dk.c revision 1.103 1 /* $NetBSD: dk.c,v 1.103 2021/05/22 13:43:50 mlelstv Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.103 2021/05/22 13:43:50 mlelstv Exp $");
34
35 #ifdef _KERNEL_OPT
36 #include "opt_dkwedge.h"
37 #endif
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/errno.h>
43 #include <sys/pool.h>
44 #include <sys/ioctl.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/fcntl.h>
48 #include <sys/buf.h>
49 #include <sys/bufq.h>
50 #include <sys/vnode.h>
51 #include <sys/stat.h>
52 #include <sys/conf.h>
53 #include <sys/callout.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/device.h>
57 #include <sys/kauth.h>
58
59 #include <miscfs/specfs/specdev.h>
60
61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
62
63 typedef enum {
64 DKW_STATE_LARVAL = 0,
65 DKW_STATE_RUNNING = 1,
66 DKW_STATE_DYING = 2,
67 DKW_STATE_DEAD = 666
68 } dkwedge_state_t;
69
70 struct dkwedge_softc {
71 device_t sc_dev; /* pointer to our pseudo-device */
72 struct cfdata sc_cfdata; /* our cfdata structure */
73 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
74
75 dkwedge_state_t sc_state; /* state this wedge is in */
76
77 struct disk *sc_parent; /* parent disk */
78 daddr_t sc_offset; /* LBA offset of wedge in parent */
79 uint64_t sc_size; /* size of wedge in blocks */
80 char sc_ptype[32]; /* partition type */
81 dev_t sc_pdev; /* cached parent's dev_t */
82 /* link on parent's wedge list */
83 LIST_ENTRY(dkwedge_softc) sc_plink;
84
85 struct disk sc_dk; /* our own disk structure */
86 struct bufq_state *sc_bufq; /* buffer queue */
87 struct callout sc_restart_ch; /* callout to restart I/O */
88
89 kmutex_t sc_iolock;
90 kcondvar_t sc_dkdrn;
91 u_int sc_iopend; /* I/Os pending */
92 int sc_flags; /* flags (sc_iolock) */
93 int sc_mode; /* parent open mode */
94 };
95
96 #define DK_F_WAIT_DRAIN 0x0001 /* waiting for I/O to drain */
97
98 static void dkstart(struct dkwedge_softc *);
99 static void dkiodone(struct buf *);
100 static void dkrestart(void *);
101 static void dkminphys(struct buf *);
102
103 static int dklastclose(struct dkwedge_softc *);
104 static int dkwedge_cleanup_parent(struct dkwedge_softc *, int);
105 static int dkwedge_detach(device_t, int);
106 static void dkwedge_delall1(struct disk *, bool);
107 static int dkwedge_del1(struct dkwedge_info *, int);
108 static int dk_open_parent(dev_t, int, struct vnode **);
109 static int dk_close_parent(struct vnode *, int);
110
111 static dev_type_open(dkopen);
112 static dev_type_close(dkclose);
113 static dev_type_read(dkread);
114 static dev_type_write(dkwrite);
115 static dev_type_ioctl(dkioctl);
116 static dev_type_strategy(dkstrategy);
117 static dev_type_dump(dkdump);
118 static dev_type_size(dksize);
119 static dev_type_discard(dkdiscard);
120
121 const struct bdevsw dk_bdevsw = {
122 .d_open = dkopen,
123 .d_close = dkclose,
124 .d_strategy = dkstrategy,
125 .d_ioctl = dkioctl,
126 .d_dump = dkdump,
127 .d_psize = dksize,
128 .d_discard = dkdiscard,
129 .d_flag = D_DISK | D_MPSAFE
130 };
131
132 const struct cdevsw dk_cdevsw = {
133 .d_open = dkopen,
134 .d_close = dkclose,
135 .d_read = dkread,
136 .d_write = dkwrite,
137 .d_ioctl = dkioctl,
138 .d_stop = nostop,
139 .d_tty = notty,
140 .d_poll = nopoll,
141 .d_mmap = nommap,
142 .d_kqfilter = nokqfilter,
143 .d_discard = dkdiscard,
144 .d_flag = D_DISK | D_MPSAFE
145 };
146
147 static struct dkwedge_softc **dkwedges;
148 static u_int ndkwedges;
149 static krwlock_t dkwedges_lock;
150
151 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
152 static krwlock_t dkwedge_discovery_methods_lock;
153
154 /*
155 * dkwedge_match:
156 *
157 * Autoconfiguration match function for pseudo-device glue.
158 */
159 static int
160 dkwedge_match(device_t parent, cfdata_t match,
161 void *aux)
162 {
163
164 /* Pseudo-device; always present. */
165 return (1);
166 }
167
168 /*
169 * dkwedge_attach:
170 *
171 * Autoconfiguration attach function for pseudo-device glue.
172 */
173 static void
174 dkwedge_attach(device_t parent, device_t self,
175 void *aux)
176 {
177
178 if (!pmf_device_register(self, NULL, NULL))
179 aprint_error_dev(self, "couldn't establish power handler\n");
180 }
181
182 CFDRIVER_DECL(dk, DV_DISK, NULL);
183 CFATTACH_DECL3_NEW(dk, 0,
184 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
185 DVF_DETACH_SHUTDOWN);
186
187 /*
188 * dkwedge_wait_drain:
189 *
190 * Wait for I/O on the wedge to drain.
191 */
192 static void
193 dkwedge_wait_drain(struct dkwedge_softc *sc)
194 {
195
196 mutex_enter(&sc->sc_iolock);
197 while (sc->sc_iopend != 0) {
198 sc->sc_flags |= DK_F_WAIT_DRAIN;
199 cv_wait(&sc->sc_dkdrn, &sc->sc_iolock);
200 }
201 mutex_exit(&sc->sc_iolock);
202 }
203
204 /*
205 * dkwedge_compute_pdev:
206 *
207 * Compute the parent disk's dev_t.
208 */
209 static int
210 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
211 {
212 const char *name, *cp;
213 devmajor_t pmaj;
214 int punit;
215 char devname[16];
216
217 name = pname;
218 switch (type) {
219 case VBLK:
220 pmaj = devsw_name2blk(name, devname, sizeof(devname));
221 break;
222 case VCHR:
223 pmaj = devsw_name2chr(name, devname, sizeof(devname));
224 break;
225 default:
226 pmaj = NODEVMAJOR;
227 break;
228 }
229 if (pmaj == NODEVMAJOR)
230 return (ENODEV);
231
232 name += strlen(devname);
233 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
234 punit = (punit * 10) + (*cp - '0');
235 if (cp == name) {
236 /* Invalid parent disk name. */
237 return (ENODEV);
238 }
239
240 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
241
242 return (0);
243 }
244
245 /*
246 * dkwedge_array_expand:
247 *
248 * Expand the dkwedges array.
