(n, t, fmt...)	do { \
    404 	if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
    405 } while (0)
    406 #define TRACEF(n, f, fmt...)	do { \
    407 	if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
    408 } while (0)
    409 
    410 struct audio_track_debugbuf {
    411 	char usrbuf[32];
    412 	char codec[32];
    413 	char chvol[32];
    414 	char chmix[32];
    415 	char freq[32];
    416 	char outbuf[32];
    417 };
    418 
    419 static void
    420 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
    421 {
    422 
    423 	memset(buf, 0, sizeof(*buf));
    424 
    425 	snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
    426 	    track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
    427 	if (track->freq.filter)
    428 		snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
    429 		    track->freq.srcbuf.head,
    430 		    track->freq.srcbuf.used,
    431 		    track->freq.srcbuf.capacity);
    432 	if (track->chmix.filter)
    433 		snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
    434 		    track->chmix.srcbuf.used);
    435 	if (track->chvol.filter)
    436 		snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
    437 		    track->chvol.srcbuf.used);
    438 	if (track->codec.filter)
    439 		snprintf(buf->codec, sizeof(buf->codec), " e=%d",
    440 		    track->codec.srcbuf.used);
    441 	snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
    442 	    track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
    443 }
    444 #else
    445 #define DPRINTF(n, fmt...)	do { } while (0)
    446 #define TRACE(n, fmt, ...)	do { } while (0)
    447 #define TRACET(n, t, fmt, ...)	do { } while (0)
    448 #define TRACEF(n, f, fmt, ...)	do { } while (0)
    449 #endif
    450 
    451 #define SPECIFIED(x)	((x) != ~0)
    452 #define SPECIFIED_CH(x)	((x) != (u_char)~0)
    453 
    454 /*
    455  * Default hardware blocksize in msec.
    456  *
    457  * We use 10 msec for most modern platforms.  This period is good enough to
    458  * play audio and video synchronizely.
    459  * In contrast, for very old platforms, this is usually too short and too
    460  * severe.  Also such platforms usually can not play video confortably, so
    461  * it's not so important to make the blocksize shorter.  If the platform
    462  * defines its own value as __AUDIO_BLK_MS in its <machine/param.h>, it
    463  * uses this instead.
    464  *
    465  * In either case, you can overwrite AUDIO_BLK_MS by your kernel
    466  * configuration file if you wish.
    467  */
    468 #if !defined(AUDIO_BLK_MS)
    469 # if defined(__AUDIO_BLK_MS)
    470 #  define AUDIO_BLK_MS __AUDIO_BLK_MS
    471 # else
    472 #  define AUDIO_BLK_MS (10)
    473 # endif
    474 #endif
    475 
    476 /* Device timeout in msec */
    477 #define AUDIO_TIMEOUT	(3000)
    478 
    479 /* #define AUDIO_PM_IDLE */
    480 #ifdef AUDIO_PM_IDLE
    481 int audio_idle_timeout = 30;
    482 #endif
    483 
    484 /* Number of elements of async mixer's pid */
    485 #define AM_CAPACITY	(4)
    486 
    487 struct portname {
    488 	const char *name;
    489 	int mask;
    490 };
    491 
    492 static int audiomatch(device_t, cfdata_t, void *);
    493 static void audioattach(device_t, device_t, void *);
    494 static int audiodetach(device_t, int);
    495 static int audioactivate(device_t, enum devact);
    496 static void audiochilddet(device_t, device_t);
    497 static int audiorescan(device_t, const char *, const int *);
    498 
    499 static int audio_modcmd(modcmd_t, void *);
    500 
    501 #ifdef AUDIO_PM_IDLE
    502 static void audio_idle(void *);
    503 static void audio_activity(device_t, devactive_t);
    504 #endif
    505 
    506 static bool audio_suspend(device_t dv, const pmf_qual_t *);
    507 static bool audio_resume(device_t dv, const pmf_qual_t *);
    508 static void audio_volume_down(device_t);
    509 static void audio_volume_up(device_t);
    510 static void audio_volume_toggle(device_t);
    511 
    512 static void audio_mixer_capture(struct audio_softc *);
    513 static void audio_mixer_restore(struct audio_softc *);
    514 
    515 static void audio_softintr_rd(void *);
    516 static void audio_softintr_wr(void *);
    517 
    518 static void audio_printf(struct audio_softc *, const char *, ...)
    519 	__printflike(2, 3);
    520 static int audio_exlock_mutex_enter(struct audio_softc *);
    521 static void audio_exlock_mutex_exit(struct audio_softc *);
    522 static int audio_exlock_enter(struct audio_softc *);
    523 static void audio_exlock_exit(struct audio_softc *);
    524 static void audio_sc_acquire_foropen(struct audio_softc *, struct psref *);
    525 static struct audio_softc *audio_sc_acquire_fromfile(audio_file_t *,
    526 	struct psref *);
    527 static void audio_sc_release(struct audio_softc *, struct psref *);
    528 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
    529 
    530 static int audioclose(struct file *);
    531 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
    532 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
    533 static int audioioctl(struct file *, u_long, void *);
    534 static int audiopoll(struct file *, int);
    535 static int audiokqfilter(struct file *, struct knote *);
    536 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
    537 	struct uvm_object **, int *);
    538 static int audiostat(struct file *, struct stat *);
    539 
    540 static void filt_audiowrite_detach(struct knote *);
    541 static int  filt_audiowrite_event(struct knote *, long);
    542 static void filt_audioread_detach(struct knote *);
    543 static int  filt_audioread_event(struct knote *, long);
    544 
    545 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
    546 	audio_file_t **);
    547 static int audio_close(struct audio_softc *, audio_file_t *);
    548 static int audio_unlink(struct audio_softc *, audio_file_t *);
    549 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
    550 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
    551 static void audio_file_clear(struct audio_softc *, audio_file_t *);
    552 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
    553 	struct lwp *, audio_file_t *);
    554 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
    555 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
    556 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
    557 	struct uvm_object **, int *, audio_file_t *);
    558 
    559 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
    560 
    561 static void audio_pintr(void *);
    562 static void audio_rintr(void *);
    563 
    564 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
    565 
    566 static __inline int audio_track_readablebytes(const audio_track_t *);
    567 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
    568 	const struct audio_info *);
    569 static int audio_track_setinfo_check(audio_track_t *,
    570 	audio_format2_t *, const struct audio_prinfo *);
    571 static void audio_track_setinfo_water(audio_track_t *,
    572 	const struct audio_info *);
    573 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
    574 	struct audio_info *);
    575 static int audio_hw_set_format(struct audio_softc *, int,
    576 	const audio_format2_t *, const audio_format2_t *,
    577 	audio_filter_reg_t *, audio_filter_reg_t *);
    578 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
    579 	audio_file_t *);
    580 static bool audio_can_playback(struct audio_softc *);
    581 static bool audio_can_capture(struct audio_softc *);
    582 static int audio_check_params(audio_format2_t *);
    583 static int audio_mixers_init(struct audio_softc *sc, int,
    584 	const audio_format2_t *, const audio_format2_t *,
    585 	const audio_filter_reg_t *, const audio_filter_reg_t *);
    586 static int audio_select_freq(const struct audio_format *);
    587 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
    588 static int audio_hw_validate_format(struct audio_softc *, int,
    589 	const audio_format2_t *);
    590 static int audio_mixers_set_format(struct audio_softc *,
    591 	const struct audio_info *);
    592 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
    593 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
    594 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
    595 #if defined(AUDIO_DEBUG)
    596 static int audio_sysctl_debug(SYSCTLFN_PROTO);
    597 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
    598 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
    599 #endif
    600 
    601 static void *audio_realloc(void *, size_t);
    602 static int audio_realloc_usrbuf(audio_track_t *, int);
    603 static void audio_free_usrbuf(audio_track_t *);
    604 
    605 static audio_track_t *audio_track_create(struct audio_softc *,
    606 	audio_trackmixer_t *);
    607 static void audio_track_destroy(audio_track_t *);
    608 static audio_filter_t audio_track_get_codec(audio_track_t *,
    609 	const audio_format2_t *, const audio_format2_t *);
    610 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
    611 static void audio_track_play(audio_track_t *);
    612 static int audio_track_drain(struct audio_softc *, audio_track_t *);
    613 static void audio_track_record(audio_track_t *);
    614 static void audio_track_clear(struct audio_softc *, audio_track_t *);
    615 
    616 static int audio_mixer_init(struct audio_softc *, int,
    617 	const audio_format2_t *, const audio_filter_reg_t *);
    618 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
    619 static void audio_pmixer_start(struct audio_softc *, bool);
    620 static void audio_pmixer_process(struct audio_softc *);
    621 static void audio_pmixer_agc(audio_trackmixer_t *, int);
    622 static int  audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
    623 static void audio_pmixer_output(struct audio_softc *);
    624 static int  audio_pmixer_halt(struct audio_softc *);
    625 static void audio_rmixer_start(struct audio_softc *);
    626 static void audio_rmixer_process(struct audio_softc *);
    627 static void audio_rmixer_input(struct audio_softc *);
    628 static int  audio_rmixer_halt(struct audio_softc *);
    629 
    630 static void mixer_init(struct audio_softc *);
    631 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
    632 static int mixer_close(struct audio_softc *, audio_file_t *);
    633 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
    634 static void mixer_async_add(struct audio_softc *, pid_t);
    635 static void mixer_async_remove(struct audio_softc *, pid_t);
    636 static void mixer_signal(struct audio_softc *);
    637 
    638 static int au_portof(struct audio_softc *, char *, int);
    639 
    640 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
    641 	mixer_devinfo_t *, const struct portname *);
    642 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
    643 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
    644 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
    645 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
    646 	u_int *, u_char *);
    647 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
    648 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
    649 static int au_set_monitor_gain(struct audio_softc *, int);
    650 static int au_get_monitor_gain(struct audio_softc *);
    651 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
    652 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
    653 
    654 static __inline struct audio_params
    655 format2_to_params(const audio_format2_t *f2)
    656 {
    657 	audio_params_t p;
    658 
    659 	/* validbits/precision <-> precision/stride */
    660 	p.sample_rate = f2->sample_rate;
    661 	p.channels    = f2->channels;
    662 	p.encoding    = f2->encoding;
    663 	p.validbits   = f2->precision;
    664 	p.precision   = f2->stride;
    665 	return p;
    666 }
    667 
    668 static __inline audio_format2_t
    669 params_to_format2(const struct audio_params *p)
    670 {
    671 	audio_format2_t f2;
    672 
    673 	/* precision/stride <-> validbits/precision */
    674 	f2.sample_rate = p->sample_rate;
    675 	f2.channels    = p->channels;
    676 	f2.encoding    = p->encoding;
    677 	f2.precision   = p->validbits;
    678 	f2.stride      = p->precision;
    679 	return f2;
    680 }
    681 
    682 /* Return true if this track is a playback track. */
    683 static __inline bool
    684 audio_track_is_playback(const audio_track_t *track)
    685 {
    686 
    687 	return ((track->mode & AUMODE_PLAY) != 0);
    688 }
    689 
    690 /* Return true if this track is a recording track. */
    691 static __inline bool
    692 audio_track_is_record(const audio_track_t *track)
    693 {
    694 
    695 	return ((track->mode & AUMODE_RECORD) != 0);
    696 }
    697 
    698 #if 0 /* XXX Not used yet */
    699 /*
    700  * Convert 0..255 volume used in userland to internal presentation 0..256.
    701  */
    702 static __inline u_int
    703 audio_volume_to_inner(u_int v)
    704 {
    705 
    706 	return v < 127 ? v : v + 1;
    707 }
    708 
    709 /*
    710  * Convert 0..256 internal presentation to 0..255 volume used in userland.
    711  */
    712 static __inline u_int
    713 audio_volume_to_outer(u_int v)
    714 {
    715 
    716 	return v < 127 ? v : v - 1;
    717 }
    718 #endif /* 0 */
    719 
    720 static dev_type_open(audioopen);
    721 /* XXXMRG use more dev_type_xxx */
    722 
    723 const struct cdevsw audio_cdevsw = {
    724 	.d_open = audioopen,
    725 	.d_close = noclose,
    726 	.d_read = noread,
    727 	.d_write = nowrite,
    728 	.d_ioctl = noioctl,
    729 	.d_stop = nostop,
    730 	.d_tty = notty,
    731 	.d_poll = nopoll,
    732 	.d_mmap = nommap,
    733 	.d_kqfilter = nokqfilter,
    734 	.d_discard = nodiscard,
    735 	.d_flag = D_OTHER | D_MPSAFE
    736 };
    737 
    738 const struct fileops audio_fileops = {
    739 	.fo_name = "audio",
    740 	.fo_read = audioread,
    741 	.fo_write = audiowrite,
    742 	.fo_ioctl = audioioctl,
    743 	.fo_fcntl = fnullop_fcntl,
    744 	.fo_stat = audiostat,
    745 	.fo_poll = audiopoll,
    746 	.fo_close = audioclose,
    747 	.fo_mmap = audiommap,
    748 	.fo_kqfilter = audiokqfilter,
    749 	.fo_restart = fnullop_restart
    750 };
    751 
    752 /* The default audio mode: 8 kHz mono mu-law */
    753 static const struct audio_params audio_default = {
    754 	.sample_rate = 8000,
    755 	.encoding = AUDIO_ENCODING_ULAW,
    756 	.precision = 8,
    757 	.validbits = 8,
    758 	.channels = 1,
    759 };
    760 
    761 static const char *encoding_names[] = {
    762 	"none",
    763 	AudioEmulaw,
    764 	AudioEalaw,
    765 	"pcm16",
    766 	"pcm8",
    767 	AudioEadpcm,
    768 	AudioEslinear_le,
    769 	AudioEslinear_be,
    770 	AudioEulinear_le,
    771 	AudioEulinear_be,
    772 	AudioEslinear,
    773 	AudioEulinear,
    774 	AudioEmpeg_l1_stream,
    775 	AudioEmpeg_l1_packets,
    776 	AudioEmpeg_l1_system,
    777 	AudioEmpeg_l2_stream,
    778 	AudioEmpeg_l2_packets,
    779 	AudioEmpeg_l2_system,
    780 	AudioEac3,
    781 };
    782 
    783 /*
    784  * Returns encoding name corresponding to AUDIO_ENCODING_*.
    785  * Note that it may return a local buffer because it is mainly for debugging.
    786  */
    787 const char *
    788 audio_encoding_name(int encoding)
    789 {
    790 	static char buf[16];
    791 
    792 	if (0 <= encoding && encoding < __arraycount(encoding_names)) {
    793 		return encoding_names[encoding];
    794 	} else {
    795 		snprintf(buf, sizeof(buf), "enc=%d", encoding);
    796 		return buf;
    797 	}
    798 }
    799 
    800 /*
    801  * Supported encodings used by AUDIO_GETENC.
    802  * index and flags are set by code.
    803  * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
    804  */
    805 static const audio_encoding_t audio_encodings[] = {
    806 	{ 0, AudioEmulaw,	AUDIO_ENCODING_ULAW,		8,  0 },
    807 	{ 0, AudioEalaw,	AUDIO_ENCODING_ALAW,		8,  0 },
    808 	{ 0, AudioEslinear,	AUDIO_ENCODING_SLINEAR,		8,  0 },
    809 	{ 0, AudioEulinear,	AUDIO_ENCODING_ULINEAR,		8,  0 },
    810 	{ 0, AudioEslinear_le,	AUDIO_ENCODING_SLINEAR_LE,	16, 0 },
    811 	{ 0, AudioEulinear_le,	AUDIO_ENCODING_ULINEAR_LE,	16, 0 },
    812 	{ 0, AudioEslinear_be,	AUDIO_ENCODING_SLINEAR_BE,	16, 0 },
    813 	{ 0, AudioEulinear_be,	AUDIO_ENCODING_ULINEAR_BE,	16, 0 },
    814 #if defined(AUDIO_SUPPORT_LINEAR24)
    815 	{ 0, AudioEslinear_le,	AUDIO_ENCODING_SLINEAR_LE,	24, 0 },
    816 	{ 0, AudioEulinear_le,	AUDIO_ENCODING_ULINEAR_LE,	24, 0 },
    817 	{ 0, AudioEslinear_be,	AUDIO_ENCODING_SLINEAR_BE,	24, 0 },
    818 	{ 0, AudioEulinear_be,	AUDIO_ENCODING_ULINEAR_BE,	24, 0 },
    819 #endif
    820 	{ 0, AudioEslinear_le,	AUDIO_ENCODING_SLINEAR_LE,	32, 0 },
    821 	{ 0, AudioEulinear_le,	AUDIO_ENCODING_ULINEAR_LE,	32, 0 },
    822 	{ 0, AudioEslinear_be,	AUDIO_ENCODING_SLINEAR_BE,	32, 0 },
    823 	{ 0, AudioEulinear_be,	AUDIO_ENCODING_ULINEAR_BE,	32, 0 },
    824 };
    825 
    826 static const struct portname itable[] = {
    827 	{ AudioNmicrophone,	AUDIO_MICROPHONE },
    828 	{ AudioNline,		AUDIO_LINE_IN },
    829 	{ AudioNcd,		AUDIO_CD },
    830 	{ 0, 0 }
    831 };
    832 static const struct portname otable[] = {
    833 	{ AudioNspeaker,	AUDIO_SPEAKER },
    834 	{ AudioNheadphone,	AUDIO_HEADPHONE },
    835 	{ AudioNline,		AUDIO_LINE_OUT },
    836 	{ 0, 0 }
    837 };
    838 
    839 static struct psref_class *audio_psref_class __read_mostly;
    840 
    841 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
    842     audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
    843     audiochilddet, DVF_DETACH_SHUTDOWN);
    844 
    845 static int
    846 audiomatch(device_t parent, cfdata_t match, void *aux)
    847 {
    848 	struct audio_attach_args *sa;
    849 
    850 	sa = aux;
    851 	DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
    852 	     __func__, sa->type, sa, sa->hwif);
    853 	return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
    854 }
    855 
    856 static void
    857 audioattach(device_t parent, device_t self, void *aux)
    858 {
    859 	struct audio_softc *sc;
    860 	struct audio_attach_args *sa;
    861 	const struct audio_hw_if *hw_if;
    862 	audio_format2_t phwfmt;
    863 	audio_format2_t rhwfmt;
    864 	audio_filter_reg_t pfil;
    865 	audio_filter_reg_t rfil;
    866 	const struct sysctlnode *node;
    867 	void *hdlp;
    868 	bool has_playback;
    869 	bool has_capture;
    870 	bool has_indep;
    871 	bool has_fulldup;
    872 	int mode;
    873 	int error;
    874 
    875 	sc = device_private(self);
    876 	sc->sc_dev = self;
    877 	sa = (struct audio_attach_args *)aux;
    878 	hw_if = sa->hwif;
    879 	hdlp = sa->hdl;
    880 
    881 	if (hw_if == NULL) {
    882 		panic("audioattach: missing hw_if method");
    883 	}
    884 	if (hw_if->get_locks == NULL || hw_if->get_props == NULL) {
    885 		aprint_error(": missing mandatory method\n");
    886 		return;
    887 	}
    888 
    889 	hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
    890 	sc->sc_props = hw_if->get_props(hdlp);
    891 
    892 	has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
    893 	has_capture  = (sc->sc_props & AUDIO_PROP_CAPTURE);
    894 	has_indep    = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
    895 	has_fulldup  = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
    896 
    897 #ifdef DIAGNOSTIC
    898 	if (hw_if->query_format == NULL ||
    899 	    hw_if->set_format == NULL ||
    900 	    hw_if->getdev == NULL ||
    901 	    hw_if->set_port == NULL ||
    902 	    hw_if->get_port == NULL ||
    903 	    hw_if->query_devinfo == NULL) {
    904 		aprint_error(": missing mandatory method\n");
    905 		return;
    906 	}
    907 	if (has_playback) {
    908 		if ((hw_if->start_output == NULL &&
    909 		     hw_if->trigger_output == NULL) ||
    910 		    hw_if->halt_output == NULL) {
    911 			aprint_error(": missing playback method\n");
    912 		}
    913 	}
    914 	if (has_capture) {
    915 		if ((hw_if->start_input == NULL &&
    916 		     hw_if->trigger_input == NULL) ||
    917 		    hw_if->halt_input == NULL) {
    918 			aprint_error(": missing capture method\n");
    919 		}
    920 	}
    921 #endif
    922 
    923 	sc->hw_if = hw_if;
    924 	sc->hw_hdl = hdlp;
    925 	sc->hw_dev = parent;
    926 
    927 	sc->sc_exlock = 1;
    928 	sc->sc_blk_ms = AUDIO_BLK_MS;
    929 	SLIST_INIT(&sc->sc_files);
    930 	cv_init(&sc->sc_exlockcv, "audiolk");
    931 	sc->sc_am_capacity = 0;
    932 	sc->sc_am_used = 0;
    933 	sc->sc_am = NULL;
    934 
    935 	/* MMAP is now supported by upper layer.  */
    936 	sc->sc_props |= AUDIO_PROP_MMAP;
    937 
    938 	KASSERT(has_playback || has_capture);
    939 	/* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
    940 	if (!has_playback || !has_capture) {
    941 		KASSERT(!has_indep);
    942 		KASSERT(!has_fulldup);
    943 	}
    944 
    945 	mode = 0;
    946 	if (has_playback) {
    947 		aprint_normal(": playback");
    948 		mode |= AUMODE_PLAY;
    949 	}
    950 	if (has_capture) {
    951 		aprint_normal("%c capture", has_playback ? ',' : ':');
    952 		mode |= AUMODE_RECORD;
    953 	}
    954 	if (has_playback && has_capture) {
    955 		if (has_fulldup)
    956 			aprint_normal(", full duplex");
    957 		else
    958 			aprint_normal(", half duplex");
    959 
    960 		if (has_indep)
    961 			aprint_normal(", independent");
    962 	}
    963 
    964 	aprint_naive("\n");
    965 	aprint_normal("\n");
    966 
    967 	/* probe hw params */
    968 	memset(&phwfmt, 0, sizeof(phwfmt));
    969 	memset(&rhwfmt, 0, sizeof(rhwfmt));
    970 	memset(&pfil, 0, sizeof(pfil));
    971 	memset(&rfil, 0, sizeof(rfil));
    972 	if (has_indep) {
    973 		int perror, rerror;
    974 
    975 		/* On independent devices, probe separately. */
    976 		perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
    977 		rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
    978 		if (perror && rerror) {
    979 			aprint_error_dev(self,
    980 			    "audio_hw_probe failed: perror=%d, rerror=%d\n",
    981 			    perror, rerror);
    982 			goto bad;
    983 		}
    984 		if (perror) {
    985 			mode &= ~AUMODE_PLAY;
    986 			aprint_error_dev(self, "audio_hw_probe failed: "
    987 			    "errno=%d, playback disabled\n", perror);
    988 		}
    989 		if (rerror) {
    990 			mode &= ~AUMODE_RECORD;
    991 			aprint_error_dev(self, "audio_hw_probe failed: "
    992 			    "errno=%d, capture disabled\n", rerror);
    993 		}
    994 	} else {
    995 		/*
    996 		 * On non independent devices or uni-directional devices,
    997 		 * probe once (simultaneously).
    998 		 */
    999 		audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
   1000 		error = audio_hw_probe(sc, fmt, mode);
   1001 		if (error) {
   1002 			aprint_error_dev(self,
   1003 			    "audio_hw_probe failed: errno=%d\n", error);
   1004 			goto bad;
   1005 		}
   1006 		if (has_playback && has_capture)
   1007 			rhwfmt = phwfmt;
   1008 	}
   1009 
   1010 	/* Init hardware. */
   1011 	/* hw_probe() also validates [pr]hwfmt.  */
   1012 	error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   1013 	if (error) {
   1014 		aprint_error_dev(self,
   1015 		    "audio_hw_set_format failed: errno=%d\n", error);
   1016 		goto bad;
   1017 	}
   1018 
   1019 	/*
   1020 	 * Init track mixers.  If at least one direction is available on
   1021 	 * attach time, we assume a success.
   1022 	 */
   1023 	error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   1024 	if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
   1025 		aprint_error_dev(self,
   1026 		    "audio_mixers_init failed: errno=%d\n", error);
   1027 		goto bad;
   1028 	}
   1029 
   1030 	sc->sc_psz = pserialize_create();
   1031 	psref_target_init(&sc->sc_psref, audio_psref_class);
   1032 
   1033 	selinit(&sc->sc_wsel);
   1034 	selinit(&sc->sc_rsel);
   1035 
   1036 	/* Initial parameter of /dev/sound */
   1037 	sc->sc_sound_pparams = params_to_format2(&audio_default);
   1038 	sc->sc_sound_rparams = params_to_format2(&audio_default);
   1039 	sc->sc_sound_ppause = false;
   1040 	sc->sc_sound_rpause = false;
   1041 
   1042 	/* XXX TODO: consider about sc_ai */
   1043 
   1044 	mixer_init(sc);
   1045 	TRACE(2, "inputs ports=0x%x, input master=%d, "
   1046 	    "output ports=0x%x, output master=%d",
   1047 	    sc->sc_inports.allports, sc->sc_inports.master,
   1048 	    sc->sc_outports.allports, sc->sc_outports.master);
   1049 
   1050 	sysctl_createv(&sc->sc_log, 0, NULL, &node,
   1051 	    0,
   1052 	    CTLTYPE_NODE, device_xname(sc->sc_dev),
   1053 	    SYSCTL_DESCR("audio test"),
   1054 	    NULL, 0,
   1055 	    NULL, 0,
   1056 	    CTL_HW,
   1057 	    CTL_CREATE, CTL_EOL);
   1058 
   1059 	if (node != NULL) {
   1060 		sysctl_createv(&sc->sc_log, 0, NULL, NULL,
   1061 		    CTLFLAG_READWRITE,
   1062 		    CTLTYPE_INT, "blk_ms",
   1063 		    SYSCTL_DESCR("blocksize in msec"),
   1064 		    audio_sysctl_blk_ms, 0, (void *)sc, 0,
   1065 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
   1066 
   1067 		sysctl_createv(&sc->sc_log, 0, NULL, NULL,
   1068 		    CTLFLAG_READWRITE,
   1069 		    CTLTYPE_BOOL, "multiuser",
   1070 		    SYSCTL_DESCR("allow multiple user access"),
   1071 		    audio_sysctl_multiuser, 0, (void *)sc, 0,
   1072 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
   1073 
   1074 #if defined(AUDIO_DEBUG)
   1075 		sysctl_createv(&sc->sc_log, 0, NULL, NULL,
   1076 		    CTLFLAG_READWRITE,
   1077 		    CTLTYPE_INT, "debug",
   1078 		    SYSCTL_DESCR("debug level (0..4)"),
   1079 		    audio_sysctl_debug, 0, (void *)sc, 0,
   1080 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
   1081 #endif
   1082 	}
   1083 
   1084 #ifdef AUDIO_PM_IDLE
   1085 	callout_init(&sc->sc_idle_counter, 0);
   1086 	callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
   1087 #endif
   1088 
   1089 	if (!pmf_device_register(self, audio_suspend, audio_resume))
   1090 		aprint_error_dev(self, "couldn't establish power handler\n");
   1091 #ifdef AUDIO_PM_IDLE
   1092 	if (!device_active_register(self, audio_activity))
   1093 		aprint_error_dev(self, "couldn't register activity handler\n");
   1094 #endif
   1095 
   1096 	if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
   1097 	    audio_volume_down, true))
   1098 		aprint_error_dev(self, "couldn't add volume down handler\n");
   1099 	if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
   1100 	    audio_volume_up, true))
   1101 		aprint_error_dev(self, "couldn't add volume up handler\n");
   1102 	if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
   1103 	    audio_volume_toggle, true))
   1104 		aprint_error_dev(self, "couldn't add volume toggle handler\n");
   1105 
   1106 #ifdef AUDIO_PM_IDLE
   1107 	callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
   1108 #endif
   1109 
   1110 #if defined(AUDIO_DEBUG)
   1111 	audio_mlog_init();
   1112 #endif
   1113 
   1114 	audiorescan(self, NULL, NULL);
   1115 	sc->sc_exlock = 0;
   1116 	return;
   1117 
   1118 bad:
   1119 	/* Clearing hw_if means that device is attached but disabled. */
   1120 	sc->hw_if = NULL;
   1121 	sc->sc_exlock = 0;
   1122 	aprint_error_dev(sc->sc_dev, "disabled\n");
   1123 	return;
   1124 }
   1125 
   1126 /*
   1127  * Initialize hardware mixer.
   1128  * This function is called from audioattach().
   1129  */
   1130 static void
   1131 mixer_init(struct audio_softc *sc)
   1132 {
   1133 	mixer_devinfo_t mi;
   1134 	int iclass, mclass, oclass, rclass;
   1135 	int record_master_found, record_source_found;
   1136 
   1137 	iclass = mclass = oclass = rclass = -1;
   1138 	sc->sc_inports.index = -1;
   1139 	sc->sc_inports.master = -1;
   1140 	sc->sc_inports.nports = 0;
   1141 	sc->sc_inports.isenum = false;
   1142 	sc->sc_inports.allports = 0;
   1143 	sc->sc_inports.isdual = false;
   1144 	sc->sc_inports.mixerout = -1;
   1145 	sc->sc_inports.cur_port = -1;
   1146 	sc->sc_outports.index = -1;
   1147 	sc->sc_outports.master = -1;
   1148 	sc->sc_outports.nports = 0;
   1149 	sc->sc_outports.isenum = false;
   1150 	sc->sc_outports.allports = 0;
   1151 	sc->sc_outports.isdual = false;
   1152 	sc->sc_outports.mixerout = -1;
   1153 	sc->sc_outports.cur_port = -1;
   1154 	sc->sc_monitor_port = -1;
   1155 	/*
   1156 	 * Read through the underlying driver's list, picking out the class
   1157 	 * names from the mixer descriptions. We'll need them to decode the
   1158 	 * mixer descriptions on the next pass through the loop.
   1159 	 */
   1160 	mutex_enter(sc->sc_lock);
   1161 	for(mi.index = 0; ; mi.index++) {
   1162 		if (audio_query_devinfo(sc, &mi) != 0)
   1163 			break;
   1164 		 /*
   1165 		  * The type of AUDIO_MIXER_CLASS merely introduces a class.
   1166 		  * All the other types describe an actual mixer.
   1167 		  */
   1168 		if (mi.type == AUDIO_MIXER_CLASS) {
   1169 			if (strcmp(mi.label.name, AudioCinputs) == 0)
   1170 				iclass = mi.mixer_class;
   1171 			if (strcmp(mi.label.name, AudioCmonitor) == 0)
   1172 				mclass = mi.mixer_class;
   1173 			if (strcmp(mi.label.name, AudioCoutputs) == 0)
   1174 				oclass = mi.mixer_class;
   1175 			if (strcmp(mi.label.name, AudioCrecord) == 0)
   1176 				rclass = mi.mixer_class;
   1177 		}
   1178 	}
   1179 	mutex_exit(sc->sc_lock);
   1180 
   1181 	/* Allocate save area.  Ensure non-zero allocation. */
   1182 	sc->sc_nmixer_states = mi.index;
   1183 	sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
   1184 	    (sc->sc_nmixer_states + 1), KM_SLEEP);
   1185 
   1186 	/*
   1187 	 * This is where we assign each control in the "audio" model, to the
   1188 	 * underlying "mixer" control.  We walk through the whole list once,
   1189 	 * assigning likely candidates as we come across them.
   1190 	 */
   1191 	record_master_found = 0;
   1192 	record_source_found = 0;
   1193 	mutex_enter(sc->sc_lock);
   1194 	for(mi.index = 0; ; mi.index++) {
   1195 		if (audio_query_devinfo(sc, &mi) != 0)
   1196 			break;
   1197 		KASSERT(mi.index < sc->sc_nmixer_states);
   1198 		if (mi.type == AUDIO_MIXER_CLASS)
   1199 			continue;
   1200 		if (mi.mixer_class == iclass) {
   1201 			/*
   1202 			 * AudioCinputs is only a fallback, when we don't
   1203 			 * find what we're looking for in AudioCrecord, so
   1204 			 * check the flags before accepting one of these.
   1205 			 */
   1206 			if (strcmp(mi.label.name, AudioNmaster) == 0
   1207 			    && record_master_found == 0)
   1208 				sc->sc_inports.master = mi.index;
   1209 			if (strcmp(mi.label.name, AudioNsource) == 0
   1210 			    && record_source_found == 0) {
   1211 				if (mi.type == AUDIO_MIXER_ENUM) {
   1212 				    int i;
   1213 				    for(i = 0; i < mi.un.e.num_mem; i++)
   1214 					if (strcmp(mi.un.e.member[i].label.name,
   1215 						    AudioNmixerout) == 0)
   1216 						sc->sc_inports.mixerout =
   1217 						    mi.un.e.member[i].ord;
   1218 				}
   1219 				au_setup_ports(sc, &sc->sc_inports, &mi,
   1220 				    itable);
   1221 			}
   1222 			if (strcmp(mi.label.name, AudioNdac) == 0 &&
   1223 			    sc->sc_outports.master == -1)
   1224 				sc->sc_outports.master = mi.index;
   1225 		} else if (mi.mixer_class == mclass) {
   1226 			if (strcmp(mi.label.name, AudioNmonitor) == 0)
   1227 				sc->sc_monitor_port = mi.index;
   1228 		} else if (mi.mixer_class == oclass) {
   1229 			if (strcmp(mi.label.name, AudioNmaster) == 0)
   1230 				sc->sc_outports.master = mi.index;
   1231 			if (strcmp(mi.label.name, AudioNselect) == 0)
   1232 				au_setup_ports(sc, &sc->sc_outports, &mi,
   1233 				    otable);
   1234 		} else if (mi.mixer_class == rclass) {
   1235 			/*
   1236 			 * These are the preferred mixers for the audio record
   1237 			 * controls, so set the flags here, but don't check.
   1238 			 */
   1239 			if (strcmp(mi.label.name, AudioNmaster) == 0) {
   1240 				sc->sc_inports.master = mi.index;
   1241 				record_master_found = 1;
   1242 			}
   1243 #if 1	/* Deprecated. Use AudioNmaster. */
   1244 			if (strcmp(mi.label.name, AudioNrecord) == 0) {
   1245 				sc->sc_inports.master = mi.index;
   1246 				record_master_found = 1;
   1247 			}
   1248 			if (strcmp(mi.label.name, AudioNvolume) == 0) {
   1249 				sc->sc_inports.master = mi.index;
   1250 				record_master_found = 1;
   1251 			}
   1252 #endif
   1253 			if (strcmp(mi.label.name, AudioNsource) == 0) {
   1254 				if (mi.type == AUDIO_MIXER_ENUM) {
   1255 				    int i;
   1256 				    for(i = 0; i < mi.un.e.num_mem; i++)
   1257 					if (strcmp(mi.un.e.member[i].label.name,
   1258 						    AudioNmixerout) == 0)
   1259 						sc->sc_inports.mixerout =
   1260 						    mi.un.e.member[i].ord;
   1261 				}
   1262 				au_setup_ports(sc, &sc->sc_inports, &mi,
   1263 				    itable);
   1264 				record_source_found = 1;
   1265 			}
   1266 		}
   1267 	}
   1268 	mutex_exit(sc->sc_lock);
   1269 }
   1270 
   1271 static int
   1272 audioactivate(device_t self, enum devact act)
   1273 {
   1274 	struct audio_softc *sc = device_private(self);
   1275 
   1276 	switch (act) {
   1277 	case DVACT_DEACTIVATE:
   1278 		mutex_enter(sc->sc_lock);
   1279 		sc->sc_dying = true;
   1280 		cv_broadcast(&sc->sc_exlockcv);
   1281 		mutex_exit(sc->sc_lock);
   1282 		return 0;
   1283 	default:
   1284 		return EOPNOTSUPP;
   1285 	}
   1286 }
   1287 
   1288 static int
   1289 audiodetach(device_t self, int flags)
   1290 {
   1291 	struct audio_softc *sc;
   1292 	struct audio_file *file;
   1293 	int error;
   1294 
   1295 	sc = device_private(self);
   1296 	TRACE(2, "flags=%d", flags);
   1297 
   1298 	/* device is not initialized */
   1299 	if (sc->hw_if == NULL)
   1300 		return 0;
   1301 
   1302 	/* Start draining existing accessors of the device. */
   1303 	error = config_detach_children(self, flags);
   1304 	if (error)
   1305 		return error;
   1306 
   1307 	/*
   1308 	 * This waits currently running sysctls to finish if exists.
   1309 	 * After this, no more new sysctls will come.
   1310 	 */
   1311 	sysctl_teardown(&sc->sc_log);
   1312 
   1313 	mutex_enter(sc->sc_lock);
   1314 	sc->sc_dying = true;
   1315 	cv_broadcast(&sc->sc_exlockcv);
   1316 	if (sc->sc_pmixer)
   1317 		cv_broadcast(&sc->sc_pmixer->outcv);
   1318 	if (sc->sc_rmixer)
   1319 		cv_broadcast(&sc->sc_rmixer->outcv);
   1320 
   1321 	/* Prevent new users */
   1322 	SLIST_FOREACH(file, &sc->sc_files, entry) {
   1323 		atomic_store_relaxed(&file->dying, true);
   1324 	}
   1325 
   1326 	/*
   1327 	 * Wait for existing users to drain.
   1328 	 * - pserialize_perform waits for all pserialize_read sections on
   1329 	 *   all CPUs; after this, no more new psref_acquire can happen.
   1330 	 * - psref_target_destroy waits for all extant acquired psrefs to
   1331 	 *   be psref_released.
   1332 	 */
   1333 	pserialize_perform(sc->sc_psz);
   1334 	mutex_exit(sc->sc_lock);
   1335 	psref_target_destroy(&sc->sc_psref, audio_psref_class);
   1336 
   1337 	/*
   1338 	 * We are now guaranteed that there are no calls to audio fileops
   1339 	 * that hold sc, and any new calls with files that were for sc will
   1340 	 * fail.  Thus, we now have exclusive access to the softc.
   1341 	 */
   1342 	sc->sc_exlock = 1;
   1343 
   1344 	/*
   1345 	 * Clean up all open instances.
   1346 	 * Here, we no longer need any locks to traverse sc_files.
   1347 	 */
   1348 	while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
   1349 		audio_unlink(sc, file);
   1350 	}
   1351 
   1352 	pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
   1353 	    audio_volume_down, true);
   1354 	pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
   1355 	    audio_volume_up, true);
   1356 	pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
   1357 	    audio_volume_toggle, true);
   1358 
   1359 #ifdef AUDIO_PM_IDLE
   1360 	callout_halt(&sc->sc_idle_counter, sc->sc_lock);
   1361 
   1362 	device_active_deregister(self, audio_activity);
   1363 #endif
   1364 
   1365 	pmf_device_deregister(self);
   1366 
   1367 	/* Free resources */
   1368 	if (sc->sc_pmixer) {
   1369 		audio_mixer_destroy(sc, sc->sc_pmixer);
   1370 		kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
   1371 	}
   1372 	if (sc->sc_rmixer) {
   1373 		audio_mixer_destroy(sc, sc->sc_rmixer);
   1374 		kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
   1375 	}
   1376 	if (sc->sc_am)
   1377 		kern_free(sc->sc_am);
   1378 
   1379 	seldestroy(&sc->sc_wsel);
   1380 	seldestroy(&sc->sc_rsel);
   1381 
   1382 #ifdef AUDIO_PM_IDLE
   1383 	callout_destroy(&sc->sc_idle_counter);
   1384 #endif
   1385 
   1386 	cv_destroy(&sc->sc_exlockcv);
   1387 
   1388 #if defined(AUDIO_DEBUG)
   1389 	audio_mlog_free();
   1390 #endif
   1391 
   1392 	return 0;
   1393 }
   1394 
   1395 static void
   1396 audiochilddet(device_t self, device_t child)
   1397 {
   1398 
   1399 	/* we hold no child references, so do nothing */
   1400 }
   1401 
   1402 static int
   1403 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
   1404 {
   1405 
   1406 	if (config_probe(parent, cf, aux))
   1407 		config_attach(parent, cf, aux, NULL,
   1408 		    CFARG_EOL);
   1409 
   1410 	return 0;
   1411 }
   1412 
   1413 static int
   1414 audiorescan(device_t self, const char *ifattr, const int *locators)
   1415 {
   1416 	struct audio_softc *sc = device_private(self);
   1417 
   1418 	config_search(sc->sc_dev, NULL,
   1419 	    CFARG_SEARCH, audiosearch,
   1420 	    CFARG_EOL);
   1421 
   1422 	return 0;
   1423 }
   1424 
   1425 /*
   1426  * Called from hardware driver.  This is where the MI audio driver gets
   1427  * probed/attached to the hardware driver.
