Home | History | Annotate | Line # | Download | only in dkwedge
dk.c revision 1.117
      1 /*	$NetBSD: dk.c,v 1.117 2022/08/22 00:19:53 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.117 2022/08/22 00:19:53 riastradh Exp $");
     34 
     35 #ifdef _KERNEL_OPT
     36 #include "opt_dkwedge.h"
     37 #endif
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/proc.h>
     42 #include <sys/errno.h>
     43 #include <sys/pool.h>
     44 #include <sys/ioctl.h>
     45 #include <sys/disklabel.h>
     46 #include <sys/disk.h>
     47 #include <sys/fcntl.h>
     48 #include <sys/buf.h>
     49 #include <sys/bufq.h>
     50 #include <sys/vnode.h>
     51 #include <sys/stat.h>
     52 #include <sys/conf.h>
     53 #include <sys/callout.h>
     54 #include <sys/kernel.h>
     55 #include <sys/malloc.h>
     56 #include <sys/device.h>
     57 #include <sys/kauth.h>
     58 
     59 #include <miscfs/specfs/specdev.h>
     60 
     61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
     62 
     63 typedef enum {
     64 	DKW_STATE_LARVAL	= 0,
     65 	DKW_STATE_RUNNING	= 1,
     66 	DKW_STATE_DYING		= 2,
     67 	DKW_STATE_DEAD		= 666
     68 } dkwedge_state_t;
     69 
     70 struct dkwedge_softc {
     71 	device_t	sc_dev;	/* pointer to our pseudo-device */
     72 	struct cfdata	sc_cfdata;	/* our cfdata structure */
     73 	uint8_t		sc_wname[128];	/* wedge name (Unicode, UTF-8) */
     74 
     75 	dkwedge_state_t sc_state;	/* state this wedge is in */
     76 
     77 	struct disk	*sc_parent;	/* parent disk */
     78 	daddr_t		sc_offset;	/* LBA offset of wedge in parent */
     79 	uint64_t	sc_size;	/* size of wedge in blocks */
     80 	char		sc_ptype[32];	/* partition type */
     81 	dev_t		sc_pdev;	/* cached parent's dev_t */
     82 					/* link on parent's wedge list */
     83 	LIST_ENTRY(dkwedge_softc) sc_plink;
     84 
     85 	struct disk	sc_dk;		/* our own disk structure */
     86 	struct bufq_state *sc_bufq;	/* buffer queue */
     87 	struct callout	sc_restart_ch;	/* callout to restart I/O */
     88 
     89 	kmutex_t	sc_iolock;
     90 	kcondvar_t	sc_dkdrn;
     91 	u_int		sc_iopend;	/* I/Os pending */
     92 	int		sc_mode;	/* parent open mode */
     93 };
     94 
     95 static void	dkstart(struct dkwedge_softc *);
     96 static void	dkiodone(struct buf *);
     97 static void	dkrestart(void *);
     98 static void	dkminphys(struct buf *);
     99 
    100 static int	dklastclose(struct dkwedge_softc *);
    101 static int	dkwedge_cleanup_parent(struct dkwedge_softc *, int);
    102 static int	dkwedge_detach(device_t, int);
    103 static void	dkwedge_delall1(struct disk *, bool);
    104 static int	dkwedge_del1(struct dkwedge_info *, int);
    105 static int	dk_open_parent(dev_t, int, struct vnode **);
    106 static int	dk_close_parent(struct vnode *, int);
    107 
    108 static dev_type_open(dkopen);
    109 static dev_type_close(dkclose);
    110 static dev_type_read(dkread);
    111 static dev_type_write(dkwrite);
    112 static dev_type_ioctl(dkioctl);
    113 static dev_type_strategy(dkstrategy);
    114 static dev_type_dump(dkdump);
    115 static dev_type_size(dksize);
    116 static dev_type_discard(dkdiscard);
    117 
    118 const struct bdevsw dk_bdevsw = {
    119 	.d_open = dkopen,
    120 	.d_close = dkclose,
    121 	.d_strategy = dkstrategy,
    122 	.d_ioctl = dkioctl,
    123 	.d_dump = dkdump,
    124 	.d_psize = dksize,
    125 	.d_discard = dkdiscard,
    126 	.d_flag = D_DISK | D_MPSAFE
    127 };
    128 
    129 const struct cdevsw dk_cdevsw = {
    130 	.d_open = dkopen,
    131 	.d_close = dkclose,
    132 	.d_read = dkread,
    133 	.d_write = dkwrite,
    134 	.d_ioctl = dkioctl,
    135 	.d_stop = nostop,
    136 	.d_tty = notty,
    137 	.d_poll = nopoll,
    138 	.d_mmap = nommap,
    139 	.d_kqfilter = nokqfilter,
    140 	.d_discard = dkdiscard,
    141 	.d_flag = D_DISK | D_MPSAFE
    142 };
    143 
    144 static struct dkwedge_softc **dkwedges;
    145 static u_int ndkwedges;
    146 static krwlock_t dkwedges_lock;
    147 
    148 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
    149 static krwlock_t dkwedge_discovery_methods_lock;
    150 
    151 /*
    152  * dkwedge_match:
    153  *
    154  *	Autoconfiguration match function for pseudo-device glue.
    155  */
    156 static int
    157 dkwedge_match(device_t parent, cfdata_t match,
    158     void *aux)
    159 {
    160 
    161 	/* Pseudo-device; always present. */
    162 	return (1);
    163 }
    164 
    165 /*
    166  * dkwedge_attach:
    167  *
    168  *	Autoconfiguration attach function for pseudo-device glue.
    169  */
    170 static void
    171 dkwedge_attach(device_t parent, device_t self,
    172     void *aux)
    173 {
    174 
    175 	if (!pmf_device_register(self, NULL, NULL))
    176 		aprint_error_dev(self, "couldn't establish power handler\n");
    177 }
    178 
    179 CFDRIVER_DECL(dk, DV_DISK, NULL);
    180 CFATTACH_DECL3_NEW(dk, 0,
    181     dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
    182     DVF_DETACH_SHUTDOWN);
    183 
    184 /*
    185  * dkwedge_wait_drain:
    186  *
    187  *	Wait for I/O on the wedge to drain.
    188  */
    189 static void
    190 dkwedge_wait_drain(struct dkwedge_softc *sc)
    191 {
    192 
    193 	mutex_enter(&sc->sc_iolock);
    194 	while (sc->sc_iopend != 0)
    195 		cv_wait(&sc->sc_dkdrn, &sc->sc_iolock);
    196 	mutex_exit(&sc->sc_iolock);
    197 }
    198 
    199 /*
    200  * dkwedge_compute_pdev:
    201  *
    202  *	Compute the parent disk's dev_t.
    203  */
    204 static int
    205 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
    206 {
    207 	const char *name, *cp;
    208 	devmajor_t pmaj;
    209 	int punit;
    210 	char devname[16];
    211 
    212 	name = pname;
    213 	switch (type) {
    214 	case VBLK:
    215 		pmaj = devsw_name2blk(name, devname, sizeof(devname));
    216 		break;
    217 	case VCHR:
    218 		pmaj = devsw_name2chr(name, devname, sizeof(devname));
    219 		break;
    220 	default:
    221 		pmaj = NODEVMAJOR;
    222 		break;
    223 	}
    224 	if (pmaj == NODEVMAJOR)
    225 		return (ENODEV);
    226 
    227 	name += strlen(devname);
    228 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
    229 		punit = (punit * 10) + (*cp - '0');
    230 	if (cp == name) {
    231 		/* Invalid parent disk name. */
    232 		return (ENODEV);
    233 	}
    234 
    235 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
    236 
    237 	return (0);
    238 }
    239 
    240 /*
    241  * dkwedge_array_expand:
    242  *
    243  *	Expand the dkwedges array.
