Home | History | Annotate | Line # | Download | only in dkwedge
dk.c revision 1.109
      1 /*	$NetBSD: dk.c,v 1.109 2021/10/18 11:40:56 simonb Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.109 2021/10/18 11:40:56 simonb Exp $");
     34 
     35 #ifdef _KERNEL_OPT
     36 #include "opt_dkwedge.h"
     37 #endif
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/proc.h>
     42 #include <sys/errno.h>
     43 #include <sys/pool.h>
     44 #include <sys/ioctl.h>
     45 #include <sys/disklabel.h>
     46 #include <sys/disk.h>
     47 #include <sys/fcntl.h>
     48 #include <sys/buf.h>
     49 #include <sys/bufq.h>
     50 #include <sys/vnode.h>
     51 #include <sys/stat.h>
     52 #include <sys/conf.h>
     53 #include <sys/callout.h>
     54 #include <sys/kernel.h>
     55 #include <sys/malloc.h>
     56 #include <sys/device.h>
     57 #include <sys/kauth.h>
     58 
     59 #include <miscfs/specfs/specdev.h>
     60 
     61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
     62 
     63 typedef enum {
     64 	DKW_STATE_LARVAL	= 0,
     65 	DKW_STATE_RUNNING	= 1,
     66 	DKW_STATE_DYING		= 2,
     67 	DKW_STATE_DEAD		= 666
     68 } dkwedge_state_t;
     69 
     70 struct dkwedge_softc {
     71 	device_t	sc_dev;	/* pointer to our pseudo-device */
     72 	struct cfdata	sc_cfdata;	/* our cfdata structure */
     73 	uint8_t		sc_wname[128];	/* wedge name (Unicode, UTF-8) */
     74 
     75 	dkwedge_state_t sc_state;	/* state this wedge is in */
     76 
     77 	struct disk	*sc_parent;	/* parent disk */
     78 	daddr_t		sc_offset;	/* LBA offset of wedge in parent */
     79 	uint64_t	sc_size;	/* size of wedge in blocks */
     80 	char		sc_ptype[32];	/* partition type */
     81 	dev_t		sc_pdev;	/* cached parent's dev_t */
     82 					/* link on parent's wedge list */
     83 	LIST_ENTRY(dkwedge_softc) sc_plink;
     84 
     85 	struct disk	sc_dk;		/* our own disk structure */
     86 	struct bufq_state *sc_bufq;	/* buffer queue */
     87 	struct callout	sc_restart_ch;	/* callout to restart I/O */
     88 
     89 	kmutex_t	sc_iolock;
     90 	kcondvar_t	sc_dkdrn;
     91 	u_int		sc_iopend;	/* I/Os pending */
     92 	int		sc_flags;	/* flags (sc_iolock) */
     93 	int		sc_mode;	/* parent open mode */
     94 };
     95 
     96 #define	DK_F_WAIT_DRAIN		0x0001	/* waiting for I/O to drain */
     97 
     98 static void	dkstart(struct dkwedge_softc *);
     99 static void	dkiodone(struct buf *);
    100 static void	dkrestart(void *);
    101 static void	dkminphys(struct buf *);
    102 
    103 static int	dklastclose(struct dkwedge_softc *);
    104 static int	dkwedge_cleanup_parent(struct dkwedge_softc *, int);
    105 static int	dkwedge_detach(device_t, int);
    106 static void	dkwedge_delall1(struct disk *, bool);
    107 static int	dkwedge_del1(struct dkwedge_info *, int);
    108 static int	dk_open_parent(dev_t, int, struct vnode **);
    109 static int	dk_close_parent(struct vnode *, int);
    110 
    111 static dev_type_open(dkopen);
    112 static dev_type_close(dkclose);
    113 static dev_type_read(dkread);
    114 static dev_type_write(dkwrite);
    115 static dev_type_ioctl(dkioctl);
    116 static dev_type_strategy(dkstrategy);
    117 static dev_type_dump(dkdump);
    118 static dev_type_size(dksize);
    119 static dev_type_discard(dkdiscard);
    120 
    121 const struct bdevsw dk_bdevsw = {
    122 	.d_open = dkopen,
    123 	.d_close = dkclose,
    124 	.d_strategy = dkstrategy,
    125 	.d_ioctl = dkioctl,
    126 	.d_dump = dkdump,
    127 	.d_psize = dksize,
    128 	.d_discard = dkdiscard,
    129 	.d_flag = D_DISK | D_MPSAFE
    130 };
    131 
    132 const struct cdevsw dk_cdevsw = {
    133 	.d_open = dkopen,
    134 	.d_close = dkclose,
    135 	.d_read = dkread,
    136 	.d_write = dkwrite,
    137 	.d_ioctl = dkioctl,
    138 	.d_stop = nostop,
    139 	.d_tty = notty,
    140 	.d_poll = nopoll,
    141 	.d_mmap = nommap,
    142 	.d_kqfilter = nokqfilter,
    143 	.d_discard = dkdiscard,
    144 	.d_flag = D_DISK | D_MPSAFE
    145 };
    146 
    147 static struct dkwedge_softc **dkwedges;
    148 static u_int ndkwedges;
    149 static krwlock_t dkwedges_lock;
    150 
    151 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
    152 static krwlock_t dkwedge_discovery_methods_lock;
    153 
    154 /*
    155  * dkwedge_match:
    156  *
    157  *	Autoconfiguration match function for pseudo-device glue.
    158  */
    159 static int
    160 dkwedge_match(device_t parent, cfdata_t match,
    161     void *aux)
    162 {
    163 
    164 	/* Pseudo-device; always present. */
    165 	return (1);
    166 }
    167 
    168 /*
    169  * dkwedge_attach:
    170  *
    171  *	Autoconfiguration attach function for pseudo-device glue.
    172  */
    173 static void
    174 dkwedge_attach(device_t parent, device_t self,
    175     void *aux)
    176 {
    177 
    178 	if (!pmf_device_register(self, NULL, NULL))
    179 		aprint_error_dev(self, "couldn't establish power handler\n");
    180 }
    181 
    182 CFDRIVER_DECL(dk, DV_DISK, NULL);
    183 CFATTACH_DECL3_NEW(dk, 0,
    184     dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
    185     DVF_DETACH_SHUTDOWN);
    186 
    187 /*
    188  * dkwedge_wait_drain:
    189  *
    190  *	Wait for I/O on the wedge to drain.
    191  */
    192 static void
    193 dkwedge_wait_drain(struct dkwedge_softc *sc)
    194 {
    195 
    196 	mutex_enter(&sc->sc_iolock);
    197 	while (sc->sc_iopend != 0) {
    198 		sc->sc_flags |= DK_F_WAIT_DRAIN;
    199 		cv_wait(&sc->sc_dkdrn, &sc->sc_iolock);
    200 	}
    201 	mutex_exit(&sc->sc_iolock);
    202 }
    203 
    204 /*
    205  * dkwedge_compute_pdev:
    206  *
    207  *	Compute the parent disk's dev_t.
    208  */
    209 static int
    210 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
    211 {
    212 	const char *name, *cp;
    213 	devmajor_t pmaj;
    214 	int punit;
    215 	char devname[16];
    216 
    217 	name = pname;
    218 	switch (type) {
    219 	case VBLK:
    220 		pmaj = devsw_name2blk(name, devname, sizeof(devname));
    221 		break;
    222 	case VCHR:
    223 		pmaj = devsw_name2chr(name, devname, sizeof(devname));
    224 		break;
    225 	default:
    226 		pmaj = NODEVMAJOR;
    227 		break;
    228 	}
    229 	if (pmaj == NODEVMAJOR)
    230 		return (ENODEV);
    231 
    232 	name += strlen(devname);
    233 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
    234 		punit = (punit * 10) + (*cp - '0');
    235 	if (cp == name) {
    236 		/* Invalid parent disk name. */
    237 		return (ENODEV);
    238 	}
    239 
    240 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
    241 
    242 	return (0);
    243 }
    244 
    245 /*
    246  * dkwedge_array_expand:
    247  *
    248  *	Expand the dkwedges array.