   1428  */
   1429 device_t
   1430 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
   1431 {
   1432 	struct audio_attach_args arg;
   1433 
   1434 #ifdef DIAGNOSTIC
   1435 	if (ahwp == NULL) {
   1436 		aprint_error("audio_attach_mi: NULL\n");
   1437 		return 0;
   1438 	}
   1439 #endif
   1440 	arg.type = AUDIODEV_TYPE_AUDIO;
   1441 	arg.hwif = ahwp;
   1442 	arg.hdl = hdlp;
   1443 	return config_found(dev, &arg, audioprint,
   1444 	    CFARG_IATTR, "audiobus",
   1445 	    CFARG_EOL);
   1446 }
   1447 
   1448 /*
   1449  * audio_printf() outputs fmt... with the audio device name and MD device
   1450  * name prefixed.  If the message is considered to be related to the MD
   1451  * driver, use this one instead of device_printf().
   1452  */
   1453 static void
   1454 audio_printf(struct audio_softc *sc, const char *fmt, ...)
   1455 {
   1456 	va_list ap;
   1457 
   1458 	printf("%s(%s): ", device_xname(sc->sc_dev), device_xname(sc->hw_dev));
   1459 	va_start(ap, fmt);
   1460 	vprintf(fmt, ap);
   1461 	va_end(ap);
   1462 }
   1463 
   1464 /*
   1465  * Enter critical section and also keep sc_lock.
   1466  * If successful, returns 0 with sc_lock held.  Otherwise returns errno.
   1467  * Must be called without sc_lock held.
   1468  */
   1469 static int
   1470 audio_exlock_mutex_enter(struct audio_softc *sc)
   1471 {
   1472 	int error;
   1473 
   1474 	mutex_enter(sc->sc_lock);
   1475 	if (sc->sc_dying) {
   1476 		mutex_exit(sc->sc_lock);
   1477 		return EIO;
   1478 	}
   1479 
   1480 	while (__predict_false(sc->sc_exlock != 0)) {
   1481 		error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
   1482 		if (sc->sc_dying)
   1483 			error = EIO;
   1484 		if (error) {
   1485 			mutex_exit(sc->sc_lock);
   1486 			return error;
   1487 		}
   1488 	}
   1489 
   1490 	/* Acquire */
   1491 	sc->sc_exlock = 1;
   1492 	return 0;
   1493 }
   1494 
   1495 /*
   1496  * Exit critical section and exit sc_lock.
   1497  * Must be called with sc_lock held.
   1498  */
   1499 static void
   1500 audio_exlock_mutex_exit(struct audio_softc *sc)
   1501 {
   1502 
   1503 	KASSERT(mutex_owned(sc->sc_lock));
   1504 
   1505 	sc->sc_exlock = 0;
   1506 	cv_broadcast(&sc->sc_exlockcv);
   1507 	mutex_exit(sc->sc_lock);
   1508 }
   1509 
   1510 /*
   1511  * Enter critical section.
   1512  * If successful, it returns 0.  Otherwise returns errno.
   1513  * Must be called without sc_lock held.
   1514  * This function returns without sc_lock held.
   1515  */
   1516 static int
   1517 audio_exlock_enter(struct audio_softc *sc)
   1518 {
   1519 	int error;
   1520 
   1521 	error = audio_exlock_mutex_enter(sc);
   1522 	if (error)
   1523 		return error;
   1524 	mutex_exit(sc->sc_lock);
   1525 	return 0;
   1526 }
   1527 
   1528 /*
   1529  * Exit critical section.
   1530  * Must be called without sc_lock held.
   1531  */
   1532 static void
   1533 audio_exlock_exit(struct audio_softc *sc)
   1534 {
   1535 
   1536 	mutex_enter(sc->sc_lock);
   1537 	audio_exlock_mutex_exit(sc);
   1538 }
   1539 
   1540 /*
   1541  * Increment reference counter for this sc.
   1542  * This is intended to be used for open.
   1543  */
   1544 void
   1545 audio_sc_acquire_foropen(struct audio_softc *sc, struct psref *refp)
   1546 {
   1547 	int s;
   1548 
   1549 	/* Block audiodetach while we acquire a reference */
   1550 	s = pserialize_read_enter();
   1551 
   1552 	/*
   1553 	 * We don't examine sc_dying here.  However, all open methods
   1554 	 * call audio_exlock_enter() right after this, so we can examine
   1555 	 * sc_dying in it.
   1556 	 */
   1557 
   1558 	/* Acquire a reference */
   1559 	psref_acquire(refp, &sc->sc_psref, audio_psref_class);
   1560 
   1561 	/* Now sc won't go away until we drop the reference count */
   1562 	pserialize_read_exit(s);
   1563 }
   1564 
   1565 /*
   1566  * Get sc from file, and increment reference counter for this sc.
   1567  * This is intended to be used for methods other than open.
   1568  * If successful, returns sc.  Otherwise returns NULL.
   1569  */
   1570 struct audio_softc *
   1571 audio_sc_acquire_fromfile(audio_file_t *file, struct psref *refp)
   1572 {
   1573 	int s;
   1574 	bool dying;
   1575 
   1576 	/* Block audiodetach while we acquire a reference */
   1577 	s = pserialize_read_enter();
   1578 
   1579 	/* If close or audiodetach already ran, tough -- no more audio */
   1580 	dying = atomic_load_relaxed(&file->dying);
   1581 	if (dying) {
   1582 		pserialize_read_exit(s);
   1583 		return NULL;
   1584 	}
   1585 
   1586 	/* Acquire a reference */
   1587 	psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
   1588 
   1589 	/* Now sc won't go away until we drop the reference count */
   1590 	pserialize_read_exit(s);
   1591 
   1592 	return file->sc;
   1593 }
   1594 
   1595 /*
   1596  * Decrement reference counter for this sc.
   1597  */
   1598 void
   1599 audio_sc_release(struct audio_softc *sc, struct psref *refp)
   1600 {
   1601 
   1602 	psref_release(refp, &sc->sc_psref, audio_psref_class);
   1603 }
   1604 
   1605 /*
   1606  * Wait for I/O to complete, releasing sc_lock.
   1607  * Must be called with sc_lock held.
   1608  */
   1609 static int
   1610 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
   1611 {
   1612 	int error;
   1613 
   1614 	KASSERT(track);
   1615 	KASSERT(mutex_owned(sc->sc_lock));
   1616 
   1617 	/* Wait for pending I/O to complete. */
   1618 	error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
   1619 	    mstohz(AUDIO_TIMEOUT));
   1620 	if (sc->sc_suspending) {
   1621 		/* If it's about to suspend, ignore timeout error. */
   1622 		if (error == EWOULDBLOCK) {
   1623 			TRACET(2, track, "timeout (suspending)");
   1624 			return 0;
   1625 		}
   1626 	}
   1627 	if (sc->sc_dying) {
   1628 		error = EIO;
   1629 	}
   1630 	if (error) {
   1631 		TRACET(2, track, "cv_timedwait_sig failed %d", error);
   1632 		if (error == EWOULDBLOCK)
   1633 			audio_printf(sc, "device timeout\n");
   1634 	} else {
   1635 		TRACET(3, track, "wakeup");
   1636 	}
   1637 	return error;
   1638 }
   1639 
   1640 /*
   1641  * Try to acquire track lock.
   1642  * It doesn't block if the track lock is already aquired.
   1643  * Returns true if the track lock was acquired, or false if the track
   1644  * lock was already acquired.
   1645  */
   1646 static __inline bool
   1647 audio_track_lock_tryenter(audio_track_t *track)
   1648 {
   1649 	return (atomic_cas_uint(&track->lock, 0, 1) == 0);
   1650 }
   1651 
   1652 /*
   1653  * Acquire track lock.
   1654  */
   1655 static __inline void
   1656 audio_track_lock_enter(audio_track_t *track)
   1657 {
   1658 	/* Don't sleep here. */
   1659 	while (audio_track_lock_tryenter(track) == false)
   1660 		;
   1661 }
   1662 
   1663 /*
   1664  * Release track lock.
   1665  */
   1666 static __inline void
   1667 audio_track_lock_exit(audio_track_t *track)
   1668 {
   1669 	atomic_swap_uint(&track->lock, 0);
   1670 }
   1671 
   1672 
   1673 static int
   1674 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
   1675 {
   1676 	struct audio_softc *sc;
   1677 	struct psref sc_ref;
   1678 	int bound;
   1679 	int error;
   1680 
   1681 	/* Find the device */
   1682 	sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
   1683 	if (sc == NULL || sc->hw_if == NULL)
   1684 		return ENXIO;
   1685 
   1686 	bound = curlwp_bind();
   1687 	audio_sc_acquire_foropen(sc, &sc_ref);
   1688 
   1689 	error = audio_exlock_enter(sc);
   1690 	if (error)
   1691 		goto done;
   1692 
   1693 	device_active(sc->sc_dev, DVA_SYSTEM);
   1694 	switch (AUDIODEV(dev)) {
   1695 	case SOUND_DEVICE:
   1696 	case AUDIO_DEVICE:
   1697 		error = audio_open(dev, sc, flags, ifmt, l, NULL);
   1698 		break;
   1699 	case AUDIOCTL_DEVICE:
   1700 		error = audioctl_open(dev, sc, flags, ifmt, l);
   1701 		break;
   1702 	case MIXER_DEVICE:
   1703 		error = mixer_open(dev, sc, flags, ifmt, l);
   1704 		break;
   1705 	default:
   1706 		error = ENXIO;
   1707 		break;
   1708 	}
   1709 	audio_exlock_exit(sc);
   1710 
   1711 done:
   1712 	audio_sc_release(sc, &sc_ref);
   1713 	curlwp_bindx(bound);
   1714 	return error;
   1715 }
   1716 
   1717 static int
   1718 audioclose(struct file *fp)
   1719 {
   1720 	struct audio_softc *sc;
   1721 	struct psref sc_ref;
   1722 	audio_file_t *file;
   1723 	int bound;
   1724 	int error;
   1725 	dev_t dev;
   1726 
   1727 	KASSERT(fp->f_audioctx);
   1728 	file = fp->f_audioctx;
   1729 	dev = file->dev;
   1730 	error = 0;
   1731 
   1732 	/*
   1733 	 * audioclose() must
   1734 	 * - unplug track from the trackmixer (and unplug anything from softc),
   1735 	 *   if sc exists.
   1736 	 * - free all memory objects, regardless of sc.
   1737 	 */
   1738 
   1739 	bound = curlwp_bind();
   1740 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
   1741 	if (sc) {
   1742 		switch (AUDIODEV(dev)) {
   1743 		case SOUND_DEVICE:
   1744 		case AUDIO_DEVICE:
   1745 			error = audio_close(sc, file);
   1746 			break;
   1747 		case AUDIOCTL_DEVICE:
   1748 			error = 0;
   1749 			break;
   1750 		case MIXER_DEVICE:
   1751 			error = mixer_close(sc, file);
   1752 			break;
   1753 		default:
   1754 			error = ENXIO;
   1755 			break;
   1756 		}
   1757 
   1758 		audio_sc_release(sc, &sc_ref);
   1759 	}
   1760 	curlwp_bindx(bound);
   1761 
   1762 	/* Free memory objects anyway */
   1763 	TRACEF(2, file, "free memory");
   1764 	if (file->ptrack)
   1765 		audio_track_destroy(file->ptrack);
   1766 	if (file->rtrack)
   1767 		audio_track_destroy(file->rtrack);
   1768 	kmem_free(file, sizeof(*file));
   1769 	fp->f_audioctx = NULL;
   1770 
   1771 	return error;
   1772 }
   1773 
   1774 static int
   1775 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
   1776 	int ioflag)
   1777 {
   1778 	struct audio_softc *sc;
   1779 	struct psref sc_ref;
   1780 	audio_file_t *file;
   1781 	int bound;
   1782 	int error;
   1783 	dev_t dev;
   1784 
   1785 	KASSERT(fp->f_audioctx);
   1786 	file = fp->f_audioctx;
   1787 	dev = file->dev;
   1788 
   1789 	bound = curlwp_bind();
   1790 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
   1791 	if (sc == NULL) {
   1792 		error = EIO;
   1793 		goto done;
   1794 	}
   1795 
   1796 	if (fp->f_flag & O_NONBLOCK)
   1797 		ioflag |= IO_NDELAY;
   1798 
   1799 	switch (AUDIODEV(dev)) {
   1800 	case SOUND_DEVICE:
   1801 	case AUDIO_DEVICE:
   1802 		error = audio_read(sc, uio, ioflag, file);
   1803 		break;
   1804 	case AUDIOCTL_DEVICE:
   1805 	case MIXER_DEVICE:
   1806 		error = ENODEV;
   1807 		break;
   1808 	default:
   1809 		error = ENXIO;
   1810 		break;
   1811 	}
   1812 
   1813 	audio_sc_release(sc, &sc_ref);
   1814 done:
   1815 	curlwp_bindx(bound);
   1816 	return error;
   1817 }
   1818 
   1819 static int
   1820 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
   1821 	int ioflag)
   1822 {
   1823 	struct audio_softc *sc;
   1824 	struct psref sc_ref;
   1825 	audio_file_t *file;
   1826 	int bound;
   1827 	int error;
   1828 	dev_t dev;
   1829 
   1830 	KASSERT(fp->f_audioctx);
   1831 	file = fp->f_audioctx;
   1832 	dev = file->dev;
   1833 
   1834 	bound = curlwp_bind();
   1835 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
   1836 	if (sc == NULL) {
   1837 		error = EIO;
   1838 		goto done;
   1839 	}
   1840 
   1841 	if (fp->f_flag & O_NONBLOCK)
   1842 		ioflag |= IO_NDELAY;
   1843 
   1844 	switch (AUDIODEV(dev)) {
   1845 	case SOUND_DEVICE:
   1846 	case AUDIO_DEVICE:
   1847 		error = audio_write(sc, uio, ioflag, file);
   1848 		break;
   1849 	case AUDIOCTL_DEVICE:
   1850 	case MIXER_DEVICE:
   1851 		error = ENODEV;
   1852 		break;
   1853 	default:
   1854 		error = ENXIO;
   1855 		break;
   1856 	}
   1857 
   1858 	audio_sc_release(sc, &sc_ref);
   1859 done:
   1860 	curlwp_bindx(bound);
   1861 	return error;
   1862 }
   1863 
   1864 static int
   1865 audioioctl(struct file *fp, u_long cmd, void *addr)
   1866 {
   1867 	struct audio_softc *sc;
   1868 	struct psref sc_ref;
   1869 	audio_file_t *file;
   1870 	struct lwp *l = curlwp;
   1871 	int bound;
   1872 	int error;
   1873 	dev_t dev;
   1874 
   1875 	KASSERT(fp->f_audioctx);
   1876 	file = fp->f_audioctx;
   1877 	dev = file->dev;
   1878 
   1879 	bound = curlwp_bind();
   1880 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
   1881 	if (sc == NULL) {
   1882 		error = EIO;
   1883 		goto done;
   1884 	}
   1885 
   1886 	switch (AUDIODEV(dev)) {
   1887 	case SOUND_DEVICE:
   1888 	case AUDIO_DEVICE:
   1889 	case AUDIOCTL_DEVICE:
   1890 		mutex_enter(sc->sc_lock);
   1891 		device_active(sc->sc_dev, DVA_SYSTEM);
   1892 		mutex_exit(sc->sc_lock);
   1893 		if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
   1894 			error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
   1895 		else
   1896 			error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
   1897 			    file);
   1898 		break;
   1899 	case MIXER_DEVICE:
   1900 		error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
   1901 		break;
   1902 	default:
   1903 		error = ENXIO;
   1904 		break;
   1905 	}
   1906 
   1907 	audio_sc_release(sc, &sc_ref);
   1908 done:
   1909 	curlwp_bindx(bound);
   1910 	return error;
   1911 }
   1912 
   1913 static int
   1914 audiostat(struct file *fp, struct stat *st)
   1915 {
   1916 	struct audio_softc *sc;
   1917 	struct psref sc_ref;
   1918 	audio_file_t *file;
   1919 	int bound;
   1920 	int error;
   1921 
   1922 	KASSERT(fp->f_audioctx);
   1923 	file = fp->f_audioctx;
   1924 
   1925 	bound = curlwp_bind();
   1926 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
   1927 	if (sc == NULL) {
   1928 		error = EIO;
   1929 		goto done;
   1930 	}
   1931 
   1932 	error = 0;
   1933 	memset(st, 0, sizeof(*st));
   1934 
   1935 	st->st_dev = file->dev;
   1936 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
   1937 	st->st_gid = kauth_cred_getegid(fp->f_cred);
   1938 	st->st_mode = S_IFCHR;
   1939 
   1940 	audio_sc_release(sc, &sc_ref);
   1941 done:
   1942 	curlwp_bindx(bound);
   1943 	return error;
   1944 }
   1945 
   1946 static int
   1947 audiopoll(struct file *fp, int events)
   1948 {
   1949 	struct audio_softc *sc;
   1950 	struct psref sc_ref;
   1951 	audio_file_t *file;
   1952 	struct lwp *l = curlwp;
   1953 	int bound;
   1954 	int revents;
   1955 	dev_t dev;
   1956 
   1957 	KASSERT(fp->f_audioctx);
   1958 	file = fp->f_audioctx;
   1959 	dev = file->dev;
   1960 
   1961 	bound = curlwp_bind();
   1962 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
   1963 	if (sc == NULL) {
   1964 		revents = POLLERR;
   1965 		goto done;
   1966 	}
   1967 
   1968 	switch (AUDIODEV(dev)) {
   1969 	case SOUND_DEVICE:
   1970 	case AUDIO_DEVICE:
   1971 		revents = audio_poll(sc, events, l, file);
   1972 		break;
   1973 	case AUDIOCTL_DEVICE:
   1974 	case MIXER_DEVICE:
   1975 		revents = 0;
   1976 		break;
   1977 	default:
   1978 		revents = POLLERR;
   1979 		break;
   1980 	}
   1981 
   1982 	audio_sc_release(sc, &sc_ref);
   1983 done:
   1984 	curlwp_bindx(bound);
   1985 	return revents;
   1986 }
   1987 
   1988 static int
   1989 audiokqfilter(struct file *fp, struct knote *kn)
   1990 {
   1991 	struct audio_softc *sc;
   1992 	struct psref sc_ref;
   1993 	audio_file_t *file;
   1994 	dev_t dev;
   1995 	int bound;
   1996 	int error;
   1997 
   1998 	KASSERT(fp->f_audioctx);
   1999 	file = fp->f_audioctx;
   2000 	dev = file->dev;
   2001 
   2002 	bound = curlwp_bind();
   2003 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
   2004 	if (sc == NULL) {
   2005 		error = EIO;
   2006 		goto done;
   2007 	}
   2008 
   2009 	switch (AUDIODEV(dev)) {
   2010 	case SOUND_DEVICE:
   2011 	case AUDIO_DEVICE:
   2012 		error = audio_kqfilter(sc, file, kn);
   2013 		break;
   2014 	case AUDIOCTL_DEVICE:
   2015 	case MIXER_DEVICE:
   2016 		error = ENODEV;
   2017 		break;
   2018 	default:
   2019 		error = ENXIO;
   2020 		break;
   2021 	}
   2022 
   2023 	audio_sc_release(sc, &sc_ref);
   2024 done:
   2025 	curlwp_bindx(bound);
   2026 	return error;
   2027 }
   2028 
   2029 static int
   2030 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
   2031 	int *advicep, struct uvm_object **uobjp, int *maxprotp)
   2032 {
   2033 	struct audio_softc *sc;
   2034 	struct psref sc_ref;
   2035 	audio_file_t *file;
   2036 	dev_t dev;
   2037 	int bound;
   2038 	int error;
   2039 
   2040 	KASSERT(fp->f_audioctx);
   2041 	file = fp->f_audioctx;
   2042 	dev = file->dev;
   2043 
   2044 	bound = curlwp_bind();
   2045 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
   2046 	if (sc == NULL) {
   2047 		error = EIO;
   2048 		goto done;
   2049 	}
   2050 
   2051 	mutex_enter(sc->sc_lock);
   2052 	device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
   2053 	mutex_exit(sc->sc_lock);
   2054 
   2055 	switch (AUDIODEV(dev)) {
   2056 	case SOUND_DEVICE:
   2057 	case AUDIO_DEVICE:
   2058 		error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
   2059 		    uobjp, maxprotp, file);
   2060 		break;
   2061 	case AUDIOCTL_DEVICE:
   2062 	case MIXER_DEVICE:
   2063 	default:
   2064 		error = ENOTSUP;
   2065 		break;
   2066 	}
   2067 
   2068 	audio_sc_release(sc, &sc_ref);
   2069 done:
   2070 	curlwp_bindx(bound);
   2071 	return error;
   2072 }
   2073 
   2074 
   2075 /* Exported interfaces for audiobell. */
   2076 
   2077 /*
   2078  * Open for audiobell.
   2079  * It stores allocated file to *filep.
   2080  * If successful returns 0, otherwise errno.
   2081  */
   2082 int
   2083 audiobellopen(dev_t dev, audio_file_t **filep)
   2084 {
   2085 	struct audio_softc *sc;
   2086 	struct psref sc_ref;
   2087 	int bound;
   2088 	int error;
   2089 
   2090 	/* Find the device */
   2091 	sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
   2092 	if (sc == NULL || sc->hw_if == NULL)
   2093 		return ENXIO;
   2094 
   2095 	bound = curlwp_bind();
   2096 	audio_sc_acquire_foropen(sc, &sc_ref);
   2097 
   2098 	error = audio_exlock_enter(sc);
   2099 	if (error)
   2100 		goto done;
   2101 
   2102 	device_active(sc->sc_dev, DVA_SYSTEM);
   2103 	error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
   2104 
   2105 	audio_exlock_exit(sc);
   2106 done:
   2107 	audio_sc_release(sc, &sc_ref);
   2108 	curlwp_bindx(bound);
   2109 	return error;
   2110 }
   2111 
   2112 /* Close for audiobell */
   2113 int
   2114 audiobellclose(audio_file_t *file)
   2115 {
   2116 	struct audio_softc *sc;
   2117 	struct psref sc_ref;
   2118 	int bound;
   2119 	int error;
   2120 
   2121 	error = 0;
   2122 	/*
   2123 	 * audiobellclose() must
   2124 	 * - unplug track from the trackmixer if sc exist.
   2125 	 * - free all memory objects, regardless of sc.
   2126 	 */
   2127 	bound = curlwp_bind();
   2128 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
   2129 	if (sc) {
   2130 		error = audio_close(sc, file);
   2131 		audio_sc_release(sc, &sc_ref);
   2132 	}
   2133 	curlwp_bindx(bound);
   2134 
   2135 	/* Free memory objects anyway */
   2136 	KASSERT(file->ptrack);
   2137 	audio_track_destroy(file->ptrack);
   2138 	KASSERT(file->rtrack == NULL);
   2139 	kmem_free(file, sizeof(*file));
   2140 	return error;
   2141 }
   2142 
   2143 /* Set sample rate for audiobell */
   2144 int
   2145 audiobellsetrate(audio_file_t *file, u_int sample_rate)
   2146 {
   2147 	struct audio_softc *sc;
   2148 	struct psref sc_ref;
   2149 	struct audio_info ai;
   2150 	int bound;
   2151 	int error;
   2152 
   2153 	bound = curlwp_bind();
   2154 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
   2155 	if (sc == NULL) {
   2156 		error = EIO;
   2157 		goto done1;
   2158 	}
   2159 
   2160 	AUDIO_INITINFO(&ai);
   2161 	ai.play.sample_rate = sample_rate;
   2162 
   2163 	error = audio_exlock_enter(sc);
   2164 	if (error)
   2165 		goto done2;
   2166 	error = audio_file_setinfo(sc, file, &ai);
   2167 	audio_exlock_exit(sc);
   2168 
   2169 done2:
   2170 	audio_sc_release(sc, &sc_ref);
   2171 done1:
   2172 	curlwp_bindx(bound);
   2173 	return error;
   2174 }
   2175 
   2176 /* Playback for audiobell */
   2177 int
   2178 audiobellwrite(audio_file_t *file, struct uio *uio)
   2179 {
   2180 	struct audio_softc *sc;
   2181 	struct psref sc_ref;
   2182 	int bound;
   2183 	int error;
   2184 
   2185 	bound = curlwp_bind();
   2186 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
   2187 	if (sc == NULL) {
   2188 		error = EIO;
   2189 		goto done;
   2190 	}
   2191 
   2192 	error = audio_write(sc, uio, 0, file);
   2193 
   2194 	audio_sc_release(sc, &sc_ref);
   2195 done:
   2196 	curlwp_bindx(bound);
   2197 	return error;
   2198 }
   2199 
   2200 
   2201 /*
   2202  * Audio driver
   2203  */
   2204 
   2205 /*
   2206  * Must be called with sc_exlock held and without sc_lock held.
   2207  */
   2208 int
   2209 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
   2210 	struct lwp *l, audio_file_t **bellfile)
   2211 {
   2212 	struct audio_info ai;
   2213 	struct file *fp;
   2214 	audio_file_t *af;
   2215 	audio_ring_t *hwbuf;
   2216 	bool fullduplex;
   2217 	bool cred_held;
   2218 	bool hw_opened;
   2219 	bool rmixer_started;
   2220 	bool inserted;
   2221 	int fd;
   2222 	int error;
   2223 
   2224 	KASSERT(sc->sc_exlock);
   2225 
   2226 	TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
   2227 	    (audiodebug >= 3) ? "start " : "",
   2228 	    ISDEVSOUND(dev) ? "sound" : "audio",
   2229 	    flags, sc->sc_popens, sc->sc_ropens);
   2230 
   2231 	fp = NULL;
   2232 	cred_held = false;
   2233 	hw_opened = false;
   2234 	rmixer_started = false;
   2235 	inserted = false;
   2236 
   2237 	af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
   2238 	af->sc = sc;
   2239 	af->dev = dev;
   2240 	if (flags & FWRITE) {
   2241 		if (!audio_can_playback(sc)) {
   2242 			error = ENXIO;
   2243 			goto bad;
   2244 		}
   2245 		af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
   2246 	}
   2247 	if (flags & FREAD) {
   2248 		if (!audio_can_capture(sc)) {
   2249 			error = ENXIO;
   2250 			goto bad;
   2251 		}
   2252 		af->mode |= AUMODE_RECORD;
   2253 	}
   2254 	if (af->mode == 0) {
   2255 		error = ENXIO;
   2256 		goto bad;
   2257 	}
   2258 
   2259 	fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
   2260 
   2261 	/*
   2262 	 * On half duplex hardware,
   2263 	 * 1. if mode is (PLAY | REC), let mode PLAY.
   2264 	 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
   2265 	 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
   2266 	 */
   2267 	if (fullduplex == false) {
   2268 		if ((af->mode & AUMODE_PLAY)) {
   2269 			if (sc->sc_ropens != 0) {
   2270 				TRACE(1, "record track already exists");
   2271 				error = ENODEV;
   2272 				goto bad;
   2273 			}
   2274 			/* Play takes precedence */
   2275 			af->mode &= ~AUMODE_RECORD;
   2276 		}
   2277 		if ((af->mode & AUMODE_RECORD)) {
   2278 			if (sc->sc_popens != 0) {
   2279 				TRACE(1, "play track already exists");
   2280 				error = ENODEV;
   2281 				goto bad;
   2282 			}
   2283 		}
   2284 	}
   2285 
   2286 	/* Create tracks */
   2287 	if ((af->mode & AUMODE_PLAY))
   2288 		af->ptrack = audio_track_create(sc, sc->sc_pmixer);
   2289 	if ((af->mode & AUMODE_RECORD))
   2290 		af->rtrack = audio_track_create(sc, sc->sc_rmixer);
   2291 
   2292 	/* Set parameters */
   2293 	AUDIO_INITINFO(&ai);
   2294 	if (bellfile) {
   2295 		/* If audiobell, only sample_rate will be set later. */
   2296 		ai.play.sample_rate   = audio_default.sample_rate;
   2297 		ai.play.encoding      = AUDIO_ENCODING_SLINEAR_NE;
   2298 		ai.play.channels      = 1;
   2299 		ai.play.precision     = 16;
   2300 		ai.play.pause         = 0;
   2301 	} else if (ISDEVAUDIO(dev)) {
   2302 		/* If /dev/audio, initialize everytime. */
   2303 		ai.play.sample_rate   = audio_default.sample_rate;
   2304 		ai.play.encoding      = audio_default.encoding;
   2305 		ai.play.channels      = audio_default.channels;
   2306 		ai.play.precision     = audio_default.precision;
   2307 		ai.play.pause         = 0;
   2308 		ai.record.sample_rate = audio_default.sample_rate;
   2309 		ai.record.encoding    = audio_default.encoding;
   2310 		ai.record.channels    = audio_default.channels;
   2311 		ai.record.precision   = audio_default.precision;
   2312 		ai.record.pause       = 0;
   2313 	} else {
   2314 		/* If /dev/sound, take over the previous parameters. */
   2315 		ai.play.sample_rate   = sc->sc_sound_pparams.sample_rate;
   2316 		ai.play.encoding      = sc->sc_sound_pparams.encoding;
   2317 		ai.play.channels      = sc->sc_sound_pparams.channels;
   2318 		ai.play.precision     = sc->sc_sound_pparams.precision;
   2319 		ai.play.pause         = sc->sc_sound_ppause;
   2320 		ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
   2321 		ai.record.encoding    = sc->sc_sound_rparams.encoding;
   2322 		ai.record.channels    = sc->sc_sound_rparams.channels;
   2323 		ai.record.precision   = sc->sc_sound_rparams.precision;
   2324 		ai.record.pause       = sc->sc_sound_rpause;
   2325 	}
   2326 	error = audio_file_setinfo(sc, af, &ai);
   2327 	if (error)
   2328 		goto bad;
   2329 
   2330 	if (sc->sc_popens + sc->sc_ropens == 0) {
   2331 		/* First open */
   2332 
   2333 		sc->sc_cred = kauth_cred_get();
   2334 		kauth_cred_hold(sc->sc_cred);
   2335 		cred_held = true;
   2336 
   2337 		if (sc->hw_if->open) {
   2338 			int hwflags;
   2339 
   2340 			/*
   2341 			 * Call hw_if->open() only at first open of
   2342 			 * combination of playback and recording.
   2343 			 * On full duplex hardware, the flags passed to
   2344 			 * hw_if->open() is always (FREAD | FWRITE)
   2345 			 * regardless of this open()'s flags.
   2346 			 * see also dev/isa/aria.c
   2347 			 * On half duplex hardware, the flags passed to
   2348 			 * hw_if->open() is either FREAD or FWRITE.
   2349 			 * see also arch/evbarm/mini2440/audio_mini2440.c
   2350 			 */
   2351 			if (fullduplex) {
   2352 				hwflags = FREAD | FWRITE;
   2353 			} else {
   2354 				/* Construct hwflags from af->mode. */
   2355 				hwflags = 0;
   2356 				if ((af->mode & AUMODE_PLAY) != 0)
   2357 					hwflags |= FWRITE;
   2358 				if ((af->mode & AUMODE_RECORD) != 0)
   2359 					hwflags |= FREAD;
   2360 			}
   2361 
   2362 			mutex_enter(sc->sc_lock);
   2363 			mutex_enter(sc->sc_intr_lock);
   2364 			error = sc->hw_if->open(sc->hw_hdl, hwflags);
   2365 			mutex_exit(sc->sc_intr_lock);
   2366 			mutex_exit(sc->sc_lock);
   2367 			if (error)
   2368 				goto bad;
   2369 		}
   2370 		/*
   2371 		 * Regardless of whether we called hw_if->open (whether
   2372 		 * hw_if->open exists) or not, we move to the Opened phase
   2373 		 * here.  Therefore from this point, we have to call
   2374 		 * hw_if->close (if exists) whenever abort.
   2375 		 * Note that both of hw_if->{open,close} are optional.
   2376 		 */
   2377 		hw_opened = true;
   2378 
   2379 		/*
   2380 		 * Set speaker mode when a half duplex.
   2381 		 * XXX I'm not sure this is correct.
   2382 		 */
   2383 		if (1/*XXX*/) {
   2384 			if (sc->hw_if->speaker_ctl) {
   2385 				int on;
   2386 				if (af->ptrack) {
   2387 					on = 1;
   2388 				} else {
   2389 					on = 0;
   2390 				}
   2391 				mutex_enter(sc->sc_lock);
   2392 				mutex_enter(sc->sc_intr_lock);
   2393 				error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
   2394 				mutex_exit(sc->sc_intr_lock);
   2395 				mutex_exit(sc->sc_lock);
   2396 				if (error)
   2397 					goto bad;
   2398 			}
   2399 		}
   2400 	} else if (sc->sc_multiuser == false) {
   2401 		uid_t euid = kauth_cred_geteuid(kauth_cred_get());
   2402 		if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
   2403 			error = EPERM;
   2404 			goto bad;
   2405 		}
   2406 	}
   2407 
   2408 	/* Call init_output if this is the first playback open. */
   2409 	if (af->ptrack && sc->sc_popens == 0) {
   2410 		if (sc->hw_if->init_output) {
   2411 			hwbuf = &sc->sc_pmixer->hwbuf;
   2412 			mutex_enter(sc->sc_lock);
   2413 			mutex_enter(sc->sc_intr_lock);
   2414 			error = sc->hw_if->init_output(sc->hw_hdl,
   2415 			    hwbuf->mem,
   2416 			    hwbuf->capacity *
   2417 			    hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
   2418 			mutex_exit(sc->sc_intr_lock);
   2419 			mutex_exit(sc->sc_lock);
   2420 			if (error)
   2421 				goto bad;
   2422 		}
   2423 	}
   2424 	/*
   2425 	 * Call init_input and start rmixer, if this is the first recording
   2426 	 * open.  See pause consideration notes.
   2427 	 */
   2428 	if (af->rtrack && sc->sc_ropens == 0) {
   2429 		if (sc->hw_if->init_input) {
   2430 			hwbuf = &sc->sc_rmixer->hwbuf;
   2431 			mutex_enter(sc->sc_lock);
   2432 			mutex_enter(sc->sc_intr_lock);
   2433 			error = sc->hw_if->init_input(sc->hw_hdl,
   2434 			    hwbuf->mem,
   2435 			    hwbuf->capacity *
   2436 			    hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
   2437 			mutex_exit(sc->sc_intr_lock);
   2438 			mutex_exit(sc->sc_lock);
   2439 			if (error)
   2440 				goto bad;
   2441 		}
   2442 
   2443 		mutex_enter(sc->sc_lock);
   2444 		audio_rmixer_start(sc);
   2445 		mutex_exit(sc->sc_lock);
   2446 		rmixer_started = true;
   2447 	}
   2448 
   2449 	/*
   2450 	 * This is the last sc_lock section in the function, so we have to
   2451 	 * examine sc_dying again before starting the rest tasks.  Because
   2452 	 * audiodeatch() may have been invoked (and it would set sc_dying)
   2453 	 * from the time audioopen() was executed until now.  If it happens,
   2454 	 * audiodetach() may already have set file->dying for all sc_files
   2455 	 * that exist at that point, so that audioopen() must abort without
   2456 	 * inserting af to sc_files, in order to keep consistency.
   2457 	 */
   2458 	mutex_enter(sc->sc_lock);
   2459 	if (sc->sc_dying) {
   2460 		mutex_exit(sc->sc_lock);
   2461 		goto bad;
   2462 	}
   2463 
   2464 	/* Count up finally */
   2465 	if (af->ptrack)
   2466 		sc->sc_popens++;
   2467 	if (af->rtrack)
   2468 		sc->sc_ropens++;
   2469 	mutex_enter(sc->sc_intr_lock);
   2470 	SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
   2471 	mutex_exit(sc->sc_intr_lock);
   2472 	mutex_exit(sc->sc_lock);
   2473 	inserted = true;
   2474 
   2475 	if (bellfile) {
   2476 		*bellfile = af;
   2477 	} else {
   2478 		error = fd_allocfile(&fp, &fd);
   2479 		if (error)
   2480 			goto bad;
   2481 
   2482 		error = fd_clone(fp, fd, flags, &audio_fileops, af);
   2483 		KASSERTMSG(error == EMOVEFD, "error=%d", error);
   2484 	}
   2485 
   2486 	/* Be nothing else after fd_clone */
   2487 
   2488 	TRACEF(3, af, "done");
   2489 	return error;
   2490 
   2491 bad:
   2492 	if (inserted) {
   2493 		mutex_enter(sc->sc_lock);
   2494 		mutex_enter(sc->sc_intr_lock);
   2495 		SLIST_REMOVE(&sc->sc_files, af, audio_file, entry);
   2496 		mutex_exit(sc->sc_intr_lock);
   2497 		if (af->ptrack)
   2498 			sc->sc_popens--;
   2499 		if (af->rtrack)
   2500 			sc->sc_ropens--;
   2501 		mutex_exit(sc->sc_lock);
   2502 	}
   2503 
   2504 	if (rmixer_started) {
   2505 		mutex_enter(sc->sc_lock);
   2506 		audio_rmixer_halt(sc);
   2507 		mutex_exit(sc->sc_lock);
   2508 	}
   2509 
   2510 	if (hw_opened) {
   2511 		if (sc->hw_if->close) {
   2512 			mutex_enter(sc->sc_lock);
   2513 			mutex_enter(sc->sc_intr_lock);
   2514 			sc->hw_if->close(sc->hw_hdl);
   2515 			mutex_exit(sc->sc_intr_lock);
   2516 			mutex_exit(sc->sc_lock);
   2517 		}
   2518 	}
   2519 	if (cred_held) {
   2520 		kauth_cred_free(sc->sc_cred);
   2521 	}
   2522 
   2523 	/*
   2524 	 * Since track here is not yet linked to sc_files,
   2525 	 * you can call track_destroy() without sc_intr_lock.
   2526 	 */
   2527 	if (af->rtrack) {
   2528 		audio_track_destroy(af->rtrack);
   2529 		af->rtrack = NULL;
   2530 	}
   2531 	if (af->ptrack) {
   2532 		audio_track_destroy(af->ptrack);
   2533 		af->ptrack = NULL;
   2534 	}
   2535 
   2536 	kmem_free(af, sizeof(*af));
   2537 	return error;
   2538 }
   2539 
   2540 /*
   2541  * Must be called without sc_lock nor sc_exlock held.
   2542  */
   2543 int
   2544 audio_close(struct audio_softc *sc, audio_file_t *file)
   2545 {
   2546 	int error;
   2547 
   2548 	/* Protect entering new fileops to this file */
   2549 	atomic_store_relaxed(&file->dying, true);
   2550 
   2551 	/*
   2552 	 * Drain first.
   2553 	 * It must be done before unlinking(acquiring exlock).