249 */
250 static void
251 dkwedge_array_expand(void)
252 {
253 int newcnt = ndkwedges + 16;
254 struct dkwedge_softc **newarray, **oldarray;
255
256 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
257 M_WAITOK|M_ZERO);
258 if ((oldarray = dkwedges) != NULL)
259 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
260 dkwedges = newarray;
261 ndkwedges = newcnt;
262 if (oldarray != NULL)
263 free(oldarray, M_DKWEDGE);
264 }
265
266 static void
267 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
268 {
269 struct disk *dk = &sc->sc_dk;
270 struct disk_geom *dg = &dk->dk_geom;
271
272 memset(dg, 0, sizeof(*dg));
273
274 dg->dg_secperunit = sc->sc_size;
275 dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
276
277 /* fake numbers, 1 cylinder is 1 MB with default sector size */
278 dg->dg_nsectors = 32;
279 dg->dg_ntracks = 64;
280 dg->dg_ncylinders = dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
281
282 disk_set_info(sc->sc_dev, dk, NULL);
283 }
284
285 /*
286 * dkwedge_add: [exported function]
287 *
288 * Add a disk wedge based on the provided information.
289 *
290 * The incoming dkw_devname[] is ignored, instead being
291 * filled in and returned to the caller.
292 */
293 int
294 dkwedge_add(struct dkwedge_info *dkw)
295 {
296 struct dkwedge_softc *sc, *lsc;
297 struct disk *pdk;
298 u_int unit;
299 int error;
300 dev_t pdev;
301
302 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
303 pdk = disk_find(dkw->dkw_parent);
304 if (pdk == NULL)
305 return (ENODEV);
306
307 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
308 if (error)
309 return (error);
310
311 if (dkw->dkw_offset < 0)
312 return (EINVAL);
313
314 /*
315 * Check for an existing wedge at the same disk offset. Allow
316 * updating a wedge if the only change is the size, and the new
317 * size is larger than the old.
318 */
319 sc = NULL;
320 mutex_enter(&pdk->dk_openlock);
321 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
322 if (lsc->sc_offset != dkw->dkw_offset)
323 continue;
324 if (strcmp(lsc->sc_wname, dkw->dkw_wname) != 0)
325 break;
326 if (strcmp(lsc->sc_ptype, dkw->dkw_ptype) != 0)
327 break;
328 if (lsc->sc_size > dkw->dkw_size)
329 break;
330
331 sc = lsc;
332 sc->sc_size = dkw->dkw_size;
333 dk_set_geometry(sc, pdk);
334
335 break;
336 }
337 mutex_exit(&pdk->dk_openlock);
338
339 if (sc != NULL)
340 goto announce;
341
342 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
343 sc->sc_state = DKW_STATE_LARVAL;
344 sc->sc_parent = pdk;
345 sc->sc_pdev = pdev;
346 sc->sc_offset = dkw->dkw_offset;
347 sc->sc_size = dkw->dkw_size;
348
349 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
350 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
351
352 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
353 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
354
355 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
356
357 callout_init(&sc->sc_restart_ch, 0);
358 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
359
360 mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
361 cv_init(&sc->sc_dkdrn, "dkdrn");
362
363 /*
364 * Wedge will be added; increment the wedge count for the parent.
365 * Only allow this to happend if RAW_PART is the only thing open.
366 */
367 mutex_enter(&pdk->dk_openlock);
368 if (pdk->dk_openmask & ~(1 << RAW_PART))
369 error = EBUSY;
370 else {
371 /* Check for wedge overlap. */
372 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
373 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
374 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
375
376 if (sc->sc_offset >= lsc->sc_offset &&
377 sc->sc_offset <= llastblk) {
378 /* Overlaps the tail of the existing wedge. */
379 break;
380 }
381 if (lastblk >= lsc->sc_offset &&
382 lastblk <= llastblk) {
383 /* Overlaps the head of the existing wedge. */
384 break;
385 }
386 }
387 if (lsc != NULL) {
388 if (sc->sc_offset == lsc->sc_offset &&
389 sc->sc_size == lsc->sc_size &&
390 strcmp(sc->sc_wname, lsc->sc_wname) == 0)
391 error = EEXIST;
392 else
393 error = EINVAL;
394 } else {
395 pdk->dk_nwedges++;
396 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
397 }
398 }
399 mutex_exit(&pdk->dk_openlock);
400 if (error) {
401 cv_destroy(&sc->sc_dkdrn);
402 mutex_destroy(&sc->sc_iolock);
403 bufq_free(sc->sc_bufq);
404 free(sc, M_DKWEDGE);
405 return (error);
406 }
407
408 /* Fill in our cfdata for the pseudo-device glue. */
409 sc->sc_cfdata.cf_name = dk_cd.cd_name;
410 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
411 /* sc->sc_cfdata.cf_unit set below */
412 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
413
414 /* Insert the larval wedge into the array. */
415 rw_enter(&dkwedges_lock, RW_WRITER);
416 for (error = 0;;) {
417 struct dkwedge_softc **scpp;
418
419 /*
420 * Check for a duplicate wname while searching for
421 * a slot.
422 */
423 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
424 if (dkwedges[unit] == NULL) {
425 if (scpp == NULL) {
426 scpp = &dkwedges[unit];
427 sc->sc_cfdata.cf_unit = unit;
428 }
429 } else {
430 /* XXX Unicode. */
431 if (strcmp(dkwedges[unit]->sc_wname,
432 sc->sc_wname) == 0) {
433 error = EEXIST;
434 break;
435 }
436 }
437 }
438 if (error)
439 break;
440 KASSERT(unit == ndkwedges);
441 if (scpp == NULL)
442 dkwedge_array_expand();
443 else {
444 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
445 *scpp = sc;
446 break;
447 }
448 }
449 rw_exit(&dkwedges_lock);
450 if (error) {
451 mutex_enter(&pdk->dk_openlock);
452 pdk->dk_nwedges--;
453 LIST_REMOVE(sc, sc_plink);
454 mutex_exit(&pdk->dk_openlock);
455
456 cv_destroy(&sc->sc_dkdrn);
457 mutex_destroy(&sc->sc_iolock);
458 bufq_free(sc->sc_bufq);
459 free(sc, M_DKWEDGE);
460 return (error);
461 }
462
463 /*
464 * Now that we know the unit #, attach a pseudo-device for
465 * this wedge instance. This will provide us with the
466 * device_t necessary for glue to other parts of the system.