    249  */
    250 static void
    251 dkwedge_array_expand(void)
    252 {
    253 	int newcnt = ndkwedges + 16;
    254 	struct dkwedge_softc **newarray, **oldarray;
    255 
    256 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
    257 	    M_WAITOK|M_ZERO);
    258 	if ((oldarray = dkwedges) != NULL)
    259 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
    260 	dkwedges = newarray;
    261 	ndkwedges = newcnt;
    262 	if (oldarray != NULL)
    263 		free(oldarray, M_DKWEDGE);
    264 }
    265 
    266 static void
    267 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
    268 {
    269 	struct disk *dk = &sc->sc_dk;
    270 	struct disk_geom *dg = &dk->dk_geom;
    271 
    272 	memset(dg, 0, sizeof(*dg));
    273 
    274 	dg->dg_secperunit = sc->sc_size;
    275 	dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
    276 
    277 	/* fake numbers, 1 cylinder is 1 MB with default sector size */
    278 	dg->dg_nsectors = 32;
    279 	dg->dg_ntracks = 64;
    280 	dg->dg_ncylinders = dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
    281 
    282 	disk_set_info(sc->sc_dev, dk, NULL);
    283 }
    284 
    285 /*
    286  * dkwedge_add:		[exported function]
    287  *
    288  *	Add a disk wedge based on the provided information.
    289  *
    290  *	The incoming dkw_devname[] is ignored, instead being
    291  *	filled in and returned to the caller.
    292  */
    293 int
    294 dkwedge_add(struct dkwedge_info *dkw)
    295 {
    296 	struct dkwedge_softc *sc, *lsc;
    297 	struct disk *pdk;
    298 	u_int unit;
    299 	int error;
    300 	dev_t pdev;
    301 
    302 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
    303 	pdk = disk_find(dkw->dkw_parent);
    304 	if (pdk == NULL)
    305 		return (ENODEV);
    306 
    307 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
    308 	if (error)
    309 		return (error);
    310 
    311 	if (dkw->dkw_offset < 0)
    312 		return (EINVAL);
    313 
    314 	/*
    315 	 * Check for an existing wedge at the same disk offset. Allow
    316 	 * updating a wedge if the only change is the size, and the new
    317 	 * size is larger than the old.
    318 	 */
    319 	sc = NULL;
    320 	mutex_enter(&pdk->dk_openlock);
    321 	LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    322 		if (lsc->sc_offset != dkw->dkw_offset)
    323 			continue;
    324 		if (strcmp(lsc->sc_wname, dkw->dkw_wname) != 0)
    325 			break;
    326 		if (strcmp(lsc->sc_ptype, dkw->dkw_ptype) != 0)
    327 			break;
    328 		if (lsc->sc_size > dkw->dkw_size)
    329 			break;
    330 
    331 		sc = lsc;
    332 		sc->sc_size = dkw->dkw_size;
    333 		dk_set_geometry(sc, pdk);
    334 
    335 		break;
    336 	}
    337 	mutex_exit(&pdk->dk_openlock);
    338 
    339 	if (sc != NULL)
    340 		goto announce;
    341 
    342 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
    343 	sc->sc_state = DKW_STATE_LARVAL;
    344 	sc->sc_parent = pdk;
    345 	sc->sc_pdev = pdev;
    346 	sc->sc_offset = dkw->dkw_offset;
    347 	sc->sc_size = dkw->dkw_size;
    348 
    349 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
    350 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
    351 
    352 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
    353 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
    354 
    355 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
    356 
    357 	callout_init(&sc->sc_restart_ch, 0);
    358 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
    359 
    360 	mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
    361 	cv_init(&sc->sc_dkdrn, "dkdrn");
    362 
    363 	/*
    364 	 * Wedge will be added; increment the wedge count for the parent.
    365 	 * Only allow this to happen if RAW_PART is the only thing open.
    366 	 */
    367 	mutex_enter(&pdk->dk_openlock);
    368 	if (pdk->dk_openmask & ~(1 << RAW_PART))
    369 		error = EBUSY;
    370 	else {
    371 		/* Check for wedge overlap. */
    372 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    373 			daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
    374 			daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
    375 
    376 			if (sc->sc_offset >= lsc->sc_offset &&
    377 			    sc->sc_offset <= llastblk) {
    378 				/* Overlaps the tail of the existing wedge. */
    379 				break;
    380 			}
    381 			if (lastblk >= lsc->sc_offset &&
    382 			    lastblk <= llastblk) {
    383 				/* Overlaps the head of the existing wedge. */
    384 			    	break;
    385 			}
    386 		}
    387 		if (lsc != NULL) {
    388 			if (sc->sc_offset == lsc->sc_offset &&
    389 			    sc->sc_size == lsc->sc_size &&
    390 			    strcmp(sc->sc_wname, lsc->sc_wname) == 0)
    391 				error = EEXIST;
    392 			else
    393 				error = EINVAL;
    394 		} else {
    395 			pdk->dk_nwedges++;
    396 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
    397 		}
    398 	}
    399 	mutex_exit(&pdk->dk_openlock);
    400 	if (error) {
    401 		cv_destroy(&sc->sc_dkdrn);
    402 		mutex_destroy(&sc->sc_iolock);
    403 		bufq_free(sc->sc_bufq);
    404 		free(sc, M_DKWEDGE);
    405 		return (error);
    406 	}
    407 
    408 	/* Fill in our cfdata for the pseudo-device glue. */
    409 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
    410 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
    411 	/* sc->sc_cfdata.cf_unit set below */
    412 	sc->sc_cfdata.cf_fstate = FSTATE_STAR;
    413 
    414 	/* Insert the larval wedge into the array. */
    415 	rw_enter(&dkwedges_lock, RW_WRITER);
    416 	for (error = 0;;) {
    417 		struct dkwedge_softc **scpp;
    418 
    419 		/*
    420 		 * Check for a duplicate wname while searching for
    421 		 * a slot.
    422 		 */
    423 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
    424 			if (dkwedges[unit] == NULL) {
    425 				if (scpp == NULL) {
    426 					scpp = &dkwedges[unit];
    427 					sc->sc_cfdata.cf_unit = unit;
    428 				}
    429 			} else {
    430 				/* XXX Unicode. */
    431 				if (strcmp(dkwedges[unit]->sc_wname,
    432 					   sc->sc_wname) == 0) {
    433 					error = EEXIST;
    434 					break;
    435 				}
    436 			}
    437 		}
    438 		if (error)
    439 			break;
    440 		KASSERT(unit == ndkwedges);
    441 		if (scpp == NULL)
    442 			dkwedge_array_expand();
    443 		else {
    444 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
    445 			*scpp = sc;
    446 			break;
    447 		}
    448 	}
    449 	rw_exit(&dkwedges_lock);
    450 	if (error) {
    451 		mutex_enter(&pdk->dk_openlock);
    452 		pdk->dk_nwedges--;
    453 		LIST_REMOVE(sc, sc_plink);
    454 		mutex_exit(&pdk->dk_openlock);
    455 
    456 		cv_destroy(&sc->sc_dkdrn);
    457 		mutex_destroy(&sc->sc_iolock);
    458 		bufq_free(sc->sc_bufq);
    459 		free(sc, M_DKWEDGE);
    460 		return (error);
    461 	}
    462 
    463 	/*
    464 	 * Now that we know the unit #, attach a pseudo-device for
    465 	 * this wedge instance.  This will provide us with the
    466 	 * device_t necessary for glue to other parts of the system.