   2554 	 */
   2555 	if (file->ptrack) {
   2556 		mutex_enter(sc->sc_lock);
   2557 		audio_track_drain(sc, file->ptrack);
   2558 		mutex_exit(sc->sc_lock);
   2559 	}
   2560 
   2561 	error = audio_exlock_enter(sc);
   2562 	if (error) {
   2563 		/*
   2564 		 * If EIO, this sc is about to detach.  In this case, even if
   2565 		 * we don't do subsequent _unlink(), audiodetach() will do it.
   2566 		 */
   2567 		if (error == EIO)
   2568 			return error;
   2569 
   2570 		/* XXX This should not happen but what should I do ? */
   2571 		panic("%s: can't acquire exlock: errno=%d", __func__, error);
   2572 	}
   2573 	error = audio_unlink(sc, file);
   2574 	audio_exlock_exit(sc);
   2575 
   2576 	return error;
   2577 }
   2578 
   2579 /*
   2580  * Unlink this file, but not freeing memory here.
   2581  * Must be called with sc_exlock held and without sc_lock held.
   2582  */
   2583 int
   2584 audio_unlink(struct audio_softc *sc, audio_file_t *file)
   2585 {
   2586 	int error;
   2587 
   2588 	mutex_enter(sc->sc_lock);
   2589 
   2590 	TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
   2591 	    (audiodebug >= 3) ? "start " : "",
   2592 	    (int)curproc->p_pid, (int)curlwp->l_lid,
   2593 	    sc->sc_popens, sc->sc_ropens);
   2594 	KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
   2595 	    "sc->sc_popens=%d, sc->sc_ropens=%d",
   2596 	    sc->sc_popens, sc->sc_ropens);
   2597 
   2598 	device_active(sc->sc_dev, DVA_SYSTEM);
   2599 
   2600 	mutex_enter(sc->sc_intr_lock);
   2601 	SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
   2602 	mutex_exit(sc->sc_intr_lock);
   2603 
   2604 	if (file->ptrack) {
   2605 		TRACET(3, file->ptrack, "dropframes=%" PRIu64,
   2606 		    file->ptrack->dropframes);
   2607 
   2608 		KASSERT(sc->sc_popens > 0);
   2609 		sc->sc_popens--;
   2610 
   2611 		/* Call hw halt_output if this is the last playback track. */
   2612 		if (sc->sc_popens == 0 && sc->sc_pbusy) {
   2613 			error = audio_pmixer_halt(sc);
   2614 			if (error) {
   2615 				audio_printf(sc,
   2616 				    "halt_output failed: errno=%d (ignored)\n",
   2617 				    error);
   2618 			}
   2619 		}
   2620 
   2621 		/* Restore mixing volume if all tracks are gone. */
   2622 		if (sc->sc_popens == 0) {
   2623 			/* intr_lock is not necessary, but just manners. */
   2624 			mutex_enter(sc->sc_intr_lock);
   2625 			sc->sc_pmixer->volume = 256;
   2626 			sc->sc_pmixer->voltimer = 0;
   2627 			mutex_exit(sc->sc_intr_lock);
   2628 		}
   2629 	}
   2630 	if (file->rtrack) {
   2631 		TRACET(3, file->rtrack, "dropframes=%" PRIu64,
   2632 		    file->rtrack->dropframes);
   2633 
   2634 		KASSERT(sc->sc_ropens > 0);
   2635 		sc->sc_ropens--;
   2636 
   2637 		/* Call hw halt_input if this is the last recording track. */
   2638 		if (sc->sc_ropens == 0 && sc->sc_rbusy) {
   2639 			error = audio_rmixer_halt(sc);
   2640 			if (error) {
   2641 				audio_printf(sc,
   2642 				    "halt_input failed: errno=%d (ignored)\n",
   2643 				    error);
   2644 			}
   2645 		}
   2646 
   2647 	}
   2648 
   2649 	/* Call hw close if this is the last track. */
   2650 	if (sc->sc_popens + sc->sc_ropens == 0) {
   2651 		if (sc->hw_if->close) {
   2652 			TRACE(2, "hw_if close");
   2653 			mutex_enter(sc->sc_intr_lock);
   2654 			sc->hw_if->close(sc->hw_hdl);
   2655 			mutex_exit(sc->sc_intr_lock);
   2656 		}
   2657 	}
   2658 
   2659 	mutex_exit(sc->sc_lock);
   2660 	if (sc->sc_popens + sc->sc_ropens == 0)
   2661 		kauth_cred_free(sc->sc_cred);
   2662 
   2663 	TRACE(3, "done");
   2664 
   2665 	return 0;
   2666 }
   2667 
   2668 /*
   2669  * Must be called without sc_lock nor sc_exlock held.
   2670  */
   2671 int
   2672 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
   2673 	audio_file_t *file)
   2674 {
   2675 	audio_track_t *track;
   2676 	audio_ring_t *usrbuf;
   2677 	audio_ring_t *input;
   2678 	int error;
   2679 
   2680 	/*
   2681 	 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
   2682 	 * However read() system call itself can be called because it's
   2683 	 * opened with O_RDWR.  So in this case, deny this read().
   2684 	 */
   2685 	track = file->rtrack;
   2686 	if (track == NULL) {
   2687 		return EBADF;
   2688 	}
   2689 
   2690 	/* I think it's better than EINVAL. */
   2691 	if (track->mmapped)
   2692 		return EPERM;
   2693 
   2694 	TRACET(2, track, "resid=%zd ioflag=0x%x", uio->uio_resid, ioflag);
   2695 
   2696 #ifdef AUDIO_PM_IDLE
   2697 	error = audio_exlock_mutex_enter(sc);
   2698 	if (error)
   2699 		return error;
   2700 
   2701 	if (device_is_active(&sc->sc_dev) || sc->sc_idle)
   2702 		device_active(&sc->sc_dev, DVA_SYSTEM);
   2703 
   2704 	/* In recording, unlike playback, read() never operates rmixer. */
   2705 
   2706 	audio_exlock_mutex_exit(sc);
   2707 #endif
   2708 
   2709 	usrbuf = &track->usrbuf;
   2710 	input = track->input;
   2711 	error = 0;
   2712 
   2713 	while (uio->uio_resid > 0 && error == 0) {
   2714 		int bytes;
   2715 
   2716 		TRACET(3, track,
   2717 		    "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
   2718 		    uio->uio_resid,
   2719 		    input->head, input->used, input->capacity,
   2720 		    usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
   2721 
   2722 		/* Wait when buffers are empty. */
   2723 		mutex_enter(sc->sc_lock);
   2724 		for (;;) {
   2725 			bool empty;
   2726 			audio_track_lock_enter(track);
   2727 			empty = (input->used == 0 && usrbuf->used == 0);
   2728 			audio_track_lock_exit(track);
   2729 			if (!empty)
   2730 				break;
   2731 
   2732 			if ((ioflag & IO_NDELAY)) {
   2733 				mutex_exit(sc->sc_lock);
   2734 				return EWOULDBLOCK;
   2735 			}
   2736 
   2737 			TRACET(3, track, "sleep");
   2738 			error = audio_track_waitio(sc, track);
   2739 			if (error) {
   2740 				mutex_exit(sc->sc_lock);
   2741 				return error;
   2742 			}
   2743 		}
   2744 		mutex_exit(sc->sc_lock);
   2745 
   2746 		audio_track_lock_enter(track);
   2747 		audio_track_record(track);
   2748 
   2749 		/* uiomove from usrbuf as much as possible. */
   2750 		bytes = uimin(usrbuf->used, uio->uio_resid);
   2751 		while (bytes > 0) {
   2752 			int head = usrbuf->head;
   2753 			int len = uimin(bytes, usrbuf->capacity - head);
   2754 			error = uiomove((uint8_t *)usrbuf->mem + head, len,
   2755 			    uio);
   2756 			if (error) {
   2757 				audio_track_lock_exit(track);
   2758 				device_printf(sc->sc_dev,
   2759 				    "%s: uiomove(%d) failed: errno=%d\n",
   2760 				    __func__, len, error);
   2761 				goto abort;
   2762 			}
   2763 			auring_take(usrbuf, len);
   2764 			track->useriobytes += len;
   2765 			TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
   2766 			    len,
   2767 			    usrbuf->head, usrbuf->used, usrbuf->capacity);
   2768 			bytes -= len;
   2769 		}
   2770 
   2771 		audio_track_lock_exit(track);
   2772 	}
   2773 
   2774 abort:
   2775 	return error;
   2776 }
   2777 
   2778 
   2779 /*
   2780  * Clear file's playback and/or record track buffer immediately.
   2781  */
   2782 static void
   2783 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
   2784 {
   2785 
   2786 	if (file->ptrack)
   2787 		audio_track_clear(sc, file->ptrack);
   2788 	if (file->rtrack)
   2789 		audio_track_clear(sc, file->rtrack);
   2790 }
   2791 
   2792 /*
   2793  * Must be called without sc_lock nor sc_exlock held.
   2794  */
   2795 int
   2796 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
   2797 	audio_file_t *file)
   2798 {
   2799 	audio_track_t *track;
   2800 	audio_ring_t *usrbuf;
   2801 	audio_ring_t *outbuf;
   2802 	int error;
   2803 
   2804 	track = file->ptrack;
   2805 	KASSERT(track);
   2806 
   2807 	/* I think it's better than EINVAL. */
   2808 	if (track->mmapped)
   2809 		return EPERM;
   2810 
   2811 	TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
   2812 	    audiodebug >= 3 ? "begin " : "",
   2813 	    uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
   2814 
   2815 	if (uio->uio_resid == 0) {
   2816 		track->eofcounter++;
   2817 		return 0;
   2818 	}
   2819 
   2820 	error = audio_exlock_mutex_enter(sc);
   2821 	if (error)
   2822 		return error;
   2823 
   2824 #ifdef AUDIO_PM_IDLE
   2825 	if (device_is_active(&sc->sc_dev) || sc->sc_idle)
   2826 		device_active(&sc->sc_dev, DVA_SYSTEM);
   2827 #endif
   2828 
   2829 	/*
   2830 	 * The first write starts pmixer.
   2831 	 */
   2832 	if (sc->sc_pbusy == false)
   2833 		audio_pmixer_start(sc, false);
   2834 	audio_exlock_mutex_exit(sc);
   2835 
   2836 	usrbuf = &track->usrbuf;
   2837 	outbuf = &track->outbuf;
   2838 	track->pstate = AUDIO_STATE_RUNNING;
   2839 	error = 0;
   2840 
   2841 	while (uio->uio_resid > 0 && error == 0) {
   2842 		int bytes;
   2843 
   2844 		TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
   2845 		    uio->uio_resid,
   2846 		    usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
   2847 
   2848 		/* Wait when buffers are full. */
   2849 		mutex_enter(sc->sc_lock);
   2850 		for (;;) {
   2851 			bool full;
   2852 			audio_track_lock_enter(track);
   2853 			full = (usrbuf->used >= track->usrbuf_usedhigh &&
   2854 			    outbuf->used >= outbuf->capacity);
   2855 			audio_track_lock_exit(track);
   2856 			if (!full)
   2857 				break;
   2858 
   2859 			if ((ioflag & IO_NDELAY)) {
   2860 				error = EWOULDBLOCK;
   2861 				mutex_exit(sc->sc_lock);
   2862 				goto abort;
   2863 			}
   2864 
   2865 			TRACET(3, track, "sleep usrbuf=%d/H%d",
   2866 			    usrbuf->used, track->usrbuf_usedhigh);
   2867 			error = audio_track_waitio(sc, track);
   2868 			if (error) {
   2869 				mutex_exit(sc->sc_lock);
   2870 				goto abort;
   2871 			}
   2872 		}
   2873 		mutex_exit(sc->sc_lock);
   2874 
   2875 		audio_track_lock_enter(track);
   2876 
   2877 		/* uiomove to usrbuf as much as possible. */
   2878 		bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
   2879 		    uio->uio_resid);
   2880 		while (bytes > 0) {
   2881 			int tail = auring_tail(usrbuf);
   2882 			int len = uimin(bytes, usrbuf->capacity - tail);
   2883 			error = uiomove((uint8_t *)usrbuf->mem + tail, len,
   2884 			    uio);
   2885 			if (error) {
   2886 				audio_track_lock_exit(track);
   2887 				device_printf(sc->sc_dev,
   2888 				    "%s: uiomove(%d) failed: errno=%d\n",
   2889 				    __func__, len, error);
   2890 				goto abort;
   2891 			}
   2892 			auring_push(usrbuf, len);
   2893 			track->useriobytes += len;
   2894 			TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
   2895 			    len,
   2896 			    usrbuf->head, usrbuf->used, usrbuf->capacity);
   2897 			bytes -= len;
   2898 		}
   2899 
   2900 		/* Convert them as much as possible. */
   2901 		while (usrbuf->used >= track->usrbuf_blksize &&
   2902 		    outbuf->used < outbuf->capacity) {
   2903 			audio_track_play(track);
   2904 		}
   2905 
   2906 		audio_track_lock_exit(track);
   2907 	}
   2908 
   2909 abort:
   2910 	TRACET(3, track, "done error=%d", error);
   2911 	return error;
   2912 }
   2913 
   2914 /*
   2915  * Must be called without sc_lock nor sc_exlock held.
   2916  */
   2917 int
   2918 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
   2919 	struct lwp *l, audio_file_t *file)
   2920 {
   2921 	struct audio_offset *ao;
   2922 	struct audio_info ai;
   2923 	audio_track_t *track;
   2924 	audio_encoding_t *ae;
   2925 	audio_format_query_t *query;
   2926 	u_int stamp;
   2927 	u_int offs;
   2928 	int fd;
   2929 	int index;
   2930 	int error;
   2931 
   2932 #if defined(AUDIO_DEBUG)
   2933 	const char *ioctlnames[] = {
   2934 		" AUDIO_GETINFO",	/* 21 */
   2935 		" AUDIO_SETINFO",	/* 22 */
   2936 		" AUDIO_DRAIN",		/* 23 */
   2937 		" AUDIO_FLUSH",		/* 24 */
   2938 		" AUDIO_WSEEK",		/* 25 */
   2939 		" AUDIO_RERROR",	/* 26 */
   2940 		" AUDIO_GETDEV",	/* 27 */
   2941 		" AUDIO_GETENC",	/* 28 */
   2942 		" AUDIO_GETFD",		/* 29 */
   2943 		" AUDIO_SETFD",		/* 30 */
   2944 		" AUDIO_PERROR",	/* 31 */
   2945 		" AUDIO_GETIOFFS",	/* 32 */
   2946 		" AUDIO_GETOOFFS",	/* 33 */
   2947 		" AUDIO_GETPROPS",	/* 34 */
   2948 		" AUDIO_GETBUFINFO",	/* 35 */
   2949 		" AUDIO_SETCHAN",	/* 36 */
   2950 		" AUDIO_GETCHAN",	/* 37 */
   2951 		" AUDIO_QUERYFORMAT",	/* 38 */
   2952 		" AUDIO_GETFORMAT",	/* 39 */
   2953 		" AUDIO_SETFORMAT",	/* 40 */
   2954 	};
   2955 	int nameidx = (cmd & 0xff);
   2956 	const char *ioctlname = "";
   2957 	if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
   2958 		ioctlname = ioctlnames[nameidx - 21];
   2959 	TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
   2960 	    IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
   2961 	    (int)curproc->p_pid, (int)l->l_lid);
   2962 #endif
   2963 
   2964 	error = 0;
   2965 	switch (cmd) {
   2966 	case FIONBIO:
   2967 		/* All handled in the upper FS layer. */
   2968 		break;
   2969 
   2970 	case FIONREAD:
   2971 		/* Get the number of bytes that can be read. */
   2972 		if (file->rtrack) {
   2973 			*(int *)addr = audio_track_readablebytes(file->rtrack);
   2974 		} else {
   2975 			*(int *)addr = 0;
   2976 		}
   2977 		break;
   2978 
   2979 	case FIOASYNC:
   2980 		/* Set/Clear ASYNC I/O. */
   2981 		if (*(int *)addr) {
   2982 			file->async_audio = curproc->p_pid;
   2983 			TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
   2984 		} else {
   2985 			file->async_audio = 0;
   2986 			TRACEF(2, file, "FIOASYNC off");
   2987 		}
   2988 		break;
   2989 
   2990 	case AUDIO_FLUSH:
   2991 		/* XXX TODO: clear errors and restart? */
   2992 		audio_file_clear(sc, file);
   2993 		break;
   2994 
   2995 	case AUDIO_RERROR:
   2996 		/*
   2997 		 * Number of read bytes dropped.  We don't know where
   2998 		 * or when they were dropped (including conversion stage).
   2999 		 * Therefore, the number of accurate bytes or samples is
   3000 		 * also unknown.
   3001 		 */
   3002 		track = file->rtrack;
   3003 		if (track) {
   3004 			*(int *)addr = frametobyte(&track->usrbuf.fmt,
   3005 			    track->dropframes);
   3006 		}
   3007 		break;
   3008 
   3009 	case AUDIO_PERROR:
   3010 		/*
   3011 		 * Number of write bytes dropped.  We don't know where
   3012 		 * or when they were dropped (including conversion stage).
   3013 		 * Therefore, the number of accurate bytes or samples is
   3014 		 * also unknown.
   3015 		 */
   3016 		track = file->ptrack;
   3017 		if (track) {
   3018 			*(int *)addr = frametobyte(&track->usrbuf.fmt,
   3019 			    track->dropframes);
   3020 		}
   3021 		break;
   3022 
   3023 	case AUDIO_GETIOFFS:
   3024 		/* XXX TODO */
   3025 		ao = (struct audio_offset *)addr;
   3026 		ao->samples = 0;
   3027 		ao->deltablks = 0;
   3028 		ao->offset = 0;
   3029 		break;
   3030 
   3031 	case AUDIO_GETOOFFS:
   3032 		ao = (struct audio_offset *)addr;
   3033 		track = file->ptrack;
   3034 		if (track == NULL) {
   3035 			ao->samples = 0;
   3036 			ao->deltablks = 0;
   3037 			ao->offset = 0;
   3038 			break;
   3039 		}
   3040 		mutex_enter(sc->sc_lock);
   3041 		mutex_enter(sc->sc_intr_lock);
   3042 		/* figure out where next DMA will start */
   3043 		stamp = track->usrbuf_stamp;
   3044 		offs = track->usrbuf.head;
   3045 		mutex_exit(sc->sc_intr_lock);
   3046 		mutex_exit(sc->sc_lock);
   3047 
   3048 		ao->samples = stamp;
   3049 		ao->deltablks = (stamp / track->usrbuf_blksize) -
   3050 		    (track->usrbuf_stamp_last / track->usrbuf_blksize);
   3051 		track->usrbuf_stamp_last = stamp;
   3052 		offs = rounddown(offs, track->usrbuf_blksize)
   3053 		    + track->usrbuf_blksize;
   3054 		if (offs >= track->usrbuf.capacity)
   3055 			offs -= track->usrbuf.capacity;
   3056 		ao->offset = offs;
   3057 
   3058 		TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
   3059 		    ao->samples, ao->deltablks, ao->offset);
   3060 		break;
   3061 
   3062 	case AUDIO_WSEEK:
   3063 		/* XXX return value does not include outbuf one. */
   3064 		if (file->ptrack)
   3065 			*(u_long *)addr = file->ptrack->usrbuf.used;
   3066 		break;
   3067 
   3068 	case AUDIO_SETINFO:
   3069 		error = audio_exlock_enter(sc);
   3070 		if (error)
   3071 			break;
   3072 		error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
   3073 		if (error) {
   3074 			audio_exlock_exit(sc);
   3075 			break;
   3076 		}
   3077 		/* XXX TODO: update last_ai if /dev/sound ? */
   3078 		if (ISDEVSOUND(dev))
   3079 			error = audiogetinfo(sc, &sc->sc_ai, 0, file);
   3080 		audio_exlock_exit(sc);
   3081 		break;
   3082 
   3083 	case AUDIO_GETINFO:
   3084 		error = audio_exlock_enter(sc);
   3085 		if (error)
   3086 			break;
   3087 		error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
   3088 		audio_exlock_exit(sc);
   3089 		break;
   3090 
   3091 	case AUDIO_GETBUFINFO:
   3092 		error = audio_exlock_enter(sc);
   3093 		if (error)
   3094 			break;
   3095 		error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
   3096 		audio_exlock_exit(sc);
   3097 		break;
   3098 
   3099 	case AUDIO_DRAIN:
   3100 		if (file->ptrack) {
   3101 			mutex_enter(sc->sc_lock);
   3102 			error = audio_track_drain(sc, file->ptrack);
   3103 			mutex_exit(sc->sc_lock);
   3104 		}
   3105 		break;
   3106 
   3107 	case AUDIO_GETDEV:
   3108 		mutex_enter(sc->sc_lock);
   3109 		error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
   3110 		mutex_exit(sc->sc_lock);
   3111 		break;
   3112 
   3113 	case AUDIO_GETENC:
   3114 		ae = (audio_encoding_t *)addr;
   3115 		index = ae->index;
   3116 		if (index < 0 || index >= __arraycount(audio_encodings)) {
   3117 			error = EINVAL;
   3118 			break;
   3119 		}
   3120 		*ae = audio_encodings[index];
   3121 		ae->index = index;
   3122 		/*
   3123 		 * EMULATED always.
   3124 		 * EMULATED flag at that time used to mean that it could
   3125 		 * not be passed directly to the hardware as-is.  But
   3126 		 * currently, all formats including hardware native is not
   3127 		 * passed directly to the hardware.  So I set EMULATED
   3128 		 * flag for all formats.
   3129 		 */
   3130 		ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
   3131 		break;
   3132 
   3133 	case AUDIO_GETFD:
   3134 		/*
   3135 		 * Returns the current setting of full duplex mode.
   3136 		 * If HW has full duplex mode and there are two mixers,
   3137 		 * it is full duplex.  Otherwise half duplex.
   3138 		 */
   3139 		error = audio_exlock_enter(sc);
   3140 		if (error)
   3141 			break;
   3142 		fd = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
   3143 		    && (sc->sc_pmixer && sc->sc_rmixer);
   3144 		audio_exlock_exit(sc);
   3145 		*(int *)addr = fd;
   3146 		break;
   3147 
   3148 	case AUDIO_GETPROPS:
   3149 		*(int *)addr = sc->sc_props;
   3150 		break;
   3151 
   3152 	case AUDIO_QUERYFORMAT:
   3153 		query = (audio_format_query_t *)addr;
   3154 		mutex_enter(sc->sc_lock);
   3155 		error = sc->hw_if->query_format(sc->hw_hdl, query);
   3156 		mutex_exit(sc->sc_lock);
   3157 		/* Hide internal information */
   3158 		query->fmt.driver_data = NULL;
   3159 		break;
   3160 
   3161 	case AUDIO_GETFORMAT:
   3162 		error = audio_exlock_enter(sc);
   3163 		if (error)
   3164 			break;
   3165 		audio_mixers_get_format(sc, (struct audio_info *)addr);
   3166 		audio_exlock_exit(sc);
   3167 		break;
   3168 
   3169 	case AUDIO_SETFORMAT:
   3170 		error = audio_exlock_enter(sc);
   3171 		audio_mixers_get_format(sc, &ai);
   3172 		error = audio_mixers_set_format(sc, (struct audio_info *)addr);
   3173 		if (error) {
   3174 			/* Rollback */
   3175 			audio_mixers_set_format(sc, &ai);
   3176 		}
   3177 		audio_exlock_exit(sc);
   3178 		break;
   3179 
   3180 	case AUDIO_SETFD:
   3181 	case AUDIO_SETCHAN:
   3182 	case AUDIO_GETCHAN:
   3183 		/* Obsoleted */
   3184 		break;
   3185 
   3186 	default:
   3187 		if (sc->hw_if->dev_ioctl) {
   3188 			mutex_enter(sc->sc_lock);
   3189 			error = sc->hw_if->dev_ioctl(sc->hw_hdl,
   3190 			    cmd, addr, flag, l);
   3191 			mutex_exit(sc->sc_lock);
   3192 		} else {
   3193 			TRACEF(2, file, "unknown ioctl");
   3194 			error = EINVAL;
   3195 		}
   3196 		break;
   3197 	}
   3198 	TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
   3199 	    IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
   3200 	    error);
   3201 	return error;
   3202 }
   3203 
   3204 /*
   3205  * Returns the number of bytes that can be read on recording buffer.
   3206  */
   3207 static __inline int
   3208 audio_track_readablebytes(const audio_track_t *track)
   3209 {
   3210 	int bytes;
   3211 
   3212 	KASSERT(track);
   3213 	KASSERT(track->mode == AUMODE_RECORD);
   3214 
   3215 	/*
   3216 	 * Although usrbuf is primarily readable data, recorded data
   3217 	 * also stays in track->input until reading.  So it is necessary
   3218 	 * to add it.  track->input is in frame, usrbuf is in byte.
   3219 	 */
   3220 	bytes = track->usrbuf.used +
   3221 	    track->input->used * frametobyte(&track->usrbuf.fmt, 1);
   3222 	return bytes;
   3223 }
   3224 
   3225 /*
   3226  * Must be called without sc_lock nor sc_exlock held.
   3227  */
   3228 int
   3229 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
   3230 	audio_file_t *file)
   3231 {
   3232 	audio_track_t *track;
   3233 	int revents;
   3234 	bool in_is_valid;
   3235 	bool out_is_valid;
   3236 
   3237 #if defined(AUDIO_DEBUG)
   3238 #define POLLEV_BITMAP "\177\020" \
   3239 	    "b\10WRBAND\0" \
   3240 	    "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
   3241 	    "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
   3242 	char evbuf[64];
   3243 	snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
   3244 	TRACEF(2, file, "pid=%d.%d events=%s",
   3245 	    (int)curproc->p_pid, (int)l->l_lid, evbuf);
   3246 #endif
   3247 
   3248 	revents = 0;
   3249 	in_is_valid = false;
   3250 	out_is_valid = false;
   3251 	if (events & (POLLIN | POLLRDNORM)) {
   3252 		track = file->rtrack;
   3253 		if (track) {
   3254 			int used;
   3255 			in_is_valid = true;
   3256 			used = audio_track_readablebytes(track);
   3257 			if (used > 0)
   3258 				revents |= events & (POLLIN | POLLRDNORM);
   3259 		}
   3260 	}
   3261 	if (events & (POLLOUT | POLLWRNORM)) {
   3262 		track = file->ptrack;
   3263 		if (track) {
   3264 			out_is_valid = true;
   3265 			if (track->usrbuf.used <= track->usrbuf_usedlow)
   3266 				revents |= events & (POLLOUT | POLLWRNORM);
   3267 		}
   3268 	}
   3269 
   3270 	if (revents == 0) {
   3271 		mutex_enter(sc->sc_lock);
   3272 		if (in_is_valid) {
   3273 			TRACEF(3, file, "selrecord rsel");
   3274 			selrecord(l, &sc->sc_rsel);
   3275 		}
   3276 		if (out_is_valid) {
   3277 			TRACEF(3, file, "selrecord wsel");
   3278 			selrecord(l, &sc->sc_wsel);
   3279 		}
   3280 		mutex_exit(sc->sc_lock);
   3281 	}
   3282 
   3283 #if defined(AUDIO_DEBUG)
   3284 	snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
   3285 	TRACEF(2, file, "revents=%s", evbuf);
   3286 #endif
   3287 	return revents;
   3288 }
   3289 
   3290 static const struct filterops audioread_filtops = {
   3291 	.f_isfd = 1,
   3292 	.f_attach = NULL,
   3293 	.f_detach = filt_audioread_detach,
   3294 	.f_event = filt_audioread_event,
   3295 };
   3296 
   3297 static void
   3298 filt_audioread_detach(struct knote *kn)
   3299 {
   3300 	struct audio_softc *sc;
   3301 	audio_file_t *file;
   3302 
   3303 	file = kn->kn_hook;
   3304 	sc = file->sc;
   3305 	TRACEF(3, file, "called");
   3306 
   3307 	mutex_enter(sc->sc_lock);
   3308 	selremove_knote(&sc->sc_rsel, kn);
   3309 	mutex_exit(sc->sc_lock);
   3310 }
   3311 
   3312 static int
   3313 filt_audioread_event(struct knote *kn, long hint)
   3314 {
   3315 	audio_file_t *file;
   3316 	audio_track_t *track;
   3317 
   3318 	file = kn->kn_hook;
   3319 	track = file->rtrack;
   3320 
   3321 	/*
   3322 	 * kn_data must contain the number of bytes can be read.
   3323 	 * The return value indicates whether the event occurs or not.
   3324 	 */
   3325 
   3326 	if (track == NULL) {
   3327 		/* can not read with this descriptor. */
   3328 		kn->kn_data = 0;
   3329 		return 0;
   3330 	}
   3331 
   3332 	kn->kn_data = audio_track_readablebytes(track);
   3333 	TRACEF(3, file, "data=%" PRId64, kn->kn_data);
   3334 	return kn->kn_data > 0;
   3335 }
   3336 
   3337 static const struct filterops audiowrite_filtops = {
   3338 	.f_isfd = 1,
   3339 	.f_attach = NULL,
   3340 	.f_detach = filt_audiowrite_detach,
   3341 	.f_event = filt_audiowrite_event,
   3342 };
   3343 
   3344 static void
   3345 filt_audiowrite_detach(struct knote *kn)
   3346 {
   3347 	struct audio_softc *sc;
   3348 	audio_file_t *file;
   3349 
   3350 	file = kn->kn_hook;
   3351 	sc = file->sc;
   3352 	TRACEF(3, file, "called");
   3353 
   3354 	mutex_enter(sc->sc_lock);
   3355 	selremove_knote(&sc->sc_wsel, kn);
   3356 	mutex_exit(sc->sc_lock);
   3357 }
   3358 
   3359 static int
   3360 filt_audiowrite_event(struct knote *kn, long hint)
   3361 {
   3362 	audio_file_t *file;
   3363 	audio_track_t *track;
   3364 
   3365 	file = kn->kn_hook;
   3366 	track = file->ptrack;
   3367 
   3368 	/*
   3369 	 * kn_data must contain the number of bytes can be write.
   3370 	 * The return value indicates whether the event occurs or not.
   3371 	 */
   3372 
   3373 	if (track == NULL) {
   3374 		/* can not write with this descriptor. */
   3375 		kn->kn_data = 0;
   3376 		return 0;
   3377 	}
   3378 
   3379 	kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
   3380 	TRACEF(3, file, "data=%" PRId64, kn->kn_data);
   3381 	return (track->usrbuf.used < track->usrbuf_usedlow);
   3382 }
   3383 
   3384 /*
   3385  * Must be called without sc_lock nor sc_exlock held.
   3386  */
   3387 int
   3388 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
   3389 {
   3390 	struct selinfo *sip;
   3391 
   3392 	TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
   3393 
   3394 	switch (kn->kn_filter) {
   3395 	case EVFILT_READ:
   3396 		sip = &sc->sc_rsel;
   3397 		kn->kn_fop = &audioread_filtops;
   3398 		break;
   3399 
   3400 	case EVFILT_WRITE:
   3401 		sip = &sc->sc_wsel;
   3402 		kn->kn_fop = &audiowrite_filtops;
   3403 		break;
   3404 
   3405 	default:
   3406 		return EINVAL;
   3407 	}
   3408 
   3409 	kn->kn_hook = file;
   3410 
   3411 	mutex_enter(sc->sc_lock);
   3412 	selrecord_knote(sip, kn);
   3413 	mutex_exit(sc->sc_lock);
   3414 
   3415 	return 0;
   3416 }
   3417 
   3418 /*
   3419  * Must be called without sc_lock nor sc_exlock held.
   3420  */
   3421 int
   3422 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
   3423 	int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
   3424 	audio_file_t *file)
   3425 {
   3426 	audio_track_t *track;
   3427 	vsize_t vsize;
   3428 	int error;
   3429 
   3430 	TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
   3431 
   3432 	if (*offp < 0)
   3433 		return EINVAL;
   3434 
   3435 #if 0
   3436 	/* XXX
   3437 	 * The idea here was to use the protection to determine if
   3438 	 * we are mapping the read or write buffer, but it fails.
   3439 	 * The VM system is broken in (at least) two ways.
   3440 	 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
   3441 	 *    when writing to it, so VM_PROT_READ|VM_PROT_WRITE
   3442 	 *    has to be used for mmapping the play buffer.
   3443 	 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
   3444 	 *    audio_mmap will get called at some point with VM_PROT_READ
   3445 	 *    only.
   3446 	 * So, alas, we always map the play buffer for now.
   3447 	 */
   3448 	if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
   3449 	    prot == VM_PROT_WRITE)
   3450 		track = file->ptrack;
   3451 	else if (prot == VM_PROT_READ)
   3452 		track = file->rtrack;
   3453 	else
   3454 		return EINVAL;
   3455 #else
   3456 	track = file->ptrack;
   3457 #endif
   3458 	if (track == NULL)
   3459 		return EACCES;
   3460 
   3461 	vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
   3462 	if (len > vsize)
   3463 		return EOVERFLOW;
   3464 	if (*offp > (uint)(vsize - len))
   3465 		return EOVERFLOW;
   3466 
   3467 	/* XXX TODO: what happens when mmap twice. */
   3468 	if (!track->mmapped) {
   3469 		track->mmapped = true;
   3470 
   3471 		if (!track->is_pause) {
   3472 			error = audio_exlock_mutex_enter(sc);
   3473 			if (error)
   3474 				return error;
   3475 			if (sc->sc_pbusy == false)
   3476 				audio_pmixer_start(sc, true);
   3477 			audio_exlock_mutex_exit(sc);
   3478 		}
   3479 		/* XXX mmapping record buffer is not supported */
   3480 	}
   3481 
   3482 	/* get ringbuffer */
   3483 	*uobjp = track->uobj;
   3484 
   3485 	/* Acquire a reference for the mmap.  munmap will release. */
   3486 	uao_reference(*uobjp);
   3487 	*maxprotp = prot;
   3488 	*advicep = UVM_ADV_RANDOM;
   3489 	*flagsp = MAP_SHARED;
   3490 	return 0;
   3491 }
   3492 
   3493 /*
   3494  * /dev/audioctl has to be able to open at any time without interference
   3495  * with any /dev/audio or /dev/sound.
   3496  * Must be called with sc_exlock held and without sc_lock held.
   3497  */
   3498 static int
   3499 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
   3500 	struct lwp *l)
   3501 {
   3502 	struct file *fp;
   3503 	audio_file_t *af;
   3504 	int fd;
   3505 	int error;
   3506 
   3507 	KASSERT(sc->sc_exlock);
   3508 
   3509 	TRACE(1, "called");
   3510 
   3511 	error = fd_allocfile(&fp, &fd);
   3512 	if (error)
   3513 		return error;
   3514 
   3515 	af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
   3516 	af->sc = sc;
   3517 	af->dev = dev;
   3518 
   3519 	/* Not necessary to insert sc_files. */
   3520 
   3521 	error = fd_clone(fp, fd, flags, &audio_fileops, af);
   3522 	KASSERTMSG(error == EMOVEFD, "error=%d", error);
   3523 
   3524 	return error;
   3525 }
   3526 
   3527 /*
   3528  * Free 'mem' if available, and initialize the pointer.
   3529  * For this reason, this is implemented as macro.
   3530  */
   3531 #define audio_free(mem)	do {	\
   3532 	if (mem != NULL) {	\
   3533 		kern_free(mem);	\
   3534 		mem = NULL;	\
   3535 	}	\
   3536 } while (0)
   3537 
   3538 /*
   3539  * (Re)allocate 'memblock' with specified 'bytes'.
   3540  * bytes must not be 0.
   3541  * This function never returns NULL.
   3542  */
   3543 static void *
   3544 audio_realloc(void *memblock, size_t bytes)
   3545 {
   3546 
   3547 	KASSERT(bytes != 0);
   3548 	audio_free(memblock);
   3549 	return kern_malloc(bytes, M_WAITOK);
   3550 }
   3551 
   3552 /*
   3553  * (Re)allocate usrbuf with 'newbufsize' bytes.
   3554  * Use this function for usrbuf because only usrbuf can be mmapped.
   3555  * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
   3556  * returns 0.  Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
   3557  * and returns errno.
   3558  * It must be called before updating usrbuf.capacity.
   3559  */
   3560 static int
   3561 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
   3562 {
   3563 	struct audio_softc *sc;
   3564 	vaddr_t vstart;
   3565 	vsize_t oldvsize;
   3566 	vsize_t newvsize;
   3567 	int error;
   3568 
   3569 	KASSERT(newbufsize > 0);
   3570 	sc = track->mixer->sc;
   3571 
   3572 	/* Get a nonzero multiple of PAGE_SIZE */
   3573 	newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
   3574 
   3575 	if (track->usrbuf.mem != NULL) {
   3576 		oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
   3577 		    PAGE_SIZE);
   3578 		if (oldvsize == newvsize) {
   3579 			track->usrbuf.capacity = newbufsize;
   3580 			return 0;
   3581 		}
   3582 		vstart = (vaddr_t)track->usrbuf.mem;
   3583 		uvm_unmap(kernel_map, vstart, vstart + oldvsize);
   3584 		/* uvm_unmap also detach uobj */
   3585 		track->uobj = NULL;		/* paranoia */
   3586 		track->usrbuf.mem = NULL;
   3587 	}
   3588 
   3589 	/* Create a uvm anonymous object */
   3590 	track->uobj = uao_create(newvsize, 0);
   3591 
   3592 	/* Map it into the kernel virtual address space */
   3593 	vstart = 0;
   3594 	error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
   3595 	    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
   3596 	    UVM_ADV_RANDOM, 0));
   3597 	if (error) {
   3598 		device_printf(sc->sc_dev, "uvm_map failed: errno=%d\n", error);
   3599 		uao_detach(track->uobj);	/* release reference */
   3600 		goto abort;
   3601 	}
   3602 
   3603 	error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
   3604 	    false, 0);
   3605 	if (error) {
   3606 		device_printf(sc->sc_dev, "uvm_map_pageable failed: errno=%d\n",
   3607 		    error);
   3608 		uvm_unmap(kernel_map, vstart, vstart + newvsize);
   3609 		/* uvm_unmap also detach uobj */
   3610 		goto abort;
   3611 	}
   3612 
   3613 	track->usrbuf.mem = (void *)vstart;
   3614 	track->usrbuf.capacity = newbufsize;
   3615 	memset(track->usrbuf.mem, 0, newvsize);
   3616 	return 0;
   3617 
   3618 	/* failure */
   3619 abort:
   3620 	track->uobj = NULL;		/* paranoia */
   3621 	track->usrbuf.mem = NULL;
   3622 	track->usrbuf.capacity = 0;
   3623 	return error;
   3624 }
   3625 
   3626 /*
   3627  * Free usrbuf (if available).
   3628  */
   3629 static void
   3630 audio_free_usrbuf(audio_track_t *track)
   3631 {
   3632 	vaddr_t vstart;
   3633 	vsize_t vsize;
   3634 
   3635 	vstart = (vaddr_t)track->usrbuf.mem;
   3636 	vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
   3637 	if (track->usrbuf.mem != NULL) {
   3638 		/*
   3639 		 * Unmap the kernel mapping.  uvm_unmap releases the
   3640 		 * reference to the uvm object, and this should be the
   3641 		 * last virtual mapping of the uvm object, so no need
   3642 		 * to explicitly release (`detach') the object.
   3643 		 */
   3644 		uvm_unmap(kernel_map, vstart, vstart + vsize);
   3645 
   3646 		track->uobj = NULL;
   3647 		track->usrbuf.mem = NULL;
   3648 		track->usrbuf.capacity = 0;
   3649 	}
   3650 }
   3651 
   3652 /*
   3653  * This filter changes the volume for each channel.
   3654  * arg->context points track->ch_volume[].
