Home | History | Annotate | Line # | Download | only in dkwedge
dk.c revision 1.126
      1 /*	$NetBSD: dk.c,v 1.126 2023/04/21 18:09:38 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.126 2023/04/21 18:09:38 riastradh Exp $");
     34 
     35 #ifdef _KERNEL_OPT
     36 #include "opt_dkwedge.h"
     37 #endif
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/proc.h>
     42 #include <sys/errno.h>
     43 #include <sys/pool.h>
     44 #include <sys/ioctl.h>
     45 #include <sys/disklabel.h>
     46 #include <sys/disk.h>
     47 #include <sys/fcntl.h>
     48 #include <sys/buf.h>
     49 #include <sys/bufq.h>
     50 #include <sys/vnode.h>
     51 #include <sys/stat.h>
     52 #include <sys/conf.h>
     53 #include <sys/callout.h>
     54 #include <sys/kernel.h>
     55 #include <sys/malloc.h>
     56 #include <sys/device.h>
     57 #include <sys/kauth.h>
     58 
     59 #include <miscfs/specfs/specdev.h>
     60 
     61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
     62 
     63 typedef enum {
     64 	DKW_STATE_LARVAL	= 0,
     65 	DKW_STATE_RUNNING	= 1,
     66 	DKW_STATE_DYING		= 2,
     67 	DKW_STATE_DEAD		= 666
     68 } dkwedge_state_t;
     69 
     70 struct dkwedge_softc {
     71 	device_t	sc_dev;	/* pointer to our pseudo-device */
     72 	struct cfdata	sc_cfdata;	/* our cfdata structure */
     73 	uint8_t		sc_wname[128];	/* wedge name (Unicode, UTF-8) */
     74 
     75 	dkwedge_state_t sc_state;	/* state this wedge is in */
     76 
     77 	struct disk	*sc_parent;	/* parent disk */
     78 	daddr_t		sc_offset;	/* LBA offset of wedge in parent */
     79 	uint64_t	sc_size;	/* size of wedge in blocks */
     80 	char		sc_ptype[32];	/* partition type */
     81 	dev_t		sc_pdev;	/* cached parent's dev_t */
     82 					/* link on parent's wedge list */
     83 	LIST_ENTRY(dkwedge_softc) sc_plink;
     84 
     85 	struct disk	sc_dk;		/* our own disk structure */
     86 	struct bufq_state *sc_bufq;	/* buffer queue */
     87 	struct callout	sc_restart_ch;	/* callout to restart I/O */
     88 
     89 	kmutex_t	sc_iolock;
     90 	kcondvar_t	sc_dkdrn;
     91 	u_int		sc_iopend;	/* I/Os pending */
     92 	int		sc_mode;	/* parent open mode */
     93 };
     94 
     95 static void	dkstart(struct dkwedge_softc *);
     96 static void	dkiodone(struct buf *);
     97 static void	dkrestart(void *);
     98 static void	dkminphys(struct buf *);
     99 
    100 static int	dkfirstopen(struct dkwedge_softc *, int);
    101 static void	dklastclose(struct dkwedge_softc *);
    102 static int	dkwedge_cleanup_parent(struct dkwedge_softc *, int);
    103 static int	dkwedge_detach(device_t, int);
    104 static void	dkwedge_delall1(struct disk *, bool);
    105 static int	dkwedge_del1(struct dkwedge_info *, int);
    106 static int	dk_open_parent(dev_t, int, struct vnode **);
    107 static int	dk_close_parent(struct vnode *, int);
    108 
    109 static dev_type_open(dkopen);
    110 static dev_type_close(dkclose);
    111 static dev_type_read(dkread);
    112 static dev_type_write(dkwrite);
    113 static dev_type_ioctl(dkioctl);
    114 static dev_type_strategy(dkstrategy);
    115 static dev_type_dump(dkdump);
    116 static dev_type_size(dksize);
    117 static dev_type_discard(dkdiscard);
    118 
    119 const struct bdevsw dk_bdevsw = {
    120 	.d_open = dkopen,
    121 	.d_close = dkclose,
    122 	.d_strategy = dkstrategy,
    123 	.d_ioctl = dkioctl,
    124 	.d_dump = dkdump,
    125 	.d_psize = dksize,
    126 	.d_discard = dkdiscard,
    127 	.d_flag = D_DISK | D_MPSAFE
    128 };
    129 
    130 const struct cdevsw dk_cdevsw = {
    131 	.d_open = dkopen,
    132 	.d_close = dkclose,
    133 	.d_read = dkread,
    134 	.d_write = dkwrite,
    135 	.d_ioctl = dkioctl,
    136 	.d_stop = nostop,
    137 	.d_tty = notty,
    138 	.d_poll = nopoll,
    139 	.d_mmap = nommap,
    140 	.d_kqfilter = nokqfilter,
    141 	.d_discard = dkdiscard,
    142 	.d_flag = D_DISK | D_MPSAFE
    143 };
    144 
    145 static struct dkwedge_softc **dkwedges;
    146 static u_int ndkwedges;
    147 static krwlock_t dkwedges_lock;
    148 
    149 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
    150 static krwlock_t dkwedge_discovery_methods_lock;
    151 
    152 /*
    153  * dkwedge_match:
    154  *
    155  *	Autoconfiguration match function for pseudo-device glue.
    156  */
    157 static int
    158 dkwedge_match(device_t parent, cfdata_t match,
    159     void *aux)
    160 {
    161 
    162 	/* Pseudo-device; always present. */
    163 	return (1);
    164 }
    165 
    166 /*
    167  * dkwedge_attach:
    168  *
    169  *	Autoconfiguration attach function for pseudo-device glue.
    170  */
    171 static void
    172 dkwedge_attach(device_t parent, device_t self,
    173     void *aux)
    174 {
    175 
    176 	if (!pmf_device_register(self, NULL, NULL))
    177 		aprint_error_dev(self, "couldn't establish power handler\n");
    178 }
    179 
    180 CFDRIVER_DECL(dk, DV_DISK, NULL);
    181 CFATTACH_DECL3_NEW(dk, 0,
    182     dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
    183     DVF_DETACH_SHUTDOWN);
    184 
    185 /*
    186  * dkwedge_wait_drain:
    187  *
    188  *	Wait for I/O on the wedge to drain.
    189  */
    190 static void
    191 dkwedge_wait_drain(struct dkwedge_softc *sc)
    192 {
    193 
    194 	mutex_enter(&sc->sc_iolock);
    195 	while (sc->sc_iopend != 0)
    196 		cv_wait(&sc->sc_dkdrn, &sc->sc_iolock);
    197 	mutex_exit(&sc->sc_iolock);
    198 }
    199 
    200 /*
    201  * dkwedge_compute_pdev:
    202  *
    203  *	Compute the parent disk's dev_t.
    204  */
    205 static int
    206 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
    207 {
    208 	const char *name, *cp;
    209 	devmajor_t pmaj;
    210 	int punit;
    211 	char devname[16];
    212 
    213 	name = pname;
    214 	switch (type) {
    215 	case VBLK:
    216 		pmaj = devsw_name2blk(name, devname, sizeof(devname));
    217 		break;
    218 	case VCHR:
    219 		pmaj = devsw_name2chr(name, devname, sizeof(devname));
    220 		break;
    221 	default:
    222 		pmaj = NODEVMAJOR;
    223 		break;
    224 	}
    225 	if (pmaj == NODEVMAJOR)
    226 		return (ENODEV);
    227 
    228 	name += strlen(devname);
    229 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
    230 		punit = (punit * 10) + (*cp - '0');
    231 	if (cp == name) {
    232 		/* Invalid parent disk name. */
    233 		return (ENODEV);
    234 	}
    235 
    236 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
    237 
    238 	return (0);
    239 }
    240 
    241 /*
    242  * dkwedge_array_expand:
    243  *
    244  *	Expand the dkwedges array.
