cgd_crypto.c revision 1.17 1 1.17 riastrad /* $NetBSD: cgd_crypto.c,v 1.17 2019/12/14 16:58:38 riastradh Exp $ */
2 1.1 elric
3 1.1 elric /*-
4 1.1 elric * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 1.1 elric * All rights reserved.
6 1.1 elric *
7 1.1 elric * This code is derived from software contributed to The NetBSD Foundation
8 1.1 elric * by Roland C. Dowdeswell.
9 1.1 elric *
10 1.1 elric * Redistribution and use in source and binary forms, with or without
11 1.1 elric * modification, are permitted provided that the following conditions
12 1.1 elric * are met:
13 1.1 elric * 1. Redistributions of source code must retain the above copyright
14 1.1 elric * notice, this list of conditions and the following disclaimer.
15 1.1 elric * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 elric * notice, this list of conditions and the following disclaimer in the
17 1.1 elric * documentation and/or other materials provided with the distribution.
18 1.1 elric *
19 1.1 elric * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 elric * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 elric * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 elric * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 elric * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 elric * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 elric * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 elric * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 elric * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 elric * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 elric * POSSIBILITY OF SUCH DAMAGE.
30 1.1 elric */
31 1.1 elric
32 1.1 elric /*
33 1.1 elric * Crypto Framework For cgd.c
34 1.1 elric *
35 1.1 elric * This framework is temporary and awaits a more complete
36 1.1 elric * kernel wide crypto implementation.
37 1.1 elric */
38 1.1 elric
39 1.1 elric #include <sys/cdefs.h>
40 1.17 riastrad __KERNEL_RCSID(0, "$NetBSD: cgd_crypto.c,v 1.17 2019/12/14 16:58:38 riastradh Exp $");
41 1.1 elric
42 1.1 elric #include <sys/param.h>
43 1.1 elric #include <sys/systm.h>
44 1.1 elric #include <sys/malloc.h>
45 1.1 elric
46 1.1 elric #include <dev/cgd_crypto.h>
47 1.1 elric
48 1.11 christos #include <crypto/rijndael/rijndael-api-fst.h>
49 1.11 christos #include <crypto/des/des.h>
50 1.11 christos #include <crypto/blowfish/blowfish.h>
51 1.11 christos
52 1.1 elric /*
53 1.1 elric * The general framework provides only one generic function.
54 1.16 gutterid * It takes the name of an algorithm and returns a struct cryptfuncs *
55 1.1 elric * for it. It is up to the initialisation routines of the algorithm
56 1.1 elric * to check key size and block size.
57 1.1 elric */
58 1.1 elric
59 1.14 alnsn static cfunc_init cgd_cipher_aes_cbc_init;
60 1.14 alnsn static cfunc_destroy cgd_cipher_aes_cbc_destroy;
61 1.14 alnsn static cfunc_cipher cgd_cipher_aes_cbc;
62 1.14 alnsn static cfunc_cipher_prep cgd_cipher_aes_cbc_prep;
63 1.14 alnsn
64 1.14 alnsn static cfunc_init cgd_cipher_aes_xts_init;
65 1.14 alnsn static cfunc_destroy cgd_cipher_aes_xts_destroy;
66 1.14 alnsn static cfunc_cipher cgd_cipher_aes_xts;
67 1.14 alnsn static cfunc_cipher_prep cgd_cipher_aes_xts_prep;
68 1.14 alnsn
69 1.14 alnsn static cfunc_init cgd_cipher_3des_init;
70 1.14 alnsn static cfunc_destroy cgd_cipher_3des_destroy;
71 1.14 alnsn static cfunc_cipher cgd_cipher_3des_cbc;
72 1.14 alnsn static cfunc_cipher_prep cgd_cipher_3des_cbc_prep;
73 1.14 alnsn
74 1.14 alnsn static cfunc_init cgd_cipher_bf_init;
75 1.14 alnsn static cfunc_destroy cgd_cipher_bf_destroy;
76 1.14 alnsn static cfunc_cipher cgd_cipher_bf_cbc;
