cgd.c revision 1.50.6.3 1 /* $NetBSD: cgd.c,v 1.50.6.3 2008/06/02 13:23:11 mjf Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Roland C. Dowdeswell.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: cgd.c,v 1.50.6.3 2008/06/02 13:23:11 mjf Exp $");
34
35 #include <sys/types.h>
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/errno.h>
40 #include <sys/buf.h>
41 #include <sys/bufq.h>
42 #include <sys/malloc.h>
43 #include <sys/pool.h>
44 #include <sys/ioctl.h>
45 #include <sys/device.h>
46 #include <sys/disk.h>
47 #include <sys/disklabel.h>
48 #include <sys/fcntl.h>
49 #include <sys/vnode.h>
50 #include <sys/conf.h>
51
52 #include <dev/dkvar.h>
53 #include <dev/cgdvar.h>
54
55 /* Entry Point Functions */
56
57 void cgdattach(int);
58
59 static dev_type_open(cgdopen);
60 static dev_type_close(cgdclose);
61 static dev_type_read(cgdread);
62 static dev_type_write(cgdwrite);
63 static dev_type_ioctl(cgdioctl);
64 static dev_type_strategy(cgdstrategy);
65 static dev_type_dump(cgddump);
66 static dev_type_size(cgdsize);
67
68 const struct bdevsw cgd_bdevsw = {
69 cgdopen, cgdclose, cgdstrategy, cgdioctl,
70 cgddump, cgdsize, D_DISK
71 };
72
73 const struct cdevsw cgd_cdevsw = {
74 cgdopen, cgdclose, cgdread, cgdwrite, cgdioctl,
75 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
76 };
77
78 /* Internal Functions */
79
80 static int cgdstart(struct dk_softc *, struct buf *);
81 static void cgdiodone(struct buf *);
82
83 static int cgd_ioctl_set(struct cgd_softc *, void *, struct lwp *);
84 static int cgd_ioctl_clr(struct cgd_softc *, void *, struct lwp *);
85 static int cgdinit(struct cgd_softc *, const char *, struct vnode *,
86 struct lwp *);
87 static void cgd_cipher(struct cgd_softc *, void *, void *,
88 size_t, daddr_t, size_t, int);
89
90 /* Pseudo-disk Interface */
91
92 static struct dk_intf the_dkintf = {
93 DTYPE_CGD,
94 "cgd",
95 cgdopen,
96 cgdclose,
97 cgdstrategy,
98 cgdstart,
99 };
100 static struct dk_intf *di = &the_dkintf;
101
102 static struct dkdriver cgddkdriver = {
103 .d_strategy = cgdstrategy,
104 .d_minphys = minphys,
105 };
106
107 /* DIAGNOSTIC and DEBUG definitions */
108
109 #if defined(CGDDEBUG) && !defined(DEBUG)
110 #define DEBUG
111 #endif
112
113 #ifdef DEBUG
114 int cgddebug = 0;
115
116 #define CGDB_FOLLOW 0x1
117 #define CGDB_IO 0x2
118 #define CGDB_CRYPTO 0x4
119
120 #define IFDEBUG(x,y) if (cgddebug & (x)) y
121 #define DPRINTF(x,y) IFDEBUG(x, printf y)
122 #define DPRINTF_FOLLOW(y) DPRINTF(CGDB_FOLLOW, y)
123
124 static void hexprint(const char *, void *, int);
125
126 #else
127 #define IFDEBUG(x,y)
128 #define DPRINTF(x,y)
129 #define DPRINTF_FOLLOW(y)
130 #endif
131
132 #ifdef DIAGNOSTIC
133 #define DIAGPANIC(x) panic x
134 #define DIAGCONDPANIC(x,y) if (x) panic y
135 #else
136 #define DIAGPANIC(x)
137 #define DIAGCONDPANIC(x,y)
138 #endif
139
140 /* Global variables */
141
142 struct cgd_softc *cgd_softc;
143 int numcgd = 0;
144
145 /* Utility Functions */
146
