dk.c revision 1.169 1 1.169 riastrad /* $NetBSD: dk.c,v 1.169 2023/05/22 14:59:58 riastradh Exp $ */
2 1.1 thorpej
3 1.1 thorpej /*-
4 1.27 ad * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 1.1 thorpej * All rights reserved.
6 1.1 thorpej *
7 1.1 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.1 thorpej * by Jason R. Thorpe.
9 1.1 thorpej *
10 1.1 thorpej * Redistribution and use in source and binary forms, with or without
11 1.1 thorpej * modification, are permitted provided that the following conditions
12 1.1 thorpej * are met:
13 1.1 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.1 thorpej * notice, this list of conditions and the following disclaimer.
15 1.1 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.1 thorpej * documentation and/or other materials provided with the distribution.
18 1.1 thorpej *
19 1.1 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.1 thorpej */
31 1.1 thorpej
32 1.1 thorpej #include <sys/cdefs.h>
33 1.169 riastrad __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.169 2023/05/22 14:59:58 riastradh Exp $");
34 1.1 thorpej
35 1.50 pooka #ifdef _KERNEL_OPT
36 1.1 thorpej #include "opt_dkwedge.h"
37 1.50 pooka #endif
38 1.1 thorpej
39 1.1 thorpej #include <sys/param.h>
40 1.133 riastrad #include <sys/types.h>
41 1.133 riastrad
42 1.5 yamt #include <sys/buf.h>
43 1.5 yamt #include <sys/bufq.h>
44 1.133 riastrad #include <sys/callout.h>
45 1.1 thorpej #include <sys/conf.h>
46 1.133 riastrad #include <sys/device.h>
47 1.133 riastrad #include <sys/disk.h>
48 1.133 riastrad #include <sys/disklabel.h>
49 1.133 riastrad #include <sys/errno.h>
50 1.133 riastrad #include <sys/fcntl.h>
51 1.133 riastrad #include <sys/ioctl.h>
52 1.133 riastrad #include <sys/kauth.h>
53 1.1 thorpej #include <sys/kernel.h>
54 1.1 thorpej #include <sys/malloc.h>
55 1.133 riastrad #include <sys/pool.h>
56 1.133 riastrad #include <sys/proc.h>
57 1.134 riastrad #include <sys/rwlock.h>
58 1.133 riastrad #include <sys/stat.h>
59 1.133 riastrad #include <sys/systm.h>
60 1.133 riastrad #include <sys/vnode.h>
61 1.1 thorpej
62 1.1 thorpej #include <miscfs/specfs/specdev.h>
63 1.1 thorpej
64 1.1 thorpej MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
65 1.1 thorpej
66 1.1 thorpej typedef enum {
67 1.1 thorpej DKW_STATE_LARVAL = 0,
68 1.1 thorpej DKW_STATE_RUNNING = 1,
69 1.1 thorpej DKW_STATE_DYING = 2,
70 1.1 thorpej DKW_STATE_DEAD = 666
71 1.1 thorpej } dkwedge_state_t;
72 1.1 thorpej
73 1.1 thorpej struct dkwedge_softc {
74 1.65 chs device_t sc_dev; /* pointer to our pseudo-device */
75 1.2 thorpej struct cfdata sc_cfdata; /* our cfdata structure */
76 1.1 thorpej uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
77 1.1 thorpej
78 1.1 thorpej dkwedge_state_t sc_state; /* state this wedge is in */
79 1.1 thorpej
80 1.1 thorpej struct disk *sc_parent; /* parent disk */
81 1.1 thorpej daddr_t sc_offset; /* LBA offset of wedge in parent */
82 1.135 riastrad krwlock_t sc_sizelock;
83 1.1 thorpej uint64_t sc_size; /* size of wedge in blocks */
84 1.1 thorpej char sc_ptype[32]; /* partition type */
85 1.1 thorpej dev_t sc_pdev; /* cached parent's dev_t */
86 1.1 thorpej /* link on parent's wedge list */
87 1.1 thorpej LIST_ENTRY(dkwedge_softc) sc_plink;
88 1.1 thorpej
89 1.1 thorpej struct disk sc_dk; /* our own disk structure */
90 1.9 yamt struct bufq_state *sc_bufq; /* buffer queue */
91 1.1 thorpej struct callout sc_restart_ch; /* callout to restart I/O */
92 1.1 thorpej
93 1.92 mlelstv kmutex_t sc_iolock;
94 1.142 riastrad bool sc_iostop; /* don't schedule restart */
95 1.103 mlelstv int sc_mode; /* parent open mode */
96 1.1 thorpej };
97 1.1 thorpej
98 1.136 riastrad static int dkwedge_match(device_t, cfdata_t, void *);
99 1.136 riastrad static void dkwedge_attach(device_t, device_t, void *);
100 1.136 riastrad static int dkwedge_detach(device_t, int);
101 1.136 riastrad
102 1.159 riastrad static void dk_set_geometry(struct dkwedge_softc *, struct disk *);
103 1.159 riastrad
104 1.1 thorpej static void dkstart(struct dkwedge_softc *);
105 1.1 thorpej static void dkiodone(struct buf *);
106 1.1 thorpej static void dkrestart(void *);
107 1.52 jakllsch static void dkminphys(struct buf *);
108 1.1 thorpej
109 1.118 riastrad static int dkfirstopen(struct dkwedge_softc *, int);
110 1.121 riastrad static void dklastclose(struct dkwedge_softc *);
111 1.47 dyoung static int dkwedge_detach(device_t, int);
112 1.74 mlelstv static void dkwedge_delall1(struct disk *, bool);
113 1.74 mlelstv static int dkwedge_del1(struct dkwedge_info *, int);
114 1.87 mlelstv static int dk_open_parent(dev_t, int, struct vnode **);
115 1.82 mlelstv static int dk_close_parent(struct vnode *, int);
116 1.46 dyoung
117 1.1 thorpej static dev_type_open(dkopen);
118 1.1 thorpej static dev_type_close(dkclose);
119 1.141 riastrad static dev_type_cancel(dkcancel);
120 1.1 thorpej static dev_type_read(dkread);
121 1.1 thorpej static dev_type_write(dkwrite);
122 1.1 thorpej static dev_type_ioctl(dkioctl);
123 1.1 thorpej static dev_type_strategy(dkstrategy);
124 1.1 thorpej static dev_type_dump(dkdump);
125 1.1 thorpej static dev_type_size(dksize);
126 1.72 dholland static dev_type_discard(dkdiscard);
127 1.1 thorpej
128 1.136 riastrad CFDRIVER_DECL(dk, DV_DISK, NULL);
129 1.136 riastrad CFATTACH_DECL3_NEW(dk, 0,
130 1.136 riastrad dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
131 1.136 riastrad DVF_DETACH_SHUTDOWN);
132 1.136 riastrad
133 1.1 thorpej const struct bdevsw dk_bdevsw = {
134 1.68 dholland .d_open = dkopen,
135 1.68 dholland .d_close = dkclose,
136 1.141 riastrad .d_cancel = dkcancel,
137 1.68 dholland .d_strategy = dkstrategy,
138 1.68 dholland .d_ioctl = dkioctl,
139 1.68 dholland .d_dump = dkdump,
140 1.68 dholland .d_psize = dksize,
141 1.72 dholland .d_discard = dkdiscard,
142 1.144 riastrad .d_cfdriver = &dk_cd,
143 1.160 riastrad .d_devtounit = dev_minor_unit,
144 1.92 mlelstv .d_flag = D_DISK | D_MPSAFE
145 1.1 thorpej };
146 1.1 thorpej
147 1.1 thorpej const struct cdevsw dk_cdevsw = {
148 1.68 dholland .d_open = dkopen,
149 1.68 dholland .d_close = dkclose,
150 1.141 riastrad .d_cancel = dkcancel,
151 1.68 dholland .d_read = dkread,
152 1.68 dholland .d_write = dkwrite,
153 1.68 dholland .d_ioctl = dkioctl,
154 1.68 dholland .d_stop = nostop,
155 1.68 dholland .d_tty = notty,
156 1.68 dholland .d_poll = nopoll,
157 1.68 dholland .d_mmap = nommap,
158 1.68 dholland .d_kqfilter = nokqfilter,
159 1.72 dholland .d_discard = dkdiscard,
160 1.144 riastrad .d_cfdriver = &dk_cd,
161 1.160 riastrad .d_devtounit = dev_minor_unit,
162 1.92 mlelstv .d_flag = D_DISK | D_MPSAFE
163 1.1 thorpej };
164 1.1 thorpej
165 1.1 thorpej static struct dkwedge_softc **dkwedges;
166 1.1 thorpej static u_int ndkwedges;
167 1.27 ad static krwlock_t dkwedges_lock;
168 1.1 thorpej
169 1.1 thorpej static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
170 1.27 ad static krwlock_t dkwedge_discovery_methods_lock;
171 1.1 thorpej
172 1.1 thorpej /*
173 1.2 thorpej * dkwedge_match:
174 1.2 thorpej *
175 1.2 thorpej * Autoconfiguration match function for pseudo-device glue.
176 1.2 thorpej */
177 1.2 thorpej static int
178 1.129 riastrad dkwedge_match(device_t parent, cfdata_t match, void *aux)
179 1.2 thorpej {
180 1.2 thorpej
181 1.2 thorpej /* Pseudo-device; always present. */
182 1.128 riastrad return 1;
183 1.2 thorpej }
184 1.2 thorpej
185 1.2 thorpej /*
186 1.2 thorpej * dkwedge_attach:
187 1.2 thorpej *
188 1.2 thorpej * Autoconfiguration attach function for pseudo-device glue.
189 1.2 thorpej */
190 1.2 thorpej static void
191 1.129 riastrad dkwedge_attach(device_t parent, device_t self, void *aux)
192 1.2 thorpej {
193 1.159 riastrad struct dkwedge_softc *sc = aux;
194 1.159 riastrad struct disk *pdk = sc->sc_parent;
195 1.159 riastrad int unit = device_unit(self);
196 1.159 riastrad
197 1.159 riastrad KASSERTMSG(unit >= 0, "unit=%d", unit);
198 1.2 thorpej
199 1.31 jmcneill if (!pmf_device_register(self, NULL, NULL))
200 1.31 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
201 1.159 riastrad
202 1.159 riastrad mutex_enter(&pdk->dk_openlock);
203 1.159 riastrad rw_enter(&dkwedges_lock, RW_WRITER);
204 1.159 riastrad KASSERTMSG(unit < ndkwedges, "unit=%d ndkwedges=%u", unit, ndkwedges);
205 1.159 riastrad KASSERTMSG(sc == dkwedges[unit], "sc=%p dkwedges[%d]=%p",
206 1.159 riastrad sc, unit, dkwedges[unit]);
207 1.159 riastrad KASSERTMSG(sc->sc_dev == NULL, "sc=%p sc->sc_dev=%p", sc, sc->sc_dev);
208 1.159 riastrad sc->sc_dev = self;
209 1.159 riastrad rw_exit(&dkwedges_lock);
210 1.159 riastrad mutex_exit(&pdk->dk_openlock);
211 1.159 riastrad
212 1.159 riastrad disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
213 1.159 riastrad mutex_enter(&pdk->dk_openlock);
214 1.159 riastrad dk_set_geometry(sc, pdk);
215 1.159 riastrad mutex_exit(&pdk->dk_openlock);
216 1.159 riastrad disk_attach(&sc->sc_dk);
217 1.159 riastrad
218 1.159 riastrad /* Disk wedge is ready for use! */
219 1.159 riastrad device_set_private(self, sc);
220 1.159 riastrad sc->sc_state = DKW_STATE_RUNNING;
221 1.2 thorpej }
222 1.2 thorpej
223 1.2 thorpej /*
224 1.1 thorpej * dkwedge_compute_pdev:
225 1.1 thorpej *
226 1.1 thorpej * Compute the parent disk's dev_t.