    467 	 *
    468 	 * This should never fail, unless we're almost totally out of
    469 	 * memory.
    470 	 */
    471 	if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
    472 		aprint_error("%s%u: unable to attach pseudo-device\n",
    473 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
    474 
    475 		rw_enter(&dkwedges_lock, RW_WRITER);
    476 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
    477 		rw_exit(&dkwedges_lock);
    478 
    479 		mutex_enter(&pdk->dk_openlock);
    480 		pdk->dk_nwedges--;
    481 		LIST_REMOVE(sc, sc_plink);
    482 		mutex_exit(&pdk->dk_openlock);
    483 
    484 		cv_destroy(&sc->sc_dkdrn);
    485 		mutex_destroy(&sc->sc_iolock);
    486 		bufq_free(sc->sc_bufq);
    487 		free(sc, M_DKWEDGE);
    488 		return (ENOMEM);
    489 	}
    490 
    491 	/* Return the devname to the caller. */
    492 	strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
    493 		sizeof(dkw->dkw_devname));
    494 
    495 	/*
    496 	 * XXX Really ought to make the disk_attach() and the changing
    497 	 * of state to RUNNING atomic.
    498 	 */
    499 
    500 	disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
    501 	dk_set_geometry(sc, pdk);
    502 	disk_attach(&sc->sc_dk);
    503 
    504 	/* Disk wedge is ready for use! */
    505 	sc->sc_state = DKW_STATE_RUNNING;
    506 
    507 announce:
    508 	/* Announce our arrival. */
    509 	aprint_normal(
    510 	    "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
    511 	    device_xname(sc->sc_dev), pdk->dk_name,
    512 	    sc->sc_wname,	/* XXX Unicode */
    513 	    sc->sc_size, sc->sc_offset,
    514 	    sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
    515 
    516 	return (0);
    517 }
    518 
    519 /*
    520  * dkwedge_find:
    521  *
    522  *	Lookup a disk wedge based on the provided information.
    523  *	NOTE: We look up the wedge based on the wedge devname,
    524  *	not wname.
    525  *
    526  *	Return NULL if the wedge is not found, otherwise return
    527  *	the wedge's softc.  Assign the wedge's unit number to unitp
    528  *	if unitp is not NULL.
    529  */
    530 static struct dkwedge_softc *
    531 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
    532 {
    533 	struct dkwedge_softc *sc = NULL;
    534 	u_int unit;
    535 
    536 	/* Find our softc. */
    537 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
    538 	rw_enter(&dkwedges_lock, RW_READER);
    539 	for (unit = 0; unit < ndkwedges; unit++) {
    540 		if ((sc = dkwedges[unit]) != NULL &&
    541 		    strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
    542 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
    543 			break;
    544 		}
    545 	}
    546 	rw_exit(&dkwedges_lock);
    547 	if (unit == ndkwedges)
    548 		return NULL;
    549 
    550 	if (unitp != NULL)
    551 		*unitp = unit;
    552 
    553 	return sc;
    554 }
    555 
    556 /*
    557  * dkwedge_del:		[exported function]
    558  *
    559  *	Delete a disk wedge based on the provided information.
    560  *	NOTE: We look up the wedge based on the wedge devname,
    561  *	not wname.
    562  */
    563 int
    564 dkwedge_del(struct dkwedge_info *dkw)
    565 {
    566 	return dkwedge_del1(dkw, 0);
    567 }
    568 
    569 int
    570 dkwedge_del1(struct dkwedge_info *dkw, int flags)
    571 {
    572 	struct dkwedge_softc *sc = NULL;
    573 
    574 	/* Find our softc. */
    575 	if ((sc = dkwedge_find(dkw, NULL)) == NULL)
    576 		return (ESRCH);
    577 
    578 	return config_detach(sc->sc_dev, flags);
    579 }
    580 
    581 static int
    582 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags)
    583 {
    584 	struct disk *dk = &sc->sc_dk;
    585 	int rc;
    586 
    587 	rc = 0;
    588 	mutex_enter(&dk->dk_openlock);
    589 	if (dk->dk_openmask == 0)
    590 		/* nothing to do */
    591 		mutex_exit(&dk->dk_openlock);
    592 	else if ((flags & DETACH_FORCE) == 0) {
    593 		rc = EBUSY;
    594 		mutex_exit(&dk->dk_openlock);
    595 	}  else {
    596 		mutex_enter(&sc->sc_parent->dk_rawlock);
    597 		rc = dklastclose(sc); /* releases locks */
    598 	}
    599 
    600 	return rc;
    601 }
    602 
    603 /*
    604  * dkwedge_detach:
    605  *
    606  *	Autoconfiguration detach function for pseudo-device glue.
    607  */
    608 static int
    609 dkwedge_detach(device_t self, int flags)
    610 {
    611 	struct dkwedge_softc *sc = NULL;
    612 	u_int unit;
    613 	int bmaj, cmaj, rc;
    614 
    615 	rw_enter(&dkwedges_lock, RW_WRITER);
    616 	for (unit = 0; unit < ndkwedges; unit++) {
    617 		if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
    618 			break;
    619 	}
    620 	if (unit == ndkwedges)
    621 		rc = ENXIO;
    622 	else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) {
    623 		/* Mark the wedge as dying. */
    624 		sc->sc_state = DKW_STATE_DYING;
    625 	}
    626 	rw_exit(&dkwedges_lock);
    627 
    628 	if (rc != 0)
    629 		return rc;
    630 
    631 	pmf_device_deregister(self);
    632 
    633 	/* Locate the wedge major numbers. */
    634 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
    635 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
    636 
    637 	/* Kill any pending restart. */
    638 	callout_stop(&sc->sc_restart_ch);
    639 
    640 	/*
    641 	 * dkstart() will kill any queued buffers now that the
    642 	 * state of the wedge is not RUNNING.  Once we've done
    643 	 * that, wait for any other pending I/O to complete.
    644 	 */
    645 	dkstart(sc);
    646 	dkwedge_wait_drain(sc);
    647 
    648 	/* Nuke the vnodes for any open instances. */
    649 	vdevgone(bmaj, unit, unit, VBLK);
    650 	vdevgone(cmaj, unit, unit, VCHR);
    651 
    652 	/* Clean up the parent. */
    653 	dkwedge_cleanup_parent(sc, flags | DETACH_FORCE);
    654 
    655 	/* Announce our departure. */
    656 	aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
    657 	    sc->sc_parent->dk_name,
    658 	    sc->sc_wname);	/* XXX Unicode */
    659 
    660 	mutex_enter(&sc->sc_parent->dk_openlock);
    661 	sc->sc_parent->dk_nwedges--;
    662 	LIST_REMOVE(sc, sc_plink);
    663 	mutex_exit(&sc->sc_parent->dk_openlock);
    664 
    665 	/* Delete our buffer queue. */
    666 	bufq_free(sc->sc_bufq);
    667 
    668 	/* Detach from the disk list. */
    669 	disk_detach(&sc->sc_dk);
    670 	disk_destroy(&sc->sc_dk);
    671 
    672 	/* Poof. */
    673 	rw_enter(&dkwedges_lock, RW_WRITER);
    674 	dkwedges[unit] = NULL;
    675 	sc->sc_state = DKW_STATE_DEAD;
    676 	rw_exit(&dkwedges_lock);
    677 
    678 	mutex_destroy(&sc->sc_iolock);
    679 	cv_destroy(&sc->sc_dkdrn);
    680 
    681 	free(sc, M_DKWEDGE);
    682 
    683 	return 0;
    684 }
    685 
    686 /*
    687  * dkwedge_delall:	[exported function]
    688  *
    689  *	Delete all of the wedges on the specified disk.  Used when
    690  *	a disk is being detached.