147 #define CGDUNIT(x) DISKUNIT(x)
148 #define GETCGD_SOFTC(_cs, x) if (!((_cs) = getcgd_softc(x))) return ENXIO
149
150 static struct cgd_softc *
151 getcgd_softc(dev_t dev)
152 {
153 int unit = CGDUNIT(dev);
154
155 DPRINTF_FOLLOW(("getcgd_softc(0x%x): unit = %d\n", dev, unit));
156 if (unit >= numcgd)
157 return NULL;
158 return &cgd_softc[unit];
159 }
160
161 /* The code */
162
163 static void
164 cgdsoftc_init(struct cgd_softc *cs, int num)
165 {
166 char sbuf[DK_XNAME_SIZE];
167
168 memset(cs, 0x0, sizeof(*cs));
169 snprintf(sbuf, DK_XNAME_SIZE, "cgd%d", num);
170 simple_lock_init(&cs->sc_slock);
171 dk_sc_init(&cs->sc_dksc, cs, sbuf);
172 disk_init(&cs->sc_dksc.sc_dkdev, cs->sc_dksc.sc_xname, &cgddkdriver);
173 }
174
175 void
176 cgdattach(int num)
177 {
178 int i, j, bmaj, cmaj;
179
180 DPRINTF_FOLLOW(("cgdattach(%d)\n", num));
181 if (num <= 0) {
182 DIAGPANIC(("cgdattach: count <= 0"));
183 return;
184 }
185
186 cgd_softc = (void *)malloc(num * sizeof(*cgd_softc), M_DEVBUF, M_NOWAIT);
187 if (!cgd_softc) {
188 printf("WARNING: unable to malloc(9) memory for crypt disks\n");
189 DIAGPANIC(("cgdattach: cannot malloc(9) enough memory"));
190 return;
191 }
192
193 bmaj = bdevsw_lookup_major(&cgd_bdevsw);
194 cmaj = cdevsw_lookup_major(&cgd_cdevsw);
195
196 numcgd = num;
197 for (i=0; i<num; i++) {
198 cgdsoftc_init(&cgd_softc[i], i);
199 for (j = 0; j < MAXPARTITIONS; j++) {
200 device_register_name(MAKEDISKDEV(bmaj, i, j), NULL,
201 false, DEV_DISK, "cgd%d%c", i, 'a' + j);
202 device_register_name(MAKEDISKDEV(cmaj, i, j), NULL,
203 true, DEV_DISK, "rcgd%d%c", i, 'a' + j);
204 }
205 }
206 }
207
208 static int
209 cgdopen(dev_t dev, int flags, int fmt, struct lwp *l)
210 {
211 struct cgd_softc *cs;
212
213 DPRINTF_FOLLOW(("cgdopen(%d, %d)\n", dev, flags));
214 GETCGD_SOFTC(cs, dev);
215 return dk_open(di, &cs->sc_dksc, dev, flags, fmt, l);
216 }
217
218 static int
219 cgdclose(dev_t dev, int flags, int fmt, struct lwp *l)
220 {
221 struct cgd_softc *cs;
222
223 DPRINTF_FOLLOW(("cgdclose(%d, %d)\n", dev, flags));
224 GETCGD_SOFTC(cs, dev);
225 return dk_close(di, &cs->sc_dksc, dev, flags, fmt, l);
226 }
227
228 static void
229 cgdstrategy(struct buf *bp)
230 {
231 struct cgd_softc *cs = getcgd_softc(bp->b_dev);
232
233 DPRINTF_FOLLOW(("cgdstrategy(%p): b_bcount = %ld\n", bp,
234 (long)bp->b_bcount));
235 /* XXXrcd: Should we test for (cs != NULL)? */
236 dk_strategy(di, &cs->sc_dksc, bp);
237 return;
238 }
239
240 static int
241 cgdsize(dev_t dev)
242 {
243 struct cgd_softc *cs = getcgd_softc(dev);
244
245 DPRINTF_FOLLOW(("cgdsize(%d)\n", dev));
246 if (!cs)
247 return -1;
248 return dk_size(di, &cs->sc_dksc, dev);
249 }
250
251 /*
252 * cgd_{get,put}data are functions that deal with getting a buffer
253 * for the new encrypted data. We have a buffer per device so that
254 * we can ensure that we can always have a transaction in flight.
255 * We use this buffer first so that we have one less piece of
256 * malloc'ed data at any given point.