    244  */
    245 static void
    246 dkwedge_array_expand(void)
    247 {
    248 	int newcnt = ndkwedges + 16;
    249 	struct dkwedge_softc **newarray, **oldarray;
    250 
    251 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
    252 	    M_WAITOK|M_ZERO);
    253 	if ((oldarray = dkwedges) != NULL)
    254 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
    255 	dkwedges = newarray;
    256 	ndkwedges = newcnt;
    257 	if (oldarray != NULL)
    258 		free(oldarray, M_DKWEDGE);
    259 }
    260 
    261 static void
    262 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
    263 {
    264 	struct disk *dk = &sc->sc_dk;
    265 	struct disk_geom *dg = &dk->dk_geom;
    266 
    267 	memset(dg, 0, sizeof(*dg));
    268 
    269 	dg->dg_secperunit = sc->sc_size;
    270 	dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
    271 
    272 	/* fake numbers, 1 cylinder is 1 MB with default sector size */
    273 	dg->dg_nsectors = 32;
    274 	dg->dg_ntracks = 64;
    275 	dg->dg_ncylinders = dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
    276 
    277 	disk_set_info(sc->sc_dev, dk, NULL);
    278 }
    279 
    280 /*
    281  * dkwedge_add:		[exported function]
    282  *
    283  *	Add a disk wedge based on the provided information.
    284  *
    285  *	The incoming dkw_devname[] is ignored, instead being
    286  *	filled in and returned to the caller.
    287  */
    288 int
    289 dkwedge_add(struct dkwedge_info *dkw)
    290 {
    291 	struct dkwedge_softc *sc, *lsc;
    292 	struct disk *pdk;
    293 	u_int unit;
    294 	int error;
    295 	dev_t pdev;
    296 
    297 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
    298 	pdk = disk_find(dkw->dkw_parent);
    299 	if (pdk == NULL)
    300 		return (ENODEV);
    301 
    302 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
    303 	if (error)
    304 		return (error);
    305 
    306 	if (dkw->dkw_offset < 0)
    307 		return (EINVAL);
    308 
    309 	/*
    310 	 * Check for an existing wedge at the same disk offset. Allow
    311 	 * updating a wedge if the only change is the size, and the new
    312 	 * size is larger than the old.
    313 	 */
    314 	sc = NULL;
    315 	mutex_enter(&pdk->dk_openlock);
    316 	LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    317 		if (lsc->sc_offset != dkw->dkw_offset)
    318 			continue;
    319 		if (strcmp(lsc->sc_wname, dkw->dkw_wname) != 0)
    320 			break;
    321 		if (strcmp(lsc->sc_ptype, dkw->dkw_ptype) != 0)
    322 			break;
    323 		if (lsc->sc_size > dkw->dkw_size)
    324 			break;
    325 
    326 		sc = lsc;
    327 		sc->sc_size = dkw->dkw_size;
    328 		dk_set_geometry(sc, pdk);
    329 
    330 		break;
    331 	}
    332 	mutex_exit(&pdk->dk_openlock);
    333 
    334 	if (sc != NULL)
    335 		goto announce;
    336 
    337 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
    338 	sc->sc_state = DKW_STATE_LARVAL;
    339 	sc->sc_parent = pdk;
    340 	sc->sc_pdev = pdev;
    341 	sc->sc_offset = dkw->dkw_offset;
    342 	sc->sc_size = dkw->dkw_size;
    343 
    344 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
    345 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
    346 
    347 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
    348 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
    349 
    350 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
    351 
    352 	callout_init(&sc->sc_restart_ch, 0);
    353 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
    354 
    355 	mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
    356 	cv_init(&sc->sc_dkdrn, "dkdrn");
    357 
    358 	/*
    359 	 * Wedge will be added; increment the wedge count for the parent.
    360 	 * Only allow this to happen if RAW_PART is the only thing open.
    361 	 */
    362 	mutex_enter(&pdk->dk_openlock);
    363 	if (pdk->dk_openmask & ~(1 << RAW_PART))
    364 		error = EBUSY;
    365 	else {
    366 		/* Check for wedge overlap. */
    367 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    368 			daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
    369 			daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
    370 
    371 			if (sc->sc_offset >= lsc->sc_offset &&
    372 			    sc->sc_offset <= llastblk) {
    373 				/* Overlaps the tail of the existing wedge. */
    374 				break;
    375 			}
    376 			if (lastblk >= lsc->sc_offset &&
    377 			    lastblk <= llastblk) {
    378 				/* Overlaps the head of the existing wedge. */
    379 			    	break;
    380 			}
    381 		}
    382 		if (lsc != NULL) {
    383 			if (sc->sc_offset == lsc->sc_offset &&
    384 			    sc->sc_size == lsc->sc_size &&
    385 			    strcmp(sc->sc_wname, lsc->sc_wname) == 0)
    386 				error = EEXIST;
    387 			else
    388 				error = EINVAL;
    389 		} else {
    390 			pdk->dk_nwedges++;
    391 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
    392 		}
    393 	}
    394 	mutex_exit(&pdk->dk_openlock);
    395 	if (error) {
    396 		cv_destroy(&sc->sc_dkdrn);
    397 		mutex_destroy(&sc->sc_iolock);
    398 		bufq_free(sc->sc_bufq);
    399 		free(sc, M_DKWEDGE);
    400 		return (error);
    401 	}
    402 
    403 	/* Fill in our cfdata for the pseudo-device glue. */
    404 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
    405 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
    406 	/* sc->sc_cfdata.cf_unit set below */
    407 	sc->sc_cfdata.cf_fstate = FSTATE_STAR;
    408 
    409 	/* Insert the larval wedge into the array. */
    410 	rw_enter(&dkwedges_lock, RW_WRITER);
    411 	for (error = 0;;) {
    412 		struct dkwedge_softc **scpp;
    413 
    414 		/*
    415 		 * Check for a duplicate wname while searching for
    416 		 * a slot.
    417 		 */
    418 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
    419 			if (dkwedges[unit] == NULL) {
    420 				if (scpp == NULL) {
    421 					scpp = &dkwedges[unit];
    422 					sc->sc_cfdata.cf_unit = unit;
    423 				}
    424 			} else {
    425 				/* XXX Unicode. */
    426 				if (strcmp(dkwedges[unit]->sc_wname,
    427 					   sc->sc_wname) == 0) {
    428 					error = EEXIST;
    429 					break;
    430 				}
    431 			}
    432 		}
    433 		if (error)
    434 			break;
    435 		KASSERT(unit == ndkwedges);
    436 		if (scpp == NULL)
    437 			dkwedge_array_expand();
    438 		else {
    439 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
    440 			*scpp = sc;
    441 			break;
    442 		}
    443 	}
    444 	rw_exit(&dkwedges_lock);
    445 	if (error) {
    446 		mutex_enter(&pdk->dk_openlock);
    447 		pdk->dk_nwedges--;
    448 		LIST_REMOVE(sc, sc_plink);
    449 		mutex_exit(&pdk->dk_openlock);
    450 
    451 		cv_destroy(&sc->sc_dkdrn);
    452 		mutex_destroy(&sc->sc_iolock);
    453 		bufq_free(sc->sc_bufq);
    454 		free(sc, M_DKWEDGE);
    455 		return (error);
    456 	}
    457 
    458 	/*
    459 	 * Now that we know the unit #, attach a pseudo-device for
    460 	 * this wedge instance.  This will provide us with the
    461 	 * device_t necessary for glue to other parts of the system.