77 1.14 alnsn static cfunc_cipher_prep cgd_cipher_bf_cbc_prep;
78 1.11 christos
79 1.11 christos static const struct cryptfuncs cf[] = {
80 1.11 christos {
81 1.14 alnsn .cf_name = "aes-xts",
82 1.14 alnsn .cf_init = cgd_cipher_aes_xts_init,
83 1.14 alnsn .cf_destroy = cgd_cipher_aes_xts_destroy,
84 1.14 alnsn .cf_cipher = cgd_cipher_aes_xts,
85 1.14 alnsn .cf_cipher_prep = cgd_cipher_aes_xts_prep,
86 1.14 alnsn },
87 1.14 alnsn {
88 1.11 christos .cf_name = "aes-cbc",
89 1.14 alnsn .cf_init = cgd_cipher_aes_cbc_init,
90 1.14 alnsn .cf_destroy = cgd_cipher_aes_cbc_destroy,
91 1.11 christos .cf_cipher = cgd_cipher_aes_cbc,
92 1.14 alnsn .cf_cipher_prep = cgd_cipher_aes_cbc_prep,
93 1.11 christos },
94 1.11 christos {
95 1.11 christos .cf_name = "3des-cbc",
96 1.11 christos .cf_init = cgd_cipher_3des_init,
97 1.11 christos .cf_destroy = cgd_cipher_3des_destroy,
98 1.11 christos .cf_cipher = cgd_cipher_3des_cbc,
99 1.14 alnsn .cf_cipher_prep = cgd_cipher_3des_cbc_prep,
100 1.11 christos },
101 1.11 christos {
102 1.11 christos .cf_name = "blowfish-cbc",
103 1.11 christos .cf_init = cgd_cipher_bf_init,
104 1.11 christos .cf_destroy = cgd_cipher_bf_destroy,
105 1.11 christos .cf_cipher = cgd_cipher_bf_cbc,
106 1.14 alnsn .cf_cipher_prep = cgd_cipher_bf_cbc_prep,
107 1.11 christos },
108 1.11 christos };
109 1.11 christos const struct cryptfuncs *
110 1.6 christos cryptfuncs_find(const char *alg)
111 1.1 elric {
112 1.1 elric
113 1.11 christos for (size_t i = 0; i < __arraycount(cf); i++)
114 1.11 christos if (strcmp(cf[i].cf_name, alg) == 0)
115 1.11 christos return &cf[i];
116 1.11 christos
117 1.1 elric return NULL;
118 1.1 elric }
119 1.1 elric
120 1.7 cbiere typedef void (*cipher_func)(void *, void *, const void *, size_t);
121 1.1 elric
122 1.11 christos static void
123 1.14 alnsn cgd_cipher_uio(void *privdata, cipher_func cipher,
124 1.1 elric struct uio *dstuio, struct uio *srcuio);
125 1.1 elric
126 1.1 elric /*
127 1.14 alnsn * cgd_cipher_uio takes a simple cbc or xts cipher and iterates
128 1.1 elric * it over two struct uio's. It presumes that the cipher function
129 1.1 elric * that is passed to it keeps the IV state between calls.
130 1.1 elric *
131 1.1 elric * We assume that the caller has ensured that each segment is evenly
132 1.1 elric * divisible by the block size, which for the cgd is a valid assumption.
133 1.1 elric * If we were to make this code more generic, we might need to take care
134 1.1 elric * of this case, either by issuing an error or copying the data.
135 1.1 elric */
136 1.1 elric
137 1.11 christos static void
138 1.14 alnsn cgd_cipher_uio(void *privdata, cipher_func cipher,
139 1.6 christos struct uio *dstuio, struct uio *srcuio)
140 1.1 elric {
141 1.13 riastrad const struct iovec *dst;
142 1.13 riastrad const struct iovec *src;
143 1.1 elric int dstnum;
144 1.1 elric int dstoff = 0;
145 1.1 elric int srcnum;
146 1.1 elric int srcoff = 0;
147 1.1 elric
148 1.1 elric dst = dstuio->uio_iov;
149 1.1 elric dstnum = dstuio->uio_iovcnt;
150 1.1 elric src = srcuio->uio_iov;
151 1.1 elric srcnum = srcuio->uio_iovcnt;
152 1.1 elric for (;;) {
153 1.1 elric int l = MIN(dst->iov_len - dstoff, src->iov_len - srcoff);
154 1.1 elric u_int8_t *d = (u_int8_t *)dst->iov_base + dstoff;
155 1.13 riastrad const u_int8_t *s = (const u_int8_t *)src->iov_base + srcoff;
156 1.1 elric
157 1.1 elric cipher(privdata, d, s, l);
158 1.1 elric
159 1.1 elric dstoff += l;
160 1.1 elric srcoff += l;
161 1.1 elric /*
162 1.1 elric * We assume that {dst,src} == {dst,src}->iov_len,
163 1.1 elric * because it should not be possible for it not to be.
