cgd.c revision 1.80 1 /* $NetBSD: cgd.c,v 1.80 2013/05/29 23:25:39 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Roland C. Dowdeswell.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: cgd.c,v 1.80 2013/05/29 23:25:39 christos Exp $");
34
35 #include <sys/types.h>
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/errno.h>
40 #include <sys/buf.h>
41 #include <sys/bufq.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/pool.h>
45 #include <sys/ioctl.h>
46 #include <sys/device.h>
47 #include <sys/disk.h>
48 #include <sys/disklabel.h>
49 #include <sys/fcntl.h>
50 #include <sys/namei.h> /* for pathbuf */
51 #include <sys/vnode.h>
52 #include <sys/conf.h>
53 #include <sys/syslog.h>
54
55 #include <dev/dkvar.h>
56 #include <dev/cgdvar.h>
57
58 /* Entry Point Functions */
59
60 void cgdattach(int);
61
62 static dev_type_open(cgdopen);
63 static dev_type_close(cgdclose);
64 static dev_type_read(cgdread);
65 static dev_type_write(cgdwrite);
66 static dev_type_ioctl(cgdioctl);
67 static dev_type_strategy(cgdstrategy);
68 static dev_type_dump(cgddump);
69 static dev_type_size(cgdsize);
70
71 const struct bdevsw cgd_bdevsw = {
72 cgdopen, cgdclose, cgdstrategy, cgdioctl,
73 cgddump, cgdsize, D_DISK
74 };
75
76 const struct cdevsw cgd_cdevsw = {
77 cgdopen, cgdclose, cgdread, cgdwrite, cgdioctl,
78 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
79 };
80
81 static int cgd_match(device_t, cfdata_t, void *);
82 static void cgd_attach(device_t, device_t, void *);
83 static int cgd_detach(device_t, int);
84 static struct cgd_softc *cgd_spawn(int);
85 static int cgd_destroy(device_t);
86
87 /* Internal Functions */
88
89 static int cgdstart(struct dk_softc *, struct buf *);
90 static void cgdiodone(struct buf *);
91
92 static int cgd_ioctl_set(struct cgd_softc *, void *, struct lwp *);
93 static int cgd_ioctl_clr(struct cgd_softc *, struct lwp *);
94 static int cgd_ioctl_get(dev_t, void *, struct lwp *);
95 static int cgdinit(struct cgd_softc *, const char *, struct vnode *,
96 struct lwp *);
97 static void cgd_cipher(struct cgd_softc *, void *, void *,
98 size_t, daddr_t, size_t, int);
99
100 /* Pseudo-disk Interface */
101
102 static struct dk_intf the_dkintf = {
103 DTYPE_CGD,
104 "cgd",
105 cgdopen,
106 cgdclose,
107 cgdstrategy,
108 cgdstart,
109 };
110 static struct dk_intf *di = &the_dkintf;
111
112 static struct dkdriver cgddkdriver = {
113 .d_strategy = cgdstrategy,
114 .d_minphys = minphys,
115 };
116
117 CFATTACH_DECL3_NEW(cgd, sizeof(struct cgd_softc),
118 cgd_match, cgd_attach, cgd_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
119 extern struct cfdriver cgd_cd;
120
121 /* DIAGNOSTIC and DEBUG definitions */
122
123 #if defined(CGDDEBUG) && !defined(DEBUG)
124 #define DEBUG
125 #endif
126
127 #ifdef DEBUG
128 int cgddebug = 0;
129
130 #define CGDB_FOLLOW 0x1
131 #define CGDB_IO 0x2
132 #define CGDB_CRYPTO 0x4
133
134 #define IFDEBUG(x,y) if (cgddebug & (x)) y
135 #define DPRINTF(x,y) IFDEBUG(x, printf y)
136 #define DPRINTF_FOLLOW(y) DPRINTF(CGDB_FOLLOW, y)
137
138 static void hexprint(const char *, void *, int);
139
140 #else
141 #define IFDEBUG(x,y)
142 #define DPRINTF(x,y)
143 #define DPRINTF_FOLLOW(y)
144 #endif
145
146 #ifdef DIAGNOSTIC
147 #define DIAGPANIC(x) panic x
148 #define DIAGCONDPANIC(x,y) if (x) panic y
149 #else
150 #define DIAGPANIC(x)
151 #define DIAGCONDPANIC(x,y)
152 #endif
153
154 /* Global variables */
155
156 /* Utility Functions */
157
158 #define CGDUNIT(x) DISKUNIT(x)