227 1.1 thorpej */
228 1.1 thorpej static int
229 1.74 mlelstv dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
230 1.1 thorpej {
231 1.1 thorpej const char *name, *cp;
232 1.63 drochner devmajor_t pmaj;
233 1.63 drochner int punit;
234 1.1 thorpej char devname[16];
235 1.1 thorpej
236 1.1 thorpej name = pname;
237 1.74 mlelstv switch (type) {
238 1.74 mlelstv case VBLK:
239 1.74 mlelstv pmaj = devsw_name2blk(name, devname, sizeof(devname));
240 1.74 mlelstv break;
241 1.74 mlelstv case VCHR:
242 1.74 mlelstv pmaj = devsw_name2chr(name, devname, sizeof(devname));
243 1.74 mlelstv break;
244 1.74 mlelstv default:
245 1.75 mlelstv pmaj = NODEVMAJOR;
246 1.74 mlelstv break;
247 1.74 mlelstv }
248 1.75 mlelstv if (pmaj == NODEVMAJOR)
249 1.132 riastrad return ENXIO;
250 1.6 perry
251 1.1 thorpej name += strlen(devname);
252 1.1 thorpej for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
253 1.1 thorpej punit = (punit * 10) + (*cp - '0');
254 1.1 thorpej if (cp == name) {
255 1.1 thorpej /* Invalid parent disk name. */
256 1.132 riastrad return ENXIO;
257 1.1 thorpej }
258 1.1 thorpej
259 1.1 thorpej *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
260 1.1 thorpej
261 1.128 riastrad return 0;
262 1.1 thorpej }
263 1.1 thorpej
264 1.1 thorpej /*
265 1.1 thorpej * dkwedge_array_expand:
266 1.1 thorpej *
267 1.1 thorpej * Expand the dkwedges array.
268 1.127 riastrad *
269 1.127 riastrad * Releases and reacquires dkwedges_lock as a writer.
270 1.1 thorpej */
271 1.127 riastrad static int
272 1.1 thorpej dkwedge_array_expand(void)
273 1.1 thorpej {
274 1.1 thorpej
275 1.127 riastrad const unsigned incr = 16;
276 1.127 riastrad unsigned newcnt, oldcnt;
277 1.127 riastrad struct dkwedge_softc **newarray = NULL, **oldarray = NULL;
278 1.127 riastrad
279 1.127 riastrad KASSERT(rw_write_held(&dkwedges_lock));
280 1.127 riastrad
281 1.127 riastrad oldcnt = ndkwedges;
282 1.127 riastrad oldarray = dkwedges;
283 1.127 riastrad
284 1.127 riastrad if (oldcnt >= INT_MAX - incr)
285 1.127 riastrad return ENFILE; /* XXX */
286 1.127 riastrad newcnt = oldcnt + incr;
287 1.127 riastrad
288 1.127 riastrad rw_exit(&dkwedges_lock);
289 1.1 thorpej newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
290 1.1 thorpej M_WAITOK|M_ZERO);
291 1.127 riastrad rw_enter(&dkwedges_lock, RW_WRITER);
292 1.127 riastrad
293 1.127 riastrad if (ndkwedges != oldcnt || dkwedges != oldarray) {
294 1.127 riastrad oldarray = NULL; /* already recycled */
295 1.127 riastrad goto out;
296 1.127 riastrad }
297 1.127 riastrad
298 1.127 riastrad if (oldarray != NULL)
299 1.1 thorpej memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
300 1.1 thorpej dkwedges = newarray;
301 1.127 riastrad newarray = NULL; /* transferred to dkwedges */
302 1.1 thorpej ndkwedges = newcnt;
303 1.127 riastrad
304 1.127 riastrad out: rw_exit(&dkwedges_lock);
305 1.1 thorpej if (oldarray != NULL)
306 1.1 thorpej free(oldarray, M_DKWEDGE);
307 1.127 riastrad if (newarray != NULL)
308 1.127 riastrad free(newarray, M_DKWEDGE);
309 1.127 riastrad rw_enter(&dkwedges_lock, RW_WRITER);
310 1.127 riastrad return 0;
311 1.1 thorpej }
312 1.1 thorpej
313 1.48 haad static void
314 1.135 riastrad dkwedge_size_init(struct dkwedge_softc *sc, uint64_t size)
315 1.135 riastrad {
316 1.135 riastrad
317 1.135 riastrad rw_init(&sc->sc_sizelock);
318 1.135 riastrad sc->sc_size = size;
319 1.135 riastrad }
320 1.135 riastrad
321 1.135 riastrad static void
322 1.135 riastrad dkwedge_size_fini(struct dkwedge_softc *sc)
323 1.135 riastrad {
324 1.135 riastrad
325 1.135 riastrad rw_destroy(&sc->sc_sizelock);
326 1.135 riastrad }
327 1.135 riastrad
328 1.135 riastrad static uint64_t
329 1.135 riastrad dkwedge_size(struct dkwedge_softc *sc)
330 1.135 riastrad {
331 1.135 riastrad uint64_t size;
332 1.135 riastrad
333 1.135 riastrad rw_enter(&sc->sc_sizelock, RW_READER);
334 1.135 riastrad size = sc->sc_size;
335 1.135 riastrad rw_exit(&sc->sc_sizelock);
336 1.135 riastrad
337 1.135 riastrad return size;
338 1.135 riastrad }
339 1.135 riastrad
340 1.135 riastrad static void
341 1.135 riastrad dkwedge_size_increase(struct dkwedge_softc *sc, uint64_t size)
342 1.135 riastrad {
343 1.135 riastrad
344 1.151 riastrad KASSERT(mutex_owned(&sc->sc_parent->dk_openlock));
345 1.135 riastrad
346 1.135 riastrad rw_enter(&sc->sc_sizelock, RW_WRITER);
347 1.135 riastrad KASSERTMSG(size >= sc->sc_size,
348 1.135 riastrad "decreasing dkwedge size from %"PRIu64" to %"PRIu64,
349 1.135 riastrad sc->sc_size, size);
350 1.135 riastrad sc->sc_size = size;
351 1.135 riastrad rw_exit(&sc->sc_sizelock);
352 1.135 riastrad }
353 1.135 riastrad
354 1.135 riastrad static void
355 1.77 mlelstv dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
356 1.48 haad {
357 1.77 mlelstv struct disk *dk = &sc->sc_dk;
358 1.77 mlelstv struct disk_geom *dg = &dk->dk_geom;
359 1.48 haad
360 1.140 riastrad KASSERT(mutex_owned(&pdk->dk_openlock));
361 1.140 riastrad
362 1.66 christos memset(dg, 0, sizeof(*dg));
363 1.48 haad
364 1.135 riastrad dg->dg_secperunit = dkwedge_size(sc);
365 1.77 mlelstv dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
366 1.76 mlelstv
367 1.76 mlelstv /* fake numbers, 1 cylinder is 1 MB with default sector size */
368 1.66 christos dg->dg_nsectors = 32;
369 1.66 christos dg->dg_ntracks = 64;
370 1.129 riastrad dg->dg_ncylinders =
371 1.129 riastrad dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
372 1.48 haad
373 1.77 mlelstv disk_set_info(sc->sc_dev, dk, NULL);
374 1.48 haad }
375 1.48 haad
376 1.1 thorpej /*
377 1.1 thorpej * dkwedge_add: [exported function]
378 1.1 thorpej *
379 1.1 thorpej * Add a disk wedge based on the provided information.
380 1.1 thorpej *
381 1.1 thorpej * The incoming dkw_devname[] is ignored, instead being
382 1.1 thorpej * filled in and returned to the caller.
383 1.1 thorpej */
384 1.1 thorpej int
385 1.1 thorpej dkwedge_add(struct dkwedge_info *dkw)
386 1.1 thorpej {
387 1.1 thorpej struct dkwedge_softc *sc, *lsc;
388 1.1 thorpej struct disk *pdk;
389 1.1 thorpej u_int unit;
390 1.1 thorpej int error;
391 1.1 thorpej dev_t pdev;
392 1.159 riastrad device_t dev __diagused;
393 1.1 thorpej
394 1.1 thorpej dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
395 1.1 thorpej pdk = disk_find(dkw->dkw_parent);
396 1.1 thorpej if (pdk == NULL)
397 1.132 riastrad return ENXIO;
398 1.1 thorpej
399 1.74 mlelstv error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
400 1.1 thorpej if (error)
401 1.128 riastrad return error;
402 1.1 thorpej
403 1.1 thorpej if (dkw->dkw_offset < 0)
404 1.128 riastrad return EINVAL;
405 1.1 thorpej
406 1.101 jmcneill /*
407 1.101 jmcneill * Check for an existing wedge at the same disk offset. Allow
408 1.101 jmcneill * updating a wedge if the only change is the size, and the new
409 1.101 jmcneill * size is larger than the old.
410 1.101 jmcneill */
411 1.101 jmcneill sc = NULL;
412 1.101 jmcneill mutex_enter(&pdk->dk_openlock);
413 1.101 jmcneill LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
414 1.101 jmcneill if (lsc->sc_offset != dkw->dkw_offset)
415 1.101 jmcneill continue;
416 1.101 jmcneill if (strcmp(lsc->sc_wname, dkw->dkw_wname) != 0)
417 1.101 jmcneill break;
418 1.101 jmcneill if (strcmp(lsc->sc_ptype, dkw->dkw_ptype) != 0)
419 1.101 jmcneill break;
420 1.135 riastrad if (dkwedge_size(lsc) > dkw->dkw_size)
421 1.101 jmcneill break;
422 1.159 riastrad if (lsc->sc_dev == NULL)
423 1.159 riastrad break;
424 1.101 jmcneill
425 1.101 jmcneill sc = lsc;
426 1.159 riastrad device_acquire(sc->sc_dev);
427 1.135 riastrad dkwedge_size_increase(sc, dkw->dkw_size);
428 1.101 jmcneill dk_set_geometry(sc, pdk);
429 1.101 jmcneill
430 1.101 jmcneill break;
431 1.101 jmcneill }
432 1.101 jmcneill mutex_exit(&pdk->dk_openlock);
433 1.101 jmcneill
434 1.101 jmcneill if (sc != NULL)
435 1.101 jmcneill goto announce;
436 1.101 jmcneill
437 1.1 thorpej sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
438 1.1 thorpej sc->sc_state = DKW_STATE_LARVAL;
439 1.1 thorpej sc->sc_parent = pdk;
440 1.1 thorpej sc->sc_pdev = pdev;
441 1.1 thorpej sc->sc_offset = dkw->dkw_offset;
442 1.135 riastrad dkwedge_size_init(sc, dkw->dkw_size);
443 1.1 thorpej
444 1.1 thorpej memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
445 1.1 thorpej sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
446 1.1 thorpej
447 1.1 thorpej memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
448 1.1 thorpej sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
449 1.1 thorpej
450 1.9 yamt bufq_alloc(&sc->sc_bufq, "fcfs", 0);
451 1.1 thorpej
452 1.26 ad callout_init(&sc->sc_restart_ch, 0);
453 1.1 thorpej callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
454 1.1 thorpej
455 1.92 mlelstv mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
456 1.92 mlelstv
457 1.1 thorpej /*
458 1.1 thorpej * Wedge will be added; increment the wedge count for the parent.
459 1.107 andvar * Only allow this to happen if RAW_PART is the only thing open.
460 1.1 thorpej */
461 1.27 ad mutex_enter(&pdk->dk_openlock);
462 1.1 thorpej if (pdk->dk_openmask & ~(1 << RAW_PART))
463 1.1 thorpej error = EBUSY;
464 1.1 thorpej else {
465 1.1 thorpej /* Check for wedge overlap. */
466 1.1 thorpej LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
467 1.135 riastrad /* XXX arithmetic overflow */
468 1.135 riastrad uint64_t size = dkwedge_size(sc);
469 1.135 riastrad uint64_t lsize = dkwedge_size(lsc);
470 1.135 riastrad daddr_t lastblk = sc->sc_offset + size - 1;
471 1.135 riastrad daddr_t llastblk = lsc->sc_offset + lsize - 1;
472 1.1 thorpej
473 1.1 thorpej if (sc->sc_offset >= lsc->sc_offset &&
474 1.1 thorpej sc->sc_offset <= llastblk) {
475 1.63 drochner /* Overlaps the tail of the existing wedge. */
476 1.1 thorpej break;
477 1.1 thorpej }
478 1.1 thorpej if (lastblk >= lsc->sc_offset &&
479 1.1 thorpej lastblk <= llastblk) {
480 1.1 thorpej /* Overlaps the head of the existing wedge. */
481 1.1 thorpej break;
482 1.1 thorpej }
483 1.1 thorpej }
484 1.74 mlelstv if (lsc != NULL) {
485 1.74 mlelstv if (sc->sc_offset == lsc->sc_offset &&
486 1.135 riastrad dkwedge_size(sc) == dkwedge_size(lsc) &&
487 1.74 mlelstv strcmp(sc->sc_wname, lsc->sc_wname) == 0)
488 1.74 mlelstv error = EEXIST;
489 1.74 mlelstv else
490 1.74 mlelstv error = EINVAL;
491 1.74 mlelstv } else {
492 1.1 thorpej pdk->dk_nwedges++;
493 1.1 thorpej LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
494 1.1 thorpej }
495 1.1 thorpej }
496 1.27 ad mutex_exit(&pdk->dk_openlock);
497 1.1 thorpej if (error) {
498 1.93 mlelstv mutex_destroy(&sc->sc_iolock);
499 1.9 yamt bufq_free(sc->sc_bufq);
500 1.135 riastrad dkwedge_size_fini(sc);
501 1.1 thorpej free(sc, M_DKWEDGE);
502 1.128 riastrad return error;
503 1.1 thorpej }
504 1.1 thorpej
505 1.2 thorpej /* Fill in our cfdata for the pseudo-device glue. */
506 1.2 thorpej sc->sc_cfdata.cf_name = dk_cd.cd_name;
507 1.2 thorpej sc->sc_cfdata.cf_atname = dk_ca.ca_name;
508 1.2 thorpej /* sc->sc_cfdata.cf_unit set below */
509 1.159 riastrad sc->sc_cfdata.cf_fstate = FSTATE_NOTFOUND; /* use chosen cf_unit */
510 1.2 thorpej
511 1.1 thorpej /* Insert the larval wedge into the array. */
512 1.27 ad rw_enter(&dkwedges_lock, RW_WRITER);
513 1.1 thorpej for (error = 0;;) {
514 1.1 thorpej struct dkwedge_softc **scpp;
515 1.1 thorpej
516 1.1 thorpej /*
517 1.1 thorpej * Check for a duplicate wname while searching for
518 1.1 thorpej * a slot.