    245  */
    246 static void
    247 dkwedge_array_expand(void)
    248 {
    249 	int newcnt = ndkwedges + 16;
    250 	struct dkwedge_softc **newarray, **oldarray;
    251 
    252 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
    253 	    M_WAITOK|M_ZERO);
    254 	if ((oldarray = dkwedges) != NULL)
    255 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
    256 	dkwedges = newarray;
    257 	ndkwedges = newcnt;
    258 	if (oldarray != NULL)
    259 		free(oldarray, M_DKWEDGE);
    260 }
    261 
    262 static void
    263 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
    264 {
    265 	struct disk *dk = &sc->sc_dk;
    266 	struct disk_geom *dg = &dk->dk_geom;
    267 
    268 	memset(dg, 0, sizeof(*dg));
    269 
    270 	dg->dg_secperunit = sc->sc_size;
    271 	dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
    272 
    273 	/* fake numbers, 1 cylinder is 1 MB with default sector size */
    274 	dg->dg_nsectors = 32;
    275 	dg->dg_ntracks = 64;
    276 	dg->dg_ncylinders = dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
    277 
    278 	disk_set_info(sc->sc_dev, dk, NULL);
    279 }
    280 
    281 /*
    282  * dkwedge_add:		[exported function]
    283  *
    284  *	Add a disk wedge based on the provided information.
    285  *
    286  *	The incoming dkw_devname[] is ignored, instead being
    287  *	filled in and returned to the caller.
    288  */
    289 int
    290 dkwedge_add(struct dkwedge_info *dkw)
    291 {
    292 	struct dkwedge_softc *sc, *lsc;
    293 	struct disk *pdk;
    294 	u_int unit;
    295 	int error;
    296 	dev_t pdev;
    297 
    298 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
    299 	pdk = disk_find(dkw->dkw_parent);
    300 	if (pdk == NULL)
    301 		return (ENODEV);
    302 
    303 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
    304 	if (error)
    305 		return (error);
    306 
    307 	if (dkw->dkw_offset < 0)
    308 		return (EINVAL);
    309 
    310 	/*
    311 	 * Check for an existing wedge at the same disk offset. Allow
    312 	 * updating a wedge if the only change is the size, and the new
    313 	 * size is larger than the old.
    314 	 */
    315 	sc = NULL;
    316 	mutex_enter(&pdk->dk_openlock);
    317 	LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    318 		if (lsc->sc_offset != dkw->dkw_offset)
    319 			continue;
    320 		if (strcmp(lsc->sc_wname, dkw->dkw_wname) != 0)
    321 			break;
    322 		if (strcmp(lsc->sc_ptype, dkw->dkw_ptype) != 0)
    323 			break;
    324 		if (lsc->sc_size > dkw->dkw_size)
    325 			break;
    326 
    327 		sc = lsc;
    328 		sc->sc_size = dkw->dkw_size;
    329 		dk_set_geometry(sc, pdk);
    330 
    331 		break;
    332 	}
    333 	mutex_exit(&pdk->dk_openlock);
    334 
    335 	if (sc != NULL)
    336 		goto announce;
    337 
    338 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
    339 	sc->sc_state = DKW_STATE_LARVAL;
    340 	sc->sc_parent = pdk;
    341 	sc->sc_pdev = pdev;
    342 	sc->sc_offset = dkw->dkw_offset;
    343 	sc->sc_size = dkw->dkw_size;
    344 
    345 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
    346 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
    347 
    348 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
    349 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
    350 
    351 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
    352 
    353 	callout_init(&sc->sc_restart_ch, 0);
    354 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
    355 
    356 	mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
    357 	cv_init(&sc->sc_dkdrn, "dkdrn");
    358 
    359 	/*
    360 	 * Wedge will be added; increment the wedge count for the parent.
    361 	 * Only allow this to happen if RAW_PART is the only thing open.
    362 	 */
    363 	mutex_enter(&pdk->dk_openlock);
    364 	if (pdk->dk_openmask & ~(1 << RAW_PART))
    365 		error = EBUSY;
    366 	else {
    367 		/* Check for wedge overlap. */
    368 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    369 			daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
    370 			daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
    371 
    372 			if (sc->sc_offset >= lsc->sc_offset &&
    373 			    sc->sc_offset <= llastblk) {
    374 				/* Overlaps the tail of the existing wedge. */
    375 				break;
    376 			}
    377 			if (lastblk >= lsc->sc_offset &&
    378 			    lastblk <= llastblk) {
    379 				/* Overlaps the head of the existing wedge. */
    380 			    	break;
    381 			}
    382 		}
    383 		if (lsc != NULL) {
    384 			if (sc->sc_offset == lsc->sc_offset &&
    385 			    sc->sc_size == lsc->sc_size &&
    386 			    strcmp(sc->sc_wname, lsc->sc_wname) == 0)
    387 				error = EEXIST;
    388 			else
    389 				error = EINVAL;
    390 		} else {
    391 			pdk->dk_nwedges++;
    392 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
    393 		}
    394 	}
    395 	mutex_exit(&pdk->dk_openlock);
    396 	if (error) {
    397 		cv_destroy(&sc->sc_dkdrn);
    398 		mutex_destroy(&sc->sc_iolock);
    399 		bufq_free(sc->sc_bufq);
    400 		free(sc, M_DKWEDGE);
    401 		return (error);
    402 	}
    403 
    404 	/* Fill in our cfdata for the pseudo-device glue. */
    405 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
    406 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
    407 	/* sc->sc_cfdata.cf_unit set below */
    408 	sc->sc_cfdata.cf_fstate = FSTATE_STAR;
    409 
    410 	/* Insert the larval wedge into the array. */
    411 	rw_enter(&dkwedges_lock, RW_WRITER);
    412 	for (error = 0;;) {
    413 		struct dkwedge_softc **scpp;
    414 
    415 		/*
    416 		 * Check for a duplicate wname while searching for
    417 		 * a slot.
    418 		 */
    419 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
    420 			if (dkwedges[unit] == NULL) {
    421 				if (scpp == NULL) {
    422 					scpp = &dkwedges[unit];
    423 					sc->sc_cfdata.cf_unit = unit;
    424 				}
    425 			} else {
    426 				/* XXX Unicode. */
    427 				if (strcmp(dkwedges[unit]->sc_wname,
    428 					   sc->sc_wname) == 0) {
    429 					error = EEXIST;
    430 					break;
    431 				}
    432 			}
    433 		}
    434 		if (error)
    435 			break;
    436 		KASSERT(unit == ndkwedges);
    437 		if (scpp == NULL)
    438 			dkwedge_array_expand();
    439 		else {
    440 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
    441 			*scpp = sc;
    442 			break;
    443 		}
    444 	}
    445 	rw_exit(&dkwedges_lock);
    446 	if (error) {
    447 		mutex_enter(&pdk->dk_openlock);
    448 		pdk->dk_nwedges--;
    449 		LIST_REMOVE(sc, sc_plink);
    450 		mutex_exit(&pdk->dk_openlock);
    451 
    452 		cv_destroy(&sc->sc_dkdrn);
    453 		mutex_destroy(&sc->sc_iolock);
    454 		bufq_free(sc->sc_bufq);
    455 		free(sc, M_DKWEDGE);
    456 		return (error);
    457 	}
    458 
    459 	/*
    460 	 * Now that we know the unit #, attach a pseudo-device for
    461 	 * this wedge instance.  This will provide us with the
    462 	 * device_t necessary for glue to other parts of the system.