159 #define GETCGD_SOFTC(_cs, x) if (!((_cs) = getcgd_softc(x))) return ENXIO
160
161 /* The code */
162
163 static struct cgd_softc *
164 getcgd_softc(dev_t dev)
165 {
166 int unit = CGDUNIT(dev);
167 struct cgd_softc *sc;
168
169 DPRINTF_FOLLOW(("getcgd_softc(0x%"PRIx64"): unit = %d\n", dev, unit));
170
171 sc = device_lookup_private(&cgd_cd, unit);
172 if (sc == NULL)
173 sc = cgd_spawn(unit);
174 return sc;
175 }
176
177 static int
178 cgd_match(device_t self, cfdata_t cfdata, void *aux)
179 {
180
181 return 1;
182 }
183
184 static void
185 cgd_attach(device_t parent, device_t self, void *aux)
186 {
187 struct cgd_softc *sc = device_private(self);
188
189 simple_lock_init(&sc->sc_slock);
190 dk_sc_init(&sc->sc_dksc, device_xname(self));
191 sc->sc_dksc.sc_dev = self;
192 disk_init(&sc->sc_dksc.sc_dkdev, sc->sc_dksc.sc_xname, &cgddkdriver);
193
194 if (!pmf_device_register(self, NULL, NULL))
195 aprint_error_dev(self, "unable to register power management hooks\n");
196 }
197
198
199 static int
200 cgd_detach(device_t self, int flags)
201 {
202 int ret;
203 const int pmask = 1 << RAW_PART;
204 struct cgd_softc *sc = device_private(self);
205 struct dk_softc *dksc = &sc->sc_dksc;
206
207 if (DK_BUSY(dksc, pmask))
208 return EBUSY;
209
210 if ((dksc->sc_flags & DKF_INITED) != 0 &&
211 (ret = cgd_ioctl_clr(sc, curlwp)) != 0)
212 return ret;
213
214 disk_destroy(&dksc->sc_dkdev);
215
216 return 0;
217 }
218
219 void
220 cgdattach(int num)
221 {
222 int error;
223
224 error = config_cfattach_attach(cgd_cd.cd_name, &cgd_ca);
225 if (error != 0)
226 aprint_error("%s: unable to register cfattach\n",
227 cgd_cd.cd_name);
228 }
229
230 static struct cgd_softc *
231 cgd_spawn(int unit)
232 {
233 cfdata_t cf;
234
235 cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
236 cf->cf_name = cgd_cd.cd_name;
237 cf->cf_atname = cgd_cd.cd_name;
238 cf->cf_unit = unit;
239 cf->cf_fstate = FSTATE_STAR;
240
241 return device_private(config_attach_pseudo(cf));
242 }
243
244 static int
245 cgd_destroy(device_t dev)
246 {
247 int error;
248 cfdata_t cf;
249
250 cf = device_cfdata(dev);
251 error = config_detach(dev, DETACH_QUIET);
252 if (error)
253 return error;
254 free(cf, M_DEVBUF);
255 return 0;
256 }
257
258 static int
259 cgdopen(dev_t dev, int flags, int fmt, struct lwp *l)
260 {
261 struct cgd_softc *cs;
262
263 DPRINTF_FOLLOW(("cgdopen(0x%"PRIx64", %d)\n", dev, flags));
264 GETCGD_SOFTC(cs, dev);
265 return dk_open(di, &cs->sc_dksc, dev, flags, fmt, l);
266 }
267
268 static int
269 cgdclose(dev_t dev, int flags, int fmt, struct lwp *l)
270 {
271 int error;
272 struct cgd_softc *cs;
273 struct dk_softc *dksc;
274
275 DPRINTF_FOLLOW(("cgdclose(0x%"PRIx64", %d)\n", dev, flags));
276 GETCGD_SOFTC(cs, dev);
277 dksc = &cs->sc_dksc;
278 if ((error = dk_close(di, dksc, dev, flags, fmt, l)) != 0)
279 return error;
280
281 if ((dksc->sc_flags & DKF_INITED) == 0) {
282 if ((error = cgd_destroy(cs->sc_dksc.sc_dev)) != 0) {
283 aprint_error_dev(dksc->sc_dev,
284 "unable to detach instance\n");
285 return error;
286 }
287 }
288 return 0;
289 }
290
291 static void
292 cgdstrategy(struct buf *bp)
293 {
294 struct cgd_softc *cs = getcgd_softc(bp->b_dev);
295
296 DPRINTF_FOLLOW(("cgdstrategy(%p): b_bcount = %ld\n", bp,
297 (long)bp->b_bcount));
298
299 /*
300 * Reject unaligned writes. We can encrypt and decrypt only
301 * complete disk sectors, and we let the ciphers require their
302 * buffers to be aligned to 32-bit boundaries.