    462 	 *
    463 	 * This should never fail, unless we're almost totally out of
    464 	 * memory.
    465 	 */
    466 	if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
    467 		aprint_error("%s%u: unable to attach pseudo-device\n",
    468 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
    469 
    470 		rw_enter(&dkwedges_lock, RW_WRITER);
    471 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
    472 		rw_exit(&dkwedges_lock);
    473 
    474 		mutex_enter(&pdk->dk_openlock);
    475 		pdk->dk_nwedges--;
    476 		LIST_REMOVE(sc, sc_plink);
    477 		mutex_exit(&pdk->dk_openlock);
    478 
    479 		cv_destroy(&sc->sc_dkdrn);
    480 		mutex_destroy(&sc->sc_iolock);
    481 		bufq_free(sc->sc_bufq);
    482 		free(sc, M_DKWEDGE);
    483 		return (ENOMEM);
    484 	}
    485 
    486 	/*
    487 	 * XXX Really ought to make the disk_attach() and the changing
    488 	 * of state to RUNNING atomic.
    489 	 */
    490 
    491 	disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
    492 	dk_set_geometry(sc, pdk);
    493 	disk_attach(&sc->sc_dk);
    494 
    495 	/* Disk wedge is ready for use! */
    496 	sc->sc_state = DKW_STATE_RUNNING;
    497 
    498 announce:
    499 	/* Announce our arrival. */
    500 	aprint_normal(
    501 	    "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
    502 	    device_xname(sc->sc_dev), pdk->dk_name,
    503 	    sc->sc_wname,	/* XXX Unicode */
    504 	    sc->sc_size, sc->sc_offset,
    505 	    sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
    506 
    507 	/* Return the devname to the caller. */
    508 	strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
    509 		sizeof(dkw->dkw_devname));
    510 
    511 	return (0);
    512 }
    513 
    514 /*
    515  * dkwedge_find:
    516  *
    517  *	Lookup a disk wedge based on the provided information.
    518  *	NOTE: We look up the wedge based on the wedge devname,
    519  *	not wname.
    520  *
    521  *	Return NULL if the wedge is not found, otherwise return
    522  *	the wedge's softc.  Assign the wedge's unit number to unitp
    523  *	if unitp is not NULL.
    524  */
    525 static struct dkwedge_softc *
    526 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
    527 {
    528 	struct dkwedge_softc *sc = NULL;
    529 	u_int unit;
    530 
    531 	/* Find our softc. */
    532 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
    533 	rw_enter(&dkwedges_lock, RW_READER);
    534 	for (unit = 0; unit < ndkwedges; unit++) {
    535 		if ((sc = dkwedges[unit]) != NULL &&
    536 		    strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
    537 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
    538 			break;
    539 		}
    540 	}
    541 	rw_exit(&dkwedges_lock);
    542 	if (unit == ndkwedges)
    543 		return NULL;
    544 
    545 	if (unitp != NULL)
    546 		*unitp = unit;
    547 
    548 	return sc;
    549 }
    550 
    551 /*
    552  * dkwedge_del:		[exported function]
    553  *
    554  *	Delete a disk wedge based on the provided information.
    555  *	NOTE: We look up the wedge based on the wedge devname,
    556  *	not wname.
    557  */
    558 int
    559 dkwedge_del(struct dkwedge_info *dkw)
    560 {
    561 	return dkwedge_del1(dkw, 0);
    562 }
    563 
    564 int
    565 dkwedge_del1(struct dkwedge_info *dkw, int flags)
    566 {
    567 	struct dkwedge_softc *sc = NULL;
    568 
    569 	/* Find our softc. */
    570 	if ((sc = dkwedge_find(dkw, NULL)) == NULL)
    571 		return (ESRCH);
    572 
    573 	return config_detach(sc->sc_dev, flags);
    574 }
    575 
    576 static int
    577 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags)
    578 {
    579 	struct disk *dk = &sc->sc_dk;
    580 	int rc;
    581 
    582 	rc = 0;
    583 	mutex_enter(&dk->dk_openlock);
    584 	if (dk->dk_openmask == 0) {
    585 		/* nothing to do */
    586 	} else if ((flags & DETACH_FORCE) == 0) {
    587 		rc = EBUSY;
    588 	}  else {
    589 		mutex_enter(&sc->sc_parent->dk_rawlock);
    590 		rc = dklastclose(sc);
    591 		mutex_exit(&sc->sc_parent->dk_rawlock);
    592 	}
    593 	mutex_exit(&sc->sc_dk.dk_openlock);
    594 
    595 	return rc;
    596 }
    597 
    598 /*
    599  * dkwedge_detach:
    600  *
    601  *	Autoconfiguration detach function for pseudo-device glue.
    602  */
    603 static int
    604 dkwedge_detach(device_t self, int flags)
    605 {
    606 	struct dkwedge_softc *sc = NULL;
    607 	u_int unit;
    608 	int bmaj, cmaj, rc;
    609 
    610 	rw_enter(&dkwedges_lock, RW_WRITER);
    611 	for (unit = 0; unit < ndkwedges; unit++) {
    612 		if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
    613 			break;
    614 	}
    615 	if (unit == ndkwedges)
    616 		rc = ENXIO;
    617 	else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) {
    618 		/* Mark the wedge as dying. */
    619 		sc->sc_state = DKW_STATE_DYING;
    620 	}
    621 	rw_exit(&dkwedges_lock);
    622 
    623 	if (rc != 0)
    624 		return rc;
    625 
    626 	pmf_device_deregister(self);
    627 
    628 	/* Locate the wedge major numbers. */
    629 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
    630 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
    631 
    632 	/* Kill any pending restart. */
    633 	callout_stop(&sc->sc_restart_ch);
    634 
    635 	/*
    636 	 * dkstart() will kill any queued buffers now that the
    637 	 * state of the wedge is not RUNNING.  Once we've done
    638 	 * that, wait for any other pending I/O to complete.
    639 	 */
    640 	dkstart(sc);
    641 	dkwedge_wait_drain(sc);
    642 
    643 	/* Nuke the vnodes for any open instances. */
    644 	vdevgone(bmaj, unit, unit, VBLK);
    645 	vdevgone(cmaj, unit, unit, VCHR);
    646 
    647 	/* Clean up the parent. */
    648 	dkwedge_cleanup_parent(sc, flags | DETACH_FORCE);
    649 
    650 	/* Announce our departure. */
    651 	aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
    652 	    sc->sc_parent->dk_name,
    653 	    sc->sc_wname);	/* XXX Unicode */
    654 
    655 	mutex_enter(&sc->sc_parent->dk_openlock);
    656 	sc->sc_parent->dk_nwedges--;
    657 	LIST_REMOVE(sc, sc_plink);
    658 	mutex_exit(&sc->sc_parent->dk_openlock);
    659 
    660 	/* Delete our buffer queue. */
    661 	bufq_free(sc->sc_bufq);
    662 
    663 	/* Detach from the disk list. */
    664 	disk_detach(&sc->sc_dk);
    665 	disk_destroy(&sc->sc_dk);
    666 
    667 	/* Poof. */
    668 	rw_enter(&dkwedges_lock, RW_WRITER);
    669 	dkwedges[unit] = NULL;
    670 	sc->sc_state = DKW_STATE_DEAD;
    671 	rw_exit(&dkwedges_lock);
    672 
    673 	mutex_destroy(&sc->sc_iolock);
    674 	cv_destroy(&sc->sc_dkdrn);
    675 
    676 	free(sc, M_DKWEDGE);
    677 
    678 	return 0;
    679 }
    680 
    681 /*
    682  * dkwedge_delall:	[exported function]
    683  *
    684  *	Delete all of the wedges on the specified disk.  Used when
    685  *	a disk is being detached.