    691  */
    692 void
    693 dkwedge_delall(struct disk *pdk)
    694 {
    695 	dkwedge_delall1(pdk, false);
    696 }
    697 
    698 static void
    699 dkwedge_delall1(struct disk *pdk, bool idleonly)
    700 {
    701 	struct dkwedge_info dkw;
    702 	struct dkwedge_softc *sc;
    703 	int flags;
    704 
    705 	flags = DETACH_QUIET;
    706 	if (!idleonly) flags |= DETACH_FORCE;
    707 
    708 	for (;;) {
    709 		mutex_enter(&pdk->dk_openlock);
    710 		LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    711 			if (!idleonly || sc->sc_dk.dk_openmask == 0)
    712 				break;
    713 		}
    714 		if (sc == NULL) {
    715 			KASSERT(idleonly || pdk->dk_nwedges == 0);
    716 			mutex_exit(&pdk->dk_openlock);
    717 			return;
    718 		}
    719 		strlcpy(dkw.dkw_parent, pdk->dk_name, sizeof(dkw.dkw_parent));
    720 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    721 			sizeof(dkw.dkw_devname));
    722 		mutex_exit(&pdk->dk_openlock);
    723 		(void) dkwedge_del1(&dkw, flags);
    724 	}
    725 }
    726 
    727 /*
    728  * dkwedge_list:	[exported function]
    729  *
    730  *	List all of the wedges on a particular disk.
    731  */
    732 int
    733 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
    734 {
    735 	struct uio uio;
    736 	struct iovec iov;
    737 	struct dkwedge_softc *sc;
    738 	struct dkwedge_info dkw;
    739 	int error = 0;
    740 
    741 	iov.iov_base = dkwl->dkwl_buf;
    742 	iov.iov_len = dkwl->dkwl_bufsize;
    743 
    744 	uio.uio_iov = &iov;
    745 	uio.uio_iovcnt = 1;
    746 	uio.uio_offset = 0;
    747 	uio.uio_resid = dkwl->dkwl_bufsize;
    748 	uio.uio_rw = UIO_READ;
    749 	KASSERT(l == curlwp);
    750 	uio.uio_vmspace = l->l_proc->p_vmspace;
    751 
    752 	dkwl->dkwl_ncopied = 0;
    753 
    754 	mutex_enter(&pdk->dk_openlock);
    755 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    756 		if (uio.uio_resid < sizeof(dkw))
    757 			break;
    758 
    759 		if (sc->sc_state != DKW_STATE_RUNNING)
    760 			continue;
    761 
    762 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    763 			sizeof(dkw.dkw_devname));
    764 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
    765 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
    766 		strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
    767 		    sizeof(dkw.dkw_parent));
    768 		dkw.dkw_offset = sc->sc_offset;
    769 		dkw.dkw_size = sc->sc_size;
    770 		strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
    771 
    772 		error = uiomove(&dkw, sizeof(dkw), &uio);
    773 		if (error)
    774 			break;
    775 		dkwl->dkwl_ncopied++;
    776 	}
    777 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
    778 	mutex_exit(&pdk->dk_openlock);
    779 
    780 	return (error);
    781 }
    782 
    783 device_t
    784 dkwedge_find_by_wname(const char *wname)
    785 {
    786 	device_t dv = NULL;
    787 	struct dkwedge_softc *sc;
    788 	int i;
    789 
    790 	rw_enter(&dkwedges_lock, RW_WRITER);
    791 	for (i = 0; i < ndkwedges; i++) {
    792 		if ((sc = dkwedges[i]) == NULL)
    793 			continue;
    794 		if (strcmp(sc->sc_wname, wname) == 0) {
    795 			if (dv != NULL) {
    796 				printf(
    797 				    "WARNING: double match for wedge name %s "
    798 				    "(%s, %s)\n", wname, device_xname(dv),
    799 				    device_xname(sc->sc_dev));
    800 				continue;
    801 			}
    802 			dv = sc->sc_dev;
    803 		}
    804 	}
    805 	rw_exit(&dkwedges_lock);
    806 	return dv;
    807 }
    808 
    809 device_t
    810 dkwedge_find_by_parent(const char *name, size_t *i)
    811 {
    812 	rw_enter(&dkwedges_lock, RW_WRITER);
    813 	for (; *i < (size_t)ndkwedges; (*i)++) {
    814 		struct dkwedge_softc *sc;
    815 		if ((sc = dkwedges[*i]) == NULL)
    816 			continue;
    817 		if (strcmp(sc->sc_parent->dk_name, name) != 0)
    818 			continue;
    819 		rw_exit(&dkwedges_lock);
    820 		return sc->sc_dev;
    821 	}
    822 	rw_exit(&dkwedges_lock);
    823 	return NULL;
    824 }
    825 
    826 void
    827 dkwedge_print_wnames(void)
    828 {
    829 	struct dkwedge_softc *sc;
    830 	int i;
    831 
    832 	rw_enter(&dkwedges_lock, RW_WRITER);
    833 	for (i = 0; i < ndkwedges; i++) {
    834 		if ((sc = dkwedges[i]) == NULL)
    835 			continue;
    836 		printf(" wedge:%s", sc->sc_wname);
    837 	}
    838 	rw_exit(&dkwedges_lock);
    839 }
    840 
    841 /*
    842  * We need a dummy object to stuff into the dkwedge discovery method link
    843  * set to ensure that there is always at least one object in the set.
    844  */
    845 static struct dkwedge_discovery_method dummy_discovery_method;
    846 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
    847 
    848 /*
    849  * dkwedge_init:
    850  *
    851  *	Initialize the disk wedge subsystem.
    852  */
    853 void
    854 dkwedge_init(void)
    855 {
    856 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
    857 	struct dkwedge_discovery_method * const *ddmp;
    858 	struct dkwedge_discovery_method *lddm, *ddm;
    859 
    860 	rw_init(&dkwedges_lock);
    861 	rw_init(&dkwedge_discovery_methods_lock);
    862 
    863 	if (config_cfdriver_attach(&dk_cd) != 0)
    864 		panic("dkwedge: unable to attach cfdriver");
    865 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
    866 		panic("dkwedge: unable to attach cfattach");
    867 
    868 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
    869 
    870 	LIST_INIT(&dkwedge_discovery_methods);
    871 
    872 	__link_set_foreach(ddmp, dkwedge_methods) {
    873 		ddm = *ddmp;
    874 		if (ddm == &dummy_discovery_method)
    875 			continue;
    876 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
    877 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
    878 					 ddm, ddm_list);
    879 			continue;
    880 		}
    881 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
    882 			if (ddm->ddm_priority == lddm->ddm_priority) {
    883 				aprint_error("dk-method-%s: method \"%s\" "
    884 				    "already exists at priority %d\n",
    885 				    ddm->ddm_name, lddm->ddm_name,
    886 				    lddm->ddm_priority);
    887 				/* Not inserted. */
    888 				break;
    889 			}
    890 			if (ddm->ddm_priority < lddm->ddm_priority) {
    891 				/* Higher priority; insert before. */
    892 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
    893 				break;
    894 			}
    895 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
    896 				/* Last one; insert after. */
    897 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
    898 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
    899 				break;
    900 			}
    901 		}
    902 	}
    903 
    904 	rw_exit(&dkwedge_discovery_methods_lock);
    905 }
    906 
    907 #ifdef DKWEDGE_AUTODISCOVER
    908 int	dkwedge_autodiscover = 1;
    909 #else
    910 int	dkwedge_autodiscover = 0;
    911 #endif
    912 
    913 /*
    914  * dkwedge_discover:	[exported function]
    915  *
    916  *	Discover the wedges on a newly attached disk.