257 */
258
259 static void *
260 cgd_getdata(struct dk_softc *dksc, unsigned long size)
261 {
262 struct cgd_softc *cs =dksc->sc_osc;
263 void * data = NULL;
264
265 simple_lock(&cs->sc_slock);
266 if (cs->sc_data_used == 0) {
267 cs->sc_data_used = 1;
268 data = cs->sc_data;
269 }
270 simple_unlock(&cs->sc_slock);
271
272 if (data)
273 return data;
274
275 return malloc(size, M_DEVBUF, M_NOWAIT);
276 }
277
278 static void
279 cgd_putdata(struct dk_softc *dksc, void *data)
280 {
281 struct cgd_softc *cs =dksc->sc_osc;
282
283 if (data == cs->sc_data) {
284 simple_lock(&cs->sc_slock);
285 cs->sc_data_used = 0;
286 simple_unlock(&cs->sc_slock);
287 } else {
288 free(data, M_DEVBUF);
289 }
290 }
291
292 static int
293 cgdstart(struct dk_softc *dksc, struct buf *bp)
294 {
295 struct cgd_softc *cs = dksc->sc_osc;
296 struct buf *nbp;
297 void * addr;
298 void * newaddr;
299 daddr_t bn;
300 struct vnode *vp;
301
302 DPRINTF_FOLLOW(("cgdstart(%p, %p)\n", dksc, bp));
303 disk_busy(&dksc->sc_dkdev); /* XXX: put in dksubr.c */
304
305 bn = bp->b_rawblkno;
306
307 /*
308 * We attempt to allocate all of our resources up front, so that
309 * we can fail quickly if they are unavailable.
310 */
311
312 nbp = getiobuf(cs->sc_tvn, false);
313 if (nbp == NULL) {
314 disk_unbusy(&dksc->sc_dkdev, 0, (bp->b_flags & B_READ));
315 return -1;
316 }
317
318 /*
319 * If we are writing, then we need to encrypt the outgoing
320 * block into a new block of memory. If we fail, then we
321 * return an error and let the dksubr framework deal with it.
322 */
323 newaddr = addr = bp->b_data;
324 if ((bp->b_flags & B_READ) == 0) {
325 newaddr = cgd_getdata(dksc, bp->b_bcount);
326 if (!newaddr) {
327 putiobuf(nbp);
328 disk_unbusy(&dksc->sc_dkdev, 0, (bp->b_flags & B_READ));
329 return -1;
330 }
331 cgd_cipher(cs, newaddr, addr, bp->b_bcount, bn,
332 DEV_BSIZE, CGD_CIPHER_ENCRYPT);
333 }
334
335 nbp->b_data = newaddr;
336 nbp->b_flags = bp->b_flags;
337 nbp->b_oflags = bp->b_oflags;
338 nbp->b_cflags = bp->b_cflags;
339 nbp->b_iodone = cgdiodone;
340 nbp->b_proc = bp->b_proc;
341 nbp->b_blkno = bn;
342 nbp->b_bcount = bp->b_bcount;
343 nbp->b_private = bp;
344
345 BIO_COPYPRIO(nbp, bp);
346
347 if ((nbp->b_flags & B_READ) == 0) {
348 vp = nbp->b_vp;
349 mutex_enter(&vp->v_interlock);
350 vp->v_numoutput++;
351 mutex_exit(&vp->v_interlock);
352 }
353 VOP_STRATEGY(cs->sc_tvn, nbp);
354 return 0;
355 }
356
357 /* expected to be called at splbio() */
358 static void
359 cgdiodone(struct buf *nbp)
360 {
361 struct buf *obp = nbp->b_private;
362 struct cgd_softc *cs = getcgd_softc(obp->b_dev);
363 struct dk_softc *dksc = &cs->sc_dksc;
364
365 KDASSERT(cs);
366
367 DPRINTF_FOLLOW(("cgdiodone(%p)\n", nbp));
368 DPRINTF(CGDB_IO, ("cgdiodone: bp %p bcount %d resid %d\n",
369 obp, obp->b_bcount, obp->b_resid));
370 DPRINTF(CGDB_IO, (" dev 0x%x, nbp %p bn %" PRId64 " addr %p bcnt %d\n",
371 nbp->b_dev, nbp, nbp->b_blkno, nbp->b_data,
372 nbp->b_bcount));
373 if (nbp->b_error != 0) {
374 obp->b_error = nbp->b_error;
375 printf("%s: error %d\n", dksc->sc_xname, obp->b_error);
376 }
377
378 /* Perform the decryption if we are reading.
