cgd.c revision 1.29 1 /* $NetBSD: cgd.c,v 1.29 2005/08/20 12:03:52 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Roland C. Dowdeswell.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: cgd.c,v 1.29 2005/08/20 12:03:52 yamt Exp $");
41
42 #include <sys/types.h>
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/proc.h>
46 #include <sys/errno.h>
47 #include <sys/buf.h>
48 #include <sys/bufq.h>
49 #include <sys/malloc.h>
50 #include <sys/pool.h>
51 #include <sys/ioctl.h>
52 #include <sys/device.h>
53 #include <sys/disk.h>
54 #include <sys/disklabel.h>
55 #include <sys/fcntl.h>
56 #include <sys/vnode.h>
57 #include <sys/lock.h>
58 #include <sys/conf.h>
59
60 #include <dev/dkvar.h>
61 #include <dev/cgdvar.h>
62
63 /* Entry Point Functions */
64
65 void cgdattach(int);
66
67 static dev_type_open(cgdopen);
68 static dev_type_close(cgdclose);
69 static dev_type_read(cgdread);
70 static dev_type_write(cgdwrite);
71 static dev_type_ioctl(cgdioctl);
72 static dev_type_strategy(cgdstrategy);
73 static dev_type_dump(cgddump);
74 static dev_type_size(cgdsize);
75
76 const struct bdevsw cgd_bdevsw = {
77 cgdopen, cgdclose, cgdstrategy, cgdioctl,
78 cgddump, cgdsize, D_DISK
79 };
80
81 const struct cdevsw cgd_cdevsw = {
82 cgdopen, cgdclose, cgdread, cgdwrite, cgdioctl,
83 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
84 };
85
86 /* Internal Functions */
87
88 static int cgdstart(struct dk_softc *, struct buf *);
89 static void cgdiodone(struct buf *);
90
91 static int cgd_ioctl_set(struct cgd_softc *, void *, struct proc *);
92 static int cgd_ioctl_clr(struct cgd_softc *, void *, struct proc *);
93 static int cgdinit(struct cgd_softc *, const char *, struct vnode *,
94 struct proc *);
95 static void cgd_cipher(struct cgd_softc *, caddr_t, caddr_t,
96 size_t, daddr_t, size_t, int);
97
98 /* Pseudo-disk Interface */
99
100 static struct dk_intf the_dkintf = {
101 DTYPE_CGD,
102 "cgd",
103 cgdopen,
104 cgdclose,
105 cgdstrategy,
106 cgdstart,
107 };
108 static struct dk_intf *di = &the_dkintf;
109
110 static struct dkdriver cgddkdriver = {
111 .d_strategy = cgdstrategy,
112 .d_minphys = minphys,
113 };
114
115 /* DIAGNOSTIC and DEBUG definitions */
116
117 #if defined(CGDDEBUG) && !defined(DEBUG)
118 #define DEBUG
119 #endif
120
121 #ifdef DEBUG
122 int cgddebug = 0;
123
124 #define CGDB_FOLLOW 0x1
125 #define CGDB_IO 0x2
126 #define CGDB_CRYPTO 0x4
127
128 #define IFDEBUG(x,y) if (cgddebug & (x)) y
129 #define DPRINTF(x,y) IFDEBUG(x, printf y)
130 #define DPRINTF_FOLLOW(y) DPRINTF(CGDB_FOLLOW, y)
131
132 static void hexprint(const char *, void *, int);
133
134 #else
135 #define IFDEBUG(x,y)
136 #define DPRINTF(x,y)
137 #define DPRINTF_FOLLOW(y)
138 #endif
139
140 #ifdef DIAGNOSTIC
141 #define DIAGPANIC(x) panic x
142 #define DIAGCONDPANIC(x,y) if (x) panic y
143 #else