    917  *	Remove all unused wedges on the disk first.
    918  */
    919 void
    920 dkwedge_discover(struct disk *pdk)
    921 {
    922 	struct dkwedge_discovery_method *ddm;
    923 	struct vnode *vp;
    924 	int error;
    925 	dev_t pdev;
    926 
    927 	/*
    928 	 * Require people playing with wedges to enable this explicitly.
    929 	 */
    930 	if (dkwedge_autodiscover == 0)
    931 		return;
    932 
    933 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
    934 
    935 	/*
    936 	 * Use the character device for scanning, the block device
    937 	 * is busy if there are already wedges attached.
    938 	 */
    939 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
    940 	if (error) {
    941 		aprint_error("%s: unable to compute pdev, error = %d\n",
    942 		    pdk->dk_name, error);
    943 		goto out;
    944 	}
    945 
    946 	error = cdevvp(pdev, &vp);
    947 	if (error) {
    948 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
    949 		    pdk->dk_name, error);
    950 		goto out;
    951 	}
    952 
    953 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    954 	if (error) {
    955 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
    956 		    pdk->dk_name, error);
    957 		vrele(vp);
    958 		goto out;
    959 	}
    960 
    961 	error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
    962 	if (error) {
    963 		if (error != ENODEV)
    964 			aprint_error("%s: unable to open device, error = %d\n",
    965 			    pdk->dk_name, error);
    966 		vput(vp);
    967 		goto out;
    968 	}
    969 	VOP_UNLOCK(vp);
    970 
    971 	/*
    972 	 * Remove unused wedges
    973 	 */
    974 	dkwedge_delall1(pdk, true);
    975 
    976 	/*
    977 	 * For each supported partition map type, look to see if
    978 	 * this map type exists.  If so, parse it and add the
    979 	 * corresponding wedges.
    980 	 */
    981 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
    982 		error = (*ddm->ddm_discover)(pdk, vp);
    983 		if (error == 0) {
    984 			/* Successfully created wedges; we're done. */
    985 			break;
    986 		}
    987 	}
    988 
    989 	error = vn_close(vp, FREAD, NOCRED);
    990 	if (error) {
    991 		aprint_error("%s: unable to close device, error = %d\n",
    992 		    pdk->dk_name, error);
    993 		/* We'll just assume the vnode has been cleaned up. */
    994 	}
    995 
    996  out:
    997 	rw_exit(&dkwedge_discovery_methods_lock);
    998 }
    999 
   1000 /*
   1001  * dkwedge_read:
   1002  *
   1003  *	Read some data from the specified disk, used for
   1004  *	partition discovery.
   1005  */
   1006 int
   1007 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
   1008     void *tbuf, size_t len)
   1009 {
   1010 	buf_t *bp;
   1011 	int error;
   1012 	bool isopen;
   1013 	dev_t bdev;
   1014 	struct vnode *bdvp;
   1015 
   1016 	/*
   1017 	 * The kernel cannot read from a character device vnode
   1018 	 * as physio() only handles user memory.
   1019 	 *
   1020 	 * If the block device has already been opened by a wedge
   1021 	 * use that vnode and temporarily bump the open counter.
   1022 	 *
   1023 	 * Otherwise try to open the block device.
   1024 	 */
   1025 
   1026 	bdev = devsw_chr2blk(vp->v_rdev);
   1027 
   1028 	mutex_enter(&pdk->dk_rawlock);
   1029 	if (pdk->dk_rawopens != 0) {
   1030 		KASSERT(pdk->dk_rawvp != NULL);
   1031 		isopen = true;
   1032 		++pdk->dk_rawopens;
   1033 		bdvp = pdk->dk_rawvp;
   1034 		error = 0;
   1035 	} else {
   1036 		isopen = false;
   1037 		error = dk_open_parent(bdev, FREAD, &bdvp);
   1038 	}
   1039 	mutex_exit(&pdk->dk_rawlock);
   1040 
   1041 	if (error)
   1042 		return error;
   1043 
   1044 	bp = getiobuf(bdvp, true);
   1045 	bp->b_flags = B_READ;
   1046 	bp->b_cflags = BC_BUSY;
   1047 	bp->b_dev = bdev;
   1048 	bp->b_data = tbuf;
   1049 	bp->b_bufsize = bp->b_bcount = len;
   1050 	bp->b_blkno = blkno;
   1051 	bp->b_cylinder = 0;
   1052 	bp->b_error = 0;
   1053 
   1054 	VOP_STRATEGY(bdvp, bp);
   1055 	error = biowait(bp);
   1056 	putiobuf(bp);
   1057 
   1058 	mutex_enter(&pdk->dk_rawlock);
   1059 	if (isopen) {
   1060 		--pdk->dk_rawopens;
   1061 	} else {
   1062 		dk_close_parent(bdvp, FREAD);
   1063 	}
   1064 	mutex_exit(&pdk->dk_rawlock);
   1065 
   1066 	return error;
   1067 }
   1068 
   1069 /*
   1070  * dkwedge_lookup:
   1071  *
   1072  *	Look up a dkwedge_softc based on the provided dev_t.
   1073  */
   1074 static struct dkwedge_softc *
   1075 dkwedge_lookup(dev_t dev)
   1076 {
   1077 	int unit = minor(dev);
   1078 
   1079 	if (unit >= ndkwedges)
   1080 		return (NULL);
   1081 
   1082 	KASSERT(dkwedges != NULL);
   1083 
   1084 	return (dkwedges[unit]);
   1085 }
   1086 
   1087 static int
   1088 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
   1089 {
   1090 	struct vnode *vp;
   1091 	int error;
   1092 
   1093 	error = bdevvp(dev, &vp);
   1094 	if (error)
   1095 		return error;
   1096 
   1097 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1098 	if (error) {
   1099 		vrele(vp);
   1100 		return error;
   1101 	}
   1102 	error = VOP_OPEN(vp, mode, NOCRED);
   1103 	if (error) {
   1104 		vput(vp);
   1105 		return error;
   1106 	}
   1107 
   1108 	/* VOP_OPEN() doesn't do this for us. */
   1109 	if (mode & FWRITE) {
   1110 		mutex_enter(vp->v_interlock);
   1111 		vp->v_writecount++;
   1112 		mutex_exit(vp->v_interlock);
   1113 	}
   1114 
   1115 	VOP_UNLOCK(vp);
   1116 
   1117 	*vpp = vp;
   1118 
   1119 	return 0;
   1120 }
   1121 
   1122 static int
   1123 dk_close_parent(struct vnode *vp, int mode)
   1124 {
   1125 	int error;
   1126 
   1127 	error = vn_close(vp, mode, NOCRED);
   1128 	return error;
   1129 }
   1130 
   1131 /*
   1132  * dkopen:		[devsw entry point]
   1133  *
   1134  *	Open a wedge.