164 1.1 elric */
165 1.1 elric if (dstoff == dst->iov_len) {
166 1.1 elric dstoff = 0;
167 1.1 elric dstnum--;
168 1.1 elric dst++;
169 1.1 elric }
170 1.1 elric if (srcoff == src->iov_len) {
171 1.1 elric srcoff = 0;
172 1.1 elric srcnum--;
173 1.1 elric src++;
174 1.1 elric }
175 1.1 elric if (!srcnum || !dstnum)
176 1.1 elric break;
177 1.1 elric }
178 1.1 elric }
179 1.1 elric
180 1.1 elric /*
181 1.1 elric * AES Framework
182 1.1 elric */
183 1.1 elric
184 1.1 elric /*
185 1.1 elric * NOTE: we do not store the blocksize in here, because it is not
186 1.1 elric * variable [yet], we hardcode the blocksize to 16 (128 bits).
187 1.1 elric */
188 1.1 elric
189 1.1 elric struct aes_privdata {
190 1.1 elric keyInstance ap_enckey;
191 1.1 elric keyInstance ap_deckey;
192 1.1 elric };
193 1.1 elric
194 1.1 elric struct aes_encdata {
195 1.1 elric keyInstance *ae_key; /* key for this direction */
196 1.15 alnsn u_int8_t ae_iv[CGD_AES_BLOCK_SIZE]; /* Initialization Vector */
197 1.1 elric };
198 1.1 elric
199 1.11 christos static void *
200 1.14 alnsn cgd_cipher_aes_cbc_init(size_t keylen, const void *key, size_t *blocksize)
201 1.1 elric {
202 1.1 elric struct aes_privdata *ap;
203 1.1 elric
204 1.1 elric if (!blocksize)
205 1.1 elric return NULL;
206 1.1 elric if (keylen != 128 && keylen != 192 && keylen != 256)
207 1.1 elric return NULL;
208 1.6 christos if (*blocksize == (size_t)-1)
209 1.1 elric *blocksize = 128;
210 1.1 elric if (*blocksize != 128)
211 1.1 elric return NULL;
212 1.1 elric ap = malloc(sizeof(*ap), M_DEVBUF, 0);
213 1.1 elric if (!ap)
214 1.1 elric return NULL;
215 1.1 elric rijndael_makeKey(&ap->ap_enckey, DIR_ENCRYPT, keylen, key);
216 1.1 elric rijndael_makeKey(&ap->ap_deckey, DIR_DECRYPT, keylen, key);
217 1.6 christos return ap;
218 1.1 elric }
219 1.1 elric
220 1.11 christos static void
221 1.14 alnsn cgd_cipher_aes_cbc_destroy(void *data)
222 1.1 elric {
223 1.6 christos struct aes_privdata *apd = data;
224 1.1 elric
225 1.12 riastrad explicit_memset(apd, 0, sizeof(*apd));
226 1.1 elric free(apd, M_DEVBUF);
227 1.1 elric }
228 1.1 elric
229 1.11 christos static void
230 1.14 alnsn cgd_cipher_aes_cbc_prep(void *privdata, char *iv,
231 1.14 alnsn const char *blkno_buf, size_t blocksize, int dir)
232 1.14 alnsn {
233 1.14 alnsn struct aes_privdata *apd = privdata;
234 1.14 alnsn cipherInstance cipher;
235 1.14 alnsn int cipher_ok __diagused;
236 1.14 alnsn
237 1.14 alnsn cipher_ok = rijndael_cipherInit(&cipher, MODE_CBC, NULL);
238 1.14 alnsn KASSERT(cipher_ok > 0);
239 1.14 alnsn rijndael_blockEncrypt(&cipher, &apd->ap_enckey,
240 1.14 alnsn blkno_buf, blocksize * 8, iv);
241 1.15 alnsn if (blocksize > CGD_AES_BLOCK_SIZE) {
242 1.15 alnsn (void)memmove(iv, iv + blocksize - CGD_AES_BLOCK_SIZE,
243 1.15 alnsn CGD_AES_BLOCK_SIZE);
244 1.15 alnsn }
245 1.14 alnsn }