144 #define DIAGPANIC(x)
145 #define DIAGCONDPANIC(x,y)
146 #endif
147
148 /* Global variables */
149
150 struct cgd_softc *cgd_softc;
151 int numcgd = 0;
152
153 /* Utility Functions */
154
155 #define CGDUNIT(x) DISKUNIT(x)
156 #define GETCGD_SOFTC(_cs, x) if (!((_cs) = getcgd_softc(x))) return ENXIO
157
158 static struct cgd_softc *
159 getcgd_softc(dev_t dev)
160 {
161 int unit = CGDUNIT(dev);
162
163 DPRINTF_FOLLOW(("getcgd_softc(0x%x): unit = %d\n", dev, unit));
164 if (unit >= numcgd)
165 return NULL;
166 return &cgd_softc[unit];
167 }
168
169 /* The code */
170
171 static void
172 cgdsoftc_init(struct cgd_softc *cs, int num)
173 {
174 char sbuf[DK_XNAME_SIZE];
175
176 memset(cs, 0x0, sizeof(*cs));
177 snprintf(sbuf, DK_XNAME_SIZE, "cgd%d", num);
178 simple_lock_init(&cs->sc_slock);
179 dk_sc_init(&cs->sc_dksc, cs, sbuf);
180 cs->sc_dksc.sc_dkdev.dk_driver = &cgddkdriver;
181 pseudo_disk_init(&cs->sc_dksc.sc_dkdev);
182 }
183
184 void
185 cgdattach(int num)
186 {
187 int i;
188
189 DPRINTF_FOLLOW(("cgdattach(%d)\n", num));
190 if (num <= 0) {
191 DIAGPANIC(("cgdattach: count <= 0"));
192 return;
193 }
194
195 cgd_softc = (void *)malloc(num * sizeof(*cgd_softc), M_DEVBUF, M_NOWAIT);
196 if (!cgd_softc) {
197 printf("WARNING: unable to malloc(9) memory for crypt disks\n");
198 DIAGPANIC(("cgdattach: cannot malloc(9) enough memory"));
199 return;
200 }
201
202 numcgd = num;
203 for (i=0; i<num; i++)
204 cgdsoftc_init(&cgd_softc[i], i);
205 }
206
207 static int
208 cgdopen(dev_t dev, int flags, int fmt, struct proc *p)
209 {
210 struct cgd_softc *cs;
211
212 DPRINTF_FOLLOW(("cgdopen(%d, %d)\n", dev, flags));
213 GETCGD_SOFTC(cs, dev);
214 return dk_open(di, &cs->sc_dksc, dev, flags, fmt, p);
215 }
216
217 static int
218 cgdclose(dev_t dev, int flags, int fmt, struct proc *p)
219 {
220 struct cgd_softc *cs;
221
222 DPRINTF_FOLLOW(("cgdclose(%d, %d)\n", dev, flags));
223 GETCGD_SOFTC(cs, dev);
224 return dk_close(di, &cs->sc_dksc, dev, flags, fmt, p);
225 }
226
227 static void
228 cgdstrategy(struct buf *bp)
229 {
230 struct cgd_softc *cs = getcgd_softc(bp->b_dev);
231
232 DPRINTF_FOLLOW(("cgdstrategy(%p): b_bcount = %ld\n", bp,
233 (long)bp->b_bcount));
234 /* XXXrcd: Should we test for (cs != NULL)? */
235 dk_strategy(di, &cs->sc_dksc, bp);
236 return;
237 }
238
239 static int
240 cgdsize(dev_t dev)
241 {
242 struct cgd_softc *cs = getcgd_softc(dev);
243
244 DPRINTF_FOLLOW(("cgdsize(%d)\n", dev));
245 if (!cs)
246 return -1;
247 return dk_size(di, &cs->sc_dksc, dev);
248 }
249
250 /*
251 * cgd_{get,put}data are functions that deal with getting a buffer
252 * for the new encrypted data. We have a buffer per device so that
253 * we can ensure that we can always have a transaction in flight.
254 * We use this buffer first so that we have one less piece of
255 * malloc'ed data at any given point.