    686  */
    687 void
    688 dkwedge_delall(struct disk *pdk)
    689 {
    690 	dkwedge_delall1(pdk, false);
    691 }
    692 
    693 static void
    694 dkwedge_delall1(struct disk *pdk, bool idleonly)
    695 {
    696 	struct dkwedge_info dkw;
    697 	struct dkwedge_softc *sc;
    698 	int flags;
    699 
    700 	flags = DETACH_QUIET;
    701 	if (!idleonly) flags |= DETACH_FORCE;
    702 
    703 	for (;;) {
    704 		mutex_enter(&pdk->dk_openlock);
    705 		LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    706 			if (!idleonly || sc->sc_dk.dk_openmask == 0)
    707 				break;
    708 		}
    709 		if (sc == NULL) {
    710 			KASSERT(idleonly || pdk->dk_nwedges == 0);
    711 			mutex_exit(&pdk->dk_openlock);
    712 			return;
    713 		}
    714 		strlcpy(dkw.dkw_parent, pdk->dk_name, sizeof(dkw.dkw_parent));
    715 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    716 			sizeof(dkw.dkw_devname));
    717 		mutex_exit(&pdk->dk_openlock);
    718 		(void) dkwedge_del1(&dkw, flags);
    719 	}
    720 }
    721 
    722 /*
    723  * dkwedge_list:	[exported function]
    724  *
    725  *	List all of the wedges on a particular disk.
    726  */
    727 int
    728 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
    729 {
    730 	struct uio uio;
    731 	struct iovec iov;
    732 	struct dkwedge_softc *sc;
    733 	struct dkwedge_info dkw;
    734 	int error = 0;
    735 
    736 	iov.iov_base = dkwl->dkwl_buf;
    737 	iov.iov_len = dkwl->dkwl_bufsize;
    738 
    739 	uio.uio_iov = &iov;
    740 	uio.uio_iovcnt = 1;
    741 	uio.uio_offset = 0;
    742 	uio.uio_resid = dkwl->dkwl_bufsize;
    743 	uio.uio_rw = UIO_READ;
    744 	KASSERT(l == curlwp);
    745 	uio.uio_vmspace = l->l_proc->p_vmspace;
    746 
    747 	dkwl->dkwl_ncopied = 0;
    748 
    749 	mutex_enter(&pdk->dk_openlock);
    750 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    751 		if (uio.uio_resid < sizeof(dkw))
    752 			break;
    753 
    754 		if (sc->sc_state != DKW_STATE_RUNNING)
    755 			continue;
    756 
    757 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    758 			sizeof(dkw.dkw_devname));
    759 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
    760 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
    761 		strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
    762 		    sizeof(dkw.dkw_parent));
    763 		dkw.dkw_offset = sc->sc_offset;
    764 		dkw.dkw_size = sc->sc_size;
    765 		strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
    766 
    767 		error = uiomove(&dkw, sizeof(dkw), &uio);
    768 		if (error)
    769 			break;
    770 		dkwl->dkwl_ncopied++;
    771 	}
    772 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
    773 	mutex_exit(&pdk->dk_openlock);
    774 
    775 	return (error);
    776 }
    777 
    778 device_t
    779 dkwedge_find_by_wname(const char *wname)
    780 {
    781 	device_t dv = NULL;
    782 	struct dkwedge_softc *sc;
    783 	int i;
    784 
    785 	rw_enter(&dkwedges_lock, RW_WRITER);
    786 	for (i = 0; i < ndkwedges; i++) {
    787 		if ((sc = dkwedges[i]) == NULL)
    788 			continue;
    789 		if (strcmp(sc->sc_wname, wname) == 0) {
    790 			if (dv != NULL) {
    791 				printf(
    792 				    "WARNING: double match for wedge name %s "
    793 				    "(%s, %s)\n", wname, device_xname(dv),
    794 				    device_xname(sc->sc_dev));
    795 				continue;
    796 			}
    797 			dv = sc->sc_dev;
    798 		}
    799 	}
    800 	rw_exit(&dkwedges_lock);
    801 	return dv;
    802 }
    803 
    804 device_t
    805 dkwedge_find_by_parent(const char *name, size_t *i)
    806 {
    807 	rw_enter(&dkwedges_lock, RW_WRITER);
    808 	for (; *i < (size_t)ndkwedges; (*i)++) {
    809 		struct dkwedge_softc *sc;
    810 		if ((sc = dkwedges[*i]) == NULL)
    811 			continue;
    812 		if (strcmp(sc->sc_parent->dk_name, name) != 0)
    813 			continue;
    814 		rw_exit(&dkwedges_lock);
    815 		return sc->sc_dev;
    816 	}
    817 	rw_exit(&dkwedges_lock);
    818 	return NULL;
    819 }
    820 
    821 void
    822 dkwedge_print_wnames(void)
    823 {
    824 	struct dkwedge_softc *sc;
    825 	int i;
    826 
    827 	rw_enter(&dkwedges_lock, RW_WRITER);
    828 	for (i = 0; i < ndkwedges; i++) {
    829 		if ((sc = dkwedges[i]) == NULL)
    830 			continue;
    831 		printf(" wedge:%s", sc->sc_wname);
    832 	}
    833 	rw_exit(&dkwedges_lock);
    834 }
    835 
    836 /*
    837  * We need a dummy object to stuff into the dkwedge discovery method link
    838  * set to ensure that there is always at least one object in the set.
    839  */
    840 static struct dkwedge_discovery_method dummy_discovery_method;
    841 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
    842 
    843 /*
    844  * dkwedge_init:
    845  *
    846  *	Initialize the disk wedge subsystem.
    847  */
    848 void
    849 dkwedge_init(void)
    850 {
    851 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
    852 	struct dkwedge_discovery_method * const *ddmp;
    853 	struct dkwedge_discovery_method *lddm, *ddm;
    854 
    855 	rw_init(&dkwedges_lock);
    856 	rw_init(&dkwedge_discovery_methods_lock);
    857 
    858 	if (config_cfdriver_attach(&dk_cd) != 0)
    859 		panic("dkwedge: unable to attach cfdriver");
    860 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
    861 		panic("dkwedge: unable to attach cfattach");
    862 
    863 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
    864 
    865 	LIST_INIT(&dkwedge_discovery_methods);
    866 
    867 	__link_set_foreach(ddmp, dkwedge_methods) {
    868 		ddm = *ddmp;
    869 		if (ddm == &dummy_discovery_method)
    870 			continue;
    871 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
    872 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
    873 					 ddm, ddm_list);
    874 			continue;
    875 		}
    876 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
    877 			if (ddm->ddm_priority == lddm->ddm_priority) {
    878 				aprint_error("dk-method-%s: method \"%s\" "
    879 				    "already exists at priority %d\n",
    880 				    ddm->ddm_name, lddm->ddm_name,
    881 				    lddm->ddm_priority);
    882 				/* Not inserted. */
    883 				break;
    884 			}
    885 			if (ddm->ddm_priority < lddm->ddm_priority) {
    886 				/* Higher priority; insert before. */
    887 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
    888 				break;
    889 			}
    890 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
    891 				/* Last one; insert after. */
    892 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
    893 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
    894 				break;
    895 			}
    896 		}
    897 	}
    898 
    899 	rw_exit(&dkwedge_discovery_methods_lock);
    900 }
    901 
    902 #ifdef DKWEDGE_AUTODISCOVER
    903 int	dkwedge_autodiscover = 1;
    904 #else
    905 int	dkwedge_autodiscover = 0;
    906 #endif
    907 
    908 /*
    909  * dkwedge_discover:	[exported function]
    910  *
    911  *	Discover the wedges on a newly attached disk.