379 *
380 * Note: use the blocknumber from nbp, since it is what
381 * we used to encrypt the blocks.
382 */
383
384 if (nbp->b_flags & B_READ)
385 cgd_cipher(cs, obp->b_data, obp->b_data, obp->b_bcount,
386 nbp->b_blkno, DEV_BSIZE, CGD_CIPHER_DECRYPT);
387
388 /* If we allocated memory, free it now... */
389 if (nbp->b_data != obp->b_data)
390 cgd_putdata(dksc, nbp->b_data);
391
392 putiobuf(nbp);
393
394 /* Request is complete for whatever reason */
395 obp->b_resid = 0;
396 if (obp->b_error != 0)
397 obp->b_resid = obp->b_bcount;
398 disk_unbusy(&dksc->sc_dkdev, obp->b_bcount - obp->b_resid,
399 (obp->b_flags & B_READ));
400 biodone(obp);
401 dk_iodone(di, dksc);
402 }
403
404 /* XXX: we should probably put these into dksubr.c, mostly */
405 static int
406 cgdread(dev_t dev, struct uio *uio, int flags)
407 {
408 struct cgd_softc *cs;
409 struct dk_softc *dksc;
410
411 DPRINTF_FOLLOW(("cgdread(%d, %p, %d)\n", dev, uio, flags));
412 GETCGD_SOFTC(cs, dev);
413 dksc = &cs->sc_dksc;
414 if ((dksc->sc_flags & DKF_INITED) == 0)
415 return ENXIO;
416 return physio(cgdstrategy, NULL, dev, B_READ, minphys, uio);
417 }
418
419 /* XXX: we should probably put these into dksubr.c, mostly */
420 static int
421 cgdwrite(dev_t dev, struct uio *uio, int flags)
422 {
423 struct cgd_softc *cs;
424 struct dk_softc *dksc;
425
426 DPRINTF_FOLLOW(("cgdwrite(%d, %p, %d)\n", dev, uio, flags));
427 GETCGD_SOFTC(cs, dev);
428 dksc = &cs->sc_dksc;
429 if ((dksc->sc_flags & DKF_INITED) == 0)
430 return ENXIO;
431 return physio(cgdstrategy, NULL, dev, B_WRITE, minphys, uio);
432 }
433
434 static int
435 cgdioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
436 {
437 struct cgd_softc *cs;
438 struct dk_softc *dksc;
439 struct disk *dk;
440 int ret;
441 int part = DISKPART(dev);
442 int pmask = 1 << part;
443
444 DPRINTF_FOLLOW(("cgdioctl(%d, %ld, %p, %d, %p)\n",
445 dev, cmd, data, flag, l));
446 GETCGD_SOFTC(cs, dev);
447 dksc = &cs->sc_dksc;
448 dk = &dksc->sc_dkdev;
449 switch (cmd) {
450 case CGDIOCSET:
451 case CGDIOCCLR:
452 if ((flag & FWRITE) == 0)
453 return EBADF;
454 }
455
456 switch (cmd) {
457 case CGDIOCSET:
458 if (dksc->sc_flags & DKF_INITED)
459 ret = EBUSY;
460 else
461 ret = cgd_ioctl_set(cs, data, l);
462 break;
463 case CGDIOCCLR:
464 if (!(dksc->sc_flags & DKF_INITED)) {
465 ret = ENXIO;
466 break;
467 }
468 if (DK_BUSY(&cs->sc_dksc, pmask)) {
469 ret = EBUSY;
470 break;
471 }
472 ret = cgd_ioctl_clr(cs, data, l);
473 break;
474 default:
475 ret = dk_ioctl(di, dksc, dev, cmd, data, flag, l);
476 break;
477 }
478
479 return ret;
480 }
481
482 static int
483 cgddump(dev_t dev, daddr_t blkno, void *va, size_t size)
484 {
485 struct cgd_softc *cs;
486
487 DPRINTF_FOLLOW(("cgddump(%d, %" PRId64 ", %p, %lu)\n", dev, blkno, va,
488 (unsigned long)size));
489 GETCGD_SOFTC(cs, dev);
490 return dk_dump(di, &cs->sc_dksc, dev, blkno, va, size);
491 }
492
493 /*
494 * XXXrcd:
495 * for now we hardcode the maximum key length.