256 */
257
258 static void *
259 cgd_getdata(struct dk_softc *dksc, unsigned long size)
260 {
261 struct cgd_softc *cs =dksc->sc_osc;
262 caddr_t data = NULL;
263
264 simple_lock(&cs->sc_slock);
265 if (cs->sc_data_used == 0) {
266 cs->sc_data_used = 1;
267 data = cs->sc_data;
268 }
269 simple_unlock(&cs->sc_slock);
270
271 if (data)
272 return data;
273
274 return malloc(size, M_DEVBUF, M_NOWAIT);
275 }
276
277 static void
278 cgd_putdata(struct dk_softc *dksc, caddr_t data)
279 {
280 struct cgd_softc *cs =dksc->sc_osc;
281
282 if (data == cs->sc_data) {
283 simple_lock(&cs->sc_slock);
284 cs->sc_data_used = 0;
285 simple_unlock(&cs->sc_slock);
286 } else {
287 free(data, M_DEVBUF);
288 }
289 }
290
291 static int
292 cgdstart(struct dk_softc *dksc, struct buf *bp)
293 {
294 struct cgd_softc *cs = dksc->sc_osc;
295 struct buf *nbp;
296 struct partition *pp;
297 caddr_t addr;
298 caddr_t newaddr;
299 daddr_t bn;
300 int s;
301
302 DPRINTF_FOLLOW(("cgdstart(%p, %p)\n", dksc, bp));
303 disk_busy(&dksc->sc_dkdev); /* XXX: put in dksubr.c */
304
305 /* XXXrcd:
306 * Translate partition relative blocks to absolute blocks,
307 * this probably belongs (somehow) in dksubr.c, since it
308 * is independant of the underlying code... This will require
309 * that the interface be expanded slightly, though.
310 */
311 bn = bp->b_blkno;
312 if (DISKPART(bp->b_dev) != RAW_PART) {
313 pp = &cs->sc_dksc.sc_dkdev.dk_label->d_partitions[DISKPART(bp->b_dev)];
314 bn += pp->p_offset;
315 }
316
317 /*
318 * We attempt to allocate all of our resources up front, so that
319 * we can fail quickly if they are unavailable.
320 */
321
322 s = splbio();
323 nbp = pool_get(&bufpool, PR_NOWAIT);
324 splx(s);
325 if (nbp == NULL) {
326 disk_unbusy(&dksc->sc_dkdev, 0, (bp->b_flags & B_READ));
327 return -1;
328 }
329
330 /*
331 * If we are writing, then we need to encrypt the outgoing
332 * block into a new block of memory. If we fail, then we
333 * return an error and let the dksubr framework deal with it.
334 */
335 newaddr = addr = bp->b_data;
336 if ((bp->b_flags & B_READ) == 0) {
337 newaddr = cgd_getdata(dksc, bp->b_bcount);
338 if (!newaddr) {
339 s = splbio();
340 pool_put(&bufpool, nbp);
341 splx(s);
342 disk_unbusy(&dksc->sc_dkdev, 0, (bp->b_flags & B_READ));
343 return -1;
344 }
345 cgd_cipher(cs, newaddr, addr, bp->b_bcount, bn,
346 DEV_BSIZE, CGD_CIPHER_ENCRYPT);
347 }
348
349 BUF_INIT(nbp);
350 nbp->b_data = newaddr;
351 nbp->b_flags = bp->b_flags | B_CALL;
352 nbp->b_iodone = cgdiodone;
353 nbp->b_proc = bp->b_proc;
354 nbp->b_blkno = bn;
355 nbp->b_vp = cs->sc_tvn;
356 nbp->b_bcount = bp->b_bcount;
357 nbp->b_private = bp;
358
359 BIO_COPYPRIO(nbp, bp);
360
361 if ((nbp->b_flags & B_READ) == 0) {
362 V_INCR_NUMOUTPUT(nbp->b_vp);
363 }
364 VOP_STRATEGY(cs->sc_tvn, nbp);
365 return 0;
366 }
367
368 /* expected to be called at splbio() */
369 static void
370 cgdiodone(struct buf *nbp)
371 {
372 struct buf *obp = nbp->b_private;
373 struct cgd_softc *cs = getcgd_softc(obp->b_dev);
374 struct dk_softc *dksc = &cs->sc_dksc;
375
376 KDASSERT(cs);
377
378 DPRINTF_FOLLOW(("cgdiodone(%p)\n", nbp));
379 DPRINTF(CGDB_IO, ("cgdiodone: bp %p bcount %d resid %d\n",
380 obp, obp->b_bcount, obp->b_resid));
381 DPRINTF(CGDB_IO, (" dev 0x%x, nbp %p bn %" PRId64 " addr %p bcnt %d\n",
382 nbp->b_dev, nbp, nbp->b_blkno, nbp->b_data,
383 nbp->b_bcount));
384 if (nbp->b_flags & B_ERROR) {
385 obp->b_flags |= B_ERROR;
386 obp->b_error = nbp->b_error ? nbp->b_error : EIO;
387
388 printf("%s: error %d\n", dksc->sc_xname, obp->b_error);
389 }
390
391 /* Perform the decryption if we are reading.
