dk.c revision 1.173 1 1.173 jakllsch /* $NetBSD: dk.c,v 1.173 2025/04/13 14:01:00 jakllsch Exp $ */
2 1.1 thorpej
3 1.1 thorpej /*-
4 1.27 ad * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 1.1 thorpej * All rights reserved.
6 1.1 thorpej *
7 1.1 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.1 thorpej * by Jason R. Thorpe.
9 1.1 thorpej *
10 1.1 thorpej * Redistribution and use in source and binary forms, with or without
11 1.1 thorpej * modification, are permitted provided that the following conditions
12 1.1 thorpej * are met:
13 1.1 thorpej * 1. Redistributions of source code must retain the above copyright
14 1.1 thorpej * notice, this list of conditions and the following disclaimer.
15 1.1 thorpej * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 thorpej * notice, this list of conditions and the following disclaimer in the
17 1.1 thorpej * documentation and/or other materials provided with the distribution.
18 1.1 thorpej *
19 1.1 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 thorpej * POSSIBILITY OF SUCH DAMAGE.
30 1.1 thorpej */
31 1.1 thorpej
32 1.1 thorpej #include <sys/cdefs.h>
33 1.173 jakllsch __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.173 2025/04/13 14:01:00 jakllsch Exp $");
34 1.1 thorpej
35 1.50 pooka #ifdef _KERNEL_OPT
36 1.1 thorpej #include "opt_dkwedge.h"
37 1.50 pooka #endif
38 1.1 thorpej
39 1.1 thorpej #include <sys/param.h>
40 1.133 riastrad #include <sys/types.h>
41 1.133 riastrad
42 1.5 yamt #include <sys/buf.h>
43 1.5 yamt #include <sys/bufq.h>
44 1.133 riastrad #include <sys/callout.h>
45 1.1 thorpej #include <sys/conf.h>
46 1.133 riastrad #include <sys/device.h>
47 1.133 riastrad #include <sys/disk.h>
48 1.133 riastrad #include <sys/disklabel.h>
49 1.133 riastrad #include <sys/errno.h>
50 1.133 riastrad #include <sys/fcntl.h>
51 1.133 riastrad #include <sys/ioctl.h>
52 1.133 riastrad #include <sys/kauth.h>
53 1.1 thorpej #include <sys/kernel.h>
54 1.1 thorpej #include <sys/malloc.h>
55 1.133 riastrad #include <sys/pool.h>
56 1.133 riastrad #include <sys/proc.h>
57 1.134 riastrad #include <sys/rwlock.h>
58 1.133 riastrad #include <sys/stat.h>
59 1.133 riastrad #include <sys/systm.h>
60 1.133 riastrad #include <sys/vnode.h>
61 1.1 thorpej
62 1.1 thorpej #include <miscfs/specfs/specdev.h>
63 1.1 thorpej
64 1.1 thorpej MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
65 1.1 thorpej
66 1.1 thorpej typedef enum {
67 1.1 thorpej DKW_STATE_LARVAL = 0,
68 1.1 thorpej DKW_STATE_RUNNING = 1,
69 1.1 thorpej DKW_STATE_DYING = 2,
70 1.1 thorpej DKW_STATE_DEAD = 666
71 1.1 thorpej } dkwedge_state_t;
72 1.1 thorpej
73 1.171 riastrad /*
74 1.171 riastrad * Lock order:
75 1.171 riastrad *
76 1.171 riastrad * sc->sc_dk.dk_openlock
77 1.171 riastrad * => sc->sc_parent->dk_rawlock
78 1.171 riastrad * => sc->sc_parent->dk_openlock
79 1.171 riastrad * => dkwedges_lock
80 1.171 riastrad * => sc->sc_sizelock
81 1.171 riastrad *
82 1.171 riastrad * Locking notes:
83 1.171 riastrad *
84 1.171 riastrad * W dkwedges_lock
85 1.171 riastrad * D device reference
86 1.171 riastrad * O sc->sc_dk.dk_openlock
87 1.171 riastrad * P sc->sc_parent->dk_openlock
88 1.171 riastrad * R sc->sc_parent->dk_rawlock
89 1.171 riastrad * S sc->sc_sizelock
90 1.171 riastrad * I sc->sc_iolock
91 1.171 riastrad * $ stable after initialization
92 1.171 riastrad * 1 used only by a single thread
93 1.171 riastrad *
94 1.171 riastrad * x&y means both x and y must be held to write (with a write lock if
95 1.171 riastrad * one is rwlock), and either x or y must be held to read.
96 1.171 riastrad */
97 1.171 riastrad
98 1.1 thorpej struct dkwedge_softc {
99 1.171 riastrad device_t sc_dev; /* P&W: pointer to our pseudo-device */
100 1.171 riastrad /* sc_dev is also stable while device is referenced */
101 1.171 riastrad struct cfdata sc_cfdata; /* 1: our cfdata structure */
102 1.171 riastrad uint8_t sc_wname[128]; /* $: wedge name (Unicode, UTF-8) */
103 1.1 thorpej
104 1.1 thorpej dkwedge_state_t sc_state; /* state this wedge is in */
105 1.171 riastrad /* stable while device is referenced */
106 1.171 riastrad /* used only in assertions when stable, and in dump in ddb */
107 1.1 thorpej
108 1.171 riastrad struct disk *sc_parent; /* $: parent disk */
109 1.171 riastrad /* P: sc_parent->dk_openmask */
110 1.171 riastrad /* P: sc_parent->dk_nwedges */
111 1.171 riastrad /* P: sc_parent->dk_wedges */
112 1.171 riastrad /* R: sc_parent->dk_rawopens */
113 1.171 riastrad /* R: sc_parent->dk_rawvp (also stable while wedge is open) */
114 1.171 riastrad daddr_t sc_offset; /* $: LBA offset of wedge in parent */
115 1.135 riastrad krwlock_t sc_sizelock;
116 1.171 riastrad uint64_t sc_size; /* S: size of wedge in blocks */
117 1.171 riastrad char sc_ptype[32]; /* $: partition type */
118 1.171 riastrad dev_t sc_pdev; /* $: cached parent's dev_t */
119 1.171 riastrad /* P: link on parent's wedge list */
120 1.1 thorpej LIST_ENTRY(dkwedge_softc) sc_plink;
121 1.1 thorpej
122 1.1 thorpej struct disk sc_dk; /* our own disk structure */
123 1.171 riastrad /* O&R: sc_dk.dk_bopenmask */
124 1.171 riastrad /* O&R: sc_dk.dk_copenmask */
125 1.171 riastrad /* O&R: sc_dk.dk_openmask */
126 1.171 riastrad struct bufq_state *sc_bufq; /* $: buffer queue */
127 1.171 riastrad struct callout sc_restart_ch; /* I: callout to restart I/O */
128 1.1 thorpej
129 1.92 mlelstv kmutex_t sc_iolock;
130 1.171 riastrad bool sc_iostop; /* I: don't schedule restart */
131 1.171 riastrad int sc_mode; /* O&R: parent open mode */
132 1.1 thorpej };
133 1.1 thorpej
134 1.136 riastrad static int dkwedge_match(device_t, cfdata_t, void *);
135 1.136 riastrad static void dkwedge_attach(device_t, device_t, void *);
136 1.136 riastrad static int dkwedge_detach(device_t, int);
137 1.136 riastrad
138 1.159 riastrad static void dk_set_geometry(struct dkwedge_softc *, struct disk *);
139 1.159 riastrad
140 1.1 thorpej static void dkstart(struct dkwedge_softc *);
141 1.1 thorpej static void dkiodone(struct buf *);
142 1.1 thorpej static void dkrestart(void *);
143 1.52 jakllsch static void dkminphys(struct buf *);
144 1.1 thorpej
145 1.118 riastrad static int dkfirstopen(struct dkwedge_softc *, int);
146 1.121 riastrad static void dklastclose(struct dkwedge_softc *);
147 1.47 dyoung static int dkwedge_detach(device_t, int);
148 1.74 mlelstv static void dkwedge_delall1(struct disk *, bool);
149 1.74 mlelstv static int dkwedge_del1(struct dkwedge_info *, int);
150 1.87 mlelstv static int dk_open_parent(dev_t, int, struct vnode **);
151 1.82 mlelstv static int dk_close_parent(struct vnode *, int);
152 1.46 dyoung
153 1.1 thorpej static dev_type_open(dkopen);
154 1.1 thorpej static dev_type_close(dkclose);
155 1.141 riastrad static dev_type_cancel(dkcancel);
156 1.1 thorpej static dev_type_read(dkread);
157 1.1 thorpej static dev_type_write(dkwrite);
158 1.1 thorpej static dev_type_ioctl(dkioctl);
159 1.1 thorpej static dev_type_strategy(dkstrategy);
160 1.1 thorpej static dev_type_dump(dkdump);
161 1.1 thorpej static dev_type_size(dksize);
162 1.72 dholland static dev_type_discard(dkdiscard);
163 1.1 thorpej
164 1.136 riastrad CFDRIVER_DECL(dk, DV_DISK, NULL);
165 1.136 riastrad CFATTACH_DECL3_NEW(dk, 0,
166 1.136 riastrad dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
167 1.136 riastrad DVF_DETACH_SHUTDOWN);
168 1.136 riastrad
169 1.1 thorpej const struct bdevsw dk_bdevsw = {
170 1.68 dholland .d_open = dkopen,
171 1.68 dholland .d_close = dkclose,
172 1.141 riastrad .d_cancel = dkcancel,
173 1.68 dholland .d_strategy = dkstrategy,
174 1.68 dholland .d_ioctl = dkioctl,
175 1.68 dholland .d_dump = dkdump,
176 1.68 dholland .d_psize = dksize,
177 1.72 dholland .d_discard = dkdiscard,
178 1.144 riastrad .d_cfdriver = &dk_cd,
179 1.160 riastrad .d_devtounit = dev_minor_unit,
180 1.92 mlelstv .d_flag = D_DISK | D_MPSAFE
181 1.1 thorpej };
182 1.1 thorpej
183 1.1 thorpej const struct cdevsw dk_cdevsw = {
184 1.68 dholland .d_open = dkopen,
185 1.68 dholland .d_close = dkclose,
186 1.141 riastrad .d_cancel = dkcancel,
187 1.68 dholland .d_read = dkread,
188 1.68 dholland .d_write = dkwrite,
189 1.68 dholland .d_ioctl = dkioctl,
190 1.68 dholland .d_stop = nostop,
191 1.68 dholland .d_tty = notty,
192 1.68 dholland .d_poll = nopoll,
193 1.68 dholland .d_mmap = nommap,
194 1.68 dholland .d_kqfilter = nokqfilter,
195 1.72 dholland .d_discard = dkdiscard,
196 1.144 riastrad .d_cfdriver = &dk_cd,
197 1.160 riastrad .d_devtounit = dev_minor_unit,
198 1.92 mlelstv .d_flag = D_DISK | D_MPSAFE
199 1.1 thorpej };
200 1.1 thorpej
201 1.1 thorpej static struct dkwedge_softc **dkwedges;
202 1.1 thorpej static u_int ndkwedges;
203 1.27 ad static krwlock_t dkwedges_lock;
204 1.1 thorpej
205 1.1 thorpej static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
206 1.27 ad static krwlock_t dkwedge_discovery_methods_lock;
207 1.1 thorpej
208 1.1 thorpej /*
209 1.2 thorpej * dkwedge_match:
210 1.2 thorpej *
211 1.2 thorpej * Autoconfiguration match function for pseudo-device glue.
212 1.2 thorpej */
213 1.2 thorpej static int
214 1.129 riastrad dkwedge_match(device_t parent, cfdata_t match, void *aux)
215 1.2 thorpej {
216 1.2 thorpej
217 1.2 thorpej /* Pseudo-device; always present. */
218 1.128 riastrad return 1;
219 1.2 thorpej }
220 1.2 thorpej
221 1.2 thorpej /*
222 1.2 thorpej * dkwedge_attach:
223 1.2 thorpej *
224 1.2 thorpej * Autoconfiguration attach function for pseudo-device glue.