   3655  */
   3656 static void
   3657 audio_track_chvol(audio_filter_arg_t *arg)
   3658 {
   3659 	int16_t *ch_volume;
   3660 	const aint_t *s;
   3661 	aint_t *d;
   3662 	u_int i;
   3663 	u_int ch;
   3664 	u_int channels;
   3665 
   3666 	DIAGNOSTIC_filter_arg(arg);
   3667 	KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
   3668 	    "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
   3669 	    arg->srcfmt->channels, arg->dstfmt->channels);
   3670 	KASSERT(arg->context != NULL);
   3671 	KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
   3672 	    "arg->srcfmt->channels=%d", arg->srcfmt->channels);
   3673 
   3674 	s = arg->src;
   3675 	d = arg->dst;
   3676 	ch_volume = arg->context;
   3677 
   3678 	channels = arg->srcfmt->channels;
   3679 	for (i = 0; i < arg->count; i++) {
   3680 		for (ch = 0; ch < channels; ch++) {
   3681 			aint2_t val;
   3682 			val = *s++;
   3683 			val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
   3684 			*d++ = (aint_t)val;
   3685 		}
   3686 	}
   3687 }
   3688 
   3689 /*
   3690  * This filter performs conversion from stereo (or more channels) to mono.
   3691  */
   3692 static void
   3693 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
   3694 {
   3695 	const aint_t *s;
   3696 	aint_t *d;
   3697 	u_int i;
   3698 
   3699 	DIAGNOSTIC_filter_arg(arg);
   3700 
   3701 	s = arg->src;
   3702 	d = arg->dst;
   3703 
   3704 	for (i = 0; i < arg->count; i++) {
   3705 		*d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
   3706 		s += arg->srcfmt->channels;
   3707 	}
   3708 }
   3709 
   3710 /*
   3711  * This filter performs conversion from mono to stereo (or more channels).
   3712  */
   3713 static void
   3714 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
   3715 {
   3716 	const aint_t *s;
   3717 	aint_t *d;
   3718 	u_int i;
   3719 	u_int ch;
   3720 	u_int dstchannels;
   3721 
   3722 	DIAGNOSTIC_filter_arg(arg);
   3723 
   3724 	s = arg->src;
   3725 	d = arg->dst;
   3726 	dstchannels = arg->dstfmt->channels;
   3727 
   3728 	for (i = 0; i < arg->count; i++) {
   3729 		d[0] = s[0];
   3730 		d[1] = s[0];
   3731 		s++;
   3732 		d += dstchannels;
   3733 	}
   3734 	if (dstchannels > 2) {
   3735 		d = arg->dst;
   3736 		for (i = 0; i < arg->count; i++) {
   3737 			for (ch = 2; ch < dstchannels; ch++) {
   3738 				d[ch] = 0;
   3739 			}
   3740 			d += dstchannels;
   3741 		}
   3742 	}
   3743 }
   3744 
   3745 /*
   3746  * This filter shrinks M channels into N channels.
   3747  * Extra channels are discarded.
   3748  */
   3749 static void
   3750 audio_track_chmix_shrink(audio_filter_arg_t *arg)
   3751 {
   3752 	const aint_t *s;
   3753 	aint_t *d;
   3754 	u_int i;
   3755 	u_int ch;
   3756 
   3757 	DIAGNOSTIC_filter_arg(arg);
   3758 
   3759 	s = arg->src;
   3760 	d = arg->dst;
   3761 
   3762 	for (i = 0; i < arg->count; i++) {
   3763 		for (ch = 0; ch < arg->dstfmt->channels; ch++) {
   3764 			*d++ = s[ch];
   3765 		}
   3766 		s += arg->srcfmt->channels;
   3767 	}
   3768 }
   3769 
   3770 /*
   3771  * This filter expands M channels into N channels.
   3772  * Silence is inserted for missing channels.
   3773  */
   3774 static void
   3775 audio_track_chmix_expand(audio_filter_arg_t *arg)
   3776 {
   3777 	const aint_t *s;
   3778 	aint_t *d;
   3779 	u_int i;
   3780 	u_int ch;
   3781 	u_int srcchannels;
   3782 	u_int dstchannels;
   3783 
   3784 	DIAGNOSTIC_filter_arg(arg);
   3785 
   3786 	s = arg->src;
   3787 	d = arg->dst;
   3788 
   3789 	srcchannels = arg->srcfmt->channels;
   3790 	dstchannels = arg->dstfmt->channels;
   3791 	for (i = 0; i < arg->count; i++) {
   3792 		for (ch = 0; ch < srcchannels; ch++) {
   3793 			*d++ = *s++;
   3794 		}
   3795 		for (; ch < dstchannels; ch++) {
   3796 			*d++ = 0;
   3797 		}
   3798 	}
   3799 }
   3800 
   3801 /*
   3802  * This filter performs frequency conversion (up sampling).
   3803  * It uses linear interpolation.
   3804  */
   3805 static void
   3806 audio_track_freq_up(audio_filter_arg_t *arg)
   3807 {
   3808 	audio_track_t *track;
   3809 	audio_ring_t *src;
   3810 	audio_ring_t *dst;
   3811 	const aint_t *s;
   3812 	aint_t *d;
   3813 	aint_t prev[AUDIO_MAX_CHANNELS];
   3814 	aint_t curr[AUDIO_MAX_CHANNELS];
   3815 	aint_t grad[AUDIO_MAX_CHANNELS];
   3816 	u_int i;
   3817 	u_int t;
   3818 	u_int step;
   3819 	u_int channels;
   3820 	u_int ch;
   3821 	int srcused;
   3822 
   3823 	track = arg->context;
   3824 	KASSERT(track);
   3825 	src = &track->freq.srcbuf;
   3826 	dst = track->freq.dst;
   3827 	DIAGNOSTIC_ring(dst);
   3828 	DIAGNOSTIC_ring(src);
   3829 	KASSERT(src->used > 0);
   3830 	KASSERTMSG(src->fmt.channels == dst->fmt.channels,
   3831 	    "src->fmt.channels=%d dst->fmt.channels=%d",
   3832 	    src->fmt.channels, dst->fmt.channels);
   3833 	KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
   3834 	    "src->head=%d track->mixer->frames_per_block=%d",
   3835 	    src->head, track->mixer->frames_per_block);
   3836 
   3837 	s = arg->src;
   3838 	d = arg->dst;
   3839 
   3840 	/*
   3841 	 * In order to faciliate interpolation for each block, slide (delay)
   3842 	 * input by one sample.  As a result, strictly speaking, the output
   3843 	 * phase is delayed by 1/dstfreq.  However, I believe there is no
   3844 	 * observable impact.
   3845 	 *
   3846 	 * Example)
   3847 	 * srcfreq:dstfreq = 1:3
   3848 	 *
   3849 	 *  A - -
   3850 	 *  |
   3851 	 *  |
   3852 	 *  |     B - -
   3853 	 *  +-----+-----> input timeframe
   3854 	 *  0     1
   3855 	 *
   3856 	 *  0     1
   3857 	 *  +-----+-----> input timeframe
   3858 	 *  |     A
   3859 	 *  |   x   x
   3860 	 *  | x       x
   3861 	 *  x          (B)
   3862 	 *  +-+-+-+-+-+-> output timeframe
   3863 	 *  0 1 2 3 4 5
   3864 	 */
   3865 
   3866 	/* Last samples in previous block */
   3867 	channels = src->fmt.channels;
   3868 	for (ch = 0; ch < channels; ch++) {
   3869 		prev[ch] = track->freq_prev[ch];
   3870 		curr[ch] = track->freq_curr[ch];
   3871 		grad[ch] = curr[ch] - prev[ch];
   3872 	}
   3873 
   3874 	step = track->freq_step;
   3875 	t = track->freq_current;
   3876 //#define FREQ_DEBUG
   3877 #if defined(FREQ_DEBUG)
   3878 #define PRINTF(fmt...)	printf(fmt)
   3879 #else
   3880 #define PRINTF(fmt...)	do { } while (0)
   3881 #endif
   3882 	srcused = src->used;
   3883 	PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
   3884 	PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
   3885 	PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
   3886 	PRINTF(" t=%d\n", t);
   3887 
   3888 	for (i = 0; i < arg->count; i++) {
   3889 		PRINTF("i=%d t=%5d", i, t);
   3890 		if (t >= 65536) {
   3891 			for (ch = 0; ch < channels; ch++) {
   3892 				prev[ch] = curr[ch];
   3893 				curr[ch] = *s++;
   3894 				grad[ch] = curr[ch] - prev[ch];
   3895 			}
   3896 			PRINTF(" prev=%d s[%d]=%d",
   3897 			    prev[0], src->used - srcused, curr[0]);
   3898 
   3899 			/* Update */
   3900 			t -= 65536;
   3901 			srcused--;
   3902 			if (srcused < 0) {
   3903 				PRINTF(" break\n");
   3904 				break;
   3905 			}
   3906 		}
   3907 
   3908 		for (ch = 0; ch < channels; ch++) {
   3909 			*d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
   3910 #if defined(FREQ_DEBUG)
   3911 			if (ch == 0)
   3912 				printf(" t=%5d *d=%d", t, d[-1]);
   3913 #endif
   3914 		}
   3915 		t += step;
   3916 
   3917 		PRINTF("\n");
   3918 	}
   3919 	PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
   3920 
   3921 	auring_take(src, src->used);
   3922 	auring_push(dst, i);
   3923 
   3924 	/* Adjust */
   3925 	t += track->freq_leap;
   3926 
   3927 	track->freq_current = t;
   3928 	for (ch = 0; ch < channels; ch++) {
   3929 		track->freq_prev[ch] = prev[ch];
   3930 		track->freq_curr[ch] = curr[ch];
   3931 	}
   3932 }
   3933 
   3934 /*
   3935  * This filter performs frequency conversion (down sampling).
   3936  * It uses simple thinning.
   3937  */
   3938 static void
   3939 audio_track_freq_down(audio_filter_arg_t *arg)
   3940 {
   3941 	audio_track_t *track;
   3942 	audio_ring_t *src;
   3943 	audio_ring_t *dst;
   3944 	const aint_t *s0;
   3945 	aint_t *d;
   3946 	u_int i;
   3947 	u_int t;
   3948 	u_int step;
   3949 	u_int ch;
   3950 	u_int channels;
   3951 
   3952 	track = arg->context;
   3953 	KASSERT(track);
   3954 	src = &track->freq.srcbuf;
   3955 	dst = track->freq.dst;
   3956 
   3957 	DIAGNOSTIC_ring(dst);
   3958 	DIAGNOSTIC_ring(src);
   3959 	KASSERT(src->used > 0);
   3960 	KASSERTMSG(src->fmt.channels == dst->fmt.channels,
   3961 	    "src->fmt.channels=%d dst->fmt.channels=%d",
   3962 	    src->fmt.channels, dst->fmt.channels);
   3963 	KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
   3964 	    "src->head=%d track->mixer->frames_per_block=%d",
   3965 	    src->head, track->mixer->frames_per_block);
   3966 
   3967 	s0 = arg->src;
   3968 	d = arg->dst;
   3969 	t = track->freq_current;
   3970 	step = track->freq_step;
   3971 	channels = dst->fmt.channels;
   3972 	PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
   3973 	PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
   3974 	PRINTF(" t=%d\n", t);
   3975 
   3976 	for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
   3977 		const aint_t *s;
   3978 		PRINTF("i=%4d t=%10d", i, t);
   3979 		s = s0 + (t / 65536) * channels;
   3980 		PRINTF(" s=%5ld", (s - s0) / channels);
   3981 		for (ch = 0; ch < channels; ch++) {
   3982 			if (ch == 0) PRINTF(" *s=%d", s[ch]);
   3983 			*d++ = s[ch];
   3984 		}
   3985 		PRINTF("\n");
   3986 		t += step;
   3987 	}
   3988 	t += track->freq_leap;
   3989 	PRINTF("end t=%d\n", t);
   3990 	auring_take(src, src->used);
   3991 	auring_push(dst, i);
   3992 	track->freq_current = t % 65536;
   3993 }
   3994 
   3995 /*
   3996  * Creates track and returns it.
   3997  * Must be called without sc_lock held.
   3998  */
   3999 audio_track_t *
   4000 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
   4001 {
   4002 	audio_track_t *track;
   4003 	static int newid = 0;
   4004 
   4005 	track = kmem_zalloc(sizeof(*track), KM_SLEEP);
   4006 
   4007 	track->id = newid++;
   4008 	track->mixer = mixer;
   4009 	track->mode = mixer->mode;
   4010 
   4011 	/* Do TRACE after id is assigned. */
   4012 	TRACET(3, track, "for %s",
   4013 	    mixer->mode == AUMODE_PLAY ? "playback" : "recording");
   4014 
   4015 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
   4016 	track->volume = 256;
   4017 #endif
   4018 	for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
   4019 		track->ch_volume[i] = 256;
   4020 	}
   4021 
   4022 	return track;
   4023 }
   4024 
   4025 /*
   4026  * Release all resources of the track and track itself.
   4027  * track must not be NULL.  Don't specify the track within the file
   4028  * structure linked from sc->sc_files.
   4029  */
   4030 static void
   4031 audio_track_destroy(audio_track_t *track)
   4032 {
   4033 
   4034 	KASSERT(track);
   4035 
   4036 	audio_free_usrbuf(track);
   4037 	audio_free(track->codec.srcbuf.mem);
   4038 	audio_free(track->chvol.srcbuf.mem);
   4039 	audio_free(track->chmix.srcbuf.mem);
   4040 	audio_free(track->freq.srcbuf.mem);
   4041 	audio_free(track->outbuf.mem);
   4042 
   4043 	kmem_free(track, sizeof(*track));
   4044 }
   4045 
   4046 /*
   4047  * It returns encoding conversion filter according to src and dst format.
   4048  * If it is not a convertible pair, it returns NULL.  Either src or dst
   4049  * must be internal format.
   4050  */
   4051 static audio_filter_t
   4052 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
   4053 	const audio_format2_t *dst)
   4054 {
   4055 
   4056 	if (audio_format2_is_internal(src)) {
   4057 		if (dst->encoding == AUDIO_ENCODING_ULAW) {
   4058 			return audio_internal_to_mulaw;
   4059 		} else if (dst->encoding == AUDIO_ENCODING_ALAW) {
   4060 			return audio_internal_to_alaw;
   4061 		} else if (audio_format2_is_linear(dst)) {
   4062 			switch (dst->stride) {
   4063 			case 8:
   4064 				return audio_internal_to_linear8;
   4065 			case 16:
   4066 				return audio_internal_to_linear16;
   4067 #if defined(AUDIO_SUPPORT_LINEAR24)
   4068 			case 24:
   4069 				return audio_internal_to_linear24;
   4070 #endif
   4071 			case 32:
   4072 				return audio_internal_to_linear32;
   4073 			default:
   4074 				TRACET(1, track, "unsupported %s stride %d",
   4075 				    "dst", dst->stride);
   4076 				goto abort;
   4077 			}
   4078 		}
   4079 	} else if (audio_format2_is_internal(dst)) {
   4080 		if (src->encoding == AUDIO_ENCODING_ULAW) {
   4081 			return audio_mulaw_to_internal;
   4082 		} else if (src->encoding == AUDIO_ENCODING_ALAW) {
   4083 			return audio_alaw_to_internal;
   4084 		} else if (audio_format2_is_linear(src)) {
   4085 			switch (src->stride) {
   4086 			case 8:
   4087 				return audio_linear8_to_internal;
   4088 			case 16:
   4089 				return audio_linear16_to_internal;
   4090 #if defined(AUDIO_SUPPORT_LINEAR24)
   4091 			case 24:
   4092 				return audio_linear24_to_internal;
   4093 #endif
   4094 			case 32:
   4095 				return audio_linear32_to_internal;
   4096 			default:
   4097 				TRACET(1, track, "unsupported %s stride %d",
   4098 				    "src", src->stride);
   4099 				goto abort;
   4100 			}
   4101 		}
   4102 	}
   4103 
   4104 	TRACET(1, track, "unsupported encoding");
   4105 abort:
   4106 #if defined(AUDIO_DEBUG)
   4107 	if (audiodebug >= 2) {
   4108 		char buf[100];
   4109 		audio_format2_tostr(buf, sizeof(buf), src);
   4110 		TRACET(2, track, "src %s", buf);
   4111 		audio_format2_tostr(buf, sizeof(buf), dst);
   4112 		TRACET(2, track, "dst %s", buf);
   4113 	}
   4114 #endif
   4115 	return NULL;
   4116 }
   4117 
   4118 /*
   4119  * Initialize the codec stage of this track as necessary.
   4120  * If successful, it initializes the codec stage as necessary, stores updated
   4121  * last_dst in *last_dstp in any case, and returns 0.
   4122  * Otherwise, it returns errno without modifying *last_dstp.
   4123  */
   4124 static int
   4125 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
   4126 {
   4127 	audio_ring_t *last_dst;
   4128 	audio_ring_t *srcbuf;
   4129 	audio_format2_t *srcfmt;
   4130 	audio_format2_t *dstfmt;
   4131 	audio_filter_arg_t *arg;
   4132 	u_int len;
   4133 	int error;
   4134 
   4135 	KASSERT(track);
   4136 
   4137 	last_dst = *last_dstp;
   4138 	dstfmt = &last_dst->fmt;
   4139 	srcfmt = &track->inputfmt;
   4140 	srcbuf = &track->codec.srcbuf;
   4141 	error = 0;
   4142 
   4143 	if (srcfmt->encoding != dstfmt->encoding
   4144 	 || srcfmt->precision != dstfmt->precision
   4145 	 || srcfmt->stride != dstfmt->stride) {
   4146 		track->codec.dst = last_dst;
   4147 
   4148 		srcbuf->fmt = *dstfmt;
   4149 		srcbuf->fmt.encoding = srcfmt->encoding;
   4150 		srcbuf->fmt.precision = srcfmt->precision;
   4151 		srcbuf->fmt.stride = srcfmt->stride;
   4152 
   4153 		track->codec.filter = audio_track_get_codec(track,
   4154 		    &srcbuf->fmt, dstfmt);
   4155 		if (track->codec.filter == NULL) {
   4156 			error = EINVAL;
   4157 			goto abort;
   4158 		}
   4159 
   4160 		srcbuf->head = 0;
   4161 		srcbuf->used = 0;
   4162 		srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
   4163 		len = auring_bytelen(srcbuf);
   4164 		srcbuf->mem = audio_realloc(srcbuf->mem, len);
   4165 
   4166 		arg = &track->codec.arg;
   4167 		arg->srcfmt = &srcbuf->fmt;
   4168 		arg->dstfmt = dstfmt;
   4169 		arg->context = NULL;
   4170 
   4171 		*last_dstp = srcbuf;
   4172 		return 0;
   4173 	}
   4174 
   4175 abort:
   4176 	track->codec.filter = NULL;
   4177 	audio_free(srcbuf->mem);
   4178 	return error;
   4179 }
   4180 
   4181 /*
   4182  * Initialize the chvol stage of this track as necessary.
   4183  * If successful, it initializes the chvol stage as necessary, stores updated
   4184  * last_dst in *last_dstp in any case, and returns 0.
   4185  * Otherwise, it returns errno without modifying *last_dstp.
   4186  */
   4187 static int
   4188 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
   4189 {
   4190 	audio_ring_t *last_dst;
   4191 	audio_ring_t *srcbuf;
   4192 	audio_format2_t *srcfmt;
   4193 	audio_format2_t *dstfmt;
   4194 	audio_filter_arg_t *arg;
   4195 	u_int len;
   4196 	int error;
   4197 
   4198 	KASSERT(track);
   4199 
   4200 	last_dst = *last_dstp;
   4201 	dstfmt = &last_dst->fmt;
   4202 	srcfmt = &track->inputfmt;
   4203 	srcbuf = &track->chvol.srcbuf;
   4204 	error = 0;
   4205 
   4206 	/* Check whether channel volume conversion is necessary. */
   4207 	bool use_chvol = false;
   4208 	for (int ch = 0; ch < srcfmt->channels; ch++) {
   4209 		if (track->ch_volume[ch] != 256) {
   4210 			use_chvol = true;
   4211 			break;
   4212 		}
   4213 	}
   4214 
   4215 	if (use_chvol == true) {
   4216 		track->chvol.dst = last_dst;
   4217 		track->chvol.filter = audio_track_chvol;
   4218 
   4219 		srcbuf->fmt = *dstfmt;
   4220 		/* no format conversion occurs */
   4221 
   4222 		srcbuf->head = 0;
   4223 		srcbuf->used = 0;
   4224 		srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
   4225 		len = auring_bytelen(srcbuf);
   4226 		srcbuf->mem = audio_realloc(srcbuf->mem, len);
   4227 
   4228 		arg = &track->chvol.arg;
   4229 		arg->srcfmt = &srcbuf->fmt;
   4230 		arg->dstfmt = dstfmt;
   4231 		arg->context = track->ch_volume;
   4232 
   4233 		*last_dstp = srcbuf;
   4234 		return 0;
   4235 	}
   4236 
   4237 	track->chvol.filter = NULL;
   4238 	audio_free(srcbuf->mem);
   4239 	return error;
   4240 }
   4241 
   4242 /*
   4243  * Initialize the chmix stage of this track as necessary.
   4244  * If successful, it initializes the chmix stage as necessary, stores updated
   4245  * last_dst in *last_dstp in any case, and returns 0.
   4246  * Otherwise, it returns errno without modifying *last_dstp.
   4247  */
   4248 static int
   4249 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
   4250 {
   4251 	audio_ring_t *last_dst;
   4252 	audio_ring_t *srcbuf;
   4253 	audio_format2_t *srcfmt;
   4254 	audio_format2_t *dstfmt;
   4255 	audio_filter_arg_t *arg;
   4256 	u_int srcch;
   4257 	u_int dstch;
   4258 	u_int len;
   4259 	int error;
   4260 
   4261 	KASSERT(track);
   4262 
   4263 	last_dst = *last_dstp;
   4264 	dstfmt = &last_dst->fmt;
   4265 	srcfmt = &track->inputfmt;
   4266 	srcbuf = &track->chmix.srcbuf;
   4267 	error = 0;
   4268 
   4269 	srcch = srcfmt->channels;
   4270 	dstch = dstfmt->channels;
   4271 	if (srcch != dstch) {
   4272 		track->chmix.dst = last_dst;
   4273 
   4274 		if (srcch >= 2 && dstch == 1) {
   4275 			track->chmix.filter = audio_track_chmix_mixLR;
   4276 		} else if (srcch == 1 && dstch >= 2) {
   4277 			track->chmix.filter = audio_track_chmix_dupLR;
   4278 		} else if (srcch > dstch) {
   4279 			track->chmix.filter = audio_track_chmix_shrink;
   4280 		} else {
   4281 			track->chmix.filter = audio_track_chmix_expand;
   4282 		}
   4283 
   4284 		srcbuf->fmt = *dstfmt;
   4285 		srcbuf->fmt.channels = srcch;
   4286 
   4287 		srcbuf->head = 0;
   4288 		srcbuf->used = 0;
   4289 		/* XXX The buffer size should be able to calculate. */
   4290 		srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
   4291 		len = auring_bytelen(srcbuf);
   4292 		srcbuf->mem = audio_realloc(srcbuf->mem, len);
   4293 
   4294 		arg = &track->chmix.arg;
   4295 		arg->srcfmt = &srcbuf->fmt;
   4296 		arg->dstfmt = dstfmt;
   4297 		arg->context = NULL;
   4298 
   4299 		*last_dstp = srcbuf;
   4300 		return 0;
   4301 	}
   4302 
   4303 	track->chmix.filter = NULL;
   4304 	audio_free(srcbuf->mem);
   4305 	return error;
   4306 }
   4307 
   4308 /*
   4309  * Initialize the freq stage of this track as necessary.
   4310  * If successful, it initializes the freq stage as necessary, stores updated
   4311  * last_dst in *last_dstp in any case, and returns 0.
   4312  * Otherwise, it returns errno without modifying *last_dstp.
   4313  */
   4314 static int
   4315 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
   4316 {
   4317 	audio_ring_t *last_dst;
   4318 	audio_ring_t *srcbuf;
   4319 	audio_format2_t *srcfmt;
   4320 	audio_format2_t *dstfmt;
   4321 	audio_filter_arg_t *arg;
   4322 	uint32_t srcfreq;
   4323 	uint32_t dstfreq;
   4324 	u_int dst_capacity;
   4325 	u_int mod;
   4326 	u_int len;
   4327 	int error;
   4328 
   4329 	KASSERT(track);
   4330 
   4331 	last_dst = *last_dstp;
   4332 	dstfmt = &last_dst->fmt;
   4333 	srcfmt = &track->inputfmt;
   4334 	srcbuf = &track->freq.srcbuf;
   4335 	error = 0;
   4336 
   4337 	srcfreq = srcfmt->sample_rate;
   4338 	dstfreq = dstfmt->sample_rate;
   4339 	if (srcfreq != dstfreq) {
   4340 		track->freq.dst = last_dst;
   4341 
   4342 		memset(track->freq_prev, 0, sizeof(track->freq_prev));
   4343 		memset(track->freq_curr, 0, sizeof(track->freq_curr));
   4344 
   4345 		/* freq_step is the ratio of src/dst when let dst 65536. */
   4346 		track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
   4347 
   4348 		dst_capacity = frame_per_block(track->mixer, dstfmt);
   4349 		mod = (uint64_t)srcfreq * 65536 % dstfreq;
   4350 		track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
   4351 
   4352 		if (track->freq_step < 65536) {
   4353 			track->freq.filter = audio_track_freq_up;
   4354 			/* In order to carry at the first time. */
   4355 			track->freq_current = 65536;
   4356 		} else {
   4357 			track->freq.filter = audio_track_freq_down;
   4358 			track->freq_current = 0;
   4359 		}
   4360 
   4361 		srcbuf->fmt = *dstfmt;
   4362 		srcbuf->fmt.sample_rate = srcfreq;
   4363 
   4364 		srcbuf->head = 0;
   4365 		srcbuf->used = 0;
   4366 		srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
   4367 		len = auring_bytelen(srcbuf);
   4368 		srcbuf->mem = audio_realloc(srcbuf->mem, len);
   4369 
   4370 		arg = &track->freq.arg;
   4371 		arg->srcfmt = &srcbuf->fmt;
   4372 		arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
   4373 		arg->context = track;
   4374 
   4375 		*last_dstp = srcbuf;
   4376 		return 0;
   4377 	}
   4378 
   4379 	track->freq.filter = NULL;
   4380 	audio_free(srcbuf->mem);
   4381 	return error;
   4382 }
   4383 
   4384 /*
   4385  * When playing back: (e.g. if codec and freq stage are valid)
   4386  *
   4387  *               write
   4388  *                | uiomove
   4389  *                v
   4390  *  usrbuf      [...............]  byte ring buffer (mmap-able)
   4391  *                | memcpy
   4392  *                v
   4393  *  codec.srcbuf[....]             1 block (ring) buffer   <-- stage input
   4394  *       .dst ----+
   4395  *                | convert
   4396  *                v
   4397  *  freq.srcbuf [....]             1 block (ring) buffer
   4398  *      .dst  ----+
   4399  *                | convert
   4400  *                v
   4401  *  outbuf      [...............]  NBLKOUT blocks ring buffer
   4402  *
   4403  *
   4404  * When recording:
   4405  *
   4406  *  freq.srcbuf [...............]  NBLKOUT blocks ring buffer <-- stage input
   4407  *      .dst  ----+
   4408  *                | convert
   4409  *                v
   4410  *  codec.srcbuf[.....]            1 block (ring) buffer
   4411  *       .dst ----+
   4412  *                | convert
   4413  *                v
   4414  *  outbuf      [.....]            1 block (ring) buffer
   4415  *                | memcpy
   4416  *                v
   4417  *  usrbuf      [...............]  byte ring buffer (mmap-able *)
   4418  *                | uiomove
   4419  *                v
   4420  *               read
   4421  *
   4422  *    *: usrbuf for recording is also mmap-able due to symmetry with
   4423  *       playback buffer, but for now mmap will never happen for recording.
   4424  */
   4425 
   4426 /*
   4427  * Set the userland format of this track.
   4428  * usrfmt argument should have been previously verified by
   4429  * audio_track_setinfo_check().
   4430  * This function may release and reallocate all internal conversion buffers.
   4431  * It returns 0 if successful.  Otherwise it returns errno with clearing all
   4432  * internal buffers.
   4433  * It must be called without sc_intr_lock since uvm_* routines require non
   4434  * intr_lock state.
   4435  * It must be called with track lock held since it may release and reallocate
   4436  * outbuf.
   4437  */
   4438 static int
   4439 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
   4440 {
   4441 	struct audio_softc *sc;
   4442 	u_int newbufsize;
   4443 	u_int oldblksize;
   4444 	u_int len;
   4445 	int error;
   4446 
   4447 	KASSERT(track);
   4448 	sc = track->mixer->sc;
   4449 
   4450 	/* usrbuf is the closest buffer to the userland. */
   4451 	track->usrbuf.fmt = *usrfmt;
   4452 
   4453 	/*
   4454 	 * For references, one block size (in 40msec) is:
   4455 	 *  320 bytes    = 204 blocks/64KB for mulaw/8kHz/1ch
   4456 	 *  7680 bytes   = 8 blocks/64KB for s16/48kHz/2ch
   4457 	 *  30720 bytes  = 90 KB/3blocks for s16/48kHz/8ch
   4458 	 *  61440 bytes  = 180 KB/3blocks for s16/96kHz/8ch
   4459 	 *  245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
   4460 	 *
   4461 	 * For example,
   4462 	 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
   4463 	 *     newbufsize = rounddown(65536 / 7056) = 63504
   4464 	 *     newvsize = roundup2(63504, PAGE_SIZE) = 65536
   4465 	 *    Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
   4466 	 *
   4467 	 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
   4468 	 *     newbufsize = rounddown(65536 / 7680) = 61440
   4469 	 *     newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
   4470 	 *    Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
   4471 	 */
   4472 	oldblksize = track->usrbuf_blksize;
   4473 	track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
   4474 	    frame_per_block(track->mixer, &track->usrbuf.fmt));
   4475 	track->usrbuf.head = 0;
   4476 	track->usrbuf.used = 0;
   4477 	newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
   4478 	newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
   4479 	error = audio_realloc_usrbuf(track, newbufsize);
   4480 	if (error) {
   4481 		device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
   4482 		    newbufsize);
   4483 		goto error;
   4484 	}
   4485 
   4486 	/* Recalc water mark. */
   4487 	if (track->usrbuf_blksize != oldblksize) {
   4488 		if (audio_track_is_playback(track)) {
   4489 			/* Set high at 100%, low at 75%.  */
   4490 			track->usrbuf_usedhigh = track->usrbuf.capacity;
   4491 			track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
   4492 		} else {
   4493 			/* Set high at 100% minus 1block(?), low at 0% */
   4494 			track->usrbuf_usedhigh = track->usrbuf.capacity -
   4495 			    track->usrbuf_blksize;
   4496 			track->usrbuf_usedlow = 0;
   4497 		}
   4498 	}
   4499 
   4500 	/* Stage buffer */
   4501 	audio_ring_t *last_dst = &track->outbuf;
   4502 	if (audio_track_is_playback(track)) {
   4503 		/* On playback, initialize from the mixer side in order. */
   4504 		track->inputfmt = *usrfmt;
   4505 		track->outbuf.fmt =  track->mixer->track_fmt;
   4506 
   4507 		if ((error = audio_track_init_freq(track, &last_dst)) != 0)
   4508 			goto error;
   4509 		if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
   4510 			goto error;
   4511 		if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
   4512 			goto error;
   4513 		if ((error = audio_track_init_codec(track, &last_dst)) != 0)
   4514 			goto error;
   4515 	} else {
   4516 		/* On recording, initialize from userland side in order. */
   4517 		track->inputfmt = track->mixer->track_fmt;
   4518 		track->outbuf.fmt = *usrfmt;
   4519 
   4520 		if ((error = audio_track_init_codec(track, &last_dst)) != 0)
   4521 			goto error;
   4522 		if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
   4523 			goto error;
   4524 		if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
   4525 			goto error;
   4526 		if ((error = audio_track_init_freq(track, &last_dst)) != 0)
   4527 			goto error;
   4528 	}
   4529 #if 0
   4530 	/* debug */
   4531 	if (track->freq.filter) {
   4532 		audio_print_format2("freq src", &track->freq.srcbuf.fmt);
   4533 		audio_print_format2("freq dst", &track->freq.dst->fmt);
   4534 	}
   4535 	if (track->chmix.filter) {
   4536 		audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
   4537 		audio_print_format2("chmix dst", &track->chmix.dst->fmt);
   4538 	}
   4539 	if (track->chvol.filter) {
   4540 		audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
   4541 		audio_print_format2("chvol dst", &track->chvol.dst->fmt);
   4542 	}
   4543 	if (track->codec.filter) {
   4544 		audio_print_format2("codec src", &track->codec.srcbuf.fmt);
   4545 		audio_print_format2("codec dst", &track->codec.dst->fmt);
   4546 	}
   4547 #endif
   4548 
   4549 	/* Stage input buffer */
   4550 	track->input = last_dst;
   4551 
   4552 	/*
   4553 	 * On the recording track, make the first stage a ring buffer.
   4554 	 * XXX is there a better way?
   4555 	 */
   4556 	if (audio_track_is_record(track)) {
   4557 		track->input->capacity = NBLKOUT *
   4558 		    frame_per_block(track->mixer, &track->input->fmt);
   4559 		len = auring_bytelen(track->input);
   4560 		track->input->mem = audio_realloc(track->input->mem, len);
   4561 	}
   4562 
   4563 	/*
   4564 	 * Output buffer.
   4565 	 * On the playback track, its capacity is NBLKOUT blocks.
   4566 	 * On the recording track, its capacity is 1 block.
   4567 	 */
   4568 	track->outbuf.head = 0;
   4569 	track->outbuf.used = 0;
   4570 	track->outbuf.capacity = frame_per_block(track->mixer,
   4571 	    &track->outbuf.fmt);
   4572 	if (audio_track_is_playback(track))
   4573 		track->outbuf.capacity *= NBLKOUT;
   4574 	len = auring_bytelen(&track->outbuf);
   4575 	track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
   4576 	if (track->outbuf.mem == NULL) {
   4577 		device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
   4578 		error = ENOMEM;
   4579 		goto error;
   4580 	}
   4581 
   4582 #if defined(AUDIO_DEBUG)
   4583 	if (audiodebug >= 3) {
   4584 		struct audio_track_debugbuf m;
   4585 
   4586 		memset(&m, 0, sizeof(m));
   4587 		snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
   4588 		    track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
   4589 		if (track->freq.filter)
   4590 			snprintf(m.freq, sizeof(m.freq), " freq=%d",
   4591 			    track->freq.srcbuf.capacity *
   4592 			    frametobyte(&track->freq.srcbuf.fmt, 1));
   4593 		if (track->chmix.filter)
   4594 			snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
   4595 			    track->chmix.srcbuf.capacity *
   4596 			    frametobyte(&track->chmix.srcbuf.fmt, 1));
   4597 		if (track->chvol.filter)
   4598 			snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
   4599 			    track->chvol.srcbuf.capacity *
   4600 			    frametobyte(&track->chvol.srcbuf.fmt, 1));
   4601 		if (track->codec.filter)
   4602 			snprintf(m.codec, sizeof(m.codec), " codec=%d",
   4603 			    track->codec.srcbuf.capacity *
   4604 			    frametobyte(&track->codec.srcbuf.fmt, 1));
   4605 		snprintf(m.usrbuf, sizeof(m.usrbuf),
   4606 		    " usr=%d", track->usrbuf.capacity);
   4607 
   4608 		if (audio_track_is_playback(track)) {
   4609 			TRACET(0, track, "bufsize%s%s%s%s%s%s",
   4610 			    m.outbuf, m.freq, m.chmix,
   4611 			    m.chvol, m.codec, m.usrbuf);
   4612 		} else {
   4613 			TRACET(0, track, "bufsize%s%s%s%s%s%s",
   4614 			    m.freq, m.chmix, m.chvol,
   4615 			    m.codec, m.outbuf, m.usrbuf);
   4616 		}
   4617 	}
   4618 #endif
   4619 	return 0;
   4620 
   4621 error:
   4622 	audio_free_usrbuf(track);
   4623 	audio_free(track->codec.srcbuf.mem);
   4624 	audio_free(track->chvol.srcbuf.mem);
   4625 	audio_free(track->chmix.srcbuf.mem);
   4626 	audio_free(track->freq.srcbuf.mem);
   4627 	audio_free(track->outbuf.mem);
   4628 	return error;
   4629 }
   4630 
   4631 /*
   4632  * Fill silence frames (as the internal format) up to 1 block
   4633  * if the ring is not empty and less than 1 block.
   4634  * It returns the number of appended frames.
   4635  */
   4636 static int
   4637 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
   4638 {
   4639 	int fpb;
   4640 	int n;
   4641 
   4642 	KASSERT(track);
   4643 	KASSERT(audio_format2_is_internal(&ring->fmt));
   4644 
   4645 	/* XXX is n correct? */
   4646 	/* XXX memset uses frametobyte()? */
   4647 
   4648 	if (ring->used == 0)
   4649 		return 0;
   4650 
   4651 	fpb = frame_per_block(track->mixer, &ring->fmt);
   4652 	if (ring->used >= fpb)
   4653 		return 0;
   4654 
   4655 	n = (ring->capacity - ring->used) % fpb;
   4656 
   4657 	KASSERTMSG(auring_get_contig_free(ring) >= n,
   4658 	    "auring_get_contig_free(ring)=%d n=%d",
   4659 	    auring_get_contig_free(ring), n);
   4660 
   4661 	memset(auring_tailptr_aint(ring), 0,
   4662 	    n * ring->fmt.channels * sizeof(aint_t));
   4663 	auring_push(ring, n);
   4664 	return n;
   4665 }
   4666 
   4667 /*
   4668  * Execute the conversion stage.
   4669  * It prepares arg from this stage and executes stage->filter.
   4670  * It must be called only if stage->filter is not NULL.
   4671  *
   4672  * For stages other than frequency conversion, the function increments
   4673  * src and dst counters here.  For frequency conversion stage, on the
   4674  * other hand, the function does not touch src and dst counters and
   4675  * filter side has to increment them.
   4676  */
   4677 static void
   4678 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
   4679 {
   4680 	audio_filter_arg_t *arg;
   4681 	int srccount;
   4682 	int dstcount;
   4683 	int count;
   4684 
   4685 	KASSERT(track);
   4686 	KASSERT(stage->filter);
   4687 
   4688 	srccount = auring_get_contig_used(&stage->srcbuf);
   4689 	dstcount = auring_get_contig_free(stage->dst);
   4690 
   4691 	if (isfreq) {
   4692 		KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
   4693 		count = uimin(dstcount, track->mixer->frames_per_block);
   4694 	} else {
   4695 		count = uimin(srccount, dstcount);
   4696 	}
   4697 
   4698 	if (count > 0) {
   4699 		arg = &stage->arg;
   4700 		arg->src = auring_headptr(&stage->srcbuf);
   4701 		arg->dst = auring_tailptr(stage->dst);
   4702 		arg->count = count;
   4703 
   4704 		stage->filter(arg);
   4705 
   4706 		if (!isfreq) {
   4707 			auring_take(&stage->srcbuf, count);
   4708 			auring_push(stage->dst, count);
   4709 		}
   4710 	}
   4711 }
   4712 
   4713 /*
   4714  * Produce output buffer for playback from user input buffer.
   4715  * It must be called only if usrbuf is not empty and outbuf is
   4716  * available at least one free block.
