cgd.c revision 1.31 1 /* $NetBSD: cgd.c,v 1.31 2005/10/18 00:14:43 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Roland C. Dowdeswell.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: cgd.c,v 1.31 2005/10/18 00:14:43 yamt Exp $");
41
42 #include <sys/types.h>
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/proc.h>
46 #include <sys/errno.h>
47 #include <sys/buf.h>
48 #include <sys/bufq.h>
49 #include <sys/malloc.h>
50 #include <sys/pool.h>
51 #include <sys/ioctl.h>
52 #include <sys/device.h>
53 #include <sys/disk.h>
54 #include <sys/disklabel.h>
55 #include <sys/fcntl.h>
56 #include <sys/vnode.h>
57 #include <sys/lock.h>
58 #include <sys/conf.h>
59
60 #include <dev/dkvar.h>
61 #include <dev/cgdvar.h>
62
63 /* Entry Point Functions */
64
65 void cgdattach(int);
66
67 static dev_type_open(cgdopen);
68 static dev_type_close(cgdclose);
69 static dev_type_read(cgdread);
70 static dev_type_write(cgdwrite);
71 static dev_type_ioctl(cgdioctl);
72 static dev_type_strategy(cgdstrategy);
73 static dev_type_dump(cgddump);
74 static dev_type_size(cgdsize);
75
76 const struct bdevsw cgd_bdevsw = {
77 cgdopen, cgdclose, cgdstrategy, cgdioctl,
78 cgddump, cgdsize, D_DISK
79 };
80
81 const struct cdevsw cgd_cdevsw = {
82 cgdopen, cgdclose, cgdread, cgdwrite, cgdioctl,
83 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
84 };
85
86 /* Internal Functions */
87
88 static int cgdstart(struct dk_softc *, struct buf *);
89 static void cgdiodone(struct buf *);
90
91 static int cgd_ioctl_set(struct cgd_softc *, void *, struct proc *);
92 static int cgd_ioctl_clr(struct cgd_softc *, void *, struct proc *);
93 static int cgdinit(struct cgd_softc *, const char *, struct vnode *,
94 struct proc *);
95 static void cgd_cipher(struct cgd_softc *, caddr_t, caddr_t,
96 size_t, daddr_t, size_t, int);
97
98 /* Pseudo-disk Interface */
99
100 static struct dk_intf the_dkintf = {
101 DTYPE_CGD,
102 "cgd",
103 cgdopen,
104 cgdclose,
105 cgdstrategy,
106 cgdstart,
107 };
108 static struct dk_intf *di = &the_dkintf;
109
110 static struct dkdriver cgddkdriver = {
111 .d_strategy = cgdstrategy,
112 .d_minphys = minphys,
113 };
114
115 /* DIAGNOSTIC and DEBUG definitions */
116
117 #if defined(CGDDEBUG) && !defined(DEBUG)
118 #define DEBUG
119 #endif
120
121 #ifdef DEBUG
122 int cgddebug = 0;
123
124 #define CGDB_FOLLOW 0x1
125 #define CGDB_IO 0x2
126 #define CGDB_CRYPTO 0x4
127
128 #define IFDEBUG(x,y) if (cgddebug & (x)) y
129 #define DPRINTF(x,y) IFDEBUG(x, printf y)
130 #define DPRINTF_FOLLOW(y) DPRINTF(CGDB_FOLLOW, y)
131
132 static void hexprint(const char *, void *, int);
133
134 #else
135 #define IFDEBUG(x,y)
136 #define DPRINTF(x,y)
137 #define DPRINTF_FOLLOW(y)
138 #endif
139
140 #ifdef DIAGNOSTIC
141 #define DIAGPANIC(x) panic x
142 #define DIAGCONDPANIC(x,y) if (x) panic y
143 #else