225 1.2 thorpej */
226 1.2 thorpej static void
227 1.129 riastrad dkwedge_attach(device_t parent, device_t self, void *aux)
228 1.2 thorpej {
229 1.159 riastrad struct dkwedge_softc *sc = aux;
230 1.159 riastrad struct disk *pdk = sc->sc_parent;
231 1.159 riastrad int unit = device_unit(self);
232 1.159 riastrad
233 1.159 riastrad KASSERTMSG(unit >= 0, "unit=%d", unit);
234 1.2 thorpej
235 1.31 jmcneill if (!pmf_device_register(self, NULL, NULL))
236 1.31 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
237 1.159 riastrad
238 1.159 riastrad mutex_enter(&pdk->dk_openlock);
239 1.159 riastrad rw_enter(&dkwedges_lock, RW_WRITER);
240 1.159 riastrad KASSERTMSG(unit < ndkwedges, "unit=%d ndkwedges=%u", unit, ndkwedges);
241 1.159 riastrad KASSERTMSG(sc == dkwedges[unit], "sc=%p dkwedges[%d]=%p",
242 1.159 riastrad sc, unit, dkwedges[unit]);
243 1.159 riastrad KASSERTMSG(sc->sc_dev == NULL, "sc=%p sc->sc_dev=%p", sc, sc->sc_dev);
244 1.159 riastrad sc->sc_dev = self;
245 1.159 riastrad rw_exit(&dkwedges_lock);
246 1.159 riastrad mutex_exit(&pdk->dk_openlock);
247 1.159 riastrad
248 1.159 riastrad disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
249 1.159 riastrad mutex_enter(&pdk->dk_openlock);
250 1.159 riastrad dk_set_geometry(sc, pdk);
251 1.159 riastrad mutex_exit(&pdk->dk_openlock);
252 1.159 riastrad disk_attach(&sc->sc_dk);
253 1.159 riastrad
254 1.159 riastrad /* Disk wedge is ready for use! */
255 1.159 riastrad device_set_private(self, sc);
256 1.159 riastrad sc->sc_state = DKW_STATE_RUNNING;
257 1.2 thorpej }
258 1.2 thorpej
259 1.2 thorpej /*
260 1.1 thorpej * dkwedge_compute_pdev:
261 1.1 thorpej *
262 1.1 thorpej * Compute the parent disk's dev_t.
263 1.1 thorpej */
264 1.1 thorpej static int
265 1.74 mlelstv dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
266 1.1 thorpej {
267 1.1 thorpej const char *name, *cp;
268 1.63 drochner devmajor_t pmaj;
269 1.63 drochner int punit;
270 1.1 thorpej char devname[16];
271 1.1 thorpej
272 1.1 thorpej name = pname;
273 1.74 mlelstv switch (type) {
274 1.74 mlelstv case VBLK:
275 1.74 mlelstv pmaj = devsw_name2blk(name, devname, sizeof(devname));
276 1.74 mlelstv break;
277 1.74 mlelstv case VCHR:
278 1.74 mlelstv pmaj = devsw_name2chr(name, devname, sizeof(devname));
279 1.74 mlelstv break;
280 1.74 mlelstv default:
281 1.75 mlelstv pmaj = NODEVMAJOR;
282 1.74 mlelstv break;
283 1.74 mlelstv }
284 1.75 mlelstv if (pmaj == NODEVMAJOR)
285 1.132 riastrad return ENXIO;
286 1.6 perry
287 1.1 thorpej name += strlen(devname);
288 1.1 thorpej for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
289 1.1 thorpej punit = (punit * 10) + (*cp - '0');
290 1.1 thorpej if (cp == name) {
291 1.1 thorpej /* Invalid parent disk name. */
292 1.132 riastrad return ENXIO;
293 1.1 thorpej }
294 1.1 thorpej
295 1.1 thorpej *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
296 1.1 thorpej
297 1.128 riastrad return 0;
298 1.1 thorpej }
299 1.1 thorpej
300 1.1 thorpej /*
301 1.1 thorpej * dkwedge_array_expand:
302 1.1 thorpej *
303 1.1 thorpej * Expand the dkwedges array.
304 1.127 riastrad *
305 1.127 riastrad * Releases and reacquires dkwedges_lock as a writer.
306 1.1 thorpej */
307 1.127 riastrad static int
308 1.1 thorpej dkwedge_array_expand(void)
309 1.1 thorpej {
310 1.1 thorpej
311 1.127 riastrad const unsigned incr = 16;
312 1.127 riastrad unsigned newcnt, oldcnt;
313 1.127 riastrad struct dkwedge_softc **newarray = NULL, **oldarray = NULL;
314 1.127 riastrad
315 1.127 riastrad KASSERT(rw_write_held(&dkwedges_lock));
316 1.127 riastrad
317 1.127 riastrad oldcnt = ndkwedges;
318 1.127 riastrad oldarray = dkwedges;
319 1.127 riastrad
320 1.127 riastrad if (oldcnt >= INT_MAX - incr)
321 1.127 riastrad return ENFILE; /* XXX */
322 1.127 riastrad newcnt = oldcnt + incr;
323 1.127 riastrad
324 1.127 riastrad rw_exit(&dkwedges_lock);
325 1.1 thorpej newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
326 1.1 thorpej M_WAITOK|M_ZERO);
327 1.127 riastrad rw_enter(&dkwedges_lock, RW_WRITER);
328 1.127 riastrad
329 1.127 riastrad if (ndkwedges != oldcnt || dkwedges != oldarray) {
330 1.127 riastrad oldarray = NULL; /* already recycled */
331 1.127 riastrad goto out;
332 1.127 riastrad }
333 1.127 riastrad
334 1.127 riastrad if (oldarray != NULL)
335 1.1 thorpej memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
336 1.1 thorpej dkwedges = newarray;
337 1.127 riastrad newarray = NULL; /* transferred to dkwedges */
338 1.1 thorpej ndkwedges = newcnt;
339 1.127 riastrad
340 1.127 riastrad out: rw_exit(&dkwedges_lock);
341 1.1 thorpej if (oldarray != NULL)
342 1.1 thorpej free(oldarray, M_DKWEDGE);
343 1.127 riastrad if (newarray != NULL)
344 1.127 riastrad free(newarray, M_DKWEDGE);
345 1.127 riastrad rw_enter(&dkwedges_lock, RW_WRITER);
346 1.127 riastrad return 0;
347 1.1 thorpej }
348 1.1 thorpej
349 1.48 haad static void
350 1.135 riastrad dkwedge_size_init(struct dkwedge_softc *sc, uint64_t size)
351 1.135 riastrad {
352 1.135 riastrad
353 1.135 riastrad rw_init(&sc->sc_sizelock);
354 1.135 riastrad sc->sc_size = size;
355 1.135 riastrad }
356 1.135 riastrad
357 1.135 riastrad static void
358 1.135 riastrad dkwedge_size_fini(struct dkwedge_softc *sc)
359 1.135 riastrad {
360 1.135 riastrad
361 1.135 riastrad rw_destroy(&sc->sc_sizelock);
362 1.135 riastrad }
363 1.135 riastrad
364 1.135 riastrad static uint64_t
365 1.135 riastrad dkwedge_size(struct dkwedge_softc *sc)
366 1.135 riastrad {
367 1.135 riastrad uint64_t size;
368 1.135 riastrad
369 1.135 riastrad rw_enter(&sc->sc_sizelock, RW_READER);
370 1.135 riastrad size = sc->sc_size;
371 1.135 riastrad rw_exit(&sc->sc_sizelock);
372 1.135 riastrad
373 1.135 riastrad return size;
374 1.135 riastrad }
375 1.135 riastrad
376 1.135 riastrad static void
377 1.135 riastrad dkwedge_size_increase(struct dkwedge_softc *sc, uint64_t size)
378 1.135 riastrad {
379 1.135 riastrad
380 1.151 riastrad KASSERT(mutex_owned(&sc->sc_parent->dk_openlock));
381 1.135 riastrad
382 1.135 riastrad rw_enter(&sc->sc_sizelock, RW_WRITER);
383 1.135 riastrad KASSERTMSG(size >= sc->sc_size,
384 1.135 riastrad "decreasing dkwedge size from %"PRIu64" to %"PRIu64,
385 1.135 riastrad sc->sc_size, size);
386 1.135 riastrad sc->sc_size = size;
387 1.135 riastrad rw_exit(&sc->sc_sizelock);
388 1.135 riastrad }
389 1.135 riastrad
390 1.135 riastrad static void
391 1.77 mlelstv dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
392 1.48 haad {
393 1.77 mlelstv struct disk *dk = &sc->sc_dk;
394 1.77 mlelstv struct disk_geom *dg = &dk->dk_geom;
395 1.173 jakllsch uint32_t r, lspps;
396 1.48 haad
397 1.140 riastrad KASSERT(mutex_owned(&pdk->dk_openlock));
398 1.140 riastrad
399 1.66 christos memset(dg, 0, sizeof(*dg));
400 1.48 haad
401 1.135 riastrad dg->dg_secperunit = dkwedge_size(sc);
402 1.77 mlelstv dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
403 1.76 mlelstv
404 1.76 mlelstv /* fake numbers, 1 cylinder is 1 MB with default sector size */
405 1.66 christos dg->dg_nsectors = 32;
406 1.66 christos dg->dg_ntracks = 64;
407 1.129 riastrad dg->dg_ncylinders =
408 1.129 riastrad dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
409 1.48 haad
410 1.173 jakllsch dg->dg_physsecsize = pdk->dk_geom.dg_physsecsize;
411 1.173 jakllsch dg->dg_alignedsec = pdk->dk_geom.dg_alignedsec;
412 1.173 jakllsch lspps = MAX(1u, dg->dg_physsecsize / dg->dg_secsize);
413 1.173 jakllsch r = sc->sc_offset % lspps;
414 1.173 jakllsch if (r > dg->dg_alignedsec)
415 1.173 jakllsch dg->dg_alignedsec += lspps;
416 1.173 jakllsch dg->dg_alignedsec -= r;
417 1.173 jakllsch dg->dg_alignedsec %= lspps;
418 1.173 jakllsch
419 1.77 mlelstv disk_set_info(sc->sc_dev, dk, NULL);
420 1.48 haad }
421 1.48 haad
422 1.1 thorpej /*
423 1.1 thorpej * dkwedge_add: [exported function]
424 1.1 thorpej *
425 1.1 thorpej * Add a disk wedge based on the provided information.
426 1.1 thorpej *
427 1.1 thorpej * The incoming dkw_devname[] is ignored, instead being
428 1.1 thorpej * filled in and returned to the caller.
429 1.1 thorpej */
430 1.1 thorpej int
431 1.1 thorpej dkwedge_add(struct dkwedge_info *dkw)
432 1.1 thorpej {
433 1.1 thorpej struct dkwedge_softc *sc, *lsc;
434 1.1 thorpej struct disk *pdk;
435 1.1 thorpej u_int unit;
436 1.1 thorpej int error;
437 1.1 thorpej dev_t pdev;
438 1.159 riastrad device_t dev __diagused;
439 1.1 thorpej
440 1.1 thorpej dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
441 1.1 thorpej pdk = disk_find(dkw->dkw_parent);
442 1.1 thorpej if (pdk == NULL)
443 1.132 riastrad return ENXIO;
444 1.1 thorpej
445 1.74 mlelstv error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
446 1.1 thorpej if (error)
447 1.128 riastrad return error;
448 1.1 thorpej
449 1.1 thorpej if (dkw->dkw_offset < 0)
450 1.128 riastrad return EINVAL;
451 1.1 thorpej
452 1.101 jmcneill /*
453 1.101 jmcneill * Check for an existing wedge at the same disk offset. Allow
454 1.101 jmcneill * updating a wedge if the only change is the size, and the new
455 1.101 jmcneill * size is larger than the old.
456 1.101 jmcneill */
457 1.101 jmcneill sc = NULL;
458 1.101 jmcneill mutex_enter(&pdk->dk_openlock);
459 1.101 jmcneill LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
460 1.101 jmcneill if (lsc->sc_offset != dkw->dkw_offset)
461 1.101 jmcneill continue;
462 1.101 jmcneill if (strcmp(lsc->sc_wname, dkw->dkw_wname) != 0)
463 1.101 jmcneill break;
464 1.101 jmcneill if (strcmp(lsc->sc_ptype, dkw->dkw_ptype) != 0)
465 1.101 jmcneill break;
466 1.135 riastrad if (dkwedge_size(lsc) > dkw->dkw_size)
467 1.101 jmcneill break;
468 1.159 riastrad if (lsc->sc_dev == NULL)
469 1.159 riastrad break;
470 1.101 jmcneill
471 1.101 jmcneill sc = lsc;
472 1.159 riastrad device_acquire(sc->sc_dev);
473 1.135 riastrad dkwedge_size_increase(sc, dkw->dkw_size);
474 1.101 jmcneill dk_set_geometry(sc, pdk);
475 1.101 jmcneill
476 1.101 jmcneill break;
477 1.101 jmcneill }
478 1.101 jmcneill mutex_exit(&pdk->dk_openlock);
479 1.101 jmcneill
480 1.101 jmcneill if (sc != NULL)
481 1.101 jmcneill goto announce;
482 1.101 jmcneill
483 1.1 thorpej sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
484 1.1 thorpej sc->sc_state = DKW_STATE_LARVAL;
485 1.1 thorpej sc->sc_parent = pdk;
486 1.1 thorpej sc->sc_pdev = pdev;
487 1.1 thorpej sc->sc_offset = dkw->dkw_offset;
488 1.135 riastrad dkwedge_size_init(sc, dkw->dkw_size);
489 1.1 thorpej
490 1.1 thorpej memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
491 1.1 thorpej sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
492 1.1 thorpej
493 1.1 thorpej memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
494 1.1 thorpej sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
495 1.1 thorpej
496 1.9 yamt bufq_alloc(&sc->sc_bufq, "fcfs", 0);
497 1.1 thorpej
498 1.26 ad callout_init(&sc->sc_restart_ch, 0);
499 1.1 thorpej callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
500 1.1 thorpej
501 1.92 mlelstv mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
502 1.92 mlelstv
503 1.1 thorpej /*
504 1.1 thorpej * Wedge will be added; increment the wedge count for the parent.