303 */
304 if (bp->b_blkno < 0 ||
305 (bp->b_bcount % DEV_BSIZE) != 0 ||
306 ((uintptr_t)bp->b_data & 3) != 0) {
307 bp->b_error = EINVAL;
308 bp->b_resid = bp->b_bcount;
309 biodone(bp);
310 return;
311 }
312
313 /* XXXrcd: Should we test for (cs != NULL)? */
314 dk_strategy(di, &cs->sc_dksc, bp);
315 return;
316 }
317
318 static int
319 cgdsize(dev_t dev)
320 {
321 struct cgd_softc *cs = getcgd_softc(dev);
322
323 DPRINTF_FOLLOW(("cgdsize(0x%"PRIx64")\n", dev));
324 if (!cs)
325 return -1;
326 return dk_size(di, &cs->sc_dksc, dev);
327 }
328
329 /*
330 * cgd_{get,put}data are functions that deal with getting a buffer
331 * for the new encrypted data. We have a buffer per device so that
332 * we can ensure that we can always have a transaction in flight.
333 * We use this buffer first so that we have one less piece of
334 * malloc'ed data at any given point.
335 */
336
337 static void *
338 cgd_getdata(struct dk_softc *dksc, unsigned long size)
339 {
340 struct cgd_softc *cs = (struct cgd_softc *)dksc;
341 void * data = NULL;
342
343 simple_lock(&cs->sc_slock);
344 if (cs->sc_data_used == 0) {
345 cs->sc_data_used = 1;
346 data = cs->sc_data;
347 }
348 simple_unlock(&cs->sc_slock);
349
350 if (data)
351 return data;
352
353 return malloc(size, M_DEVBUF, M_NOWAIT);
354 }
355
356 static void
357 cgd_putdata(struct dk_softc *dksc, void *data)
358 {
359 struct cgd_softc *cs = (struct cgd_softc *)dksc;
360
361 if (data == cs->sc_data) {
362 simple_lock(&cs->sc_slock);
363 cs->sc_data_used = 0;
364 simple_unlock(&cs->sc_slock);
365 } else {
366 free(data, M_DEVBUF);
367 }
368 }
369
370 static int
371 cgdstart(struct dk_softc *dksc, struct buf *bp)
372 {
373 struct cgd_softc *cs = (struct cgd_softc *)dksc;
374 struct buf *nbp;
375 void * addr;
376 void * newaddr;
377 daddr_t bn;
378 struct vnode *vp;
379
380 DPRINTF_FOLLOW(("cgdstart(%p, %p)\n", dksc, bp));
381 disk_busy(&dksc->sc_dkdev); /* XXX: put in dksubr.c */
382
383 bn = bp->b_rawblkno;
384
385 /*
386 * We attempt to allocate all of our resources up front, so that
387 * we can fail quickly if they are unavailable.
388 */
389
390 nbp = getiobuf(cs->sc_tvn, false);
391 if (nbp == NULL) {
392 disk_unbusy(&dksc->sc_dkdev, 0, (bp->b_flags & B_READ));
393 return -1;
394 }
395
396 /*
397 * If we are writing, then we need to encrypt the outgoing
398 * block into a new block of memory. If we fail, then we
399 * return an error and let the dksubr framework deal with it.
400 */
401 newaddr = addr = bp->b_data;
402 if ((bp->b_flags & B_READ) == 0) {
403 newaddr = cgd_getdata(dksc, bp->b_bcount);
404 if (!newaddr) {
405 putiobuf(nbp);
406 disk_unbusy(&dksc->sc_dkdev, 0, (bp->b_flags & B_READ));
407 return -1;
408 }
409 cgd_cipher(cs, newaddr, addr, bp->b_bcount, bn,
410 DEV_BSIZE, CGD_CIPHER_ENCRYPT);
411 }
412
413 nbp->b_data = newaddr;
414 nbp->b_flags = bp->b_flags;
415 nbp->b_oflags = bp->b_oflags;
416 nbp->b_cflags = bp->b_cflags;
417 nbp->b_iodone = cgdiodone;
418 nbp->b_proc = bp->b_proc;
419 nbp->b_blkno = bn;
420 nbp->b_bcount = bp->b_bcount;
421 nbp->b_private = bp;
422
423 BIO_COPYPRIO(nbp, bp);
424
425 if ((nbp->b_flags & B_READ) == 0) {
426 vp = nbp->b_vp;
427 mutex_enter(vp->v_interlock);
428 vp->v_numoutput++;
429 mutex_exit(vp->v_interlock);
430 }
431 VOP_STRATEGY(cs->sc_tvn, nbp);
432 return 0;
433 }
434
435 static void
436 cgdiodone(struct buf *nbp)
437 {
438 struct buf *obp = nbp->b_private;
439 struct cgd_softc *cs = getcgd_softc(obp->b_dev);
440 struct dk_softc *dksc = &cs->sc_dksc;
441 int s;
442
443 KDASSERT(cs);
444
445 DPRINTF_FOLLOW(("cgdiodone(%p)\n", nbp));
446 DPRINTF(CGDB_IO, ("cgdiodone: bp %p bcount %d resid %d\n",
447 obp, obp->b_bcount, obp->b_resid));
448 DPRINTF(CGDB_IO, (" dev 0x%"PRIx64", nbp %p bn %" PRId64 " addr %p bcnt %d\n",
449 nbp->b_dev, nbp, nbp->b_blkno, nbp->b_data,
450 nbp->b_bcount));
451 if (nbp->b_error != 0) {
452 obp->b_error = nbp->b_error;
453 DPRINTF(CGDB_IO, ("%s: error %d\n", dksc->sc_xname,
454 obp->b_error));
455 }
456
457 /* Perform the decryption if we are reading.