   4717  */
   4718 static void
   4719 audio_track_play(audio_track_t *track)
   4720 {
   4721 	audio_ring_t *usrbuf;
   4722 	audio_ring_t *input;
   4723 	int count;
   4724 	int framesize;
   4725 	int bytes;
   4726 
   4727 	KASSERT(track);
   4728 	KASSERT(track->lock);
   4729 	TRACET(4, track, "start pstate=%d", track->pstate);
   4730 
   4731 	/* At this point usrbuf must not be empty. */
   4732 	KASSERT(track->usrbuf.used > 0);
   4733 	/* Also, outbuf must be available at least one block. */
   4734 	count = auring_get_contig_free(&track->outbuf);
   4735 	KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
   4736 	    "count=%d fpb=%d",
   4737 	    count, frame_per_block(track->mixer, &track->outbuf.fmt));
   4738 
   4739 	/* XXX TODO: is this necessary for now? */
   4740 	int track_count_0 = track->outbuf.used;
   4741 
   4742 	usrbuf = &track->usrbuf;
   4743 	input = track->input;
   4744 
   4745 	/*
   4746 	 * framesize is always 1 byte or more since all formats supported as
   4747 	 * usrfmt(=input) have 8bit or more stride.
   4748 	 */
   4749 	framesize = frametobyte(&input->fmt, 1);
   4750 	KASSERT(framesize >= 1);
   4751 
   4752 	/* The next stage of usrbuf (=input) must be available. */
   4753 	KASSERT(auring_get_contig_free(input) > 0);
   4754 
   4755 	/*
   4756 	 * Copy usrbuf up to 1block to input buffer.
   4757 	 * count is the number of frames to copy from usrbuf.
   4758 	 * bytes is the number of bytes to copy from usrbuf.  However it is
   4759 	 * not copied less than one frame.
   4760 	 */
   4761 	count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
   4762 	bytes = count * framesize;
   4763 
   4764 	track->usrbuf_stamp += bytes;
   4765 
   4766 	if (usrbuf->head + bytes < usrbuf->capacity) {
   4767 		memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
   4768 		    (uint8_t *)usrbuf->mem + usrbuf->head,
   4769 		    bytes);
   4770 		auring_push(input, count);
   4771 		auring_take(usrbuf, bytes);
   4772 	} else {
   4773 		int bytes1;
   4774 		int bytes2;
   4775 
   4776 		bytes1 = auring_get_contig_used(usrbuf);
   4777 		KASSERTMSG(bytes1 % framesize == 0,
   4778 		    "bytes1=%d framesize=%d", bytes1, framesize);
   4779 		memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
   4780 		    (uint8_t *)usrbuf->mem + usrbuf->head,
   4781 		    bytes1);
   4782 		auring_push(input, bytes1 / framesize);
   4783 		auring_take(usrbuf, bytes1);
   4784 
   4785 		bytes2 = bytes - bytes1;
   4786 		memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
   4787 		    (uint8_t *)usrbuf->mem + usrbuf->head,
   4788 		    bytes2);
   4789 		auring_push(input, bytes2 / framesize);
   4790 		auring_take(usrbuf, bytes2);
   4791 	}
   4792 
   4793 	/* Encoding conversion */
   4794 	if (track->codec.filter)
   4795 		audio_apply_stage(track, &track->codec, false);
   4796 
   4797 	/* Channel volume */
   4798 	if (track->chvol.filter)
   4799 		audio_apply_stage(track, &track->chvol, false);
   4800 
   4801 	/* Channel mix */
   4802 	if (track->chmix.filter)
   4803 		audio_apply_stage(track, &track->chmix, false);
   4804 
   4805 	/* Frequency conversion */
   4806 	/*
   4807 	 * Since the frequency conversion needs correction for each block,
   4808 	 * it rounds up to 1 block.
   4809 	 */
   4810 	if (track->freq.filter) {
   4811 		int n;
   4812 		n = audio_append_silence(track, &track->freq.srcbuf);
   4813 		if (n > 0) {
   4814 			TRACET(4, track,
   4815 			    "freq.srcbuf add silence %d -> %d/%d/%d",
   4816 			    n,
   4817 			    track->freq.srcbuf.head,
   4818 			    track->freq.srcbuf.used,
   4819 			    track->freq.srcbuf.capacity);
   4820 		}
   4821 		if (track->freq.srcbuf.used > 0) {
   4822 			audio_apply_stage(track, &track->freq, true);
   4823 		}
   4824 	}
   4825 
   4826 	if (bytes < track->usrbuf_blksize) {
   4827 		/*
   4828 		 * Clear all conversion buffer pointer if the conversion was
   4829 		 * not exactly one block.  These conversion stage buffers are
   4830 		 * certainly circular buffers because of symmetry with the
   4831 		 * previous and next stage buffer.  However, since they are
   4832 		 * treated as simple contiguous buffers in operation, so head
   4833 		 * always should point 0.  This may happen during drain-age.
   4834 		 */
   4835 		TRACET(4, track, "reset stage");
   4836 		if (track->codec.filter) {
   4837 			KASSERT(track->codec.srcbuf.used == 0);
   4838 			track->codec.srcbuf.head = 0;
   4839 		}
   4840 		if (track->chvol.filter) {
   4841 			KASSERT(track->chvol.srcbuf.used == 0);
   4842 			track->chvol.srcbuf.head = 0;
   4843 		}
   4844 		if (track->chmix.filter) {
   4845 			KASSERT(track->chmix.srcbuf.used == 0);
   4846 			track->chmix.srcbuf.head = 0;
   4847 		}
   4848 		if (track->freq.filter) {
   4849 			KASSERT(track->freq.srcbuf.used == 0);
   4850 			track->freq.srcbuf.head = 0;
   4851 		}
   4852 	}
   4853 
   4854 	if (track->input == &track->outbuf) {
   4855 		track->outputcounter = track->inputcounter;
   4856 	} else {
   4857 		track->outputcounter += track->outbuf.used - track_count_0;
   4858 	}
   4859 
   4860 #if defined(AUDIO_DEBUG)
   4861 	if (audiodebug >= 3) {
   4862 		struct audio_track_debugbuf m;
   4863 		audio_track_bufstat(track, &m);
   4864 		TRACET(0, track, "end%s%s%s%s%s%s",
   4865 		    m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
   4866 	}
   4867 #endif
   4868 }
   4869 
   4870 /*
   4871  * Produce user output buffer for recording from input buffer.
   4872  */
   4873 static void
   4874 audio_track_record(audio_track_t *track)
   4875 {
   4876 	audio_ring_t *outbuf;
   4877 	audio_ring_t *usrbuf;
   4878 	int count;
   4879 	int bytes;
   4880 	int framesize;
   4881 
   4882 	KASSERT(track);
   4883 	KASSERT(track->lock);
   4884 
   4885 	/* Number of frames to process */
   4886 	count = auring_get_contig_used(track->input);
   4887 	count = uimin(count, track->mixer->frames_per_block);
   4888 	if (count == 0) {
   4889 		TRACET(4, track, "count == 0");
   4890 		return;
   4891 	}
   4892 
   4893 	/* Frequency conversion */
   4894 	if (track->freq.filter) {
   4895 		if (track->freq.srcbuf.used > 0) {
   4896 			audio_apply_stage(track, &track->freq, true);
   4897 			/* XXX should input of freq be from beginning of buf? */
   4898 		}
   4899 	}
   4900 
   4901 	/* Channel mix */
   4902 	if (track->chmix.filter)
   4903 		audio_apply_stage(track, &track->chmix, false);
   4904 
   4905 	/* Channel volume */
   4906 	if (track->chvol.filter)
   4907 		audio_apply_stage(track, &track->chvol, false);
   4908 
   4909 	/* Encoding conversion */
   4910 	if (track->codec.filter)
   4911 		audio_apply_stage(track, &track->codec, false);
   4912 
   4913 	/* Copy outbuf to usrbuf */
   4914 	outbuf = &track->outbuf;
   4915 	usrbuf = &track->usrbuf;
   4916 	/*
   4917 	 * framesize is always 1 byte or more since all formats supported
   4918 	 * as usrfmt(=output) have 8bit or more stride.
   4919 	 */
   4920 	framesize = frametobyte(&outbuf->fmt, 1);
   4921 	KASSERT(framesize >= 1);
   4922 	/*
   4923 	 * count is the number of frames to copy to usrbuf.
   4924 	 * bytes is the number of bytes to copy to usrbuf.
   4925 	 */
   4926 	count = outbuf->used;
   4927 	count = uimin(count,
   4928 	    (track->usrbuf_usedhigh - usrbuf->used) / framesize);
   4929 	bytes = count * framesize;
   4930 	if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
   4931 		memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
   4932 		    (uint8_t *)outbuf->mem + outbuf->head * framesize,
   4933 		    bytes);
   4934 		auring_push(usrbuf, bytes);
   4935 		auring_take(outbuf, count);
   4936 	} else {
   4937 		int bytes1;
   4938 		int bytes2;
   4939 
   4940 		bytes1 = auring_get_contig_free(usrbuf);
   4941 		KASSERTMSG(bytes1 % framesize == 0,
   4942 		    "bytes1=%d framesize=%d", bytes1, framesize);
   4943 		memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
   4944 		    (uint8_t *)outbuf->mem + outbuf->head * framesize,
   4945 		    bytes1);
   4946 		auring_push(usrbuf, bytes1);
   4947 		auring_take(outbuf, bytes1 / framesize);
   4948 
   4949 		bytes2 = bytes - bytes1;
   4950 		memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
   4951 		    (uint8_t *)outbuf->mem + outbuf->head * framesize,
   4952 		    bytes2);
   4953 		auring_push(usrbuf, bytes2);
   4954 		auring_take(outbuf, bytes2 / framesize);
   4955 	}
   4956 
   4957 	/* XXX TODO: any counters here? */
   4958 
   4959 #if defined(AUDIO_DEBUG)
   4960 	if (audiodebug >= 3) {
   4961 		struct audio_track_debugbuf m;
   4962 		audio_track_bufstat(track, &m);
   4963 		TRACET(0, track, "end%s%s%s%s%s%s",
   4964 		    m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
   4965 	}
   4966 #endif
   4967 }
   4968 
   4969 /*
   4970  * Calculate blktime [msec] from mixer(.hwbuf.fmt).
   4971  * Must be called with sc_exlock held.
   4972  */
   4973 static u_int
   4974 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
   4975 {
   4976 	audio_format2_t *fmt;
   4977 	u_int blktime;
   4978 	u_int frames_per_block;
   4979 
   4980 	KASSERT(sc->sc_exlock);
   4981 
   4982 	fmt = &mixer->hwbuf.fmt;
   4983 	blktime = sc->sc_blk_ms;
   4984 
   4985 	/*
   4986 	 * If stride is not multiples of 8, special treatment is necessary.
   4987 	 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
   4988 	 */
   4989 	if (fmt->stride == 4) {
   4990 		frames_per_block = fmt->sample_rate * blktime / 1000;
   4991 		if ((frames_per_block & 1) != 0)
   4992 			blktime *= 2;
   4993 	}
   4994 #ifdef DIAGNOSTIC
   4995 	else if (fmt->stride % NBBY != 0) {
   4996 		panic("unsupported HW stride %d", fmt->stride);
   4997 	}
   4998 #endif
   4999 
   5000 	return blktime;
   5001 }
   5002 
   5003 /*
   5004  * Initialize the mixer corresponding to the mode.
   5005  * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
   5006  * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
   5007  * This function returns 0 on successful.  Otherwise returns errno.
   5008  * Must be called with sc_exlock held and without sc_lock held.
   5009  */
   5010 static int
   5011 audio_mixer_init(struct audio_softc *sc, int mode,
   5012 	const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
   5013 {
   5014 	char codecbuf[64];
   5015 	char blkdmsbuf[8];
   5016 	audio_trackmixer_t *mixer;
   5017 	void (*softint_handler)(void *);
   5018 	int len;
   5019 	int blksize;
   5020 	int capacity;
   5021 	size_t bufsize;
   5022 	int hwblks;
   5023 	int blkms;
   5024 	int blkdms;
   5025 	int error;
   5026 
   5027 	KASSERT(hwfmt != NULL);
   5028 	KASSERT(reg != NULL);
   5029 	KASSERT(sc->sc_exlock);
   5030 
   5031 	error = 0;
   5032 	if (mode == AUMODE_PLAY)
   5033 		mixer = sc->sc_pmixer;
   5034 	else
   5035 		mixer = sc->sc_rmixer;
   5036 
   5037 	mixer->sc = sc;
   5038 	mixer->mode = mode;
   5039 
   5040 	mixer->hwbuf.fmt = *hwfmt;
   5041 	mixer->volume = 256;
   5042 	mixer->blktime_d = 1000;
   5043 	mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
   5044 	sc->sc_blk_ms = mixer->blktime_n;
   5045 	hwblks = NBLKHW;
   5046 
   5047 	mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
   5048 	blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
   5049 	if (sc->hw_if->round_blocksize) {
   5050 		int rounded;
   5051 		audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
   5052 		mutex_enter(sc->sc_lock);
   5053 		rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
   5054 		    mode, &p);
   5055 		mutex_exit(sc->sc_lock);
   5056 		TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
   5057 		if (rounded != blksize) {
   5058 			if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
   5059 			    mixer->hwbuf.fmt.channels) != 0) {
   5060 				audio_printf(sc,
   5061 				    "round_blocksize returned blocksize "
   5062 				    "indivisible by framesize: "
   5063 				    "blksize=%d rounded=%d "
   5064 				    "stride=%ubit channels=%u\n",
   5065 				    blksize, rounded,
   5066 				    mixer->hwbuf.fmt.stride,
   5067 				    mixer->hwbuf.fmt.channels);
   5068 				return EINVAL;
   5069 			}
   5070 			/* Recalculation */
   5071 			blksize = rounded;
   5072 			mixer->frames_per_block = blksize * NBBY /
   5073 			    (mixer->hwbuf.fmt.stride *
   5074 			     mixer->hwbuf.fmt.channels);
   5075 		}
   5076 	}
   5077 	mixer->blktime_n = mixer->frames_per_block;
   5078 	mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
   5079 
   5080 	capacity = mixer->frames_per_block * hwblks;
   5081 	bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
   5082 	if (sc->hw_if->round_buffersize) {
   5083 		size_t rounded;
   5084 		mutex_enter(sc->sc_lock);
   5085 		rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
   5086 		    bufsize);
   5087 		mutex_exit(sc->sc_lock);
   5088 		TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
   5089 		if (rounded < bufsize) {
   5090 			/* buffersize needs NBLKHW blocks at least. */
   5091 			audio_printf(sc,
   5092 			    "round_buffersize returned too small buffersize: "
   5093 			    "buffersize=%zd blksize=%d\n",
   5094 			    rounded, blksize);
   5095 			return EINVAL;
   5096 		}
   5097 		if (rounded % blksize != 0) {
   5098 			/* buffersize/blksize constraint mismatch? */
   5099 			audio_printf(sc,
   5100 			    "round_buffersize returned buffersize indivisible "
   5101 			    "by blksize: buffersize=%zu blksize=%d\n",
   5102 			    rounded, blksize);
   5103 			return EINVAL;
   5104 		}
   5105 		if (rounded != bufsize) {
   5106 			/* Recalculation */
   5107 			bufsize = rounded;
   5108 			hwblks = bufsize / blksize;
   5109 			capacity = mixer->frames_per_block * hwblks;
   5110 		}
   5111 	}
   5112 	TRACE(1, "buffersize for %s = %zu",
   5113 	    (mode == AUMODE_PLAY) ? "playback" : "recording",
   5114 	    bufsize);
   5115 	mixer->hwbuf.capacity = capacity;
   5116 
   5117 	if (sc->hw_if->allocm) {
   5118 		/* sc_lock is not necessary for allocm */
   5119 		mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
   5120 		if (mixer->hwbuf.mem == NULL) {
   5121 			audio_printf(sc, "allocm(%zu) failed\n", bufsize);
   5122 			return ENOMEM;
   5123 		}
   5124 	} else {
   5125 		mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
   5126 	}
   5127 
   5128 	/* From here, audio_mixer_destroy is necessary to exit. */
   5129 	if (mode == AUMODE_PLAY) {
   5130 		cv_init(&mixer->outcv, "audiowr");
   5131 	} else {
   5132 		cv_init(&mixer->outcv, "audiord");
   5133 	}
   5134 
   5135 	if (mode == AUMODE_PLAY) {
   5136 		softint_handler = audio_softintr_wr;
   5137 	} else {
   5138 		softint_handler = audio_softintr_rd;
   5139 	}
   5140 	mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
   5141 	    softint_handler, sc);
   5142 	if (mixer->sih == NULL) {
   5143 		device_printf(sc->sc_dev, "softint_establish failed\n");
   5144 		goto abort;
   5145 	}
   5146 
   5147 	mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
   5148 	mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
   5149 	mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
   5150 	mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
   5151 	mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
   5152 
   5153 	if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
   5154 	    mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
   5155 		mixer->swap_endian = true;
   5156 		TRACE(1, "swap_endian");
   5157 	}
   5158 
   5159 	if (mode == AUMODE_PLAY) {
   5160 		/* Mixing buffer */
   5161 		mixer->mixfmt = mixer->track_fmt;
   5162 		mixer->mixfmt.precision *= 2;
   5163 		mixer->mixfmt.stride *= 2;
   5164 		/* XXX TODO: use some macros? */
   5165 		len = mixer->frames_per_block * mixer->mixfmt.channels *
   5166 		    mixer->mixfmt.stride / NBBY;
   5167 		mixer->mixsample = audio_realloc(mixer->mixsample, len);
   5168 	} else {
   5169 		/* No mixing buffer for recording */
   5170 	}
   5171 
   5172 	if (reg->codec) {
   5173 		mixer->codec = reg->codec;
   5174 		mixer->codecarg.context = reg->context;
   5175 		if (mode == AUMODE_PLAY) {
   5176 			mixer->codecarg.srcfmt = &mixer->track_fmt;
   5177 			mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
   5178 		} else {
   5179 			mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
   5180 			mixer->codecarg.dstfmt = &mixer->track_fmt;
   5181 		}
   5182 		mixer->codecbuf.fmt = mixer->track_fmt;
   5183 		mixer->codecbuf.capacity = mixer->frames_per_block;
   5184 		len = auring_bytelen(&mixer->codecbuf);
   5185 		mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
   5186 		if (mixer->codecbuf.mem == NULL) {
   5187 			device_printf(sc->sc_dev,
   5188 			    "malloc codecbuf(%d) failed\n", len);
   5189 			error = ENOMEM;
   5190 			goto abort;
   5191 		}
   5192 	}
   5193 
   5194 	/* Succeeded so display it. */
   5195 	codecbuf[0] = '\0';
   5196 	if (mixer->codec || mixer->swap_endian) {
   5197 		snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
   5198 		    (mode == AUMODE_PLAY) ? "->" : "<-",
   5199 		    audio_encoding_name(mixer->hwbuf.fmt.encoding),
   5200 		    mixer->hwbuf.fmt.precision);
   5201 	}
   5202 	blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
   5203 	blkdms = (mixer->blktime_n * 10000 / mixer->blktime_d) % 10;
   5204 	blkdmsbuf[0] = '\0';
   5205 	if (blkdms != 0) {
   5206 		snprintf(blkdmsbuf, sizeof(blkdmsbuf), ".%1d", blkdms);
   5207 	}
   5208 	aprint_normal_dev(sc->sc_dev,
   5209 	    "%s:%d%s %dch %dHz, blk %d bytes (%d%sms) for %s\n",
   5210 	    audio_encoding_name(mixer->track_fmt.encoding),
   5211 	    mixer->track_fmt.precision,
   5212 	    codecbuf,
   5213 	    mixer->track_fmt.channels,
   5214 	    mixer->track_fmt.sample_rate,
   5215 	    blksize,
   5216 	    blkms, blkdmsbuf,
   5217 	    (mode == AUMODE_PLAY) ? "playback" : "recording");
   5218 
   5219 	return 0;
   5220 
   5221 abort:
   5222 	audio_mixer_destroy(sc, mixer);
   5223 	return error;
   5224 }
   5225 
   5226 /*
   5227  * Releases all resources of 'mixer'.
   5228  * Note that it does not release the memory area of 'mixer' itself.
   5229  * Must be called with sc_exlock held and without sc_lock held.
   5230  */
   5231 static void
   5232 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
   5233 {
   5234 	int bufsize;
   5235 
   5236 	KASSERT(sc->sc_exlock == 1);
   5237 
   5238 	bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
   5239 
   5240 	if (mixer->hwbuf.mem != NULL) {
   5241 		if (sc->hw_if->freem) {
   5242 			/* sc_lock is not necessary for freem */
   5243 			sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
   5244 		} else {
   5245 			kmem_free(mixer->hwbuf.mem, bufsize);
   5246 		}
   5247 		mixer->hwbuf.mem = NULL;
   5248 	}
   5249 
   5250 	audio_free(mixer->codecbuf.mem);
   5251 	audio_free(mixer->mixsample);
   5252 
   5253 	cv_destroy(&mixer->outcv);
   5254 
   5255 	if (mixer->sih) {
   5256 		softint_disestablish(mixer->sih);
   5257 		mixer->sih = NULL;
   5258 	}
   5259 }
   5260 
   5261 /*
   5262  * Starts playback mixer.
   5263  * Must be called only if sc_pbusy is false.
   5264  * Must be called with sc_lock && sc_exlock held.
   5265  * Must not be called from the interrupt context.
   5266  */
   5267 static void
   5268 audio_pmixer_start(struct audio_softc *sc, bool force)
   5269 {
   5270 	audio_trackmixer_t *mixer;
   5271 	int minimum;
   5272 
   5273 	KASSERT(mutex_owned(sc->sc_lock));
   5274 	KASSERT(sc->sc_exlock);
   5275 	KASSERT(sc->sc_pbusy == false);
   5276 
   5277 	mutex_enter(sc->sc_intr_lock);
   5278 
   5279 	mixer = sc->sc_pmixer;
   5280 	TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
   5281 	    (audiodebug >= 3) ? "begin " : "",
   5282 	    (int)mixer->mixseq, (int)mixer->hwseq,
   5283 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
   5284 	    force ? " force" : "");
   5285 
   5286 	/* Need two blocks to start normally. */
   5287 	minimum = (force) ? 1 : 2;
   5288 	while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
   5289 		audio_pmixer_process(sc);
   5290 	}
   5291 
   5292 	/* Start output */
   5293 	audio_pmixer_output(sc);
   5294 	sc->sc_pbusy = true;
   5295 
   5296 	TRACE(3, "end   mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
   5297 	    (int)mixer->mixseq, (int)mixer->hwseq,
   5298 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
   5299 
   5300 	mutex_exit(sc->sc_intr_lock);
   5301 }
   5302 
   5303 /*
   5304  * When playing back with MD filter:
   5305  *
   5306  *           track track ...
   5307  *               v v
   5308  *                +  mix (with aint2_t)
   5309  *                |  master volume (with aint2_t)
   5310  *                v
   5311  *    mixsample [::::]                  wide-int 1 block (ring) buffer
   5312  *                |
   5313  *                |  convert aint2_t -> aint_t
   5314  *                v
   5315  *    codecbuf  [....]                  1 block (ring) buffer
   5316  *                |
   5317  *                |  convert to hw format
   5318  *                v
   5319  *    hwbuf     [............]          NBLKHW blocks ring buffer
   5320  *
   5321  * When playing back without MD filter:
   5322  *
   5323  *    mixsample [::::]                  wide-int 1 block (ring) buffer
   5324  *                |
   5325  *                |  convert aint2_t -> aint_t
   5326  *                |  (with byte swap if necessary)
   5327  *                v
   5328  *    hwbuf     [............]          NBLKHW blocks ring buffer
   5329  *
   5330  * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
   5331  * codecbuf:  slinear_NE, internal precision,      HW ch, HW freq.
   5332  * hwbuf:     HW encoding, HW precision,           HW ch, HW freq.
   5333  */
   5334 
   5335 /*
   5336  * Performs track mixing and converts it to hwbuf.
   5337  * Note that this function doesn't transfer hwbuf to hardware.
   5338  * Must be called with sc_intr_lock held.
   5339  */
   5340 static void
   5341 audio_pmixer_process(struct audio_softc *sc)
   5342 {
   5343 	audio_trackmixer_t *mixer;
   5344 	audio_file_t *f;
   5345 	int frame_count;
   5346 	int sample_count;
   5347 	int mixed;
   5348 	int i;
   5349 	aint2_t *m;
   5350 	aint_t *h;
   5351 
   5352 	mixer = sc->sc_pmixer;
   5353 
   5354 	frame_count = mixer->frames_per_block;
   5355 	KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
   5356 	    "auring_get_contig_free()=%d frame_count=%d",
   5357 	    auring_get_contig_free(&mixer->hwbuf), frame_count);
   5358 	sample_count = frame_count * mixer->mixfmt.channels;
   5359 
   5360 	mixer->mixseq++;
   5361 
   5362 	/* Mix all tracks */
   5363 	mixed = 0;
   5364 	SLIST_FOREACH(f, &sc->sc_files, entry) {
   5365 		audio_track_t *track = f->ptrack;
   5366 
   5367 		if (track == NULL)
   5368 			continue;
   5369 
   5370 		if (track->is_pause) {
   5371 			TRACET(4, track, "skip; paused");
   5372 			continue;
   5373 		}
   5374 
   5375 		/* Skip if the track is used by process context. */
   5376 		if (audio_track_lock_tryenter(track) == false) {
   5377 			TRACET(4, track, "skip; in use");
   5378 			continue;
   5379 		}
   5380 
   5381 		/* Emulate mmap'ped track */
   5382 		if (track->mmapped) {
   5383 			auring_push(&track->usrbuf, track->usrbuf_blksize);
   5384 			TRACET(4, track, "mmap; usr=%d/%d/C%d",
   5385 			    track->usrbuf.head,
   5386 			    track->usrbuf.used,
   5387 			    track->usrbuf.capacity);
   5388 		}
   5389 
   5390 		if (track->outbuf.used < mixer->frames_per_block &&
   5391 		    track->usrbuf.used > 0) {
   5392 			TRACET(4, track, "process");
   5393 			audio_track_play(track);
   5394 		}
   5395 
   5396 		if (track->outbuf.used > 0) {
   5397 			mixed = audio_pmixer_mix_track(mixer, track, mixed);
   5398 		} else {
   5399 			TRACET(4, track, "skip; empty");
   5400 		}
   5401 
   5402 		audio_track_lock_exit(track);
   5403 	}
   5404 
   5405 	if (mixed == 0) {
   5406 		/* Silence */
   5407 		memset(mixer->mixsample, 0,
   5408 		    frametobyte(&mixer->mixfmt, frame_count));
   5409 	} else {
   5410 		if (mixed > 1) {
   5411 			/* If there are multiple tracks, do auto gain control */
   5412 			audio_pmixer_agc(mixer, sample_count);
   5413 		}
   5414 
   5415 		/* Apply master volume */
   5416 		if (mixer->volume < 256) {
   5417 			m = mixer->mixsample;
   5418 			for (i = 0; i < sample_count; i++) {
   5419 				*m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
   5420 				m++;
   5421 			}
   5422 
   5423 			/*
   5424 			 * Recover the volume gradually at the pace of
   5425 			 * several times per second.  If it's too fast, you
   5426 			 * can recognize that the volume changes up and down
   5427 			 * quickly and it's not so comfortable.
   5428 			 */
   5429 			mixer->voltimer += mixer->blktime_n;
   5430 			if (mixer->voltimer * 4 >= mixer->blktime_d) {
   5431 				mixer->volume++;
   5432 				mixer->voltimer = 0;
   5433 #if defined(AUDIO_DEBUG_AGC)
   5434 				TRACE(1, "volume recover: %d", mixer->volume);
   5435 #endif
   5436 			}
   5437 		}
   5438 	}
   5439 
   5440 	/*
   5441 	 * The rest is the hardware part.
   5442 	 */
   5443 
   5444 	if (mixer->codec) {
   5445 		h = auring_tailptr_aint(&mixer->codecbuf);
   5446 	} else {
   5447 		h = auring_tailptr_aint(&mixer->hwbuf);
   5448 	}
   5449 
   5450 	m = mixer->mixsample;
   5451 	if (mixer->swap_endian) {
   5452 		for (i = 0; i < sample_count; i++) {
   5453 			*h++ = bswap16(*m++);
   5454 		}
   5455 	} else {
   5456 		for (i = 0; i < sample_count; i++) {
   5457 			*h++ = *m++;
   5458 		}
   5459 	}
   5460 
   5461 	/* Hardware driver's codec */
   5462 	if (mixer->codec) {
   5463 		auring_push(&mixer->codecbuf, frame_count);
   5464 		mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
   5465 		mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
   5466 		mixer->codecarg.count = frame_count;
   5467 		mixer->codec(&mixer->codecarg);
   5468 		auring_take(&mixer->codecbuf, mixer->codecarg.count);
   5469 	}
   5470 
   5471 	auring_push(&mixer->hwbuf, frame_count);
   5472 
   5473 	TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
   5474 	    (int)mixer->mixseq,
   5475 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
   5476 	    (mixed == 0) ? " silent" : "");
   5477 }
   5478 
   5479 /*
   5480  * Do auto gain control.
   5481  * Must be called sc_intr_lock held.
   5482  */
   5483 static void
   5484 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
   5485 {
   5486 	struct audio_softc *sc __unused;
   5487 	aint2_t val;
   5488 	aint2_t maxval;
   5489 	aint2_t minval;
   5490 	aint2_t over_plus;
   5491 	aint2_t over_minus;
   5492 	aint2_t *m;
   5493 	int newvol;
   5494 	int i;
   5495 
   5496 	sc = mixer->sc;
   5497 
   5498 	/* Overflow detection */
   5499 	maxval = AINT_T_MAX;
   5500 	minval = AINT_T_MIN;
   5501 	m = mixer->mixsample;
   5502 	for (i = 0; i < sample_count; i++) {
   5503 		val = *m++;
   5504 		if (val > maxval)
   5505 			maxval = val;
   5506 		else if (val < minval)
   5507 			minval = val;
   5508 	}
   5509 
   5510 	/* Absolute value of overflowed amount */
   5511 	over_plus = maxval - AINT_T_MAX;
   5512 	over_minus = AINT_T_MIN - minval;
   5513 
   5514 	if (over_plus > 0 || over_minus > 0) {
   5515 		if (over_plus > over_minus) {
   5516 			newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
   5517 		} else {
   5518 			newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
   5519 		}
   5520 
   5521 		/*
   5522 		 * Change the volume only if new one is smaller.
   5523 		 * Reset the timer even if the volume isn't changed.
   5524 		 */
   5525 		if (newvol <= mixer->volume) {
   5526 			mixer->volume = newvol;
   5527 			mixer->voltimer = 0;
   5528 #if defined(AUDIO_DEBUG_AGC)
   5529 			TRACE(1, "auto volume adjust: %d", mixer->volume);
   5530 #endif
   5531 		}
   5532 	}
   5533 }
   5534 
   5535 /*
   5536  * Mix one track.
   5537  * 'mixed' specifies the number of tracks mixed so far.
   5538  * It returns the number of tracks mixed.  In other words, it returns
   5539  * mixed + 1 if this track is mixed.
   5540  */
   5541 static int
   5542 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
   5543 	int mixed)
   5544 {
   5545 	int count;
   5546 	int sample_count;
   5547 	int remain;
   5548 	int i;
   5549 	const aint_t *s;
   5550 	aint2_t *d;
   5551 
   5552 	/* XXX TODO: Is this necessary for now? */
   5553 	if (mixer->mixseq < track->seq)
   5554 		return mixed;
   5555 
   5556 	count = auring_get_contig_used(&track->outbuf);
   5557 	count = uimin(count, mixer->frames_per_block);
   5558 
   5559 	s = auring_headptr_aint(&track->outbuf);
   5560 	d = mixer->mixsample;
   5561 
   5562 	/*
   5563 	 * Apply track volume with double-sized integer and perform
   5564 	 * additive synthesis.
   5565 	 *
   5566 	 * XXX If you limit the track volume to 1.0 or less (<= 256),
   5567 	 *     it would be better to do this in the track conversion stage
   5568 	 *     rather than here.  However, if you accept the volume to
   5569 	 *     be greater than 1.0 (> 256), it's better to do it here.
   5570 	 *     Because the operation here is done by double-sized integer.
   5571 	 */
   5572 	sample_count = count * mixer->mixfmt.channels;
   5573 	if (mixed == 0) {
   5574 		/* If this is the first track, assignment can be used. */
   5575 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
   5576 		if (track->volume != 256) {
   5577 			for (i = 0; i < sample_count; i++) {
   5578 				aint2_t v;
   5579 				v = *s++;
   5580 				*d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
   5581 			}
   5582 		} else
   5583 #endif
   5584 		{
   5585 			for (i = 0; i < sample_count; i++) {
   5586 				*d++ = ((aint2_t)*s++);
   5587 			}
   5588 		}
   5589 		/* Fill silence if the first track is not filled. */
   5590 		for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
   5591 			*d++ = 0;
   5592 	} else {
   5593 		/* If this is the second or later, add it. */
   5594 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
   5595 		if (track->volume != 256) {
   5596 			for (i = 0; i < sample_count; i++) {
   5597 				aint2_t v;
   5598 				v = *s++;
   5599 				*d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
   5600 			}
   5601 		} else
   5602 #endif
   5603 		{
   5604 			for (i = 0; i < sample_count; i++) {
   5605 				*d++ += ((aint2_t)*s++);
   5606 			}
   5607 		}
   5608 	}
   5609 
   5610 	auring_take(&track->outbuf, count);
   5611 	/*
   5612 	 * The counters have to align block even if outbuf is less than
   5613 	 * one block. XXX Is this still necessary?
   5614 	 */
   5615 	remain = mixer->frames_per_block - count;
   5616 	if (__predict_false(remain != 0)) {
   5617 		auring_push(&track->outbuf, remain);
   5618 		auring_take(&track->outbuf, remain);
   5619 	}
   5620 
   5621 	/*
   5622 	 * Update track sequence.
   5623 	 * mixseq has previous value yet at this point.
   5624 	 */
   5625 	track->seq = mixer->mixseq + 1;
   5626 
   5627 	return mixed + 1;
   5628 }
   5629 
   5630 /*
   5631  * Output one block from hwbuf to HW.
   5632  * Must be called with sc_intr_lock held.
   5633  */
   5634 static void
   5635 audio_pmixer_output(struct audio_softc *sc)
   5636 {
   5637 	audio_trackmixer_t *mixer;
   5638 	audio_params_t params;
   5639 	void *start;
   5640 	void *end;
   5641 	int blksize;
   5642 	int error;
   5643 
   5644 	mixer = sc->sc_pmixer;
   5645 	TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
   5646 	    sc->sc_pbusy,
   5647 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
   5648 	KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
   5649 	    "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
   5650 	    mixer->hwbuf.used, mixer->frames_per_block);
   5651 
   5652 	blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
   5653 
   5654 	if (sc->hw_if->trigger_output) {
   5655 		/* trigger (at once) */
   5656 		if (!sc->sc_pbusy) {
   5657 			start = mixer->hwbuf.mem;
   5658 			end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
   5659 			params = format2_to_params(&mixer->hwbuf.fmt);
   5660 
   5661 			error = sc->hw_if->trigger_output(sc->hw_hdl,
   5662 			    start, end, blksize, audio_pintr, sc, &params);
   5663 			if (error) {
   5664 				audio_printf(sc,
   5665 				    "trigger_output failed: errno=%d\n",
   5666 				    error);
   5667 				return;
   5668 			}
   5669 		}
   5670 	} else {
   5671 		/* start (everytime) */
   5672 		start = auring_headptr(&mixer->hwbuf);
   5673 
   5674 		error = sc->hw_if->start_output(sc->hw_hdl,
   5675 		    start, blksize, audio_pintr, sc);
   5676 		if (error) {
   5677 			audio_printf(sc,
   5678 			    "start_output failed: errno=%d\n", error);
   5679 			return;
   5680 		}
   5681 	}
   5682 }
   5683 
   5684 /*
   5685  * This is an interrupt handler for playback.
   5686  * It is called with sc_intr_lock held.
   5687  *
   5688  * It is usually called from hardware interrupt.  However, note that
   5689  * for some drivers (e.g. uaudio) it is called from software interrupt.
   5690  */
   5691 static void
   5692 audio_pintr(void *arg)
   5693 {
   5694 	struct audio_softc *sc;
   5695 	audio_trackmixer_t *mixer;
   5696 
   5697 	sc = arg;
   5698 	KASSERT(mutex_owned(sc->sc_intr_lock));
   5699 
   5700 	if (sc->sc_dying)
   5701 		return;
   5702 	if (sc->sc_pbusy == false) {
   5703 #if defined(DIAGNOSTIC)
   5704 		audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
   5705 		    device_xname(sc->hw_dev));
   5706 #endif
   5707 		return;
   5708 	}
   5709 
   5710 	mixer = sc->sc_pmixer;
   5711 	mixer->hw_complete_counter += mixer->frames_per_block;
   5712 	mixer->hwseq++;
   5713 
   5714 	auring_take(&mixer->hwbuf, mixer->frames_per_block);
   5715 
   5716 	TRACE(4,
   5717 	    "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
   5718 	    mixer->hwseq, mixer->hw_complete_counter,
   5719 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
   5720 
   5721 #if defined(AUDIO_HW_SINGLE_BUFFER)
   5722 	/*
   5723 	 * Create a new block here and output it immediately.
   5724 	 * It makes a latency lower but needs machine power.
   5725 	 */
   5726 	audio_pmixer_process(sc);
   5727 	audio_pmixer_output(sc);
   5728 #else
   5729 	/*
   5730 	 * It is called when block N output is done.
   5731 	 * Output immediately block N+1 created by the last interrupt.
   5732 	 * And then create block N+2 for the next interrupt.
   5733 	 * This method makes playback robust even on slower machines.
   5734 	 * Instead the latency is increased by one block.
   5735 	 */
   5736 
   5737 	/* At first, output ready block. */
   5738 	if (mixer->hwbuf.used >= mixer->frames_per_block) {
   5739 		audio_pmixer_output(sc);
   5740 	}
   5741 
   5742 	bool later = false;
   5743 
   5744 	if (mixer->hwbuf.used < mixer->frames_per_block) {
   5745 		later = true;
   5746 	}
   5747 
   5748 	/* Then, process next block. */
   5749 	audio_pmixer_process(sc);
   5750 
   5751 	if (later) {
   5752 		audio_pmixer_output(sc);
   5753 	}
   5754 #endif
   5755 
   5756 	/*
   5757 	 * When this interrupt is the real hardware interrupt, disabling
   5758 	 * preemption here is not necessary.  But some drivers (e.g. uaudio)
   5759 	 * emulate it by software interrupt, so kpreempt_disable is necessary.
   5760 	 */
   5761 	kpreempt_disable();
   5762 	softint_schedule(mixer->sih);
   5763 	kpreempt_enable();
   5764 }
   5765 
   5766 /*
   5767  * Starts record mixer.
   5768  * Must be called only if sc_rbusy is false.
   5769  * Must be called with sc_lock && sc_exlock held.
   5770  * Must not be called from the interrupt context.
   5771  */
   5772 static void
   5773 audio_rmixer_start(struct audio_softc *sc)
   5774 {
   5775 
   5776 	KASSERT(mutex_owned(sc->sc_lock));
   5777 	KASSERT(sc->sc_exlock);
   5778 	KASSERT(sc->sc_rbusy == false);
   5779 
   5780 	mutex_enter(sc->sc_intr_lock);
   5781 
   5782 	TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
   5783 	audio_rmixer_input(sc);
   5784 	sc->sc_rbusy = true;
   5785 	TRACE(3, "end");
   5786 
   5787 	mutex_exit(sc->sc_intr_lock);
   5788 }
   5789 
   5790 /*
   5791  * When recording with MD filter:
   5792  *
   5793  *    hwbuf     [............]          NBLKHW blocks ring buffer
   5794  *                |
   5795  *                | convert from hw format
   5796  *                v
   5797  *    codecbuf  [....]                  1 block (ring) buffer
   5798  *               |  |
   5799  *               v  v
   5800  *            track track ...