392 *
393 * Note: use the blocknumber from nbp, since it is what
394 * we used to encrypt the blocks.
395 */
396
397 if (nbp->b_flags & B_READ)
398 cgd_cipher(cs, obp->b_data, obp->b_data, obp->b_bcount,
399 nbp->b_blkno, DEV_BSIZE, CGD_CIPHER_DECRYPT);
400
401 /* If we allocated memory, free it now... */
402 if (nbp->b_data != obp->b_data)
403 cgd_putdata(dksc, nbp->b_data);
404
405 pool_put(&bufpool, nbp);
406
407 /* Request is complete for whatever reason */
408 obp->b_resid = 0;
409 if (obp->b_flags & B_ERROR)
410 obp->b_resid = obp->b_bcount;
411 disk_unbusy(&dksc->sc_dkdev, obp->b_bcount - obp->b_resid,
412 (obp->b_flags & B_READ));
413 biodone(obp);
414 dk_iodone(di, dksc);
415 }
416
417 /* XXX: we should probably put these into dksubr.c, mostly */
418 static int
419 cgdread(dev_t dev, struct uio *uio, int flags)
420 {
421 struct cgd_softc *cs;
422 struct dk_softc *dksc;
423
424 DPRINTF_FOLLOW(("cgdread(%d, %p, %d)\n", dev, uio, flags));
425 GETCGD_SOFTC(cs, dev);
426 dksc = &cs->sc_dksc;
427 if ((dksc->sc_flags & DKF_INITED) == 0)
428 return ENXIO;
429 return physio(cgdstrategy, NULL, dev, B_READ, minphys, uio);
430 }
431
432 /* XXX: we should probably put these into dksubr.c, mostly */
433 static int
434 cgdwrite(dev_t dev, struct uio *uio, int flags)
435 {
436 struct cgd_softc *cs;
437 struct dk_softc *dksc;
438
439 DPRINTF_FOLLOW(("cgdwrite(%d, %p, %d)\n", dev, uio, flags));
440 GETCGD_SOFTC(cs, dev);
441 dksc = &cs->sc_dksc;
442 if ((dksc->sc_flags & DKF_INITED) == 0)
443 return ENXIO;
444 return physio(cgdstrategy, NULL, dev, B_WRITE, minphys, uio);
445 }
446
447 static int
448 cgdioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
449 {
450 struct cgd_softc *cs;
451 struct dk_softc *dksc;
452 struct disk *dk;
453 int ret;
454 int part = DISKPART(dev);
455 int pmask = 1 << part;
456
457 DPRINTF_FOLLOW(("cgdioctl(%d, %ld, %p, %d, %p)\n",
458 dev, cmd, data, flag, p));
459 GETCGD_SOFTC(cs, dev);
460 dksc = &cs->sc_dksc;
461 dk = &dksc->sc_dkdev;
462 switch (cmd) {
463 case CGDIOCSET:
464 case CGDIOCCLR:
465 if ((flag & FWRITE) == 0)
466 return EBADF;
467 }
468
469 switch (cmd) {
470 case CGDIOCSET:
471 if (dksc->sc_flags & DKF_INITED)
472 ret = EBUSY;
473 else
474 ret = cgd_ioctl_set(cs, data, p);
475 break;
476 case CGDIOCCLR:
477 if (!(dksc->sc_flags & DKF_INITED)) {
478 ret = ENXIO;
479 break;
480 }
481 if (DK_BUSY(&cs->sc_dksc, pmask)) {
482 ret = EBUSY;
483 break;
484 }
485 ret = cgd_ioctl_clr(cs, data, p);
486 break;
487 default:
488 ret = dk_ioctl(di, dksc, dev, cmd, data, flag, p);
489 break;
490 }
491
492 return ret;
493 }
494
495 static int
496 cgddump(dev_t dev, daddr_t blkno, caddr_t va, size_t size)
497 {
498 struct cgd_softc *cs;
499
500 DPRINTF_FOLLOW(("cgddump(%d, %" PRId64 ", %p, %lu)\n", dev, blkno, va,
501 (unsigned long)size));
502 GETCGD_SOFTC(cs, dev);
503 return dk_dump(di, &cs->sc_dksc, dev, blkno, va, size);
504 }
505
506 /*
507 * XXXrcd:
508 * for now we hardcode the maximum key length.