467 *
468 * This should never fail, unless we're almost totally out of
469 * memory.
470 */
471 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
472 aprint_error("%s%u: unable to attach pseudo-device\n",
473 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
474
475 rw_enter(&dkwedges_lock, RW_WRITER);
476 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
477 rw_exit(&dkwedges_lock);
478
479 mutex_enter(&pdk->dk_openlock);
480 pdk->dk_nwedges--;
481 LIST_REMOVE(sc, sc_plink);
482 mutex_exit(&pdk->dk_openlock);
483
484 cv_destroy(&sc->sc_dkdrn);
485 mutex_destroy(&sc->sc_iolock);
486 bufq_free(sc->sc_bufq);
487 free(sc, M_DKWEDGE);
488 return (ENOMEM);
489 }
490
491 /* Return the devname to the caller. */
492 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
493 sizeof(dkw->dkw_devname));
494
495 /*
496 * XXX Really ought to make the disk_attach() and the changing
497 * of state to RUNNING atomic.
498 */
499
500 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
501 dk_set_geometry(sc, pdk);
502 disk_attach(&sc->sc_dk);
503
504 /* Disk wedge is ready for use! */
505 sc->sc_state = DKW_STATE_RUNNING;
506
507 announce:
508 /* Announce our arrival. */
509 aprint_normal(
510 "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
511 device_xname(sc->sc_dev), pdk->dk_name,
512 sc->sc_wname, /* XXX Unicode */
513 sc->sc_size, sc->sc_offset,
514 sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
515
516 return (0);
517 }
518
519 /*
520 * dkwedge_find:
521 *
522 * Lookup a disk wedge based on the provided information.
523 * NOTE: We look up the wedge based on the wedge devname,
524 * not wname.
525 *
526 * Return NULL if the wedge is not found, otherwise return
527 * the wedge's softc. Assign the wedge's unit number to unitp
528 * if unitp is not NULL.
529 */
530 static struct dkwedge_softc *
531 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
532 {
533 struct dkwedge_softc *sc = NULL;
534 u_int unit;
535
536 /* Find our softc. */
537 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
538 rw_enter(&dkwedges_lock, RW_READER);
539 for (unit = 0; unit < ndkwedges; unit++) {
540 if ((sc = dkwedges[unit]) != NULL &&
541 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
542 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
543 break;
544 }
545 }
546 rw_exit(&dkwedges_lock);
547 if (unit == ndkwedges)
548 return NULL;
549
550 if (unitp != NULL)
551 *unitp = unit;
552
553 return sc;
554 }
555
556 /*
557 * dkwedge_del: [exported function]
558 *
559 * Delete a disk wedge based on the provided information.
560 * NOTE: We look up the wedge based on the wedge devname,
561 * not wname.
562 */
563 int
564 dkwedge_del(struct dkwedge_info *dkw)
565 {
566 return dkwedge_del1(dkw, 0);
567 }
568
569 int
570 dkwedge_del1(struct dkwedge_info *dkw, int flags)
571 {
572 struct dkwedge_softc *sc = NULL;
573
574 /* Find our softc. */
575 if ((sc = dkwedge_find(dkw, NULL)) == NULL)
576 return (ESRCH);
577
578 return config_detach(sc->sc_dev, flags);
579 }
580
581 static int
582 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags)
583 {
584 struct disk *dk = &sc->sc_dk;
585 int rc;
586
587 rc = 0;
588 mutex_enter(&dk->dk_openlock);
589 if (dk->dk_openmask == 0)
590 /* nothing to do */
591 mutex_exit(&dk->dk_openlock);
592 else if ((flags & DETACH_FORCE) == 0) {
593 rc = EBUSY;
594 mutex_exit(&dk->dk_openlock);
595 } else {
596 mutex_enter(&sc->sc_parent->dk_rawlock);
597 rc = dklastclose(sc); /* releases locks */
598 }
599
600 return rc;
601 }
602
603 /*
604 * dkwedge_detach:
605 *
606 * Autoconfiguration detach function for pseudo-device glue.
607 */
608 static int
609 dkwedge_detach(device_t self, int flags)
610 {
611 struct dkwedge_softc *sc = NULL;
612 u_int unit;
613 int bmaj, cmaj, rc;
614
615 rw_enter(&dkwedges_lock, RW_WRITER);
616 for (unit = 0; unit < ndkwedges; unit++) {
617 if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
618 break;
619 }
620 if (unit == ndkwedges)
621 rc = ENXIO;
622 else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) {
623 /* Mark the wedge as dying. */
624 sc->sc_state = DKW_STATE_DYING;
625 }
626 rw_exit(&dkwedges_lock);
627
628 if (rc != 0)
629 return rc;
630
631 pmf_device_deregister(self);
632
633 /* Locate the wedge major numbers. */
634 bmaj = bdevsw_lookup_major(&dk_bdevsw);
635 cmaj = cdevsw_lookup_major(&dk_cdevsw);
636
637 /* Kill any pending restart. */
638 callout_stop(&sc->sc_restart_ch);
639
640 /*
641 * dkstart() will kill any queued buffers now that the
642 * state of the wedge is not RUNNING. Once we've done
643 * that, wait for any other pending I/O to complete.
644 */
645 dkstart(sc);
646 dkwedge_wait_drain(sc);
647
648 /* Nuke the vnodes for any open instances. */
649 vdevgone(bmaj, unit, unit, VBLK);
650 vdevgone(cmaj, unit, unit, VCHR);
651
652 /* Clean up the parent. */
653 dkwedge_cleanup_parent(sc, flags | DETACH_FORCE);
654
655 /* Announce our departure. */
656 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
657 sc->sc_parent->dk_name,
658 sc->sc_wname); /* XXX Unicode */
659
660 mutex_enter(&sc->sc_parent->dk_openlock);
661 sc->sc_parent->dk_nwedges--;
662 LIST_REMOVE(sc, sc_plink);
663 mutex_exit(&sc->sc_parent->dk_openlock);
664
665 /* Delete our buffer queue. */
666 bufq_free(sc->sc_bufq);
667
668 /* Detach from the disk list. */
669 disk_detach(&sc->sc_dk);
670 disk_destroy(&sc->sc_dk);
671
672 /* Poof. */
673 rw_enter(&dkwedges_lock, RW_WRITER);
674 dkwedges[unit] = NULL;
675 sc->sc_state = DKW_STATE_DEAD;
676 rw_exit(&dkwedges_lock);
677
678 mutex_destroy(&sc->sc_iolock);
679 cv_destroy(&sc->sc_dkdrn);
680
681 free(sc, M_DKWEDGE);
682
683 return 0;
684 }
685
686 /*
687 * dkwedge_delall: [exported function]
688 *
689 * Delete all of the wedges on the specified disk. Used when
690 * a disk is being detached.