496 */
497 #define MAX_KEYSIZE 1024
498
499 /* ARGSUSED */
500 static int
501 cgd_ioctl_set(struct cgd_softc *cs, void *data, struct lwp *l)
502 {
503 struct cgd_ioctl *ci = data;
504 struct vnode *vp;
505 int ret;
506 size_t keybytes; /* key length in bytes */
507 const char *cp;
508 char *inbuf;
509
510 cp = ci->ci_disk;
511 if ((ret = dk_lookup(cp, l, &vp, UIO_USERSPACE)) != 0)
512 return ret;
513
514 inbuf = malloc(MAX_KEYSIZE, M_TEMP, M_WAITOK);
515
516 if ((ret = cgdinit(cs, cp, vp, l)) != 0)
517 goto bail;
518
519 (void)memset(inbuf, 0, MAX_KEYSIZE);
520 ret = copyinstr(ci->ci_alg, inbuf, 256, NULL);
521 if (ret)
522 goto bail;
523 cs->sc_cfuncs = cryptfuncs_find(inbuf);
524 if (!cs->sc_cfuncs) {
525 ret = EINVAL;
526 goto bail;
527 }
528
529 /* right now we only support encblkno, so hard-code it */
530 (void)memset(inbuf, 0, MAX_KEYSIZE);
531 ret = copyinstr(ci->ci_ivmethod, inbuf, MAX_KEYSIZE, NULL);
532 if (ret)
533 goto bail;
534 if (strcmp("encblkno", inbuf)) {
535 ret = EINVAL;
536 goto bail;
537 }
538
539 keybytes = ci->ci_keylen / 8 + 1;
540 if (keybytes > MAX_KEYSIZE) {
541 ret = EINVAL;
542 goto bail;
543 }
544 (void)memset(inbuf, 0, MAX_KEYSIZE);
545 ret = copyin(ci->ci_key, inbuf, keybytes);
546 if (ret)
547 goto bail;
548
549 cs->sc_cdata.cf_blocksize = ci->ci_blocksize;
550 cs->sc_cdata.cf_mode = CGD_CIPHER_CBC_ENCBLKNO;
551 cs->sc_cdata.cf_priv = cs->sc_cfuncs->cf_init(ci->ci_keylen, inbuf,
552 &cs->sc_cdata.cf_blocksize);
553 (void)memset(inbuf, 0, MAX_KEYSIZE);
554 if (!cs->sc_cdata.cf_priv) {
555 printf("cgd: unable to initialize cipher\n");
556 ret = EINVAL; /* XXX is this the right error? */
557 goto bail;
558 }
559 free(inbuf, M_TEMP);
560
561 bufq_alloc(&cs->sc_dksc.sc_bufq, "fcfs", 0);
562
563 cs->sc_data = malloc(MAXPHYS, M_DEVBUF, M_WAITOK);
564 cs->sc_data_used = 0;
565
566 cs->sc_dksc.sc_flags |= DKF_INITED;
567
568 /* Attach the disk. */
569 disk_attach(&cs->sc_dksc.sc_dkdev);
570
571 /* Try and read the disklabel. */
572 dk_getdisklabel(di, &cs->sc_dksc, 0 /* XXX ? */);
573
574 /* Discover wedges on this disk. */
575 dkwedge_discover(&cs->sc_dksc.sc_dkdev);
576
577 return 0;
578
579 bail:
580 free(inbuf, M_TEMP);
581 (void)vn_close(vp, FREAD|FWRITE, l->l_cred);
582 return ret;
583 }
584
585 /* ARGSUSED */
586 static int
587 cgd_ioctl_clr(struct cgd_softc *cs, void *data, struct lwp *l)
588 {
589 int s;
590
591 /* Delete all of our wedges. */
592 dkwedge_delall(&cs->sc_dksc.sc_dkdev);
593
594 /* Kill off any queued buffers. */
595 s = splbio();
596 bufq_drain(cs->sc_dksc.sc_bufq);
597 splx(s);
598 bufq_free(cs->sc_dksc.sc_bufq);
599
600 (void)vn_close(cs->sc_tvn, FREAD|FWRITE, l->l_cred);
601 cs->sc_cfuncs->cf_destroy(cs->sc_cdata.cf_priv);
602 free(cs->sc_tpath, M_DEVBUF);
603 free(cs->sc_data, M_DEVBUF);
604 cs->sc_data_used = 0;
605 cs->sc_dksc.sc_flags &= ~DKF_INITED;
606 disk_detach(&cs->sc_dksc.sc_dkdev);
607
608 return 0;
609 }