509 */
510 #define MAX_KEYSIZE 1024
511
512 /* ARGSUSED */
513 static int
514 cgd_ioctl_set(struct cgd_softc *cs, void *data, struct proc *p)
515 {
516 struct cgd_ioctl *ci = data;
517 struct vnode *vp;
518 int ret;
519 int keybytes; /* key length in bytes */
520 const char *cp;
521 char inbuf[MAX_KEYSIZE];
522
523 cp = ci->ci_disk;
524 if ((ret = dk_lookup(cp, p, &vp)) != 0)
525 return ret;
526
527 if ((ret = cgdinit(cs, cp, vp, p)) != 0)
528 goto bail;
529
530 memset(inbuf, 0x0, sizeof(inbuf));
531 ret = copyinstr(ci->ci_alg, inbuf, 256, NULL);
532 if (ret)
533 goto bail;
534 cs->sc_cfuncs = cryptfuncs_find(inbuf);
535 if (!cs->sc_cfuncs) {
536 ret = EINVAL;
537 goto bail;
538 }
539
540 /* right now we only support encblkno, so hard-code it */
541 memset(inbuf, 0x0, sizeof(inbuf));
542 ret = copyinstr(ci->ci_ivmethod, inbuf, sizeof(inbuf), NULL);
543 if (ret)
544 goto bail;
545 if (strcmp("encblkno", inbuf)) {
546 ret = EINVAL;
547 goto bail;
548 }
549
550 keybytes = ci->ci_keylen / 8 + 1;
551 if (keybytes > MAX_KEYSIZE) {
552 ret = EINVAL;
553 goto bail;
554 }
555 memset(inbuf, 0x0, sizeof(inbuf));
556 ret = copyin(ci->ci_key, inbuf, keybytes);
557 if (ret)
558 goto bail;
559
560 cs->sc_cdata.cf_blocksize = ci->ci_blocksize;
561 cs->sc_cdata.cf_mode = CGD_CIPHER_CBC_ENCBLKNO;
562 cs->sc_cdata.cf_priv = cs->sc_cfuncs->cf_init(ci->ci_keylen, inbuf,
563 &cs->sc_cdata.cf_blocksize);
564 memset(inbuf, 0x0, sizeof(inbuf));
565 if (!cs->sc_cdata.cf_priv) {
566 printf("cgd: unable to initialize cipher\n");
567 ret = EINVAL; /* XXX is this the right error? */
568 goto bail;
569 }
570
571 bufq_alloc(&cs->sc_dksc.sc_bufq, BUFQ_FCFS);
572
573 cs->sc_data = malloc(MAXPHYS, M_DEVBUF, M_WAITOK);
574 cs->sc_data_used = 0;
575
576 cs->sc_dksc.sc_flags |= DKF_INITED;
577
578 /* Attach the disk. */
579 pseudo_disk_attach(&cs->sc_dksc.sc_dkdev);
580
581 /* Try and read the disklabel. */
582 dk_getdisklabel(di, &cs->sc_dksc, 0 /* XXX ? */);
583
584 /* Discover wedges on this disk. */
585 dkwedge_discover(&cs->sc_dksc.sc_dkdev);
586
587 return 0;
588
589 bail:
590 (void)vn_close(vp, FREAD|FWRITE, p->p_ucred, p);
591 return ret;
592 }
593
594 /* ARGSUSED */
595 static int
596 cgd_ioctl_clr(struct cgd_softc *cs, void *data, struct proc *p)
597 {
598 int s;
599
600 /* Delete all of our wedges. */
601 dkwedge_delall(&cs->sc_dksc.sc_dkdev);
602
603 /* Kill off any queued buffers. */
604 s = splbio();
605 bufq_drain(&cs->sc_dksc.sc_bufq);
606 splx(s);
607 bufq_free(&cs->sc_dksc.sc_bufq);
608
609 (void)vn_close(cs->sc_tvn, FREAD|FWRITE, p->p_ucred, p);
610 cs->sc_cfuncs->cf_destroy(cs->sc_cdata.cf_priv);
611 free(cs->sc_tpath, M_DEVBUF);
612 free(cs->sc_data, M_DEVBUF);
613 cs->sc_data_used = 0;
614 cs->sc_dksc.sc_flags &= ~DKF_INITED;
615 pseudo_disk_detach(&cs->sc_dksc.sc_dkdev);
616
617 return 0;
618 }
619
620 static int