691 */
692 void
693 dkwedge_delall(struct disk *pdk)
694 {
695 dkwedge_delall1(pdk, false);
696 }
697
698 static void
699 dkwedge_delall1(struct disk *pdk, bool idleonly)
700 {
701 struct dkwedge_info dkw;
702 struct dkwedge_softc *sc;
703 int flags;
704
705 flags = DETACH_QUIET;
706 if (!idleonly) flags |= DETACH_FORCE;
707
708 for (;;) {
709 mutex_enter(&pdk->dk_openlock);
710 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
711 if (!idleonly || sc->sc_dk.dk_openmask == 0)
712 break;
713 }
714 if (sc == NULL) {
715 KASSERT(idleonly || pdk->dk_nwedges == 0);
716 mutex_exit(&pdk->dk_openlock);
717 return;
718 }
719 strlcpy(dkw.dkw_parent, pdk->dk_name, sizeof(dkw.dkw_parent));
720 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
721 sizeof(dkw.dkw_devname));
722 mutex_exit(&pdk->dk_openlock);
723 (void) dkwedge_del1(&dkw, flags);
724 }
725 }
726
727 /*
728 * dkwedge_list: [exported function]
729 *
730 * List all of the wedges on a particular disk.
731 */
732 int
733 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
734 {
735 struct uio uio;
736 struct iovec iov;
737 struct dkwedge_softc *sc;
738 struct dkwedge_info dkw;
739 int error = 0;
740
741 iov.iov_base = dkwl->dkwl_buf;
742 iov.iov_len = dkwl->dkwl_bufsize;
743
744 uio.uio_iov = &iov;
745 uio.uio_iovcnt = 1;
746 uio.uio_offset = 0;
747 uio.uio_resid = dkwl->dkwl_bufsize;
748 uio.uio_rw = UIO_READ;
749 KASSERT(l == curlwp);
750 uio.uio_vmspace = l->l_proc->p_vmspace;
751
752 dkwl->dkwl_ncopied = 0;
753
754 mutex_enter(&pdk->dk_openlock);
755 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
756 if (uio.uio_resid < sizeof(dkw))
757 break;
758
759 if (sc->sc_state != DKW_STATE_RUNNING)
760 continue;
761
762 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
763 sizeof(dkw.dkw_devname));
764 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
765 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
766 strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
767 sizeof(dkw.dkw_parent));
768 dkw.dkw_offset = sc->sc_offset;
769 dkw.dkw_size = sc->sc_size;
770 strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
771
772 error = uiomove(&dkw, sizeof(dkw), &uio);
773 if (error)
774 break;
775 dkwl->dkwl_ncopied++;
776 }
777 dkwl->dkwl_nwedges = pdk->dk_nwedges;
778 mutex_exit(&pdk->dk_openlock);
779
780 return (error);
781 }
782
783 device_t
784 dkwedge_find_by_wname(const char *wname)
785 {
786 device_t dv = NULL;
787 struct dkwedge_softc *sc;
788 int i;
789
790 rw_enter(&dkwedges_lock, RW_WRITER);
791 for (i = 0; i < ndkwedges; i++) {
792 if ((sc = dkwedges[i]) == NULL)
793 continue;
794 if (strcmp(sc->sc_wname, wname) == 0) {
795 if (dv != NULL) {
796 printf(
797 "WARNING: double match for wedge name %s "
798 "(%s, %s)\n", wname, device_xname(dv),
799 device_xname(sc->sc_dev));
800 continue;
801 }
802 dv = sc->sc_dev;
803 }
804 }
805 rw_exit(&dkwedges_lock);
806 return dv;
807 }
808
809 device_t
810 dkwedge_find_by_parent(const char *name, size_t *i)
811 {
812 rw_enter(&dkwedges_lock, RW_WRITER);
813 for (; *i < (size_t)ndkwedges; (*i)++) {
814 struct dkwedge_softc *sc;
815 if ((sc = dkwedges[*i]) == NULL)
816 continue;
817 if (strcmp(sc->sc_parent->dk_name, name) != 0)
818 continue;
819 rw_exit(&dkwedges_lock);
820 return sc->sc_dev;
821 }
822 rw_exit(&dkwedges_lock);
823 return NULL;
824 }
825
826 void
827 dkwedge_print_wnames(void)
828 {
829 struct dkwedge_softc *sc;
830 int i;
831
832 rw_enter(&dkwedges_lock, RW_WRITER);
833 for (i = 0; i < ndkwedges; i++) {
834 if ((sc = dkwedges[i]) == NULL)
835 continue;
836 printf(" wedge:%s", sc->sc_wname);
837 }
838 rw_exit(&dkwedges_lock);
839 }
840
841 /*
842 * We need a dummy object to stuff into the dkwedge discovery method link
843 * set to ensure that there is always at least one object in the set.
844 */
845 static struct dkwedge_discovery_method dummy_discovery_method;
846 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
847
848 /*
849 * dkwedge_init:
850 *
851 * Initialize the disk wedge subsystem.