    912  *	Remove all unused wedges on the disk first.
    913  */
    914 void
    915 dkwedge_discover(struct disk *pdk)
    916 {
    917 	struct dkwedge_discovery_method *ddm;
    918 	struct vnode *vp;
    919 	int error;
    920 	dev_t pdev;
    921 
    922 	/*
    923 	 * Require people playing with wedges to enable this explicitly.
    924 	 */
    925 	if (dkwedge_autodiscover == 0)
    926 		return;
    927 
    928 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
    929 
    930 	/*
    931 	 * Use the character device for scanning, the block device
    932 	 * is busy if there are already wedges attached.
    933 	 */
    934 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
    935 	if (error) {
    936 		aprint_error("%s: unable to compute pdev, error = %d\n",
    937 		    pdk->dk_name, error);
    938 		goto out;
    939 	}
    940 
    941 	error = cdevvp(pdev, &vp);
    942 	if (error) {
    943 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
    944 		    pdk->dk_name, error);
    945 		goto out;
    946 	}
    947 
    948 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    949 	if (error) {
    950 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
    951 		    pdk->dk_name, error);
    952 		vrele(vp);
    953 		goto out;
    954 	}
    955 
    956 	error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
    957 	if (error) {
    958 		if (error != ENODEV)
    959 			aprint_error("%s: unable to open device, error = %d\n",
    960 			    pdk->dk_name, error);
    961 		vput(vp);
    962 		goto out;
    963 	}
    964 	VOP_UNLOCK(vp);
    965 
    966 	/*
    967 	 * Remove unused wedges
    968 	 */
    969 	dkwedge_delall1(pdk, true);
    970 
    971 	/*
    972 	 * For each supported partition map type, look to see if
    973 	 * this map type exists.  If so, parse it and add the
    974 	 * corresponding wedges.
    975 	 */
    976 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
    977 		error = (*ddm->ddm_discover)(pdk, vp);
    978 		if (error == 0) {
    979 			/* Successfully created wedges; we're done. */
    980 			break;
    981 		}
    982 	}
    983 
    984 	error = vn_close(vp, FREAD, NOCRED);
    985 	if (error) {
    986 		aprint_error("%s: unable to close device, error = %d\n",
    987 		    pdk->dk_name, error);
    988 		/* We'll just assume the vnode has been cleaned up. */
    989 	}
    990 
    991  out:
    992 	rw_exit(&dkwedge_discovery_methods_lock);
    993 }
    994 
    995 /*
    996  * dkwedge_read:
    997  *
    998  *	Read some data from the specified disk, used for
    999  *	partition discovery.
   1000  */
   1001 int
   1002 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
   1003     void *tbuf, size_t len)
   1004 {
   1005 	buf_t *bp;
   1006 	int error;
   1007 	bool isopen;
   1008 	dev_t bdev;
   1009 	struct vnode *bdvp;
   1010 
   1011 	/*
   1012 	 * The kernel cannot read from a character device vnode
   1013 	 * as physio() only handles user memory.
   1014 	 *
   1015 	 * If the block device has already been opened by a wedge
   1016 	 * use that vnode and temporarily bump the open counter.
   1017 	 *
   1018 	 * Otherwise try to open the block device.
   1019 	 */
   1020 
   1021 	bdev = devsw_chr2blk(vp->v_rdev);
   1022 
   1023 	mutex_enter(&pdk->dk_rawlock);
   1024 	if (pdk->dk_rawopens != 0) {
   1025 		KASSERT(pdk->dk_rawvp != NULL);
   1026 		isopen = true;
   1027 		++pdk->dk_rawopens;
   1028 		bdvp = pdk->dk_rawvp;
   1029 		error = 0;
   1030 	} else {
   1031 		isopen = false;
   1032 		error = dk_open_parent(bdev, FREAD, &bdvp);
   1033 	}
   1034 	mutex_exit(&pdk->dk_rawlock);
   1035 
   1036 	if (error)
   1037 		return error;
   1038 
   1039 	bp = getiobuf(bdvp, true);
   1040 	bp->b_flags = B_READ;
   1041 	bp->b_cflags = BC_BUSY;
   1042 	bp->b_dev = bdev;
   1043 	bp->b_data = tbuf;
   1044 	bp->b_bufsize = bp->b_bcount = len;
   1045 	bp->b_blkno = blkno;
   1046 	bp->b_cylinder = 0;
   1047 	bp->b_error = 0;
   1048 
   1049 	VOP_STRATEGY(bdvp, bp);
   1050 	error = biowait(bp);
   1051 	putiobuf(bp);
   1052 
   1053 	mutex_enter(&pdk->dk_rawlock);
   1054 	if (isopen) {
   1055 		--pdk->dk_rawopens;
   1056 	} else {
   1057 		dk_close_parent(bdvp, FREAD);
   1058 	}
   1059 	mutex_exit(&pdk->dk_rawlock);
   1060 
   1061 	return error;
   1062 }
   1063 
   1064 /*
   1065  * dkwedge_lookup:
   1066  *
   1067  *	Look up a dkwedge_softc based on the provided dev_t.
   1068  */
   1069 static struct dkwedge_softc *
   1070 dkwedge_lookup(dev_t dev)
   1071 {
   1072 	int unit = minor(dev);
   1073 
   1074 	if (unit >= ndkwedges)
   1075 		return (NULL);
   1076 
   1077 	KASSERT(dkwedges != NULL);
   1078 
   1079 	return (dkwedges[unit]);
   1080 }
   1081 
   1082 static int
   1083 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
   1084 {
   1085 	struct vnode *vp;
   1086 	int error;
   1087 
   1088 	error = bdevvp(dev, &vp);
   1089 	if (error)
   1090 		return error;
   1091 
   1092 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1093 	if (error) {
   1094 		vrele(vp);
   1095 		return error;
   1096 	}
   1097 	error = VOP_OPEN(vp, mode, NOCRED);
   1098 	if (error) {
   1099 		vput(vp);
   1100 		return error;
   1101 	}
   1102 
   1103 	/* VOP_OPEN() doesn't do this for us. */
   1104 	if (mode & FWRITE) {
   1105 		mutex_enter(vp->v_interlock);
   1106 		vp->v_writecount++;
   1107 		mutex_exit(vp->v_interlock);
   1108 	}
   1109 
   1110 	VOP_UNLOCK(vp);
   1111 
   1112 	*vpp = vp;
   1113 
   1114 	return 0;
   1115 }
   1116 
   1117 static int
   1118 dk_close_parent(struct vnode *vp, int mode)
   1119 {
   1120 	int error;
   1121 
   1122 	error = vn_close(vp, mode, NOCRED);
   1123 	return error;
   1124 }
   1125 
   1126 /*
   1127  * dkopen:		[devsw entry point]
   1128  *
   1129  *	Open a wedge.