    463 	 *
    464 	 * This should never fail, unless we're almost totally out of
    465 	 * memory.
    466 	 */
    467 	if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
    468 		aprint_error("%s%u: unable to attach pseudo-device\n",
    469 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
    470 
    471 		rw_enter(&dkwedges_lock, RW_WRITER);
    472 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
    473 		rw_exit(&dkwedges_lock);
    474 
    475 		mutex_enter(&pdk->dk_openlock);
    476 		pdk->dk_nwedges--;
    477 		LIST_REMOVE(sc, sc_plink);
    478 		mutex_exit(&pdk->dk_openlock);
    479 
    480 		cv_destroy(&sc->sc_dkdrn);
    481 		mutex_destroy(&sc->sc_iolock);
    482 		bufq_free(sc->sc_bufq);
    483 		free(sc, M_DKWEDGE);
    484 		return (ENOMEM);
    485 	}
    486 
    487 	/*
    488 	 * XXX Really ought to make the disk_attach() and the changing
    489 	 * of state to RUNNING atomic.
    490 	 */
    491 
    492 	disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
    493 	dk_set_geometry(sc, pdk);
    494 	disk_attach(&sc->sc_dk);
    495 
    496 	/* Disk wedge is ready for use! */
    497 	sc->sc_state = DKW_STATE_RUNNING;
    498 
    499 announce:
    500 	/* Announce our arrival. */
    501 	aprint_normal(
    502 	    "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
    503 	    device_xname(sc->sc_dev), pdk->dk_name,
    504 	    sc->sc_wname,	/* XXX Unicode */
    505 	    sc->sc_size, sc->sc_offset,
    506 	    sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
    507 
    508 	/* Return the devname to the caller. */
    509 	strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
    510 		sizeof(dkw->dkw_devname));
    511 
    512 	return (0);
    513 }
    514 
    515 /*
    516  * dkwedge_find:
    517  *
    518  *	Lookup a disk wedge based on the provided information.
    519  *	NOTE: We look up the wedge based on the wedge devname,
    520  *	not wname.
    521  *
    522  *	Return NULL if the wedge is not found, otherwise return
    523  *	the wedge's softc.  Assign the wedge's unit number to unitp
    524  *	if unitp is not NULL.
    525  */
    526 static struct dkwedge_softc *
    527 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
    528 {
    529 	struct dkwedge_softc *sc = NULL;
    530 	u_int unit;
    531 
    532 	/* Find our softc. */
    533 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
    534 	rw_enter(&dkwedges_lock, RW_READER);
    535 	for (unit = 0; unit < ndkwedges; unit++) {
    536 		if ((sc = dkwedges[unit]) != NULL &&
    537 		    strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
    538 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
    539 			break;
    540 		}
    541 	}
    542 	rw_exit(&dkwedges_lock);
    543 	if (unit == ndkwedges)
    544 		return NULL;
    545 
    546 	if (unitp != NULL)
    547 		*unitp = unit;
    548 
    549 	return sc;
    550 }
    551 
    552 /*
    553  * dkwedge_del:		[exported function]
    554  *
    555  *	Delete a disk wedge based on the provided information.
    556  *	NOTE: We look up the wedge based on the wedge devname,
    557  *	not wname.
    558  */
    559 int
    560 dkwedge_del(struct dkwedge_info *dkw)
    561 {
    562 	return dkwedge_del1(dkw, 0);
    563 }
    564 
    565 int
    566 dkwedge_del1(struct dkwedge_info *dkw, int flags)
    567 {
    568 	struct dkwedge_softc *sc = NULL;
    569 
    570 	/* Find our softc. */
    571 	if ((sc = dkwedge_find(dkw, NULL)) == NULL)
    572 		return (ESRCH);
    573 
    574 	return config_detach(sc->sc_dev, flags);
    575 }
    576 
    577 static int
    578 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags)
    579 {
    580 	struct disk *dk = &sc->sc_dk;
    581 	int rc;
    582 
    583 	rc = 0;
    584 	mutex_enter(&dk->dk_openlock);
    585 	if (dk->dk_openmask == 0) {
    586 		/* nothing to do */
    587 	} else if ((flags & DETACH_FORCE) == 0) {
    588 		rc = EBUSY;
    589 	}  else {
    590 		mutex_enter(&sc->sc_parent->dk_rawlock);
    591 		dklastclose(sc);
    592 		mutex_exit(&sc->sc_parent->dk_rawlock);
    593 	}
    594 	mutex_exit(&sc->sc_dk.dk_openlock);
    595 
    596 	return rc;
    597 }
    598 
    599 /*
    600  * dkwedge_detach:
    601  *
    602  *	Autoconfiguration detach function for pseudo-device glue.
    603  */
    604 static int
    605 dkwedge_detach(device_t self, int flags)
    606 {
    607 	struct dkwedge_softc *sc = NULL;
    608 	u_int unit;
    609 	int bmaj, cmaj, rc;
    610 
    611 	rw_enter(&dkwedges_lock, RW_WRITER);
    612 	for (unit = 0; unit < ndkwedges; unit++) {
    613 		if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
    614 			break;
    615 	}
    616 	if (unit == ndkwedges)
    617 		rc = ENXIO;
    618 	else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) {
    619 		/* Mark the wedge as dying. */
    620 		sc->sc_state = DKW_STATE_DYING;
    621 	}
    622 	rw_exit(&dkwedges_lock);
    623 
    624 	if (rc != 0)
    625 		return rc;
    626 
    627 	pmf_device_deregister(self);
    628 
    629 	/* Locate the wedge major numbers. */
    630 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
    631 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
    632 
    633 	/* Kill any pending restart. */
    634 	callout_stop(&sc->sc_restart_ch);
    635 
    636 	/*
    637 	 * dkstart() will kill any queued buffers now that the
    638 	 * state of the wedge is not RUNNING.  Once we've done
    639 	 * that, wait for any other pending I/O to complete.
    640 	 */
    641 	dkstart(sc);
    642 	dkwedge_wait_drain(sc);
    643 
    644 	/* Nuke the vnodes for any open instances. */
    645 	vdevgone(bmaj, unit, unit, VBLK);
    646 	vdevgone(cmaj, unit, unit, VCHR);
    647 
    648 	/* Clean up the parent. */
    649 	dkwedge_cleanup_parent(sc, flags | DETACH_FORCE);
    650 
    651 	/* Announce our departure. */
    652 	aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
    653 	    sc->sc_parent->dk_name,
    654 	    sc->sc_wname);	/* XXX Unicode */
    655 
    656 	mutex_enter(&sc->sc_parent->dk_openlock);
    657 	sc->sc_parent->dk_nwedges--;
    658 	LIST_REMOVE(sc, sc_plink);
    659 	mutex_exit(&sc->sc_parent->dk_openlock);
    660 
    661 	/* Delete our buffer queue. */
    662 	bufq_free(sc->sc_bufq);
    663 
    664 	/* Detach from the disk list. */
    665 	disk_detach(&sc->sc_dk);
    666 	disk_destroy(&sc->sc_dk);
    667 
    668 	/* Poof. */
    669 	rw_enter(&dkwedges_lock, RW_WRITER);
    670 	dkwedges[unit] = NULL;
    671 	sc->sc_state = DKW_STATE_DEAD;
    672 	rw_exit(&dkwedges_lock);
    673 
    674 	mutex_destroy(&sc->sc_iolock);
    675 	cv_destroy(&sc->sc_dkdrn);
    676 
    677 	free(sc, M_DKWEDGE);
    678 
    679 	return 0;
    680 }
    681 
    682 /*
    683  * dkwedge_delall:	[exported function]
    684  *
    685  *	Delete all of the wedges on the specified disk.  Used when
    686  *	a disk is being detached.