505 1.107 andvar * Only allow this to happen if RAW_PART is the only thing open.
506 1.1 thorpej */
507 1.27 ad mutex_enter(&pdk->dk_openlock);
508 1.1 thorpej if (pdk->dk_openmask & ~(1 << RAW_PART))
509 1.1 thorpej error = EBUSY;
510 1.1 thorpej else {
511 1.1 thorpej /* Check for wedge overlap. */
512 1.1 thorpej LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
513 1.135 riastrad /* XXX arithmetic overflow */
514 1.135 riastrad uint64_t size = dkwedge_size(sc);
515 1.135 riastrad uint64_t lsize = dkwedge_size(lsc);
516 1.135 riastrad daddr_t lastblk = sc->sc_offset + size - 1;
517 1.135 riastrad daddr_t llastblk = lsc->sc_offset + lsize - 1;
518 1.1 thorpej
519 1.1 thorpej if (sc->sc_offset >= lsc->sc_offset &&
520 1.1 thorpej sc->sc_offset <= llastblk) {
521 1.63 drochner /* Overlaps the tail of the existing wedge. */
522 1.1 thorpej break;
523 1.1 thorpej }
524 1.1 thorpej if (lastblk >= lsc->sc_offset &&
525 1.1 thorpej lastblk <= llastblk) {
526 1.1 thorpej /* Overlaps the head of the existing wedge. */
527 1.1 thorpej break;
528 1.1 thorpej }
529 1.1 thorpej }
530 1.74 mlelstv if (lsc != NULL) {
531 1.74 mlelstv if (sc->sc_offset == lsc->sc_offset &&
532 1.135 riastrad dkwedge_size(sc) == dkwedge_size(lsc) &&
533 1.74 mlelstv strcmp(sc->sc_wname, lsc->sc_wname) == 0)
534 1.74 mlelstv error = EEXIST;
535 1.74 mlelstv else
536 1.74 mlelstv error = EINVAL;
537 1.74 mlelstv } else {
538 1.1 thorpej pdk->dk_nwedges++;
539 1.1 thorpej LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
540 1.1 thorpej }
541 1.1 thorpej }
542 1.27 ad mutex_exit(&pdk->dk_openlock);
543 1.1 thorpej if (error) {
544 1.93 mlelstv mutex_destroy(&sc->sc_iolock);
545 1.9 yamt bufq_free(sc->sc_bufq);
546 1.135 riastrad dkwedge_size_fini(sc);
547 1.1 thorpej free(sc, M_DKWEDGE);
548 1.128 riastrad return error;
549 1.1 thorpej }
550 1.1 thorpej
551 1.2 thorpej /* Fill in our cfdata for the pseudo-device glue. */
552 1.2 thorpej sc->sc_cfdata.cf_name = dk_cd.cd_name;
553 1.2 thorpej sc->sc_cfdata.cf_atname = dk_ca.ca_name;
554 1.2 thorpej /* sc->sc_cfdata.cf_unit set below */
555 1.159 riastrad sc->sc_cfdata.cf_fstate = FSTATE_NOTFOUND; /* use chosen cf_unit */
556 1.2 thorpej
557 1.1 thorpej /* Insert the larval wedge into the array. */
558 1.27 ad rw_enter(&dkwedges_lock, RW_WRITER);
559 1.1 thorpej for (error = 0;;) {
560 1.1 thorpej struct dkwedge_softc **scpp;
561 1.1 thorpej
562 1.1 thorpej /*
563 1.1 thorpej * Check for a duplicate wname while searching for
564 1.1 thorpej * a slot.
565 1.1 thorpej */
566 1.1 thorpej for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
567 1.1 thorpej if (dkwedges[unit] == NULL) {
568 1.1 thorpej if (scpp == NULL) {
569 1.1 thorpej scpp = &dkwedges[unit];
570 1.2 thorpej sc->sc_cfdata.cf_unit = unit;
571 1.1 thorpej }
572 1.1 thorpej } else {
573 1.1 thorpej /* XXX Unicode. */
574 1.1 thorpej if (strcmp(dkwedges[unit]->sc_wname,
575 1.129 riastrad sc->sc_wname) == 0) {
576 1.1 thorpej error = EEXIST;
577 1.1 thorpej break;
578 1.1 thorpej }
579 1.1 thorpej }
580 1.1 thorpej }
581 1.1 thorpej if (error)
582 1.1 thorpej break;
583 1.1 thorpej KASSERT(unit == ndkwedges);
584 1.127 riastrad if (scpp == NULL) {
585 1.127 riastrad error = dkwedge_array_expand();
586 1.127 riastrad if (error)
587 1.127 riastrad break;
588 1.127 riastrad } else {
589 1.2 thorpej KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
590 1.1 thorpej *scpp = sc;
591 1.1 thorpej break;
592 1.1 thorpej }
593 1.1 thorpej }
594 1.27 ad rw_exit(&dkwedges_lock);
595 1.1 thorpej if (error) {
596 1.27 ad mutex_enter(&pdk->dk_openlock);
597 1.1 thorpej pdk->dk_nwedges--;
598 1.1 thorpej LIST_REMOVE(sc, sc_plink);
599 1.27 ad mutex_exit(&pdk->dk_openlock);
600 1.1 thorpej
601 1.93 mlelstv mutex_destroy(&sc->sc_iolock);
602 1.9 yamt bufq_free(sc->sc_bufq);
603 1.135 riastrad dkwedge_size_fini(sc);
604 1.1 thorpej free(sc, M_DKWEDGE);
605 1.128 riastrad return error;
606 1.1 thorpej }
607 1.1 thorpej
608 1.2 thorpej /*
609 1.2 thorpej * Now that we know the unit #, attach a pseudo-device for
610 1.2 thorpej * this wedge instance. This will provide us with the
611 1.65 chs * device_t necessary for glue to other parts of the system.
612 1.2 thorpej *
613 1.2 thorpej * This should never fail, unless we're almost totally out of
614 1.2 thorpej * memory.
615 1.2 thorpej */
616 1.159 riastrad if ((dev = config_attach_pseudo_acquire(&sc->sc_cfdata, sc)) == NULL) {
617 1.2 thorpej aprint_error("%s%u: unable to attach pseudo-device\n",
618 1.2 thorpej sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
619 1.2 thorpej
620 1.27 ad rw_enter(&dkwedges_lock, RW_WRITER);
621 1.139 riastrad KASSERT(dkwedges[sc->sc_cfdata.cf_unit] == sc);
622 1.2 thorpej dkwedges[sc->sc_cfdata.cf_unit] = NULL;
623 1.27 ad rw_exit(&dkwedges_lock);
624 1.2 thorpej
625 1.27 ad mutex_enter(&pdk->dk_openlock);
626 1.2 thorpej pdk->dk_nwedges--;
627 1.2 thorpej LIST_REMOVE(sc, sc_plink);
628 1.27 ad mutex_exit(&pdk->dk_openlock);
629 1.2 thorpej
630 1.93 mlelstv mutex_destroy(&sc->sc_iolock);
631 1.9 yamt bufq_free(sc->sc_bufq);
632 1.135 riastrad dkwedge_size_fini(sc);
633 1.2 thorpej free(sc, M_DKWEDGE);
634 1.128 riastrad return ENOMEM;
635 1.2 thorpej }
636 1.1 thorpej
637 1.159 riastrad KASSERT(dev == sc->sc_dev);
638 1.1 thorpej
639 1.101 jmcneill announce:
640 1.1 thorpej /* Announce our arrival. */
641 1.84 jmcneill aprint_normal(
642 1.84 jmcneill "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
643 1.84 jmcneill device_xname(sc->sc_dev), pdk->dk_name,
644 1.84 jmcneill sc->sc_wname, /* XXX Unicode */
645 1.135 riastrad dkwedge_size(sc), sc->sc_offset,
646 1.84 jmcneill sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
647 1.1 thorpej
648 1.112 martin /* Return the devname to the caller. */
649 1.112 martin strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
650 1.129 riastrad sizeof(dkw->dkw_devname));
651 1.112 martin
652 1.159 riastrad device_release(sc->sc_dev);
653 1.128 riastrad return 0;
654 1.1 thorpej }
655 1.1 thorpej
656 1.1 thorpej /*
657 1.159 riastrad * dkwedge_find_acquire:
658 1.1 thorpej *
659 1.47 dyoung * Lookup a disk wedge based on the provided information.
660 1.1 thorpej * NOTE: We look up the wedge based on the wedge devname,
661 1.1 thorpej * not wname.
662 1.47 dyoung *
663 1.47 dyoung * Return NULL if the wedge is not found, otherwise return
664 1.47 dyoung * the wedge's softc. Assign the wedge's unit number to unitp
665 1.159 riastrad * if unitp is not NULL. The wedge's sc_dev is referenced and
666 1.159 riastrad * must be released by device_release or equivalent.
667 1.1 thorpej */
668 1.47 dyoung static struct dkwedge_softc *
669 1.159 riastrad dkwedge_find_acquire(struct dkwedge_info *dkw, u_int *unitp)
670 1.1 thorpej {
671 1.1 thorpej struct dkwedge_softc *sc = NULL;
672 1.1 thorpej u_int unit;
673 1.1 thorpej
674 1.1 thorpej /* Find our softc. */
675 1.1 thorpej dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
676 1.47 dyoung rw_enter(&dkwedges_lock, RW_READER);
677 1.1 thorpej for (unit = 0; unit < ndkwedges; unit++) {
678 1.1 thorpej if ((sc = dkwedges[unit]) != NULL &&
679 1.159 riastrad sc->sc_dev != NULL &&
680 1.36 cegger strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
681 1.1 thorpej strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
682 1.159 riastrad device_acquire(sc->sc_dev);
683 1.1 thorpej break;
684 1.1 thorpej }
685 1.1 thorpej }
686 1.27 ad rw_exit(&dkwedges_lock);
687 1.137 riastrad if (sc == NULL)
688 1.47 dyoung return NULL;
689 1.47 dyoung
690 1.47 dyoung if (unitp != NULL)
691 1.47 dyoung *unitp = unit;
692 1.47 dyoung
693 1.47 dyoung return sc;
694 1.47 dyoung }
695 1.47 dyoung
696 1.47 dyoung /*
697 1.47 dyoung * dkwedge_del: [exported function]
698 1.47 dyoung *
699 1.47 dyoung * Delete a disk wedge based on the provided information.
700 1.47 dyoung * NOTE: We look up the wedge based on the wedge devname,
701 1.47 dyoung * not wname.
702 1.47 dyoung */
703 1.47 dyoung int
704 1.47 dyoung dkwedge_del(struct dkwedge_info *dkw)
705 1.47 dyoung {
706 1.129 riastrad
707 1.74 mlelstv return dkwedge_del1(dkw, 0);
708 1.74 mlelstv }
709 1.74 mlelstv
710 1.74 mlelstv int
711 1.74 mlelstv dkwedge_del1(struct dkwedge_info *dkw, int flags)
712 1.74 mlelstv {
713 1.47 dyoung struct dkwedge_softc *sc = NULL;
714 1.47 dyoung
715 1.47 dyoung /* Find our softc. */
716 1.159 riastrad if ((sc = dkwedge_find_acquire(dkw, NULL)) == NULL)
717 1.128 riastrad return ESRCH;
718 1.1 thorpej
719 1.159 riastrad return config_detach_release(sc->sc_dev, flags);
720 1.47 dyoung }
721 1.47 dyoung
722 1.47 dyoung /*
723 1.47 dyoung * dkwedge_detach:
724 1.47 dyoung *
725 1.47 dyoung * Autoconfiguration detach function for pseudo-device glue.
726 1.47 dyoung */
727 1.47 dyoung static int
728 1.47 dyoung dkwedge_detach(device_t self, int flags)
729 1.47 dyoung {
730 1.159 riastrad struct dkwedge_softc *const sc = device_private(self);
731 1.159 riastrad const u_int unit = device_unit(self);
732 1.159 riastrad int bmaj, cmaj, error;
733 1.47 dyoung
734 1.159 riastrad error = disk_begindetach(&sc->sc_dk, /*lastclose*/NULL, self, flags);
735 1.159 riastrad if (error)
736 1.159 riastrad return error;
737 1.47 dyoung
738 1.159 riastrad /* Mark the wedge as dying. */
739 1.159 riastrad sc->sc_state = DKW_STATE_DYING;
740 1.47 dyoung
741 1.47 dyoung pmf_device_deregister(self);
742 1.1 thorpej
743 1.1 thorpej /* Kill any pending restart. */
744 1.142 riastrad mutex_enter(&sc->sc_iolock);
745 1.142 riastrad sc->sc_iostop = true;
746 1.142 riastrad mutex_exit(&sc->sc_iolock);
747 1.142 riastrad callout_halt(&sc->sc_restart_ch, NULL);
748 1.1 thorpej
749 1.148 riastrad /* Locate the wedge major numbers. */
750 1.148 riastrad bmaj = bdevsw_lookup_major(&dk_bdevsw);
751 1.148 riastrad cmaj = cdevsw_lookup_major(&dk_cdevsw);
752 1.148 riastrad
753 1.1 thorpej /* Nuke the vnodes for any open instances. */
754 1.14 thorpej vdevgone(bmaj, unit, unit, VBLK);
755 1.14 thorpej vdevgone(cmaj, unit, unit, VCHR);
756 1.1 thorpej
757 1.143 riastrad /*
758 1.143 riastrad * At this point, all block device opens have been closed,
759 1.143 riastrad * synchronously flushing any buffered writes; and all
760 1.143 riastrad * character device I/O operations have completed
761 1.143 riastrad * synchronously, and character device opens have been closed.