246 1.14 alnsn
247 1.14 alnsn static void
248 1.7 cbiere aes_cbc_enc_int(void *privdata, void *dst, const void *src, size_t len)
249 1.1 elric {
250 1.6 christos struct aes_encdata *ae = privdata;
251 1.1 elric cipherInstance cipher;
252 1.14 alnsn int cipher_ok __diagused;
253 1.1 elric
254 1.14 alnsn cipher_ok = rijndael_cipherInit(&cipher, MODE_CBC, ae->ae_iv);
255 1.14 alnsn KASSERT(cipher_ok > 0);
256 1.1 elric rijndael_blockEncrypt(&cipher, ae->ae_key, src, len * 8, dst);
257 1.15 alnsn (void)memcpy(ae->ae_iv, (u_int8_t *)dst +
258 1.15 alnsn (len - CGD_AES_BLOCK_SIZE), CGD_AES_BLOCK_SIZE);
259 1.1 elric }
260 1.1 elric
261 1.11 christos static void
262 1.7 cbiere aes_cbc_dec_int(void *privdata, void *dst, const void *src, size_t len)
263 1.1 elric {
264 1.6 christos struct aes_encdata *ae = privdata;
265 1.1 elric cipherInstance cipher;
266 1.14 alnsn int cipher_ok __diagused;
267 1.1 elric
268 1.14 alnsn cipher_ok = rijndael_cipherInit(&cipher, MODE_CBC, ae->ae_iv);
269 1.14 alnsn KASSERT(cipher_ok > 0);
270 1.1 elric rijndael_blockDecrypt(&cipher, ae->ae_key, src, len * 8, dst);
271 1.15 alnsn (void)memcpy(ae->ae_iv, (const u_int8_t *)src +
272 1.15 alnsn (len - CGD_AES_BLOCK_SIZE), CGD_AES_BLOCK_SIZE);
273 1.1 elric }
274 1.1 elric
275 1.11 christos static void
276 1.6 christos cgd_cipher_aes_cbc(void *privdata, struct uio *dstuio,
277 1.13 riastrad struct uio *srcuio, const void *iv, int dir)
278 1.1 elric {
279 1.6 christos struct aes_privdata *apd = privdata;
280 1.1 elric struct aes_encdata encd;
281 1.1 elric
282 1.15 alnsn (void)memcpy(encd.ae_iv, iv, CGD_AES_BLOCK_SIZE);
283 1.1 elric switch (dir) {
284 1.1 elric case CGD_CIPHER_ENCRYPT:
285 1.1 elric encd.ae_key = &apd->ap_enckey;
286 1.14 alnsn cgd_cipher_uio(&encd, aes_cbc_enc_int, dstuio, srcuio);
287 1.1 elric break;
288 1.1 elric case CGD_CIPHER_DECRYPT:
289 1.1 elric encd.ae_key = &apd->ap_deckey;
290 1.14 alnsn cgd_cipher_uio(&encd, aes_cbc_dec_int, dstuio, srcuio);
291 1.14 alnsn break;
292 1.14 alnsn default:
293 1.17 riastrad panic("%s: unrecognised direction %d", __func__, dir);
294 1.14 alnsn }
295 1.14 alnsn }
296 1.14 alnsn
297 1.14 alnsn static void *
298 1.14 alnsn cgd_cipher_aes_xts_init(size_t keylen, const void *xtskey, size_t *blocksize)
299 1.14 alnsn {
300 1.14 alnsn struct aes_privdata *ap;
301 1.14 alnsn const char *key, *key2; /* XTS key is made of two AES keys. */
302 1.14 alnsn
303 1.14 alnsn if (!blocksize)
304 1.14 alnsn return NULL;
305 1.14 alnsn if (keylen != 256 && keylen != 512)
306 1.14 alnsn return NULL;
307 1.14 alnsn if (*blocksize == (size_t)-1)
308 1.14 alnsn *blocksize = 128;
309 1.14 alnsn if (*blocksize != 128)
310 1.14 alnsn return NULL;
311 1.14 alnsn ap = malloc(2 * sizeof(*ap), M_DEVBUF, 0);
312 1.14 alnsn if (!ap)
313 1.14 alnsn return NULL;
314 1.14 alnsn