519 1.1 thorpej */
520 1.1 thorpej for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
521 1.1 thorpej if (dkwedges[unit] == NULL) {
522 1.1 thorpej if (scpp == NULL) {
523 1.1 thorpej scpp = &dkwedges[unit];
524 1.2 thorpej sc->sc_cfdata.cf_unit = unit;
525 1.1 thorpej }
526 1.1 thorpej } else {
527 1.1 thorpej /* XXX Unicode. */
528 1.1 thorpej if (strcmp(dkwedges[unit]->sc_wname,
529 1.129 riastrad sc->sc_wname) == 0) {
530 1.1 thorpej error = EEXIST;
531 1.1 thorpej break;
532 1.1 thorpej }
533 1.1 thorpej }
534 1.1 thorpej }
535 1.1 thorpej if (error)
536 1.1 thorpej break;
537 1.1 thorpej KASSERT(unit == ndkwedges);
538 1.127 riastrad if (scpp == NULL) {
539 1.127 riastrad error = dkwedge_array_expand();
540 1.127 riastrad if (error)
541 1.127 riastrad break;
542 1.127 riastrad } else {
543 1.2 thorpej KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
544 1.1 thorpej *scpp = sc;
545 1.1 thorpej break;
546 1.1 thorpej }
547 1.1 thorpej }
548 1.27 ad rw_exit(&dkwedges_lock);
549 1.1 thorpej if (error) {
550 1.27 ad mutex_enter(&pdk->dk_openlock);
551 1.1 thorpej pdk->dk_nwedges--;
552 1.1 thorpej LIST_REMOVE(sc, sc_plink);
553 1.27 ad mutex_exit(&pdk->dk_openlock);
554 1.1 thorpej
555 1.93 mlelstv mutex_destroy(&sc->sc_iolock);
556 1.9 yamt bufq_free(sc->sc_bufq);
557 1.135 riastrad dkwedge_size_fini(sc);
558 1.1 thorpej free(sc, M_DKWEDGE);
559 1.128 riastrad return error;
560 1.1 thorpej }
561 1.1 thorpej
562 1.2 thorpej /*
563 1.2 thorpej * Now that we know the unit #, attach a pseudo-device for
564 1.2 thorpej * this wedge instance. This will provide us with the
565 1.65 chs * device_t necessary for glue to other parts of the system.
566 1.2 thorpej *
567 1.2 thorpej * This should never fail, unless we're almost totally out of
568 1.2 thorpej * memory.
569 1.2 thorpej */
570 1.159 riastrad if ((dev = config_attach_pseudo_acquire(&sc->sc_cfdata, sc)) == NULL) {
571 1.2 thorpej aprint_error("%s%u: unable to attach pseudo-device\n",
572 1.2 thorpej sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
573 1.2 thorpej
574 1.27 ad rw_enter(&dkwedges_lock, RW_WRITER);
575 1.139 riastrad KASSERT(dkwedges[sc->sc_cfdata.cf_unit] == sc);
576 1.2 thorpej dkwedges[sc->sc_cfdata.cf_unit] = NULL;
577 1.27 ad rw_exit(&dkwedges_lock);
578 1.2 thorpej
579 1.27 ad mutex_enter(&pdk->dk_openlock);
580 1.2 thorpej pdk->dk_nwedges--;
581 1.2 thorpej LIST_REMOVE(sc, sc_plink);
582 1.27 ad mutex_exit(&pdk->dk_openlock);
583 1.2 thorpej
584 1.93 mlelstv mutex_destroy(&sc->sc_iolock);
585 1.9 yamt bufq_free(sc->sc_bufq);
586 1.135 riastrad dkwedge_size_fini(sc);
587 1.2 thorpej free(sc, M_DKWEDGE);
588 1.128 riastrad return ENOMEM;
589 1.2 thorpej }
590 1.1 thorpej
591 1.159 riastrad KASSERT(dev == sc->sc_dev);
592 1.1 thorpej
593 1.101 jmcneill announce:
594 1.1 thorpej /* Announce our arrival. */
595 1.84 jmcneill aprint_normal(
596 1.84 jmcneill "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
597 1.84 jmcneill device_xname(sc->sc_dev), pdk->dk_name,
598 1.84 jmcneill sc->sc_wname, /* XXX Unicode */
599 1.135 riastrad dkwedge_size(sc), sc->sc_offset,
600 1.84 jmcneill sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
601 1.1 thorpej
602 1.112 martin /* Return the devname to the caller. */
603 1.112 martin strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
604 1.129 riastrad sizeof(dkw->dkw_devname));
605 1.112 martin
606 1.159 riastrad device_release(sc->sc_dev);
607 1.128 riastrad return 0;
608 1.1 thorpej }
609 1.1 thorpej
610 1.1 thorpej /*
611 1.159 riastrad * dkwedge_find_acquire:
612 1.1 thorpej *
613 1.47 dyoung * Lookup a disk wedge based on the provided information.
614 1.1 thorpej * NOTE: We look up the wedge based on the wedge devname,
615 1.1 thorpej * not wname.
616 1.47 dyoung *
617 1.47 dyoung * Return NULL if the wedge is not found, otherwise return
618 1.47 dyoung * the wedge's softc. Assign the wedge's unit number to unitp
619 1.159 riastrad * if unitp is not NULL. The wedge's sc_dev is referenced and
620 1.159 riastrad * must be released by device_release or equivalent.
621 1.1 thorpej */
622 1.47 dyoung static struct dkwedge_softc *
623 1.159 riastrad dkwedge_find_acquire(struct dkwedge_info *dkw, u_int *unitp)
624 1.1 thorpej {
625 1.1 thorpej struct dkwedge_softc *sc = NULL;
626 1.1 thorpej u_int unit;
627 1.1 thorpej
628 1.1 thorpej /* Find our softc. */
629 1.1 thorpej dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
630 1.47 dyoung rw_enter(&dkwedges_lock, RW_READER);
631 1.1 thorpej for (unit = 0; unit < ndkwedges; unit++) {
632 1.1 thorpej if ((sc = dkwedges[unit]) != NULL &&
633 1.159 riastrad sc->sc_dev != NULL &&
634 1.36 cegger strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
635 1.1 thorpej strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
636 1.159 riastrad device_acquire(sc->sc_dev);
637 1.1 thorpej break;
638 1.1 thorpej }
639 1.1 thorpej }
640 1.27 ad rw_exit(&dkwedges_lock);
641 1.137 riastrad if (sc == NULL)
642 1.47 dyoung return NULL;
643 1.47 dyoung
644 1.47 dyoung if (unitp != NULL)
645 1.47 dyoung *unitp = unit;
646 1.47 dyoung
647 1.47 dyoung return sc;
648 1.47 dyoung }
649 1.47 dyoung
650 1.47 dyoung /*
651 1.47 dyoung * dkwedge_del: [exported function]
652 1.47 dyoung *
653 1.47 dyoung * Delete a disk wedge based on the provided information.
654 1.47 dyoung * NOTE: We look up the wedge based on the wedge devname,
655 1.47 dyoung * not wname.
656 1.47 dyoung */
657 1.47 dyoung int
658 1.47 dyoung dkwedge_del(struct dkwedge_info *dkw)
659 1.47 dyoung {
660 1.129 riastrad
661 1.74 mlelstv return dkwedge_del1(dkw, 0);
662 1.74 mlelstv }
663 1.74 mlelstv
664 1.74 mlelstv int
665 1.74 mlelstv dkwedge_del1(struct dkwedge_info *dkw, int flags)
666 1.74 mlelstv {
667 1.47 dyoung struct dkwedge_softc *sc = NULL;
668 1.47 dyoung
669 1.47 dyoung /* Find our softc. */
670 1.159 riastrad if ((sc = dkwedge_find_acquire(dkw, NULL)) == NULL)
671 1.128 riastrad return ESRCH;
672 1.1 thorpej
673 1.159 riastrad return config_detach_release(sc->sc_dev, flags);
674 1.47 dyoung }
675 1.47 dyoung
676 1.47 dyoung /*
677 1.47 dyoung * dkwedge_detach:
678 1.47 dyoung *
679 1.47 dyoung * Autoconfiguration detach function for pseudo-device glue.
680 1.47 dyoung */
681 1.47 dyoung static int
682 1.47 dyoung dkwedge_detach(device_t self, int flags)
683 1.47 dyoung {
684 1.159 riastrad struct dkwedge_softc *const sc = device_private(self);
685 1.159 riastrad const u_int unit = device_unit(self);
686 1.159 riastrad int bmaj, cmaj, error;
687 1.47 dyoung
688 1.159 riastrad error = disk_begindetach(&sc->sc_dk, /*lastclose*/NULL, self, flags);
689 1.159 riastrad if (error)
690 1.159 riastrad return error;
691 1.47 dyoung
692 1.159 riastrad /* Mark the wedge as dying. */
693 1.159 riastrad sc->sc_state = DKW_STATE_DYING;
694 1.47 dyoung
695 1.47 dyoung pmf_device_deregister(self);
696 1.1 thorpej
697 1.1 thorpej /* Kill any pending restart. */
698 1.142 riastrad mutex_enter(&sc->sc_iolock);
699 1.142 riastrad sc->sc_iostop = true;
700 1.142 riastrad mutex_exit(&sc->sc_iolock);
701 1.142 riastrad callout_halt(&sc->sc_restart_ch, NULL);
702 1.1 thorpej
703 1.148 riastrad /* Locate the wedge major numbers. */
704 1.148 riastrad bmaj = bdevsw_lookup_major(&dk_bdevsw);
705 1.148 riastrad cmaj = cdevsw_lookup_major(&dk_cdevsw);
706 1.148 riastrad
707 1.1 thorpej /* Nuke the vnodes for any open instances. */
708 1.14 thorpej vdevgone(bmaj, unit, unit, VBLK);
709 1.14 thorpej vdevgone(cmaj, unit, unit, VCHR);
710 1.1 thorpej
711 1.143 riastrad /*
712 1.143 riastrad * At this point, all block device opens have been closed,
713 1.143 riastrad * synchronously flushing any buffered writes; and all
714 1.143 riastrad * character device I/O operations have completed
715 1.143 riastrad * synchronously, and character device opens have been closed.
716 1.143 riastrad *
717 1.143 riastrad * So there can be no more opens or queued buffers by now.