762 1.143 riastrad *
763 1.143 riastrad * So there can be no more opens or queued buffers by now.
764 1.143 riastrad */
765 1.143 riastrad KASSERT(sc->sc_dk.dk_openmask == 0);
766 1.143 riastrad KASSERT(bufq_peek(sc->sc_bufq) == NULL);
767 1.143 riastrad bufq_drain(sc->sc_bufq);
768 1.1 thorpej
769 1.1 thorpej /* Announce our departure. */
770 1.36 cegger aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
771 1.1 thorpej sc->sc_parent->dk_name,
772 1.1 thorpej sc->sc_wname); /* XXX Unicode */
773 1.1 thorpej
774 1.27 ad mutex_enter(&sc->sc_parent->dk_openlock);
775 1.1 thorpej sc->sc_parent->dk_nwedges--;
776 1.1 thorpej LIST_REMOVE(sc, sc_plink);
777 1.27 ad mutex_exit(&sc->sc_parent->dk_openlock);
778 1.1 thorpej
779 1.1 thorpej /* Delete our buffer queue. */
780 1.9 yamt bufq_free(sc->sc_bufq);
781 1.1 thorpej
782 1.1 thorpej /* Detach from the disk list. */
783 1.1 thorpej disk_detach(&sc->sc_dk);
784 1.39 plunky disk_destroy(&sc->sc_dk);
785 1.1 thorpej
786 1.1 thorpej /* Poof. */
787 1.27 ad rw_enter(&dkwedges_lock, RW_WRITER);
788 1.139 riastrad KASSERT(dkwedges[unit] == sc);
789 1.1 thorpej dkwedges[unit] = NULL;
790 1.1 thorpej sc->sc_state = DKW_STATE_DEAD;
791 1.27 ad rw_exit(&dkwedges_lock);
792 1.1 thorpej
793 1.92 mlelstv mutex_destroy(&sc->sc_iolock);
794 1.135 riastrad dkwedge_size_fini(sc);
795 1.92 mlelstv
796 1.1 thorpej free(sc, M_DKWEDGE);
797 1.1 thorpej
798 1.47 dyoung return 0;
799 1.1 thorpej }
800 1.1 thorpej
801 1.1 thorpej /*
802 1.1 thorpej * dkwedge_delall: [exported function]
803 1.1 thorpej *
804 1.154 riastrad * Forcibly delete all of the wedges on the specified disk. Used
805 1.154 riastrad * when a disk is being detached.
806 1.1 thorpej */
807 1.1 thorpej void
808 1.1 thorpej dkwedge_delall(struct disk *pdk)
809 1.1 thorpej {
810 1.129 riastrad
811 1.154 riastrad dkwedge_delall1(pdk, /*idleonly*/false);
812 1.154 riastrad }
813 1.154 riastrad
814 1.154 riastrad /*
815 1.154 riastrad * dkwedge_delidle: [exported function]
816 1.154 riastrad *
817 1.154 riastrad * Delete all of the wedges on the specified disk if idle. Used
818 1.154 riastrad * by ioctl(DIOCRMWEDGES).
819 1.154 riastrad */
820 1.154 riastrad void
821 1.154 riastrad dkwedge_delidle(struct disk *pdk)
822 1.154 riastrad {
823 1.154 riastrad
824 1.154 riastrad dkwedge_delall1(pdk, /*idleonly*/true);
825 1.74 mlelstv }
826 1.74 mlelstv
827 1.74 mlelstv static void
828 1.74 mlelstv dkwedge_delall1(struct disk *pdk, bool idleonly)
829 1.74 mlelstv {
830 1.1 thorpej struct dkwedge_softc *sc;
831 1.74 mlelstv int flags;
832 1.74 mlelstv
833 1.74 mlelstv flags = DETACH_QUIET;
834 1.129 riastrad if (!idleonly)
835 1.129 riastrad flags |= DETACH_FORCE;
836 1.1 thorpej
837 1.1 thorpej for (;;) {
838 1.149 riastrad mutex_enter(&pdk->dk_rawlock); /* for sc->sc_dk.dk_openmask */
839 1.27 ad mutex_enter(&pdk->dk_openlock);
840 1.74 mlelstv LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
841 1.162 riastrad /*
842 1.162 riastrad * Wedge is not yet created. This is a race --
843 1.162 riastrad * it may as well have been added just after we
844 1.162 riastrad * deleted all the wedges, so pretend it's not
845 1.162 riastrad * here yet.
846 1.162 riastrad */
847 1.162 riastrad if (sc->sc_dev == NULL)
848 1.162 riastrad continue;
849 1.162 riastrad if (!idleonly || sc->sc_dk.dk_openmask == 0) {
850 1.162 riastrad device_acquire(sc->sc_dev);
851 1.74 mlelstv break;
852 1.162 riastrad }
853 1.74 mlelstv }
854 1.74 mlelstv if (sc == NULL) {
855 1.74 mlelstv KASSERT(idleonly || pdk->dk_nwedges == 0);
856 1.27 ad mutex_exit(&pdk->dk_openlock);
857 1.149 riastrad mutex_exit(&pdk->dk_rawlock);
858 1.1 thorpej return;
859 1.1 thorpej }
860 1.27 ad mutex_exit(&pdk->dk_openlock);
861 1.149 riastrad mutex_exit(&pdk->dk_rawlock);
862 1.162 riastrad (void)config_detach_release(sc->sc_dev, flags);
863 1.1 thorpej }
864 1.1 thorpej }
865 1.1 thorpej
866 1.1 thorpej /*
867 1.1 thorpej * dkwedge_list: [exported function]
868 1.1 thorpej *
869 1.1 thorpej * List all of the wedges on a particular disk.
870 1.1 thorpej */
871 1.1 thorpej int
872 1.10 christos dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
873 1.1 thorpej {
874 1.1 thorpej struct uio uio;
875 1.1 thorpej struct iovec iov;
876 1.1 thorpej struct dkwedge_softc *sc;
877 1.1 thorpej struct dkwedge_info dkw;
878 1.1 thorpej int error = 0;
879 1.1 thorpej
880 1.1 thorpej iov.iov_base = dkwl->dkwl_buf;
881 1.1 thorpej iov.iov_len = dkwl->dkwl_bufsize;
882 1.1 thorpej
883 1.1 thorpej uio.uio_iov = &iov;
884 1.1 thorpej uio.uio_iovcnt = 1;
885 1.1 thorpej uio.uio_offset = 0;
886 1.1 thorpej uio.uio_resid = dkwl->dkwl_bufsize;
887 1.1 thorpej uio.uio_rw = UIO_READ;
888 1.51 pooka KASSERT(l == curlwp);
889 1.51 pooka uio.uio_vmspace = l->l_proc->p_vmspace;
890 1.1 thorpej
891 1.1 thorpej dkwl->dkwl_ncopied = 0;
892 1.1 thorpej
893 1.27 ad mutex_enter(&pdk->dk_openlock);
894 1.1 thorpej LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
895 1.1 thorpej if (uio.uio_resid < sizeof(dkw))
896 1.1 thorpej break;
897 1.1 thorpej
898 1.163 riastrad if (sc->sc_dev == NULL)
899 1.1 thorpej continue;
900 1.1 thorpej
901 1.36 cegger strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
902 1.129 riastrad sizeof(dkw.dkw_devname));
903 1.1 thorpej memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
904 1.1 thorpej dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
905 1.94 maya strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
906 1.94 maya sizeof(dkw.dkw_parent));
907 1.1 thorpej dkw.dkw_offset = sc->sc_offset;
908 1.135 riastrad dkw.dkw_size = dkwedge_size(sc);
909 1.94 maya strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
910 1.1 thorpej
911 1.164 riastrad /*
912 1.164 riastrad * Acquire a device reference so this wedge doesn't go
913 1.164 riastrad * away before our next iteration in LIST_FOREACH, and
914 1.164 riastrad * then release the lock for uiomove.
915 1.164 riastrad */
916 1.164 riastrad device_acquire(sc->sc_dev);
917 1.164 riastrad mutex_exit(&pdk->dk_openlock);
918 1.1 thorpej error = uiomove(&dkw, sizeof(dkw), &uio);
919 1.164 riastrad mutex_enter(&pdk->dk_openlock);
920 1.164 riastrad device_release(sc->sc_dev);
921 1.1 thorpej if (error)
922 1.1 thorpej break;
923 1.164 riastrad
924 1.1 thorpej dkwl->dkwl_ncopied++;
925 1.1 thorpej }
926 1.1 thorpej dkwl->dkwl_nwedges = pdk->dk_nwedges;
927 1.27 ad mutex_exit(&pdk->dk_openlock);
928 1.1 thorpej
929 1.128 riastrad return error;
930 1.1 thorpej }
931 1.1 thorpej
932 1.165 riastrad static device_t
933 1.165 riastrad dkwedge_find_by_wname_acquire(const char *wname)
934 1.25 dyoung {
935 1.25 dyoung device_t dv = NULL;
936 1.25 dyoung struct dkwedge_softc *sc;
937 1.25 dyoung int i;
938 1.25 dyoung
939 1.145 riastrad rw_enter(&dkwedges_lock, RW_READER);
940 1.25 dyoung for (i = 0; i < ndkwedges; i++) {
941 1.163 riastrad if ((sc = dkwedges[i]) == NULL || sc->sc_dev == NULL)
942 1.25 dyoung continue;
943 1.25 dyoung if (strcmp(sc->sc_wname, wname) == 0) {
944 1.25 dyoung if (dv != NULL) {
945 1.25 dyoung printf(
946 1.25 dyoung "WARNING: double match for wedge name %s "
947 1.25 dyoung "(%s, %s)\n", wname, device_xname(dv),
948 1.25 dyoung device_xname(sc->sc_dev));
949 1.25 dyoung continue;
950 1.25 dyoung }
951 1.165 riastrad device_acquire(sc->sc_dev);
952 1.25 dyoung dv = sc->sc_dev;
953 1.25 dyoung }
954 1.25 dyoung }
955 1.27 ad rw_exit(&dkwedges_lock);
956 1.25 dyoung return dv;
957 1.25 dyoung }
958 1.25 dyoung
959 1.165 riastrad static device_t
960 1.165 riastrad dkwedge_find_by_parent_acquire(const char *name, size_t *i)
961 1.89 christos {
962 1.129 riastrad
963 1.145 riastrad rw_enter(&dkwedges_lock, RW_READER);
964 1.89 christos for (; *i < (size_t)ndkwedges; (*i)++) {
965 1.89 christos struct dkwedge_softc *sc;
966 1.163 riastrad if ((sc = dkwedges[*i]) == NULL || sc->sc_dev == NULL)
967 1.89 christos continue;
968 1.89 christos if (strcmp(sc->sc_parent->dk_name, name) != 0)
969 1.89 christos continue;
970 1.165 riastrad device_acquire(sc->sc_dev);
971 1.89 christos rw_exit(&dkwedges_lock);
972 1.89 christos return sc->sc_dev;
973 1.89 christos }
974 1.89 christos rw_exit(&dkwedges_lock);
975 1.89 christos return NULL;
976 1.89 christos }
977 1.89 christos
978 1.165 riastrad /* XXX unsafe */
979 1.165 riastrad device_t
980 1.165 riastrad dkwedge_find_by_wname(const char *wname)
981 1.165 riastrad {
982 1.165 riastrad device_t dv;
983 1.165 riastrad
984 1.165 riastrad if ((dv = dkwedge_find_by_wname_acquire(wname)) == NULL)
985 1.165 riastrad return NULL;
986 1.165 riastrad device_release(dv);
987 1.165 riastrad return dv;
988 1.165 riastrad }
989 1.165 riastrad
990 1.165 riastrad /* XXX unsafe */
991 1.165 riastrad device_t
992 1.165 riastrad dkwedge_find_by_parent(const char *name, size_t *i)
993 1.165 riastrad {
994 1.165 riastrad device_t dv;
995 1.165 riastrad
996 1.165 riastrad if ((dv = dkwedge_find_by_parent_acquire(name, i)) == NULL)
997 1.165 riastrad return NULL;
998 1.165 riastrad device_release(dv);
999 1.165 riastrad return dv;
1000 1.165 riastrad }
1001 1.165 riastrad
1002 1.25 dyoung void
1003 1.25 dyoung dkwedge_print_wnames(void)
1004 1.25 dyoung {
1005 1.25 dyoung struct dkwedge_softc *sc;
1006 1.25 dyoung int i;
1007 1.25 dyoung
1008 1.145 riastrad rw_enter(&dkwedges_lock, RW_READER);
1009 1.25 dyoung for (i = 0; i < ndkwedges; i++) {
1010 1.163 riastrad if ((sc = dkwedges[i]) == NULL || sc->sc_dev == NULL)
1011 1.25 dyoung continue;
1012 1.25 dyoung printf(" wedge:%s", sc->sc_wname);
1013 1.25 dyoung }
1014 1.27 ad rw_exit(&dkwedges_lock);
1015 1.25 dyoung }
1016 1.25 dyoung
1017 1.1 thorpej /*
1018 1.18 uebayasi * We need a dummy object to stuff into the dkwedge discovery method link
1019 1.1 thorpej * set to ensure that there is always at least one object in the set.