   5801  *
   5802  * When recording without MD filter:
   5803  *
   5804  *    hwbuf     [............]          NBLKHW blocks ring buffer
   5805  *               |  |
   5806  *               v  v
   5807  *            track track ...
   5808  *
   5809  * hwbuf:     HW encoding, HW precision, HW ch, HW freq.
   5810  * codecbuf:  slinear_NE, internal precision, HW ch, HW freq.
   5811  */
   5812 
   5813 /*
   5814  * Distribute a recorded block to all recording tracks.
   5815  */
   5816 static void
   5817 audio_rmixer_process(struct audio_softc *sc)
   5818 {
   5819 	audio_trackmixer_t *mixer;
   5820 	audio_ring_t *mixersrc;
   5821 	audio_file_t *f;
   5822 	aint_t *p;
   5823 	int count;
   5824 	int bytes;
   5825 	int i;
   5826 
   5827 	mixer = sc->sc_rmixer;
   5828 
   5829 	/*
   5830 	 * count is the number of frames to be retrieved this time.
   5831 	 * count should be one block.
   5832 	 */
   5833 	count = auring_get_contig_used(&mixer->hwbuf);
   5834 	count = uimin(count, mixer->frames_per_block);
   5835 	if (count <= 0) {
   5836 		TRACE(4, "count %d: too short", count);
   5837 		return;
   5838 	}
   5839 	bytes = frametobyte(&mixer->track_fmt, count);
   5840 
   5841 	/* Hardware driver's codec */
   5842 	if (mixer->codec) {
   5843 		mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
   5844 		mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
   5845 		mixer->codecarg.count = count;
   5846 		mixer->codec(&mixer->codecarg);
   5847 		auring_take(&mixer->hwbuf, mixer->codecarg.count);
   5848 		auring_push(&mixer->codecbuf, mixer->codecarg.count);
   5849 		mixersrc = &mixer->codecbuf;
   5850 	} else {
   5851 		mixersrc = &mixer->hwbuf;
   5852 	}
   5853 
   5854 	if (mixer->swap_endian) {
   5855 		/* inplace conversion */
   5856 		p = auring_headptr_aint(mixersrc);
   5857 		for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
   5858 			*p = bswap16(*p);
   5859 		}
   5860 	}
   5861 
   5862 	/* Distribute to all tracks. */
   5863 	SLIST_FOREACH(f, &sc->sc_files, entry) {
   5864 		audio_track_t *track = f->rtrack;
   5865 		audio_ring_t *input;
   5866 
   5867 		if (track == NULL)
   5868 			continue;
   5869 
   5870 		if (track->is_pause) {
   5871 			TRACET(4, track, "skip; paused");
   5872 			continue;
   5873 		}
   5874 
   5875 		if (audio_track_lock_tryenter(track) == false) {
   5876 			TRACET(4, track, "skip; in use");
   5877 			continue;
   5878 		}
   5879 
   5880 		/* If the track buffer is full, discard the oldest one? */
   5881 		input = track->input;
   5882 		if (input->capacity - input->used < mixer->frames_per_block) {
   5883 			int drops = mixer->frames_per_block -
   5884 			    (input->capacity - input->used);
   5885 			track->dropframes += drops;
   5886 			TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
   5887 			    drops,
   5888 			    input->head, input->used, input->capacity);
   5889 			auring_take(input, drops);
   5890 		}
   5891 		KASSERTMSG(input->used % mixer->frames_per_block == 0,
   5892 		    "input->used=%d mixer->frames_per_block=%d",
   5893 		    input->used, mixer->frames_per_block);
   5894 
   5895 		memcpy(auring_tailptr_aint(input),
   5896 		    auring_headptr_aint(mixersrc),
   5897 		    bytes);
   5898 		auring_push(input, count);
   5899 
   5900 		/* XXX sequence counter? */
   5901 
   5902 		audio_track_lock_exit(track);
   5903 	}
   5904 
   5905 	auring_take(mixersrc, count);
   5906 }
   5907 
   5908 /*
   5909  * Input one block from HW to hwbuf.
   5910  * Must be called with sc_intr_lock held.
   5911  */
   5912 static void
   5913 audio_rmixer_input(struct audio_softc *sc)
   5914 {
   5915 	audio_trackmixer_t *mixer;
   5916 	audio_params_t params;
   5917 	void *start;
   5918 	void *end;
   5919 	int blksize;
   5920 	int error;
   5921 
   5922 	mixer = sc->sc_rmixer;
   5923 	blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
   5924 
   5925 	if (sc->hw_if->trigger_input) {
   5926 		/* trigger (at once) */
   5927 		if (!sc->sc_rbusy) {
   5928 			start = mixer->hwbuf.mem;
   5929 			end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
   5930 			params = format2_to_params(&mixer->hwbuf.fmt);
   5931 
   5932 			error = sc->hw_if->trigger_input(sc->hw_hdl,
   5933 			    start, end, blksize, audio_rintr, sc, &params);
   5934 			if (error) {
   5935 				audio_printf(sc,
   5936 				    "trigger_input failed: errno=%d\n",
   5937 				    error);
   5938 				return;
   5939 			}
   5940 		}
   5941 	} else {
   5942 		/* start (everytime) */
   5943 		start = auring_tailptr(&mixer->hwbuf);
   5944 
   5945 		error = sc->hw_if->start_input(sc->hw_hdl,
   5946 		    start, blksize, audio_rintr, sc);
   5947 		if (error) {
   5948 			audio_printf(sc,
   5949 			    "start_input failed: errno=%d\n", error);
   5950 			return;
   5951 		}
   5952 	}
   5953 }
   5954 
   5955 /*
   5956  * This is an interrupt handler for recording.
   5957  * It is called with sc_intr_lock.
   5958  *
   5959  * It is usually called from hardware interrupt.  However, note that
   5960  * for some drivers (e.g. uaudio) it is called from software interrupt.
   5961  */
   5962 static void
   5963 audio_rintr(void *arg)
   5964 {
   5965 	struct audio_softc *sc;
   5966 	audio_trackmixer_t *mixer;
   5967 
   5968 	sc = arg;
   5969 	KASSERT(mutex_owned(sc->sc_intr_lock));
   5970 
   5971 	if (sc->sc_dying)
   5972 		return;
   5973 	if (sc->sc_rbusy == false) {
   5974 #if defined(DIAGNOSTIC)
   5975 		audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
   5976 		    device_xname(sc->hw_dev));
   5977 #endif
   5978 		return;
   5979 	}
   5980 
   5981 	mixer = sc->sc_rmixer;
   5982 	mixer->hw_complete_counter += mixer->frames_per_block;
   5983 	mixer->hwseq++;
   5984 
   5985 	auring_push(&mixer->hwbuf, mixer->frames_per_block);
   5986 
   5987 	TRACE(4,
   5988 	    "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
   5989 	    mixer->hwseq, mixer->hw_complete_counter,
   5990 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
   5991 
   5992 	/* Distrubute recorded block */
   5993 	audio_rmixer_process(sc);
   5994 
   5995 	/* Request next block */
   5996 	audio_rmixer_input(sc);
   5997 
   5998 	/*
   5999 	 * When this interrupt is the real hardware interrupt, disabling
   6000 	 * preemption here is not necessary.  But some drivers (e.g. uaudio)
   6001 	 * emulate it by software interrupt, so kpreempt_disable is necessary.
   6002 	 */
   6003 	kpreempt_disable();
   6004 	softint_schedule(mixer->sih);
   6005 	kpreempt_enable();
   6006 }
   6007 
   6008 /*
   6009  * Halts playback mixer.
   6010  * This function also clears related parameters, so call this function
   6011  * instead of calling halt_output directly.
   6012  * Must be called only if sc_pbusy is true.
   6013  * Must be called with sc_lock && sc_exlock held.
   6014  */
   6015 static int
   6016 audio_pmixer_halt(struct audio_softc *sc)
   6017 {
   6018 	int error;
   6019 
   6020 	TRACE(2, "called");
   6021 	KASSERT(mutex_owned(sc->sc_lock));
   6022 	KASSERT(sc->sc_exlock);
   6023 
   6024 	mutex_enter(sc->sc_intr_lock);
   6025 	error = sc->hw_if->halt_output(sc->hw_hdl);
   6026 
   6027 	/* Halts anyway even if some error has occurred. */
   6028 	sc->sc_pbusy = false;
   6029 	sc->sc_pmixer->hwbuf.head = 0;
   6030 	sc->sc_pmixer->hwbuf.used = 0;
   6031 	sc->sc_pmixer->mixseq = 0;
   6032 	sc->sc_pmixer->hwseq = 0;
   6033 	mutex_exit(sc->sc_intr_lock);
   6034 
   6035 	return error;
   6036 }
   6037 
   6038 /*
   6039  * Halts recording mixer.
   6040  * This function also clears related parameters, so call this function
   6041  * instead of calling halt_input directly.
   6042  * Must be called only if sc_rbusy is true.
   6043  * Must be called with sc_lock && sc_exlock held.
   6044  */
   6045 static int
   6046 audio_rmixer_halt(struct audio_softc *sc)
   6047 {
   6048 	int error;
   6049 
   6050 	TRACE(2, "called");
   6051 	KASSERT(mutex_owned(sc->sc_lock));
   6052 	KASSERT(sc->sc_exlock);
   6053 
   6054 	mutex_enter(sc->sc_intr_lock);
   6055 	error = sc->hw_if->halt_input(sc->hw_hdl);
   6056 
   6057 	/* Halts anyway even if some error has occurred. */
   6058 	sc->sc_rbusy = false;
   6059 	sc->sc_rmixer->hwbuf.head = 0;
   6060 	sc->sc_rmixer->hwbuf.used = 0;
   6061 	sc->sc_rmixer->mixseq = 0;
   6062 	sc->sc_rmixer->hwseq = 0;
   6063 	mutex_exit(sc->sc_intr_lock);
   6064 
   6065 	return error;
   6066 }
   6067 
   6068 /*
   6069  * Flush this track.
   6070  * Halts all operations, clears all buffers, reset error counters.
   6071  * XXX I'm not sure...
   6072  */
   6073 static void
   6074 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
   6075 {
   6076 
   6077 	KASSERT(track);
   6078 	TRACET(3, track, "clear");
   6079 
   6080 	audio_track_lock_enter(track);
   6081 
   6082 	track->usrbuf.used = 0;
   6083 	/* Clear all internal parameters. */
   6084 	if (track->codec.filter) {
   6085 		track->codec.srcbuf.used = 0;
   6086 		track->codec.srcbuf.head = 0;
   6087 	}
   6088 	if (track->chvol.filter) {
   6089 		track->chvol.srcbuf.used = 0;
   6090 		track->chvol.srcbuf.head = 0;
   6091 	}
   6092 	if (track->chmix.filter) {
   6093 		track->chmix.srcbuf.used = 0;
   6094 		track->chmix.srcbuf.head = 0;
   6095 	}
   6096 	if (track->freq.filter) {
   6097 		track->freq.srcbuf.used = 0;
   6098 		track->freq.srcbuf.head = 0;
   6099 		if (track->freq_step < 65536)
   6100 			track->freq_current = 65536;
   6101 		else
   6102 			track->freq_current = 0;
   6103 		memset(track->freq_prev, 0, sizeof(track->freq_prev));
   6104 		memset(track->freq_curr, 0, sizeof(track->freq_curr));
   6105 	}
   6106 	/* Clear buffer, then operation halts naturally. */
   6107 	track->outbuf.used = 0;
   6108 
   6109 	/* Clear counters. */
   6110 	track->dropframes = 0;
   6111 
   6112 	audio_track_lock_exit(track);
   6113 }
   6114 
   6115 /*
   6116  * Drain the track.
   6117  * track must be present and for playback.
   6118  * If successful, it returns 0.  Otherwise returns errno.
   6119  * Must be called with sc_lock held.
   6120  */
   6121 static int
   6122 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
   6123 {
   6124 	audio_trackmixer_t *mixer;
   6125 	int done;
   6126 	int error;
   6127 
   6128 	KASSERT(track);
   6129 	TRACET(3, track, "start");
   6130 	mixer = track->mixer;
   6131 	KASSERT(mutex_owned(sc->sc_lock));
   6132 
   6133 	/* Ignore them if pause. */
   6134 	if (track->is_pause) {
   6135 		TRACET(3, track, "pause -> clear");
   6136 		track->pstate = AUDIO_STATE_CLEAR;
   6137 	}
   6138 	/* Terminate early here if there is no data in the track. */
   6139 	if (track->pstate == AUDIO_STATE_CLEAR) {
   6140 		TRACET(3, track, "no need to drain");
   6141 		return 0;
   6142 	}
   6143 	track->pstate = AUDIO_STATE_DRAINING;
   6144 
   6145 	for (;;) {
   6146 		/* I want to display it before condition evaluation. */
   6147 		TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
   6148 		    (int)curproc->p_pid, (int)curlwp->l_lid,
   6149 		    (int)track->seq, (int)mixer->hwseq,
   6150 		    track->outbuf.head, track->outbuf.used,
   6151 		    track->outbuf.capacity);
   6152 
   6153 		/* Condition to terminate */
   6154 		audio_track_lock_enter(track);
   6155 		done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
   6156 		    track->outbuf.used == 0 &&
   6157 		    track->seq <= mixer->hwseq);
   6158 		audio_track_lock_exit(track);
   6159 		if (done)
   6160 			break;
   6161 
   6162 		TRACET(3, track, "sleep");
   6163 		error = audio_track_waitio(sc, track);
   6164 		if (error)
   6165 			return error;
   6166 
   6167 		/* XXX call audio_track_play here ? */
   6168 	}
   6169 
   6170 	track->pstate = AUDIO_STATE_CLEAR;
   6171 	TRACET(3, track, "done trk_inp=%d trk_out=%d",
   6172 		(int)track->inputcounter, (int)track->outputcounter);
   6173 	return 0;
   6174 }
   6175 
   6176 /*
   6177  * Send signal to process.
   6178  * This is intended to be called only from audio_softintr_{rd,wr}.
   6179  * Must be called without sc_intr_lock held.
   6180  */
   6181 static inline void
   6182 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
   6183 {
   6184 	proc_t *p;
   6185 
   6186 	KASSERT(pid != 0);
   6187 
   6188 	/*
   6189 	 * psignal() must be called without spin lock held.
   6190 	 */
   6191 
   6192 	mutex_enter(&proc_lock);
   6193 	p = proc_find(pid);
   6194 	if (p)
   6195 		psignal(p, signum);
   6196 	mutex_exit(&proc_lock);
   6197 }
   6198 
   6199 /*
   6200  * This is software interrupt handler for record.
   6201  * It is called from recording hardware interrupt everytime.
   6202  * It does:
   6203  * - Deliver SIGIO for all async processes.
   6204  * - Notify to audio_read() that data has arrived.
   6205  * - selnotify() for select/poll-ing processes.
   6206  */
   6207 /*
   6208  * XXX If a process issues FIOASYNC between hardware interrupt and
   6209  *     software interrupt, (stray) SIGIO will be sent to the process
   6210  *     despite the fact that it has not receive recorded data yet.
   6211  */
   6212 static void
   6213 audio_softintr_rd(void *cookie)
   6214 {
   6215 	struct audio_softc *sc = cookie;
   6216 	audio_file_t *f;
   6217 	pid_t pid;
   6218 
   6219 	mutex_enter(sc->sc_lock);
   6220 
   6221 	SLIST_FOREACH(f, &sc->sc_files, entry) {
   6222 		audio_track_t *track = f->rtrack;
   6223 
   6224 		if (track == NULL)
   6225 			continue;
   6226 
   6227 		TRACET(4, track, "broadcast; inp=%d/%d/%d",
   6228 		    track->input->head,
   6229 		    track->input->used,
   6230 		    track->input->capacity);
   6231 
   6232 		pid = f->async_audio;
   6233 		if (pid != 0) {
   6234 			TRACEF(4, f, "sending SIGIO %d", pid);
   6235 			audio_psignal(sc, pid, SIGIO);
   6236 		}
   6237 	}
   6238 
   6239 	/* Notify that data has arrived. */
   6240 	selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
   6241 	cv_broadcast(&sc->sc_rmixer->outcv);
   6242 
   6243 	mutex_exit(sc->sc_lock);
   6244 }
   6245 
   6246 /*
   6247  * This is software interrupt handler for playback.
   6248  * It is called from playback hardware interrupt everytime.
   6249  * It does:
   6250  * - Deliver SIGIO for all async and writable (used < lowat) processes.
   6251  * - Notify to audio_write() that outbuf block available.
   6252  * - selnotify() for select/poll-ing processes if there are any writable
   6253  *   (used < lowat) processes.  Checking each descriptor will be done by
   6254  *   filt_audiowrite_event().
   6255  */
   6256 static void
   6257 audio_softintr_wr(void *cookie)
   6258 {
   6259 	struct audio_softc *sc = cookie;
   6260 	audio_file_t *f;
   6261 	bool found;
   6262 	pid_t pid;
   6263 
   6264 	TRACE(4, "called");
   6265 	found = false;
   6266 
   6267 	mutex_enter(sc->sc_lock);
   6268 
   6269 	SLIST_FOREACH(f, &sc->sc_files, entry) {
   6270 		audio_track_t *track = f->ptrack;
   6271 
   6272 		if (track == NULL)
   6273 			continue;
   6274 
   6275 		TRACET(4, track, "broadcast; trkseq=%d out=%d/%d/%d",
   6276 		    (int)track->seq,
   6277 		    track->outbuf.head,
   6278 		    track->outbuf.used,
   6279 		    track->outbuf.capacity);
   6280 
   6281 		/*
   6282 		 * Send a signal if the process is async mode and
   6283 		 * used is lower than lowat.
   6284 		 */
   6285 		if (track->usrbuf.used <= track->usrbuf_usedlow &&
   6286 		    !track->is_pause) {
   6287 			/* For selnotify */
   6288 			found = true;
   6289 			/* For SIGIO */
   6290 			pid = f->async_audio;
   6291 			if (pid != 0) {
   6292 				TRACEF(4, f, "sending SIGIO %d", pid);
   6293 				audio_psignal(sc, pid, SIGIO);
   6294 			}
   6295 		}
   6296 	}
   6297 
   6298 	/*
   6299 	 * Notify for select/poll when someone become writable.
   6300 	 * It needs sc_lock (and not sc_intr_lock).
   6301 	 */
   6302 	if (found) {
   6303 		TRACE(4, "selnotify");
   6304 		selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
   6305 	}
   6306 
   6307 	/* Notify to audio_write() that outbuf available. */
   6308 	cv_broadcast(&sc->sc_pmixer->outcv);
   6309 
   6310 	mutex_exit(sc->sc_lock);
   6311 }
   6312 
   6313 /*
   6314  * Check (and convert) the format *p came from userland.
   6315  * If successful, it writes back the converted format to *p if necessary and
   6316  * returns 0.  Otherwise returns errno (*p may be changed even in this case).
   6317  */
   6318 static int
   6319 audio_check_params(audio_format2_t *p)
   6320 {
   6321 
   6322 	/*
   6323 	 * Convert obsolete AUDIO_ENCODING_PCM encodings.
   6324 	 *
   6325 	 * AUDIO_ENCODING_PCM16 == AUDIO_ENCODING_LINEAR
   6326 	 * So, it's always signed, as in SunOS.
   6327 	 *
   6328 	 * AUDIO_ENCODING_PCM8 == AUDIO_ENCODING_LINEAR8
   6329 	 * So, it's always unsigned, as in SunOS.
   6330 	 */
   6331 	if (p->encoding == AUDIO_ENCODING_PCM16) {
   6332 		p->encoding = AUDIO_ENCODING_SLINEAR;
   6333 	} else if (p->encoding == AUDIO_ENCODING_PCM8) {
   6334 		if (p->precision == 8)
   6335 			p->encoding = AUDIO_ENCODING_ULINEAR;
   6336 		else
   6337 			return EINVAL;
   6338 	}
   6339 
   6340 	/*
   6341 	 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
   6342 	 * suffix.
   6343 	 */
   6344 	if (p->encoding == AUDIO_ENCODING_SLINEAR)
   6345 		p->encoding = AUDIO_ENCODING_SLINEAR_NE;
   6346 	if (p->encoding == AUDIO_ENCODING_ULINEAR)
   6347 		p->encoding = AUDIO_ENCODING_ULINEAR_NE;
   6348 
   6349 	switch (p->encoding) {
   6350 	case AUDIO_ENCODING_ULAW:
   6351 	case AUDIO_ENCODING_ALAW:
   6352 		if (p->precision != 8)
   6353 			return EINVAL;
   6354 		break;
   6355 	case AUDIO_ENCODING_ADPCM:
   6356 		if (p->precision != 4 && p->precision != 8)
   6357 			return EINVAL;
   6358 		break;
   6359 	case AUDIO_ENCODING_SLINEAR_LE:
   6360 	case AUDIO_ENCODING_SLINEAR_BE:
   6361 	case AUDIO_ENCODING_ULINEAR_LE:
   6362 	case AUDIO_ENCODING_ULINEAR_BE:
   6363 		if (p->precision !=  8 && p->precision != 16 &&
   6364 		    p->precision != 24 && p->precision != 32)
   6365 			return EINVAL;
   6366 
   6367 		/* 8bit format does not have endianness. */
   6368 		if (p->precision == 8) {
   6369 			if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
   6370 				p->encoding = AUDIO_ENCODING_SLINEAR_NE;
   6371 			if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
   6372 				p->encoding = AUDIO_ENCODING_ULINEAR_NE;
   6373 		}
   6374 
   6375 		if (p->precision > p->stride)
   6376 			return EINVAL;
   6377 		break;
   6378 	case AUDIO_ENCODING_MPEG_L1_STREAM:
   6379 	case AUDIO_ENCODING_MPEG_L1_PACKETS:
   6380 	case AUDIO_ENCODING_MPEG_L1_SYSTEM:
   6381 	case AUDIO_ENCODING_MPEG_L2_STREAM:
   6382 	case AUDIO_ENCODING_MPEG_L2_PACKETS:
   6383 	case AUDIO_ENCODING_MPEG_L2_SYSTEM:
   6384 	case AUDIO_ENCODING_AC3:
   6385 		break;
   6386 	default:
   6387 		return EINVAL;
   6388 	}
   6389 
   6390 	/* sanity check # of channels*/
   6391 	if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
   6392 		return EINVAL;
   6393 
   6394 	return 0;
   6395 }
   6396 
   6397 /*
   6398  * Initialize playback and record mixers.
   6399  * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
   6400  * phwfmt and rhwfmt indicate the hardware format.  pfil and rfil indicate
   6401  * the filter registration information.  These four must not be NULL.
   6402  * If successful returns 0.  Otherwise returns errno.
   6403  * Must be called with sc_exlock held and without sc_lock held.
   6404  * Must not be called if there are any tracks.
   6405  * Caller should check that the initialization succeed by whether
   6406  * sc_[pr]mixer is not NULL.
   6407  */
   6408 static int
   6409 audio_mixers_init(struct audio_softc *sc, int mode,
   6410 	const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
   6411 	const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
   6412 {
   6413 	int error;
   6414 
   6415 	KASSERT(phwfmt != NULL);
   6416 	KASSERT(rhwfmt != NULL);
   6417 	KASSERT(pfil != NULL);
   6418 	KASSERT(rfil != NULL);
   6419 	KASSERT(sc->sc_exlock);
   6420 
   6421 	if ((mode & AUMODE_PLAY)) {
   6422 		if (sc->sc_pmixer == NULL) {
   6423 			sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
   6424 			    KM_SLEEP);
   6425 		} else {
   6426 			/* destroy() doesn't free memory. */
   6427 			audio_mixer_destroy(sc, sc->sc_pmixer);
   6428 			memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
   6429 		}
   6430 		error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
   6431 		if (error) {
   6432 			/* audio_mixer_init already displayed error code */
   6433 			audio_printf(sc, "configuring playback mode failed\n");
   6434 			kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
   6435 			sc->sc_pmixer = NULL;
   6436 			return error;
   6437 		}
   6438 	}
   6439 	if ((mode & AUMODE_RECORD)) {
   6440 		if (sc->sc_rmixer == NULL) {
   6441 			sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
   6442 			    KM_SLEEP);
   6443 		} else {
   6444 			/* destroy() doesn't free memory. */
   6445 			audio_mixer_destroy(sc, sc->sc_rmixer);
   6446 			memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
   6447 		}
   6448 		error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
   6449 		if (error) {
   6450 			/* audio_mixer_init already displayed error code */
   6451 			audio_printf(sc, "configuring record mode failed\n");
   6452 			kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
   6453 			sc->sc_rmixer = NULL;
   6454 			return error;
   6455 		}
   6456 	}
   6457 
   6458 	return 0;
   6459 }
   6460 
   6461 /*
   6462  * Select a frequency.
   6463  * Prioritize 48kHz and 44.1kHz.  Otherwise choose the highest one.
   6464  * XXX Better algorithm?
   6465  */
   6466 static int
   6467 audio_select_freq(const struct audio_format *fmt)
   6468 {
   6469 	int freq;
   6470 	int high;
   6471 	int low;
   6472 	int j;
   6473 
   6474 	if (fmt->frequency_type == 0) {
   6475 		low = fmt->frequency[0];
   6476 		high = fmt->frequency[1];
   6477 		freq = 48000;
   6478 		if (low <= freq && freq <= high) {
   6479 			return freq;
   6480 		}
   6481 		freq = 44100;
   6482 		if (low <= freq && freq <= high) {
   6483 			return freq;
   6484 		}
   6485 		return high;
   6486 	} else {
   6487 		for (j = 0; j < fmt->frequency_type; j++) {
   6488 			if (fmt->frequency[j] == 48000) {
   6489 				return fmt->frequency[j];
   6490 			}
   6491 		}
   6492 		high = 0;
   6493 		for (j = 0; j < fmt->frequency_type; j++) {
   6494 			if (fmt->frequency[j] == 44100) {
   6495 				return fmt->frequency[j];
   6496 			}
   6497 			if (fmt->frequency[j] > high) {
   6498 				high = fmt->frequency[j];
   6499 			}
   6500 		}
   6501 		return high;
   6502 	}
   6503 }
   6504 
   6505 /*
   6506  * Choose the most preferred hardware format.
   6507  * If successful, it will store the chosen format into *cand and return 0.
   6508  * Otherwise, return errno.
   6509  * Must be called without sc_lock held.
   6510  */
   6511 static int
   6512 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
   6513 {
   6514 	audio_format_query_t query;
   6515 	int cand_score;
   6516 	int score;
   6517 	int i;
   6518 	int error;
   6519 
   6520 	/*
   6521 	 * Score each formats and choose the highest one.
   6522 	 *
   6523 	 *                 +---- priority(0-3)
   6524 	 *                 |+--- encoding/precision
   6525 	 *                 ||+-- channels
   6526 	 * score = 0x000000PEC
   6527 	 */
   6528 
   6529 	cand_score = 0;
   6530 	for (i = 0; ; i++) {
   6531 		memset(&query, 0, sizeof(query));
   6532 		query.index = i;
   6533 
   6534 		mutex_enter(sc->sc_lock);
   6535 		error = sc->hw_if->query_format(sc->hw_hdl, &query);
   6536 		mutex_exit(sc->sc_lock);
   6537 		if (error == EINVAL)
   6538 			break;
   6539 		if (error)
   6540 			return error;
   6541 
   6542 #if defined(AUDIO_DEBUG)
   6543 		DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
   6544 		    (query.fmt.mode & AUMODE_PLAY)   ? 'P' : '-',
   6545 		    (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
   6546 		    query.fmt.priority,
   6547 		    audio_encoding_name(query.fmt.encoding),
   6548 		    query.fmt.validbits,
   6549 		    query.fmt.precision,
   6550 		    query.fmt.channels);
   6551 		if (query.fmt.frequency_type == 0) {
   6552 			DPRINTF(1, "{%d-%d",
   6553 			    query.fmt.frequency[0], query.fmt.frequency[1]);
   6554 		} else {
   6555 			int j;
   6556 			for (j = 0; j < query.fmt.frequency_type; j++) {
   6557 				DPRINTF(1, "%c%d",
   6558 				    (j == 0) ? '{' : ',',
   6559 				    query.fmt.frequency[j]);
   6560 			}
   6561 		}
   6562 		DPRINTF(1, "}\n");
   6563 #endif
   6564 
   6565 		if ((query.fmt.mode & mode) == 0) {
   6566 			DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
   6567 			    mode);
   6568 			continue;
   6569 		}
   6570 
   6571 		if (query.fmt.priority < 0) {
   6572 			DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
   6573 			continue;
   6574 		}
   6575 
   6576 		/* Score */
   6577 		score = (query.fmt.priority & 3) * 0x100;
   6578 		if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
   6579 		    query.fmt.validbits == AUDIO_INTERNAL_BITS &&
   6580 		    query.fmt.precision == AUDIO_INTERNAL_BITS) {
   6581 			score += 0x20;
   6582 		} else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
   6583 		    query.fmt.validbits == AUDIO_INTERNAL_BITS &&
   6584 		    query.fmt.precision == AUDIO_INTERNAL_BITS) {
   6585 			score += 0x10;
   6586 		}
   6587 
   6588 		/* Do not prefer surround formats */
   6589 		if (query.fmt.channels <= 2)
   6590 			score += query.fmt.channels;
   6591 
   6592 		if (score < cand_score) {
   6593 			DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
   6594 			    score, cand_score);
   6595 			continue;
   6596 		}
   6597 
   6598 		/* Update candidate */
   6599 		cand_score = score;
   6600 		cand->encoding    = query.fmt.encoding;
   6601 		cand->precision   = query.fmt.validbits;
   6602 		cand->stride      = query.fmt.precision;
   6603 		cand->channels    = query.fmt.channels;
   6604 		cand->sample_rate = audio_select_freq(&query.fmt);
   6605 		DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
   6606 		    " pri=%d %s,%d/%d,%dch,%dHz\n", i,
   6607 		    cand_score, query.fmt.priority,
   6608 		    audio_encoding_name(query.fmt.encoding),
   6609 		    cand->precision, cand->stride,
   6610 		    cand->channels, cand->sample_rate);
   6611 	}
   6612 
   6613 	if (cand_score == 0) {
   6614 		DPRINTF(1, "%s no fmt\n", __func__);
   6615 		return ENXIO;
   6616 	}
   6617 	DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
   6618 	    audio_encoding_name(cand->encoding),
   6619 	    cand->precision, cand->stride, cand->channels, cand->sample_rate);
   6620 	return 0;
   6621 }
   6622 
   6623 /*
   6624  * Validate fmt with query_format.
   6625  * If fmt is included in the result of query_format, returns 0.
   6626  * Otherwise returns EINVAL.
   6627  * Must be called without sc_lock held.
   6628  */
   6629 static int
   6630 audio_hw_validate_format(struct audio_softc *sc, int mode,
   6631 	const audio_format2_t *fmt)
   6632 {
   6633 	audio_format_query_t query;
   6634 	struct audio_format *q;
   6635 	int index;
   6636 	int error;
   6637 	int j;
   6638 
   6639 	for (index = 0; ; index++) {
   6640 		query.index = index;
   6641 		mutex_enter(sc->sc_lock);
   6642 		error = sc->hw_if->query_format(sc->hw_hdl, &query);
   6643 		mutex_exit(sc->sc_lock);
   6644 		if (error == EINVAL)
   6645 			break;
   6646 		if (error)
   6647 			return error;
   6648 
   6649 		q = &query.fmt;
   6650 		/*
   6651 		 * Note that fmt is audio_format2_t (precision/stride) but
   6652 		 * q is audio_format_t (validbits/precision).
   6653 		 */
   6654 		if ((q->mode & mode) == 0) {
   6655 			continue;
   6656 		}
   6657 		if (fmt->encoding != q->encoding) {
   6658 			continue;
   6659 		}
   6660 		if (fmt->precision != q->validbits) {
   6661 			continue;
   6662 		}
   6663 		if (fmt->stride != q->precision) {
   6664 			continue;
   6665 		}
   6666 		if (fmt->channels != q->channels) {
   6667 			continue;
   6668 		}
   6669 		if (q->frequency_type == 0) {
   6670 			if (fmt->sample_rate < q->frequency[0] ||
   6671 			    fmt->sample_rate > q->frequency[1]) {
   6672 				continue;
   6673 			}
   6674 		} else {
   6675 			for (j = 0; j < q->frequency_type; j++) {
   6676 				if (fmt->sample_rate == q->frequency[j])
   6677 					break;
   6678 			}
   6679 			if (j == query.fmt.frequency_type) {
   6680 				continue;
   6681 			}
   6682 		}
   6683 
   6684 		/* Matched. */
   6685 		return 0;
   6686 	}
   6687 
   6688 	return EINVAL;
   6689 }
   6690 
   6691 /*
   6692  * Set track mixer's format depending on ai->mode.
   6693  * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
   6694  * with ai.play.*.
   6695  * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
   6696  * with ai.record.*.
   6697  * All other fields in ai are ignored.
   6698  * If successful returns 0.  Otherwise returns errno.
   6699  * This function does not roll back even if it fails.
   6700  * Must be called with sc_exlock held and without sc_lock held.
   6701  */
   6702 static int
   6703 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
   6704 {
   6705 	audio_format2_t phwfmt;
   6706 	audio_format2_t rhwfmt;
   6707 	audio_filter_reg_t pfil;
   6708 	audio_filter_reg_t rfil;
   6709 	int mode;
   6710 	int error;
   6711 
   6712 	KASSERT(sc->sc_exlock);
   6713 
   6714 	/*
   6715 	 * Even when setting either one of playback and recording,
   6716 	 * both must be halted.
   6717 	 */
   6718 	if (sc->sc_popens + sc->sc_ropens > 0)
   6719 		return EBUSY;
   6720 
   6721 	if (!SPECIFIED(ai->mode) || ai->mode == 0)
   6722 		return ENOTTY;
   6723 
   6724 	mode = ai->mode;
   6725 	if ((mode & AUMODE_PLAY)) {
   6726 		phwfmt.encoding    = ai->play.encoding;
   6727 		phwfmt.precision   = ai->play.precision;
   6728 		phwfmt.stride      = ai->play.precision;
   6729 		phwfmt.channels    = ai->play.channels;
   6730 		phwfmt.sample_rate = ai->play.sample_rate;
   6731 	}
   6732 	if ((mode & AUMODE_RECORD)) {
   6733 		rhwfmt.encoding    = ai->record.encoding;
   6734 		rhwfmt.precision   = ai->record.precision;
   6735 		rhwfmt.stride      = ai->record.precision;
   6736 		rhwfmt.channels    = ai->record.channels;
   6737 		rhwfmt.sample_rate = ai->record.sample_rate;
   6738 	}
   6739 
   6740 	/* On non-independent devices, use the same format for both. */
   6741 	if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
   6742 		if (mode == AUMODE_RECORD) {
   6743 			phwfmt = rhwfmt;
   6744 		} else {
   6745 			rhwfmt = phwfmt;
   6746 		}
   6747 		mode = AUMODE_PLAY | AUMODE_RECORD;
   6748 	}
   6749 
   6750 	/* Then, unset the direction not exist on the hardware. */
   6751 	if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
   6752 		mode &= ~AUMODE_PLAY;
   6753 	if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
   6754 		mode &= ~AUMODE_RECORD;
   6755 
   6756 	/* debug */
   6757 	if ((mode & AUMODE_PLAY)) {
   6758 		TRACE(1, "play=%s/%d/%d/%dch/%dHz",
   6759 		    audio_encoding_name(phwfmt.encoding),
   6760 		    phwfmt.precision,
   6761 		    phwfmt.stride,
   6762 		    phwfmt.channels,
   6763 		    phwfmt.sample_rate);
   6764 	}
   6765 	if ((mode & AUMODE_RECORD)) {
   6766 		TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
   6767 		    audio_encoding_name(rhwfmt.encoding),
   6768 		    rhwfmt.precision,
   6769 		    rhwfmt.stride,
   6770 		    rhwfmt.channels,
   6771 		    rhwfmt.sample_rate);
   6772 	}
   6773 
   6774 	/* Check the format */
   6775 	if ((mode & AUMODE_PLAY)) {
   6776 		if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
   6777 			TRACE(1, "invalid format");
   6778 			return EINVAL;
   6779 		}
   6780 	}
   6781 	if ((mode & AUMODE_RECORD)) {
   6782 		if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
   6783 			TRACE(1, "invalid format");
   6784 			return EINVAL;
   6785 		}
   6786 	}
   6787 
   6788 	/* Configure the mixers. */
   6789 	memset(&pfil, 0, sizeof(pfil));
   6790 	memset(&rfil, 0, sizeof(rfil));
   6791 	error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   6792 	if (error)
   6793 		return error;
   6794 
   6795 	error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   6796 	if (error)
   6797 		return error;
   6798 
   6799 	/*
   6800 	 * Reinitialize the sticky parameters for /dev/sound.
   6801 	 * If the number of the hardware channels becomes less than the number
   6802 	 * of channels that sticky parameters remember, subsequent /dev/sound
   6803 	 * open will fail.  To prevent this, reinitialize the sticky
   6804 	 * parameters whenever the hardware format is changed.
   6805 	 */
   6806 	sc->sc_sound_pparams = params_to_format2(&audio_default);
   6807 	sc->sc_sound_rparams = params_to_format2(&audio_default);
   6808 	sc->sc_sound_ppause = false;
   6809 	sc->sc_sound_rpause = false;
   6810 
   6811 	return 0;
   6812 }
   6813 
   6814 /*
   6815  * Store current mixers format into *ai.
   6816  * Must be called with sc_exlock held.
   6817  */
   6818 static void
   6819 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
   6820 {
   6821 
   6822 	KASSERT(sc->sc_exlock);
   6823 
   6824 	/*
   6825 	 * There is no stride information in audio_info but it doesn't matter.
   6826 	 * trackmixer always treats stride and precision as the same.
   6827 	 */
   6828 	AUDIO_INITINFO(ai);
   6829 	ai->mode = 0;
   6830 	if (sc->sc_pmixer) {
   6831 		audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
   6832 		ai->play.encoding    = fmt->encoding;
   6833 		ai->play.precision   = fmt->precision;
   6834 		ai->play.channels    = fmt->channels;
   6835 		ai->play.sample_rate = fmt->sample_rate;
   6836 		ai->mode |= AUMODE_PLAY;
   6837 	}
   6838 	if (sc->sc_rmixer) {
   6839 		audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
   6840 		ai->record.encoding    = fmt->encoding;
   6841 		ai->record.precision   = fmt->precision;
   6842 		ai->record.channels    = fmt->channels;
   6843 		ai->record.sample_rate = fmt->sample_rate;
   6844 		ai->mode |= AUMODE_RECORD;
   6845 	}
   6846 }
   6847 
   6848 /*
   6849  * audio_info details:
   6850  *
   6851  * ai.{play,record}.sample_rate		(R/W)
   6852  * ai.{play,record}.encoding		(R/W)
   6853  * ai.{play,record}.precision		(R/W)
   6854  * ai.{play,record}.channels		(R/W)
   6855  *	These specify the playback or recording format.
   6856  *	Ignore members within an inactive track.
   6857  *
   6858  * ai.mode				(R/W)
   6859  *	It specifies the playback or recording mode, AUMODE_*.
   6860  *	Currently, a mode change operation by ai.mode after opening is
   6861  *	prohibited.  In addition, AUMODE_PLAY_ALL no longer makes sense.
   6862  *	However, it's possible to get or to set for backward compatibility.
   6863  *
   6864  * ai.{hiwat,lowat}			(R/W)
   6865  *	These specify the high water mark and low water mark for playback
   6866  *	track.  The unit is block.
   6867  *
   6868  * ai.{play,record}.gain		(R/W)
   6869  *	It specifies the HW mixer volume in 0-255.