718 1.143 riastrad */
719 1.143 riastrad KASSERT(sc->sc_dk.dk_openmask == 0);
720 1.143 riastrad KASSERT(bufq_peek(sc->sc_bufq) == NULL);
721 1.143 riastrad bufq_drain(sc->sc_bufq);
722 1.1 thorpej
723 1.1 thorpej /* Announce our departure. */
724 1.36 cegger aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
725 1.1 thorpej sc->sc_parent->dk_name,
726 1.1 thorpej sc->sc_wname); /* XXX Unicode */
727 1.1 thorpej
728 1.27 ad mutex_enter(&sc->sc_parent->dk_openlock);
729 1.1 thorpej sc->sc_parent->dk_nwedges--;
730 1.1 thorpej LIST_REMOVE(sc, sc_plink);
731 1.27 ad mutex_exit(&sc->sc_parent->dk_openlock);
732 1.1 thorpej
733 1.1 thorpej /* Delete our buffer queue. */
734 1.9 yamt bufq_free(sc->sc_bufq);
735 1.1 thorpej
736 1.1 thorpej /* Detach from the disk list. */
737 1.1 thorpej disk_detach(&sc->sc_dk);
738 1.39 plunky disk_destroy(&sc->sc_dk);
739 1.1 thorpej
740 1.1 thorpej /* Poof. */
741 1.27 ad rw_enter(&dkwedges_lock, RW_WRITER);
742 1.139 riastrad KASSERT(dkwedges[unit] == sc);
743 1.1 thorpej dkwedges[unit] = NULL;
744 1.1 thorpej sc->sc_state = DKW_STATE_DEAD;
745 1.27 ad rw_exit(&dkwedges_lock);
746 1.1 thorpej
747 1.92 mlelstv mutex_destroy(&sc->sc_iolock);
748 1.135 riastrad dkwedge_size_fini(sc);
749 1.92 mlelstv
750 1.1 thorpej free(sc, M_DKWEDGE);
751 1.1 thorpej
752 1.47 dyoung return 0;
753 1.1 thorpej }
754 1.1 thorpej
755 1.1 thorpej /*
756 1.1 thorpej * dkwedge_delall: [exported function]
757 1.1 thorpej *
758 1.154 riastrad * Forcibly delete all of the wedges on the specified disk. Used
759 1.154 riastrad * when a disk is being detached.
760 1.1 thorpej */
761 1.1 thorpej void
762 1.1 thorpej dkwedge_delall(struct disk *pdk)
763 1.1 thorpej {
764 1.129 riastrad
765 1.154 riastrad dkwedge_delall1(pdk, /*idleonly*/false);
766 1.154 riastrad }
767 1.154 riastrad
768 1.154 riastrad /*
769 1.154 riastrad * dkwedge_delidle: [exported function]
770 1.154 riastrad *
771 1.154 riastrad * Delete all of the wedges on the specified disk if idle. Used
772 1.154 riastrad * by ioctl(DIOCRMWEDGES).
773 1.154 riastrad */
774 1.154 riastrad void
775 1.154 riastrad dkwedge_delidle(struct disk *pdk)
776 1.154 riastrad {
777 1.154 riastrad
778 1.154 riastrad dkwedge_delall1(pdk, /*idleonly*/true);
779 1.74 mlelstv }
780 1.74 mlelstv
781 1.74 mlelstv static void
782 1.74 mlelstv dkwedge_delall1(struct disk *pdk, bool idleonly)
783 1.74 mlelstv {
784 1.1 thorpej struct dkwedge_softc *sc;
785 1.74 mlelstv int flags;
786 1.74 mlelstv
787 1.74 mlelstv flags = DETACH_QUIET;
788 1.129 riastrad if (!idleonly)
789 1.129 riastrad flags |= DETACH_FORCE;
790 1.1 thorpej
791 1.1 thorpej for (;;) {
792 1.149 riastrad mutex_enter(&pdk->dk_rawlock); /* for sc->sc_dk.dk_openmask */
793 1.27 ad mutex_enter(&pdk->dk_openlock);
794 1.74 mlelstv LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
795 1.162 riastrad /*
796 1.162 riastrad * Wedge is not yet created. This is a race --
797 1.162 riastrad * it may as well have been added just after we
798 1.162 riastrad * deleted all the wedges, so pretend it's not
799 1.162 riastrad * here yet.
800 1.162 riastrad */
801 1.162 riastrad if (sc->sc_dev == NULL)
802 1.162 riastrad continue;
803 1.162 riastrad if (!idleonly || sc->sc_dk.dk_openmask == 0) {
804 1.162 riastrad device_acquire(sc->sc_dev);
805 1.74 mlelstv break;
806 1.162 riastrad }
807 1.74 mlelstv }
808 1.74 mlelstv if (sc == NULL) {
809 1.74 mlelstv KASSERT(idleonly || pdk->dk_nwedges == 0);
810 1.27 ad mutex_exit(&pdk->dk_openlock);
811 1.149 riastrad mutex_exit(&pdk->dk_rawlock);
812 1.1 thorpej return;
813 1.1 thorpej }
814 1.27 ad mutex_exit(&pdk->dk_openlock);
815 1.149 riastrad mutex_exit(&pdk->dk_rawlock);
816 1.162 riastrad (void)config_detach_release(sc->sc_dev, flags);
817 1.1 thorpej }
818 1.1 thorpej }
819 1.1 thorpej
820 1.1 thorpej /*
821 1.1 thorpej * dkwedge_list: [exported function]
822 1.1 thorpej *
823 1.1 thorpej * List all of the wedges on a particular disk.
824 1.1 thorpej */
825 1.1 thorpej int
826 1.10 christos dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
827 1.1 thorpej {
828 1.1 thorpej struct uio uio;
829 1.1 thorpej struct iovec iov;
830 1.1 thorpej struct dkwedge_softc *sc;
831 1.1 thorpej struct dkwedge_info dkw;
832 1.1 thorpej int error = 0;
833 1.1 thorpej
834 1.1 thorpej iov.iov_base = dkwl->dkwl_buf;
835 1.1 thorpej iov.iov_len = dkwl->dkwl_bufsize;
836 1.1 thorpej
837 1.1 thorpej uio.uio_iov = &iov;
838 1.1 thorpej uio.uio_iovcnt = 1;
839 1.1 thorpej uio.uio_offset = 0;
840 1.1 thorpej uio.uio_resid = dkwl->dkwl_bufsize;
841 1.1 thorpej uio.uio_rw = UIO_READ;
842 1.51 pooka KASSERT(l == curlwp);
843 1.51 pooka uio.uio_vmspace = l->l_proc->p_vmspace;
844 1.1 thorpej
845 1.1 thorpej dkwl->dkwl_ncopied = 0;
846 1.1 thorpej
847 1.27 ad mutex_enter(&pdk->dk_openlock);
848 1.1 thorpej LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
849 1.1 thorpej if (uio.uio_resid < sizeof(dkw))
850 1.1 thorpej break;
851 1.1 thorpej
852 1.163 riastrad if (sc->sc_dev == NULL)
853 1.1 thorpej continue;
854 1.1 thorpej
855 1.36 cegger strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
856 1.129 riastrad sizeof(dkw.dkw_devname));
857 1.1 thorpej memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
858 1.1 thorpej dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
859 1.94 maya strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
860 1.94 maya sizeof(dkw.dkw_parent));
861 1.1 thorpej dkw.dkw_offset = sc->sc_offset;
862 1.135 riastrad dkw.dkw_size = dkwedge_size(sc);
863 1.94 maya strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
864 1.1 thorpej
865 1.164 riastrad /*
866 1.164 riastrad * Acquire a device reference so this wedge doesn't go
867 1.164 riastrad * away before our next iteration in LIST_FOREACH, and
868 1.164 riastrad * then release the lock for uiomove.
869 1.164 riastrad */
870 1.164 riastrad device_acquire(sc->sc_dev);
871 1.164 riastrad mutex_exit(&pdk->dk_openlock);
872 1.1 thorpej error = uiomove(&dkw, sizeof(dkw), &uio);
873 1.164 riastrad mutex_enter(&pdk->dk_openlock);
874 1.164 riastrad device_release(sc->sc_dev);
875 1.1 thorpej if (error)
876 1.1 thorpej break;
877 1.164 riastrad
878 1.1 thorpej dkwl->dkwl_ncopied++;
879 1.1 thorpej }
880 1.1 thorpej dkwl->dkwl_nwedges = pdk->dk_nwedges;
881 1.27 ad mutex_exit(&pdk->dk_openlock);
882 1.1 thorpej
883 1.128 riastrad return error;
884 1.1 thorpej }
885 1.1 thorpej
886 1.165 riastrad static device_t
887 1.165 riastrad dkwedge_find_by_wname_acquire(const char *wname)
888 1.25 dyoung {
889 1.25 dyoung device_t dv = NULL;
890 1.25 dyoung struct dkwedge_softc *sc;
891 1.25 dyoung int i;
892 1.25 dyoung
893 1.145 riastrad rw_enter(&dkwedges_lock, RW_READER);
894 1.25 dyoung for (i = 0; i < ndkwedges; i++) {
895 1.163 riastrad if ((sc = dkwedges[i]) == NULL || sc->sc_dev == NULL)
896 1.25 dyoung continue;
897 1.25 dyoung if (strcmp(sc->sc_wname, wname) == 0) {
898 1.25 dyoung if (dv != NULL) {
899 1.25 dyoung printf(
900 1.25 dyoung "WARNING: double match for wedge name %s "
901 1.25 dyoung "(%s, %s)\n", wname, device_xname(dv),
902 1.25 dyoung device_xname(sc->sc_dev));
903 1.25 dyoung continue;
904 1.25 dyoung }
905 1.165 riastrad device_acquire(sc->sc_dev);
906 1.25 dyoung dv = sc->sc_dev;
907 1.25 dyoung }
908 1.25 dyoung }
909 1.27 ad rw_exit(&dkwedges_lock);
910 1.25 dyoung return dv;
911 1.25 dyoung }
912 1.25 dyoung
913 1.165 riastrad static device_t
914 1.165 riastrad dkwedge_find_by_parent_acquire(const char *name, size_t *i)
915 1.89 christos {
916 1.129 riastrad
917 1.145 riastrad rw_enter(&dkwedges_lock, RW_READER);
918 1.89 christos for (; *i < (size_t)ndkwedges; (*i)++) {
919 1.89 christos struct dkwedge_softc *sc;
920 1.163 riastrad if ((sc = dkwedges[*i]) == NULL || sc->sc_dev == NULL)
921 1.89 christos continue;
922 1.89 christos if (strcmp(sc->sc_parent->dk_name, name) != 0)
923 1.89 christos continue;
924 1.165 riastrad device_acquire(sc->sc_dev);
925 1.89 christos rw_exit(&dkwedges_lock);
926 1.89 christos return sc->sc_dev;
927 1.89 christos }
928 1.89 christos rw_exit(&dkwedges_lock);
929 1.89 christos return NULL;
930 1.89 christos }
931 1.89 christos
932 1.165 riastrad /* XXX unsafe */
933 1.165 riastrad device_t
934 1.165 riastrad dkwedge_find_by_wname(const char *wname)
935 1.165 riastrad {
936 1.165 riastrad device_t dv;
937 1.165 riastrad
938 1.165 riastrad if ((dv = dkwedge_find_by_wname_acquire(wname)) == NULL)
939 1.165 riastrad return NULL;
940 1.165 riastrad device_release(dv);
941 1.165 riastrad return dv;
942 1.165 riastrad }
943 1.165 riastrad
944 1.165 riastrad /* XXX unsafe */
945 1.165 riastrad device_t
946 1.165 riastrad dkwedge_find_by_parent(const char *name, size_t *i)
947 1.165 riastrad {
948 1.165 riastrad device_t dv;
949 1.165 riastrad
950 1.165 riastrad if ((dv = dkwedge_find_by_parent_acquire(name, i)) == NULL)
951 1.165 riastrad return NULL;
952 1.165 riastrad device_release(dv);
953 1.165 riastrad return dv;
954 1.165 riastrad }
955 1.165 riastrad
956 1.25 dyoung void
957 1.25 dyoung dkwedge_print_wnames(void)
958 1.25 dyoung {
959 1.25 dyoung struct dkwedge_softc *sc;
960 1.25 dyoung int i;
961 1.25 dyoung
962 1.145 riastrad rw_enter(&dkwedges_lock, RW_READER);
963 1.25 dyoung for (i = 0; i < ndkwedges; i++) {
964 1.163 riastrad if ((sc = dkwedges[i]) == NULL || sc->sc_dev == NULL)
965 1.25 dyoung continue;
966 1.25 dyoung printf(" wedge:%s", sc->sc_wname);
967 1.25 dyoung }
968 1.27 ad rw_exit(&dkwedges_lock);
969 1.25 dyoung }
970 1.25 dyoung
971 1.1 thorpej /*
972 1.18 uebayasi * We need a dummy object to stuff into the dkwedge discovery method link
973 1.1 thorpej * set to ensure that there is always at least one object in the set.
974 1.1 thorpej */
975 1.1 thorpej static struct dkwedge_discovery_method dummy_discovery_method;
976 1.1 thorpej __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
977 1.1 thorpej
978 1.1 thorpej /*
979 1.27 ad * dkwedge_init:
980 1.1 thorpej *
981 1.27 ad * Initialize the disk wedge subsystem.