610
611 static int
612 cgdinit(struct cgd_softc *cs, const char *cpath, struct vnode *vp,
613 struct lwp *l)
614 {
615 struct dk_geom *pdg;
616 struct partinfo dpart;
617 struct vattr va;
618 size_t size;
619 int maxsecsize = 0;
620 int ret;
621 char *tmppath;
622
623 cs->sc_dksc.sc_size = 0;
624 cs->sc_tvn = vp;
625 cs->sc_tpath = NULL;
626
627 tmppath = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
628 ret = copyinstr(cpath, tmppath, MAXPATHLEN, &cs->sc_tpathlen);
629 if (ret)
630 goto bail;
631 cs->sc_tpath = malloc(cs->sc_tpathlen, M_DEVBUF, M_WAITOK);
632 memcpy(cs->sc_tpath, tmppath, cs->sc_tpathlen);
633
634 if ((ret = VOP_GETATTR(vp, &va, l->l_cred)) != 0)
635 goto bail;
636
637 cs->sc_tdev = va.va_rdev;
638
639 ret = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred);
640 if (ret)
641 goto bail;
642
643 maxsecsize =
644 ((dpart.disklab->d_secsize > maxsecsize) ?
645 dpart.disklab->d_secsize : maxsecsize);
646 size = dpart.part->p_size;
647
648 if (!size) {
649 ret = ENODEV;
650 goto bail;
651 }
652
653 cs->sc_dksc.sc_size = size;
654
655 /*
656 * XXX here we should probe the underlying device. If we
657 * are accessing a partition of type RAW_PART, then
658 * we should populate our initial geometry with the
659 * geometry that we discover from the device.
660 */
661 pdg = &cs->sc_dksc.sc_geom;
662 pdg->pdg_secsize = DEV_BSIZE;
663 pdg->pdg_ntracks = 1;
664 pdg->pdg_nsectors = 1024 * (1024 / pdg->pdg_secsize);
665 pdg->pdg_ncylinders = cs->sc_dksc.sc_size / pdg->pdg_nsectors;
666
667 bail:
668 free(tmppath, M_TEMP);
669 if (ret && cs->sc_tpath)
670 free(cs->sc_tpath, M_DEVBUF);
671 return ret;
672 }
673
674 /*
675 * Our generic cipher entry point. This takes care of the
676 * IV mode and passes off the work to the specific cipher.
677 * We implement here the IV method ``encrypted block
678 * number''.
679 *
680 * For the encryption case, we accomplish this by setting
681 * up a struct uio where the first iovec of the source is
682 * the blocknumber and the first iovec of the dest is a
683 * sink. We then call the cipher with an IV of zero, and
684 * the right thing happens.
685 *
686 * For the decryption case, we use the same basic mechanism
687 * for symmetry, but we encrypt the block number in the
688 * first iovec.
689 *
690 * We mainly do this to avoid requiring the definition of
691 * an ECB mode.
692 *
693 * XXXrcd: for now we rely on our own crypto framework defined
694 * in dev/cgd_crypto.c. This will change when we
695 * get a generic kernel crypto framework.
696 */
697
698 static void
699 blkno2blkno_buf(char *sbuf, daddr_t blkno)
700 {
701 int i;
702
703 /* Set up the blkno in blkno_buf, here we do not care much
704 * about the final layout of the information as long as we
705 * can guarantee that each sector will have a different IV
706 * and that the endianness of the machine will not affect
707 * the representation that we have chosen.