458 *
459 * Note: use the blocknumber from nbp, since it is what
460 * we used to encrypt the blocks.
461 */
462
463 if (nbp->b_flags & B_READ)
464 cgd_cipher(cs, obp->b_data, obp->b_data, obp->b_bcount,
465 nbp->b_blkno, DEV_BSIZE, CGD_CIPHER_DECRYPT);
466
467 /* If we allocated memory, free it now... */
468 if (nbp->b_data != obp->b_data)
469 cgd_putdata(dksc, nbp->b_data);
470
471 putiobuf(nbp);
472
473 /* Request is complete for whatever reason */
474 obp->b_resid = 0;
475 if (obp->b_error != 0)
476 obp->b_resid = obp->b_bcount;
477 s = splbio();
478 disk_unbusy(&dksc->sc_dkdev, obp->b_bcount - obp->b_resid,
479 (obp->b_flags & B_READ));
480 biodone(obp);
481 dk_iodone(di, dksc);
482 splx(s);
483 }
484
485 /* XXX: we should probably put these into dksubr.c, mostly */
486 static int
487 cgdread(dev_t dev, struct uio *uio, int flags)
488 {
489 struct cgd_softc *cs;
490 struct dk_softc *dksc;
491
492 DPRINTF_FOLLOW(("cgdread(0x%llx, %p, %d)\n",
493 (unsigned long long)dev, uio, flags));
494 GETCGD_SOFTC(cs, dev);
495 dksc = &cs->sc_dksc;
496 if ((dksc->sc_flags & DKF_INITED) == 0)
497 return ENXIO;
498 return physio(cgdstrategy, NULL, dev, B_READ, minphys, uio);
499 }
500
501 /* XXX: we should probably put these into dksubr.c, mostly */
502 static int
503 cgdwrite(dev_t dev, struct uio *uio, int flags)
504 {
505 struct cgd_softc *cs;
506 struct dk_softc *dksc;
507
508 DPRINTF_FOLLOW(("cgdwrite(0x%"PRIx64", %p, %d)\n", dev, uio, flags));
509 GETCGD_SOFTC(cs, dev);
510 dksc = &cs->sc_dksc;
511 if ((dksc->sc_flags & DKF_INITED) == 0)
512 return ENXIO;
513 return physio(cgdstrategy, NULL, dev, B_WRITE, minphys, uio);
514 }
515
516 static int
517 cgdioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
518 {
519 struct cgd_softc *cs;
520 struct dk_softc *dksc;
521 struct disk *dk;
522 int part = DISKPART(dev);
523 int pmask = 1 << part;
524
525 DPRINTF_FOLLOW(("cgdioctl(0x%"PRIx64", %ld, %p, %d, %p)\n",
526 dev, cmd, data, flag, l));
527
528 switch (cmd) {
529 case CGDIOCGET: /* don't call cgd_spawn() if the device isn't there */
530 cs = NULL;
531 dksc = NULL;
532 dk = NULL;
533 break;
534 case CGDIOCSET:
535 case CGDIOCCLR:
536 if ((flag & FWRITE) == 0)
537 return EBADF;
538 /* FALLTHROUGH */
539 default:
540 GETCGD_SOFTC(cs, dev);
541 dksc = &cs->sc_dksc;
542 dk = &dksc->sc_dkdev;
543 break;
544 }
545
546 switch (cmd) {
547 case CGDIOCSET:
548 if (dksc->sc_flags & DKF_INITED)
549 return EBUSY;
550 return cgd_ioctl_set(cs, data, l);
551 case CGDIOCCLR:
552 if (DK_BUSY(&cs->sc_dksc, pmask))
553 return EBUSY;
554 return cgd_ioctl_clr(cs, l);
555 case CGDIOCGET:
556 return cgd_ioctl_get(dev, data, l);
557 case DIOCCACHESYNC:
558 /*
559 * XXX Do we really need to care about having a writable
560 * file descriptor here?