982 1.1 thorpej */
983 1.27 ad void
984 1.27 ad dkwedge_init(void)
985 1.1 thorpej {
986 1.1 thorpej __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
987 1.1 thorpej struct dkwedge_discovery_method * const *ddmp;
988 1.1 thorpej struct dkwedge_discovery_method *lddm, *ddm;
989 1.1 thorpej
990 1.27 ad rw_init(&dkwedges_lock);
991 1.27 ad rw_init(&dkwedge_discovery_methods_lock);
992 1.27 ad
993 1.27 ad if (config_cfdriver_attach(&dk_cd) != 0)
994 1.27 ad panic("dkwedge: unable to attach cfdriver");
995 1.27 ad if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
996 1.27 ad panic("dkwedge: unable to attach cfattach");
997 1.1 thorpej
998 1.27 ad rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
999 1.1 thorpej
1000 1.1 thorpej LIST_INIT(&dkwedge_discovery_methods);
1001 1.1 thorpej
1002 1.1 thorpej __link_set_foreach(ddmp, dkwedge_methods) {
1003 1.1 thorpej ddm = *ddmp;
1004 1.1 thorpej if (ddm == &dummy_discovery_method)
1005 1.1 thorpej continue;
1006 1.1 thorpej if (LIST_EMPTY(&dkwedge_discovery_methods)) {
1007 1.1 thorpej LIST_INSERT_HEAD(&dkwedge_discovery_methods,
1008 1.129 riastrad ddm, ddm_list);
1009 1.1 thorpej continue;
1010 1.1 thorpej }
1011 1.1 thorpej LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
1012 1.1 thorpej if (ddm->ddm_priority == lddm->ddm_priority) {
1013 1.1 thorpej aprint_error("dk-method-%s: method \"%s\" "
1014 1.1 thorpej "already exists at priority %d\n",
1015 1.1 thorpej ddm->ddm_name, lddm->ddm_name,
1016 1.1 thorpej lddm->ddm_priority);
1017 1.1 thorpej /* Not inserted. */
1018 1.1 thorpej break;
1019 1.1 thorpej }
1020 1.1 thorpej if (ddm->ddm_priority < lddm->ddm_priority) {
1021 1.1 thorpej /* Higher priority; insert before. */
1022 1.1 thorpej LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
1023 1.1 thorpej break;
1024 1.1 thorpej }
1025 1.1 thorpej if (LIST_NEXT(lddm, ddm_list) == NULL) {
1026 1.1 thorpej /* Last one; insert after. */
1027 1.1 thorpej KASSERT(lddm->ddm_priority < ddm->ddm_priority);
1028 1.1 thorpej LIST_INSERT_AFTER(lddm, ddm, ddm_list);
1029 1.1 thorpej break;
1030 1.1 thorpej }
1031 1.1 thorpej }
1032 1.1 thorpej }
1033 1.1 thorpej
1034 1.27 ad rw_exit(&dkwedge_discovery_methods_lock);
1035 1.1 thorpej }
1036 1.1 thorpej
1037 1.1 thorpej #ifdef DKWEDGE_AUTODISCOVER
1038 1.1 thorpej int dkwedge_autodiscover = 1;
1039 1.1 thorpej #else
1040 1.1 thorpej int dkwedge_autodiscover = 0;
1041 1.1 thorpej #endif
1042 1.1 thorpej
1043 1.1 thorpej /*
1044 1.1 thorpej * dkwedge_discover: [exported function]
1045 1.1 thorpej *
1046 1.1 thorpej * Discover the wedges on a newly attached disk.
1047 1.74 mlelstv * Remove all unused wedges on the disk first.
1048 1.1 thorpej */
1049 1.1 thorpej void
1050 1.1 thorpej dkwedge_discover(struct disk *pdk)
1051 1.1 thorpej {
1052 1.1 thorpej struct dkwedge_discovery_method *ddm;
1053 1.1 thorpej struct vnode *vp;
1054 1.1 thorpej int error;
1055 1.1 thorpej dev_t pdev;
1056 1.1 thorpej
1057 1.1 thorpej /*
1058 1.1 thorpej * Require people playing with wedges to enable this explicitly.
1059 1.1 thorpej */
1060 1.1 thorpej if (dkwedge_autodiscover == 0)
1061 1.1 thorpej return;
1062 1.1 thorpej
1063 1.27 ad rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
1064 1.1 thorpej
1065 1.74 mlelstv /*
1066 1.74 mlelstv * Use the character device for scanning, the block device
1067 1.74 mlelstv * is busy if there are already wedges attached.
1068 1.74 mlelstv */
1069 1.74 mlelstv error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
1070 1.1 thorpej if (error) {
1071 1.1 thorpej aprint_error("%s: unable to compute pdev, error = %d\n",
1072 1.1 thorpej pdk->dk_name, error);
1073 1.1 thorpej goto out;
1074 1.1 thorpej }
1075 1.1 thorpej
1076 1.74 mlelstv error = cdevvp(pdev, &vp);
1077 1.1 thorpej if (error) {
1078 1.1 thorpej aprint_error("%s: unable to find vnode for pdev, error = %d\n",
1079 1.1 thorpej pdk->dk_name, error);
1080 1.1 thorpej goto out;
1081 1.1 thorpej }
1082 1.1 thorpej
1083 1.1 thorpej error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1084 1.1 thorpej if (error) {
1085 1.1 thorpej aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
1086 1.1 thorpej pdk->dk_name, error);
1087 1.1 thorpej vrele(vp);
1088 1.1 thorpej goto out;
1089 1.1 thorpej }
1090 1.1 thorpej
1091 1.62 jmcneill error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
1092 1.1 thorpej if (error) {
1093 1.132 riastrad if (error != ENXIO)
1094 1.67 soren aprint_error("%s: unable to open device, error = %d\n",
1095 1.67 soren pdk->dk_name, error);
1096 1.1 thorpej vput(vp);
1097 1.1 thorpej goto out;
1098 1.1 thorpej }
1099 1.56 hannken VOP_UNLOCK(vp);
1100 1.1 thorpej
1101 1.1 thorpej /*
1102 1.74 mlelstv * Remove unused wedges
1103 1.74 mlelstv */
1104 1.154 riastrad dkwedge_delidle(pdk);
1105 1.74 mlelstv
1106 1.74 mlelstv /*
1107 1.1 thorpej * For each supported partition map type, look to see if
1108 1.1 thorpej * this map type exists. If so, parse it and add the
1109 1.1 thorpej * corresponding wedges.
1110 1.1 thorpej */
1111 1.1 thorpej LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
1112 1.1 thorpej error = (*ddm->ddm_discover)(pdk, vp);
1113 1.1 thorpej if (error == 0) {
1114 1.1 thorpej /* Successfully created wedges; we're done. */
1115 1.1 thorpej break;
1116 1.1 thorpej }
1117 1.1 thorpej }
1118 1.1 thorpej
1119 1.35 ad error = vn_close(vp, FREAD, NOCRED);
1120 1.1 thorpej if (error) {
1121 1.1 thorpej aprint_error("%s: unable to close device, error = %d\n",
1122 1.1 thorpej pdk->dk_name, error);
1123 1.1 thorpej /* We'll just assume the vnode has been cleaned up. */
1124 1.1 thorpej }
1125 1.75 mlelstv
1126 1.129 riastrad out:
1127 1.27 ad rw_exit(&dkwedge_discovery_methods_lock);
1128 1.1 thorpej }
1129 1.1 thorpej
1130 1.1 thorpej /*
1131 1.1 thorpej * dkwedge_read:
1132 1.1 thorpej *
1133 1.37 agc * Read some data from the specified disk, used for
1134 1.1 thorpej * partition discovery.
1135 1.1 thorpej */
1136 1.1 thorpej int
1137 1.20 christos dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
1138 1.19 christos void *tbuf, size_t len)
1139 1.1 thorpej {
1140 1.74 mlelstv buf_t *bp;
1141 1.81 mlelstv int error;
1142 1.82 mlelstv bool isopen;
1143 1.82 mlelstv dev_t bdev;
1144 1.83 pooka struct vnode *bdvp;
1145 1.74 mlelstv
1146 1.74 mlelstv /*
1147 1.74 mlelstv * The kernel cannot read from a character device vnode
1148 1.74 mlelstv * as physio() only handles user memory.
1149 1.74 mlelstv *
1150 1.82 mlelstv * If the block device has already been opened by a wedge
1151 1.82 mlelstv * use that vnode and temporarily bump the open counter.
1152 1.82 mlelstv *
1153 1.82 mlelstv * Otherwise try to open the block device.
1154 1.74 mlelstv */
1155 1.1 thorpej
1156 1.82 mlelstv bdev = devsw_chr2blk(vp->v_rdev);
1157 1.82 mlelstv
1158 1.82 mlelstv mutex_enter(&pdk->dk_rawlock);
1159 1.82 mlelstv if (pdk->dk_rawopens != 0) {
1160 1.82 mlelstv KASSERT(pdk->dk_rawvp != NULL);
1161 1.82 mlelstv isopen = true;
1162 1.82 mlelstv ++pdk->dk_rawopens;
1163 1.83 pooka bdvp = pdk->dk_rawvp;
1164 1.87 mlelstv error = 0;
1165 1.82 mlelstv } else {
1166 1.82 mlelstv isopen = false;
1167 1.87 mlelstv error = dk_open_parent(bdev, FREAD, &bdvp);
1168 1.82 mlelstv }
1169 1.82 mlelstv mutex_exit(&pdk->dk_rawlock);
1170 1.82 mlelstv
1171 1.87 mlelstv if (error)
1172 1.87 mlelstv return error;
1173 1.82 mlelstv
1174 1.83 pooka bp = getiobuf(bdvp, true);
1175 1.41 ad bp->b_flags = B_READ;
1176 1.74 mlelstv bp->b_cflags = BC_BUSY;
1177 1.82 mlelstv bp->b_dev = bdev;
1178 1.41 ad bp->b_data = tbuf;
1179 1.75 mlelstv bp->b_bufsize = bp->b_bcount = len;
1180 1.74 mlelstv bp->b_blkno = blkno;
1181 1.75 mlelstv bp->b_cylinder = 0;
1182 1.75 mlelstv bp->b_error = 0;
1183 1.74 mlelstv
1184 1.83 pooka VOP_STRATEGY(bdvp, bp);
1185 1.74 mlelstv error = biowait(bp);
1186 1.41 ad putiobuf(bp);
1187 1.1 thorpej
1188 1.82 mlelstv mutex_enter(&pdk->dk_rawlock);
1189 1.82 mlelstv if (isopen) {
1190 1.82 mlelstv --pdk->dk_rawopens;
1191 1.82 mlelstv } else {
1192 1.83 pooka dk_close_parent(bdvp, FREAD);
1193 1.82 mlelstv }
1194 1.82 mlelstv mutex_exit(&pdk->dk_rawlock);
1195 1.74 mlelstv
1196 1.74 mlelstv return error;
1197 1.1 thorpej }
1198 1.1 thorpej
1199 1.1 thorpej /*
1200 1.1 thorpej * dkwedge_lookup:
1201 1.1 thorpej *
1202 1.1 thorpej * Look up a dkwedge_softc based on the provided dev_t.
1203 1.159 riastrad *
1204 1.159 riastrad * Caller must guarantee the wedge is referenced.
1205 1.1 thorpej */
1206 1.1 thorpej static struct dkwedge_softc *
1207 1.1 thorpej dkwedge_lookup(dev_t dev)
1208 1.1 thorpej {
1209 1.1 thorpej
1210 1.161 riastrad return device_lookup_private(&dk_cd, minor(dev));
1211 1.1 thorpej }
1212 1.1 thorpej
1213 1.166 riastrad static struct dkwedge_softc *
1214 1.166 riastrad dkwedge_lookup_acquire(dev_t dev)
1215 1.166 riastrad {
1216 1.166 riastrad device_t dv = device_lookup_acquire(&dk_cd, minor(dev));
1217 1.166 riastrad
1218 1.166 riastrad if (dv == NULL)
1219 1.166 riastrad return NULL;
1220 1.166 riastrad return device_private(dv);
1221 1.166 riastrad }
1222 1.166 riastrad
1223 1.87 mlelstv static int
1224 1.87 mlelstv dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
1225 1.82 mlelstv {
1226 1.82 mlelstv struct vnode *vp;
1227 1.82 mlelstv int error;
1228 1.82 mlelstv
1229 1.82 mlelstv error = bdevvp(dev, &vp);
1230 1.82 mlelstv if (error)
1231 1.87 mlelstv return error;
1232 1.82 mlelstv
1233 1.82 mlelstv error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1234 1.82 mlelstv if (error) {
1235 1.82 mlelstv vrele(vp);
1236 1.87 mlelstv return error;
1237 1.82 mlelstv }
1238 1.82 mlelstv error = VOP_OPEN(vp, mode, NOCRED);
1239 1.82 mlelstv if (error) {
1240 1.82 mlelstv vput(vp);
1241 1.87 mlelstv return error;
1242 1.82 mlelstv }
1243 1.82 mlelstv
1244 1.82 mlelstv /* VOP_OPEN() doesn't do this for us. */
1245 1.82 mlelstv if (mode & FWRITE) {
1246 1.82 mlelstv mutex_enter(vp->v_interlock);
1247 1.82 mlelstv vp->v_writecount++;
1248 1.82 mlelstv mutex_exit(vp->v_interlock);
1249 1.82 mlelstv }
1250 1.82 mlelstv
1251 1.82 mlelstv VOP_UNLOCK(vp);
1252 1.82 mlelstv
1253 1.87 mlelstv *vpp = vp;
1254 1.87 mlelstv
1255 1.87 mlelstv return 0;
1256 1.82 mlelstv }
1257 1.82 mlelstv
1258 1.82 mlelstv static int
1259 1.82 mlelstv dk_close_parent(struct vnode *vp, int mode)
1260 1.82 mlelstv {
1261 1.82 mlelstv int error;
1262 1.82 mlelstv
1263 1.82 mlelstv error = vn_close(vp, mode, NOCRED);
1264 1.82 mlelstv return error;
1265 1.82 mlelstv }
1266 1.82 mlelstv
1267 1.1 thorpej /*
1268 1.1 thorpej * dkopen: [devsw entry point]
1269 1.1 thorpej *
1270 1.1 thorpej * Open a wedge.