1020 1.1 thorpej */
1021 1.1 thorpej static struct dkwedge_discovery_method dummy_discovery_method;
1022 1.1 thorpej __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
1023 1.1 thorpej
1024 1.1 thorpej /*
1025 1.27 ad * dkwedge_init:
1026 1.1 thorpej *
1027 1.27 ad * Initialize the disk wedge subsystem.
1028 1.1 thorpej */
1029 1.27 ad void
1030 1.27 ad dkwedge_init(void)
1031 1.1 thorpej {
1032 1.1 thorpej __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
1033 1.1 thorpej struct dkwedge_discovery_method * const *ddmp;
1034 1.1 thorpej struct dkwedge_discovery_method *lddm, *ddm;
1035 1.1 thorpej
1036 1.27 ad rw_init(&dkwedges_lock);
1037 1.27 ad rw_init(&dkwedge_discovery_methods_lock);
1038 1.27 ad
1039 1.27 ad if (config_cfdriver_attach(&dk_cd) != 0)
1040 1.27 ad panic("dkwedge: unable to attach cfdriver");
1041 1.27 ad if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
1042 1.27 ad panic("dkwedge: unable to attach cfattach");
1043 1.1 thorpej
1044 1.27 ad rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
1045 1.1 thorpej
1046 1.1 thorpej LIST_INIT(&dkwedge_discovery_methods);
1047 1.1 thorpej
1048 1.1 thorpej __link_set_foreach(ddmp, dkwedge_methods) {
1049 1.1 thorpej ddm = *ddmp;
1050 1.1 thorpej if (ddm == &dummy_discovery_method)
1051 1.1 thorpej continue;
1052 1.1 thorpej if (LIST_EMPTY(&dkwedge_discovery_methods)) {
1053 1.1 thorpej LIST_INSERT_HEAD(&dkwedge_discovery_methods,
1054 1.129 riastrad ddm, ddm_list);
1055 1.1 thorpej continue;
1056 1.1 thorpej }
1057 1.1 thorpej LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
1058 1.1 thorpej if (ddm->ddm_priority == lddm->ddm_priority) {
1059 1.1 thorpej aprint_error("dk-method-%s: method \"%s\" "
1060 1.1 thorpej "already exists at priority %d\n",
1061 1.1 thorpej ddm->ddm_name, lddm->ddm_name,
1062 1.1 thorpej lddm->ddm_priority);
1063 1.1 thorpej /* Not inserted. */
1064 1.1 thorpej break;
1065 1.1 thorpej }
1066 1.1 thorpej if (ddm->ddm_priority < lddm->ddm_priority) {
1067 1.1 thorpej /* Higher priority; insert before. */
1068 1.1 thorpej LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
1069 1.1 thorpej break;
1070 1.1 thorpej }
1071 1.1 thorpej if (LIST_NEXT(lddm, ddm_list) == NULL) {
1072 1.1 thorpej /* Last one; insert after. */
1073 1.1 thorpej KASSERT(lddm->ddm_priority < ddm->ddm_priority);
1074 1.1 thorpej LIST_INSERT_AFTER(lddm, ddm, ddm_list);
1075 1.1 thorpej break;
1076 1.1 thorpej }
1077 1.1 thorpej }
1078 1.1 thorpej }
1079 1.1 thorpej
1080 1.27 ad rw_exit(&dkwedge_discovery_methods_lock);
1081 1.1 thorpej }
1082 1.1 thorpej
1083 1.1 thorpej #ifdef DKWEDGE_AUTODISCOVER
1084 1.1 thorpej int dkwedge_autodiscover = 1;
1085 1.1 thorpej #else
1086 1.1 thorpej int dkwedge_autodiscover = 0;
1087 1.1 thorpej #endif
1088 1.1 thorpej
1089 1.1 thorpej /*
1090 1.1 thorpej * dkwedge_discover: [exported function]
1091 1.1 thorpej *
1092 1.1 thorpej * Discover the wedges on a newly attached disk.
1093 1.74 mlelstv * Remove all unused wedges on the disk first.
1094 1.1 thorpej */
1095 1.1 thorpej void
1096 1.1 thorpej dkwedge_discover(struct disk *pdk)
1097 1.1 thorpej {
1098 1.1 thorpej struct dkwedge_discovery_method *ddm;
1099 1.1 thorpej struct vnode *vp;
1100 1.1 thorpej int error;
1101 1.1 thorpej dev_t pdev;
1102 1.1 thorpej
1103 1.1 thorpej /*
1104 1.1 thorpej * Require people playing with wedges to enable this explicitly.
1105 1.1 thorpej */
1106 1.1 thorpej if (dkwedge_autodiscover == 0)
1107 1.1 thorpej return;
1108 1.1 thorpej
1109 1.27 ad rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
1110 1.1 thorpej
1111 1.74 mlelstv /*
1112 1.74 mlelstv * Use the character device for scanning, the block device
1113 1.74 mlelstv * is busy if there are already wedges attached.
1114 1.74 mlelstv */
1115 1.74 mlelstv error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
1116 1.1 thorpej if (error) {
1117 1.1 thorpej aprint_error("%s: unable to compute pdev, error = %d\n",
1118 1.1 thorpej pdk->dk_name, error);
1119 1.1 thorpej goto out;
1120 1.1 thorpej }
1121 1.1 thorpej
1122 1.74 mlelstv error = cdevvp(pdev, &vp);
1123 1.1 thorpej if (error) {
1124 1.1 thorpej aprint_error("%s: unable to find vnode for pdev, error = %d\n",
1125 1.1 thorpej pdk->dk_name, error);
1126 1.1 thorpej goto out;
1127 1.1 thorpej }
1128 1.1 thorpej
1129 1.1 thorpej error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1130 1.1 thorpej if (error) {
1131 1.1 thorpej aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
1132 1.1 thorpej pdk->dk_name, error);
1133 1.1 thorpej vrele(vp);
1134 1.1 thorpej goto out;
1135 1.1 thorpej }
1136 1.1 thorpej
1137 1.62 jmcneill error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
1138 1.1 thorpej if (error) {
1139 1.132 riastrad if (error != ENXIO)
1140 1.67 soren aprint_error("%s: unable to open device, error = %d\n",
1141 1.67 soren pdk->dk_name, error);
1142 1.1 thorpej vput(vp);
1143 1.1 thorpej goto out;
1144 1.1 thorpej }
1145 1.56 hannken VOP_UNLOCK(vp);
1146 1.1 thorpej
1147 1.1 thorpej /*
1148 1.74 mlelstv * Remove unused wedges
1149 1.74 mlelstv */
1150 1.154 riastrad dkwedge_delidle(pdk);
1151 1.74 mlelstv
1152 1.74 mlelstv /*
1153 1.1 thorpej * For each supported partition map type, look to see if
1154 1.1 thorpej * this map type exists. If so, parse it and add the
1155 1.1 thorpej * corresponding wedges.
1156 1.1 thorpej */
1157 1.1 thorpej LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
1158 1.1 thorpej error = (*ddm->ddm_discover)(pdk, vp);
1159 1.1 thorpej if (error == 0) {
1160 1.1 thorpej /* Successfully created wedges; we're done. */
1161 1.1 thorpej break;
1162 1.1 thorpej }
1163 1.1 thorpej }
1164 1.1 thorpej
1165 1.35 ad error = vn_close(vp, FREAD, NOCRED);
1166 1.1 thorpej if (error) {
1167 1.1 thorpej aprint_error("%s: unable to close device, error = %d\n",
1168 1.1 thorpej pdk->dk_name, error);
1169 1.1 thorpej /* We'll just assume the vnode has been cleaned up. */
1170 1.1 thorpej }
1171 1.75 mlelstv
1172 1.129 riastrad out:
1173 1.27 ad rw_exit(&dkwedge_discovery_methods_lock);
1174 1.1 thorpej }
1175 1.1 thorpej
1176 1.1 thorpej /*
1177 1.1 thorpej * dkwedge_read:
1178 1.1 thorpej *
1179 1.37 agc * Read some data from the specified disk, used for
1180 1.1 thorpej * partition discovery.
1181 1.1 thorpej */
1182 1.1 thorpej int
1183 1.20 christos dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
1184 1.19 christos void *tbuf, size_t len)
1185 1.1 thorpej {
1186 1.74 mlelstv buf_t *bp;
1187 1.81 mlelstv int error;
1188 1.82 mlelstv bool isopen;
1189 1.82 mlelstv dev_t bdev;
1190 1.83 pooka struct vnode *bdvp;
1191 1.74 mlelstv
1192 1.74 mlelstv /*
1193 1.74 mlelstv * The kernel cannot read from a character device vnode
1194 1.74 mlelstv * as physio() only handles user memory.
1195 1.74 mlelstv *
1196 1.82 mlelstv * If the block device has already been opened by a wedge
1197 1.82 mlelstv * use that vnode and temporarily bump the open counter.
1198 1.82 mlelstv *
1199 1.82 mlelstv * Otherwise try to open the block device.
1200 1.74 mlelstv */
1201 1.1 thorpej
1202 1.82 mlelstv bdev = devsw_chr2blk(vp->v_rdev);
1203 1.82 mlelstv
1204 1.82 mlelstv mutex_enter(&pdk->dk_rawlock);
1205 1.82 mlelstv if (pdk->dk_rawopens != 0) {
1206 1.82 mlelstv KASSERT(pdk->dk_rawvp != NULL);
1207 1.82 mlelstv isopen = true;
1208 1.82 mlelstv ++pdk->dk_rawopens;
1209 1.83 pooka bdvp = pdk->dk_rawvp;
1210 1.87 mlelstv error = 0;
1211 1.82 mlelstv } else {
1212 1.82 mlelstv isopen = false;
1213 1.87 mlelstv error = dk_open_parent(bdev, FREAD, &bdvp);
1214 1.82 mlelstv }
1215 1.82 mlelstv mutex_exit(&pdk->dk_rawlock);
1216 1.82 mlelstv
1217 1.87 mlelstv if (error)
1218 1.87 mlelstv return error;
1219 1.82 mlelstv
1220 1.83 pooka bp = getiobuf(bdvp, true);
1221 1.41 ad bp->b_flags = B_READ;
1222 1.74 mlelstv bp->b_cflags = BC_BUSY;
1223 1.82 mlelstv bp->b_dev = bdev;
1224 1.41 ad bp->b_data = tbuf;
1225 1.75 mlelstv bp->b_bufsize = bp->b_bcount = len;
1226 1.74 mlelstv bp->b_blkno = blkno;
1227 1.75 mlelstv bp->b_cylinder = 0;
1228 1.75 mlelstv bp->b_error = 0;
1229 1.74 mlelstv
1230 1.83 pooka VOP_STRATEGY(bdvp, bp);
1231 1.74 mlelstv error = biowait(bp);
1232 1.41 ad putiobuf(bp);
1233 1.1 thorpej
1234 1.82 mlelstv mutex_enter(&pdk->dk_rawlock);
1235 1.82 mlelstv if (isopen) {
1236 1.82 mlelstv --pdk->dk_rawopens;
1237 1.82 mlelstv } else {
1238 1.83 pooka dk_close_parent(bdvp, FREAD);
1239 1.82 mlelstv }
1240 1.82 mlelstv mutex_exit(&pdk->dk_rawlock);
1241 1.74 mlelstv
1242 1.74 mlelstv return error;
1243 1.1 thorpej }
1244 1.1 thorpej
1245 1.1 thorpej /*
1246 1.1 thorpej * dkwedge_lookup:
1247 1.1 thorpej *
1248 1.1 thorpej * Look up a dkwedge_softc based on the provided dev_t.
1249 1.159 riastrad *
1250 1.159 riastrad * Caller must guarantee the wedge is referenced.