561 */
562 if ((flag & FWRITE) == 0)
563 return (EBADF);
564
565 /*
566 * We pass this call down to the underlying disk.
567 */
568 return VOP_IOCTL(cs->sc_tvn, cmd, data, flag, l->l_cred);
569 default:
570 return dk_ioctl(di, dksc, dev, cmd, data, flag, l);
571 }
572 }
573
574 static int
575 cgddump(dev_t dev, daddr_t blkno, void *va, size_t size)
576 {
577 struct cgd_softc *cs;
578
579 DPRINTF_FOLLOW(("cgddump(0x%"PRIx64", %" PRId64 ", %p, %lu)\n",
580 dev, blkno, va, (unsigned long)size));
581 GETCGD_SOFTC(cs, dev);
582 return dk_dump(di, &cs->sc_dksc, dev, blkno, va, size);
583 }
584
585 /*
586 * XXXrcd:
587 * for now we hardcode the maximum key length.
588 */
589 #define MAX_KEYSIZE 1024
590
591 static const struct {
592 const char *n;
593 int v;
594 int d;
595 } encblkno[] = {
596 { "encblkno", CGD_CIPHER_CBC_ENCBLKNO8, 1 },
597 { "encblkno8", CGD_CIPHER_CBC_ENCBLKNO8, 1 },
598 { "encblkno1", CGD_CIPHER_CBC_ENCBLKNO1, 8 },
599 };
600
601 /* ARGSUSED */
602 static int
603 cgd_ioctl_set(struct cgd_softc *cs, void *data, struct lwp *l)
604 {
605 struct cgd_ioctl *ci = data;
606 struct vnode *vp;
607 int ret;
608 size_t i;
609 size_t keybytes; /* key length in bytes */
610 const char *cp;
611 struct pathbuf *pb;
612 char *inbuf;
613 struct dk_softc *dksc = &cs->sc_dksc;
614
615 cp = ci->ci_disk;
616
617 ret = pathbuf_copyin(ci->ci_disk, &pb);
618 if (ret != 0) {
619 return ret;
620 }
621 ret = dk_lookup(pb, l, &vp);
622 pathbuf_destroy(pb);
623 if (ret != 0) {
624 return ret;
625 }
626
627 inbuf = malloc(MAX_KEYSIZE, M_TEMP, M_WAITOK);
628
629 if ((ret = cgdinit(cs, cp, vp, l)) != 0)
630 goto bail;
631
632 (void)memset(inbuf, 0, MAX_KEYSIZE);
633 ret = copyinstr(ci->ci_alg, inbuf, 256, NULL);
634 if (ret)
635 goto bail;
636 cs->sc_cfuncs = cryptfuncs_find(inbuf);
637 if (!cs->sc_cfuncs) {
638 ret = EINVAL;
639 goto bail;
640 }
641
642 (void)memset(inbuf, 0, MAX_KEYSIZE);
643 ret = copyinstr(ci->ci_ivmethod, inbuf, MAX_KEYSIZE, NULL);
644 if (ret)
645 goto bail;
646
647 for (i = 0; i < __arraycount(encblkno); i++)
648 if (strcmp(encblkno[i].n, inbuf) == 0)
649 break;
650
651 if (i == __arraycount(encblkno)) {
652 ret = EINVAL;
653 goto bail;
654 }
655
656 keybytes = ci->ci_keylen / 8 + 1;
657 if (keybytes > MAX_KEYSIZE) {
658 ret = EINVAL;
659 goto bail;
660 }
661
662 (void)memset(inbuf, 0, MAX_KEYSIZE);
663 ret = copyin(ci->ci_key, inbuf, keybytes);
664 if (ret)
665 goto bail;
666
667 cs->sc_cdata.cf_blocksize = ci->ci_blocksize;
668 cs->sc_cdata.cf_mode = encblkno[i].v;
669 cs->sc_cdata.cf_keylen = ci->ci_keylen;
670 cs->sc_cdata.cf_priv = cs->sc_cfuncs->cf_init(ci->ci_keylen, inbuf,
671 &cs->sc_cdata.cf_blocksize);
672 if (cs->sc_cdata.cf_blocksize > CGD_MAXBLOCKSIZE) {
673 log(LOG_WARNING, "cgd: Disallowed cipher with blocksize %zu > %u\n",
674 cs->sc_cdata.cf_blocksize, CGD_MAXBLOCKSIZE);
675 cs->sc_cdata.cf_priv = NULL;
676 }
677
678 /*
679 * The blocksize is supposed to be in bytes. Unfortunately originally
680 * it was expressed in bits. For compatibility we maintain encblkno
681 * and encblkno8.