   1130  */
   1131 static int
   1132 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
   1133 {
   1134 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1135 	struct dkwedge_softc *nsc;
   1136 	struct vnode *vp;
   1137 	int error = 0;
   1138 	int mode;
   1139 
   1140 	if (sc == NULL)
   1141 		return (ENODEV);
   1142 	if (sc->sc_state != DKW_STATE_RUNNING)
   1143 		return (ENXIO);
   1144 
   1145 	/*
   1146 	 * We go through a complicated little dance to only open the parent
   1147 	 * vnode once per wedge, no matter how many times the wedge is
   1148 	 * opened.  The reason?  We see one dkopen() per open call, but
   1149 	 * only dkclose() on the last close.
   1150 	 */
   1151 	mutex_enter(&sc->sc_dk.dk_openlock);
   1152 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1153 	if (sc->sc_dk.dk_openmask == 0) {
   1154 		if (sc->sc_parent->dk_rawopens == 0) {
   1155 			KASSERT(sc->sc_parent->dk_rawvp == NULL);
   1156 			/*
   1157 			 * Try open read-write. If this fails for EROFS
   1158 			 * and wedge is read-only, retry to open read-only.
   1159 			 */
   1160 			mode = FREAD | FWRITE;
   1161 			error = dk_open_parent(sc->sc_pdev, mode, &vp);
   1162 			if (error == EROFS && (flags & FWRITE) == 0) {
   1163 				mode &= ~FWRITE;
   1164 				error = dk_open_parent(sc->sc_pdev, mode, &vp);
   1165 			}
   1166 			if (error)
   1167 				goto popen_fail;
   1168 			sc->sc_parent->dk_rawvp = vp;
   1169 		} else {
   1170 			/*
   1171 			 * Retrieve mode from an already opened wedge.
   1172 			 */
   1173 			mode = 0;
   1174 			LIST_FOREACH(nsc, &sc->sc_parent->dk_wedges, sc_plink) {
   1175 				if (nsc == sc || nsc->sc_dk.dk_openmask == 0)
   1176 					continue;
   1177 				mode = nsc->sc_mode;
   1178 				break;
   1179 			}
   1180 		}
   1181 		sc->sc_mode = mode;
   1182 		sc->sc_parent->dk_rawopens++;
   1183 	}
   1184 	KASSERT(sc->sc_mode != 0);
   1185 	if (flags & ~sc->sc_mode & FWRITE) {
   1186 		error = EROFS;
   1187 		goto popen_fail;
   1188 	}
   1189 	if (fmt == S_IFCHR)
   1190 		sc->sc_dk.dk_copenmask |= 1;
   1191 	else
   1192 		sc->sc_dk.dk_bopenmask |= 1;
   1193 	sc->sc_dk.dk_openmask =
   1194 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1195 
   1196  popen_fail:
   1197 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1198 	mutex_exit(&sc->sc_dk.dk_openlock);
   1199 	return (error);
   1200 }
   1201 
   1202 static int
   1203 dklastclose(struct dkwedge_softc *sc)
   1204 {
   1205 	struct vnode *vp;
   1206 	int error = 0, mode;
   1207 
   1208 	KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
   1209 	KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
   1210 
   1211 	mode = sc->sc_mode;
   1212 
   1213 	vp = NULL;
   1214 	if (sc->sc_parent->dk_rawopens > 0) {
   1215 		if (--sc->sc_parent->dk_rawopens == 0) {
   1216 			KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1217 			vp = sc->sc_parent->dk_rawvp;
   1218 			sc->sc_parent->dk_rawvp = NULL;
   1219 			sc->sc_mode = 0;
   1220 		}
   1221 	}
   1222 
   1223 	if (vp) {
   1224 		dk_close_parent(vp, mode);
   1225 	}
   1226 
   1227 	return error;
   1228 }
   1229 
   1230 /*
   1231  * dkclose:		[devsw entry point]
   1232  *
   1233  *	Close a wedge.
   1234  */
   1235 static int
   1236 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
   1237 {
   1238 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1239 	int error = 0;
   1240 
   1241 	if (sc == NULL)
   1242 		return (ENODEV);
   1243 	if (sc->sc_state != DKW_STATE_RUNNING)
   1244 		return (ENXIO);
   1245 
   1246 	KASSERT(sc->sc_dk.dk_openmask != 0);
   1247 
   1248 	mutex_enter(&sc->sc_dk.dk_openlock);
   1249 
   1250 	if (fmt == S_IFCHR)
   1251 		sc->sc_dk.dk_copenmask &= ~1;
   1252 	else
   1253 		sc->sc_dk.dk_bopenmask &= ~1;
   1254 	sc->sc_dk.dk_openmask =
   1255 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1256 
   1257 	if (sc->sc_dk.dk_openmask == 0) {
   1258 		mutex_enter(&sc->sc_parent->dk_rawlock);
   1259 		error = dklastclose(sc);
   1260 		mutex_exit(&sc->sc_parent->dk_rawlock);
   1261 	}
   1262 
   1263 	mutex_exit(&sc->sc_dk.dk_openlock);
   1264 
   1265 	return (error);
   1266 }
   1267 
   1268 /*
   1269  * dkstragegy:		[devsw entry point]
   1270  *
   1271  *	Perform I/O based on the wedge I/O strategy.
   1272  */
   1273 static void
   1274 dkstrategy(struct buf *bp)
   1275 {
   1276 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1277 	uint64_t p_size, p_offset;
   1278 
   1279 	if (sc == NULL) {
   1280 		bp->b_error = ENODEV;
   1281 		goto done;
   1282 	}
   1283 
   1284 	if (sc->sc_state != DKW_STATE_RUNNING ||
   1285 	    sc->sc_parent->dk_rawvp == NULL) {
   1286 		bp->b_error = ENXIO;
   1287 		goto done;
   1288 	}
   1289 
   1290 	/* If it's an empty transfer, wake up the top half now. */
   1291 	if (bp->b_bcount == 0)
   1292 		goto done;
   1293 
   1294 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
   1295 	p_size   = sc->sc_size << sc->sc_parent->dk_blkshift;
   1296 
   1297 	/* Make sure it's in-range. */
   1298 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
   1299 		goto done;
   1300 
   1301 	/* Translate it to the parent's raw LBA. */
   1302 	bp->b_rawblkno = bp->b_blkno + p_offset;
   1303 
   1304 	/* Place it in the queue and start I/O on the unit. */
   1305 	mutex_enter(&sc->sc_iolock);
   1306 	sc->sc_iopend++;
   1307 	disk_wait(&sc->sc_dk);
   1308 	bufq_put(sc->sc_bufq, bp);
   1309 	mutex_exit(&sc->sc_iolock);
   1310 
   1311 	dkstart(sc);
   1312 	return;
   1313 
   1314  done:
   1315 	bp->b_resid = bp->b_bcount;
   1316 	biodone(bp);
   1317 }
   1318 
   1319 /*
   1320  * dkstart:
   1321  *
   1322  *	Start I/O that has been enqueued on the wedge.