    687  */
    688 void
    689 dkwedge_delall(struct disk *pdk)
    690 {
    691 	dkwedge_delall1(pdk, false);
    692 }
    693 
    694 static void
    695 dkwedge_delall1(struct disk *pdk, bool idleonly)
    696 {
    697 	struct dkwedge_info dkw;
    698 	struct dkwedge_softc *sc;
    699 	int flags;
    700 
    701 	flags = DETACH_QUIET;
    702 	if (!idleonly) flags |= DETACH_FORCE;
    703 
    704 	for (;;) {
    705 		mutex_enter(&pdk->dk_openlock);
    706 		LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    707 			if (!idleonly || sc->sc_dk.dk_openmask == 0)
    708 				break;
    709 		}
    710 		if (sc == NULL) {
    711 			KASSERT(idleonly || pdk->dk_nwedges == 0);
    712 			mutex_exit(&pdk->dk_openlock);
    713 			return;
    714 		}
    715 		strlcpy(dkw.dkw_parent, pdk->dk_name, sizeof(dkw.dkw_parent));
    716 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    717 			sizeof(dkw.dkw_devname));
    718 		mutex_exit(&pdk->dk_openlock);
    719 		(void) dkwedge_del1(&dkw, flags);
    720 	}
    721 }
    722 
    723 /*
    724  * dkwedge_list:	[exported function]
    725  *
    726  *	List all of the wedges on a particular disk.
    727  */
    728 int
    729 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
    730 {
    731 	struct uio uio;
    732 	struct iovec iov;
    733 	struct dkwedge_softc *sc;
    734 	struct dkwedge_info dkw;
    735 	int error = 0;
    736 
    737 	iov.iov_base = dkwl->dkwl_buf;
    738 	iov.iov_len = dkwl->dkwl_bufsize;
    739 
    740 	uio.uio_iov = &iov;
    741 	uio.uio_iovcnt = 1;
    742 	uio.uio_offset = 0;
    743 	uio.uio_resid = dkwl->dkwl_bufsize;
    744 	uio.uio_rw = UIO_READ;
    745 	KASSERT(l == curlwp);
    746 	uio.uio_vmspace = l->l_proc->p_vmspace;
    747 
    748 	dkwl->dkwl_ncopied = 0;
    749 
    750 	mutex_enter(&pdk->dk_openlock);
    751 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    752 		if (uio.uio_resid < sizeof(dkw))
    753 			break;
    754 
    755 		if (sc->sc_state != DKW_STATE_RUNNING)
    756 			continue;
    757 
    758 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    759 			sizeof(dkw.dkw_devname));
    760 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
    761 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
    762 		strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
    763 		    sizeof(dkw.dkw_parent));
    764 		dkw.dkw_offset = sc->sc_offset;
    765 		dkw.dkw_size = sc->sc_size;
    766 		strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
    767 
    768 		error = uiomove(&dkw, sizeof(dkw), &uio);
    769 		if (error)
    770 			break;
    771 		dkwl->dkwl_ncopied++;
    772 	}
    773 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
    774 	mutex_exit(&pdk->dk_openlock);
    775 
    776 	return (error);
    777 }
    778 
    779 device_t
    780 dkwedge_find_by_wname(const char *wname)
    781 {
    782 	device_t dv = NULL;
    783 	struct dkwedge_softc *sc;
    784 	int i;
    785 
    786 	rw_enter(&dkwedges_lock, RW_WRITER);
    787 	for (i = 0; i < ndkwedges; i++) {
    788 		if ((sc = dkwedges[i]) == NULL)
    789 			continue;
    790 		if (strcmp(sc->sc_wname, wname) == 0) {
    791 			if (dv != NULL) {
    792 				printf(
    793 				    "WARNING: double match for wedge name %s "
    794 				    "(%s, %s)\n", wname, device_xname(dv),
    795 				    device_xname(sc->sc_dev));
    796 				continue;
    797 			}
    798 			dv = sc->sc_dev;
    799 		}
    800 	}
    801 	rw_exit(&dkwedges_lock);
    802 	return dv;
    803 }
    804 
    805 device_t
    806 dkwedge_find_by_parent(const char *name, size_t *i)
    807 {
    808 	rw_enter(&dkwedges_lock, RW_WRITER);
    809 	for (; *i < (size_t)ndkwedges; (*i)++) {
    810 		struct dkwedge_softc *sc;
    811 		if ((sc = dkwedges[*i]) == NULL)
    812 			continue;
    813 		if (strcmp(sc->sc_parent->dk_name, name) != 0)
    814 			continue;
    815 		rw_exit(&dkwedges_lock);
    816 		return sc->sc_dev;
    817 	}
    818 	rw_exit(&dkwedges_lock);
    819 	return NULL;
    820 }
    821 
    822 void
    823 dkwedge_print_wnames(void)
    824 {
    825 	struct dkwedge_softc *sc;
    826 	int i;
    827 
    828 	rw_enter(&dkwedges_lock, RW_WRITER);
    829 	for (i = 0; i < ndkwedges; i++) {
    830 		if ((sc = dkwedges[i]) == NULL)
    831 			continue;
    832 		printf(" wedge:%s", sc->sc_wname);
    833 	}
    834 	rw_exit(&dkwedges_lock);
    835 }
    836 
    837 /*
    838  * We need a dummy object to stuff into the dkwedge discovery method link
    839  * set to ensure that there is always at least one object in the set.
    840  */
    841 static struct dkwedge_discovery_method dummy_discovery_method;
    842 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
    843 
    844 /*
    845  * dkwedge_init:
    846  *
    847  *	Initialize the disk wedge subsystem.
    848  */
    849 void
    850 dkwedge_init(void)
    851 {
    852 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
    853 	struct dkwedge_discovery_method * const *ddmp;
    854 	struct dkwedge_discovery_method *lddm, *ddm;
    855 
    856 	rw_init(&dkwedges_lock);
    857 	rw_init(&dkwedge_discovery_methods_lock);
    858 
    859 	if (config_cfdriver_attach(&dk_cd) != 0)
    860 		panic("dkwedge: unable to attach cfdriver");
    861 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
    862 		panic("dkwedge: unable to attach cfattach");
    863 
    864 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
    865 
    866 	LIST_INIT(&dkwedge_discovery_methods);
    867 
    868 	__link_set_foreach(ddmp, dkwedge_methods) {
    869 		ddm = *ddmp;
    870 		if (ddm == &dummy_discovery_method)
    871 			continue;
    872 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
    873 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
    874 					 ddm, ddm_list);
    875 			continue;
    876 		}
    877 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
    878 			if (ddm->ddm_priority == lddm->ddm_priority) {
    879 				aprint_error("dk-method-%s: method \"%s\" "
    880 				    "already exists at priority %d\n",
    881 				    ddm->ddm_name, lddm->ddm_name,
    882 				    lddm->ddm_priority);
    883 				/* Not inserted. */
    884 				break;
    885 			}
    886 			if (ddm->ddm_priority < lddm->ddm_priority) {
    887 				/* Higher priority; insert before. */
    888 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
    889 				break;
    890 			}
    891 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
    892 				/* Last one; insert after. */
    893 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
    894 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
    895 				break;
    896 			}
    897 		}
    898 	}
    899 
    900 	rw_exit(&dkwedge_discovery_methods_lock);
    901 }
    902 
    903 #ifdef DKWEDGE_AUTODISCOVER
    904 int	dkwedge_autodiscover = 1;
    905 #else
    906 int	dkwedge_autodiscover = 0;
    907 #endif
    908 
    909 /*
    910  * dkwedge_discover:	[exported function]
    911  *
    912  *	Discover the wedges on a newly attached disk.