144 #define DIAGPANIC(x)
145 #define DIAGCONDPANIC(x,y)
146 #endif
147
148 /* Global variables */
149
150 struct cgd_softc *cgd_softc;
151 int numcgd = 0;
152
153 /* Utility Functions */
154
155 #define CGDUNIT(x) DISKUNIT(x)
156 #define GETCGD_SOFTC(_cs, x) if (!((_cs) = getcgd_softc(x))) return ENXIO
157
158 static struct cgd_softc *
159 getcgd_softc(dev_t dev)
160 {
161 int unit = CGDUNIT(dev);
162
163 DPRINTF_FOLLOW(("getcgd_softc(0x%x): unit = %d\n", dev, unit));
164 if (unit >= numcgd)
165 return NULL;
166 return &cgd_softc[unit];
167 }
168
169 /* The code */
170
171 static void
172 cgdsoftc_init(struct cgd_softc *cs, int num)
173 {
174 char sbuf[DK_XNAME_SIZE];
175
176 memset(cs, 0x0, sizeof(*cs));
177 snprintf(sbuf, DK_XNAME_SIZE, "cgd%d", num);
178 simple_lock_init(&cs->sc_slock);
179 dk_sc_init(&cs->sc_dksc, cs, sbuf);
180 cs->sc_dksc.sc_dkdev.dk_driver = &cgddkdriver;
181 pseudo_disk_init(&cs->sc_dksc.sc_dkdev);
182 }
183
184 void
185 cgdattach(int num)
186 {
187 int i;
188
189 DPRINTF_FOLLOW(("cgdattach(%d)\n", num));
190 if (num <= 0) {
191 DIAGPANIC(("cgdattach: count <= 0"));
192 return;
193 }
194
195 cgd_softc = (void *)malloc(num * sizeof(*cgd_softc), M_DEVBUF, M_NOWAIT);
196 if (!cgd_softc) {
197 printf("WARNING: unable to malloc(9) memory for crypt disks\n");
198 DIAGPANIC(("cgdattach: cannot malloc(9) enough memory"));
199 return;
200 }
201
202 numcgd = num;
203 for (i=0; i<num; i++)
204 cgdsoftc_init(&cgd_softc[i], i);
205 }
206
207 static int
208 cgdopen(dev_t dev, int flags, int fmt, struct proc *p)
209 {
210 struct cgd_softc *cs;
211
212 DPRINTF_FOLLOW(("cgdopen(%d, %d)\n", dev, flags));
213 GETCGD_SOFTC(cs, dev);
214 return dk_open(di, &cs->sc_dksc, dev, flags, fmt, p);
215 }
216
217 static int
218 cgdclose(dev_t dev, int flags, int fmt, struct proc *p)
219 {
220 struct cgd_softc *cs;
221
222 DPRINTF_FOLLOW(("cgdclose(%d, %d)\n", dev, flags));
223 GETCGD_SOFTC(cs, dev);
224 return dk_close(di, &cs->sc_dksc, dev, flags, fmt, p);
225 }
226
227 static void
228 cgdstrategy(struct buf *bp)
229 {
230 struct cgd_softc *cs = getcgd_softc(bp->b_dev);
231
232 DPRINTF_FOLLOW(("cgdstrategy(%p): b_bcount = %ld\n", bp,
233 (long)bp->b_bcount));
234 /* XXXrcd: Should we test for (cs != NULL)? */
235 dk_strategy(di, &cs->sc_dksc, bp);
236 return;
237 }
238
239 static int
240 cgdsize(dev_t dev)
241 {
242 struct cgd_softc *cs = getcgd_softc(dev);
243
244 DPRINTF_FOLLOW(("cgdsize(%d)\n", dev));
245 if (!cs)
246 return -1;
247 return dk_size(di, &cs->sc_dksc, dev);
248 }
249
250 /*
251 * cgd_{get,put}data are functions that deal with getting a buffer
252 * for the new encrypted data. We have a buffer per device so that
253 * we can ensure that we can always have a transaction in flight.
254 * We use this buffer first so that we have one less piece of
255 * malloc'ed data at any given point.