1271 1.1 thorpej */
1272 1.1 thorpej static int
1273 1.20 christos dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
1274 1.1 thorpej {
1275 1.1 thorpej struct dkwedge_softc *sc = dkwedge_lookup(dev);
1276 1.14 thorpej int error = 0;
1277 1.1 thorpej
1278 1.1 thorpej if (sc == NULL)
1279 1.132 riastrad return ENXIO;
1280 1.167 riastrad KASSERT(sc->sc_dev != NULL);
1281 1.167 riastrad KASSERT(sc->sc_state == DKW_STATE_RUNNING);
1282 1.1 thorpej
1283 1.1 thorpej /*
1284 1.1 thorpej * We go through a complicated little dance to only open the parent
1285 1.1 thorpej * vnode once per wedge, no matter how many times the wedge is
1286 1.1 thorpej * opened. The reason? We see one dkopen() per open call, but
1287 1.1 thorpej * only dkclose() on the last close.
1288 1.1 thorpej */
1289 1.27 ad mutex_enter(&sc->sc_dk.dk_openlock);
1290 1.27 ad mutex_enter(&sc->sc_parent->dk_rawlock);
1291 1.3 thorpej if (sc->sc_dk.dk_openmask == 0) {
1292 1.118 riastrad error = dkfirstopen(sc, flags);
1293 1.118 riastrad if (error)
1294 1.152 riastrad goto out;
1295 1.157 riastrad } else if (flags & ~sc->sc_mode & FWRITE) {
1296 1.157 riastrad /*
1297 1.157 riastrad * The parent is already open, but the previous attempt
1298 1.157 riastrad * to open it read/write failed and fell back to
1299 1.157 riastrad * read-only. In that case, we assume the medium is
1300 1.157 riastrad * read-only and fail to open the wedge read/write.
1301 1.157 riastrad */
1302 1.103 mlelstv error = EROFS;
1303 1.152 riastrad goto out;
1304 1.1 thorpej }
1305 1.157 riastrad KASSERT(sc->sc_mode != 0);
1306 1.157 riastrad KASSERTMSG(sc->sc_mode & FREAD, "%s: sc_mode=%x",
1307 1.157 riastrad device_xname(sc->sc_dev), sc->sc_mode);
1308 1.157 riastrad KASSERTMSG((flags & FWRITE) ? (sc->sc_mode & FWRITE) : 1,
1309 1.157 riastrad "%s: flags=%x sc_mode=%x",
1310 1.157 riastrad device_xname(sc->sc_dev), flags, sc->sc_mode);
1311 1.17 dbj if (fmt == S_IFCHR)
1312 1.17 dbj sc->sc_dk.dk_copenmask |= 1;
1313 1.17 dbj else
1314 1.17 dbj sc->sc_dk.dk_bopenmask |= 1;
1315 1.17 dbj sc->sc_dk.dk_openmask =
1316 1.17 dbj sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1317 1.1 thorpej
1318 1.152 riastrad out: mutex_exit(&sc->sc_parent->dk_rawlock);
1319 1.27 ad mutex_exit(&sc->sc_dk.dk_openlock);
1320 1.128 riastrad return error;
1321 1.1 thorpej }
1322 1.1 thorpej
1323 1.46 dyoung static int
1324 1.118 riastrad dkfirstopen(struct dkwedge_softc *sc, int flags)
1325 1.118 riastrad {
1326 1.118 riastrad struct dkwedge_softc *nsc;
1327 1.118 riastrad struct vnode *vp;
1328 1.118 riastrad int mode;
1329 1.118 riastrad int error;
1330 1.118 riastrad
1331 1.118 riastrad KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
1332 1.118 riastrad KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
1333 1.118 riastrad
1334 1.118 riastrad if (sc->sc_parent->dk_rawopens == 0) {
1335 1.118 riastrad KASSERT(sc->sc_parent->dk_rawvp == NULL);
1336 1.118 riastrad /*
1337 1.118 riastrad * Try open read-write. If this fails for EROFS
1338 1.118 riastrad * and wedge is read-only, retry to open read-only.
1339 1.118 riastrad */
1340 1.118 riastrad mode = FREAD | FWRITE;
1341 1.118 riastrad error = dk_open_parent(sc->sc_pdev, mode, &vp);
1342 1.118 riastrad if (error == EROFS && (flags & FWRITE) == 0) {
1343 1.118 riastrad mode &= ~FWRITE;
1344 1.118 riastrad error = dk_open_parent(sc->sc_pdev, mode, &vp);
1345 1.118 riastrad }
1346 1.118 riastrad if (error)
1347 1.118 riastrad return error;
1348 1.138 riastrad KASSERT(vp != NULL);
1349 1.118 riastrad sc->sc_parent->dk_rawvp = vp;
1350 1.118 riastrad } else {
1351 1.118 riastrad /*
1352 1.118 riastrad * Retrieve mode from an already opened wedge.
1353 1.125 riastrad *
1354 1.125 riastrad * At this point, dk_rawopens is bounded by the number
1355 1.125 riastrad * of dkwedge devices in the system, which is limited
1356 1.125 riastrad * by autoconf device numbering to INT_MAX. Since
1357 1.125 riastrad * dk_rawopens is unsigned, this can't overflow.
1358 1.118 riastrad */
1359 1.125 riastrad KASSERT(sc->sc_parent->dk_rawopens < UINT_MAX);
1360 1.138 riastrad KASSERT(sc->sc_parent->dk_rawvp != NULL);
1361 1.118 riastrad mode = 0;
1362 1.158 riastrad mutex_enter(&sc->sc_parent->dk_openlock);
1363 1.118 riastrad LIST_FOREACH(nsc, &sc->sc_parent->dk_wedges, sc_plink) {
1364 1.118 riastrad if (nsc == sc || nsc->sc_dk.dk_openmask == 0)
1365 1.118 riastrad continue;
1366 1.118 riastrad mode = nsc->sc_mode;
1367 1.118 riastrad break;
1368 1.118 riastrad }
1369 1.158 riastrad mutex_exit(&sc->sc_parent->dk_openlock);
1370 1.118 riastrad }
1371 1.118 riastrad sc->sc_mode = mode;
1372 1.118 riastrad sc->sc_parent->dk_rawopens++;
1373 1.118 riastrad
1374 1.118 riastrad return 0;
1375 1.118 riastrad }
1376 1.118 riastrad
1377 1.121 riastrad static void
1378 1.46 dyoung dklastclose(struct dkwedge_softc *sc)
1379 1.46 dyoung {
1380 1.104 mlelstv
1381 1.117 riastrad KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
1382 1.117 riastrad KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
1383 1.126 riastrad KASSERT(sc->sc_parent->dk_rawopens > 0);
1384 1.126 riastrad KASSERT(sc->sc_parent->dk_rawvp != NULL);
1385 1.117 riastrad
1386 1.120 riastrad if (--sc->sc_parent->dk_rawopens == 0) {
1387 1.120 riastrad struct vnode *const vp = sc->sc_parent->dk_rawvp;
1388 1.120 riastrad const int mode = sc->sc_mode;
1389 1.74 mlelstv
1390 1.120 riastrad sc->sc_parent->dk_rawvp = NULL;
1391 1.120 riastrad sc->sc_mode = 0;
1392 1.74 mlelstv
1393 1.104 mlelstv dk_close_parent(vp, mode);
1394 1.74 mlelstv }
1395 1.46 dyoung }
1396 1.46 dyoung
1397 1.46 dyoung /*
1398 1.1 thorpej * dkclose: [devsw entry point]
1399 1.1 thorpej *
1400 1.1 thorpej * Close a wedge.
1401 1.1 thorpej */
1402 1.1 thorpej static int
1403 1.20 christos dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1404 1.1 thorpej {
1405 1.1 thorpej struct dkwedge_softc *sc = dkwedge_lookup(dev);
1406 1.1 thorpej
1407 1.168 riastrad /*
1408 1.168 riastrad * dkclose can be called even if dkopen didn't succeed, so we
1409 1.168 riastrad * have to handle the same possibility that the wedge may not
1410 1.168 riastrad * exist.
1411 1.168 riastrad */
1412 1.59 christos if (sc == NULL)
1413 1.132 riastrad return ENXIO;
1414 1.168 riastrad KASSERT(sc->sc_dev != NULL);
1415 1.168 riastrad KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1416 1.168 riastrad KASSERT(sc->sc_state != DKW_STATE_DEAD);
1417 1.59 christos
1418 1.27 ad mutex_enter(&sc->sc_dk.dk_openlock);
1419 1.122 riastrad mutex_enter(&sc->sc_parent->dk_rawlock);
1420 1.1 thorpej
1421 1.123 riastrad KASSERT(sc->sc_dk.dk_openmask != 0);
1422 1.123 riastrad
1423 1.3 thorpej if (fmt == S_IFCHR)
1424 1.3 thorpej sc->sc_dk.dk_copenmask &= ~1;
1425 1.3 thorpej else
1426 1.3 thorpej sc->sc_dk.dk_bopenmask &= ~1;
1427 1.3 thorpej sc->sc_dk.dk_openmask =
1428 1.3 thorpej sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1429 1.3 thorpej
1430 1.104 mlelstv if (sc->sc_dk.dk_openmask == 0) {
1431 1.121 riastrad dklastclose(sc);
1432 1.90 mlelstv }
1433 1.1 thorpej
1434 1.122 riastrad mutex_exit(&sc->sc_parent->dk_rawlock);
1435 1.115 riastrad mutex_exit(&sc->sc_dk.dk_openlock);
1436 1.115 riastrad
1437 1.121 riastrad return 0;
1438 1.1 thorpej }
1439 1.1 thorpej
1440 1.1 thorpej /*
1441 1.141 riastrad * dkcancel: [devsw entry point]
1442 1.141 riastrad *
1443 1.141 riastrad * Cancel any pending I/O operations waiting on a wedge.
1444 1.141 riastrad */
1445 1.141 riastrad static int
1446 1.141 riastrad dkcancel(dev_t dev, int flags, int fmt, struct lwp *l)
1447 1.141 riastrad {
1448 1.141 riastrad struct dkwedge_softc *sc = dkwedge_lookup(dev);
1449 1.141 riastrad
1450 1.141 riastrad KASSERT(sc != NULL);
1451 1.141 riastrad KASSERT(sc->sc_dev != NULL);
1452 1.150 riastrad KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1453 1.150 riastrad KASSERT(sc->sc_state != DKW_STATE_DEAD);
1454 1.141 riastrad
1455 1.141 riastrad /*
1456 1.141 riastrad * Disk I/O is expected to complete or fail within a reasonable
1457 1.141 riastrad * timeframe -- it's storage, not communication. Further, the
1458 1.141 riastrad * character and block device interface guarantees that prior
1459 1.141 riastrad * reads and writes have completed or failed by the time close
1460 1.141 riastrad * returns -- we are not to cancel them here. If the parent
1461 1.141 riastrad * device's hardware is gone, the parent driver can make them
1462 1.141 riastrad * fail. Nothing for dk(4) itself to do.
1463 1.141 riastrad */
1464 1.141 riastrad
1465 1.141 riastrad return 0;
1466 1.141 riastrad }
1467 1.141 riastrad
1468 1.141 riastrad /*
1469 1.131 riastrad * dkstrategy: [devsw entry point]
1470 1.1 thorpej *
1471 1.1 thorpej * Perform I/O based on the wedge I/O strategy.