   1323  */
   1324 static void
   1325 dkstart(struct dkwedge_softc *sc)
   1326 {
   1327 	struct vnode *vp;
   1328 	struct buf *bp, *nbp;
   1329 
   1330 	mutex_enter(&sc->sc_iolock);
   1331 
   1332 	/* Do as much work as has been enqueued. */
   1333 	while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
   1334 		if (sc->sc_state != DKW_STATE_RUNNING) {
   1335 			(void) bufq_get(sc->sc_bufq);
   1336 			if (--sc->sc_iopend == 0)
   1337 				cv_broadcast(&sc->sc_dkdrn);
   1338 			mutex_exit(&sc->sc_iolock);
   1339 			bp->b_error = ENXIO;
   1340 			bp->b_resid = bp->b_bcount;
   1341 			biodone(bp);
   1342 			mutex_enter(&sc->sc_iolock);
   1343 			continue;
   1344 		}
   1345 
   1346 		/* fetch an I/O buf with sc_iolock dropped */
   1347 		mutex_exit(&sc->sc_iolock);
   1348 		nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
   1349 		mutex_enter(&sc->sc_iolock);
   1350 		if (nbp == NULL) {
   1351 			/*
   1352 			 * No resources to run this request; leave the
   1353 			 * buffer queued up, and schedule a timer to
   1354 			 * restart the queue in 1/2 a second.
   1355 			 */
   1356 			callout_schedule(&sc->sc_restart_ch, hz / 2);
   1357 			break;
   1358 		}
   1359 
   1360 		/*
   1361 		 * fetch buf, this can fail if another thread
   1362 		 * has already processed the queue, it can also
   1363 		 * return a completely different buf.
   1364 		 */
   1365 		bp = bufq_get(sc->sc_bufq);
   1366 		if (bp == NULL) {
   1367 			mutex_exit(&sc->sc_iolock);
   1368 			putiobuf(nbp);
   1369 			mutex_enter(&sc->sc_iolock);
   1370 			continue;
   1371 		}
   1372 
   1373 		/* Instrumentation. */
   1374 		disk_busy(&sc->sc_dk);
   1375 
   1376 		/* release lock for VOP_STRATEGY */
   1377 		mutex_exit(&sc->sc_iolock);
   1378 
   1379 		nbp->b_data = bp->b_data;
   1380 		nbp->b_flags = bp->b_flags;
   1381 		nbp->b_oflags = bp->b_oflags;
   1382 		nbp->b_cflags = bp->b_cflags;
   1383 		nbp->b_iodone = dkiodone;
   1384 		nbp->b_proc = bp->b_proc;
   1385 		nbp->b_blkno = bp->b_rawblkno;
   1386 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
   1387 		nbp->b_bcount = bp->b_bcount;
   1388 		nbp->b_private = bp;
   1389 		BIO_COPYPRIO(nbp, bp);
   1390 
   1391 		vp = nbp->b_vp;
   1392 		if ((nbp->b_flags & B_READ) == 0) {
   1393 			mutex_enter(vp->v_interlock);
   1394 			vp->v_numoutput++;
   1395 			mutex_exit(vp->v_interlock);
   1396 		}
   1397 		VOP_STRATEGY(vp, nbp);
   1398 
   1399 		mutex_enter(&sc->sc_iolock);
   1400 	}
   1401 
   1402 	mutex_exit(&sc->sc_iolock);
   1403 }
   1404 
   1405 /*
   1406  * dkiodone:
   1407  *
   1408  *	I/O to a wedge has completed; alert the top half.
   1409  */
   1410 static void
   1411 dkiodone(struct buf *bp)
   1412 {
   1413 	struct buf *obp = bp->b_private;
   1414 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
   1415 
   1416 	if (bp->b_error != 0)
   1417 		obp->b_error = bp->b_error;
   1418 	obp->b_resid = bp->b_resid;
   1419 	putiobuf(bp);
   1420 
   1421 	mutex_enter(&sc->sc_iolock);
   1422 	if (--sc->sc_iopend == 0)
   1423 		cv_broadcast(&sc->sc_dkdrn);
   1424 
   1425 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
   1426 	    obp->b_flags & B_READ);
   1427 	mutex_exit(&sc->sc_iolock);
   1428 
   1429 	biodone(obp);
   1430 
   1431 	/* Kick the queue in case there is more work we can do. */
   1432 	dkstart(sc);
   1433 }
   1434 
   1435 /*
   1436  * dkrestart:
   1437  *
   1438  *	Restart the work queue after it was stalled due to
   1439  *	a resource shortage.  Invoked via a callout.
   1440  */
   1441 static void
   1442 dkrestart(void *v)
   1443 {
   1444 	struct dkwedge_softc *sc = v;
   1445 
   1446 	dkstart(sc);
   1447 }
   1448 
   1449 /*
   1450  * dkminphys:
   1451  *
   1452  *	Call parent's minphys function.
   1453  */
   1454 static void
   1455 dkminphys(struct buf *bp)
   1456 {
   1457 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1458 	dev_t dev;
   1459 
   1460 	dev = bp->b_dev;
   1461 	bp->b_dev = sc->sc_pdev;
   1462 	if (sc->sc_parent->dk_driver && sc->sc_parent->dk_driver->d_minphys)
   1463 		(*sc->sc_parent->dk_driver->d_minphys)(bp);
   1464 	else
   1465 		minphys(bp);
   1466 	bp->b_dev = dev;
   1467 }
   1468 
   1469 /*
   1470  * dkread:		[devsw entry point]
   1471  *
   1472  *	Read from a wedge.
   1473  */
   1474 static int
   1475 dkread(dev_t dev, struct uio *uio, int flags)
   1476 {
   1477 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1478 
   1479 	if (sc == NULL)
   1480 		return (ENODEV);
   1481 	if (sc->sc_state != DKW_STATE_RUNNING)
   1482 		return (ENXIO);
   1483 
   1484 	return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio));
   1485 }
   1486 
   1487 /*
   1488  * dkwrite:		[devsw entry point]
   1489  *
   1490  *	Write to a wedge.
   1491  */
   1492 static int
   1493 dkwrite(dev_t dev, struct uio *uio, int flags)
   1494 {
   1495 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1496 
   1497 	if (sc == NULL)
   1498 		return (ENODEV);
   1499 	if (sc->sc_state != DKW_STATE_RUNNING)
   1500 		return (ENXIO);
   1501 
   1502 	return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio));
   1503 }
   1504 
   1505 /*
   1506  * dkioctl:		[devsw entry point]
   1507  *
   1508  *	Perform an ioctl request on a wedge.
   1509  */
   1510 static int
   1511 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1512 {
   1513 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1514 	int error = 0;
   1515 
   1516 	if (sc == NULL)
   1517 		return (ENODEV);
   1518 	if (sc->sc_state != DKW_STATE_RUNNING)
   1519 		return (ENXIO);
   1520 	if (sc->sc_parent->dk_rawvp == NULL)
   1521 		return (ENXIO);
   1522 
   1523 	/*
   1524 	 * We pass NODEV instead of our device to indicate we don't
   1525 	 * want to handle disklabel ioctls
   1526 	 */
   1527 	error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
   1528 	if (error != EPASSTHROUGH)
   1529 		return (error);
   1530 
   1531 	error = 0;
   1532 
   1533 	switch (cmd) {
   1534 	case DIOCGSTRATEGY:
   1535 	case DIOCGCACHE:
   1536 	case DIOCCACHESYNC:
   1537 		error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, data, flag,
   1538 					  l != NULL ? l->l_cred : NOCRED);
   1539 		break;
   1540 	case DIOCGWEDGEINFO:
   1541 	    {
   1542 		struct dkwedge_info *dkw = (void *) data;
   1543 
   1544 		strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
   1545 			sizeof(dkw->dkw_devname));
   1546 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
   1547 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
   1548 		strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
   1549 		    sizeof(dkw->dkw_parent));
   1550 		dkw->dkw_offset = sc->sc_offset;
   1551 		dkw->dkw_size = sc->sc_size;
   1552 		strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
   1553 
   1554 		break;
   1555 	    }
   1556 	case DIOCGSECTORALIGN:
   1557 	    {
   1558 		struct disk_sectoralign *dsa = data;
   1559 		uint32_t r;
   1560 
   1561 		error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, dsa, flag,
   1562 		    l != NULL ? l->l_cred : NOCRED);
   1563 		if (error)
   1564 			break;
   1565 
   1566 		r = sc->sc_offset % dsa->dsa_alignment;
   1567 		if (r < dsa->dsa_firstaligned)
   1568 			dsa->dsa_firstaligned = dsa->dsa_firstaligned - r;
   1569 		else
   1570 			dsa->dsa_firstaligned = (dsa->dsa_firstaligned +
   1571 			    dsa->dsa_alignment) - r;
   1572 		break;
   1573 	    }
   1574 	default:
   1575 		error = ENOTTY;
   1576 	}
   1577 
   1578 	return (error);
   1579 }
   1580 
   1581 /*
   1582  * dkdiscard:		[devsw entry point]
   1583  *
   1584  *	Perform a discard-range request on a wedge.