852 */
853 void
854 dkwedge_init(void)
855 {
856 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
857 struct dkwedge_discovery_method * const *ddmp;
858 struct dkwedge_discovery_method *lddm, *ddm;
859
860 rw_init(&dkwedges_lock);
861 rw_init(&dkwedge_discovery_methods_lock);
862
863 if (config_cfdriver_attach(&dk_cd) != 0)
864 panic("dkwedge: unable to attach cfdriver");
865 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
866 panic("dkwedge: unable to attach cfattach");
867
868 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
869
870 LIST_INIT(&dkwedge_discovery_methods);
871
872 __link_set_foreach(ddmp, dkwedge_methods) {
873 ddm = *ddmp;
874 if (ddm == &dummy_discovery_method)
875 continue;
876 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
877 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
878 ddm, ddm_list);
879 continue;
880 }
881 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
882 if (ddm->ddm_priority == lddm->ddm_priority) {
883 aprint_error("dk-method-%s: method \"%s\" "
884 "already exists at priority %d\n",
885 ddm->ddm_name, lddm->ddm_name,
886 lddm->ddm_priority);
887 /* Not inserted. */
888 break;
889 }
890 if (ddm->ddm_priority < lddm->ddm_priority) {
891 /* Higher priority; insert before. */
892 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
893 break;
894 }
895 if (LIST_NEXT(lddm, ddm_list) == NULL) {
896 /* Last one; insert after. */
897 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
898 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
899 break;
900 }
901 }
902 }
903
904 rw_exit(&dkwedge_discovery_methods_lock);
905 }
906
907 #ifdef DKWEDGE_AUTODISCOVER
908 int dkwedge_autodiscover = 1;
909 #else
910 int dkwedge_autodiscover = 0;
911 #endif
912
913 /*
914 * dkwedge_discover: [exported function]
915 *
916 * Discover the wedges on a newly attached disk.
917 * Remove all unused wedges on the disk first.
918 */
919 void
920 dkwedge_discover(struct disk *pdk)
921 {
922 struct dkwedge_discovery_method *ddm;
923 struct vnode *vp;
924 int error;
925 dev_t pdev;
926
927 /*
928 * Require people playing with wedges to enable this explicitly.
929 */
930 if (dkwedge_autodiscover == 0)
931 return;
932
933 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
934
935 /*
936 * Use the character device for scanning, the block device
937 * is busy if there are already wedges attached.
938 */
939 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
940 if (error) {
941 aprint_error("%s: unable to compute pdev, error = %d\n",
942 pdk->dk_name, error);
943 goto out;
944 }
945
946 error = cdevvp(pdev, &vp);
947 if (error) {
948 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
949 pdk->dk_name, error);
950 goto out;
951 }
952
953 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
954 if (error) {
955 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
956 pdk->dk_name, error);
957 vrele(vp);
958 goto out;
959 }
960
961 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
962 if (error) {
963 if (error != ENODEV)
964 aprint_error("%s: unable to open device, error = %d\n",
965 pdk->dk_name, error);
966 vput(vp);
967 goto out;
968 }
969 VOP_UNLOCK(vp);
970
971 /*
972 * Remove unused wedges
973 */
974 dkwedge_delall1(pdk, true);
975
976 /*
977 * For each supported partition map type, look to see if
978 * this map type exists. If so, parse it and add the
979 * corresponding wedges.
980 */
981 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
982 error = (*ddm->ddm_discover)(pdk, vp);
983 if (error == 0) {
984 /* Successfully created wedges; we're done. */
985 break;
986 }
987 }
988
989 error = vn_close(vp, FREAD, NOCRED);
990 if (error) {
991 aprint_error("%s: unable to close device, error = %d\n",
992 pdk->dk_name, error);
993 /* We'll just assume the vnode has been cleaned up. */
994 }
995
996 out:
997 rw_exit(&dkwedge_discovery_methods_lock);
998 }
999
1000 /*
1001 * dkwedge_read:
1002 *
1003 * Read some data from the specified disk, used for
1004 * partition discovery.
1005 */
1006 int
1007 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
1008 void *tbuf, size_t len)
1009 {
1010 buf_t *bp;
1011 int error;
1012 bool isopen;
1013 dev_t bdev;
1014 struct vnode *bdvp;
1015
1016 /*
1017 * The kernel cannot read from a character device vnode
1018 * as physio() only handles user memory.
1019 *
1020 * If the block device has already been opened by a wedge
1021 * use that vnode and temporarily bump the open counter.
1022 *
1023 * Otherwise try to open the block device.
1024 */
1025
1026 bdev = devsw_chr2blk(vp->v_rdev);
1027
1028 mutex_enter(&pdk->dk_rawlock);
1029 if (pdk->dk_rawopens != 0) {
1030 KASSERT(pdk->dk_rawvp != NULL);
1031 isopen = true;
1032 ++pdk->dk_rawopens;
1033 bdvp = pdk->dk_rawvp;
1034 error = 0;
1035 } else {
1036 isopen = false;
1037 error = dk_open_parent(bdev, FREAD, &bdvp);
1038 }
1039 mutex_exit(&pdk->dk_rawlock);
1040
1041 if (error)
1042 return error;
1043
1044 bp = getiobuf(bdvp, true);
1045 bp->b_flags = B_READ;
1046 bp->b_cflags = BC_BUSY;
1047 bp->b_dev = bdev;
1048 bp->b_data = tbuf;
1049 bp->b_bufsize = bp->b_bcount = len;
1050 bp->b_blkno = blkno;
1051 bp->b_cylinder = 0;
1052 bp->b_error = 0;
1053
1054 VOP_STRATEGY(bdvp, bp);
1055 error = biowait(bp);
1056 putiobuf(bp);
1057
1058 mutex_enter(&pdk->dk_rawlock);
1059 if (isopen) {
1060 --pdk->dk_rawopens;
1061 } else {
1062 dk_close_parent(bdvp, FREAD);
1063 }
1064 mutex_exit(&pdk->dk_rawlock);
1065
1066 return error;
1067 }
1068
1069 /*
1070 * dkwedge_lookup:
1071 *
1072 * Look up a dkwedge_softc based on the provided dev_t.
1073 */
1074 static struct dkwedge_softc *
1075 dkwedge_lookup(dev_t dev)
1076 {
1077 int unit = minor(dev);
1078
1079 if (unit >= ndkwedges)
1080 return (NULL);
1081
1082 KASSERT(dkwedges != NULL);
1083
1084 return (dkwedges[unit]);
1085 }
1086
1087 static int
1088 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
1089 {
1090 struct vnode *vp;
1091 int error;
1092
1093 error = bdevvp(dev, &vp);
1094 if (error)
1095 return error;
1096
1097 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1098 if (error) {
1099 vrele(vp);
1100 return error;
1101 }
1102 error = VOP_OPEN(vp, mode, NOCRED);
1103 if (error) {
1104 vput(vp);
1105 return error;
1106 }
1107
1108 /* VOP_OPEN() doesn't do this for us. */
1109 if (mode & FWRITE) {
1110 mutex_enter(vp->v_interlock);
1111 vp->v_writecount++;
1112 mutex_exit(vp->v_interlock);
1113 }
1114
1115 VOP_UNLOCK(vp);
1116
1117 *vpp = vp;
1118
1119 return 0;
1120 }
1121
1122 static int
1123 dk_close_parent(struct vnode *vp, int mode)
1124 {
1125 int error;
1126
1127 error = vn_close(vp, mode, NOCRED);
1128 return error;
1129 }
1130
1131 /*
1132 * dkopen: [devsw entry point]
1133 *
1134 * Open a wedge.