256 */
257
258 static void *
259 cgd_getdata(struct dk_softc *dksc, unsigned long size)
260 {
261 struct cgd_softc *cs =dksc->sc_osc;
262 caddr_t data = NULL;
263
264 simple_lock(&cs->sc_slock);
265 if (cs->sc_data_used == 0) {
266 cs->sc_data_used = 1;
267 data = cs->sc_data;
268 }
269 simple_unlock(&cs->sc_slock);
270
271 if (data)
272 return data;
273
274 return malloc(size, M_DEVBUF, M_NOWAIT);
275 }
276
277 static void
278 cgd_putdata(struct dk_softc *dksc, caddr_t data)
279 {
280 struct cgd_softc *cs =dksc->sc_osc;
281
282 if (data == cs->sc_data) {
283 simple_lock(&cs->sc_slock);
284 cs->sc_data_used = 0;
285 simple_unlock(&cs->sc_slock);
286 } else {
287 free(data, M_DEVBUF);
288 }
289 }
290
291 static int
292 cgdstart(struct dk_softc *dksc, struct buf *bp)
293 {
294 struct cgd_softc *cs = dksc->sc_osc;
295 struct buf *nbp;
296 caddr_t addr;
297 caddr_t newaddr;
298 daddr_t bn;
299 int s;
300
301 DPRINTF_FOLLOW(("cgdstart(%p, %p)\n", dksc, bp));
302 disk_busy(&dksc->sc_dkdev); /* XXX: put in dksubr.c */
303
304 bn = bp->b_rawblkno;
305
306 /*
307 * We attempt to allocate all of our resources up front, so that
308 * we can fail quickly if they are unavailable.
309 */
310
311 s = splbio();
312 nbp = pool_get(&bufpool, PR_NOWAIT);
313 splx(s);
314 if (nbp == NULL) {
315 disk_unbusy(&dksc->sc_dkdev, 0, (bp->b_flags & B_READ));
316 return -1;
317 }
318
319 /*
320 * If we are writing, then we need to encrypt the outgoing
321 * block into a new block of memory. If we fail, then we
322 * return an error and let the dksubr framework deal with it.
323 */
324 newaddr = addr = bp->b_data;
325 if ((bp->b_flags & B_READ) == 0) {
326 newaddr = cgd_getdata(dksc, bp->b_bcount);
327 if (!newaddr) {
328 s = splbio();
329 pool_put(&bufpool, nbp);
330 splx(s);
331 disk_unbusy(&dksc->sc_dkdev, 0, (bp->b_flags & B_READ));
332 return -1;
333 }
334 cgd_cipher(cs, newaddr, addr, bp->b_bcount, bn,
335 DEV_BSIZE, CGD_CIPHER_ENCRYPT);
336 }
337
338 BUF_INIT(nbp);
339 nbp->b_data = newaddr;
340 nbp->b_flags = bp->b_flags | B_CALL;
341 nbp->b_iodone = cgdiodone;
342 nbp->b_proc = bp->b_proc;
343 nbp->b_blkno = bn;
344 nbp->b_vp = cs->sc_tvn;
345 nbp->b_bcount = bp->b_bcount;
346 nbp->b_private = bp;
347
348 BIO_COPYPRIO(nbp, bp);
349
350 if ((nbp->b_flags & B_READ) == 0) {
351 V_INCR_NUMOUTPUT(nbp->b_vp);
352 }
353 VOP_STRATEGY(cs->sc_tvn, nbp);
354 return 0;
355 }
356
357 /* expected to be called at splbio() */
358 static void
359 cgdiodone(struct buf *nbp)
360 {
361 struct buf *obp = nbp->b_private;
362 struct cgd_softc *cs = getcgd_softc(obp->b_dev);
363 struct dk_softc *dksc = &cs->sc_dksc;
364
365 KDASSERT(cs);
366
367 DPRINTF_FOLLOW(("cgdiodone(%p)\n", nbp));
368 DPRINTF(CGDB_IO, ("cgdiodone: bp %p bcount %d resid %d\n",
369 obp, obp->b_bcount, obp->b_resid));
370 DPRINTF(CGDB_IO, (" dev 0x%x, nbp %p bn %" PRId64 " addr %p bcnt %d\n",
371 nbp->b_dev, nbp, nbp->b_blkno, nbp->b_data,
372 nbp->b_bcount));
373 if (nbp->b_flags & B_ERROR) {
374 obp->b_flags |= B_ERROR;
375 obp->b_error = nbp->b_error ? nbp->b_error : EIO;
376
377 printf("%s: error %d\n", dksc->sc_xname, obp->b_error);
378 }
379
380 /* Perform the decryption if we are reading.