   1135  */
   1136 static int
   1137 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
   1138 {
   1139 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1140 	struct dkwedge_softc *nsc;
   1141 	struct vnode *vp;
   1142 	int error = 0;
   1143 	int mode;
   1144 
   1145 	if (sc == NULL)
   1146 		return (ENODEV);
   1147 	if (sc->sc_state != DKW_STATE_RUNNING)
   1148 		return (ENXIO);
   1149 
   1150 	/*
   1151 	 * We go through a complicated little dance to only open the parent
   1152 	 * vnode once per wedge, no matter how many times the wedge is
   1153 	 * opened.  The reason?  We see one dkopen() per open call, but
   1154 	 * only dkclose() on the last close.
   1155 	 */
   1156 	mutex_enter(&sc->sc_dk.dk_openlock);
   1157 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1158 	if (sc->sc_dk.dk_openmask == 0) {
   1159 		if (sc->sc_parent->dk_rawopens == 0) {
   1160 			KASSERT(sc->sc_parent->dk_rawvp == NULL);
   1161 			/*
   1162 			 * Try open read-write. If this fails for EROFS
   1163 			 * and wedge is read-only, retry to open read-only.
   1164 			 */
   1165 			mode = FREAD | FWRITE;
   1166 			error = dk_open_parent(sc->sc_pdev, mode, &vp);
   1167 			if (error == EROFS && (flags & FWRITE) == 0) {
   1168 				mode &= ~FWRITE;
   1169 				error = dk_open_parent(sc->sc_pdev, mode, &vp);
   1170 			}
   1171 			if (error)
   1172 				goto popen_fail;
   1173 			sc->sc_parent->dk_rawvp = vp;
   1174 		} else {
   1175 			/*
   1176 			 * Retrieve mode from an already opened wedge.
   1177 			 */
   1178 			mode = 0;
   1179 			LIST_FOREACH(nsc, &sc->sc_parent->dk_wedges, sc_plink) {
   1180 				if (nsc == sc || nsc->sc_dk.dk_openmask == 0)
   1181 					continue;
   1182 				mode = nsc->sc_mode;
   1183 				break;
   1184 			}
   1185 		}
   1186 		sc->sc_mode = mode;
   1187 		sc->sc_parent->dk_rawopens++;
   1188 	}
   1189 	KASSERT(sc->sc_mode != 0);
   1190 	if (flags & ~sc->sc_mode & FWRITE) {
   1191 		error = EROFS;
   1192 		goto popen_fail;
   1193 	}
   1194 	if (fmt == S_IFCHR)
   1195 		sc->sc_dk.dk_copenmask |= 1;
   1196 	else
   1197 		sc->sc_dk.dk_bopenmask |= 1;
   1198 	sc->sc_dk.dk_openmask =
   1199 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1200 
   1201  popen_fail:
   1202 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1203 	mutex_exit(&sc->sc_dk.dk_openlock);
   1204 	return (error);
   1205 }
   1206 
   1207 /*
   1208  * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock.
   1209  */
   1210 static int
   1211 dklastclose(struct dkwedge_softc *sc)
   1212 {
   1213 	struct vnode *vp;
   1214 	int error = 0, mode;
   1215 
   1216 	mode = sc->sc_mode;
   1217 
   1218 	vp = NULL;
   1219 	if (sc->sc_parent->dk_rawopens > 0) {
   1220 		if (--sc->sc_parent->dk_rawopens == 0) {
   1221 			KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1222 			vp = sc->sc_parent->dk_rawvp;
   1223 			sc->sc_parent->dk_rawvp = NULL;
   1224 			sc->sc_mode = 0;
   1225 		}
   1226 	}
   1227 
   1228 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1229 	mutex_exit(&sc->sc_dk.dk_openlock);
   1230 
   1231 	if (vp) {
   1232 		dk_close_parent(vp, mode);
   1233 	}
   1234 
   1235 	return error;
   1236 }
   1237 
   1238 /*
   1239  * dkclose:		[devsw entry point]
   1240  *
   1241  *	Close a wedge.
   1242  */
   1243 static int
   1244 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
   1245 {
   1246 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1247 	int error = 0;
   1248 
   1249 	if (sc == NULL)
   1250 		return (ENODEV);
   1251 	if (sc->sc_state != DKW_STATE_RUNNING)
   1252 		return (ENXIO);
   1253 
   1254 	KASSERT(sc->sc_dk.dk_openmask != 0);
   1255 
   1256 	mutex_enter(&sc->sc_dk.dk_openlock);
   1257 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1258 
   1259 	if (fmt == S_IFCHR)
   1260 		sc->sc_dk.dk_copenmask &= ~1;
   1261 	else
   1262 		sc->sc_dk.dk_bopenmask &= ~1;
   1263 	sc->sc_dk.dk_openmask =
   1264 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1265 
   1266 	if (sc->sc_dk.dk_openmask == 0) {
   1267 		error = dklastclose(sc); /* releases locks */
   1268 	} else {
   1269 		mutex_exit(&sc->sc_parent->dk_rawlock);
   1270 		mutex_exit(&sc->sc_dk.dk_openlock);
   1271 	}
   1272 
   1273 	return (error);
   1274 }
   1275 
   1276 /*
   1277  * dkstragegy:		[devsw entry point]
   1278  *
   1279  *	Perform I/O based on the wedge I/O strategy.
   1280  */
   1281 static void
   1282 dkstrategy(struct buf *bp)
   1283 {
   1284 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1285 	uint64_t p_size, p_offset;
   1286 
   1287 	if (sc == NULL) {
   1288 		bp->b_error = ENODEV;
   1289 		goto done;
   1290 	}
   1291 
   1292 	if (sc->sc_state != DKW_STATE_RUNNING ||
   1293 	    sc->sc_parent->dk_rawvp == NULL) {
   1294 		bp->b_error = ENXIO;
   1295 		goto done;
   1296 	}
   1297 
   1298 	/* If it's an empty transfer, wake up the top half now. */
   1299 	if (bp->b_bcount == 0)
   1300 		goto done;
   1301 
   1302 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
   1303 	p_size   = sc->sc_size << sc->sc_parent->dk_blkshift;
   1304 
   1305 	/* Make sure it's in-range. */
   1306 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
   1307 		goto done;
   1308 
   1309 	/* Translate it to the parent's raw LBA. */
   1310 	bp->b_rawblkno = bp->b_blkno + p_offset;
   1311 
   1312 	/* Place it in the queue and start I/O on the unit. */
   1313 	mutex_enter(&sc->sc_iolock);
   1314 	sc->sc_iopend++;
   1315 	disk_wait(&sc->sc_dk);
   1316 	bufq_put(sc->sc_bufq, bp);
   1317 	mutex_exit(&sc->sc_iolock);
   1318 
   1319 	dkstart(sc);
   1320 	return;
   1321 
   1322  done:
   1323 	bp->b_resid = bp->b_bcount;
   1324 	biodone(bp);
   1325 }
   1326 
   1327 /*
   1328  * dkstart:
   1329  *
   1330  *	Start I/O that has been enqueued on the wedge.