1135 */
1136 static int
1137 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
1138 {
1139 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1140 struct vnode *vp;
1141 int error = 0;
1142 int mode;
1143
1144 if (sc == NULL)
1145 return (ENODEV);
1146 if (sc->sc_state != DKW_STATE_RUNNING)
1147 return (ENXIO);
1148
1149 /*
1150 * We go through a complicated little dance to only open the parent
1151 * vnode once per wedge, no matter how many times the wedge is
1152 * opened. The reason? We see one dkopen() per open call, but
1153 * only dkclose() on the last close.
1154 */
1155 mutex_enter(&sc->sc_dk.dk_openlock);
1156 mutex_enter(&sc->sc_parent->dk_rawlock);
1157 if (sc->sc_dk.dk_openmask == 0) {
1158 if (sc->sc_parent->dk_rawopens == 0) {
1159 KASSERT(sc->sc_parent->dk_rawvp == NULL);
1160 /*
1161 * Try open read-write. If this fails for EROFS
1162 * and wedge is read-only, retry to open read-only.
1163 */
1164 mode = FREAD | FWRITE;
1165 error = dk_open_parent(sc->sc_pdev, mode, &vp);
1166 if (error == EROFS && (flags & FWRITE) == 0) {
1167 mode &= ~FWRITE;
1168 error = dk_open_parent(sc->sc_pdev, mode, &vp);
1169 }
1170 if (error)
1171 goto popen_fail;
1172 /* remember open mode */
1173 sc->sc_mode = mode;
1174 sc->sc_parent->dk_rawvp = vp;
1175 }
1176 sc->sc_parent->dk_rawopens++;
1177 } else if (flags & ~sc->sc_mode & FWRITE) {
1178 /* parent is opened read-only, cannot open read-write */
1179 error = EROFS;
1180 goto popen_fail;
1181 }
1182 if (fmt == S_IFCHR)
1183 sc->sc_dk.dk_copenmask |= 1;
1184 else
1185 sc->sc_dk.dk_bopenmask |= 1;
1186 sc->sc_dk.dk_openmask =
1187 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1188
1189 popen_fail:
1190 mutex_exit(&sc->sc_parent->dk_rawlock);
1191 mutex_exit(&sc->sc_dk.dk_openlock);
1192 return (error);
1193 }
1194
1195 /*
1196 * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock.
1197 */
1198 static int
1199 dklastclose(struct dkwedge_softc *sc)
1200 {
1201 struct vnode *vp;
1202 int error = 0;
1203
1204 vp = NULL;
1205 if (sc->sc_parent->dk_rawopens > 0) {
1206 if (--sc->sc_parent->dk_rawopens == 0) {
1207 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1208 vp = sc->sc_parent->dk_rawvp;
1209 sc->sc_parent->dk_rawvp = NULL;
1210 }
1211 }
1212
1213 mutex_exit(&sc->sc_parent->dk_rawlock);
1214 mutex_exit(&sc->sc_dk.dk_openlock);
1215
1216 if (vp) {
1217 dk_close_parent(vp, sc->sc_mode);
1218 }
1219
1220 return error;
1221 }
1222
1223 /*
1224 * dkclose: [devsw entry point]
1225 *
1226 * Close a wedge.
1227 */
1228 static int
1229 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1230 {
1231 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1232 int error = 0;
1233
1234 if (sc == NULL)
1235 return (ENODEV);
1236 if (sc->sc_state != DKW_STATE_RUNNING)
1237 return (ENXIO);
1238
1239 KASSERT(sc->sc_dk.dk_openmask != 0);
1240
1241 mutex_enter(&sc->sc_dk.dk_openlock);
1242 mutex_enter(&sc->sc_parent->dk_rawlock);
1243
1244 if (fmt == S_IFCHR)
1245 sc->sc_dk.dk_copenmask &= ~1;
1246 else
1247 sc->sc_dk.dk_bopenmask &= ~1;
1248 sc->sc_dk.dk_openmask =
1249 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1250
1251 if (sc->sc_dk.dk_openmask == 0)
1252 error = dklastclose(sc); /* releases locks */
1253 else {
1254 mutex_exit(&sc->sc_parent->dk_rawlock);
1255 mutex_exit(&sc->sc_dk.dk_openlock);
1256 }
1257
1258 return (error);
1259 }
1260
1261 /*
1262 * dkstragegy: [devsw entry point]
1263 *
1264 * Perform I/O based on the wedge I/O strategy.
1265 */
1266 static void
1267 dkstrategy(struct buf *bp)
1268 {
1269 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1270 uint64_t p_size, p_offset;
1271
1272 if (sc == NULL) {
1273 bp->b_error = ENODEV;
1274 goto done;
1275 }
1276
1277 if (sc->sc_state != DKW_STATE_RUNNING ||
1278 sc->sc_parent->dk_rawvp == NULL) {
1279 bp->b_error = ENXIO;
1280 goto done;
1281 }
1282
1283 /* If it's an empty transfer, wake up the top half now. */
1284 if (bp->b_bcount == 0)
1285 goto done;
1286
1287 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1288 p_size = sc->sc_size << sc->sc_parent->dk_blkshift;
1289
1290 /* Make sure it's in-range. */
1291 if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1292 goto done;
1293
1294 /* Translate it to the parent's raw LBA. */
1295 bp->b_rawblkno = bp->b_blkno + p_offset;
1296
1297 /* Place it in the queue and start I/O on the unit. */
1298 mutex_enter(&sc->sc_iolock);
1299 sc->sc_iopend++;
1300 disk_wait(&sc->sc_dk);
1301 bufq_put(sc->sc_bufq, bp);
1302 mutex_exit(&sc->sc_iolock);
1303
1304 dkstart(sc);
1305 return;
1306
1307 done:
1308 bp->b_resid = bp->b_bcount;
1309 biodone(bp);
1310 }
1311
1312 /*
1313 * dkstart:
1314 *
1315 * Start I/O that has been enqueued on the wedge.