381 *
382 * Note: use the blocknumber from nbp, since it is what
383 * we used to encrypt the blocks.
384 */
385
386 if (nbp->b_flags & B_READ)
387 cgd_cipher(cs, obp->b_data, obp->b_data, obp->b_bcount,
388 nbp->b_blkno, DEV_BSIZE, CGD_CIPHER_DECRYPT);
389
390 /* If we allocated memory, free it now... */
391 if (nbp->b_data != obp->b_data)
392 cgd_putdata(dksc, nbp->b_data);
393
394 pool_put(&bufpool, nbp);
395
396 /* Request is complete for whatever reason */
397 obp->b_resid = 0;
398 if (obp->b_flags & B_ERROR)
399 obp->b_resid = obp->b_bcount;
400 disk_unbusy(&dksc->sc_dkdev, obp->b_bcount - obp->b_resid,
401 (obp->b_flags & B_READ));
402 biodone(obp);
403 dk_iodone(di, dksc);
404 }
405
406 /* XXX: we should probably put these into dksubr.c, mostly */
407 static int
408 cgdread(dev_t dev, struct uio *uio, int flags)
409 {
410 struct cgd_softc *cs;
411 struct dk_softc *dksc;
412
413 DPRINTF_FOLLOW(("cgdread(%d, %p, %d)\n", dev, uio, flags));
414 GETCGD_SOFTC(cs, dev);
415 dksc = &cs->sc_dksc;
416 if ((dksc->sc_flags & DKF_INITED) == 0)
417 return ENXIO;
418 return physio(cgdstrategy, NULL, dev, B_READ, minphys, uio);
419 }
420
421 /* XXX: we should probably put these into dksubr.c, mostly */
422 static int
423 cgdwrite(dev_t dev, struct uio *uio, int flags)
424 {
425 struct cgd_softc *cs;
426 struct dk_softc *dksc;
427
428 DPRINTF_FOLLOW(("cgdwrite(%d, %p, %d)\n", dev, uio, flags));
429 GETCGD_SOFTC(cs, dev);
430 dksc = &cs->sc_dksc;
431 if ((dksc->sc_flags & DKF_INITED) == 0)
432 return ENXIO;
433 return physio(cgdstrategy, NULL, dev, B_WRITE, minphys, uio);
434 }
435
436 static int
437 cgdioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
438 {
439 struct cgd_softc *cs;
440 struct dk_softc *dksc;
441 struct disk *dk;
442 int ret;
443 int part = DISKPART(dev);
444 int pmask = 1 << part;
445
446 DPRINTF_FOLLOW(("cgdioctl(%d, %ld, %p, %d, %p)\n",
447 dev, cmd, data, flag, p));
448 GETCGD_SOFTC(cs, dev);
449 dksc = &cs->sc_dksc;
450 dk = &dksc->sc_dkdev;
451 switch (cmd) {
452 case CGDIOCSET:
453 case CGDIOCCLR:
454 if ((flag & FWRITE) == 0)
455 return EBADF;
456 }
457
458 switch (cmd) {
459 case CGDIOCSET:
460 if (dksc->sc_flags & DKF_INITED)
461 ret = EBUSY;
462 else
463 ret = cgd_ioctl_set(cs, data, p);
464 break;
465 case CGDIOCCLR:
466 if (!(dksc->sc_flags & DKF_INITED)) {
467 ret = ENXIO;
468 break;
469 }
470 if (DK_BUSY(&cs->sc_dksc, pmask)) {
471 ret = EBUSY;
472 break;
473 }
474 ret = cgd_ioctl_clr(cs, data, p);
475 break;
476 default:
477 ret = dk_ioctl(di, dksc, dev, cmd, data, flag, p);
478 break;
479 }
480
481 return ret;
482 }
483
484 static int
485 cgddump(dev_t dev, daddr_t blkno, caddr_t va, size_t size)
486 {
487 struct cgd_softc *cs;
488
489 DPRINTF_FOLLOW(("cgddump(%d, %" PRId64 ", %p, %lu)\n", dev, blkno, va,
490 (unsigned long)size));
491 GETCGD_SOFTC(cs, dev);
492 return dk_dump(di, &cs->sc_dksc, dev, blkno, va, size);
493 }
494
495 /*
496 * XXXrcd:
497 * for now we hardcode the maximum key length.