   6870  *	It is historical reason that the gain is connected to HW mixer.
   6871  *
   6872  * ai.{play,record}.balance		(R/W)
   6873  *	It specifies the left-right balance of HW mixer in 0-64.
   6874  *	32 means the center.
   6875  *	It is historical reason that the balance is connected to HW mixer.
   6876  *
   6877  * ai.{play,record}.port		(R/W)
   6878  *	It specifies the input/output port of HW mixer.
   6879  *
   6880  * ai.monitor_gain			(R/W)
   6881  *	It specifies the recording monitor gain(?) of HW mixer.
   6882  *
   6883  * ai.{play,record}.pause		(R/W)
   6884  *	Non-zero means the track is paused.
   6885  *
   6886  * ai.play.seek				(R/-)
   6887  *	It indicates the number of bytes written but not processed.
   6888  * ai.record.seek			(R/-)
   6889  *	It indicates the number of bytes to be able to read.
   6890  *
   6891  * ai.{play,record}.avail_ports		(R/-)
   6892  *	Mixer info.
   6893  *
   6894  * ai.{play,record}.buffer_size		(R/-)
   6895  *	It indicates the buffer size in bytes.  Internally it means usrbuf.
   6896  *
   6897  * ai.{play,record}.samples		(R/-)
   6898  *	It indicates the total number of bytes played or recorded.
   6899  *
   6900  * ai.{play,record}.eof			(R/-)
   6901  *	It indicates the number of times reached EOF(?).
   6902  *
   6903  * ai.{play,record}.error		(R/-)
   6904  *	Non-zero indicates overflow/underflow has occured.
   6905  *
   6906  * ai.{play,record}.waiting		(R/-)
   6907  *	Non-zero indicates that other process waits to open.
   6908  *	It will never happen anymore.
   6909  *
   6910  * ai.{play,record}.open		(R/-)
   6911  *	Non-zero indicates the direction is opened by this process(?).
   6912  *	XXX Is this better to indicate that "the device is opened by
   6913  *	at least one process"?
   6914  *
   6915  * ai.{play,record}.active		(R/-)
   6916  *	Non-zero indicates that I/O is currently active.
   6917  *
   6918  * ai.blocksize				(R/-)
   6919  *	It indicates the block size in bytes.
   6920  *	XXX The blocksize of playback and recording may be different.
   6921  */
   6922 
   6923 /*
   6924  * Pause consideration:
   6925  *
   6926  * Pausing/unpausing never affect [pr]mixer.  This single rule makes
   6927  * operation simple.  Note that playback and recording are asymmetric.
   6928  *
   6929  * For playback,
   6930  *  1. Any playback open doesn't start pmixer regardless of initial pause
   6931  *     state of this track.
   6932  *  2. The first write access among playback tracks only starts pmixer
   6933  *     regardless of this track's pause state.
   6934  *  3. Even a pause of the last playback track doesn't stop pmixer.
   6935  *  4. The last close of all playback tracks only stops pmixer.
   6936  *
   6937  * For recording,
   6938  *  1. The first recording open only starts rmixer regardless of initial
   6939  *     pause state of this track.
   6940  *  2. Even a pause of the last track doesn't stop rmixer.
   6941  *  3. The last close of all recording tracks only stops rmixer.
   6942  */
   6943 
   6944 /*
   6945  * Set both track's parameters within a file depending on ai.
   6946  * Update sc_sound_[pr]* if set.
   6947  * Must be called with sc_exlock held and without sc_lock held.
   6948  */
   6949 static int
   6950 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
   6951 	const struct audio_info *ai)
   6952 {
   6953 	const struct audio_prinfo *pi;
   6954 	const struct audio_prinfo *ri;
   6955 	audio_track_t *ptrack;
   6956 	audio_track_t *rtrack;
   6957 	audio_format2_t pfmt;
   6958 	audio_format2_t rfmt;
   6959 	int pchanges;
   6960 	int rchanges;
   6961 	int mode;
   6962 	struct audio_info saved_ai;
   6963 	audio_format2_t saved_pfmt;
   6964 	audio_format2_t saved_rfmt;
   6965 	int error;
   6966 
   6967 	KASSERT(sc->sc_exlock);
   6968 
   6969 	pi = &ai->play;
   6970 	ri = &ai->record;
   6971 	pchanges = 0;
   6972 	rchanges = 0;
   6973 
   6974 	ptrack = file->ptrack;
   6975 	rtrack = file->rtrack;
   6976 
   6977 #if defined(AUDIO_DEBUG)
   6978 	if (audiodebug >= 2) {
   6979 		char buf[256];
   6980 		char p[64];
   6981 		int buflen;
   6982 		int plen;
   6983 #define SPRINTF(var, fmt...) do {	\
   6984 	var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
   6985 } while (0)
   6986 
   6987 		buflen = 0;
   6988 		plen = 0;
   6989 		if (SPECIFIED(pi->encoding))
   6990 			SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
   6991 		if (SPECIFIED(pi->precision))
   6992 			SPRINTF(p, "/%dbit", pi->precision);
   6993 		if (SPECIFIED(pi->channels))
   6994 			SPRINTF(p, "/%dch", pi->channels);
   6995 		if (SPECIFIED(pi->sample_rate))
   6996 			SPRINTF(p, "/%dHz", pi->sample_rate);
   6997 		if (plen > 0)
   6998 			SPRINTF(buf, ",play.param=%s", p + 1);
   6999 
   7000 		plen = 0;
   7001 		if (SPECIFIED(ri->encoding))
   7002 			SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
   7003 		if (SPECIFIED(ri->precision))
   7004 			SPRINTF(p, "/%dbit", ri->precision);
   7005 		if (SPECIFIED(ri->channels))
   7006 			SPRINTF(p, "/%dch", ri->channels);
   7007 		if (SPECIFIED(ri->sample_rate))
   7008 			SPRINTF(p, "/%dHz", ri->sample_rate);
   7009 		if (plen > 0)
   7010 			SPRINTF(buf, ",record.param=%s", p + 1);
   7011 
   7012 		if (SPECIFIED(ai->mode))
   7013 			SPRINTF(buf, ",mode=%d", ai->mode);
   7014 		if (SPECIFIED(ai->hiwat))
   7015 			SPRINTF(buf, ",hiwat=%d", ai->hiwat);
   7016 		if (SPECIFIED(ai->lowat))
   7017 			SPRINTF(buf, ",lowat=%d", ai->lowat);
   7018 		if (SPECIFIED(ai->play.gain))
   7019 			SPRINTF(buf, ",play.gain=%d", ai->play.gain);
   7020 		if (SPECIFIED(ai->record.gain))
   7021 			SPRINTF(buf, ",record.gain=%d", ai->record.gain);
   7022 		if (SPECIFIED_CH(ai->play.balance))
   7023 			SPRINTF(buf, ",play.balance=%d", ai->play.balance);
   7024 		if (SPECIFIED_CH(ai->record.balance))
   7025 			SPRINTF(buf, ",record.balance=%d", ai->record.balance);
   7026 		if (SPECIFIED(ai->play.port))
   7027 			SPRINTF(buf, ",play.port=%d", ai->play.port);
   7028 		if (SPECIFIED(ai->record.port))
   7029 			SPRINTF(buf, ",record.port=%d", ai->record.port);
   7030 		if (SPECIFIED(ai->monitor_gain))
   7031 			SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
   7032 		if (SPECIFIED_CH(ai->play.pause))
   7033 			SPRINTF(buf, ",play.pause=%d", ai->play.pause);
   7034 		if (SPECIFIED_CH(ai->record.pause))
   7035 			SPRINTF(buf, ",record.pause=%d", ai->record.pause);
   7036 
   7037 		if (buflen > 0)
   7038 			TRACE(2, "specified %s", buf + 1);
   7039 	}
   7040 #endif
   7041 
   7042 	AUDIO_INITINFO(&saved_ai);
   7043 	/* XXX shut up gcc */
   7044 	memset(&saved_pfmt, 0, sizeof(saved_pfmt));
   7045 	memset(&saved_rfmt, 0, sizeof(saved_rfmt));
   7046 
   7047 	/*
   7048 	 * Set default value and save current parameters.
   7049 	 * For backward compatibility, use sticky parameters for nonexistent
   7050 	 * track.
   7051 	 */
   7052 	if (ptrack) {
   7053 		pfmt = ptrack->usrbuf.fmt;
   7054 		saved_pfmt = ptrack->usrbuf.fmt;
   7055 		saved_ai.play.pause = ptrack->is_pause;
   7056 	} else {
   7057 		pfmt = sc->sc_sound_pparams;
   7058 	}
   7059 	if (rtrack) {
   7060 		rfmt = rtrack->usrbuf.fmt;
   7061 		saved_rfmt = rtrack->usrbuf.fmt;
   7062 		saved_ai.record.pause = rtrack->is_pause;
   7063 	} else {
   7064 		rfmt = sc->sc_sound_rparams;
   7065 	}
   7066 	saved_ai.mode = file->mode;
   7067 
   7068 	/*
   7069 	 * Overwrite if specified.
   7070 	 */
   7071 	mode = file->mode;
   7072 	if (SPECIFIED(ai->mode)) {
   7073 		/*
   7074 		 * Setting ai->mode no longer does anything because it's
   7075 		 * prohibited to change playback/recording mode after open
   7076 		 * and AUMODE_PLAY_ALL is obsoleted.  However, it still
   7077 		 * keeps the state of AUMODE_PLAY_ALL itself for backward
   7078 		 * compatibility.
   7079 		 * In the internal, only file->mode has the state of
   7080 		 * AUMODE_PLAY_ALL flag and track->mode in both track does
   7081 		 * not have.
   7082 		 */
   7083 		if ((file->mode & AUMODE_PLAY)) {
   7084 			mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
   7085 			    | (ai->mode & AUMODE_PLAY_ALL);
   7086 		}
   7087 	}
   7088 
   7089 	pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
   7090 	if (pchanges == -1) {
   7091 #if defined(AUDIO_DEBUG)
   7092 		TRACEF(1, file, "check play.params failed: "
   7093 		    "%s %ubit %uch %uHz",
   7094 		    audio_encoding_name(pi->encoding),
   7095 		    pi->precision,
   7096 		    pi->channels,
   7097 		    pi->sample_rate);
   7098 #endif
   7099 		return EINVAL;
   7100 	}
   7101 
   7102 	rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
   7103 	if (rchanges == -1) {
   7104 #if defined(AUDIO_DEBUG)
   7105 		TRACEF(1, file, "check record.params failed: "
   7106 		    "%s %ubit %uch %uHz",
   7107 		    audio_encoding_name(ri->encoding),
   7108 		    ri->precision,
   7109 		    ri->channels,
   7110 		    ri->sample_rate);
   7111 #endif
   7112 		return EINVAL;
   7113 	}
   7114 
   7115 	if (SPECIFIED(ai->mode)) {
   7116 		pchanges = 1;
   7117 		rchanges = 1;
   7118 	}
   7119 
   7120 	/*
   7121 	 * Even when setting either one of playback and recording,
   7122 	 * both track must be halted.
   7123 	 */
   7124 	if (pchanges || rchanges) {
   7125 		audio_file_clear(sc, file);
   7126 #if defined(AUDIO_DEBUG)
   7127 		char nbuf[16];
   7128 		char fmtbuf[64];
   7129 		if (pchanges) {
   7130 			if (ptrack) {
   7131 				snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
   7132 			} else {
   7133 				snprintf(nbuf, sizeof(nbuf), "-");
   7134 			}
   7135 			audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
   7136 			DPRINTF(1, "audio track#%s play mode: %s\n",
   7137 			    nbuf, fmtbuf);
   7138 		}
   7139 		if (rchanges) {
   7140 			if (rtrack) {
   7141 				snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
   7142 			} else {
   7143 				snprintf(nbuf, sizeof(nbuf), "-");
   7144 			}
   7145 			audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
   7146 			DPRINTF(1, "audio track#%s rec  mode: %s\n",
   7147 			    nbuf, fmtbuf);
   7148 		}
   7149 #endif
   7150 	}
   7151 
   7152 	/* Set mixer parameters */
   7153 	mutex_enter(sc->sc_lock);
   7154 	error = audio_hw_setinfo(sc, ai, &saved_ai);
   7155 	mutex_exit(sc->sc_lock);
   7156 	if (error)
   7157 		goto abort1;
   7158 
   7159 	/*
   7160 	 * Set to track and update sticky parameters.
   7161 	 */
   7162 	error = 0;
   7163 	file->mode = mode;
   7164 
   7165 	if (SPECIFIED_CH(pi->pause)) {
   7166 		if (ptrack)
   7167 			ptrack->is_pause = pi->pause;
   7168 		sc->sc_sound_ppause = pi->pause;
   7169 	}
   7170 	if (pchanges) {
   7171 		if (ptrack) {
   7172 			audio_track_lock_enter(ptrack);
   7173 			error = audio_track_set_format(ptrack, &pfmt);
   7174 			audio_track_lock_exit(ptrack);
   7175 			if (error) {
   7176 				TRACET(1, ptrack, "set play.params failed");
   7177 				goto abort2;
   7178 			}
   7179 		}
   7180 		sc->sc_sound_pparams = pfmt;
   7181 	}
   7182 	/* Change water marks after initializing the buffers. */
   7183 	if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
   7184 		if (ptrack)
   7185 			audio_track_setinfo_water(ptrack, ai);
   7186 	}
   7187 
   7188 	if (SPECIFIED_CH(ri->pause)) {
   7189 		if (rtrack)
   7190 			rtrack->is_pause = ri->pause;
   7191 		sc->sc_sound_rpause = ri->pause;
   7192 	}
   7193 	if (rchanges) {
   7194 		if (rtrack) {
   7195 			audio_track_lock_enter(rtrack);
   7196 			error = audio_track_set_format(rtrack, &rfmt);
   7197 			audio_track_lock_exit(rtrack);
   7198 			if (error) {
   7199 				TRACET(1, rtrack, "set record.params failed");
   7200 				goto abort3;
   7201 			}
   7202 		}
   7203 		sc->sc_sound_rparams = rfmt;
   7204 	}
   7205 
   7206 	return 0;
   7207 
   7208 	/* Rollback */
   7209 abort3:
   7210 	if (error != ENOMEM) {
   7211 		rtrack->is_pause = saved_ai.record.pause;
   7212 		audio_track_lock_enter(rtrack);
   7213 		audio_track_set_format(rtrack, &saved_rfmt);
   7214 		audio_track_lock_exit(rtrack);
   7215 	}
   7216 	sc->sc_sound_rpause = saved_ai.record.pause;
   7217 	sc->sc_sound_rparams = saved_rfmt;
   7218 abort2:
   7219 	if (ptrack && error != ENOMEM) {
   7220 		ptrack->is_pause = saved_ai.play.pause;
   7221 		audio_track_lock_enter(ptrack);
   7222 		audio_track_set_format(ptrack, &saved_pfmt);
   7223 		audio_track_lock_exit(ptrack);
   7224 	}
   7225 	sc->sc_sound_ppause = saved_ai.play.pause;
   7226 	sc->sc_sound_pparams = saved_pfmt;
   7227 	file->mode = saved_ai.mode;
   7228 abort1:
   7229 	mutex_enter(sc->sc_lock);
   7230 	audio_hw_setinfo(sc, &saved_ai, NULL);
   7231 	mutex_exit(sc->sc_lock);
   7232 
   7233 	return error;
   7234 }
   7235 
   7236 /*
   7237  * Write SPECIFIED() parameters within info back to fmt.
   7238  * Note that track can be NULL here.
   7239  * Return value of 1 indicates that fmt is modified.
   7240  * Return value of 0 indicates that fmt is not modified.
   7241  * Return value of -1 indicates that error EINVAL has occurred.
   7242  */
   7243 static int
   7244 audio_track_setinfo_check(audio_track_t *track,
   7245 	audio_format2_t *fmt, const struct audio_prinfo *info)
   7246 {
   7247 	const audio_format2_t *hwfmt;
   7248 	int changes;
   7249 
   7250 	changes = 0;
   7251 	if (SPECIFIED(info->sample_rate)) {
   7252 		if (info->sample_rate < AUDIO_MIN_FREQUENCY)
   7253 			return -1;
   7254 		if (info->sample_rate > AUDIO_MAX_FREQUENCY)
   7255 			return -1;
   7256 		fmt->sample_rate = info->sample_rate;
   7257 		changes = 1;
   7258 	}
   7259 	if (SPECIFIED(info->encoding)) {
   7260 		fmt->encoding = info->encoding;
   7261 		changes = 1;
   7262 	}
   7263 	if (SPECIFIED(info->precision)) {
   7264 		fmt->precision = info->precision;
   7265 		/* we don't have API to specify stride */
   7266 		fmt->stride = info->precision;
   7267 		changes = 1;
   7268 	}
   7269 	if (SPECIFIED(info->channels)) {
   7270 		/*
   7271 		 * We can convert between monaural and stereo each other.
   7272 		 * We can reduce than the number of channels that the hardware
   7273 		 * supports.
   7274 		 */
   7275 		if (info->channels > 2) {
   7276 			if (track) {
   7277 				hwfmt = &track->mixer->hwbuf.fmt;
   7278 				if (info->channels > hwfmt->channels)
   7279 					return -1;
   7280 			} else {
   7281 				/*
   7282 				 * This should never happen.
   7283 				 * If track == NULL, channels should be <= 2.
   7284 				 */
   7285 				return -1;
   7286 			}
   7287 		}
   7288 		fmt->channels = info->channels;
   7289 		changes = 1;
   7290 	}
   7291 
   7292 	if (changes) {
   7293 		if (audio_check_params(fmt) != 0)
   7294 			return -1;
   7295 	}
   7296 
   7297 	return changes;
   7298 }
   7299 
   7300 /*
   7301  * Change water marks for playback track if specfied.
   7302  */
   7303 static void
   7304 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
   7305 {
   7306 	u_int blks;
   7307 	u_int maxblks;
   7308 	u_int blksize;
   7309 
   7310 	KASSERT(audio_track_is_playback(track));
   7311 
   7312 	blksize = track->usrbuf_blksize;
   7313 	maxblks = track->usrbuf.capacity / blksize;
   7314 
   7315 	if (SPECIFIED(ai->hiwat)) {
   7316 		blks = ai->hiwat;
   7317 		if (blks > maxblks)
   7318 			blks = maxblks;
   7319 		if (blks < 2)
   7320 			blks = 2;
   7321 		track->usrbuf_usedhigh = blks * blksize;
   7322 	}
   7323 	if (SPECIFIED(ai->lowat)) {
   7324 		blks = ai->lowat;
   7325 		if (blks > maxblks - 1)
   7326 			blks = maxblks - 1;
   7327 		track->usrbuf_usedlow = blks * blksize;
   7328 	}
   7329 	if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
   7330 		if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
   7331 			track->usrbuf_usedlow = track->usrbuf_usedhigh -
   7332 			    blksize;
   7333 		}
   7334 	}
   7335 }
   7336 
   7337 /*
   7338  * Set hardware part of *newai.
   7339  * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
   7340  * If oldai is specified, previous parameters are stored.
   7341  * This function itself does not roll back if error occurred.
   7342  * Must be called with sc_lock && sc_exlock held.
   7343  */
   7344 static int
   7345 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
   7346 	struct audio_info *oldai)
   7347 {
   7348 	const struct audio_prinfo *newpi;
   7349 	const struct audio_prinfo *newri;
   7350 	struct audio_prinfo *oldpi;
   7351 	struct audio_prinfo *oldri;
   7352 	u_int pgain;
   7353 	u_int rgain;
   7354 	u_char pbalance;
   7355 	u_char rbalance;
   7356 	int error;
   7357 
   7358 	KASSERT(mutex_owned(sc->sc_lock));
   7359 	KASSERT(sc->sc_exlock);
   7360 
   7361 	/* XXX shut up gcc */
   7362 	oldpi = NULL;
   7363 	oldri = NULL;
   7364 
   7365 	newpi = &newai->play;
   7366 	newri = &newai->record;
   7367 	if (oldai) {
   7368 		oldpi = &oldai->play;
   7369 		oldri = &oldai->record;
   7370 	}
   7371 	error = 0;
   7372 
   7373 	/*
   7374 	 * It looks like unnecessary to halt HW mixers to set HW mixers.
   7375 	 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
   7376 	 */
   7377 
   7378 	if (SPECIFIED(newpi->port)) {
   7379 		if (oldai)
   7380 			oldpi->port = au_get_port(sc, &sc->sc_outports);
   7381 		error = au_set_port(sc, &sc->sc_outports, newpi->port);
   7382 		if (error) {
   7383 			audio_printf(sc,
   7384 			    "setting play.port=%d failed: errno=%d\n",
   7385 			    newpi->port, error);
   7386 			goto abort;
   7387 		}
   7388 	}
   7389 	if (SPECIFIED(newri->port)) {
   7390 		if (oldai)
   7391 			oldri->port = au_get_port(sc, &sc->sc_inports);
   7392 		error = au_set_port(sc, &sc->sc_inports, newri->port);
   7393 		if (error) {
   7394 			audio_printf(sc,
   7395 			    "setting record.port=%d failed: errno=%d\n",
   7396 			    newri->port, error);
   7397 			goto abort;
   7398 		}
   7399 	}
   7400 
   7401 	/* Backup play.{gain,balance} */
   7402 	if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
   7403 		au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
   7404 		if (oldai) {
   7405 			oldpi->gain = pgain;
   7406 			oldpi->balance = pbalance;
   7407 		}
   7408 	}
   7409 	/* Backup record.{gain,balance} */
   7410 	if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
   7411 		au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
   7412 		if (oldai) {
   7413 			oldri->gain = rgain;
   7414 			oldri->balance = rbalance;
   7415 		}
   7416 	}
   7417 	if (SPECIFIED(newpi->gain)) {
   7418 		error = au_set_gain(sc, &sc->sc_outports,
   7419 		    newpi->gain, pbalance);
   7420 		if (error) {
   7421 			audio_printf(sc,
   7422 			    "setting play.gain=%d failed: errno=%d\n",
   7423 			    newpi->gain, error);
   7424 			goto abort;
   7425 		}
   7426 	}
   7427 	if (SPECIFIED(newri->gain)) {
   7428 		error = au_set_gain(sc, &sc->sc_inports,
   7429 		    newri->gain, rbalance);
   7430 		if (error) {
   7431 			audio_printf(sc,
   7432 			    "setting record.gain=%d failed: errno=%d\n",
   7433 			    newri->gain, error);
   7434 			goto abort;
   7435 		}
   7436 	}
   7437 	if (SPECIFIED_CH(newpi->balance)) {
   7438 		error = au_set_gain(sc, &sc->sc_outports,
   7439 		    pgain, newpi->balance);
   7440 		if (error) {
   7441 			audio_printf(sc,
   7442 			    "setting play.balance=%d failed: errno=%d\n",
   7443 			    newpi->balance, error);
   7444 			goto abort;
   7445 		}
   7446 	}
   7447 	if (SPECIFIED_CH(newri->balance)) {
   7448 		error = au_set_gain(sc, &sc->sc_inports,
   7449 		    rgain, newri->balance);
   7450 		if (error) {
   7451 			audio_printf(sc,
   7452 			    "setting record.balance=%d failed: errno=%d\n",
   7453 			    newri->balance, error);
   7454 			goto abort;
   7455 		}
   7456 	}
   7457 
   7458 	if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
   7459 		if (oldai)
   7460 			oldai->monitor_gain = au_get_monitor_gain(sc);
   7461 		error = au_set_monitor_gain(sc, newai->monitor_gain);
   7462 		if (error) {
   7463 			audio_printf(sc,
   7464 			    "setting monitor_gain=%d failed: errno=%d\n",
   7465 			    newai->monitor_gain, error);
   7466 			goto abort;
   7467 		}
   7468 	}
   7469 
   7470 	/* XXX TODO */
   7471 	/* sc->sc_ai = *ai; */
   7472 
   7473 	error = 0;
   7474 abort:
   7475 	return error;
   7476 }
   7477 
   7478 /*
   7479  * Setup the hardware with mixer format phwfmt, rhwfmt.
   7480  * The arguments have following restrictions:
   7481  * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
   7482  *   or both.
   7483  * - phwfmt and rhwfmt must not be NULL regardless of setmode.
   7484  * - On non-independent devices, phwfmt and rhwfmt must have the same
   7485  *   parameters.
   7486  * - pfil and rfil must be zero-filled.
   7487  * If successful,
   7488  * - pfil, rfil will be filled with filter information specified by the
   7489  *   hardware driver if necessary.
   7490  * and then returns 0.  Otherwise returns errno.
   7491  * Must be called without sc_lock held.
   7492  */
   7493 static int
   7494 audio_hw_set_format(struct audio_softc *sc, int setmode,
   7495 	const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
   7496 	audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
   7497 {
   7498 	audio_params_t pp, rp;
   7499 	int error;
   7500 
   7501 	KASSERT(phwfmt != NULL);
   7502 	KASSERT(rhwfmt != NULL);
   7503 
   7504 	pp = format2_to_params(phwfmt);
   7505 	rp = format2_to_params(rhwfmt);
   7506 
   7507 	mutex_enter(sc->sc_lock);
   7508 	error = sc->hw_if->set_format(sc->hw_hdl, setmode,
   7509 	    &pp, &rp, pfil, rfil);
   7510 	if (error) {
   7511 		mutex_exit(sc->sc_lock);
   7512 		audio_printf(sc, "set_format failed: errno=%d\n", error);
   7513 		return error;
   7514 	}
   7515 
   7516 	if (sc->hw_if->commit_settings) {
   7517 		error = sc->hw_if->commit_settings(sc->hw_hdl);
   7518 		if (error) {
   7519 			mutex_exit(sc->sc_lock);
   7520 			audio_printf(sc,
   7521 			    "commit_settings failed: errno=%d\n", error);
   7522 			return error;
   7523 		}
   7524 	}
   7525 	mutex_exit(sc->sc_lock);
   7526 
   7527 	return 0;
   7528 }
   7529 
   7530 /*
   7531  * Fill audio_info structure.  If need_mixerinfo is true, it will also
   7532  * fill the hardware mixer information.
   7533  * Must be called with sc_exlock held and without sc_lock held.
   7534  */
   7535 static int
   7536 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
   7537 	audio_file_t *file)
   7538 {
   7539 	struct audio_prinfo *ri, *pi;
   7540 	audio_track_t *track;
   7541 	audio_track_t *ptrack;
   7542 	audio_track_t *rtrack;
   7543 	int gain;
   7544 
   7545 	KASSERT(sc->sc_exlock);
   7546 
   7547 	ri = &ai->record;
   7548 	pi = &ai->play;
   7549 	ptrack = file->ptrack;
   7550 	rtrack = file->rtrack;
   7551 
   7552 	memset(ai, 0, sizeof(*ai));
   7553 
   7554 	if (ptrack) {
   7555 		pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
   7556 		pi->channels    = ptrack->usrbuf.fmt.channels;
   7557 		pi->precision   = ptrack->usrbuf.fmt.precision;
   7558 		pi->encoding    = ptrack->usrbuf.fmt.encoding;
   7559 		pi->pause       = ptrack->is_pause;
   7560 	} else {
   7561 		/* Use sticky parameters if the track is not available. */
   7562 		pi->sample_rate = sc->sc_sound_pparams.sample_rate;
   7563 		pi->channels    = sc->sc_sound_pparams.channels;
   7564 		pi->precision   = sc->sc_sound_pparams.precision;
   7565 		pi->encoding    = sc->sc_sound_pparams.encoding;
   7566 		pi->pause       = sc->sc_sound_ppause;
   7567 	}
   7568 	if (rtrack) {
   7569 		ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
   7570 		ri->channels    = rtrack->usrbuf.fmt.channels;
   7571 		ri->precision   = rtrack->usrbuf.fmt.precision;
   7572 		ri->encoding    = rtrack->usrbuf.fmt.encoding;
   7573 		ri->pause       = rtrack->is_pause;
   7574 	} else {
   7575 		/* Use sticky parameters if the track is not available. */
   7576 		ri->sample_rate = sc->sc_sound_rparams.sample_rate;
   7577 		ri->channels    = sc->sc_sound_rparams.channels;
   7578 		ri->precision   = sc->sc_sound_rparams.precision;
   7579 		ri->encoding    = sc->sc_sound_rparams.encoding;
   7580 		ri->pause       = sc->sc_sound_rpause;
   7581 	}
   7582 
   7583 	if (ptrack) {
   7584 		pi->seek = ptrack->usrbuf.used;
   7585 		pi->samples = ptrack->usrbuf_stamp;
   7586 		pi->eof = ptrack->eofcounter;
   7587 		pi->error = (ptrack->dropframes != 0) ? 1 : 0;
   7588 		pi->open = 1;
   7589 		pi->buffer_size = ptrack->usrbuf.capacity;
   7590 	}
   7591 	pi->waiting = 0;		/* open never hangs */
   7592 	pi->active = sc->sc_pbusy;
   7593 
   7594 	if (rtrack) {
   7595 		ri->seek = rtrack->usrbuf.used;
   7596 		ri->samples = rtrack->usrbuf_stamp;
   7597 		ri->eof = 0;
   7598 		ri->error = (rtrack->dropframes != 0) ? 1 : 0;
   7599 		ri->open = 1;
   7600 		ri->buffer_size = rtrack->usrbuf.capacity;
   7601 	}
   7602 	ri->waiting = 0;		/* open never hangs */
   7603 	ri->active = sc->sc_rbusy;
   7604 
   7605 	/*
   7606 	 * XXX There may be different number of channels between playback
   7607 	 *     and recording, so that blocksize also may be different.
   7608 	 *     But struct audio_info has an united blocksize...
   7609 	 *     Here, I use play info precedencely if ptrack is available,
   7610 	 *     otherwise record info.
   7611 	 *
   7612 	 * XXX hiwat/lowat is a playback-only parameter.  What should I
   7613 	 *     return for a record-only descriptor?
   7614 	 */
   7615 	track = ptrack ? ptrack : rtrack;
   7616 	if (track) {
   7617 		ai->blocksize = track->usrbuf_blksize;
   7618 		ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
   7619 		ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
   7620 	}
   7621 	ai->mode = file->mode;
   7622 
   7623 	/*
   7624 	 * For backward compatibility, we have to pad these five fields
   7625 	 * a fake non-zero value even if there are no tracks.
   7626 	 */
   7627 	if (ptrack == NULL)
   7628 		pi->buffer_size = 65536;
   7629 	if (rtrack == NULL)
   7630 		ri->buffer_size = 65536;
   7631 	if (ptrack == NULL && rtrack == NULL) {
   7632 		ai->blocksize = 2048;
   7633 		ai->hiwat = ai->play.buffer_size / ai->blocksize;
   7634 		ai->lowat = ai->hiwat * 3 / 4;
   7635 	}
   7636 
   7637 	if (need_mixerinfo) {
   7638 		mutex_enter(sc->sc_lock);
   7639 
   7640 		pi->port = au_get_port(sc, &sc->sc_outports);
   7641 		ri->port = au_get_port(sc, &sc->sc_inports);
   7642 
   7643 		pi->avail_ports = sc->sc_outports.allports;
   7644 		ri->avail_ports = sc->sc_inports.allports;
   7645 
   7646 		au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
   7647 		au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
   7648 
   7649 		if (sc->sc_monitor_port != -1) {
   7650 			gain = au_get_monitor_gain(sc);
   7651 			if (gain != -1)
   7652 				ai->monitor_gain = gain;
   7653 		}
   7654 		mutex_exit(sc->sc_lock);
   7655 	}
   7656 
   7657 	return 0;
   7658 }
   7659 
   7660 /*
   7661  * Return true if playback is configured.
   7662  * This function can be used after audioattach.
   7663  */
   7664 static bool
   7665 audio_can_playback(struct audio_softc *sc)
   7666 {
   7667 
   7668 	return (sc->sc_pmixer != NULL);
   7669 }
   7670 
   7671 /*
   7672  * Return true if recording is configured.
   7673  * This function can be used after audioattach.
   7674  */
   7675 static bool
   7676 audio_can_capture(struct audio_softc *sc)
   7677 {
   7678 
   7679 	return (sc->sc_rmixer != NULL);
   7680 }
   7681 
   7682 /*
   7683  * Get the afp->index'th item from the valid one of format[].
   7684  * If found, stores it to afp->fmt and returns 0.  Otherwise return EINVAL.
   7685  *
   7686  * This is common routines for query_format.
   7687  * If your hardware driver has struct audio_format[], the simplest case
   7688  * you can write your query_format interface as follows:
   7689  *
   7690  * struct audio_format foo_format[] = { ... };
   7691  *
   7692  * int
   7693  * foo_query_format(void *hdl, audio_format_query_t *afp)
   7694  * {
   7695  *   return audio_query_format(foo_format, __arraycount(foo_format), afp);
   7696  * }
   7697  */
   7698 int
   7699 audio_query_format(const struct audio_format *format, int nformats,
   7700 	audio_format_query_t *afp)
   7701 {
   7702 	const struct audio_format *f;
   7703 	int idx;
   7704 	int i;
   7705 
   7706 	idx = 0;
   7707 	for (i = 0; i < nformats; i++) {
   7708 		f = &format[i];
   7709 		if (!AUFMT_IS_VALID(f))
   7710 			continue;
   7711 		if (afp->index == idx) {
   7712 			afp->fmt = *f;
   7713 			return 0;
   7714 		}
   7715 		idx++;
   7716 	}
   7717 	return EINVAL;
   7718 }
   7719 
   7720 /*
   7721  * This function is provided for the hardware driver's set_format() to
   7722  * find index matches with 'param' from array of audio_format_t 'formats'.
   7723  * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
   7724  * It returns the matched index and never fails.  Because param passed to
   7725  * set_format() is selected from query_format().
   7726  * This function will be an alternative to auconv_set_converter() to
   7727  * find index.
   7728  */
   7729 int
   7730 audio_indexof_format(const struct audio_format *formats, int nformats,
   7731 	int mode, const audio_params_t *param)
   7732 {
   7733 	const struct audio_format *f;
   7734 	int index;
   7735 	int j;
   7736 
   7737 	for (index = 0; index < nformats; index++) {
   7738 		f = &formats[index];
   7739 
   7740 		if (!AUFMT_IS_VALID(f))
   7741 			continue;
   7742 		if ((f->mode & mode) == 0)
   7743 			continue;
   7744 		if (f->encoding != param->encoding)
   7745 			continue;
   7746 		if (f->validbits != param->precision)
   7747 			continue;
   7748 		if (f->channels != param->channels)
   7749 			continue;
   7750 
   7751 		if (f->frequency_type == 0) {
   7752 			if (param->sample_rate < f->frequency[0] ||
   7753 			    param->sample_rate > f->frequency[1])
   7754 				continue;
   7755 		} else {
   7756 			for (j = 0; j < f->frequency_type; j++) {
   7757 				if (param->sample_rate == f->frequency[j])
   7758 					break;
   7759 			}
   7760 			if (j == f->frequency_type)
   7761 				continue;
   7762 		}
   7763 
   7764 		/* Then, matched */
   7765 		return index;
   7766 	}
   7767 
   7768 	/* Not matched.  This should not be happened. */
   7769 	panic("%s: cannot find matched format\n", __func__);
   7770 }
   7771 
   7772 /*
   7773  * Get or set hardware blocksize in msec.
   7774  * XXX It's for debug.
   7775  */
   7776 static int
   7777 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
   7778 {
   7779 	struct sysctlnode node;
   7780 	struct audio_softc *sc;
   7781 	audio_format2_t phwfmt;
   7782 	audio_format2_t rhwfmt;
   7783 	audio_filter_reg_t pfil;
   7784 	audio_filter_reg_t rfil;
   7785 	int t;
   7786 	int old_blk_ms;
   7787 	int mode;
   7788 	int error;
   7789 
   7790 	node = *rnode;
   7791 	sc = node.sysctl_data;
   7792 
   7793 	error = audio_exlock_enter(sc);
   7794 	if (error)
   7795 		return error;
   7796 
   7797 	old_blk_ms = sc->sc_blk_ms;
   7798 	t = old_blk_ms;
   7799 	node.sysctl_data = &t;
   7800 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   7801 	if (error || newp == NULL)
   7802 		goto abort;
   7803 
   7804 	if (t < 0) {
   7805 		error = EINVAL;
   7806 		goto abort;
   7807 	}
   7808 
   7809 	if (sc->sc_popens + sc->sc_ropens > 0) {
   7810 		error = EBUSY;
   7811 		goto abort;
   7812 	}
   7813 	sc->sc_blk_ms = t;
   7814 	mode = 0;
   7815 	if (sc->sc_pmixer) {
   7816 		mode |= AUMODE_PLAY;
   7817 		phwfmt = sc->sc_pmixer->hwbuf.fmt;
   7818 	}
   7819 	if (sc->sc_rmixer) {
   7820 		mode |= AUMODE_RECORD;
   7821 		rhwfmt = sc->sc_rmixer->hwbuf.fmt;
   7822 	}
   7823 
   7824 	/* re-init hardware */
   7825 	memset(&pfil, 0, sizeof(pfil));
   7826 	memset(&rfil, 0, sizeof(rfil));
   7827 	error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   7828 	if (error) {
   7829 		goto abort;
   7830 	}
   7831 
   7832 	/* re-init track mixer */
   7833 	error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   7834 	if (error) {
   7835 		/* Rollback */
   7836 		sc->sc_blk_ms = old_blk_ms;
   7837 		audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   7838 		goto abort;
   7839 	}
   7840 	error = 0;
   7841 abort:
   7842 	audio_exlock_exit(sc);
   7843 	return error;
   7844 }
   7845 
   7846 /*
   7847  * Get or set multiuser mode.
   7848  */
   7849 static int
   7850 audio_sysctl_multiuser(SYSCTLFN_ARGS)
   7851 {
   7852 	struct sysctlnode node;
   7853 	struct audio_softc *sc;
   7854 	bool t;
   7855 	int error;
   7856 
   7857 	node = *rnode;
   7858 	sc = node.sysctl_data;
   7859 
   7860 	error = audio_exlock_enter(sc);
   7861 	if (error)
   7862 		return error;
   7863 
   7864 	t = sc->sc_multiuser;
   7865 	node.sysctl_data = &t;
   7866 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   7867 	if (error || newp == NULL)
   7868 		goto abort;
   7869 
   7870 	sc->sc_multiuser = t;
   7871 	error = 0;
   7872 abort:
   7873 	audio_exlock_exit(sc);
   7874 	return error;
   7875 }
   7876 
   7877 #if defined(AUDIO_DEBUG)
   7878 /*
   7879  * Get or set debug verbose level. (0..4)
   7880  * XXX It's for debug.
   7881  * XXX It is not separated per device.