315 1.14 alnsn keylen /= 2;
316 1.14 alnsn key = xtskey;
317 1.14 alnsn key2 = key + keylen / CHAR_BIT;
318 1.14 alnsn
319 1.14 alnsn rijndael_makeKey(&ap[0].ap_enckey, DIR_ENCRYPT, keylen, key);
320 1.14 alnsn rijndael_makeKey(&ap[0].ap_deckey, DIR_DECRYPT, keylen, key);
321 1.14 alnsn rijndael_makeKey(&ap[1].ap_enckey, DIR_ENCRYPT, keylen, key2);
322 1.14 alnsn
323 1.14 alnsn return ap;
324 1.14 alnsn }
325 1.14 alnsn
326 1.14 alnsn static void
327 1.14 alnsn cgd_cipher_aes_xts_destroy(void *data)
328 1.14 alnsn {
329 1.14 alnsn struct aes_privdata *apd = data;
330 1.14 alnsn
331 1.14 alnsn explicit_memset(apd, 0, 2 * sizeof(*apd));
332 1.14 alnsn free(apd, M_DEVBUF);
333 1.14 alnsn }
334 1.14 alnsn
335 1.14 alnsn static void
336 1.14 alnsn cgd_cipher_aes_xts_prep(void *privdata, char *iv,
337 1.14 alnsn const char *blkno_buf, size_t blocksize, int dir)
338 1.14 alnsn {
339 1.14 alnsn struct aes_privdata *apd = privdata;
340 1.14 alnsn cipherInstance cipher;
341 1.14 alnsn int cipher_ok __diagused;
342 1.14 alnsn
343 1.14 alnsn cipher_ok = rijndael_cipherInit(&cipher, MODE_ECB, NULL);
344 1.14 alnsn KASSERT(cipher_ok > 0);
345 1.14 alnsn rijndael_blockEncrypt(&cipher, &apd[1].ap_enckey,
346 1.14 alnsn blkno_buf, blocksize * 8, iv);
347 1.14 alnsn }
348 1.14 alnsn
349 1.14 alnsn static void
350 1.14 alnsn aes_xts_enc_int(void *privdata, void *dst, const void *src, size_t len)
351 1.14 alnsn {
352 1.14 alnsn struct aes_encdata *ae = privdata;
353 1.14 alnsn cipherInstance cipher;
354 1.14 alnsn int cipher_ok __diagused;
355 1.14 alnsn
356 1.14 alnsn cipher_ok = rijndael_cipherInit(&cipher, MODE_XTS, ae->ae_iv);
357 1.14 alnsn KASSERT(cipher_ok > 0);
358 1.14 alnsn rijndael_blockEncrypt(&cipher, ae->ae_key, src, len * 8, dst);
359 1.15 alnsn (void)memcpy(ae->ae_iv, cipher.IV, CGD_AES_BLOCK_SIZE);
360 1.14 alnsn }
361 1.14 alnsn
362 1.14 alnsn static void
363 1.14 alnsn aes_xts_dec_int(void *privdata, void *dst, const void *src, size_t len)
364 1.14 alnsn {
365 1.14 alnsn struct aes_encdata *ae = privdata;
366 1.14 alnsn cipherInstance cipher;
367 1.14 alnsn int cipher_ok __diagused;
368 1.14 alnsn
369 1.14 alnsn cipher_ok = rijndael_cipherInit(&cipher, MODE_XTS, ae->ae_iv);
370 1.14 alnsn KASSERT(cipher_ok > 0);
371 1.14 alnsn rijndael_blockDecrypt(&cipher, ae->ae_key, src, len * 8, dst);
372 1.15 alnsn (void)memcpy(ae->ae_iv, cipher.IV, CGD_AES_BLOCK_SIZE);
373 1.14 alnsn }
374 1.14 alnsn
375 1.14 alnsn static void
376 1.14 alnsn cgd_cipher_aes_xts(void *privdata, struct uio *dstuio,
377 1.14 alnsn struct uio *srcuio, const void *iv, int dir)
378 1.14 alnsn {
379 1.14 alnsn struct aes_privdata *apd = privdata;
380 1.14 alnsn struct aes_encdata encd;
381 1.14 alnsn
382 1.15 alnsn (void)memcpy(encd.ae_iv, iv, CGD_AES_BLOCK_SIZE);
383 1.14 alnsn switch (dir) {