621 cgdinit(struct cgd_softc *cs, const char *cpath, struct vnode *vp,
622 struct proc *p)
623 {
624 struct dk_geom *pdg;
625 struct partinfo dpart;
626 struct vattr va;
627 size_t size;
628 int maxsecsize = 0;
629 int ret;
630 char tmppath[MAXPATHLEN];
631
632 cs->sc_dksc.sc_size = 0;
633 cs->sc_tvn = vp;
634
635 memset(tmppath, 0x0, sizeof(tmppath));
636 ret = copyinstr(cpath, tmppath, MAXPATHLEN, &cs->sc_tpathlen);
637 if (ret)
638 goto bail;
639 cs->sc_tpath = malloc(cs->sc_tpathlen, M_DEVBUF, M_WAITOK);
640 memcpy(cs->sc_tpath, tmppath, cs->sc_tpathlen);
641
642 if ((ret = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0)
643 goto bail;
644
645 cs->sc_tdev = va.va_rdev;
646
647 ret = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, p->p_ucred, p);
648 if (ret)
649 goto bail;
650
651 maxsecsize =
652 ((dpart.disklab->d_secsize > maxsecsize) ?
653 dpart.disklab->d_secsize : maxsecsize);
654 size = dpart.part->p_size;
655
656 if (!size) {
657 ret = ENODEV;
658 goto bail;
659 }
660
661 cs->sc_dksc.sc_size = size;
662
663 /*
664 * XXX here we should probe the underlying device. If we
665 * are accessing a partition of type RAW_PART, then
666 * we should populate our initial geometry with the
667 * geometry that we discover from the device.
668 */
669 pdg = &cs->sc_dksc.sc_geom;
670 pdg->pdg_secsize = DEV_BSIZE;
671 pdg->pdg_ntracks = 1;
672 pdg->pdg_nsectors = 1024 * (1024 / pdg->pdg_secsize);
673 pdg->pdg_ncylinders = cs->sc_dksc.sc_size / pdg->pdg_nsectors;
674
675 bail:
676 if (ret && cs->sc_tpath)
677 free(cs->sc_tpath, M_DEVBUF);
678 return ret;
679 }
680
681 /*
682 * Our generic cipher entry point. This takes care of the
683 * IV mode and passes off the work to the specific cipher.
684 * We implement here the IV method ``encrypted block
685 * number''.
686 *
687 * For the encryption case, we accomplish this by setting
688 * up a struct uio where the first iovec of the source is
689 * the blocknumber and the first iovec of the dest is a
690 * sink. We then call the cipher with an IV of zero, and
691 * the right thing happens.
692 *
693 * For the decryption case, we use the same basic mechanism
694 * for symmetry, but we encrypt the block number in the
695 * first iovec.
696 *
697 * We mainly do this to avoid requiring the definition of
698 * an ECB mode.
699 *
700 * XXXrcd: for now we rely on our own crypto framework defined
701 * in dev/cgd_crypto.c. This will change when we
702 * get a generic kernel crypto framework.
703 */
704
705 static void
706 blkno2blkno_buf(char *sbuf, daddr_t blkno)
707 {
708 int i;
709
710 /* Set up the blkno in blkno_buf, here we do not care much
711 * about the final layout of the information as long as we
712 * can guarantee that each sector will have a different IV
713 * and that the endianness of the machine will not affect
714 * the representation that we have chosen.