1472 1.1 thorpej */
1473 1.1 thorpej static void
1474 1.1 thorpej dkstrategy(struct buf *bp)
1475 1.1 thorpej {
1476 1.1 thorpej struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1477 1.54 mlelstv uint64_t p_size, p_offset;
1478 1.1 thorpej
1479 1.150 riastrad KASSERT(sc != NULL);
1480 1.169 riastrad KASSERT(sc->sc_dev != NULL);
1481 1.150 riastrad KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1482 1.150 riastrad KASSERT(sc->sc_state != DKW_STATE_DEAD);
1483 1.150 riastrad KASSERT(sc->sc_parent->dk_rawvp != NULL);
1484 1.1 thorpej
1485 1.1 thorpej /* If it's an empty transfer, wake up the top half now. */
1486 1.1 thorpej if (bp->b_bcount == 0)
1487 1.1 thorpej goto done;
1488 1.1 thorpej
1489 1.54 mlelstv p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1490 1.135 riastrad p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1491 1.54 mlelstv
1492 1.1 thorpej /* Make sure it's in-range. */
1493 1.54 mlelstv if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1494 1.1 thorpej goto done;
1495 1.1 thorpej
1496 1.1 thorpej /* Translate it to the parent's raw LBA. */
1497 1.54 mlelstv bp->b_rawblkno = bp->b_blkno + p_offset;
1498 1.1 thorpej
1499 1.1 thorpej /* Place it in the queue and start I/O on the unit. */
1500 1.92 mlelstv mutex_enter(&sc->sc_iolock);
1501 1.96 mlelstv disk_wait(&sc->sc_dk);
1502 1.43 yamt bufq_put(sc->sc_bufq, bp);
1503 1.92 mlelstv mutex_exit(&sc->sc_iolock);
1504 1.92 mlelstv
1505 1.1 thorpej dkstart(sc);
1506 1.1 thorpej return;
1507 1.1 thorpej
1508 1.129 riastrad done:
1509 1.1 thorpej bp->b_resid = bp->b_bcount;
1510 1.1 thorpej biodone(bp);
1511 1.1 thorpej }
1512 1.1 thorpej
1513 1.1 thorpej /*
1514 1.1 thorpej * dkstart:
1515 1.1 thorpej *
1516 1.1 thorpej * Start I/O that has been enqueued on the wedge.
1517 1.1 thorpej */
1518 1.1 thorpej static void
1519 1.1 thorpej dkstart(struct dkwedge_softc *sc)
1520 1.1 thorpej {
1521 1.32 ad struct vnode *vp;
1522 1.1 thorpej struct buf *bp, *nbp;
1523 1.1 thorpej
1524 1.92 mlelstv mutex_enter(&sc->sc_iolock);
1525 1.92 mlelstv
1526 1.1 thorpej /* Do as much work as has been enqueued. */
1527 1.43 yamt while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1528 1.142 riastrad if (sc->sc_iostop) {
1529 1.43 yamt (void) bufq_get(sc->sc_bufq);
1530 1.92 mlelstv mutex_exit(&sc->sc_iolock);
1531 1.1 thorpej bp->b_error = ENXIO;
1532 1.1 thorpej bp->b_resid = bp->b_bcount;
1533 1.1 thorpej biodone(bp);
1534 1.92 mlelstv mutex_enter(&sc->sc_iolock);
1535 1.92 mlelstv continue;
1536 1.1 thorpej }
1537 1.1 thorpej
1538 1.92 mlelstv /* fetch an I/O buf with sc_iolock dropped */
1539 1.92 mlelstv mutex_exit(&sc->sc_iolock);
1540 1.32 ad nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1541 1.92 mlelstv mutex_enter(&sc->sc_iolock);
1542 1.1 thorpej if (nbp == NULL) {
1543 1.1 thorpej /*
1544 1.1 thorpej * No resources to run this request; leave the
1545 1.1 thorpej * buffer queued up, and schedule a timer to
1546 1.1 thorpej * restart the queue in 1/2 a second.
1547 1.1 thorpej */
1548 1.142 riastrad if (!sc->sc_iostop)
1549 1.142 riastrad callout_schedule(&sc->sc_restart_ch, hz/2);
1550 1.92 mlelstv break;
1551 1.92 mlelstv }
1552 1.92 mlelstv
1553 1.92 mlelstv /*
1554 1.92 mlelstv * fetch buf, this can fail if another thread
1555 1.92 mlelstv * has already processed the queue, it can also
1556 1.92 mlelstv * return a completely different buf.
1557 1.92 mlelstv */
1558 1.92 mlelstv bp = bufq_get(sc->sc_bufq);
1559 1.92 mlelstv if (bp == NULL) {
1560 1.92 mlelstv mutex_exit(&sc->sc_iolock);
1561 1.92 mlelstv putiobuf(nbp);
1562 1.92 mlelstv mutex_enter(&sc->sc_iolock);
1563 1.92 mlelstv continue;
1564 1.1 thorpej }
1565 1.1 thorpej
1566 1.92 mlelstv /* Instrumentation. */
1567 1.92 mlelstv disk_busy(&sc->sc_dk);
1568 1.92 mlelstv
1569 1.92 mlelstv /* release lock for VOP_STRATEGY */
1570 1.92 mlelstv mutex_exit(&sc->sc_iolock);
1571 1.1 thorpej
1572 1.1 thorpej nbp->b_data = bp->b_data;
1573 1.32 ad nbp->b_flags = bp->b_flags;
1574 1.32 ad nbp->b_oflags = bp->b_oflags;
1575 1.32 ad nbp->b_cflags = bp->b_cflags;
1576 1.1 thorpej nbp->b_iodone = dkiodone;
1577 1.1 thorpej nbp->b_proc = bp->b_proc;
1578 1.1 thorpej nbp->b_blkno = bp->b_rawblkno;
1579 1.1 thorpej nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1580 1.1 thorpej nbp->b_bcount = bp->b_bcount;
1581 1.1 thorpej nbp->b_private = bp;
1582 1.1 thorpej BIO_COPYPRIO(nbp, bp);
1583 1.1 thorpej
1584 1.32 ad vp = nbp->b_vp;
1585 1.32 ad if ((nbp->b_flags & B_READ) == 0) {
1586 1.61 rmind mutex_enter(vp->v_interlock);
1587 1.32 ad vp->v_numoutput++;
1588 1.61 rmind mutex_exit(vp->v_interlock);
1589 1.32 ad }
1590 1.32 ad VOP_STRATEGY(vp, nbp);
1591 1.92 mlelstv
1592 1.92 mlelstv mutex_enter(&sc->sc_iolock);
1593 1.1 thorpej }
1594 1.92 mlelstv
1595 1.92 mlelstv mutex_exit(&sc->sc_iolock);
1596 1.1 thorpej }
1597 1.1 thorpej
1598 1.1 thorpej /*
1599 1.1 thorpej * dkiodone:
1600 1.1 thorpej *
1601 1.1 thorpej * I/O to a wedge has completed; alert the top half.
1602 1.1 thorpej */
1603 1.1 thorpej static void
1604 1.1 thorpej dkiodone(struct buf *bp)
1605 1.1 thorpej {
1606 1.1 thorpej struct buf *obp = bp->b_private;
1607 1.1 thorpej struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1608 1.1 thorpej
1609 1.169 riastrad KASSERT(sc != NULL);
1610 1.169 riastrad KASSERT(sc->sc_dev != NULL);
1611 1.169 riastrad
1612 1.28 ad if (bp->b_error != 0)
1613 1.1 thorpej obp->b_error = bp->b_error;
1614 1.1 thorpej obp->b_resid = bp->b_resid;
1615 1.11 yamt putiobuf(bp);
1616 1.1 thorpej
1617 1.92 mlelstv mutex_enter(&sc->sc_iolock);
1618 1.1 thorpej disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1619 1.1 thorpej obp->b_flags & B_READ);
1620 1.92 mlelstv mutex_exit(&sc->sc_iolock);
1621 1.1 thorpej
1622 1.1 thorpej biodone(obp);
1623 1.1 thorpej
1624 1.1 thorpej /* Kick the queue in case there is more work we can do. */
1625 1.1 thorpej dkstart(sc);
1626 1.1 thorpej }
1627 1.1 thorpej
1628 1.1 thorpej /*
1629 1.1 thorpej * dkrestart:
1630 1.1 thorpej *
1631 1.1 thorpej * Restart the work queue after it was stalled due to
1632 1.1 thorpej * a resource shortage. Invoked via a callout.
1633 1.1 thorpej */
1634 1.1 thorpej static void
1635 1.1 thorpej dkrestart(void *v)
1636 1.1 thorpej {
1637 1.1 thorpej struct dkwedge_softc *sc = v;
1638 1.1 thorpej
1639 1.1 thorpej dkstart(sc);
1640 1.1 thorpej }
1641 1.1 thorpej
1642 1.1 thorpej /*
1643 1.52 jakllsch * dkminphys:
1644 1.52 jakllsch *
1645 1.52 jakllsch * Call parent's minphys function.
1646 1.52 jakllsch */
1647 1.52 jakllsch static void
1648 1.52 jakllsch dkminphys(struct buf *bp)
1649 1.52 jakllsch {
1650 1.52 jakllsch struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1651 1.52 jakllsch dev_t dev;
1652 1.52 jakllsch
1653 1.169 riastrad KASSERT(sc != NULL);
1654 1.169 riastrad KASSERT(sc->sc_dev != NULL);
1655 1.169 riastrad
1656 1.52 jakllsch dev = bp->b_dev;
1657 1.52 jakllsch bp->b_dev = sc->sc_pdev;
1658 1.102 mlelstv if (sc->sc_parent->dk_driver && sc->sc_parent->dk_driver->d_minphys)
1659 1.102 mlelstv (*sc->sc_parent->dk_driver->d_minphys)(bp);
1660 1.102 mlelstv else
1661 1.102 mlelstv minphys(bp);
1662 1.52 jakllsch bp->b_dev = dev;
1663 1.52 jakllsch }
1664 1.52 jakllsch
1665 1.52 jakllsch /*
1666 1.1 thorpej * dkread: [devsw entry point]
1667 1.1 thorpej *
1668 1.1 thorpej * Read from a wedge.
1669 1.1 thorpej */
1670 1.1 thorpej static int
1671 1.20 christos dkread(dev_t dev, struct uio *uio, int flags)
1672 1.1 thorpej {
1673 1.150 riastrad struct dkwedge_softc *sc __diagused = dkwedge_lookup(dev);
1674 1.1 thorpej
1675 1.150 riastrad KASSERT(sc != NULL);
1676 1.169 riastrad KASSERT(sc->sc_dev != NULL);
1677 1.150 riastrad KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1678 1.150 riastrad KASSERT(sc->sc_state != DKW_STATE_DEAD);
1679 1.6 perry
1680 1.128 riastrad return physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio);
1681 1.1 thorpej }
1682 1.1 thorpej
1683 1.1 thorpej /*
1684 1.1 thorpej * dkwrite: [devsw entry point]
1685 1.1 thorpej *
1686 1.1 thorpej * Write to a wedge.
1687 1.1 thorpej */
1688 1.1 thorpej static int
1689 1.20 christos dkwrite(dev_t dev, struct uio *uio, int flags)
1690 1.1 thorpej {
1691 1.150 riastrad struct dkwedge_softc *sc __diagused = dkwedge_lookup(dev);
1692 1.1 thorpej
1693 1.150 riastrad KASSERT(sc != NULL);
1694 1.169 riastrad KASSERT(sc->sc_dev != NULL);
1695 1.150 riastrad KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1696 1.150 riastrad KASSERT(sc->sc_state != DKW_STATE_DEAD);
1697 1.6 perry
1698 1.128 riastrad return physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio);
1699 1.1 thorpej }
1700 1.1 thorpej
1701 1.1 thorpej /*
1702 1.1 thorpej * dkioctl: [devsw entry point]
1703 1.1 thorpej *
1704 1.1 thorpej * Perform an ioctl request on a wedge.