498 */
499 #define MAX_KEYSIZE 1024
500
501 /* ARGSUSED */
502 static int
503 cgd_ioctl_set(struct cgd_softc *cs, void *data, struct proc *p)
504 {
505 struct cgd_ioctl *ci = data;
506 struct vnode *vp;
507 int ret;
508 int keybytes; /* key length in bytes */
509 const char *cp;
510 char inbuf[MAX_KEYSIZE];
511
512 cp = ci->ci_disk;
513 if ((ret = dk_lookup(cp, p, &vp)) != 0)
514 return ret;
515
516 if ((ret = cgdinit(cs, cp, vp, p)) != 0)
517 goto bail;
518
519 memset(inbuf, 0x0, sizeof(inbuf));
520 ret = copyinstr(ci->ci_alg, inbuf, 256, NULL);
521 if (ret)
522 goto bail;
523 cs->sc_cfuncs = cryptfuncs_find(inbuf);
524 if (!cs->sc_cfuncs) {
525 ret = EINVAL;
526 goto bail;
527 }
528
529 /* right now we only support encblkno, so hard-code it */
530 memset(inbuf, 0x0, sizeof(inbuf));
531 ret = copyinstr(ci->ci_ivmethod, inbuf, sizeof(inbuf), NULL);
532 if (ret)
533 goto bail;
534 if (strcmp("encblkno", inbuf)) {
535 ret = EINVAL;
536 goto bail;
537 }
538
539 keybytes = ci->ci_keylen / 8 + 1;
540 if (keybytes > MAX_KEYSIZE) {
541 ret = EINVAL;
542 goto bail;
543 }
544 memset(inbuf, 0x0, sizeof(inbuf));
545 ret = copyin(ci->ci_key, inbuf, keybytes);
546 if (ret)
547 goto bail;
548
549 cs->sc_cdata.cf_blocksize = ci->ci_blocksize;
550 cs->sc_cdata.cf_mode = CGD_CIPHER_CBC_ENCBLKNO;
551 cs->sc_cdata.cf_priv = cs->sc_cfuncs->cf_init(ci->ci_keylen, inbuf,
552 &cs->sc_cdata.cf_blocksize);
553 memset(inbuf, 0x0, sizeof(inbuf));
554 if (!cs->sc_cdata.cf_priv) {
555 printf("cgd: unable to initialize cipher\n");
556 ret = EINVAL; /* XXX is this the right error? */
557 goto bail;
558 }
559
560 bufq_alloc(&cs->sc_dksc.sc_bufq, "fcfs", 0);
561
562 cs->sc_data = malloc(MAXPHYS, M_DEVBUF, M_WAITOK);
563 cs->sc_data_used = 0;
564
565 cs->sc_dksc.sc_flags |= DKF_INITED;
566
567 /* Attach the disk. */
568 pseudo_disk_attach(&cs->sc_dksc.sc_dkdev);
569
570 /* Try and read the disklabel. */
571 dk_getdisklabel(di, &cs->sc_dksc, 0 /* XXX ? */);
572
573 /* Discover wedges on this disk. */
574 dkwedge_discover(&cs->sc_dksc.sc_dkdev);
575
576 return 0;
577
578 bail:
579 (void)vn_close(vp, FREAD|FWRITE, p->p_ucred, p);
580 return ret;
581 }
582
583 /* ARGSUSED */
584 static int
585 cgd_ioctl_clr(struct cgd_softc *cs, void *data, struct proc *p)
586 {
587 int s;
588
589 /* Delete all of our wedges. */
590 dkwedge_delall(&cs->sc_dksc.sc_dkdev);
591
592 /* Kill off any queued buffers. */
593 s = splbio();
594 bufq_drain(cs->sc_dksc.sc_bufq);
595 splx(s);
596 bufq_free(cs->sc_dksc.sc_bufq);
597
598 (void)vn_close(cs->sc_tvn, FREAD|FWRITE, p->p_ucred, p);
599 cs->sc_cfuncs->cf_destroy(cs->sc_cdata.cf_priv);
600 free(cs->sc_tpath, M_DEVBUF);
601 free(cs->sc_data, M_DEVBUF);
602 cs->sc_data_used = 0;
603 cs->sc_dksc.sc_flags &= ~DKF_INITED;
604 pseudo_disk_detach(&cs->sc_dksc.sc_dkdev);
605
606 return 0;
607 }
608
609 static int