715 *
716 * We choose this representation, because it does not rely
717 * on the size of buf (which is the blocksize of the cipher),
718 * but allows daddr_t to grow without breaking existing
719 * disks.
720 *
721 * Note that blkno2blkno_buf does not take a size as input,
722 * and hence must be called on a pre-zeroed buffer of length
723 * greater than or equal to sizeof(daddr_t).
724 */
725 for (i=0; i < sizeof(daddr_t); i++) {
726 *sbuf++ = blkno & 0xff;
727 blkno >>= 8;
728 }
729 }
730
731 static void
732 cgd_cipher(struct cgd_softc *cs, caddr_t dst, caddr_t src,
733 size_t len, daddr_t blkno, size_t secsize, int dir)
734 {
735 cfunc_cipher *cipher = cs->sc_cfuncs->cf_cipher;
736 struct uio dstuio;
737 struct uio srcuio;
738 struct iovec dstiov[2];
739 struct iovec srciov[2];
740 int blocksize = cs->sc_cdata.cf_blocksize;
741 char sink[blocksize];
742 char zero_iv[blocksize];
743 char blkno_buf[blocksize];
744
745 DPRINTF_FOLLOW(("cgd_cipher() dir=%d\n", dir));
746
747 DIAGCONDPANIC(len % blocksize != 0,
748 ("cgd_cipher: len %% blocksize != 0"));
749
750 /* ensure that sizeof(daddr_t) <= blocksize (for encblkno IVing) */
751 DIAGCONDPANIC(sizeof(daddr_t) > blocksize,
752 ("cgd_cipher: sizeof(daddr_t) > blocksize"));
753
754 memset(zero_iv, 0x0, sizeof(zero_iv));
755
756 dstuio.uio_iov = dstiov;
757 dstuio.uio_iovcnt = 2;
758
759 srcuio.uio_iov = srciov;
760 srcuio.uio_iovcnt = 2;
761
762 dstiov[0].iov_base = sink;
763 dstiov[0].iov_len = blocksize;
764 srciov[0].iov_base = blkno_buf;
765 srciov[0].iov_len = blocksize;
766 dstiov[1].iov_len = secsize;
767 srciov[1].iov_len = secsize;
768
769 for (; len > 0; len -= secsize) {
770 dstiov[1].iov_base = dst;
771 srciov[1].iov_base = src;
772
773 memset(blkno_buf, 0x0, sizeof(blkno_buf));
774 blkno2blkno_buf(blkno_buf, blkno);
775 if (dir == CGD_CIPHER_DECRYPT) {
776 dstuio.uio_iovcnt = 1;
777 srcuio.uio_iovcnt = 1;
778 IFDEBUG(CGDB_CRYPTO, hexprint("step 0: blkno_buf",
779 blkno_buf, sizeof(blkno_buf)));
780 cipher(cs->sc_cdata.cf_priv, &dstuio, &srcuio,
781 zero_iv, CGD_CIPHER_ENCRYPT);
782 memcpy(blkno_buf, sink, blocksize);
783 dstuio.uio_iovcnt = 2;
784 srcuio.uio_iovcnt = 2;
785 }
786
787 IFDEBUG(CGDB_CRYPTO, hexprint("step 1: blkno_buf",
788 blkno_buf, sizeof(blkno_buf)));
789 cipher(cs->sc_cdata.cf_priv, &dstuio, &srcuio, zero_iv, dir);
790 IFDEBUG(CGDB_CRYPTO, hexprint("step 2: sink",
791 sink, sizeof(sink)));
792
793 dst += secsize;
794 src += secsize;
795 blkno++;
796 }
797 }
798
799 #ifdef DEBUG
800 static void
801 hexprint(const char *start, void *buf, int len)
802 {
803 char *c = buf;
804
805 DIAGCONDPANIC(len < 0, ("hexprint: called with len < 0"));
806 printf("%s: len=%06d 0x", start, len);
807 while (len--)
808 printf("%02x", (unsigned) *c++);
809 }
810 #endif
811