384 1.14 alnsn case CGD_CIPHER_ENCRYPT:
385 1.14 alnsn encd.ae_key = &apd->ap_enckey;
386 1.14 alnsn cgd_cipher_uio(&encd, aes_xts_enc_int, dstuio, srcuio);
387 1.14 alnsn break;
388 1.14 alnsn case CGD_CIPHER_DECRYPT:
389 1.14 alnsn encd.ae_key = &apd->ap_deckey;
390 1.14 alnsn cgd_cipher_uio(&encd, aes_xts_dec_int, dstuio, srcuio);
391 1.1 elric break;
392 1.1 elric default:
393 1.17 riastrad panic("%s: unrecognised direction %d", __func__, dir);
394 1.1 elric }
395 1.1 elric }
396 1.1 elric
397 1.1 elric /*
398 1.1 elric * 3DES Framework
399 1.1 elric */
400 1.1 elric
401 1.1 elric struct c3des_privdata {
402 1.1 elric des_key_schedule cp_key1;
403 1.1 elric des_key_schedule cp_key2;
404 1.1 elric des_key_schedule cp_key3;
405 1.1 elric };
406 1.1 elric
407 1.1 elric struct c3des_encdata {
408 1.1 elric des_key_schedule *ce_key1;
409 1.1 elric des_key_schedule *ce_key2;
410 1.1 elric des_key_schedule *ce_key3;
411 1.15 alnsn u_int8_t ce_iv[CGD_3DES_BLOCK_SIZE];
412 1.1 elric };
413 1.1 elric
414 1.11 christos static void *
415 1.7 cbiere cgd_cipher_3des_init(size_t keylen, const void *key, size_t *blocksize)
416 1.1 elric {
417 1.1 elric struct c3des_privdata *cp;
418 1.1 elric int error = 0;
419 1.7 cbiere des_cblock *block;
420 1.1 elric
421 1.1 elric if (!blocksize)
422 1.1 elric return NULL;
423 1.6 christos if (*blocksize == (size_t)-1)
424 1.1 elric *blocksize = 64;
425 1.1 elric if (keylen != (DES_KEY_SZ * 3 * 8) || *blocksize != 64)
426 1.1 elric return NULL;
427 1.1 elric cp = malloc(sizeof(*cp), M_DEVBUF, 0);
428 1.1 elric if (!cp)
429 1.1 elric return NULL;
430 1.7 cbiere block = __UNCONST(key);
431 1.7 cbiere error = des_key_sched(block, cp->cp_key1);
432 1.7 cbiere error |= des_key_sched(block + 1, cp->cp_key2);
433 1.7 cbiere error |= des_key_sched(block + 2, cp->cp_key3);
434 1.1 elric if (error) {
435 1.12 riastrad explicit_memset(cp, 0, sizeof(*cp));
436 1.1 elric free(cp, M_DEVBUF);
437 1.1 elric return NULL;
438 1.1 elric }
439 1.6 christos return cp;
440 1.1 elric }
441 1.1 elric
442 1.11 christos static void
443 1.6 christos cgd_cipher_3des_destroy(void *data)
444 1.1 elric {
445 1.6 christos struct c3des_privdata *cp = data;
446 1.1 elric
447 1.12 riastrad explicit_memset(cp, 0, sizeof(*cp));
448 1.1 elric free(cp, M_DEVBUF);
449 1.1 elric }
450 1.1 elric
451 1.1 elric static void
452 1.14 alnsn cgd_cipher_3des_cbc_prep(void *privdata, char *iv,
453 1.14 alnsn const char *blkno_buf, size_t blocksize, int dir)
454 1.14 alnsn {
455 1.14 alnsn struct c3des_privdata *cp = privdata;
456 1.15 alnsn char zero_iv[CGD_3DES_BLOCK_SIZE];
457 1.14 alnsn
458 1.14 alnsn memset(zero_iv, 0, sizeof(zero_iv));
459 1.14 alnsn des_ede3_cbc_encrypt(blkno_buf, iv, blocksize,
460 1.14 alnsn cp->cp_key1, cp->cp_key2, cp->cp_key3, (des_cblock *)zero_iv, 1);
461 1.15 alnsn if (blocksize > CGD_3DES_BLOCK_SIZE) {