610 cgdinit(struct cgd_softc *cs, const char *cpath, struct vnode *vp,
611 struct proc *p)
612 {
613 struct dk_geom *pdg;
614 struct partinfo dpart;
615 struct vattr va;
616 size_t size;
617 int maxsecsize = 0;
618 int ret;
619 char tmppath[MAXPATHLEN];
620
621 cs->sc_dksc.sc_size = 0;
622 cs->sc_tvn = vp;
623
624 memset(tmppath, 0x0, sizeof(tmppath));
625 ret = copyinstr(cpath, tmppath, MAXPATHLEN, &cs->sc_tpathlen);
626 if (ret)
627 goto bail;
628 cs->sc_tpath = malloc(cs->sc_tpathlen, M_DEVBUF, M_WAITOK);
629 memcpy(cs->sc_tpath, tmppath, cs->sc_tpathlen);
630
631 if ((ret = VOP_GETATTR(vp, &va, p->p_ucred, p)) != 0)
632 goto bail;
633
634 cs->sc_tdev = va.va_rdev;
635
636 ret = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, p->p_ucred, p);
637 if (ret)
638 goto bail;
639
640 maxsecsize =
641 ((dpart.disklab->d_secsize > maxsecsize) ?
642 dpart.disklab->d_secsize : maxsecsize);
643 size = dpart.part->p_size;
644
645 if (!size) {
646 ret = ENODEV;
647 goto bail;
648 }
649
650 cs->sc_dksc.sc_size = size;
651
652 /*
653 * XXX here we should probe the underlying device. If we
654 * are accessing a partition of type RAW_PART, then
655 * we should populate our initial geometry with the
656 * geometry that we discover from the device.
657 */
658 pdg = &cs->sc_dksc.sc_geom;
659 pdg->pdg_secsize = DEV_BSIZE;
660 pdg->pdg_ntracks = 1;
661 pdg->pdg_nsectors = 1024 * (1024 / pdg->pdg_secsize);
662 pdg->pdg_ncylinders = cs->sc_dksc.sc_size / pdg->pdg_nsectors;
663
664 bail:
665 if (ret && cs->sc_tpath)
666 free(cs->sc_tpath, M_DEVBUF);
667 return ret;
668 }
669
670 /*
671 * Our generic cipher entry point. This takes care of the
672 * IV mode and passes off the work to the specific cipher.
673 * We implement here the IV method ``encrypted block
674 * number''.
675 *
676 * For the encryption case, we accomplish this by setting
677 * up a struct uio where the first iovec of the source is
678 * the blocknumber and the first iovec of the dest is a
679 * sink. We then call the cipher with an IV of zero, and
680 * the right thing happens.
681 *
682 * For the decryption case, we use the same basic mechanism
683 * for symmetry, but we encrypt the block number in the
684 * first iovec.
685 *
686 * We mainly do this to avoid requiring the definition of
687 * an ECB mode.
688 *
689 * XXXrcd: for now we rely on our own crypto framework defined
690 * in dev/cgd_crypto.c. This will change when we
691 * get a generic kernel crypto framework.
692 */
693
694 static void
695 blkno2blkno_buf(char *sbuf, daddr_t blkno)
696 {
697 int i;
698
699 /* Set up the blkno in blkno_buf, here we do not care much
700 * about the final layout of the information as long as we
701 * can guarantee that each sector will have a different IV
702 * and that the endianness of the machine will not affect
703 * the representation that we have chosen.