    913  *	Remove all unused wedges on the disk first.
    914  */
    915 void
    916 dkwedge_discover(struct disk *pdk)
    917 {
    918 	struct dkwedge_discovery_method *ddm;
    919 	struct vnode *vp;
    920 	int error;
    921 	dev_t pdev;
    922 
    923 	/*
    924 	 * Require people playing with wedges to enable this explicitly.
    925 	 */
    926 	if (dkwedge_autodiscover == 0)
    927 		return;
    928 
    929 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
    930 
    931 	/*
    932 	 * Use the character device for scanning, the block device
    933 	 * is busy if there are already wedges attached.
    934 	 */
    935 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
    936 	if (error) {
    937 		aprint_error("%s: unable to compute pdev, error = %d\n",
    938 		    pdk->dk_name, error);
    939 		goto out;
    940 	}
    941 
    942 	error = cdevvp(pdev, &vp);
    943 	if (error) {
    944 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
    945 		    pdk->dk_name, error);
    946 		goto out;
    947 	}
    948 
    949 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    950 	if (error) {
    951 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
    952 		    pdk->dk_name, error);
    953 		vrele(vp);
    954 		goto out;
    955 	}
    956 
    957 	error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
    958 	if (error) {
    959 		if (error != ENODEV)
    960 			aprint_error("%s: unable to open device, error = %d\n",
    961 			    pdk->dk_name, error);
    962 		vput(vp);
    963 		goto out;
    964 	}
    965 	VOP_UNLOCK(vp);
    966 
    967 	/*
    968 	 * Remove unused wedges
    969 	 */
    970 	dkwedge_delall1(pdk, true);
    971 
    972 	/*
    973 	 * For each supported partition map type, look to see if
    974 	 * this map type exists.  If so, parse it and add the
    975 	 * corresponding wedges.
    976 	 */
    977 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
    978 		error = (*ddm->ddm_discover)(pdk, vp);
    979 		if (error == 0) {
    980 			/* Successfully created wedges; we're done. */
    981 			break;
    982 		}
    983 	}
    984 
    985 	error = vn_close(vp, FREAD, NOCRED);
    986 	if (error) {
    987 		aprint_error("%s: unable to close device, error = %d\n",
    988 		    pdk->dk_name, error);
    989 		/* We'll just assume the vnode has been cleaned up. */
    990 	}
    991 
    992  out:
    993 	rw_exit(&dkwedge_discovery_methods_lock);
    994 }
    995 
    996 /*
    997  * dkwedge_read:
    998  *
    999  *	Read some data from the specified disk, used for
   1000  *	partition discovery.
   1001  */
   1002 int
   1003 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
   1004     void *tbuf, size_t len)
   1005 {
   1006 	buf_t *bp;
   1007 	int error;
   1008 	bool isopen;
   1009 	dev_t bdev;
   1010 	struct vnode *bdvp;
   1011 
   1012 	/*
   1013 	 * The kernel cannot read from a character device vnode
   1014 	 * as physio() only handles user memory.
   1015 	 *
   1016 	 * If the block device has already been opened by a wedge
   1017 	 * use that vnode and temporarily bump the open counter.
   1018 	 *
   1019 	 * Otherwise try to open the block device.
   1020 	 */
   1021 
   1022 	bdev = devsw_chr2blk(vp->v_rdev);
   1023 
   1024 	mutex_enter(&pdk->dk_rawlock);
   1025 	if (pdk->dk_rawopens != 0) {
   1026 		KASSERT(pdk->dk_rawvp != NULL);
   1027 		isopen = true;
   1028 		++pdk->dk_rawopens;
   1029 		bdvp = pdk->dk_rawvp;
   1030 		error = 0;
   1031 	} else {
   1032 		isopen = false;
   1033 		error = dk_open_parent(bdev, FREAD, &bdvp);
   1034 	}
   1035 	mutex_exit(&pdk->dk_rawlock);
   1036 
   1037 	if (error)
   1038 		return error;
   1039 
   1040 	bp = getiobuf(bdvp, true);
   1041 	bp->b_flags = B_READ;
   1042 	bp->b_cflags = BC_BUSY;
   1043 	bp->b_dev = bdev;
   1044 	bp->b_data = tbuf;
   1045 	bp->b_bufsize = bp->b_bcount = len;
   1046 	bp->b_blkno = blkno;
   1047 	bp->b_cylinder = 0;
   1048 	bp->b_error = 0;
   1049 
   1050 	VOP_STRATEGY(bdvp, bp);
   1051 	error = biowait(bp);
   1052 	putiobuf(bp);
   1053 
   1054 	mutex_enter(&pdk->dk_rawlock);
   1055 	if (isopen) {
   1056 		--pdk->dk_rawopens;
   1057 	} else {
   1058 		dk_close_parent(bdvp, FREAD);
   1059 	}
   1060 	mutex_exit(&pdk->dk_rawlock);
   1061 
   1062 	return error;
   1063 }
   1064 
   1065 /*
   1066  * dkwedge_lookup:
   1067  *
   1068  *	Look up a dkwedge_softc based on the provided dev_t.
   1069  */
   1070 static struct dkwedge_softc *
   1071 dkwedge_lookup(dev_t dev)
   1072 {
   1073 	int unit = minor(dev);
   1074 
   1075 	if (unit >= ndkwedges)
   1076 		return (NULL);
   1077 
   1078 	KASSERT(dkwedges != NULL);
   1079 
   1080 	return (dkwedges[unit]);
   1081 }
   1082 
   1083 static int
   1084 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
   1085 {
   1086 	struct vnode *vp;
   1087 	int error;
   1088 
   1089 	error = bdevvp(dev, &vp);
   1090 	if (error)
   1091 		return error;
   1092 
   1093 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1094 	if (error) {
   1095 		vrele(vp);
   1096 		return error;
   1097 	}
   1098 	error = VOP_OPEN(vp, mode, NOCRED);
   1099 	if (error) {
   1100 		vput(vp);
   1101 		return error;
   1102 	}
   1103 
   1104 	/* VOP_OPEN() doesn't do this for us. */
   1105 	if (mode & FWRITE) {
   1106 		mutex_enter(vp->v_interlock);
   1107 		vp->v_writecount++;
   1108 		mutex_exit(vp->v_interlock);
   1109 	}
   1110 
   1111 	VOP_UNLOCK(vp);
   1112 
   1113 	*vpp = vp;
   1114 
   1115 	return 0;
   1116 }
   1117 
   1118 static int
   1119 dk_close_parent(struct vnode *vp, int mode)
   1120 {
   1121 	int error;
   1122 
   1123 	error = vn_close(vp, mode, NOCRED);
   1124 	return error;
   1125 }
   1126 
   1127 /*
   1128  * dkopen:		[devsw entry point]
   1129  *
   1130  *	Open a wedge.
   1131  */
   1132 static int
   1133 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
   1134 {
   1135 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1136 	int error = 0;
   1137 
   1138 	if (sc == NULL)
   1139 		return (ENODEV);
   1140 	if (sc->sc_state != DKW_STATE_RUNNING)
   1141 		return (ENXIO);
   1142 
   1143 	/*
   1144 	 * We go through a complicated little dance to only open the parent
   1145 	 * vnode once per wedge, no matter how many times the wedge is
   1146 	 * opened.  The reason?  We see one dkopen() per open call, but
   1147 	 * only dkclose() on the last close.