682 */
683 cs->sc_cdata.cf_blocksize /= encblkno[i].d;
684 (void)memset(inbuf, 0, MAX_KEYSIZE);
685 if (!cs->sc_cdata.cf_priv) {
686 ret = EINVAL; /* XXX is this the right error? */
687 goto bail;
688 }
689 free(inbuf, M_TEMP);
690
691 bufq_alloc(&dksc->sc_bufq, "fcfs", 0);
692
693 cs->sc_data = malloc(MAXPHYS, M_DEVBUF, M_WAITOK);
694 cs->sc_data_used = 0;
695
696 dksc->sc_flags |= DKF_INITED;
697
698 disk_set_info(dksc->sc_dev, &dksc->sc_dkdev, NULL);
699
700 /* Attach the disk. */
701 disk_attach(&dksc->sc_dkdev);
702
703 /* Try and read the disklabel. */
704 dk_getdisklabel(di, dksc, 0 /* XXX ? (cause of PR 41704) */);
705
706 /* Discover wedges on this disk. */
707 dkwedge_discover(&dksc->sc_dkdev);
708
709 return 0;
710
711 bail:
712 free(inbuf, M_TEMP);
713 (void)vn_close(vp, FREAD|FWRITE, l->l_cred);
714 return ret;
715 }
716
717 /* ARGSUSED */
718 static int
719 cgd_ioctl_clr(struct cgd_softc *cs, struct lwp *l)
720 {
721 int s;
722 struct dk_softc *dksc = &cs->sc_dksc;
723
724 if ((dksc->sc_flags & DKF_INITED) == 0)
725 return ENXIO;
726
727 /* Delete all of our wedges. */
728 dkwedge_delall(&dksc->sc_dkdev);
729
730 /* Kill off any queued buffers. */
731 s = splbio();
732 bufq_drain(dksc->sc_bufq);
733 splx(s);
734 bufq_free(dksc->sc_bufq);
735
736 (void)vn_close(cs->sc_tvn, FREAD|FWRITE, l->l_cred);
737 cs->sc_cfuncs->cf_destroy(cs->sc_cdata.cf_priv);
738 free(cs->sc_tpath, M_DEVBUF);
739 free(cs->sc_data, M_DEVBUF);
740 cs->sc_data_used = 0;
741 dksc->sc_flags &= ~DKF_INITED;
742 disk_detach(&dksc->sc_dkdev);
743
744 return 0;
745 }
746
747 static int
748 cgd_ioctl_get(dev_t dev, void *data, struct lwp *l)
749 {
750 struct cgd_softc *cs;
751 struct cgd_user *cgu;
752 int unit;
753 struct dk_softc *dksc = &cs->sc_dksc;
754
755 unit = CGDUNIT(dev);
756 cgu = (struct cgd_user *)data;
757
758 DPRINTF_FOLLOW(("cgd_ioctl_get(0x%"PRIx64", %d, %p, %p)\n",
759 dev, unit, data, l));
760
761 if (cgu->cgu_unit == -1)
762 cgu->cgu_unit = unit;
763
764 if (cgu->cgu_unit < 0)
765 return EINVAL; /* XXX: should this be ENXIO? */
766
767 cs = device_lookup_private(&cgd_cd, unit);
768 if (cs == NULL || (dksc->sc_flags & DKF_INITED) == 0) {
769 cgu->cgu_dev = 0;
770 cgu->cgu_alg[0] = '\0';
771 cgu->cgu_blocksize = 0;
772 cgu->cgu_mode = 0;
773 cgu->cgu_keylen = 0;
774 }
775 else {
776 cgu->cgu_dev = cs->sc_tdev;
777 strlcpy(cgu->cgu_alg, cs->sc_cfuncs->cf_name,
778 sizeof(cgu->cgu_alg));
779 cgu->cgu_blocksize = cs->sc_cdata.cf_blocksize;
780 cgu->cgu_mode = cs->sc_cdata.cf_mode;
781 cgu->cgu_keylen = cs->sc_cdata.cf_keylen;
782 }
783 return 0;
784 }
785
786 static int
787 cgdinit(struct cgd_softc *cs, const char *cpath, struct vnode *vp,
788 struct lwp *l)
789 {
790 struct disk_geom *dg;
791 struct vattr va;
792 int ret;
793 char *tmppath;
794 uint64_t psize;
795 unsigned secsize;
796 struct dk_softc *dksc = &cs->sc_dksc;
797
798 cs->sc_tvn = vp;
799 cs->sc_tpath = NULL;