   1585  */
   1586 static int
   1587 dkdiscard(dev_t dev, off_t pos, off_t len)
   1588 {
   1589 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1590 	unsigned shift;
   1591 	off_t offset, maxlen;
   1592 	int error;
   1593 
   1594 	if (sc == NULL)
   1595 		return (ENODEV);
   1596 	if (sc->sc_state != DKW_STATE_RUNNING)
   1597 		return (ENXIO);
   1598 	if (sc->sc_parent->dk_rawvp == NULL)
   1599 		return (ENXIO);
   1600 
   1601 	shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
   1602 	KASSERT(__type_fit(off_t, sc->sc_size));
   1603 	KASSERT(__type_fit(off_t, sc->sc_offset));
   1604 	KASSERT(0 <= sc->sc_offset);
   1605 	KASSERT(sc->sc_size <= (__type_max(off_t) >> shift));
   1606 	KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - sc->sc_size));
   1607 	offset = ((off_t)sc->sc_offset << shift);
   1608 	maxlen = ((off_t)sc->sc_size << shift);
   1609 
   1610 	if (len > maxlen)
   1611 		return (EINVAL);
   1612 	if (pos > (maxlen - len))
   1613 		return (EINVAL);
   1614 
   1615 	pos += offset;
   1616 
   1617 	vn_lock(sc->sc_parent->dk_rawvp, LK_EXCLUSIVE | LK_RETRY);
   1618 	error = VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
   1619 	VOP_UNLOCK(sc->sc_parent->dk_rawvp);
   1620 
   1621 	return error;
   1622 }
   1623 
   1624 /*
   1625  * dksize:		[devsw entry point]
   1626  *
   1627  *	Query the size of a wedge for the purpose of performing a dump
   1628  *	or for swapping to.
   1629  */
   1630 static int
   1631 dksize(dev_t dev)
   1632 {
   1633 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1634 	uint64_t p_size;
   1635 	int rv = -1;
   1636 
   1637 	if (sc == NULL)
   1638 		return (-1);
   1639 	if (sc->sc_state != DKW_STATE_RUNNING)
   1640 		return (-1);
   1641 
   1642 	mutex_enter(&sc->sc_dk.dk_openlock);
   1643 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1644 
   1645 	/* Our content type is static, no need to open the device. */
   1646 
   1647 	p_size   = sc->sc_size << sc->sc_parent->dk_blkshift;
   1648 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
   1649 		/* Saturate if we are larger than INT_MAX. */
   1650 		if (p_size > INT_MAX)
   1651 			rv = INT_MAX;
   1652 		else
   1653 			rv = (int) p_size;
   1654 	}
   1655 
   1656 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1657 	mutex_exit(&sc->sc_dk.dk_openlock);
   1658 
   1659 	return (rv);
   1660 }
   1661 
   1662 /*
   1663  * dkdump:		[devsw entry point]
   1664  *
   1665  *	Perform a crash dump to a wedge.
   1666  */
   1667 static int
   1668 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
   1669 {
   1670 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1671 	const struct bdevsw *bdev;
   1672 	uint64_t p_size, p_offset;
   1673 	int rv = 0;
   1674 
   1675 	if (sc == NULL)
   1676 		return (ENODEV);
   1677 	if (sc->sc_state != DKW_STATE_RUNNING)
   1678 		return (ENXIO);
   1679 
   1680 	mutex_enter(&sc->sc_dk.dk_openlock);
   1681 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1682 
   1683 	/* Our content type is static, no need to open the device. */
   1684 
   1685 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
   1686 	    strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0 &&
   1687 	    strcmp(sc->sc_ptype, DKW_PTYPE_CGD) != 0) {
   1688 		rv = ENXIO;
   1689 		goto out;
   1690 	}
   1691 	if (size % DEV_BSIZE != 0) {
   1692 		rv = EINVAL;
   1693 		goto out;
   1694 	}
   1695 
   1696 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
   1697 	p_size   = sc->sc_size << sc->sc_parent->dk_blkshift;
   1698 
   1699 	if (blkno < 0 || blkno + size / DEV_BSIZE > p_size) {
   1700 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
   1701 		    "p_size (%" PRIu64 ")\n", __func__, blkno,
   1702 		    size / DEV_BSIZE, p_size);
   1703 		rv = EINVAL;
   1704 		goto out;
   1705 	}
   1706 
   1707 	bdev = bdevsw_lookup(sc->sc_pdev);
   1708 	rv = (*bdev->d_dump)(sc->sc_pdev, blkno + p_offset, va, size);
   1709 
   1710 out:
   1711 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1712 	mutex_exit(&sc->sc_dk.dk_openlock);
   1713 
   1714 	return rv;
   1715 }
   1716 
   1717 /*
   1718  * config glue
   1719  */
   1720 
   1721 /*
   1722  * dkwedge_find_partition
   1723  *
   1724  *	Find wedge corresponding to the specified parent name
   1725  *	and offset/length.
   1726  */
   1727 device_t
   1728 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
   1729 {
   1730 	struct dkwedge_softc *sc;
   1731 	int i;
   1732 	device_t wedge = NULL;
   1733 
   1734 	rw_enter(&dkwedges_lock, RW_READER);
   1735 	for (i = 0; i < ndkwedges; i++) {
   1736 		if ((sc = dkwedges[i]) == NULL)
   1737 			continue;
   1738 		if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
   1739 		    sc->sc_offset == startblk &&
   1740 		    sc->sc_size == nblks) {
   1741 			if (wedge) {
   1742 				printf("WARNING: double match for boot wedge "
   1743 				    "(%s, %s)\n",
   1744 				    device_xname(wedge),
   1745 				    device_xname(sc->sc_dev));
   1746 				continue;
   1747 			}
   1748 			wedge = sc->sc_dev;
   1749 		}
   1750 	}
   1751 	rw_exit(&dkwedges_lock);
   1752 
   1753 	return wedge;
   1754 }
   1755 
   1756 const char *
   1757 dkwedge_get_parent_name(dev_t dev)
   1758 {
   1759 	/* XXX: perhaps do this in lookup? */
   1760 	int bmaj = bdevsw_lookup_major(&dk_bdevsw);
   1761 	int cmaj = cdevsw_lookup_major(&dk_cdevsw);
   1762 	if (major(dev) != bmaj && major(dev) != cmaj)
   1763 		return NULL;
   1764 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1765 	if (sc == NULL)
   1766 		return NULL;
   1767 	return sc->sc_parent->dk_name;
   1768 }
   1769