   1148 	 */
   1149 	mutex_enter(&sc->sc_dk.dk_openlock);
   1150 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1151 	if (sc->sc_dk.dk_openmask == 0) {
   1152 		error = dkfirstopen(sc, flags);
   1153 		if (error)
   1154 			goto popen_fail;
   1155 	}
   1156 	KASSERT(sc->sc_mode != 0);
   1157 	if (flags & ~sc->sc_mode & FWRITE) {
   1158 		error = EROFS;
   1159 		goto popen_fail;
   1160 	}
   1161 	if (fmt == S_IFCHR)
   1162 		sc->sc_dk.dk_copenmask |= 1;
   1163 	else
   1164 		sc->sc_dk.dk_bopenmask |= 1;
   1165 	sc->sc_dk.dk_openmask =
   1166 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1167 
   1168  popen_fail:
   1169 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1170 	mutex_exit(&sc->sc_dk.dk_openlock);
   1171 	return (error);
   1172 }
   1173 
   1174 static int
   1175 dkfirstopen(struct dkwedge_softc *sc, int flags)
   1176 {
   1177 	struct dkwedge_softc *nsc;
   1178 	struct vnode *vp;
   1179 	int mode;
   1180 	int error;
   1181 
   1182 	KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
   1183 	KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
   1184 
   1185 	if (sc->sc_parent->dk_rawopens == 0) {
   1186 		KASSERT(sc->sc_parent->dk_rawvp == NULL);
   1187 		/*
   1188 		 * Try open read-write. If this fails for EROFS
   1189 		 * and wedge is read-only, retry to open read-only.
   1190 		 */
   1191 		mode = FREAD | FWRITE;
   1192 		error = dk_open_parent(sc->sc_pdev, mode, &vp);
   1193 		if (error == EROFS && (flags & FWRITE) == 0) {
   1194 			mode &= ~FWRITE;
   1195 			error = dk_open_parent(sc->sc_pdev, mode, &vp);
   1196 		}
   1197 		if (error)
   1198 			return error;
   1199 		sc->sc_parent->dk_rawvp = vp;
   1200 	} else {
   1201 		/*
   1202 		 * Retrieve mode from an already opened wedge.
   1203 		 *
   1204 		 * At this point, dk_rawopens is bounded by the number
   1205 		 * of dkwedge devices in the system, which is limited
   1206 		 * by autoconf device numbering to INT_MAX.  Since
   1207 		 * dk_rawopens is unsigned, this can't overflow.
   1208 		 */
   1209 		KASSERT(sc->sc_parent->dk_rawopens < UINT_MAX);
   1210 		mode = 0;
   1211 		LIST_FOREACH(nsc, &sc->sc_parent->dk_wedges, sc_plink) {
   1212 			if (nsc == sc || nsc->sc_dk.dk_openmask == 0)
   1213 				continue;
   1214 			mode = nsc->sc_mode;
   1215 			break;
   1216 		}
   1217 	}
   1218 	sc->sc_mode = mode;
   1219 	sc->sc_parent->dk_rawopens++;
   1220 
   1221 	return 0;
   1222 }
   1223 
   1224 static void
   1225 dklastclose(struct dkwedge_softc *sc)
   1226 {
   1227 
   1228 	KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
   1229 	KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
   1230 	KASSERT(sc->sc_parent->dk_rawopens > 0);
   1231 	KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1232 
   1233 	if (--sc->sc_parent->dk_rawopens == 0) {
   1234 		struct vnode *const vp = sc->sc_parent->dk_rawvp;
   1235 		const int mode = sc->sc_mode;
   1236 
   1237 		sc->sc_parent->dk_rawvp = NULL;
   1238 		sc->sc_mode = 0;
   1239 
   1240 		dk_close_parent(vp, mode);
   1241 	}
   1242 }
   1243 
   1244 /*
   1245  * dkclose:		[devsw entry point]
   1246  *
   1247  *	Close a wedge.
   1248  */
   1249 static int
   1250 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
   1251 {
   1252 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1253 
   1254 	if (sc == NULL)
   1255 		return ENODEV;
   1256 	if (sc->sc_state != DKW_STATE_RUNNING)
   1257 		return ENXIO;
   1258 
   1259 	mutex_enter(&sc->sc_dk.dk_openlock);
   1260 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1261 
   1262 	KASSERT(sc->sc_dk.dk_openmask != 0);
   1263 
   1264 	if (fmt == S_IFCHR)
   1265 		sc->sc_dk.dk_copenmask &= ~1;
   1266 	else
   1267 		sc->sc_dk.dk_bopenmask &= ~1;
   1268 	sc->sc_dk.dk_openmask =
   1269 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1270 
   1271 	if (sc->sc_dk.dk_openmask == 0) {
   1272 		dklastclose(sc);
   1273 	}
   1274 
   1275 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1276 	mutex_exit(&sc->sc_dk.dk_openlock);
   1277 
   1278 	return 0;
   1279 }
   1280 
   1281 /*
   1282  * dkstragegy:		[devsw entry point]
   1283  *
   1284  *	Perform I/O based on the wedge I/O strategy.
   1285  */
   1286 static void
   1287 dkstrategy(struct buf *bp)
   1288 {
   1289 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1290 	uint64_t p_size, p_offset;
   1291 
   1292 	if (sc == NULL) {
   1293 		bp->b_error = ENODEV;
   1294 		goto done;
   1295 	}
   1296 
   1297 	if (sc->sc_state != DKW_STATE_RUNNING ||
   1298 	    sc->sc_parent->dk_rawvp == NULL) {
   1299 		bp->b_error = ENXIO;
   1300 		goto done;
   1301 	}
   1302 
   1303 	/* If it's an empty transfer, wake up the top half now. */
   1304 	if (bp->b_bcount == 0)
   1305 		goto done;
   1306 
   1307 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
   1308 	p_size   = sc->sc_size << sc->sc_parent->dk_blkshift;
   1309 
   1310 	/* Make sure it's in-range. */
   1311 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
   1312 		goto done;
   1313 
   1314 	/* Translate it to the parent's raw LBA. */
   1315 	bp->b_rawblkno = bp->b_blkno + p_offset;
   1316 
   1317 	/* Place it in the queue and start I/O on the unit. */
   1318 	mutex_enter(&sc->sc_iolock);
   1319 	sc->sc_iopend++;
   1320 	disk_wait(&sc->sc_dk);
   1321 	bufq_put(sc->sc_bufq, bp);
   1322 	mutex_exit(&sc->sc_iolock);
   1323 
   1324 	dkstart(sc);
   1325 	return;
   1326 
   1327  done:
   1328 	bp->b_resid = bp->b_bcount;
   1329 	biodone(bp);
   1330 }
   1331 
   1332 /*
   1333  * dkstart:
   1334  *
   1335  *	Start I/O that has been enqueued on the wedge.