462 1.15 alnsn (void)memmove(iv, iv + blocksize - CGD_3DES_BLOCK_SIZE,
463 1.15 alnsn CGD_3DES_BLOCK_SIZE);
464 1.15 alnsn }
465 1.14 alnsn }
466 1.14 alnsn
467 1.14 alnsn static void
468 1.7 cbiere c3des_cbc_enc_int(void *privdata, void *dst, const void *src, size_t len)
469 1.1 elric {
470 1.6 christos struct c3des_encdata *ce = privdata;
471 1.1 elric
472 1.1 elric des_ede3_cbc_encrypt(src, dst, len, *ce->ce_key1, *ce->ce_key2,
473 1.1 elric *ce->ce_key3, (des_cblock *)ce->ce_iv, 1);
474 1.15 alnsn (void)memcpy(ce->ce_iv, (const u_int8_t *)dst +
475 1.15 alnsn (len - CGD_3DES_BLOCK_SIZE), CGD_3DES_BLOCK_SIZE);
476 1.1 elric }
477 1.1 elric
478 1.1 elric static void
479 1.7 cbiere c3des_cbc_dec_int(void *privdata, void *dst, const void *src, size_t len)
480 1.1 elric {
481 1.6 christos struct c3des_encdata *ce = privdata;
482 1.1 elric
483 1.1 elric des_ede3_cbc_encrypt(src, dst, len, *ce->ce_key1, *ce->ce_key2,
484 1.1 elric *ce->ce_key3, (des_cblock *)ce->ce_iv, 0);
485 1.15 alnsn (void)memcpy(ce->ce_iv, (const u_int8_t *)src +
486 1.15 alnsn (len - CGD_3DES_BLOCK_SIZE), CGD_3DES_BLOCK_SIZE);
487 1.1 elric }
488 1.1 elric
489 1.11 christos static void
490 1.6 christos cgd_cipher_3des_cbc(void *privdata, struct uio *dstuio,
491 1.13 riastrad struct uio *srcuio, const void *iv, int dir)
492 1.1 elric {
493 1.6 christos struct c3des_privdata *cp = privdata;
494 1.1 elric struct c3des_encdata ce;
495 1.1 elric
496 1.15 alnsn (void)memcpy(ce.ce_iv, iv, CGD_3DES_BLOCK_SIZE);
497 1.1 elric ce.ce_key1 = &cp->cp_key1;
498 1.1 elric ce.ce_key2 = &cp->cp_key2;
499 1.1 elric ce.ce_key3 = &cp->cp_key3;
500 1.1 elric switch (dir) {
501 1.1 elric case CGD_CIPHER_ENCRYPT:
502 1.14 alnsn cgd_cipher_uio(&ce, c3des_cbc_enc_int, dstuio, srcuio);
503 1.1 elric break;
504 1.1 elric case CGD_CIPHER_DECRYPT:
505 1.14 alnsn cgd_cipher_uio(&ce, c3des_cbc_dec_int, dstuio, srcuio);
506 1.1 elric break;
507 1.1 elric default:
508 1.17 riastrad panic("%s: unrecognised direction %d", __func__, dir);
509 1.1 elric }
510 1.1 elric }
511 1.1 elric
512 1.1 elric /*
513 1.1 elric * Blowfish Framework
514 1.1 elric */
515 1.1 elric
516 1.1 elric struct bf_privdata {
517 1.1 elric BF_KEY bp_key;
518 1.1 elric };
519 1.1 elric
520 1.1 elric struct bf_encdata {
521 1.1 elric BF_KEY *be_key;
522 1.15 alnsn u_int8_t be_iv[CGD_BF_BLOCK_SIZE];
523 1.1 elric };
524 1.1 elric
525 1.11 christos static void *
526 1.7 cbiere cgd_cipher_bf_init(size_t keylen, const void *key, size_t *blocksize)
527 1.1 elric {
528 1.1 elric struct bf_privdata *bp;
529 1.1 elric
530 1.1 elric if (!blocksize)
531 1.1 elric return NULL;
532 1.3 dan if (keylen < 40 || keylen > 448 || (keylen % 8 != 0))
533 1.1 elric return NULL;
534 1.6 christos if (*blocksize == (size_t)-1)
535 1.1 elric *blocksize = 64;