704 *
705 * We choose this representation, because it does not rely
706 * on the size of buf (which is the blocksize of the cipher),
707 * but allows daddr_t to grow without breaking existing
708 * disks.
709 *
710 * Note that blkno2blkno_buf does not take a size as input,
711 * and hence must be called on a pre-zeroed buffer of length
712 * greater than or equal to sizeof(daddr_t).
713 */
714 for (i=0; i < sizeof(daddr_t); i++) {
715 *sbuf++ = blkno & 0xff;
716 blkno >>= 8;
717 }
718 }
719
720 static void
721 cgd_cipher(struct cgd_softc *cs, caddr_t dst, caddr_t src,
722 size_t len, daddr_t blkno, size_t secsize, int dir)
723 {
724 cfunc_cipher *cipher = cs->sc_cfuncs->cf_cipher;
725 struct uio dstuio;
726 struct uio srcuio;
727 struct iovec dstiov[2];
728 struct iovec srciov[2];
729 int blocksize = cs->sc_cdata.cf_blocksize;
730 char sink[blocksize];
731 char zero_iv[blocksize];
732 char blkno_buf[blocksize];
733
734 DPRINTF_FOLLOW(("cgd_cipher() dir=%d\n", dir));
735
736 DIAGCONDPANIC(len % blocksize != 0,
737 ("cgd_cipher: len %% blocksize != 0"));
738
739 /* ensure that sizeof(daddr_t) <= blocksize (for encblkno IVing) */
740 DIAGCONDPANIC(sizeof(daddr_t) > blocksize,
741 ("cgd_cipher: sizeof(daddr_t) > blocksize"));
742
743 memset(zero_iv, 0x0, sizeof(zero_iv));
744
745 dstuio.uio_iov = dstiov;
746 dstuio.uio_iovcnt = 2;
747
748 srcuio.uio_iov = srciov;
749 srcuio.uio_iovcnt = 2;
750
751 dstiov[0].iov_base = sink;
752 dstiov[0].iov_len = blocksize;
753 srciov[0].iov_base = blkno_buf;
754 srciov[0].iov_len = blocksize;
755 dstiov[1].iov_len = secsize;
756 srciov[1].iov_len = secsize;
757
758 for (; len > 0; len -= secsize) {
759 dstiov[1].iov_base = dst;
760 srciov[1].iov_base = src;
761
762 memset(blkno_buf, 0x0, sizeof(blkno_buf));
763 blkno2blkno_buf(blkno_buf, blkno);
764 if (dir == CGD_CIPHER_DECRYPT) {
765 dstuio.uio_iovcnt = 1;
766 srcuio.uio_iovcnt = 1;
767 IFDEBUG(CGDB_CRYPTO, hexprint("step 0: blkno_buf",
768 blkno_buf, sizeof(blkno_buf)));
769 cipher(cs->sc_cdata.cf_priv, &dstuio, &srcuio,
770 zero_iv, CGD_CIPHER_ENCRYPT);
771 memcpy(blkno_buf, sink, blocksize);
772 dstuio.uio_iovcnt = 2;
773 srcuio.uio_iovcnt = 2;
774 }
775
776 IFDEBUG(CGDB_CRYPTO, hexprint("step 1: blkno_buf",
777 blkno_buf, sizeof(blkno_buf)));
778 cipher(cs->sc_cdata.cf_priv, &dstuio, &srcuio, zero_iv, dir);
779 IFDEBUG(CGDB_CRYPTO, hexprint("step 2: sink",
780 sink, sizeof(sink)));
781
782 dst += secsize;
783 src += secsize;
784 blkno++;
785 }
786 }
787
788 #ifdef DEBUG
789 static void
790 hexprint(const char *start, void *buf, int len)
791 {
792 char *c = buf;
793
794 DIAGCONDPANIC(len < 0, ("hexprint: called with len < 0"));
795 printf("%s: len=%06d 0x", start, len);
796 while (len--)
797 printf("%02x", (unsigned) *c++);
798 }
799 #endif
800