   1336  */
   1337 static void
   1338 dkstart(struct dkwedge_softc *sc)
   1339 {
   1340 	struct vnode *vp;
   1341 	struct buf *bp, *nbp;
   1342 
   1343 	mutex_enter(&sc->sc_iolock);
   1344 
   1345 	/* Do as much work as has been enqueued. */
   1346 	while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
   1347 		if (sc->sc_state != DKW_STATE_RUNNING) {
   1348 			(void) bufq_get(sc->sc_bufq);
   1349 			if (--sc->sc_iopend == 0)
   1350 				cv_broadcast(&sc->sc_dkdrn);
   1351 			mutex_exit(&sc->sc_iolock);
   1352 			bp->b_error = ENXIO;
   1353 			bp->b_resid = bp->b_bcount;
   1354 			biodone(bp);
   1355 			mutex_enter(&sc->sc_iolock);
   1356 			continue;
   1357 		}
   1358 
   1359 		/* fetch an I/O buf with sc_iolock dropped */
   1360 		mutex_exit(&sc->sc_iolock);
   1361 		nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
   1362 		mutex_enter(&sc->sc_iolock);
   1363 		if (nbp == NULL) {
   1364 			/*
   1365 			 * No resources to run this request; leave the
   1366 			 * buffer queued up, and schedule a timer to
   1367 			 * restart the queue in 1/2 a second.
   1368 			 */
   1369 			callout_schedule(&sc->sc_restart_ch, hz / 2);
   1370 			break;
   1371 		}
   1372 
   1373 		/*
   1374 		 * fetch buf, this can fail if another thread
   1375 		 * has already processed the queue, it can also
   1376 		 * return a completely different buf.
   1377 		 */
   1378 		bp = bufq_get(sc->sc_bufq);
   1379 		if (bp == NULL) {
   1380 			mutex_exit(&sc->sc_iolock);
   1381 			putiobuf(nbp);
   1382 			mutex_enter(&sc->sc_iolock);
   1383 			continue;
   1384 		}
   1385 
   1386 		/* Instrumentation. */
   1387 		disk_busy(&sc->sc_dk);
   1388 
   1389 		/* release lock for VOP_STRATEGY */
   1390 		mutex_exit(&sc->sc_iolock);
   1391 
   1392 		nbp->b_data = bp->b_data;
   1393 		nbp->b_flags = bp->b_flags;
   1394 		nbp->b_oflags = bp->b_oflags;
   1395 		nbp->b_cflags = bp->b_cflags;
   1396 		nbp->b_iodone = dkiodone;
   1397 		nbp->b_proc = bp->b_proc;
   1398 		nbp->b_blkno = bp->b_rawblkno;
   1399 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
   1400 		nbp->b_bcount = bp->b_bcount;
   1401 		nbp->b_private = bp;
   1402 		BIO_COPYPRIO(nbp, bp);
   1403 
   1404 		vp = nbp->b_vp;
   1405 		if ((nbp->b_flags & B_READ) == 0) {
   1406 			mutex_enter(vp->v_interlock);
   1407 			vp->v_numoutput++;
   1408 			mutex_exit(vp->v_interlock);
   1409 		}
   1410 		VOP_STRATEGY(vp, nbp);
   1411 
   1412 		mutex_enter(&sc->sc_iolock);
   1413 	}
   1414 
   1415 	mutex_exit(&sc->sc_iolock);
   1416 }
   1417 
   1418 /*
   1419  * dkiodone:
   1420  *
   1421  *	I/O to a wedge has completed; alert the top half.
   1422  */
   1423 static void
   1424 dkiodone(struct buf *bp)
   1425 {
   1426 	struct buf *obp = bp->b_private;
   1427 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
   1428 
   1429 	if (bp->b_error != 0)
   1430 		obp->b_error = bp->b_error;
   1431 	obp->b_resid = bp->b_resid;
   1432 	putiobuf(bp);
   1433 
   1434 	mutex_enter(&sc->sc_iolock);
   1435 	if (--sc->sc_iopend == 0)
   1436 		cv_broadcast(&sc->sc_dkdrn);
   1437 
   1438 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
   1439 	    obp->b_flags & B_READ);
   1440 	mutex_exit(&sc->sc_iolock);
   1441 
   1442 	biodone(obp);
   1443 
   1444 	/* Kick the queue in case there is more work we can do. */
   1445 	dkstart(sc);
   1446 }
   1447 
   1448 /*
   1449  * dkrestart:
   1450  *
   1451  *	Restart the work queue after it was stalled due to
   1452  *	a resource shortage.  Invoked via a callout.
   1453  */
   1454 static void
   1455 dkrestart(void *v)
   1456 {
   1457 	struct dkwedge_softc *sc = v;
   1458 
   1459 	dkstart(sc);
   1460 }
   1461 
   1462 /*
   1463  * dkminphys:
   1464  *
   1465  *	Call parent's minphys function.
   1466  */
   1467 static void
   1468 dkminphys(struct buf *bp)
   1469 {
   1470 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1471 	dev_t dev;
   1472 
   1473 	dev = bp->b_dev;
   1474 	bp->b_dev = sc->sc_pdev;
   1475 	if (sc->sc_parent->dk_driver && sc->sc_parent->dk_driver->d_minphys)
   1476 		(*sc->sc_parent->dk_driver->d_minphys)(bp);
   1477 	else
   1478 		minphys(bp);
   1479 	bp->b_dev = dev;
   1480 }
   1481 
   1482 /*
   1483  * dkread:		[devsw entry point]
   1484  *
   1485  *	Read from a wedge.
   1486  */
   1487 static int
   1488 dkread(dev_t dev, struct uio *uio, int flags)
   1489 {
   1490 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1491 
   1492 	if (sc == NULL)
   1493 		return (ENODEV);
   1494 	if (sc->sc_state != DKW_STATE_RUNNING)
   1495 		return (ENXIO);
   1496 
   1497 	return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio));
   1498 }
   1499 
   1500 /*
   1501  * dkwrite:		[devsw entry point]
   1502  *
   1503  *	Write to a wedge.
   1504  */
   1505 static int
   1506 dkwrite(dev_t dev, struct uio *uio, int flags)
   1507 {
   1508 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1509 
   1510 	if (sc == NULL)
   1511 		return (ENODEV);
   1512 	if (sc->sc_state != DKW_STATE_RUNNING)
   1513 		return (ENXIO);
   1514 
   1515 	return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio));
   1516 }
   1517 
   1518 /*
   1519  * dkioctl:		[devsw entry point]
   1520  *
   1521  *	Perform an ioctl request on a wedge.
   1522  */
   1523 static int
   1524 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1525 {
   1526 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1527 	int error = 0;
   1528 
   1529 	if (sc == NULL)
   1530 		return (ENODEV);
   1531 	if (sc->sc_state != DKW_STATE_RUNNING)
   1532 		return (ENXIO);
   1533 	if (sc->sc_parent->dk_rawvp == NULL)
   1534 		return (ENXIO);
   1535 
   1536 	/*
   1537 	 * We pass NODEV instead of our device to indicate we don't
   1538 	 * want to handle disklabel ioctls
   1539 	 */
   1540 	error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
   1541 	if (error != EPASSTHROUGH)
   1542 		return (error);
   1543 
   1544 	error = 0;
   1545 
   1546 	switch (cmd) {
   1547 	case DIOCGSTRATEGY:
   1548 	case DIOCGCACHE:
   1549 	case DIOCCACHESYNC:
   1550 		error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, data, flag,
   1551 					  l != NULL ? l->l_cred : NOCRED);
   1552 		break;
   1553 	case DIOCGWEDGEINFO:
   1554 	    {
   1555 		struct dkwedge_info *dkw = (void *) data;
   1556 
   1557 		strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
   1558 			sizeof(dkw->dkw_devname));
   1559 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
   1560 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
   1561 		strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
   1562 		    sizeof(dkw->dkw_parent));
   1563 		dkw->dkw_offset = sc->sc_offset;
   1564 		dkw->dkw_size = sc->sc_size;
   1565 		strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
   1566 
   1567 		break;
   1568 	    }
   1569 	case DIOCGSECTORALIGN:
   1570 	    {
   1571 		struct disk_sectoralign *dsa = data;
   1572 		uint32_t r;
   1573 
   1574 		error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, dsa, flag,
   1575 		    l != NULL ? l->l_cred : NOCRED);
   1576 		if (error)
   1577 			break;
   1578 
   1579 		r = sc->sc_offset % dsa->dsa_alignment;
   1580 		if (r < dsa->dsa_firstaligned)
   1581 			dsa->dsa_firstaligned = dsa->dsa_firstaligned - r;
   1582 		else
   1583 			dsa->dsa_firstaligned = (dsa->dsa_firstaligned +
   1584 			    dsa->dsa_alignment) - r;
   1585 		break;
   1586 	    }
   1587 	default:
   1588 		error = ENOTTY;
   1589 	}
   1590 
   1591 	return (error);
   1592 }
   1593 
   1594 /*
   1595  * dkdiscard:		[devsw entry point]
   1596  *
   1597  *	Perform a discard-range request on a wedge.