708 *
709 * We choose this representation, because it does not rely
710 * on the size of buf (which is the blocksize of the cipher),
711 * but allows daddr_t to grow without breaking existing
712 * disks.
713 *
714 * Note that blkno2blkno_buf does not take a size as input,
715 * and hence must be called on a pre-zeroed buffer of length
716 * greater than or equal to sizeof(daddr_t).
717 */
718 for (i=0; i < sizeof(daddr_t); i++) {
719 *sbuf++ = blkno & 0xff;
720 blkno >>= 8;
721 }
722 }
723
724 static void
725 cgd_cipher(struct cgd_softc *cs, void *dstv, void *srcv,
726 size_t len, daddr_t blkno, size_t secsize, int dir)
727 {
728 char *dst = dstv;
729 char *src = srcv;
730 cfunc_cipher *cipher = cs->sc_cfuncs->cf_cipher;
731 struct uio dstuio;
732 struct uio srcuio;
733 struct iovec dstiov[2];
734 struct iovec srciov[2];
735 size_t blocksize = cs->sc_cdata.cf_blocksize;
736 char sink[blocksize];
737 char zero_iv[blocksize];
738 char blkno_buf[blocksize];
739
740 DPRINTF_FOLLOW(("cgd_cipher() dir=%d\n", dir));
741
742 DIAGCONDPANIC(len % blocksize != 0,
743 ("cgd_cipher: len %% blocksize != 0"));
744
745 /* ensure that sizeof(daddr_t) <= blocksize (for encblkno IVing) */
746 DIAGCONDPANIC(sizeof(daddr_t) > blocksize,
747 ("cgd_cipher: sizeof(daddr_t) > blocksize"));
748
749 memset(zero_iv, 0x0, sizeof(zero_iv));
750
751 dstuio.uio_iov = dstiov;
752 dstuio.uio_iovcnt = 2;
753
754 srcuio.uio_iov = srciov;
755 srcuio.uio_iovcnt = 2;
756
757 dstiov[0].iov_base = sink;
758 dstiov[0].iov_len = blocksize;
759 srciov[0].iov_base = blkno_buf;
760 srciov[0].iov_len = blocksize;
761 dstiov[1].iov_len = secsize;
762 srciov[1].iov_len = secsize;
763
764 for (; len > 0; len -= secsize) {
765 dstiov[1].iov_base = dst;
766 srciov[1].iov_base = src;
767
768 memset(blkno_buf, 0x0, sizeof(blkno_buf));
769 blkno2blkno_buf(blkno_buf, blkno);
770 if (dir == CGD_CIPHER_DECRYPT) {
771 dstuio.uio_iovcnt = 1;
772 srcuio.uio_iovcnt = 1;
773 IFDEBUG(CGDB_CRYPTO, hexprint("step 0: blkno_buf",
774 blkno_buf, sizeof(blkno_buf)));
775 cipher(cs->sc_cdata.cf_priv, &dstuio, &srcuio,
776 zero_iv, CGD_CIPHER_ENCRYPT);
777 memcpy(blkno_buf, sink, blocksize);
778 dstuio.uio_iovcnt = 2;
779 srcuio.uio_iovcnt = 2;
780 }
781
782 IFDEBUG(CGDB_CRYPTO, hexprint("step 1: blkno_buf",
783 blkno_buf, sizeof(blkno_buf)));
784 cipher(cs->sc_cdata.cf_priv, &dstuio, &srcuio, zero_iv, dir);
785 IFDEBUG(CGDB_CRYPTO, hexprint("step 2: sink",
786 sink, sizeof(sink)));
787
788 dst += secsize;
789 src += secsize;
790 blkno++;
791 }
792 }
793
794 #ifdef DEBUG
795 static void
796 hexprint(const char *start, void *buf, int len)
797 {
798 char *c = buf;
799
800 DIAGCONDPANIC(len < 0, ("hexprint: called with len < 0"));
801 printf("%s: len=%06d 0x", start, len);
802 while (len--)
803 printf("%02x", (unsigned char) *c++);
804 }
805 #endif
806