1251 1.1 thorpej */
1252 1.1 thorpej static struct dkwedge_softc *
1253 1.1 thorpej dkwedge_lookup(dev_t dev)
1254 1.1 thorpej {
1255 1.1 thorpej
1256 1.161 riastrad return device_lookup_private(&dk_cd, minor(dev));
1257 1.1 thorpej }
1258 1.1 thorpej
1259 1.166 riastrad static struct dkwedge_softc *
1260 1.166 riastrad dkwedge_lookup_acquire(dev_t dev)
1261 1.166 riastrad {
1262 1.166 riastrad device_t dv = device_lookup_acquire(&dk_cd, minor(dev));
1263 1.166 riastrad
1264 1.166 riastrad if (dv == NULL)
1265 1.166 riastrad return NULL;
1266 1.166 riastrad return device_private(dv);
1267 1.166 riastrad }
1268 1.166 riastrad
1269 1.87 mlelstv static int
1270 1.87 mlelstv dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
1271 1.82 mlelstv {
1272 1.82 mlelstv struct vnode *vp;
1273 1.82 mlelstv int error;
1274 1.82 mlelstv
1275 1.82 mlelstv error = bdevvp(dev, &vp);
1276 1.82 mlelstv if (error)
1277 1.87 mlelstv return error;
1278 1.82 mlelstv
1279 1.82 mlelstv error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1280 1.82 mlelstv if (error) {
1281 1.82 mlelstv vrele(vp);
1282 1.87 mlelstv return error;
1283 1.82 mlelstv }
1284 1.82 mlelstv error = VOP_OPEN(vp, mode, NOCRED);
1285 1.82 mlelstv if (error) {
1286 1.82 mlelstv vput(vp);
1287 1.87 mlelstv return error;
1288 1.82 mlelstv }
1289 1.82 mlelstv
1290 1.82 mlelstv /* VOP_OPEN() doesn't do this for us. */
1291 1.82 mlelstv if (mode & FWRITE) {
1292 1.82 mlelstv mutex_enter(vp->v_interlock);
1293 1.82 mlelstv vp->v_writecount++;
1294 1.82 mlelstv mutex_exit(vp->v_interlock);
1295 1.82 mlelstv }
1296 1.82 mlelstv
1297 1.82 mlelstv VOP_UNLOCK(vp);
1298 1.82 mlelstv
1299 1.87 mlelstv *vpp = vp;
1300 1.87 mlelstv
1301 1.87 mlelstv return 0;
1302 1.82 mlelstv }
1303 1.82 mlelstv
1304 1.82 mlelstv static int
1305 1.82 mlelstv dk_close_parent(struct vnode *vp, int mode)
1306 1.82 mlelstv {
1307 1.82 mlelstv int error;
1308 1.82 mlelstv
1309 1.82 mlelstv error = vn_close(vp, mode, NOCRED);
1310 1.82 mlelstv return error;
1311 1.82 mlelstv }
1312 1.82 mlelstv
1313 1.1 thorpej /*
1314 1.1 thorpej * dkopen: [devsw entry point]
1315 1.1 thorpej *
1316 1.1 thorpej * Open a wedge.
1317 1.1 thorpej */
1318 1.1 thorpej static int
1319 1.20 christos dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
1320 1.1 thorpej {
1321 1.1 thorpej struct dkwedge_softc *sc = dkwedge_lookup(dev);
1322 1.14 thorpej int error = 0;
1323 1.1 thorpej
1324 1.1 thorpej if (sc == NULL)
1325 1.132 riastrad return ENXIO;
1326 1.167 riastrad KASSERT(sc->sc_dev != NULL);
1327 1.167 riastrad KASSERT(sc->sc_state == DKW_STATE_RUNNING);
1328 1.1 thorpej
1329 1.1 thorpej /*
1330 1.1 thorpej * We go through a complicated little dance to only open the parent
1331 1.1 thorpej * vnode once per wedge, no matter how many times the wedge is
1332 1.1 thorpej * opened. The reason? We see one dkopen() per open call, but
1333 1.1 thorpej * only dkclose() on the last close.
1334 1.1 thorpej */
1335 1.27 ad mutex_enter(&sc->sc_dk.dk_openlock);
1336 1.27 ad mutex_enter(&sc->sc_parent->dk_rawlock);
1337 1.3 thorpej if (sc->sc_dk.dk_openmask == 0) {
1338 1.118 riastrad error = dkfirstopen(sc, flags);
1339 1.118 riastrad if (error)
1340 1.152 riastrad goto out;
1341 1.157 riastrad } else if (flags & ~sc->sc_mode & FWRITE) {
1342 1.157 riastrad /*
1343 1.157 riastrad * The parent is already open, but the previous attempt
1344 1.157 riastrad * to open it read/write failed and fell back to
1345 1.157 riastrad * read-only. In that case, we assume the medium is
1346 1.157 riastrad * read-only and fail to open the wedge read/write.
1347 1.157 riastrad */
1348 1.103 mlelstv error = EROFS;
1349 1.152 riastrad goto out;
1350 1.1 thorpej }
1351 1.157 riastrad KASSERT(sc->sc_mode != 0);
1352 1.157 riastrad KASSERTMSG(sc->sc_mode & FREAD, "%s: sc_mode=%x",
1353 1.157 riastrad device_xname(sc->sc_dev), sc->sc_mode);
1354 1.157 riastrad KASSERTMSG((flags & FWRITE) ? (sc->sc_mode & FWRITE) : 1,
1355 1.157 riastrad "%s: flags=%x sc_mode=%x",
1356 1.157 riastrad device_xname(sc->sc_dev), flags, sc->sc_mode);
1357 1.17 dbj if (fmt == S_IFCHR)
1358 1.17 dbj sc->sc_dk.dk_copenmask |= 1;
1359 1.17 dbj else
1360 1.17 dbj sc->sc_dk.dk_bopenmask |= 1;
1361 1.17 dbj sc->sc_dk.dk_openmask =
1362 1.17 dbj sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1363 1.1 thorpej
1364 1.152 riastrad out: mutex_exit(&sc->sc_parent->dk_rawlock);
1365 1.27 ad mutex_exit(&sc->sc_dk.dk_openlock);
1366 1.128 riastrad return error;
1367 1.1 thorpej }
1368 1.1 thorpej
1369 1.46 dyoung static int
1370 1.118 riastrad dkfirstopen(struct dkwedge_softc *sc, int flags)
1371 1.118 riastrad {
1372 1.118 riastrad struct dkwedge_softc *nsc;
1373 1.118 riastrad struct vnode *vp;
1374 1.118 riastrad int mode;
1375 1.118 riastrad int error;
1376 1.118 riastrad
1377 1.118 riastrad KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
1378 1.118 riastrad KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
1379 1.118 riastrad
1380 1.118 riastrad if (sc->sc_parent->dk_rawopens == 0) {
1381 1.118 riastrad KASSERT(sc->sc_parent->dk_rawvp == NULL);
1382 1.118 riastrad /*
1383 1.118 riastrad * Try open read-write. If this fails for EROFS
1384 1.118 riastrad * and wedge is read-only, retry to open read-only.
1385 1.118 riastrad */
1386 1.118 riastrad mode = FREAD | FWRITE;
1387 1.118 riastrad error = dk_open_parent(sc->sc_pdev, mode, &vp);
1388 1.118 riastrad if (error == EROFS && (flags & FWRITE) == 0) {
1389 1.118 riastrad mode &= ~FWRITE;
1390 1.118 riastrad error = dk_open_parent(sc->sc_pdev, mode, &vp);
1391 1.118 riastrad }
1392 1.118 riastrad if (error)
1393 1.118 riastrad return error;
1394 1.138 riastrad KASSERT(vp != NULL);
1395 1.118 riastrad sc->sc_parent->dk_rawvp = vp;
1396 1.118 riastrad } else {
1397 1.118 riastrad /*
1398 1.118 riastrad * Retrieve mode from an already opened wedge.
1399 1.125 riastrad *
1400 1.125 riastrad * At this point, dk_rawopens is bounded by the number
1401 1.125 riastrad * of dkwedge devices in the system, which is limited
1402 1.125 riastrad * by autoconf device numbering to INT_MAX. Since
1403 1.125 riastrad * dk_rawopens is unsigned, this can't overflow.
1404 1.118 riastrad */
1405 1.125 riastrad KASSERT(sc->sc_parent->dk_rawopens < UINT_MAX);
1406 1.138 riastrad KASSERT(sc->sc_parent->dk_rawvp != NULL);
1407 1.118 riastrad mode = 0;
1408 1.158 riastrad mutex_enter(&sc->sc_parent->dk_openlock);
1409 1.118 riastrad LIST_FOREACH(nsc, &sc->sc_parent->dk_wedges, sc_plink) {
1410 1.118 riastrad if (nsc == sc || nsc->sc_dk.dk_openmask == 0)
1411 1.118 riastrad continue;
1412 1.118 riastrad mode = nsc->sc_mode;
1413 1.118 riastrad break;
1414 1.118 riastrad }
1415 1.158 riastrad mutex_exit(&sc->sc_parent->dk_openlock);
1416 1.118 riastrad }
1417 1.118 riastrad sc->sc_mode = mode;
1418 1.118 riastrad sc->sc_parent->dk_rawopens++;
1419 1.118 riastrad
1420 1.118 riastrad return 0;
1421 1.118 riastrad }
1422 1.118 riastrad
1423 1.121 riastrad static void
1424 1.46 dyoung dklastclose(struct dkwedge_softc *sc)
1425 1.46 dyoung {
1426 1.104 mlelstv
1427 1.117 riastrad KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
1428 1.117 riastrad KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
1429 1.126 riastrad KASSERT(sc->sc_parent->dk_rawopens > 0);
1430 1.126 riastrad KASSERT(sc->sc_parent->dk_rawvp != NULL);
1431 1.117 riastrad
1432 1.120 riastrad if (--sc->sc_parent->dk_rawopens == 0) {
1433 1.120 riastrad struct vnode *const vp = sc->sc_parent->dk_rawvp;
1434 1.120 riastrad const int mode = sc->sc_mode;
1435 1.74 mlelstv
1436 1.120 riastrad sc->sc_parent->dk_rawvp = NULL;
1437 1.120 riastrad sc->sc_mode = 0;
1438 1.74 mlelstv
1439 1.104 mlelstv dk_close_parent(vp, mode);
1440 1.74 mlelstv }
1441 1.46 dyoung }
1442 1.46 dyoung
1443 1.46 dyoung /*
1444 1.1 thorpej * dkclose: [devsw entry point]
1445 1.1 thorpej *
1446 1.1 thorpej * Close a wedge.
1447 1.1 thorpej */
1448 1.1 thorpej static int
1449 1.20 christos dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1450 1.1 thorpej {
1451 1.1 thorpej struct dkwedge_softc *sc = dkwedge_lookup(dev);
1452 1.1 thorpej
1453 1.168 riastrad /*
1454 1.168 riastrad * dkclose can be called even if dkopen didn't succeed, so we
1455 1.168 riastrad * have to handle the same possibility that the wedge may not
1456 1.168 riastrad * exist.
1457 1.168 riastrad */
1458 1.59 christos if (sc == NULL)
1459 1.132 riastrad return ENXIO;
1460 1.168 riastrad KASSERT(sc->sc_dev != NULL);
1461 1.168 riastrad KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1462 1.168 riastrad KASSERT(sc->sc_state != DKW_STATE_DEAD);
1463 1.59 christos
1464 1.27 ad mutex_enter(&sc->sc_dk.dk_openlock);
1465 1.122 riastrad mutex_enter(&sc->sc_parent->dk_rawlock);
1466 1.1 thorpej
1467 1.123 riastrad KASSERT(sc->sc_dk.dk_openmask != 0);
1468 1.123 riastrad
1469 1.3 thorpej if (fmt == S_IFCHR)
1470 1.3 thorpej sc->sc_dk.dk_copenmask &= ~1;
1471 1.3 thorpej else
1472 1.3 thorpej sc->sc_dk.dk_bopenmask &= ~1;
1473 1.3 thorpej sc->sc_dk.dk_openmask =
1474 1.3 thorpej sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1475 1.3 thorpej
1476 1.104 mlelstv if (sc->sc_dk.dk_openmask == 0) {
1477 1.121 riastrad dklastclose(sc);
1478 1.90 mlelstv }
1479 1.1 thorpej
1480 1.122 riastrad mutex_exit(&sc->sc_parent->dk_rawlock);
1481 1.115 riastrad mutex_exit(&sc->sc_dk.dk_openlock);
1482 1.115 riastrad
1483 1.121 riastrad return 0;
1484 1.1 thorpej }
1485 1.1 thorpej
1486 1.1 thorpej /*
1487 1.141 riastrad * dkcancel: [devsw entry point]
1488 1.141 riastrad *
1489 1.141 riastrad * Cancel any pending I/O operations waiting on a wedge.
1490 1.141 riastrad */
1491 1.141 riastrad static int
1492 1.141 riastrad dkcancel(dev_t dev, int flags, int fmt, struct lwp *l)
1493 1.141 riastrad {
1494 1.141 riastrad struct dkwedge_softc *sc = dkwedge_lookup(dev);
1495 1.141 riastrad
1496 1.141 riastrad KASSERT(sc != NULL);
1497 1.141 riastrad KASSERT(sc->sc_dev != NULL);
1498 1.150 riastrad KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1499 1.150 riastrad KASSERT(sc->sc_state != DKW_STATE_DEAD);
1500 1.141 riastrad
1501 1.141 riastrad /*
1502 1.141 riastrad * Disk I/O is expected to complete or fail within a reasonable
1503 1.141 riastrad * timeframe -- it's storage, not communication. Further, the
1504 1.141 riastrad * character and block device interface guarantees that prior
1505 1.141 riastrad * reads and writes have completed or failed by the time close
1506 1.141 riastrad * returns -- we are not to cancel them here. If the parent
1507 1.141 riastrad * device's hardware is gone, the parent driver can make them
1508 1.141 riastrad * fail. Nothing for dk(4) itself to do.