   1598  */
   1599 static int
   1600 dkdiscard(dev_t dev, off_t pos, off_t len)
   1601 {
   1602 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1603 	unsigned shift;
   1604 	off_t offset, maxlen;
   1605 	int error;
   1606 
   1607 	if (sc == NULL)
   1608 		return (ENODEV);
   1609 	if (sc->sc_state != DKW_STATE_RUNNING)
   1610 		return (ENXIO);
   1611 	if (sc->sc_parent->dk_rawvp == NULL)
   1612 		return (ENXIO);
   1613 
   1614 	shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
   1615 	KASSERT(__type_fit(off_t, sc->sc_size));
   1616 	KASSERT(__type_fit(off_t, sc->sc_offset));
   1617 	KASSERT(0 <= sc->sc_offset);
   1618 	KASSERT(sc->sc_size <= (__type_max(off_t) >> shift));
   1619 	KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - sc->sc_size));
   1620 	offset = ((off_t)sc->sc_offset << shift);
   1621 	maxlen = ((off_t)sc->sc_size << shift);
   1622 
   1623 	if (len > maxlen)
   1624 		return (EINVAL);
   1625 	if (pos > (maxlen - len))
   1626 		return (EINVAL);
   1627 
   1628 	pos += offset;
   1629 
   1630 	vn_lock(sc->sc_parent->dk_rawvp, LK_EXCLUSIVE | LK_RETRY);
   1631 	error = VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
   1632 	VOP_UNLOCK(sc->sc_parent->dk_rawvp);
   1633 
   1634 	return error;
   1635 }
   1636 
   1637 /*
   1638  * dksize:		[devsw entry point]
   1639  *
   1640  *	Query the size of a wedge for the purpose of performing a dump
   1641  *	or for swapping to.
   1642  */
   1643 static int
   1644 dksize(dev_t dev)
   1645 {
   1646 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1647 	uint64_t p_size;
   1648 	int rv = -1;
   1649 
   1650 	if (sc == NULL)
   1651 		return (-1);
   1652 	if (sc->sc_state != DKW_STATE_RUNNING)
   1653 		return (-1);
   1654 
   1655 	mutex_enter(&sc->sc_dk.dk_openlock);
   1656 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1657 
   1658 	/* Our content type is static, no need to open the device. */
   1659 
   1660 	p_size   = sc->sc_size << sc->sc_parent->dk_blkshift;
   1661 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
   1662 		/* Saturate if we are larger than INT_MAX. */
   1663 		if (p_size > INT_MAX)
   1664 			rv = INT_MAX;
   1665 		else
   1666 			rv = (int) p_size;
   1667 	}
   1668 
   1669 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1670 	mutex_exit(&sc->sc_dk.dk_openlock);
   1671 
   1672 	return (rv);
   1673 }
   1674 
   1675 /*
   1676  * dkdump:		[devsw entry point]
   1677  *
   1678  *	Perform a crash dump to a wedge.
   1679  */
   1680 static int
   1681 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
   1682 {
   1683 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1684 	const struct bdevsw *bdev;
   1685 	uint64_t p_size, p_offset;
   1686 	int rv = 0;
   1687 
   1688 	if (sc == NULL)
   1689 		return (ENODEV);
   1690 	if (sc->sc_state != DKW_STATE_RUNNING)
   1691 		return (ENXIO);
   1692 
   1693 	mutex_enter(&sc->sc_dk.dk_openlock);
   1694 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1695 
   1696 	/* Our content type is static, no need to open the device. */
   1697 
   1698 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
   1699 	    strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0 &&
   1700 	    strcmp(sc->sc_ptype, DKW_PTYPE_CGD) != 0) {
   1701 		rv = ENXIO;
   1702 		goto out;
   1703 	}
   1704 	if (size % DEV_BSIZE != 0) {
   1705 		rv = EINVAL;
   1706 		goto out;
   1707 	}
   1708 
   1709 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
   1710 	p_size   = sc->sc_size << sc->sc_parent->dk_blkshift;
   1711 
   1712 	if (blkno < 0 || blkno + size / DEV_BSIZE > p_size) {
   1713 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
   1714 		    "p_size (%" PRIu64 ")\n", __func__, blkno,
   1715 		    size / DEV_BSIZE, p_size);
   1716 		rv = EINVAL;
   1717 		goto out;
   1718 	}
   1719 
   1720 	bdev = bdevsw_lookup(sc->sc_pdev);
   1721 	rv = (*bdev->d_dump)(sc->sc_pdev, blkno + p_offset, va, size);
   1722 
   1723 out:
   1724 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1725 	mutex_exit(&sc->sc_dk.dk_openlock);
   1726 
   1727 	return rv;
   1728 }
   1729 
   1730 /*
   1731  * config glue
   1732  */
   1733 
   1734 /*
   1735  * dkwedge_find_partition
   1736  *
   1737  *	Find wedge corresponding to the specified parent name
   1738  *	and offset/length.
   1739  */
   1740 device_t
   1741 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
   1742 {
   1743 	struct dkwedge_softc *sc;
   1744 	int i;
   1745 	device_t wedge = NULL;
   1746 
   1747 	rw_enter(&dkwedges_lock, RW_READER);
   1748 	for (i = 0; i < ndkwedges; i++) {
   1749 		if ((sc = dkwedges[i]) == NULL)
   1750 			continue;
   1751 		if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
   1752 		    sc->sc_offset == startblk &&
   1753 		    sc->sc_size == nblks) {
   1754 			if (wedge) {
   1755 				printf("WARNING: double match for boot wedge "
   1756 				    "(%s, %s)\n",
   1757 				    device_xname(wedge),
   1758 				    device_xname(sc->sc_dev));
   1759 				continue;
   1760 			}
   1761 			wedge = sc->sc_dev;
   1762 		}
   1763 	}
   1764 	rw_exit(&dkwedges_lock);
   1765 
   1766 	return wedge;
   1767 }
   1768 
   1769 const char *
   1770 dkwedge_get_parent_name(dev_t dev)
   1771 {
   1772 	/* XXX: perhaps do this in lookup? */
   1773 	int bmaj = bdevsw_lookup_major(&dk_bdevsw);
   1774 	int cmaj = cdevsw_lookup_major(&dk_cdevsw);
   1775 	if (major(dev) != bmaj && major(dev) != cmaj)
   1776 		return NULL;
   1777 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1778 	if (sc == NULL)
   1779 		return NULL;
   1780 	return sc->sc_parent->dk_name;
   1781 }
   1782