1705 1.1 thorpej */
1706 1.1 thorpej static int
1707 1.22 christos dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1708 1.1 thorpej {
1709 1.1 thorpej struct dkwedge_softc *sc = dkwedge_lookup(dev);
1710 1.1 thorpej int error = 0;
1711 1.1 thorpej
1712 1.150 riastrad KASSERT(sc != NULL);
1713 1.169 riastrad KASSERT(sc->sc_dev != NULL);
1714 1.150 riastrad KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1715 1.150 riastrad KASSERT(sc->sc_state != DKW_STATE_DEAD);
1716 1.150 riastrad KASSERT(sc->sc_parent->dk_rawvp != NULL);
1717 1.1 thorpej
1718 1.78 christos /*
1719 1.79 christos * We pass NODEV instead of our device to indicate we don't
1720 1.78 christos * want to handle disklabel ioctls
1721 1.78 christos */
1722 1.79 christos error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
1723 1.48 haad if (error != EPASSTHROUGH)
1724 1.128 riastrad return error;
1725 1.48 haad
1726 1.48 haad error = 0;
1727 1.109 simonb
1728 1.1 thorpej switch (cmd) {
1729 1.95 jdolecek case DIOCGSTRATEGY:
1730 1.95 jdolecek case DIOCGCACHE:
1731 1.4 thorpej case DIOCCACHESYNC:
1732 1.95 jdolecek error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, data, flag,
1733 1.129 riastrad l != NULL ? l->l_cred : NOCRED);
1734 1.4 thorpej break;
1735 1.129 riastrad case DIOCGWEDGEINFO: {
1736 1.130 riastrad struct dkwedge_info *dkw = data;
1737 1.1 thorpej
1738 1.36 cegger strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1739 1.129 riastrad sizeof(dkw->dkw_devname));
1740 1.1 thorpej memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1741 1.1 thorpej dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1742 1.94 maya strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
1743 1.94 maya sizeof(dkw->dkw_parent));
1744 1.1 thorpej dkw->dkw_offset = sc->sc_offset;
1745 1.135 riastrad dkw->dkw_size = dkwedge_size(sc);
1746 1.94 maya strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
1747 1.1 thorpej
1748 1.1 thorpej break;
1749 1.129 riastrad }
1750 1.129 riastrad case DIOCGSECTORALIGN: {
1751 1.100 riastrad struct disk_sectoralign *dsa = data;
1752 1.100 riastrad uint32_t r;
1753 1.100 riastrad
1754 1.100 riastrad error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, dsa, flag,
1755 1.100 riastrad l != NULL ? l->l_cred : NOCRED);
1756 1.100 riastrad if (error)
1757 1.100 riastrad break;
1758 1.1 thorpej
1759 1.100 riastrad r = sc->sc_offset % dsa->dsa_alignment;
1760 1.100 riastrad if (r < dsa->dsa_firstaligned)
1761 1.100 riastrad dsa->dsa_firstaligned = dsa->dsa_firstaligned - r;
1762 1.100 riastrad else
1763 1.100 riastrad dsa->dsa_firstaligned = (dsa->dsa_firstaligned +
1764 1.100 riastrad dsa->dsa_alignment) - r;
1765 1.100 riastrad break;
1766 1.129 riastrad }
1767 1.1 thorpej default:
1768 1.1 thorpej error = ENOTTY;
1769 1.1 thorpej }
1770 1.1 thorpej
1771 1.128 riastrad return error;
1772 1.1 thorpej }
1773 1.1 thorpej
1774 1.1 thorpej /*
1775 1.72 dholland * dkdiscard: [devsw entry point]
1776 1.72 dholland *
1777 1.72 dholland * Perform a discard-range request on a wedge.
1778 1.72 dholland */
1779 1.72 dholland static int
1780 1.72 dholland dkdiscard(dev_t dev, off_t pos, off_t len)
1781 1.72 dholland {
1782 1.72 dholland struct dkwedge_softc *sc = dkwedge_lookup(dev);
1783 1.135 riastrad uint64_t size = dkwedge_size(sc);
1784 1.73 riastrad unsigned shift;
1785 1.73 riastrad off_t offset, maxlen;
1786 1.111 hannken int error;
1787 1.72 dholland
1788 1.150 riastrad KASSERT(sc != NULL);
1789 1.169 riastrad KASSERT(sc->sc_dev != NULL);
1790 1.150 riastrad KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1791 1.150 riastrad KASSERT(sc->sc_state != DKW_STATE_DEAD);
1792 1.150 riastrad KASSERT(sc->sc_parent->dk_rawvp != NULL);
1793 1.72 dholland
1794 1.135 riastrad /* XXX check bounds on size/offset up front */
1795 1.73 riastrad shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
1796 1.135 riastrad KASSERT(__type_fit(off_t, size));
1797 1.73 riastrad KASSERT(__type_fit(off_t, sc->sc_offset));
1798 1.73 riastrad KASSERT(0 <= sc->sc_offset);
1799 1.135 riastrad KASSERT(size <= (__type_max(off_t) >> shift));
1800 1.135 riastrad KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - size));
1801 1.73 riastrad offset = ((off_t)sc->sc_offset << shift);
1802 1.135 riastrad maxlen = ((off_t)size << shift);
1803 1.73 riastrad
1804 1.73 riastrad if (len > maxlen)
1805 1.128 riastrad return EINVAL;
1806 1.73 riastrad if (pos > (maxlen - len))
1807 1.128 riastrad return EINVAL;
1808 1.73 riastrad
1809 1.73 riastrad pos += offset;
1810 1.111 hannken
1811 1.111 hannken vn_lock(sc->sc_parent->dk_rawvp, LK_EXCLUSIVE | LK_RETRY);
1812 1.111 hannken error = VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
1813 1.111 hannken VOP_UNLOCK(sc->sc_parent->dk_rawvp);
1814 1.111 hannken
1815 1.111 hannken return error;
1816 1.72 dholland }
1817 1.72 dholland
1818 1.72 dholland /*
1819 1.1 thorpej * dksize: [devsw entry point]
1820 1.1 thorpej *
1821 1.1 thorpej * Query the size of a wedge for the purpose of performing a dump
1822 1.1 thorpej * or for swapping to.
1823 1.1 thorpej */
1824 1.1 thorpej static int
1825 1.1 thorpej dksize(dev_t dev)
1826 1.1 thorpej {
1827 1.13 thorpej struct dkwedge_softc *sc = dkwedge_lookup(dev);
1828 1.106 mlelstv uint64_t p_size;
1829 1.13 thorpej int rv = -1;
1830 1.13 thorpej
1831 1.13 thorpej if (sc == NULL)
1832 1.128 riastrad return -1;
1833 1.13 thorpej if (sc->sc_state != DKW_STATE_RUNNING)
1834 1.128 riastrad return -1;
1835 1.13 thorpej
1836 1.13 thorpej /* Our content type is static, no need to open the device. */
1837 1.13 thorpej
1838 1.135 riastrad p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1839 1.13 thorpej if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1840 1.13 thorpej /* Saturate if we are larger than INT_MAX. */
1841 1.106 mlelstv if (p_size > INT_MAX)
1842 1.13 thorpej rv = INT_MAX;
1843 1.13 thorpej else
1844 1.129 riastrad rv = (int)p_size;
1845 1.13 thorpej }
1846 1.13 thorpej
1847 1.128 riastrad return rv;
1848 1.1 thorpej }
1849 1.1 thorpej
1850 1.1 thorpej /*
1851 1.1 thorpej * dkdump: [devsw entry point]
1852 1.1 thorpej *
1853 1.1 thorpej * Perform a crash dump to a wedge.
1854 1.1 thorpej */
1855 1.1 thorpej static int
1856 1.23 dyoung dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1857 1.1 thorpej {
1858 1.23 dyoung struct dkwedge_softc *sc = dkwedge_lookup(dev);
1859 1.23 dyoung const struct bdevsw *bdev;
1860 1.106 mlelstv uint64_t p_size, p_offset;
1861 1.23 dyoung
1862 1.23 dyoung if (sc == NULL)
1863 1.132 riastrad return ENXIO;
1864 1.23 dyoung if (sc->sc_state != DKW_STATE_RUNNING)
1865 1.128 riastrad return ENXIO;
1866 1.23 dyoung
1867 1.23 dyoung /* Our content type is static, no need to open the device. */
1868 1.23 dyoung
1869 1.88 mlelstv if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
1870 1.99 riastrad strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0 &&
1871 1.147 riastrad strcmp(sc->sc_ptype, DKW_PTYPE_CGD) != 0)
1872 1.147 riastrad return ENXIO;
1873 1.147 riastrad if (size % DEV_BSIZE != 0)
1874 1.147 riastrad return EINVAL;
1875 1.106 mlelstv
1876 1.106 mlelstv p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1877 1.135 riastrad p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1878 1.106 mlelstv
1879 1.129 riastrad if (blkno < 0 || blkno + size/DEV_BSIZE > p_size) {
1880 1.23 dyoung printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1881 1.106 mlelstv "p_size (%" PRIu64 ")\n", __func__, blkno,
1882 1.129 riastrad size/DEV_BSIZE, p_size);
1883 1.147 riastrad return EINVAL;
1884 1.23 dyoung }
1885 1.23 dyoung
1886 1.23 dyoung bdev = bdevsw_lookup(sc->sc_pdev);
1887 1.147 riastrad return (*bdev->d_dump)(sc->sc_pdev, blkno + p_offset, va, size);
1888 1.1 thorpej }
1889 1.49 pooka
1890 1.49 pooka /*
1891 1.49 pooka * config glue
1892 1.49 pooka */
1893 1.49 pooka
1894 1.64 mlelstv /*
1895 1.64 mlelstv * dkwedge_find_partition
1896 1.64 mlelstv *
1897 1.64 mlelstv * Find wedge corresponding to the specified parent name
1898 1.64 mlelstv * and offset/length.
1899 1.64 mlelstv */
1900 1.165 riastrad static device_t
1901 1.165 riastrad dkwedge_find_partition_acquire(device_t parent, daddr_t startblk,
1902 1.165 riastrad uint64_t nblks)
1903 1.49 pooka {
1904 1.64 mlelstv struct dkwedge_softc *sc;
1905 1.64 mlelstv int i;
1906 1.64 mlelstv device_t wedge = NULL;
1907 1.49 pooka
1908 1.64 mlelstv rw_enter(&dkwedges_lock, RW_READER);
1909 1.64 mlelstv for (i = 0; i < ndkwedges; i++) {
1910 1.163 riastrad if ((sc = dkwedges[i]) == NULL || sc->sc_dev == NULL)
1911 1.64 mlelstv continue;
1912 1.64 mlelstv if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
1913 1.64 mlelstv sc->sc_offset == startblk &&
1914 1.135 riastrad dkwedge_size(sc) == nblks) {
1915 1.64 mlelstv if (wedge) {
1916 1.64 mlelstv printf("WARNING: double match for boot wedge "
1917 1.64 mlelstv "(%s, %s)\n",
1918 1.64 mlelstv device_xname(wedge),
1919 1.64 mlelstv device_xname(sc->sc_dev));
1920 1.64 mlelstv continue;
1921 1.64 mlelstv }
1922 1.64 mlelstv wedge = sc->sc_dev;
1923 1.165 riastrad device_acquire(wedge);
1924 1.64 mlelstv }
1925 1.49 pooka }
1926 1.64 mlelstv rw_exit(&dkwedges_lock);
1927 1.49 pooka
1928 1.64 mlelstv return wedge;
1929 1.64 mlelstv }
1930 1.49 pooka
1931 1.165 riastrad /* XXX unsafe */
1932 1.165 riastrad device_t
1933 1.165 riastrad dkwedge_find_partition(device_t parent, daddr_t startblk,
1934 1.165 riastrad uint64_t nblks)
1935 1.165 riastrad {
1936 1.165 riastrad device_t dv;
1937 1.165 riastrad
1938 1.165 riastrad if ((dv = dkwedge_find_partition_acquire(parent, startblk, nblks))
1939 1.165 riastrad == NULL)
1940 1.165 riastrad return NULL;
1941 1.165 riastrad device_release(dv);
1942 1.165 riastrad return dv;
1943 1.165 riastrad }
1944 1.165 riastrad
1945 1.69 christos const char *
1946 1.69 christos dkwedge_get_parent_name(dev_t dev)
1947 1.69 christos {
1948 1.69 christos /* XXX: perhaps do this in lookup? */
1949 1.69 christos int bmaj = bdevsw_lookup_major(&dk_bdevsw);
1950 1.69 christos int cmaj = cdevsw_lookup_major(&dk_cdevsw);
1951 1.129 riastrad
1952 1.69 christos if (major(dev) != bmaj && major(dev) != cmaj)
1953 1.69 christos return NULL;
1954 1.166 riastrad
1955 1.166 riastrad struct dkwedge_softc *const sc = dkwedge_lookup_acquire(dev);
1956 1.69 christos if (sc == NULL)
1957 1.69 christos return NULL;
1958 1.166 riastrad const char *const name = sc->sc_parent->dk_name;
1959 1.166 riastrad device_release(sc->sc_dev);
1960 1.166 riastrad return name;
1961 1.69 christos }
1962