800
801 tmppath = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
802 ret = copyinstr(cpath, tmppath, MAXPATHLEN, &cs->sc_tpathlen);
803 if (ret)
804 goto bail;
805 cs->sc_tpath = malloc(cs->sc_tpathlen, M_DEVBUF, M_WAITOK);
806 memcpy(cs->sc_tpath, tmppath, cs->sc_tpathlen);
807
808 vn_lock(vp, LK_SHARED | LK_RETRY);
809 ret = VOP_GETATTR(vp, &va, l->l_cred);
810 VOP_UNLOCK(vp);
811 if (ret != 0)
812 goto bail;
813
814 cs->sc_tdev = va.va_rdev;
815
816 if ((ret = getdisksize(vp, &psize, &secsize)) != 0)
817 goto bail;
818
819 if (psize == 0) {
820 ret = ENODEV;
821 goto bail;
822 }
823
824 /*
825 * XXX here we should probe the underlying device. If we
826 * are accessing a partition of type RAW_PART, then
827 * we should populate our initial geometry with the
828 * geometry that we discover from the device.
829 */
830 dg = &dksc->sc_dkdev.dk_geom;
831 memset(dg, 0, sizeof(*dg));
832 dg->dg_secperunit = psize;
833 // XXX: Inherit?
834 dg->dg_secsize = DEV_BSIZE;
835 dg->dg_ntracks = 1;
836 dg->dg_nsectors = 1024 * (1024 / dg->dg_secsize);
837 dg->dg_ncylinders = dg->dg_secperunit / dg->dg_nsectors;
838
839 bail:
840 free(tmppath, M_TEMP);
841 if (ret && cs->sc_tpath)
842 free(cs->sc_tpath, M_DEVBUF);
843 return ret;
844 }
845
846 /*
847 * Our generic cipher entry point. This takes care of the
848 * IV mode and passes off the work to the specific cipher.
849 * We implement here the IV method ``encrypted block
850 * number''.
851 *
852 * For the encryption case, we accomplish this by setting
853 * up a struct uio where the first iovec of the source is
854 * the blocknumber and the first iovec of the dest is a
855 * sink. We then call the cipher with an IV of zero, and
856 * the right thing happens.
857 *
858 * For the decryption case, we use the same basic mechanism
859 * for symmetry, but we encrypt the block number in the
860 * first iovec.
861 *
862 * We mainly do this to avoid requiring the definition of
863 * an ECB mode.
864 *
865 * XXXrcd: for now we rely on our own crypto framework defined
866 * in dev/cgd_crypto.c. This will change when we
867 * get a generic kernel crypto framework.
868 */
869
870 static void
871 blkno2blkno_buf(char *sbuf, daddr_t blkno)
872 {
873 int i;
874
875 /* Set up the blkno in blkno_buf, here we do not care much
876 * about the final layout of the information as long as we
877 * can guarantee that each sector will have a different IV
878 * and that the endianness of the machine will not affect
879 * the representation that we have chosen.
880 *
881 * We choose this representation, because it does not rely
882 * on the size of buf (which is the blocksize of the cipher),
883 * but allows daddr_t to grow without breaking existing
884 * disks.
885 *
886 * Note that blkno2blkno_buf does not take a size as input,
887 * and hence must be called on a pre-zeroed buffer of length
888 * greater than or equal to sizeof(daddr_t).