   1331  */
   1332 static void
   1333 dkstart(struct dkwedge_softc *sc)
   1334 {
   1335 	struct vnode *vp;
   1336 	struct buf *bp, *nbp;
   1337 
   1338 	mutex_enter(&sc->sc_iolock);
   1339 
   1340 	/* Do as much work as has been enqueued. */
   1341 	while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
   1342 		if (sc->sc_state != DKW_STATE_RUNNING) {
   1343 			(void) bufq_get(sc->sc_bufq);
   1344 			if (sc->sc_iopend-- == 1 &&
   1345 			    (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
   1346 				sc->sc_flags &= ~DK_F_WAIT_DRAIN;
   1347 				cv_broadcast(&sc->sc_dkdrn);
   1348 			}
   1349 			mutex_exit(&sc->sc_iolock);
   1350 			bp->b_error = ENXIO;
   1351 			bp->b_resid = bp->b_bcount;
   1352 			biodone(bp);
   1353 			mutex_enter(&sc->sc_iolock);
   1354 			continue;
   1355 		}
   1356 
   1357 		/* fetch an I/O buf with sc_iolock dropped */
   1358 		mutex_exit(&sc->sc_iolock);
   1359 		nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
   1360 		mutex_enter(&sc->sc_iolock);
   1361 		if (nbp == NULL) {
   1362 			/*
   1363 			 * No resources to run this request; leave the
   1364 			 * buffer queued up, and schedule a timer to
   1365 			 * restart the queue in 1/2 a second.
   1366 			 */
   1367 			callout_schedule(&sc->sc_restart_ch, hz / 2);
   1368 			break;
   1369 		}
   1370 
   1371 		/*
   1372 		 * fetch buf, this can fail if another thread
   1373 		 * has already processed the queue, it can also
   1374 		 * return a completely different buf.
   1375 		 */
   1376 		bp = bufq_get(sc->sc_bufq);
   1377 		if (bp == NULL) {
   1378 			mutex_exit(&sc->sc_iolock);
   1379 			putiobuf(nbp);
   1380 			mutex_enter(&sc->sc_iolock);
   1381 			continue;
   1382 		}
   1383 
   1384 		/* Instrumentation. */
   1385 		disk_busy(&sc->sc_dk);
   1386 
   1387 		/* release lock for VOP_STRATEGY */
   1388 		mutex_exit(&sc->sc_iolock);
   1389 
   1390 		nbp->b_data = bp->b_data;
   1391 		nbp->b_flags = bp->b_flags;
   1392 		nbp->b_oflags = bp->b_oflags;
   1393 		nbp->b_cflags = bp->b_cflags;
   1394 		nbp->b_iodone = dkiodone;
   1395 		nbp->b_proc = bp->b_proc;
   1396 		nbp->b_blkno = bp->b_rawblkno;
   1397 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
   1398 		nbp->b_bcount = bp->b_bcount;
   1399 		nbp->b_private = bp;
   1400 		BIO_COPYPRIO(nbp, bp);
   1401 
   1402 		vp = nbp->b_vp;
   1403 		if ((nbp->b_flags & B_READ) == 0) {
   1404 			mutex_enter(vp->v_interlock);
   1405 			vp->v_numoutput++;
   1406 			mutex_exit(vp->v_interlock);
   1407 		}
   1408 		VOP_STRATEGY(vp, nbp);
   1409 
   1410 		mutex_enter(&sc->sc_iolock);
   1411 	}
   1412 
   1413 	mutex_exit(&sc->sc_iolock);
   1414 }
   1415 
   1416 /*
   1417  * dkiodone:
   1418  *
   1419  *	I/O to a wedge has completed; alert the top half.
   1420  */
   1421 static void
   1422 dkiodone(struct buf *bp)
   1423 {
   1424 	struct buf *obp = bp->b_private;
   1425 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
   1426 
   1427 	if (bp->b_error != 0)
   1428 		obp->b_error = bp->b_error;
   1429 	obp->b_resid = bp->b_resid;
   1430 	putiobuf(bp);
   1431 
   1432 	mutex_enter(&sc->sc_iolock);
   1433 	if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
   1434 		sc->sc_flags &= ~DK_F_WAIT_DRAIN;
   1435 		cv_broadcast(&sc->sc_dkdrn);
   1436 	}
   1437 
   1438 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
   1439 	    obp->b_flags & B_READ);
   1440 	mutex_exit(&sc->sc_iolock);
   1441 
   1442 	biodone(obp);
   1443 
   1444 	/* Kick the queue in case there is more work we can do. */
   1445 	dkstart(sc);
   1446 }
   1447 
   1448 /*
   1449  * dkrestart:
   1450  *
   1451  *	Restart the work queue after it was stalled due to
   1452  *	a resource shortage.  Invoked via a callout.
   1453  */
   1454 static void
   1455 dkrestart(void *v)
   1456 {
   1457 	struct dkwedge_softc *sc = v;
   1458 
   1459 	dkstart(sc);
   1460 }
   1461 
   1462 /*
   1463  * dkminphys:
   1464  *
   1465  *	Call parent's minphys function.
   1466  */
   1467 static void
   1468 dkminphys(struct buf *bp)
   1469 {
   1470 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1471 	dev_t dev;
   1472 
   1473 	dev = bp->b_dev;
   1474 	bp->b_dev = sc->sc_pdev;
   1475 	if (sc->sc_parent->dk_driver && sc->sc_parent->dk_driver->d_minphys)
   1476 		(*sc->sc_parent->dk_driver->d_minphys)(bp);
   1477 	else
   1478 		minphys(bp);
   1479 	bp->b_dev = dev;
   1480 }
   1481 
   1482 /*
   1483  * dkread:		[devsw entry point]
   1484  *
   1485  *	Read from a wedge.
   1486  */
   1487 static int
   1488 dkread(dev_t dev, struct uio *uio, int flags)
   1489 {
   1490 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1491 
   1492 	if (sc == NULL)
   1493 		return (ENODEV);
   1494 	if (sc->sc_state != DKW_STATE_RUNNING)
   1495 		return (ENXIO);
   1496 
   1497 	return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio));
   1498 }
   1499 
   1500 /*
   1501  * dkwrite:		[devsw entry point]
   1502  *
   1503  *	Write to a wedge.
   1504  */
   1505 static int
   1506 dkwrite(dev_t dev, struct uio *uio, int flags)
   1507 {
   1508 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1509 
   1510 	if (sc == NULL)
   1511 		return (ENODEV);
   1512 	if (sc->sc_state != DKW_STATE_RUNNING)
   1513 		return (ENXIO);
   1514 
   1515 	return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio));
   1516 }
   1517 
   1518 /*
   1519  * dkioctl:		[devsw entry point]
   1520  *
   1521  *	Perform an ioctl request on a wedge.