   7882  */
   7883 static int
   7884 audio_sysctl_debug(SYSCTLFN_ARGS)
   7885 {
   7886 	struct sysctlnode node;
   7887 	int t;
   7888 	int error;
   7889 
   7890 	node = *rnode;
   7891 	t = audiodebug;
   7892 	node.sysctl_data = &t;
   7893 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   7894 	if (error || newp == NULL)
   7895 		return error;
   7896 
   7897 	if (t < 0 || t > 4)
   7898 		return EINVAL;
   7899 	audiodebug = t;
   7900 	printf("audio: audiodebug = %d\n", audiodebug);
   7901 	return 0;
   7902 }
   7903 #endif /* AUDIO_DEBUG */
   7904 
   7905 #ifdef AUDIO_PM_IDLE
   7906 static void
   7907 audio_idle(void *arg)
   7908 {
   7909 	device_t dv = arg;
   7910 	struct audio_softc *sc = device_private(dv);
   7911 
   7912 #ifdef PNP_DEBUG
   7913 	extern int pnp_debug_idle;
   7914 	if (pnp_debug_idle)
   7915 		printf("%s: idle handler called\n", device_xname(dv));
   7916 #endif
   7917 
   7918 	sc->sc_idle = true;
   7919 
   7920 	/* XXX joerg Make pmf_device_suspend handle children? */
   7921 	if (!pmf_device_suspend(dv, PMF_Q_SELF))
   7922 		return;
   7923 
   7924 	if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
   7925 		pmf_device_resume(dv, PMF_Q_SELF);
   7926 }
   7927 
   7928 static void
   7929 audio_activity(device_t dv, devactive_t type)
   7930 {
   7931 	struct audio_softc *sc = device_private(dv);
   7932 
   7933 	if (type != DVA_SYSTEM)
   7934 		return;
   7935 
   7936 	callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
   7937 
   7938 	sc->sc_idle = false;
   7939 	if (!device_is_active(dv)) {
   7940 		/* XXX joerg How to deal with a failing resume... */
   7941 		pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
   7942 		pmf_device_resume(dv, PMF_Q_SELF);
   7943 	}
   7944 }
   7945 #endif
   7946 
   7947 static bool
   7948 audio_suspend(device_t dv, const pmf_qual_t *qual)
   7949 {
   7950 	struct audio_softc *sc = device_private(dv);
   7951 	int error;
   7952 
   7953 	error = audio_exlock_mutex_enter(sc);
   7954 	if (error)
   7955 		return error;
   7956 	sc->sc_suspending = true;
   7957 	audio_mixer_capture(sc);
   7958 
   7959 	if (sc->sc_pbusy) {
   7960 		audio_pmixer_halt(sc);
   7961 		/* Reuse this as need-to-restart flag while suspending */
   7962 		sc->sc_pbusy = true;
   7963 	}
   7964 	if (sc->sc_rbusy) {
   7965 		audio_rmixer_halt(sc);
   7966 		/* Reuse this as need-to-restart flag while suspending */
   7967 		sc->sc_rbusy = true;
   7968 	}
   7969 
   7970 #ifdef AUDIO_PM_IDLE
   7971 	callout_halt(&sc->sc_idle_counter, sc->sc_lock);
   7972 #endif
   7973 	audio_exlock_mutex_exit(sc);
   7974 
   7975 	return true;
   7976 }
   7977 
   7978 static bool
   7979 audio_resume(device_t dv, const pmf_qual_t *qual)
   7980 {
   7981 	struct audio_softc *sc = device_private(dv);
   7982 	struct audio_info ai;
   7983 	int error;
   7984 
   7985 	error = audio_exlock_mutex_enter(sc);
   7986 	if (error)
   7987 		return error;
   7988 
   7989 	sc->sc_suspending = false;
   7990 	audio_mixer_restore(sc);
   7991 	/* XXX ? */
   7992 	AUDIO_INITINFO(&ai);
   7993 	audio_hw_setinfo(sc, &ai, NULL);
   7994 
   7995 	/*
   7996 	 * During from suspend to resume here, sc_[pr]busy is used as
   7997 	 * need-to-restart flag temporarily.  After this point,
   7998 	 * sc_[pr]busy is returned to its original usage (busy flag).
   7999 	 * And note that sc_[pr]busy must be false to call [pr]mixer_start().
   8000 	 */
   8001 	if (sc->sc_pbusy) {
   8002 		/* pmixer_start() requires pbusy is false */
   8003 		sc->sc_pbusy = false;
   8004 		audio_pmixer_start(sc, true);
   8005 	}
   8006 	if (sc->sc_rbusy) {
   8007 		/* rmixer_start() requires rbusy is false */
   8008 		sc->sc_rbusy = false;
   8009 		audio_rmixer_start(sc);
   8010 	}
   8011 
   8012 	audio_exlock_mutex_exit(sc);
   8013 
   8014 	return true;
   8015 }
   8016 
   8017 #if defined(AUDIO_DEBUG)
   8018 static void
   8019 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
   8020 {
   8021 	int n;
   8022 
   8023 	n = 0;
   8024 	n += snprintf(buf + n, bufsize - n, "%s",
   8025 	    audio_encoding_name(fmt->encoding));
   8026 	if (fmt->precision == fmt->stride) {
   8027 		n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
   8028 	} else {
   8029 		n += snprintf(buf + n, bufsize - n, " %d/%dbit",
   8030 			fmt->precision, fmt->stride);
   8031 	}
   8032 
   8033 	snprintf(buf + n, bufsize - n, " %uch %uHz",
   8034 	    fmt->channels, fmt->sample_rate);
   8035 }
   8036 #endif
   8037 
   8038 #if defined(AUDIO_DEBUG)
   8039 static void
   8040 audio_print_format2(const char *s, const audio_format2_t *fmt)
   8041 {
   8042 	char fmtstr[64];
   8043 
   8044 	audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
   8045 	printf("%s %s\n", s, fmtstr);
   8046 }
   8047 #endif
   8048 
   8049 #ifdef DIAGNOSTIC
   8050 void
   8051 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
   8052 {
   8053 
   8054 	KASSERTMSG(fmt, "called from %s", where);
   8055 
   8056 	/* XXX MSM6258 vs(4) only has 4bit stride format. */
   8057 	if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
   8058 		KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
   8059 		    "called from %s: fmt->stride=%d", where, fmt->stride);
   8060 	} else {
   8061 		KASSERTMSG(fmt->stride % NBBY == 0,
   8062 		    "called from %s: fmt->stride=%d", where, fmt->stride);
   8063 	}
   8064 	KASSERTMSG(fmt->precision <= fmt->stride,
   8065 	    "called from %s: fmt->precision=%d fmt->stride=%d",
   8066 	    where, fmt->precision, fmt->stride);
   8067 	KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
   8068 	    "called from %s: fmt->channels=%d", where, fmt->channels);
   8069 
   8070 	/* XXX No check for encodings? */
   8071 }
   8072 
   8073 void
   8074 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
   8075 {
   8076 
   8077 	KASSERT(arg != NULL);
   8078 	KASSERT(arg->src != NULL);
   8079 	KASSERT(arg->dst != NULL);
   8080 	audio_diagnostic_format2(where, arg->srcfmt);
   8081 	audio_diagnostic_format2(where, arg->dstfmt);
   8082 	KASSERT(arg->count > 0);
   8083 }
   8084 
   8085 void
   8086 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
   8087 {
   8088 
   8089 	KASSERTMSG(ring, "called from %s", where);
   8090 	audio_diagnostic_format2(where, &ring->fmt);
   8091 	KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
   8092 	    "called from %s: ring->capacity=%d", where, ring->capacity);
   8093 	KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
   8094 	    "called from %s: ring->used=%d ring->capacity=%d",
   8095 	    where, ring->used, ring->capacity);
   8096 	if (ring->capacity == 0) {
   8097 		KASSERTMSG(ring->mem == NULL,
   8098 		    "called from %s: capacity == 0 but mem != NULL", where);
   8099 	} else {
   8100 		KASSERTMSG(ring->mem != NULL,
   8101 		    "called from %s: capacity != 0 but mem == NULL", where);
   8102 		KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
   8103 		    "called from %s: ring->head=%d ring->capacity=%d",
   8104 		    where, ring->head, ring->capacity);
   8105 	}
   8106 }
   8107 #endif /* DIAGNOSTIC */
   8108 
   8109 
   8110 /*
   8111  * Mixer driver
   8112  */
   8113 
   8114 /*
   8115  * Must be called without sc_lock held.
   8116  */
   8117 int
   8118 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
   8119 	struct lwp *l)
   8120 {
   8121 	struct file *fp;
   8122 	audio_file_t *af;
   8123 	int error, fd;
   8124 
   8125 	TRACE(1, "flags=0x%x", flags);
   8126 
   8127 	error = fd_allocfile(&fp, &fd);
   8128 	if (error)
   8129 		return error;
   8130 
   8131 	af = kmem_zalloc(sizeof(*af), KM_SLEEP);
   8132 	af->sc = sc;
   8133 	af->dev = dev;
   8134 
   8135 	error = fd_clone(fp, fd, flags, &audio_fileops, af);
   8136 	KASSERT(error == EMOVEFD);
   8137 
   8138 	return error;
   8139 }
   8140 
   8141 /*
   8142  * Add a process to those to be signalled on mixer activity.
   8143  * If the process has already been added, do nothing.
   8144  * Must be called with sc_exlock held and without sc_lock held.
   8145  */
   8146 static void
   8147 mixer_async_add(struct audio_softc *sc, pid_t pid)
   8148 {
   8149 	int i;
   8150 
   8151 	KASSERT(sc->sc_exlock);
   8152 
   8153 	/* If already exists, returns without doing anything. */
   8154 	for (i = 0; i < sc->sc_am_used; i++) {
   8155 		if (sc->sc_am[i] == pid)
   8156 			return;
   8157 	}
   8158 
   8159 	/* Extend array if necessary. */
   8160 	if (sc->sc_am_used >= sc->sc_am_capacity) {
   8161 		sc->sc_am_capacity += AM_CAPACITY;
   8162 		sc->sc_am = kern_realloc(sc->sc_am,
   8163 		    sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
   8164 		TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
   8165 	}
   8166 
   8167 	TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
   8168 	sc->sc_am[sc->sc_am_used++] = pid;
   8169 }
   8170 
   8171 /*
   8172  * Remove a process from those to be signalled on mixer activity.
   8173  * If the process has not been added, do nothing.
   8174  * Must be called with sc_exlock held and without sc_lock held.
   8175  */
   8176 static void
   8177 mixer_async_remove(struct audio_softc *sc, pid_t pid)
   8178 {
   8179 	int i;
   8180 
   8181 	KASSERT(sc->sc_exlock);
   8182 
   8183 	for (i = 0; i < sc->sc_am_used; i++) {
   8184 		if (sc->sc_am[i] == pid) {
   8185 			sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
   8186 			TRACE(2, "am[%d](%d) removed, used=%d",
   8187 			    i, (int)pid, sc->sc_am_used);
   8188 
   8189 			/* Empty array if no longer necessary. */
   8190 			if (sc->sc_am_used == 0) {
   8191 				kern_free(sc->sc_am);
   8192 				sc->sc_am = NULL;
   8193 				sc->sc_am_capacity = 0;
   8194 				TRACE(2, "released");
   8195 			}
   8196 			return;
   8197 		}
   8198 	}
   8199 }
   8200 
   8201 /*
   8202  * Signal all processes waiting for the mixer.
   8203  * Must be called with sc_exlock held.
   8204  */
   8205 static void
   8206 mixer_signal(struct audio_softc *sc)
   8207 {
   8208 	proc_t *p;
   8209 	int i;
   8210 
   8211 	KASSERT(sc->sc_exlock);
   8212 
   8213 	for (i = 0; i < sc->sc_am_used; i++) {
   8214 		mutex_enter(&proc_lock);
   8215 		p = proc_find(sc->sc_am[i]);
   8216 		if (p)
   8217 			psignal(p, SIGIO);
   8218 		mutex_exit(&proc_lock);
   8219 	}
   8220 }
   8221 
   8222 /*
   8223  * Close a mixer device
   8224  */
   8225 int
   8226 mixer_close(struct audio_softc *sc, audio_file_t *file)
   8227 {
   8228 	int error;
   8229 
   8230 	error = audio_exlock_enter(sc);
   8231 	if (error)
   8232 		return error;
   8233 	TRACE(1, "called");
   8234 	mixer_async_remove(sc, curproc->p_pid);
   8235 	audio_exlock_exit(sc);
   8236 
   8237 	return 0;
   8238 }
   8239 
   8240 /*
   8241  * Must be called without sc_lock nor sc_exlock held.
   8242  */
   8243 int
   8244 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
   8245 	struct lwp *l)
   8246 {
   8247 	mixer_devinfo_t *mi;
   8248 	mixer_ctrl_t *mc;
   8249 	int error;
   8250 
   8251 	TRACE(2, "(%lu,'%c',%lu)",
   8252 	    IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
   8253 	error = EINVAL;
   8254 
   8255 	/* we can return cached values if we are sleeping */
   8256 	if (cmd != AUDIO_MIXER_READ) {
   8257 		mutex_enter(sc->sc_lock);
   8258 		device_active(sc->sc_dev, DVA_SYSTEM);
   8259 		mutex_exit(sc->sc_lock);
   8260 	}
   8261 
   8262 	switch (cmd) {
   8263 	case FIOASYNC:
   8264 		error = audio_exlock_enter(sc);
   8265 		if (error)
   8266 			break;
   8267 		if (*(int *)addr) {
   8268 			mixer_async_add(sc, curproc->p_pid);
   8269 		} else {
   8270 			mixer_async_remove(sc, curproc->p_pid);
   8271 		}
   8272 		audio_exlock_exit(sc);
   8273 		break;
   8274 
   8275 	case AUDIO_GETDEV:
   8276 		TRACE(2, "AUDIO_GETDEV");
   8277 		mutex_enter(sc->sc_lock);
   8278 		error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
   8279 		mutex_exit(sc->sc_lock);
   8280 		break;
   8281 
   8282 	case AUDIO_MIXER_DEVINFO:
   8283 		TRACE(2, "AUDIO_MIXER_DEVINFO");
   8284 		mi = (mixer_devinfo_t *)addr;
   8285 
   8286 		mi->un.v.delta = 0; /* default */
   8287 		mutex_enter(sc->sc_lock);
   8288 		error = audio_query_devinfo(sc, mi);
   8289 		mutex_exit(sc->sc_lock);
   8290 		break;
   8291 
   8292 	case AUDIO_MIXER_READ:
   8293 		TRACE(2, "AUDIO_MIXER_READ");
   8294 		mc = (mixer_ctrl_t *)addr;
   8295 
   8296 		error = audio_exlock_mutex_enter(sc);
   8297 		if (error)
   8298 			break;
   8299 		if (device_is_active(sc->hw_dev))
   8300 			error = audio_get_port(sc, mc);
   8301 		else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
   8302 			error = ENXIO;
   8303 		else {
   8304 			int dev = mc->dev;
   8305 			memcpy(mc, &sc->sc_mixer_state[dev],
   8306 			    sizeof(mixer_ctrl_t));
   8307 			error = 0;
   8308 		}
   8309 		audio_exlock_mutex_exit(sc);
   8310 		break;
   8311 
   8312 	case AUDIO_MIXER_WRITE:
   8313 		TRACE(2, "AUDIO_MIXER_WRITE");
   8314 		error = audio_exlock_mutex_enter(sc);
   8315 		if (error)
   8316 			break;
   8317 		error = audio_set_port(sc, (mixer_ctrl_t *)addr);
   8318 		if (error) {
   8319 			audio_exlock_mutex_exit(sc);
   8320 			break;
   8321 		}
   8322 
   8323 		if (sc->hw_if->commit_settings) {
   8324 			error = sc->hw_if->commit_settings(sc->hw_hdl);
   8325 			if (error) {
   8326 				audio_exlock_mutex_exit(sc);
   8327 				break;
   8328 			}
   8329 		}
   8330 		mutex_exit(sc->sc_lock);
   8331 		mixer_signal(sc);
   8332 		audio_exlock_exit(sc);
   8333 		break;
   8334 
   8335 	default:
   8336 		if (sc->hw_if->dev_ioctl) {
   8337 			mutex_enter(sc->sc_lock);
   8338 			error = sc->hw_if->dev_ioctl(sc->hw_hdl,
   8339 			    cmd, addr, flag, l);
   8340 			mutex_exit(sc->sc_lock);
   8341 		} else
   8342 			error = EINVAL;
   8343 		break;
   8344 	}
   8345 	TRACE(2, "(%lu,'%c',%lu) result %d",
   8346 	    IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
   8347 	return error;
   8348 }
   8349 
   8350 /*
   8351  * Must be called with sc_lock held.
   8352  */
   8353 int
   8354 au_portof(struct audio_softc *sc, char *name, int class)
   8355 {
   8356 	mixer_devinfo_t mi;
   8357 
   8358 	KASSERT(mutex_owned(sc->sc_lock));
   8359 
   8360 	for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
   8361 		if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
   8362 			return mi.index;
   8363 	}
   8364 	return -1;
   8365 }
   8366 
   8367 /*
   8368  * Must be called with sc_lock held.
   8369  */
   8370 void
   8371 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
   8372 	mixer_devinfo_t *mi, const struct portname *tbl)
   8373 {
   8374 	int i, j;
   8375 
   8376 	KASSERT(mutex_owned(sc->sc_lock));
   8377 
   8378 	ports->index = mi->index;
   8379 	if (mi->type == AUDIO_MIXER_ENUM) {
   8380 		ports->isenum = true;
   8381 		for(i = 0; tbl[i].name; i++)
   8382 		    for(j = 0; j < mi->un.e.num_mem; j++)
   8383 			if (strcmp(mi->un.e.member[j].label.name,
   8384 						    tbl[i].name) == 0) {
   8385 				ports->allports |= tbl[i].mask;
   8386 				ports->aumask[ports->nports] = tbl[i].mask;
   8387 				ports->misel[ports->nports] =
   8388 				    mi->un.e.member[j].ord;
   8389 				ports->miport[ports->nports] =
   8390 				    au_portof(sc, mi->un.e.member[j].label.name,
   8391 				    mi->mixer_class);
   8392 				if (ports->mixerout != -1 &&
   8393 				    ports->miport[ports->nports] != -1)
   8394 					ports->isdual = true;
   8395 				++ports->nports;
   8396 			}
   8397 	} else if (mi->type == AUDIO_MIXER_SET) {
   8398 		for(i = 0; tbl[i].name; i++)
   8399 		    for(j = 0; j < mi->un.s.num_mem; j++)
   8400 			if (strcmp(mi->un.s.member[j].label.name,
   8401 						tbl[i].name) == 0) {
   8402 				ports->allports |= tbl[i].mask;
   8403 				ports->aumask[ports->nports] = tbl[i].mask;
   8404 				ports->misel[ports->nports] =
   8405 				    mi->un.s.member[j].mask;
   8406 				ports->miport[ports->nports] =
   8407 				    au_portof(sc, mi->un.s.member[j].label.name,
   8408 				    mi->mixer_class);
   8409 				++ports->nports;
   8410 			}
   8411 	}
   8412 }
   8413 
   8414 /*
   8415  * Must be called with sc_lock && sc_exlock held.
   8416  */
   8417 int
   8418 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
   8419 {
   8420 
   8421 	KASSERT(mutex_owned(sc->sc_lock));
   8422 	KASSERT(sc->sc_exlock);
   8423 
   8424 	ct->type = AUDIO_MIXER_VALUE;
   8425 	ct->un.value.num_channels = 2;
   8426 	ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
   8427 	ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
   8428 	if (audio_set_port(sc, ct) == 0)
   8429 		return 0;
   8430 	ct->un.value.num_channels = 1;
   8431 	ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
   8432 	return audio_set_port(sc, ct);
   8433 }
   8434 
   8435 /*
   8436  * Must be called with sc_lock && sc_exlock held.
   8437  */
   8438 int
   8439 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
   8440 {
   8441 	int error;
   8442 
   8443 	KASSERT(mutex_owned(sc->sc_lock));
   8444 	KASSERT(sc->sc_exlock);
   8445 
   8446 	ct->un.value.num_channels = 2;
   8447 	if (audio_get_port(sc, ct) == 0) {
   8448 		*l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
   8449 		*r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
   8450 	} else {
   8451 		ct->un.value.num_channels = 1;
   8452 		error = audio_get_port(sc, ct);
   8453 		if (error)
   8454 			return error;
   8455 		*r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
   8456 	}
   8457 	return 0;
   8458 }
   8459 
   8460 /*
   8461  * Must be called with sc_lock && sc_exlock held.
   8462  */
   8463 int
   8464 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
   8465 	int gain, int balance)
   8466 {
   8467 	mixer_ctrl_t ct;
   8468 	int i, error;
   8469 	int l, r;
   8470 	u_int mask;
   8471 	int nset;
   8472 
   8473 	KASSERT(mutex_owned(sc->sc_lock));
   8474 	KASSERT(sc->sc_exlock);
   8475 
   8476 	if (balance == AUDIO_MID_BALANCE) {
   8477 		l = r = gain;
   8478 	} else if (balance < AUDIO_MID_BALANCE) {
   8479 		l = gain;
   8480 		r = (balance * gain) / AUDIO_MID_BALANCE;
   8481 	} else {
   8482 		r = gain;
   8483 		l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
   8484 		    / AUDIO_MID_BALANCE;
   8485 	}
   8486 	TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
   8487 
   8488 	if (ports->index == -1) {
   8489 	usemaster:
   8490 		if (ports->master == -1)
   8491 			return 0; /* just ignore it silently */
   8492 		ct.dev = ports->master;
   8493 		error = au_set_lr_value(sc, &ct, l, r);
   8494 	} else {
   8495 		ct.dev = ports->index;
   8496 		if (ports->isenum) {
   8497 			ct.type = AUDIO_MIXER_ENUM;
   8498 			error = audio_get_port(sc, &ct);
   8499 			if (error)
   8500 				return error;
   8501 			if (ports->isdual) {
   8502 				if (ports->cur_port == -1)
   8503 					ct.dev = ports->master;
   8504 				else
   8505 					ct.dev = ports->miport[ports->cur_port];
   8506 				error = au_set_lr_value(sc, &ct, l, r);
   8507 			} else {
   8508 				for(i = 0; i < ports->nports; i++)
   8509 				    if (ports->misel[i] == ct.un.ord) {
   8510 					    ct.dev = ports->miport[i];
   8511 					    if (ct.dev == -1 ||
   8512 						au_set_lr_value(sc, &ct, l, r))
   8513 						    goto usemaster;
   8514 					    else
   8515 						    break;
   8516 				    }
   8517 			}
   8518 		} else {
   8519 			ct.type = AUDIO_MIXER_SET;
   8520 			error = audio_get_port(sc, &ct);
   8521 			if (error)
   8522 				return error;
   8523 			mask = ct.un.mask;
   8524 			nset = 0;
   8525 			for(i = 0; i < ports->nports; i++) {
   8526 				if (ports->misel[i] & mask) {
   8527 				    ct.dev = ports->miport[i];
   8528 				    if (ct.dev != -1 &&
   8529 					au_set_lr_value(sc, &ct, l, r) == 0)
   8530 					    nset++;
   8531 				}
   8532 			}
   8533 			if (nset == 0)
   8534 				goto usemaster;
   8535 		}
   8536 	}
   8537 	if (!error)
   8538 		mixer_signal(sc);
   8539 	return error;
   8540 }
   8541 
   8542 /*
   8543  * Must be called with sc_lock && sc_exlock held.
   8544  */
   8545 void
   8546 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
   8547 	u_int *pgain, u_char *pbalance)
   8548 {
   8549 	mixer_ctrl_t ct;
   8550 	int i, l, r, n;
   8551 	int lgain, rgain;
   8552 
   8553 	KASSERT(mutex_owned(sc->sc_lock));
   8554 	KASSERT(sc->sc_exlock);
   8555 
   8556 	lgain = AUDIO_MAX_GAIN / 2;
   8557 	rgain = AUDIO_MAX_GAIN / 2;
   8558 	if (ports->index == -1) {
   8559 	usemaster:
   8560 		if (ports->master == -1)
   8561 			goto bad;
   8562 		ct.dev = ports->master;
   8563 		ct.type = AUDIO_MIXER_VALUE;
   8564 		if (au_get_lr_value(sc, &ct, &lgain, &rgain))
   8565 			goto bad;
   8566 	} else {
   8567 		ct.dev = ports->index;
   8568 		if (ports->isenum) {
   8569 			ct.type = AUDIO_MIXER_ENUM;
   8570 			if (audio_get_port(sc, &ct))
   8571 				goto bad;
   8572 			ct.type = AUDIO_MIXER_VALUE;
   8573 			if (ports->isdual) {
   8574 				if (ports->cur_port == -1)
   8575 					ct.dev = ports->master;
   8576 				else
   8577 					ct.dev = ports->miport[ports->cur_port];
   8578 				au_get_lr_value(sc, &ct, &lgain, &rgain);
   8579 			} else {
   8580 				for(i = 0; i < ports->nports; i++)
   8581 				    if (ports->misel[i] == ct.un.ord) {
   8582 					    ct.dev = ports->miport[i];
   8583 					    if (ct.dev == -1 ||
   8584 						au_get_lr_value(sc, &ct,
   8585 								&lgain, &rgain))
   8586 						    goto usemaster;
   8587 					    else
   8588 						    break;
   8589 				    }
   8590 			}
   8591 		} else {
   8592 			ct.type = AUDIO_MIXER_SET;
   8593 			if (audio_get_port(sc, &ct))
   8594 				goto bad;
   8595 			ct.type = AUDIO_MIXER_VALUE;
   8596 			lgain = rgain = n = 0;
   8597 			for(i = 0; i < ports->nports; i++) {
   8598 				if (ports->misel[i] & ct.un.mask) {
   8599 					ct.dev = ports->miport[i];
   8600 					if (ct.dev == -1 ||
   8601 					    au_get_lr_value(sc, &ct, &l, &r))
   8602 						goto usemaster;
   8603 					else {
   8604 						lgain += l;
   8605 						rgain += r;
   8606 						n++;
   8607 					}
   8608 				}
   8609 			}
   8610 			if (n != 0) {
   8611 				lgain /= n;
   8612 				rgain /= n;
   8613 			}
   8614 		}
   8615 	}
   8616 bad:
   8617 	if (lgain == rgain) {	/* handles lgain==rgain==0 */
   8618 		*pgain = lgain;
   8619 		*pbalance = AUDIO_MID_BALANCE;
   8620 	} else if (lgain < rgain) {
   8621 		*pgain = rgain;
   8622 		/* balance should be > AUDIO_MID_BALANCE */
   8623 		*pbalance = AUDIO_RIGHT_BALANCE -
   8624 			(AUDIO_MID_BALANCE * lgain) / rgain;
   8625 	} else /* lgain > rgain */ {
   8626 		*pgain = lgain;
   8627 		/* balance should be < AUDIO_MID_BALANCE */
   8628 		*pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
   8629 	}
   8630 }
   8631 
   8632 /*
   8633  * Must be called with sc_lock && sc_exlock held.
   8634  */
   8635 int
   8636 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
   8637 {
   8638 	mixer_ctrl_t ct;
   8639 	int i, error, use_mixerout;
   8640 
   8641 	KASSERT(mutex_owned(sc->sc_lock));
   8642 	KASSERT(sc->sc_exlock);
   8643 
   8644 	use_mixerout = 1;
   8645 	if (port == 0) {
   8646 		if (ports->allports == 0)
   8647 			return 0;		/* Allow this special case. */
   8648 		else if (ports->isdual) {
   8649 			if (ports->cur_port == -1) {
   8650 				return 0;
   8651 			} else {
   8652 				port = ports->aumask[ports->cur_port];
   8653 				ports->cur_port = -1;
   8654 				use_mixerout = 0;
   8655 			}
   8656 		}
   8657 	}
   8658 	if (ports->index == -1)
   8659 		return EINVAL;
   8660 	ct.dev = ports->index;
   8661 	if (ports->isenum) {
   8662 		if (port & (port-1))
   8663 			return EINVAL; /* Only one port allowed */
   8664 		ct.type = AUDIO_MIXER_ENUM;
   8665 		error = EINVAL;
   8666 		for(i = 0; i < ports->nports; i++)
   8667 			if (ports->aumask[i] == port) {
   8668 				if (ports->isdual && use_mixerout) {
   8669 					ct.un.ord = ports->mixerout;
   8670 					ports->cur_port = i;
   8671 				} else {
   8672 					ct.un.ord = ports->misel[i];
   8673 				}
   8674 				error = audio_set_port(sc, &ct);
   8675 				break;
   8676 			}
   8677 	} else {
   8678 		ct.type = AUDIO_MIXER_SET;
   8679 		ct.un.mask = 0;
   8680 		for(i = 0; i < ports->nports; i++)
   8681 			if (ports->aumask[i] & port)
   8682 				ct.un.mask |= ports->misel[i];
   8683 		if (port != 0 && ct.un.mask == 0)
   8684 			error = EINVAL;
   8685 		else
   8686 			error = audio_set_port(sc, &ct);
   8687 	}
   8688 	if (!error)
   8689 		mixer_signal(sc);
   8690 	return error;
   8691 }
   8692 
   8693 /*
   8694  * Must be called with sc_lock && sc_exlock held.
   8695  */
   8696 int
   8697 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
   8698 {
   8699 	mixer_ctrl_t ct;
   8700 	int i, aumask;
   8701 
   8702 	KASSERT(mutex_owned(sc->sc_lock));
   8703 	KASSERT(sc->sc_exlock);
   8704 
   8705 	if (ports->index == -1)
   8706 		return 0;
   8707 	ct.dev = ports->index;
   8708 	ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
   8709 	if (audio_get_port(sc, &ct))
   8710 		return 0;
   8711 	aumask = 0;
   8712 	if (ports->isenum) {
   8713 		if (ports->isdual && ports->cur_port != -1) {
   8714 			if (ports->mixerout == ct.un.ord)
   8715 				aumask = ports->aumask[ports->cur_port];
   8716 			else
   8717 				ports->cur_port = -1;
   8718 		}
   8719 		if (aumask == 0)
   8720 			for(i = 0; i < ports->nports; i++)
   8721 				if (ports->misel[i] == ct.un.ord)
   8722 					aumask = ports->aumask[i];
   8723 	} else {
   8724 		for(i = 0; i < ports->nports; i++)
   8725 			if (ct.un.mask & ports->misel[i])
   8726 				aumask |= ports->aumask[i];
   8727 	}
   8728 	return aumask;
   8729 }
   8730 
   8731 /*
   8732  * It returns 0 if success, otherwise errno.
   8733  * Must be called only if sc->sc_monitor_port != -1.
   8734  * Must be called with sc_lock && sc_exlock held.
   8735  */
   8736 static int
   8737 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
   8738 {
   8739 	mixer_ctrl_t ct;
   8740 
   8741 	KASSERT(mutex_owned(sc->sc_lock));
   8742 	KASSERT(sc->sc_exlock);
   8743 
   8744 	ct.dev = sc->sc_monitor_port;
   8745 	ct.type = AUDIO_MIXER_VALUE;
   8746 	ct.un.value.num_channels = 1;
   8747 	ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
   8748 	return audio_set_port(sc, &ct);
   8749 }
   8750 
   8751 /*
   8752  * It returns monitor gain if success, otherwise -1.
   8753  * Must be called only if sc->sc_monitor_port != -1.
   8754  * Must be called with sc_lock && sc_exlock held.
   8755  */
   8756 static int
   8757 au_get_monitor_gain(struct audio_softc *sc)
   8758 {
   8759 	mixer_ctrl_t ct;
   8760 
   8761 	KASSERT(mutex_owned(sc->sc_lock));
   8762 	KASSERT(sc->sc_exlock);
   8763 
   8764 	ct.dev = sc->sc_monitor_port;
   8765 	ct.type = AUDIO_MIXER_VALUE;
   8766 	ct.un.value.num_channels = 1;
   8767 	if (audio_get_port(sc, &ct))
   8768 		return -1;
   8769 	return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
   8770 }
   8771 
   8772 /*
   8773  * Must be called with sc_lock && sc_exlock held.
   8774  */
   8775 static int
   8776 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
   8777 {
   8778 
   8779 	KASSERT(mutex_owned(sc->sc_lock));
   8780 	KASSERT(sc->sc_exlock);
   8781 
   8782 	return sc->hw_if->set_port(sc->hw_hdl, mc);
   8783 }
   8784 
   8785 /*
   8786  * Must be called with sc_lock && sc_exlock held.
   8787  */
   8788 static int
   8789 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
   8790 {
   8791 
   8792 	KASSERT(mutex_owned(sc->sc_lock));
   8793 	KASSERT(sc->sc_exlock);
   8794 
   8795 	return sc->hw_if->get_port(sc->hw_hdl, mc);
   8796 }
   8797 
   8798 /*
   8799  * Must be called with sc_lock && sc_exlock held.
   8800  */
   8801 static void
   8802 audio_mixer_capture(struct audio_softc *sc)
   8803 {
   8804 	mixer_devinfo_t mi;
   8805 	mixer_ctrl_t *mc;
   8806 
   8807 	KASSERT(mutex_owned(sc->sc_lock));
   8808 	KASSERT(sc->sc_exlock);
   8809 
   8810 	for (mi.index = 0;; mi.index++) {
   8811 		if (audio_query_devinfo(sc, &mi) != 0)
   8812 			break;
   8813 		KASSERT(mi.index < sc->sc_nmixer_states);
   8814 		if (mi.type == AUDIO_MIXER_CLASS)
   8815 			continue;
   8816 		mc = &sc->sc_mixer_state[mi.index];
   8817 		mc->dev = mi.index;
   8818 		mc->type = mi.type;
   8819 		mc->un.value.num_channels = mi.un.v.num_channels;
   8820 		(void)audio_get_port(sc, mc);
   8821 	}
   8822 
   8823 	return;
   8824 }
   8825 
   8826 /*
   8827  * Must be called with sc_lock && sc_exlock held.
   8828  */
   8829 static void
   8830 audio_mixer_restore(struct audio_softc *sc)
   8831 {
   8832 	mixer_devinfo_t mi;
   8833 	mixer_ctrl_t *mc;
   8834 
   8835 	KASSERT(mutex_owned(sc->sc_lock));
   8836 	KASSERT(sc->sc_exlock);
   8837 
   8838 	for (mi.index = 0; ; mi.index++) {
   8839 		if (audio_query_devinfo(sc, &mi) != 0)
   8840 			break;
   8841 		if (mi.type == AUDIO_MIXER_CLASS)
   8842 			continue;
   8843 		mc = &sc->sc_mixer_state[mi.index];
   8844 		(void)audio_set_port(sc, mc);
   8845 	}
   8846 	if (sc->hw_if->commit_settings)
   8847 		sc->hw_if->commit_settings(sc->hw_hdl);
   8848 
   8849 	return;
   8850 }
   8851 
   8852 static void
   8853 audio_volume_down(device_t dv)
   8854 {
   8855 	struct audio_softc *sc = device_private(dv);
   8856 	mixer_devinfo_t mi;
   8857 	int newgain;
   8858 	u_int gain;
   8859 	u_char balance;
   8860 
   8861 	if (audio_exlock_mutex_enter(sc) != 0)
   8862 		return;
   8863 	if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
   8864 		mi.index = sc->sc_outports.master;
   8865 		mi.un.v.delta = 0;
   8866 		if (audio_query_devinfo(sc, &mi) == 0) {
   8867 			au_get_gain(sc, &sc->sc_outports, &gain, &balance);
   8868 			newgain = gain - mi.un.v.delta;
   8869 			if (newgain < AUDIO_MIN_GAIN)
   8870 				newgain = AUDIO_MIN_GAIN;
   8871 			au_set_gain(sc, &sc->sc_outports, newgain, balance);
   8872 		}
   8873 	}
   8874 	audio_exlock_mutex_exit(sc);
   8875 }
   8876 
   8877 static void
   8878 audio_volume_up(device_t dv)
   8879 {
   8880 	struct audio_softc *sc = device_private(dv);
   8881 	mixer_devinfo_t mi;
   8882 	u_int gain, newgain;
   8883 	u_char balance;
   8884 
   8885 	if (audio_exlock_mutex_enter(sc) != 0)
   8886 		return;
   8887 	if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
   8888 		mi.index = sc->sc_outports.master;
   8889 		mi.un.v.delta = 0;
   8890 		if (audio_query_devinfo(sc, &mi) == 0) {
   8891 			au_get_gain(sc, &sc->sc_outports, &gain, &balance);
   8892 			newgain = gain + mi.un.v.delta;
   8893 			if (newgain > AUDIO_MAX_GAIN)
   8894 				newgain = AUDIO_MAX_GAIN;
   8895 			au_set_gain(sc, &sc->sc_outports, newgain, balance);
   8896 		}
   8897 	}
   8898 	audio_exlock_mutex_exit(sc);
   8899 }
   8900 
   8901 static void
   8902 audio_volume_toggle(device_t dv)
   8903 {
   8904 	struct audio_softc *sc = device_private(dv);
   8905 	u_int gain, newgain;
   8906 	u_char balance;
   8907 
   8908 	if (audio_exlock_mutex_enter(sc) != 0)
   8909 		return;
   8910 	au_get_gain(sc, &sc->sc_outports, &gain, &balance);
   8911 	if (gain != 0) {
   8912 		sc->sc_lastgain = gain;
   8913 		newgain = 0;
   8914 	} else
   8915 		newgain = sc->sc_lastgain;
   8916 	au_set_gain(sc, &sc->sc_outports, newgain, balance);
   8917 	audio_exlock_mutex_exit(sc);
   8918 }
   8919 
   8920 /*
   8921  * Must be called with sc_lock held.
   8922  */
   8923 static int
   8924 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
   8925 {
   8926 
   8927 	KASSERT(mutex_owned(sc->sc_lock));
   8928 
   8929 	return sc->hw_if->query_devinfo(sc->hw_hdl, di);
   8930 }
   8931 
   8932 #endif /* NAUDIO > 0 */
   8933 
   8934 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
   8935 #include <sys/param.h>
   8936 #include <sys/systm.h>
   8937 #include <sys/device.h>
   8938 #include <sys/audioio.h>
   8939 #include <dev/audio/audio_if.h>
   8940 #endif
   8941 
   8942 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
   8943 int
   8944 audioprint(void *aux, const char *pnp)
   8945 {
   8946 	struct audio_attach_args *arg;
   8947 	const char *type;
   8948 
   8949 	if (pnp != NULL) {
   8950 		arg = aux;
   8951 		switch (arg->type) {
   8952 		case AUDIODEV_TYPE_AUDIO:
   8953 			type = "audio";
   8954 			break;
   8955 		case AUDIODEV_TYPE_MIDI:
   8956 			type = "midi";
   8957 			break;
   8958 		case AUDIODEV_TYPE_OPL:
   8959 			type = "opl";
   8960 			break;
   8961 		case AUDIODEV_TYPE_MPU:
   8962 			type = "mpu";
   8963 			break;
   8964 		case AUDIODEV_TYPE_AUX:
   8965 			type = "aux";
   8966 			break;
   8967 		default:
   8968 			panic("audioprint: unknown type %d", arg->type);
   8969 		}
   8970 		aprint_normal("%s at %s", type, pnp);
   8971 	}
   8972 	return UNCONF;
   8973 }
   8974 
   8975 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
   8976 
   8977 #ifdef _MODULE
   8978 
   8979 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
   8980 
   8981 #include "ioconf.c"
   8982 
   8983 #endif
   8984 
   8985 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
   8986 
   8987 static int
   8988 audio_modcmd(modcmd_t cmd, void *arg)
   8989 {
   8990 	int error = 0;
   8991 
   8992 	switch (cmd) {
   8993 	case MODULE_CMD_INIT:
   8994 		/* XXX interrupt level? */
   8995 		audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
   8996 #ifdef _MODULE
   8997 		error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
   8998 		    &audio_cdevsw, &audio_cmajor);
   8999 		if (error)
   9000 			break;
   9001 
   9002 		error = config_init_component(cfdriver_ioconf_audio,
   9003 		    cfattach_ioconf_audio, cfdata_ioconf_audio);
   9004 		if (error) {
   9005 			devsw_detach(NULL, &audio_cdevsw);
   9006 		}
   9007 #endif
   9008 		break;
   9009 	case MODULE_CMD_FINI:
   9010 #ifdef _MODULE
   9011 		devsw_detach(NULL, &audio_cdevsw);
   9012 		error = config_fini_component(cfdriver_ioconf_audio,
   9013 		   cfattach_ioconf_audio, cfdata_ioconf_audio);
   9014 		if (error)
   9015 			devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
   9016 			    &audio_cdevsw, &audio_cmajor);
   9017 #endif
   9018 		psref_class_destroy(audio_psref_class);
   9019 		break;
   9020 	default:
   9021 		error = ENOTTY;
   9022 		break;
   9023 	}
   9024 
   9025 	return error;
   9026 }
   9027