1316 */
1317 static void
1318 dkstart(struct dkwedge_softc *sc)
1319 {
1320 struct vnode *vp;
1321 struct buf *bp, *nbp;
1322
1323 mutex_enter(&sc->sc_iolock);
1324
1325 /* Do as much work as has been enqueued. */
1326 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1327
1328 if (sc->sc_state != DKW_STATE_RUNNING) {
1329 (void) bufq_get(sc->sc_bufq);
1330 if (sc->sc_iopend-- == 1 &&
1331 (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1332 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1333 cv_broadcast(&sc->sc_dkdrn);
1334 }
1335 mutex_exit(&sc->sc_iolock);
1336 bp->b_error = ENXIO;
1337 bp->b_resid = bp->b_bcount;
1338 biodone(bp);
1339 mutex_enter(&sc->sc_iolock);
1340 continue;
1341 }
1342
1343 /* fetch an I/O buf with sc_iolock dropped */
1344 mutex_exit(&sc->sc_iolock);
1345 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1346 mutex_enter(&sc->sc_iolock);
1347 if (nbp == NULL) {
1348 /*
1349 * No resources to run this request; leave the
1350 * buffer queued up, and schedule a timer to
1351 * restart the queue in 1/2 a second.
1352 */
1353 callout_schedule(&sc->sc_restart_ch, hz / 2);
1354 break;
1355 }
1356
1357 /*
1358 * fetch buf, this can fail if another thread
1359 * has already processed the queue, it can also
1360 * return a completely different buf.
1361 */
1362 bp = bufq_get(sc->sc_bufq);
1363 if (bp == NULL) {
1364 mutex_exit(&sc->sc_iolock);
1365 putiobuf(nbp);
1366 mutex_enter(&sc->sc_iolock);
1367 continue;
1368 }
1369
1370 /* Instrumentation. */
1371 disk_busy(&sc->sc_dk);
1372
1373 /* release lock for VOP_STRATEGY */
1374 mutex_exit(&sc->sc_iolock);
1375
1376 nbp->b_data = bp->b_data;
1377 nbp->b_flags = bp->b_flags;
1378 nbp->b_oflags = bp->b_oflags;
1379 nbp->b_cflags = bp->b_cflags;
1380 nbp->b_iodone = dkiodone;
1381 nbp->b_proc = bp->b_proc;
1382 nbp->b_blkno = bp->b_rawblkno;
1383 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1384 nbp->b_bcount = bp->b_bcount;
1385 nbp->b_private = bp;
1386 BIO_COPYPRIO(nbp, bp);
1387
1388 vp = nbp->b_vp;
1389 if ((nbp->b_flags & B_READ) == 0) {
1390 mutex_enter(vp->v_interlock);
1391 vp->v_numoutput++;
1392 mutex_exit(vp->v_interlock);
1393 }
1394 VOP_STRATEGY(vp, nbp);
1395
1396 mutex_enter(&sc->sc_iolock);
1397 }
1398
1399 mutex_exit(&sc->sc_iolock);
1400 }
1401
1402 /*
1403 * dkiodone:
1404 *
1405 * I/O to a wedge has completed; alert the top half.
1406 */
1407 static void
1408 dkiodone(struct buf *bp)
1409 {
1410 struct buf *obp = bp->b_private;
1411 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1412
1413 if (bp->b_error != 0)
1414 obp->b_error = bp->b_error;
1415 obp->b_resid = bp->b_resid;
1416 putiobuf(bp);
1417
1418 mutex_enter(&sc->sc_iolock);
1419 if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1420 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1421 cv_broadcast(&sc->sc_dkdrn);
1422 }
1423
1424 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1425 obp->b_flags & B_READ);
1426 mutex_exit(&sc->sc_iolock);
1427
1428 biodone(obp);
1429
1430 /* Kick the queue in case there is more work we can do. */
1431 dkstart(sc);
1432 }
1433
1434 /*
1435 * dkrestart:
1436 *
1437 * Restart the work queue after it was stalled due to
1438 * a resource shortage. Invoked via a callout.
1439 */
1440 static void
1441 dkrestart(void *v)
1442 {
1443 struct dkwedge_softc *sc = v;
1444
1445 dkstart(sc);
1446 }
1447
1448 /*
1449 * dkminphys:
1450 *
1451 * Call parent's minphys function.
1452 */
1453 static void
1454 dkminphys(struct buf *bp)
1455 {
1456 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1457 dev_t dev;
1458
1459 dev = bp->b_dev;
1460 bp->b_dev = sc->sc_pdev;
1461 if (sc->sc_parent->dk_driver && sc->sc_parent->dk_driver->d_minphys)
1462 (*sc->sc_parent->dk_driver->d_minphys)(bp);
1463 else
1464 minphys(bp);
1465 bp->b_dev = dev;
1466 }
1467
1468 /*
1469 * dkread: [devsw entry point]
1470 *
1471 * Read from a wedge.
1472 */
1473 static int
1474 dkread(dev_t dev, struct uio *uio, int flags)
1475 {
1476 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1477
1478 if (sc == NULL)
1479 return (ENODEV);
1480 if (sc->sc_state != DKW_STATE_RUNNING)
1481 return (ENXIO);
1482
1483 return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio));
1484 }
1485
1486 /*
1487 * dkwrite: [devsw entry point]
1488 *
1489 * Write to a wedge.
1490 */
1491 static int
1492 dkwrite(dev_t dev, struct uio *uio, int flags)
1493 {
1494 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1495
1496 if (sc == NULL)
1497 return (ENODEV);
1498 if (sc->sc_state != DKW_STATE_RUNNING)
1499 return (ENXIO);
1500
1501 return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio));
1502 }
1503
1504 /*
1505 * dkioctl: [devsw entry point]
1506 *
1507 * Perform an ioctl request on a wedge.