   1522  */
   1523 static int
   1524 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1525 {
   1526 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1527 	int error = 0;
   1528 
   1529 	if (sc == NULL)
   1530 		return (ENODEV);
   1531 	if (sc->sc_state != DKW_STATE_RUNNING)
   1532 		return (ENXIO);
   1533 	if (sc->sc_parent->dk_rawvp == NULL)
   1534 		return (ENXIO);
   1535 
   1536 	/*
   1537 	 * We pass NODEV instead of our device to indicate we don't
   1538 	 * want to handle disklabel ioctls
   1539 	 */
   1540 	error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
   1541 	if (error != EPASSTHROUGH)
   1542 		return (error);
   1543 
   1544 	error = 0;
   1545 
   1546 	switch (cmd) {
   1547 	case DIOCGSTRATEGY:
   1548 	case DIOCGCACHE:
   1549 	case DIOCCACHESYNC:
   1550 		error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, data, flag,
   1551 					  l != NULL ? l->l_cred : NOCRED);
   1552 		break;
   1553 	case DIOCGWEDGEINFO:
   1554 	    {
   1555 		struct dkwedge_info *dkw = (void *) data;
   1556 
   1557 		strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
   1558 			sizeof(dkw->dkw_devname));
   1559 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
   1560 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
   1561 		strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
   1562 		    sizeof(dkw->dkw_parent));
   1563 		dkw->dkw_offset = sc->sc_offset;
   1564 		dkw->dkw_size = sc->sc_size;
   1565 		strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
   1566 
   1567 		break;
   1568 	    }
   1569 	case DIOCGSECTORALIGN:
   1570 	    {
   1571 		struct disk_sectoralign *dsa = data;
   1572 		uint32_t r;
   1573 
   1574 		error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, dsa, flag,
   1575 		    l != NULL ? l->l_cred : NOCRED);
   1576 		if (error)
   1577 			break;
   1578 
   1579 		r = sc->sc_offset % dsa->dsa_alignment;
   1580 		if (r < dsa->dsa_firstaligned)
   1581 			dsa->dsa_firstaligned = dsa->dsa_firstaligned - r;
   1582 		else
   1583 			dsa->dsa_firstaligned = (dsa->dsa_firstaligned +
   1584 			    dsa->dsa_alignment) - r;
   1585 		break;
   1586 	    }
   1587 	default:
   1588 		error = ENOTTY;
   1589 	}
   1590 
   1591 	return (error);
   1592 }
   1593 
   1594 /*
   1595  * dkdiscard:		[devsw entry point]
   1596  *
   1597  *	Perform a discard-range request on a wedge.
   1598  */
   1599 static int
   1600 dkdiscard(dev_t dev, off_t pos, off_t len)
   1601 {
   1602 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1603 	unsigned shift;
   1604 	off_t offset, maxlen;
   1605 
   1606 	if (sc == NULL)
   1607 		return (ENODEV);
   1608 	if (sc->sc_state != DKW_STATE_RUNNING)
   1609 		return (ENXIO);
   1610 	if (sc->sc_parent->dk_rawvp == NULL)
   1611 		return (ENXIO);
   1612 
   1613 	shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
   1614 	KASSERT(__type_fit(off_t, sc->sc_size));
   1615 	KASSERT(__type_fit(off_t, sc->sc_offset));
   1616 	KASSERT(0 <= sc->sc_offset);
   1617 	KASSERT(sc->sc_size <= (__type_max(off_t) >> shift));
   1618 	KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - sc->sc_size));
   1619 	offset = ((off_t)sc->sc_offset << shift);
   1620 	maxlen = ((off_t)sc->sc_size << shift);
   1621 
   1622 	if (len > maxlen)
   1623 		return (EINVAL);
   1624 	if (pos > (maxlen - len))
   1625 		return (EINVAL);
   1626 
   1627 	pos += offset;
   1628 	return VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
   1629 }
   1630 
   1631 /*
   1632  * dksize:		[devsw entry point]
   1633  *
   1634  *	Query the size of a wedge for the purpose of performing a dump
   1635  *	or for swapping to.
   1636  */
   1637 static int
   1638 dksize(dev_t dev)
   1639 {
   1640 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1641 	uint64_t p_size;
   1642 	int rv = -1;
   1643 
   1644 	if (sc == NULL)
   1645 		return (-1);
   1646 	if (sc->sc_state != DKW_STATE_RUNNING)
   1647 		return (-1);
   1648 
   1649 	mutex_enter(&sc->sc_dk.dk_openlock);
   1650 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1651 
   1652 	/* Our content type is static, no need to open the device. */
   1653 
   1654 	p_size   = sc->sc_size << sc->sc_parent->dk_blkshift;
   1655 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
   1656 		/* Saturate if we are larger than INT_MAX. */
   1657 		if (p_size > INT_MAX)
   1658 			rv = INT_MAX;
   1659 		else
   1660 			rv = (int) p_size;
   1661 	}
   1662 
   1663 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1664 	mutex_exit(&sc->sc_dk.dk_openlock);
   1665 
   1666 	return (rv);
   1667 }
   1668 
   1669 /*
   1670  * dkdump:		[devsw entry point]
   1671  *
   1672  *	Perform a crash dump to a wedge.
   1673  */
   1674 static int
   1675 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
   1676 {
   1677 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1678 	const struct bdevsw *bdev;
   1679 	uint64_t p_size, p_offset;
   1680 	int rv = 0;
   1681 
   1682 	if (sc == NULL)
   1683 		return (ENODEV);
   1684 	if (sc->sc_state != DKW_STATE_RUNNING)
   1685 		return (ENXIO);
   1686 
   1687 	mutex_enter(&sc->sc_dk.dk_openlock);
   1688 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1689 
   1690 	/* Our content type is static, no need to open the device. */
   1691 
   1692 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
   1693 	    strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0 &&
   1694 	    strcmp(sc->sc_ptype, DKW_PTYPE_CGD) != 0) {
   1695 		rv = ENXIO;
   1696 		goto out;
   1697 	}
   1698 	if (size % DEV_BSIZE != 0) {
   1699 		rv = EINVAL;
   1700 		goto out;
   1701 	}
   1702 
   1703 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
   1704 	p_size   = sc->sc_size << sc->sc_parent->dk_blkshift;
   1705 
   1706 	if (blkno < 0 || blkno + size / DEV_BSIZE > p_size) {
   1707 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
   1708 		    "p_size (%" PRIu64 ")\n", __func__, blkno,
   1709 		    size / DEV_BSIZE, p_size);
   1710 		rv = EINVAL;
   1711 		goto out;
   1712 	}
   1713 
   1714 	bdev = bdevsw_lookup(sc->sc_pdev);
   1715 	rv = (*bdev->d_dump)(sc->sc_pdev, blkno + p_offset, va, size);
   1716 
   1717 out:
   1718 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1719 	mutex_exit(&sc->sc_dk.dk_openlock);
   1720 
   1721 	return rv;
   1722 }
   1723 
   1724 /*
   1725  * config glue
   1726  */
   1727 
   1728 /*
   1729  * dkwedge_find_partition
   1730  *
   1731  *	Find wedge corresponding to the specified parent name
   1732  *	and offset/length.
   1733  */
   1734 device_t
   1735 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
   1736 {
   1737 	struct dkwedge_softc *sc;
   1738 	int i;
   1739 	device_t wedge = NULL;
   1740 
   1741 	rw_enter(&dkwedges_lock, RW_READER);
   1742 	for (i = 0; i < ndkwedges; i++) {
   1743 		if ((sc = dkwedges[i]) == NULL)
   1744 			continue;
   1745 		if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
   1746 		    sc->sc_offset == startblk &&
   1747 		    sc->sc_size == nblks) {
   1748 			if (wedge) {
   1749 				printf("WARNING: double match for boot wedge "
   1750 				    "(%s, %s)\n",
   1751 				    device_xname(wedge),
   1752 				    device_xname(sc->sc_dev));
   1753 				continue;
   1754 			}
   1755 			wedge = sc->sc_dev;
   1756 		}
   1757 	}
   1758 	rw_exit(&dkwedges_lock);
   1759 
   1760 	return wedge;
   1761 }
   1762 
   1763 const char *
   1764 dkwedge_get_parent_name(dev_t dev)
   1765 {
   1766 	/* XXX: perhaps do this in lookup? */
   1767 	int bmaj = bdevsw_lookup_major(&dk_bdevsw);
   1768 	int cmaj = cdevsw_lookup_major(&dk_cdevsw);
   1769 	if (major(dev) != bmaj && major(dev) != cmaj)
   1770 		return NULL;
   1771 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1772 	if (sc == NULL)
   1773 		return NULL;
   1774 	return sc->sc_parent->dk_name;
   1775 }
   1776