889 */
890 for (i=0; i < sizeof(daddr_t); i++) {
891 *sbuf++ = blkno & 0xff;
892 blkno >>= 8;
893 }
894 }
895
896 static void
897 cgd_cipher(struct cgd_softc *cs, void *dstv, void *srcv,
898 size_t len, daddr_t blkno, size_t secsize, int dir)
899 {
900 char *dst = dstv;
901 char *src = srcv;
902 cfunc_cipher *cipher = cs->sc_cfuncs->cf_cipher;
903 struct uio dstuio;
904 struct uio srcuio;
905 struct iovec dstiov[2];
906 struct iovec srciov[2];
907 size_t blocksize = cs->sc_cdata.cf_blocksize;
908 char sink[CGD_MAXBLOCKSIZE];
909 char zero_iv[CGD_MAXBLOCKSIZE];
910 char blkno_buf[CGD_MAXBLOCKSIZE];
911
912 DPRINTF_FOLLOW(("cgd_cipher() dir=%d\n", dir));
913
914 DIAGCONDPANIC(len % blocksize != 0,
915 ("cgd_cipher: len %% blocksize != 0"));
916
917 /* ensure that sizeof(daddr_t) <= blocksize (for encblkno IVing) */
918 DIAGCONDPANIC(sizeof(daddr_t) > blocksize,
919 ("cgd_cipher: sizeof(daddr_t) > blocksize"));
920
921 memset(zero_iv, 0x0, blocksize);
922
923 dstuio.uio_iov = dstiov;
924 dstuio.uio_iovcnt = 2;
925
926 srcuio.uio_iov = srciov;
927 srcuio.uio_iovcnt = 2;
928
929 dstiov[0].iov_base = sink;
930 dstiov[0].iov_len = blocksize;
931 srciov[0].iov_base = blkno_buf;
932 srciov[0].iov_len = blocksize;
933 dstiov[1].iov_len = secsize;
934 srciov[1].iov_len = secsize;
935
936 for (; len > 0; len -= secsize) {
937 dstiov[1].iov_base = dst;
938 srciov[1].iov_base = src;
939
940 memset(blkno_buf, 0x0, blocksize);
941 blkno2blkno_buf(blkno_buf, blkno);
942 if (dir == CGD_CIPHER_DECRYPT) {
943 dstuio.uio_iovcnt = 1;
944 srcuio.uio_iovcnt = 1;
945 IFDEBUG(CGDB_CRYPTO, hexprint("step 0: blkno_buf",
946 blkno_buf, blocksize));
947 cipher(cs->sc_cdata.cf_priv, &dstuio, &srcuio,
948 zero_iv, CGD_CIPHER_ENCRYPT);
949 memcpy(blkno_buf, sink, blocksize);
950 dstuio.uio_iovcnt = 2;
951 srcuio.uio_iovcnt = 2;
952 }
953
954 IFDEBUG(CGDB_CRYPTO, hexprint("step 1: blkno_buf",
955 blkno_buf, blocksize));
956 cipher(cs->sc_cdata.cf_priv, &dstuio, &srcuio, zero_iv, dir);
957 IFDEBUG(CGDB_CRYPTO, hexprint("step 2: sink",
958 sink, blocksize));
959
960 dst += secsize;
961 src += secsize;
962 blkno++;
963 }
964 }
965
966 #ifdef DEBUG
967 static void
968 hexprint(const char *start, void *buf, int len)
969 {
970 char *c = buf;
971
972 DIAGCONDPANIC(len < 0, ("hexprint: called with len < 0"));
973 printf("%s: len=%06d 0x", start, len);
974 while (len--)
975 printf("%02x", (unsigned char) *c++);
976 }
977 #endif
978
979 MODULE(MODULE_CLASS_DRIVER, cgd, NULL);
980
981 #ifdef _MODULE
982 CFDRIVER_DECL(cgd, DV_DISK, NULL);
983 #endif
984
985 static int
986 cgd_modcmd(modcmd_t cmd, void *arg)
987 {
988 int bmajor, cmajor, error = 0;
989
990 bmajor = cmajor = -1;
991
992 switch (cmd) {
993 case MODULE_CMD_INIT:
994 #ifdef _MODULE
995 error = config_cfdriver_attach(&cgd_cd);
996 if (error)
997 break;
998
999 error = config_cfattach_attach(cgd_cd.cd_name, &cgd_ca);
1000 if (error) {
1001 config_cfdriver_detach(&cgd_cd);
1002 aprint_error("%s: unable to register cfattach\n",
1003 cgd_cd.cd_name);
1004 break;
1005 }
1006
1007 error = devsw_attach("cgd", &cgd_bdevsw, &bmajor,
1008 &cgd_cdevsw, &cmajor);
1009 if (error) {
1010 config_cfattach_detach(cgd_cd.cd_name, &cgd_ca);
1011 config_cfdriver_detach(&cgd_cd);
1012 break;
1013 }
1014 #endif
1015 break;
1016
1017 case MODULE_CMD_FINI:
1018 #ifdef _MODULE
1019 error = config_cfattach_detach(cgd_cd.cd_name, &cgd_ca);
1020 if (error)
1021 break;
1022 config_cfdriver_detach(&cgd_cd);
1023 devsw_detach(&cgd_bdevsw, &cgd_cdevsw);
1024 #endif
1025 break;
1026
1027 case MODULE_CMD_STAT:
1028 return ENOTTY;
1029
1030 default:
1031 return ENOTTY;
1032 }
1033
1034 return error;
1035 }
1036