1509 1.141 riastrad */
1510 1.141 riastrad
1511 1.141 riastrad return 0;
1512 1.141 riastrad }
1513 1.141 riastrad
1514 1.141 riastrad /*
1515 1.131 riastrad * dkstrategy: [devsw entry point]
1516 1.1 thorpej *
1517 1.1 thorpej * Perform I/O based on the wedge I/O strategy.
1518 1.1 thorpej */
1519 1.1 thorpej static void
1520 1.1 thorpej dkstrategy(struct buf *bp)
1521 1.1 thorpej {
1522 1.1 thorpej struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1523 1.54 mlelstv uint64_t p_size, p_offset;
1524 1.1 thorpej
1525 1.150 riastrad KASSERT(sc != NULL);
1526 1.169 riastrad KASSERT(sc->sc_dev != NULL);
1527 1.150 riastrad KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1528 1.150 riastrad KASSERT(sc->sc_state != DKW_STATE_DEAD);
1529 1.150 riastrad KASSERT(sc->sc_parent->dk_rawvp != NULL);
1530 1.1 thorpej
1531 1.1 thorpej /* If it's an empty transfer, wake up the top half now. */
1532 1.1 thorpej if (bp->b_bcount == 0)
1533 1.1 thorpej goto done;
1534 1.1 thorpej
1535 1.54 mlelstv p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1536 1.135 riastrad p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1537 1.54 mlelstv
1538 1.1 thorpej /* Make sure it's in-range. */
1539 1.54 mlelstv if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1540 1.1 thorpej goto done;
1541 1.1 thorpej
1542 1.1 thorpej /* Translate it to the parent's raw LBA. */
1543 1.54 mlelstv bp->b_rawblkno = bp->b_blkno + p_offset;
1544 1.1 thorpej
1545 1.1 thorpej /* Place it in the queue and start I/O on the unit. */
1546 1.92 mlelstv mutex_enter(&sc->sc_iolock);
1547 1.96 mlelstv disk_wait(&sc->sc_dk);
1548 1.43 yamt bufq_put(sc->sc_bufq, bp);
1549 1.92 mlelstv mutex_exit(&sc->sc_iolock);
1550 1.92 mlelstv
1551 1.1 thorpej dkstart(sc);
1552 1.1 thorpej return;
1553 1.1 thorpej
1554 1.129 riastrad done:
1555 1.1 thorpej bp->b_resid = bp->b_bcount;
1556 1.1 thorpej biodone(bp);
1557 1.1 thorpej }
1558 1.1 thorpej
1559 1.1 thorpej /*
1560 1.1 thorpej * dkstart:
1561 1.1 thorpej *
1562 1.1 thorpej * Start I/O that has been enqueued on the wedge.
1563 1.1 thorpej */
1564 1.1 thorpej static void
1565 1.1 thorpej dkstart(struct dkwedge_softc *sc)
1566 1.1 thorpej {
1567 1.32 ad struct vnode *vp;
1568 1.1 thorpej struct buf *bp, *nbp;
1569 1.1 thorpej
1570 1.92 mlelstv mutex_enter(&sc->sc_iolock);
1571 1.92 mlelstv
1572 1.1 thorpej /* Do as much work as has been enqueued. */
1573 1.43 yamt while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1574 1.142 riastrad if (sc->sc_iostop) {
1575 1.43 yamt (void) bufq_get(sc->sc_bufq);
1576 1.92 mlelstv mutex_exit(&sc->sc_iolock);
1577 1.1 thorpej bp->b_error = ENXIO;
1578 1.1 thorpej bp->b_resid = bp->b_bcount;
1579 1.1 thorpej biodone(bp);
1580 1.92 mlelstv mutex_enter(&sc->sc_iolock);
1581 1.92 mlelstv continue;
1582 1.1 thorpej }
1583 1.1 thorpej
1584 1.92 mlelstv /* fetch an I/O buf with sc_iolock dropped */
1585 1.92 mlelstv mutex_exit(&sc->sc_iolock);
1586 1.32 ad nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1587 1.92 mlelstv mutex_enter(&sc->sc_iolock);
1588 1.1 thorpej if (nbp == NULL) {
1589 1.1 thorpej /*
1590 1.1 thorpej * No resources to run this request; leave the
1591 1.1 thorpej * buffer queued up, and schedule a timer to
1592 1.1 thorpej * restart the queue in 1/2 a second.
1593 1.1 thorpej */
1594 1.142 riastrad if (!sc->sc_iostop)
1595 1.142 riastrad callout_schedule(&sc->sc_restart_ch, hz/2);
1596 1.92 mlelstv break;
1597 1.92 mlelstv }
1598 1.92 mlelstv
1599 1.92 mlelstv /*
1600 1.92 mlelstv * fetch buf, this can fail if another thread
1601 1.92 mlelstv * has already processed the queue, it can also
1602 1.92 mlelstv * return a completely different buf.
1603 1.92 mlelstv */
1604 1.92 mlelstv bp = bufq_get(sc->sc_bufq);
1605 1.92 mlelstv if (bp == NULL) {
1606 1.92 mlelstv mutex_exit(&sc->sc_iolock);
1607 1.92 mlelstv putiobuf(nbp);
1608 1.92 mlelstv mutex_enter(&sc->sc_iolock);
1609 1.92 mlelstv continue;
1610 1.1 thorpej }
1611 1.1 thorpej
1612 1.92 mlelstv /* Instrumentation. */
1613 1.92 mlelstv disk_busy(&sc->sc_dk);
1614 1.92 mlelstv
1615 1.92 mlelstv /* release lock for VOP_STRATEGY */
1616 1.92 mlelstv mutex_exit(&sc->sc_iolock);
1617 1.1 thorpej
1618 1.1 thorpej nbp->b_data = bp->b_data;
1619 1.32 ad nbp->b_flags = bp->b_flags;
1620 1.32 ad nbp->b_oflags = bp->b_oflags;
1621 1.32 ad nbp->b_cflags = bp->b_cflags;
1622 1.1 thorpej nbp->b_iodone = dkiodone;
1623 1.1 thorpej nbp->b_proc = bp->b_proc;
1624 1.1 thorpej nbp->b_blkno = bp->b_rawblkno;
1625 1.1 thorpej nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1626 1.1 thorpej nbp->b_bcount = bp->b_bcount;
1627 1.1 thorpej nbp->b_private = bp;
1628 1.1 thorpej BIO_COPYPRIO(nbp, bp);
1629 1.1 thorpej
1630 1.32 ad vp = nbp->b_vp;
1631 1.32 ad if ((nbp->b_flags & B_READ) == 0) {
1632 1.61 rmind mutex_enter(vp->v_interlock);
1633 1.32 ad vp->v_numoutput++;
1634 1.61 rmind mutex_exit(vp->v_interlock);
1635 1.32 ad }
1636 1.32 ad VOP_STRATEGY(vp, nbp);
1637 1.92 mlelstv
1638 1.92 mlelstv mutex_enter(&sc->sc_iolock);
1639 1.1 thorpej }
1640 1.92 mlelstv
1641 1.92 mlelstv mutex_exit(&sc->sc_iolock);
1642 1.1 thorpej }
1643 1.1 thorpej
1644 1.1 thorpej /*
1645 1.1 thorpej * dkiodone:
1646 1.1 thorpej *
1647 1.1 thorpej * I/O to a wedge has completed; alert the top half.
1648 1.1 thorpej */
1649 1.1 thorpej static void
1650 1.1 thorpej dkiodone(struct buf *bp)
1651 1.1 thorpej {
1652 1.1 thorpej struct buf *obp = bp->b_private;
1653 1.1 thorpej struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1654 1.1 thorpej
1655 1.169 riastrad KASSERT(sc != NULL);
1656 1.169 riastrad KASSERT(sc->sc_dev != NULL);
1657 1.169 riastrad
1658 1.28 ad if (bp->b_error != 0)
1659 1.1 thorpej obp->b_error = bp->b_error;
1660 1.1 thorpej obp->b_resid = bp->b_resid;
1661 1.11 yamt putiobuf(bp);
1662 1.1 thorpej
1663 1.92 mlelstv mutex_enter(&sc->sc_iolock);
1664 1.1 thorpej disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1665 1.1 thorpej obp->b_flags & B_READ);
1666 1.92 mlelstv mutex_exit(&sc->sc_iolock);
1667 1.1 thorpej
1668 1.1 thorpej biodone(obp);
1669 1.1 thorpej
1670 1.1 thorpej /* Kick the queue in case there is more work we can do. */
1671 1.1 thorpej dkstart(sc);
1672 1.1 thorpej }
1673 1.1 thorpej
1674 1.1 thorpej /*
1675 1.1 thorpej * dkrestart:
1676 1.1 thorpej *
1677 1.1 thorpej * Restart the work queue after it was stalled due to
1678 1.1 thorpej * a resource shortage. Invoked via a callout.
1679 1.1 thorpej */
1680 1.1 thorpej static void
1681 1.1 thorpej dkrestart(void *v)
1682 1.1 thorpej {
1683 1.1 thorpej struct dkwedge_softc *sc = v;
1684 1.1 thorpej
1685 1.1 thorpej dkstart(sc);
1686 1.1 thorpej }
1687 1.1 thorpej
1688 1.1 thorpej /*
1689 1.52 jakllsch * dkminphys:
1690 1.52 jakllsch *
1691 1.52 jakllsch * Call parent's minphys function.
1692 1.52 jakllsch */
1693 1.52 jakllsch static void
1694 1.52 jakllsch dkminphys(struct buf *bp)
1695 1.52 jakllsch {
1696 1.52 jakllsch struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1697 1.52 jakllsch dev_t dev;
1698 1.52 jakllsch
1699 1.169 riastrad KASSERT(sc != NULL);
1700 1.169 riastrad KASSERT(sc->sc_dev != NULL);
1701 1.169 riastrad
1702 1.52 jakllsch dev = bp->b_dev;
1703 1.52 jakllsch bp->b_dev = sc->sc_pdev;
1704 1.102 mlelstv if (sc->sc_parent->dk_driver && sc->sc_parent->dk_driver->d_minphys)
1705 1.102 mlelstv (*sc->sc_parent->dk_driver->d_minphys)(bp);
1706 1.102 mlelstv else
1707 1.102 mlelstv minphys(bp);
1708 1.52 jakllsch bp->b_dev = dev;
1709 1.52 jakllsch }
1710 1.52 jakllsch
1711 1.52 jakllsch /*
1712 1.1 thorpej * dkread: [devsw entry point]
1713 1.1 thorpej *
1714 1.1 thorpej * Read from a wedge.
1715 1.1 thorpej */
1716 1.1 thorpej static int
1717 1.20 christos dkread(dev_t dev, struct uio *uio, int flags)
1718 1.1 thorpej {
1719 1.150 riastrad struct dkwedge_softc *sc __diagused = dkwedge_lookup(dev);
1720 1.1 thorpej
1721 1.150 riastrad KASSERT(sc != NULL);
1722 1.169 riastrad KASSERT(sc->sc_dev != NULL);
1723 1.150 riastrad KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1724 1.150 riastrad KASSERT(sc->sc_state != DKW_STATE_DEAD);
1725 1.6 perry
1726 1.128 riastrad return physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio);
1727 1.1 thorpej }
1728 1.1 thorpej
1729 1.1 thorpej /*
1730 1.1 thorpej * dkwrite: [devsw entry point]
1731 1.1 thorpej *
1732 1.1 thorpej * Write to a wedge.
1733 1.1 thorpej */
1734 1.1 thorpej static int
1735 1.20 christos dkwrite(dev_t dev, struct uio *uio, int flags)
1736 1.1 thorpej {
1737 1.150 riastrad struct dkwedge_softc *sc __diagused = dkwedge_lookup(dev);
1738 1.1 thorpej
1739 1.150 riastrad KASSERT(sc != NULL);
1740 1.169 riastrad KASSERT(sc->sc_dev != NULL);
1741 1.150 riastrad KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1742 1.150 riastrad KASSERT(sc->sc_state != DKW_STATE_DEAD);
1743 1.6 perry
1744 1.128 riastrad return physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio);
1745 1.1 thorpej }
1746 1.1 thorpej
1747 1.1 thorpej /*
1748 1.1 thorpej * dkioctl: [devsw entry point]
1749 1.1 thorpej *
1750 1.1 thorpej * Perform an ioctl request on a wedge.