536 1.1 elric if (*blocksize != 64)
537 1.1 elric return NULL;
538 1.1 elric bp = malloc(sizeof(*bp), M_DEVBUF, 0);
539 1.1 elric if (!bp)
540 1.1 elric return NULL;
541 1.3 dan BF_set_key(&bp->bp_key, keylen / 8, key);
542 1.6 christos return bp;
543 1.1 elric }
544 1.1 elric
545 1.11 christos static void
546 1.6 christos cgd_cipher_bf_destroy(void *data)
547 1.1 elric {
548 1.6 christos struct bf_privdata *bp = data;
549 1.1 elric
550 1.12 riastrad explicit_memset(bp, 0, sizeof(*bp));
551 1.1 elric free(bp, M_DEVBUF);
552 1.1 elric }
553 1.1 elric
554 1.11 christos static void
555 1.14 alnsn cgd_cipher_bf_cbc_prep(void *privdata, char *iv,
556 1.14 alnsn const char *blkno_buf, size_t blocksize, int dir)
557 1.14 alnsn {
558 1.14 alnsn struct bf_privdata *bp = privdata;
559 1.15 alnsn char zero_iv[CGD_BF_BLOCK_SIZE];
560 1.14 alnsn
561 1.14 alnsn memset(zero_iv, 0, sizeof(zero_iv));
562 1.14 alnsn BF_cbc_encrypt(blkno_buf, iv, blocksize, &bp->bp_key, zero_iv, 1);
563 1.15 alnsn if (blocksize > CGD_BF_BLOCK_SIZE) {
564 1.15 alnsn (void)memmove(iv, iv + blocksize - CGD_BF_BLOCK_SIZE,
565 1.15 alnsn CGD_BF_BLOCK_SIZE);
566 1.15 alnsn }
567 1.14 alnsn }
568 1.14 alnsn
569 1.14 alnsn static void
570 1.7 cbiere bf_cbc_enc_int(void *privdata, void *dst, const void *src, size_t len)
571 1.1 elric {
572 1.6 christos struct bf_encdata *be = privdata;
573 1.1 elric
574 1.1 elric BF_cbc_encrypt(src, dst, len, be->be_key, be->be_iv, 1);
575 1.15 alnsn (void)memcpy(be->be_iv, (u_int8_t *)dst +
576 1.15 alnsn (len - CGD_BF_BLOCK_SIZE), CGD_BF_BLOCK_SIZE);
577 1.1 elric }
578 1.1 elric
579 1.11 christos static void
580 1.7 cbiere bf_cbc_dec_int(void *privdata, void *dst, const void *src, size_t len)
581 1.1 elric {
582 1.6 christos struct bf_encdata *be = privdata;
583 1.1 elric
584 1.1 elric BF_cbc_encrypt(src, dst, len, be->be_key, be->be_iv, 0);
585 1.15 alnsn (void)memcpy(be->be_iv, (const u_int8_t *)src +
586 1.15 alnsn (len - CGD_BF_BLOCK_SIZE), CGD_BF_BLOCK_SIZE);
587 1.1 elric }
588 1.1 elric
589 1.11 christos static void
590 1.6 christos cgd_cipher_bf_cbc(void *privdata, struct uio *dstuio,
591 1.13 riastrad struct uio *srcuio, const void *iv, int dir)
592 1.1 elric {
593 1.6 christos struct bf_privdata *bp = privdata;
594 1.1 elric struct bf_encdata be;
595 1.1 elric
596 1.15 alnsn (void)memcpy(be.be_iv, iv, CGD_BF_BLOCK_SIZE);
597 1.1 elric be.be_key = &bp->bp_key;
598 1.1 elric switch (dir) {
599 1.1 elric case CGD_CIPHER_ENCRYPT:
600 1.14 alnsn cgd_cipher_uio(&be, bf_cbc_enc_int, dstuio, srcuio);
601 1.1 elric break;
602 1.1 elric case CGD_CIPHER_DECRYPT:
603 1.14 alnsn cgd_cipher_uio(&be, bf_cbc_dec_int, dstuio, srcuio);
604 1.1 elric break;
605 1.1 elric default:
606 1.17 riastrad panic("%s: unrecognised direction %d", __func__, dir);
607 1.1 elric }
608 1.1 elric
609 1.1 elric }
610