1508 */
1509 static int
1510 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1511 {
1512 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1513 int error = 0;
1514
1515 if (sc == NULL)
1516 return (ENODEV);
1517 if (sc->sc_state != DKW_STATE_RUNNING)
1518 return (ENXIO);
1519 if (sc->sc_parent->dk_rawvp == NULL)
1520 return (ENXIO);
1521
1522 /*
1523 * We pass NODEV instead of our device to indicate we don't
1524 * want to handle disklabel ioctls
1525 */
1526 error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
1527 if (error != EPASSTHROUGH)
1528 return (error);
1529
1530 error = 0;
1531
1532 switch (cmd) {
1533 case DIOCGSTRATEGY:
1534 case DIOCGCACHE:
1535 case DIOCCACHESYNC:
1536 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, data, flag,
1537 l != NULL ? l->l_cred : NOCRED);
1538 break;
1539 case DIOCGWEDGEINFO:
1540 {
1541 struct dkwedge_info *dkw = (void *) data;
1542
1543 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1544 sizeof(dkw->dkw_devname));
1545 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1546 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1547 strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
1548 sizeof(dkw->dkw_parent));
1549 dkw->dkw_offset = sc->sc_offset;
1550 dkw->dkw_size = sc->sc_size;
1551 strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
1552
1553 break;
1554 }
1555 case DIOCGSECTORALIGN:
1556 {
1557 struct disk_sectoralign *dsa = data;
1558 uint32_t r;
1559
1560 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, dsa, flag,
1561 l != NULL ? l->l_cred : NOCRED);
1562 if (error)
1563 break;
1564
1565 r = sc->sc_offset % dsa->dsa_alignment;
1566 if (r < dsa->dsa_firstaligned)
1567 dsa->dsa_firstaligned = dsa->dsa_firstaligned - r;
1568 else
1569 dsa->dsa_firstaligned = (dsa->dsa_firstaligned +
1570 dsa->dsa_alignment) - r;
1571 break;
1572 }
1573 default:
1574 error = ENOTTY;
1575 }
1576
1577 return (error);
1578 }
1579
1580 /*
1581 * dkdiscard: [devsw entry point]
1582 *
1583 * Perform a discard-range request on a wedge.
1584 */
1585 static int
1586 dkdiscard(dev_t dev, off_t pos, off_t len)
1587 {
1588 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1589 unsigned shift;
1590 off_t offset, maxlen;
1591
1592 if (sc == NULL)
1593 return (ENODEV);
1594 if (sc->sc_state != DKW_STATE_RUNNING)
1595 return (ENXIO);
1596 if (sc->sc_parent->dk_rawvp == NULL)
1597 return (ENXIO);
1598
1599 shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
1600 KASSERT(__type_fit(off_t, sc->sc_size));
1601 KASSERT(__type_fit(off_t, sc->sc_offset));
1602 KASSERT(0 <= sc->sc_offset);
1603 KASSERT(sc->sc_size <= (__type_max(off_t) >> shift));
1604 KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - sc->sc_size));
1605 offset = ((off_t)sc->sc_offset << shift);
1606 maxlen = ((off_t)sc->sc_size << shift);
1607
1608 if (len > maxlen)
1609 return (EINVAL);
1610 if (pos > (maxlen - len))
1611 return (EINVAL);
1612
1613 pos += offset;
1614 return VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
1615 }
1616
1617 /*
1618 * dksize: [devsw entry point]
1619 *
1620 * Query the size of a wedge for the purpose of performing a dump
1621 * or for swapping to.
1622 */
1623 static int
1624 dksize(dev_t dev)
1625 {
1626 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1627 int rv = -1;
1628
1629 if (sc == NULL)
1630 return (-1);
1631 if (sc->sc_state != DKW_STATE_RUNNING)
1632 return (-1);
1633
1634 mutex_enter(&sc->sc_dk.dk_openlock);
1635 mutex_enter(&sc->sc_parent->dk_rawlock);
1636
1637 /* Our content type is static, no need to open the device. */
1638
1639 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1640 /* Saturate if we are larger than INT_MAX. */
1641 if (sc->sc_size > INT_MAX)
1642 rv = INT_MAX;
1643 else
1644 rv = (int) sc->sc_size;
1645 }
1646
1647 mutex_exit(&sc->sc_parent->dk_rawlock);
1648 mutex_exit(&sc->sc_dk.dk_openlock);
1649
1650 return (rv);
1651 }
1652
1653 /*
1654 * dkdump: [devsw entry point]
1655 *
1656 * Perform a crash dump to a wedge.
1657 */
1658 static int
1659 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1660 {
1661 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1662 const struct bdevsw *bdev;
1663 int rv = 0;
1664
1665 if (sc == NULL)
1666 return (ENODEV);
1667 if (sc->sc_state != DKW_STATE_RUNNING)
1668 return (ENXIO);
1669
1670 mutex_enter(&sc->sc_dk.dk_openlock);
1671 mutex_enter(&sc->sc_parent->dk_rawlock);
1672
1673 /* Our content type is static, no need to open the device. */
1674
1675 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
1676 strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0 &&
1677 strcmp(sc->sc_ptype, DKW_PTYPE_CGD) != 0) {
1678 rv = ENXIO;
1679 goto out;
1680 }
1681 if (size % DEV_BSIZE != 0) {
1682 rv = EINVAL;
1683 goto out;
1684 }
1685 if (blkno < 0 || blkno + size / DEV_BSIZE > sc->sc_size) {
1686 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1687 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
1688 size / DEV_BSIZE, sc->sc_size);
1689 rv = EINVAL;
1690 goto out;
1691 }
1692
1693 bdev = bdevsw_lookup(sc->sc_pdev);
1694 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
1695
1696 out:
1697 mutex_exit(&sc->sc_parent->dk_rawlock);
1698 mutex_exit(&sc->sc_dk.dk_openlock);
1699
1700 return rv;
1701 }
1702
1703 /*
1704 * config glue
1705 */
1706
1707 /*
1708 * dkwedge_find_partition
1709 *
1710 * Find wedge corresponding to the specified parent name
1711 * and offset/length.
1712 */
1713 device_t
1714 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
1715 {
1716 struct dkwedge_softc *sc;
1717 int i;
1718 device_t wedge = NULL;
1719
1720 rw_enter(&dkwedges_lock, RW_READER);
1721 for (i = 0; i < ndkwedges; i++) {
1722 if ((sc = dkwedges[i]) == NULL)
1723 continue;
1724 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
1725 sc->sc_offset == startblk &&
1726 sc->sc_size == nblks) {
1727 if (wedge) {
1728 printf("WARNING: double match for boot wedge "
1729 "(%s, %s)\n",
1730 device_xname(wedge),
1731 device_xname(sc->sc_dev));
1732 continue;
1733 }
1734 wedge = sc->sc_dev;
1735 }
1736 }
1737 rw_exit(&dkwedges_lock);
1738
1739 return wedge;
1740 }
1741
1742 const char *
1743 dkwedge_get_parent_name(dev_t dev)
1744 {
1745 /* XXX: perhaps do this in lookup? */
1746 int bmaj = bdevsw_lookup_major(&dk_bdevsw);
1747 int cmaj = cdevsw_lookup_major(&dk_cdevsw);
1748 if (major(dev) != bmaj && major(dev) != cmaj)
1749 return NULL;
1750 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1751 if (sc == NULL)
1752 return NULL;
1753 return sc->sc_parent->dk_name;
1754 }
1755
1756