1751 1.1 thorpej */
1752 1.1 thorpej static int
1753 1.22 christos dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1754 1.1 thorpej {
1755 1.1 thorpej struct dkwedge_softc *sc = dkwedge_lookup(dev);
1756 1.1 thorpej int error = 0;
1757 1.1 thorpej
1758 1.150 riastrad KASSERT(sc != NULL);
1759 1.169 riastrad KASSERT(sc->sc_dev != NULL);
1760 1.150 riastrad KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1761 1.150 riastrad KASSERT(sc->sc_state != DKW_STATE_DEAD);
1762 1.150 riastrad KASSERT(sc->sc_parent->dk_rawvp != NULL);
1763 1.1 thorpej
1764 1.78 christos /*
1765 1.79 christos * We pass NODEV instead of our device to indicate we don't
1766 1.78 christos * want to handle disklabel ioctls
1767 1.78 christos */
1768 1.79 christos error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
1769 1.48 haad if (error != EPASSTHROUGH)
1770 1.128 riastrad return error;
1771 1.48 haad
1772 1.48 haad error = 0;
1773 1.109 simonb
1774 1.1 thorpej switch (cmd) {
1775 1.95 jdolecek case DIOCGSTRATEGY:
1776 1.95 jdolecek case DIOCGCACHE:
1777 1.4 thorpej case DIOCCACHESYNC:
1778 1.95 jdolecek error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, data, flag,
1779 1.129 riastrad l != NULL ? l->l_cred : NOCRED);
1780 1.4 thorpej break;
1781 1.129 riastrad case DIOCGWEDGEINFO: {
1782 1.130 riastrad struct dkwedge_info *dkw = data;
1783 1.1 thorpej
1784 1.36 cegger strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1785 1.129 riastrad sizeof(dkw->dkw_devname));
1786 1.1 thorpej memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1787 1.1 thorpej dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1788 1.94 maya strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
1789 1.94 maya sizeof(dkw->dkw_parent));
1790 1.1 thorpej dkw->dkw_offset = sc->sc_offset;
1791 1.135 riastrad dkw->dkw_size = dkwedge_size(sc);
1792 1.94 maya strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
1793 1.1 thorpej
1794 1.1 thorpej break;
1795 1.129 riastrad }
1796 1.129 riastrad case DIOCGSECTORALIGN: {
1797 1.100 riastrad struct disk_sectoralign *dsa = data;
1798 1.100 riastrad uint32_t r;
1799 1.100 riastrad
1800 1.100 riastrad error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, dsa, flag,
1801 1.100 riastrad l != NULL ? l->l_cred : NOCRED);
1802 1.100 riastrad if (error)
1803 1.100 riastrad break;
1804 1.1 thorpej
1805 1.100 riastrad r = sc->sc_offset % dsa->dsa_alignment;
1806 1.100 riastrad if (r < dsa->dsa_firstaligned)
1807 1.100 riastrad dsa->dsa_firstaligned = dsa->dsa_firstaligned - r;
1808 1.100 riastrad else
1809 1.100 riastrad dsa->dsa_firstaligned = (dsa->dsa_firstaligned +
1810 1.100 riastrad dsa->dsa_alignment) - r;
1811 1.172 jakllsch dsa->dsa_firstaligned %= dsa->dsa_alignment;
1812 1.100 riastrad break;
1813 1.129 riastrad }
1814 1.1 thorpej default:
1815 1.1 thorpej error = ENOTTY;
1816 1.1 thorpej }
1817 1.1 thorpej
1818 1.128 riastrad return error;
1819 1.1 thorpej }
1820 1.1 thorpej
1821 1.1 thorpej /*
1822 1.72 dholland * dkdiscard: [devsw entry point]
1823 1.72 dholland *
1824 1.72 dholland * Perform a discard-range request on a wedge.
1825 1.72 dholland */
1826 1.72 dholland static int
1827 1.72 dholland dkdiscard(dev_t dev, off_t pos, off_t len)
1828 1.72 dholland {
1829 1.72 dholland struct dkwedge_softc *sc = dkwedge_lookup(dev);
1830 1.135 riastrad uint64_t size = dkwedge_size(sc);
1831 1.73 riastrad unsigned shift;
1832 1.73 riastrad off_t offset, maxlen;
1833 1.111 hannken int error;
1834 1.72 dholland
1835 1.150 riastrad KASSERT(sc != NULL);
1836 1.169 riastrad KASSERT(sc->sc_dev != NULL);
1837 1.150 riastrad KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1838 1.150 riastrad KASSERT(sc->sc_state != DKW_STATE_DEAD);
1839 1.150 riastrad KASSERT(sc->sc_parent->dk_rawvp != NULL);
1840 1.72 dholland
1841 1.135 riastrad /* XXX check bounds on size/offset up front */
1842 1.73 riastrad shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
1843 1.135 riastrad KASSERT(__type_fit(off_t, size));
1844 1.73 riastrad KASSERT(__type_fit(off_t, sc->sc_offset));
1845 1.73 riastrad KASSERT(0 <= sc->sc_offset);
1846 1.135 riastrad KASSERT(size <= (__type_max(off_t) >> shift));
1847 1.135 riastrad KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - size));
1848 1.73 riastrad offset = ((off_t)sc->sc_offset << shift);
1849 1.135 riastrad maxlen = ((off_t)size << shift);
1850 1.73 riastrad
1851 1.73 riastrad if (len > maxlen)
1852 1.128 riastrad return EINVAL;
1853 1.73 riastrad if (pos > (maxlen - len))
1854 1.128 riastrad return EINVAL;
1855 1.73 riastrad
1856 1.73 riastrad pos += offset;
1857 1.111 hannken
1858 1.111 hannken vn_lock(sc->sc_parent->dk_rawvp, LK_EXCLUSIVE | LK_RETRY);
1859 1.111 hannken error = VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
1860 1.111 hannken VOP_UNLOCK(sc->sc_parent->dk_rawvp);
1861 1.111 hannken
1862 1.111 hannken return error;
1863 1.72 dholland }
1864 1.72 dholland
1865 1.72 dholland /*
1866 1.1 thorpej * dksize: [devsw entry point]
1867 1.1 thorpej *
1868 1.1 thorpej * Query the size of a wedge for the purpose of performing a dump
1869 1.1 thorpej * or for swapping to.
1870 1.1 thorpej */
1871 1.1 thorpej static int
1872 1.1 thorpej dksize(dev_t dev)
1873 1.1 thorpej {
1874 1.170 riastrad /*
1875 1.170 riastrad * Don't bother taking a reference because this is only used
1876 1.170 riastrad * either (a) while the device is open (for swap), or (b) while
1877 1.170 riastrad * any multiprocessing is quiescent (for crash dumps).
1878 1.170 riastrad */
1879 1.13 thorpej struct dkwedge_softc *sc = dkwedge_lookup(dev);
1880 1.106 mlelstv uint64_t p_size;
1881 1.13 thorpej int rv = -1;
1882 1.13 thorpej
1883 1.13 thorpej if (sc == NULL)
1884 1.128 riastrad return -1;
1885 1.13 thorpej if (sc->sc_state != DKW_STATE_RUNNING)
1886 1.128 riastrad return -1;
1887 1.13 thorpej
1888 1.13 thorpej /* Our content type is static, no need to open the device. */
1889 1.13 thorpej
1890 1.135 riastrad p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1891 1.13 thorpej if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1892 1.13 thorpej /* Saturate if we are larger than INT_MAX. */
1893 1.106 mlelstv if (p_size > INT_MAX)
1894 1.13 thorpej rv = INT_MAX;
1895 1.13 thorpej else
1896 1.129 riastrad rv = (int)p_size;
1897 1.13 thorpej }
1898 1.13 thorpej
1899 1.128 riastrad return rv;
1900 1.1 thorpej }
1901 1.1 thorpej
1902 1.1 thorpej /*
1903 1.1 thorpej * dkdump: [devsw entry point]
1904 1.1 thorpej *
1905 1.1 thorpej * Perform a crash dump to a wedge.
1906 1.1 thorpej */
1907 1.1 thorpej static int
1908 1.23 dyoung dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1909 1.1 thorpej {
1910 1.170 riastrad /*
1911 1.170 riastrad * Don't bother taking a reference because this is only used
1912 1.170 riastrad * while any multiprocessing is quiescent.
1913 1.170 riastrad */
1914 1.23 dyoung struct dkwedge_softc *sc = dkwedge_lookup(dev);
1915 1.23 dyoung const struct bdevsw *bdev;
1916 1.106 mlelstv uint64_t p_size, p_offset;
1917 1.23 dyoung
1918 1.23 dyoung if (sc == NULL)
1919 1.132 riastrad return ENXIO;
1920 1.23 dyoung if (sc->sc_state != DKW_STATE_RUNNING)
1921 1.128 riastrad return ENXIO;
1922 1.23 dyoung
1923 1.23 dyoung /* Our content type is static, no need to open the device. */
1924 1.23 dyoung
1925 1.88 mlelstv if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
1926 1.99 riastrad strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0 &&
1927 1.147 riastrad strcmp(sc->sc_ptype, DKW_PTYPE_CGD) != 0)
1928 1.147 riastrad return ENXIO;
1929 1.147 riastrad if (size % DEV_BSIZE != 0)
1930 1.147 riastrad return EINVAL;
1931 1.106 mlelstv
1932 1.106 mlelstv p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1933 1.135 riastrad p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1934 1.106 mlelstv
1935 1.129 riastrad if (blkno < 0 || blkno + size/DEV_BSIZE > p_size) {
1936 1.23 dyoung printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1937 1.106 mlelstv "p_size (%" PRIu64 ")\n", __func__, blkno,
1938 1.129 riastrad size/DEV_BSIZE, p_size);
1939 1.147 riastrad return EINVAL;
1940 1.23 dyoung }
1941 1.23 dyoung
1942 1.23 dyoung bdev = bdevsw_lookup(sc->sc_pdev);
1943 1.147 riastrad return (*bdev->d_dump)(sc->sc_pdev, blkno + p_offset, va, size);
1944 1.1 thorpej }
1945 1.49 pooka
1946 1.49 pooka /*
1947 1.49 pooka * config glue
1948 1.49 pooka */
1949 1.49 pooka
1950 1.64 mlelstv /*
1951 1.64 mlelstv * dkwedge_find_partition
1952 1.64 mlelstv *
1953 1.64 mlelstv * Find wedge corresponding to the specified parent name
1954 1.64 mlelstv * and offset/length.
1955 1.64 mlelstv */
1956 1.165 riastrad static device_t
1957 1.165 riastrad dkwedge_find_partition_acquire(device_t parent, daddr_t startblk,
1958 1.165 riastrad uint64_t nblks)
1959 1.49 pooka {
1960 1.64 mlelstv struct dkwedge_softc *sc;
1961 1.64 mlelstv int i;
1962 1.64 mlelstv device_t wedge = NULL;
1963 1.49 pooka
1964 1.64 mlelstv rw_enter(&dkwedges_lock, RW_READER);
1965 1.64 mlelstv for (i = 0; i < ndkwedges; i++) {
1966 1.163 riastrad if ((sc = dkwedges[i]) == NULL || sc->sc_dev == NULL)
1967 1.64 mlelstv continue;
1968 1.64 mlelstv if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
1969 1.64 mlelstv sc->sc_offset == startblk &&
1970 1.135 riastrad dkwedge_size(sc) == nblks) {
1971 1.64 mlelstv if (wedge) {
1972 1.64 mlelstv printf("WARNING: double match for boot wedge "
1973 1.64 mlelstv "(%s, %s)\n",
1974 1.64 mlelstv device_xname(wedge),
1975 1.64 mlelstv device_xname(sc->sc_dev));
1976 1.64 mlelstv continue;
1977 1.64 mlelstv }
1978 1.64 mlelstv wedge = sc->sc_dev;
1979 1.165 riastrad device_acquire(wedge);
1980 1.64 mlelstv }
1981 1.49 pooka }
1982 1.64 mlelstv rw_exit(&dkwedges_lock);
1983 1.49 pooka
1984 1.64 mlelstv return wedge;
1985 1.64 mlelstv }
1986 1.49 pooka
1987 1.165 riastrad /* XXX unsafe */
1988 1.165 riastrad device_t
1989 1.165 riastrad dkwedge_find_partition(device_t parent, daddr_t startblk,
1990 1.165 riastrad uint64_t nblks)
1991 1.165 riastrad {
1992 1.165 riastrad device_t dv;
1993 1.165 riastrad
1994 1.165 riastrad if ((dv = dkwedge_find_partition_acquire(parent, startblk, nblks))
1995 1.165 riastrad == NULL)
1996 1.165 riastrad return NULL;
1997 1.165 riastrad device_release(dv);
1998 1.165 riastrad return dv;
1999 1.165 riastrad }
2000 1.165 riastrad
2001 1.69 christos const char *
2002 1.69 christos dkwedge_get_parent_name(dev_t dev)
2003 1.69 christos {
2004 1.69 christos /* XXX: perhaps do this in lookup? */
2005 1.69 christos int bmaj = bdevsw_lookup_major(&dk_bdevsw);
2006 1.69 christos int cmaj = cdevsw_lookup_major(&dk_cdevsw);
2007 1.129 riastrad
2008 1.69 christos if (major(dev) != bmaj && major(dev) != cmaj)
2009 1.69 christos return NULL;
2010 1.166 riastrad
2011 1.166 riastrad struct dkwedge_softc *const sc = dkwedge_lookup_acquire(dev);
2012 1.69 christos if (sc == NULL)
2013 1.69 christos return NULL;
2014 1.166 riastrad const char *const name = sc->sc_parent->dk_name;
2015 1.166 riastrad device_release(sc->sc_dev);
2016 1.166 riastrad return name;
2017 1.69 christos }
2018