dk.c revision 1.126 1 /* $NetBSD: dk.c,v 1.126 2023/04/21 18:09:38 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.126 2023/04/21 18:09:38 riastradh Exp $");
34
35 #ifdef _KERNEL_OPT
36 #include "opt_dkwedge.h"
37 #endif
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/errno.h>
43 #include <sys/pool.h>
44 #include <sys/ioctl.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/fcntl.h>
48 #include <sys/buf.h>
49 #include <sys/bufq.h>
50 #include <sys/vnode.h>
51 #include <sys/stat.h>
52 #include <sys/conf.h>
53 #include <sys/callout.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/device.h>
57 #include <sys/kauth.h>
58
59 #include <miscfs/specfs/specdev.h>
60
61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
62
63 typedef enum {
64 DKW_STATE_LARVAL = 0,
65 DKW_STATE_RUNNING = 1,
66 DKW_STATE_DYING = 2,
67 DKW_STATE_DEAD = 666
68 } dkwedge_state_t;
69
70 struct dkwedge_softc {
71 device_t sc_dev; /* pointer to our pseudo-device */
72 struct cfdata sc_cfdata; /* our cfdata structure */
73 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
74
75 dkwedge_state_t sc_state; /* state this wedge is in */
76
77 struct disk *sc_parent; /* parent disk */
78 daddr_t sc_offset; /* LBA offset of wedge in parent */
79 uint64_t sc_size; /* size of wedge in blocks */
80 char sc_ptype[32]; /* partition type */
81 dev_t sc_pdev; /* cached parent's dev_t */
82 /* link on parent's wedge list */
83 LIST_ENTRY(dkwedge_softc) sc_plink;
84
85 struct disk sc_dk; /* our own disk structure */
86 struct bufq_state *sc_bufq; /* buffer queue */
87 struct callout sc_restart_ch; /* callout to restart I/O */
88
89 kmutex_t sc_iolock;
90 kcondvar_t sc_dkdrn;
91 u_int sc_iopend; /* I/Os pending */
92 int sc_mode; /* parent open mode */
93 };
94
95 static void dkstart(struct dkwedge_softc *);
96 static void dkiodone(struct buf *);
97 static void dkrestart(void *);
98 static void dkminphys(struct buf *);
99
100 static int dkfirstopen(struct dkwedge_softc *, int);
101 static void dklastclose(struct dkwedge_softc *);
102 static int dkwedge_cleanup_parent(struct dkwedge_softc *, int);
103 static int dkwedge_detach(device_t, int);
104 static void dkwedge_delall1(struct disk *, bool);
105 static int dkwedge_del1(struct dkwedge_info *, int);
106 static int dk_open_parent(dev_t, int, struct vnode **);
107 static int dk_close_parent(struct vnode *, int);
108
109 static dev_type_open(dkopen);
110 static dev_type_close(dkclose);
111 static dev_type_read(dkread);
112 static dev_type_write(dkwrite);
113 static dev_type_ioctl(dkioctl);
114 static dev_type_strategy(dkstrategy);
115 static dev_type_dump(dkdump);
116 static dev_type_size(dksize);
117 static dev_type_discard(dkdiscard);
118
119 const struct bdevsw dk_bdevsw = {
120 .d_open = dkopen,
121 .d_close = dkclose,
122 .d_strategy = dkstrategy,
123 .d_ioctl = dkioctl,
124 .d_dump = dkdump,
125 .d_psize = dksize,
126 .d_discard = dkdiscard,
127 .d_flag = D_DISK | D_MPSAFE
128 };
129
130 const struct cdevsw dk_cdevsw = {
131 .d_open = dkopen,
132 .d_close = dkclose,
133 .d_read = dkread,
134 .d_write = dkwrite,
135 .d_ioctl = dkioctl,
136 .d_stop = nostop,
137 .d_tty = notty,
138 .d_poll = nopoll,
139 .d_mmap = nommap,
140 .d_kqfilter = nokqfilter,
141 .d_discard = dkdiscard,
142 .d_flag = D_DISK | D_MPSAFE
143 };
144
145 static struct dkwedge_softc **dkwedges;
146 static u_int ndkwedges;
147 static krwlock_t dkwedges_lock;
148
149 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
150 static krwlock_t dkwedge_discovery_methods_lock;
151
152 /*
153 * dkwedge_match:
154 *
155 * Autoconfiguration match function for pseudo-device glue.
156 */
157 static int
158 dkwedge_match(device_t parent, cfdata_t match,
159 void *aux)
160 {
161
162 /* Pseudo-device; always present. */
163 return (1);
164 }
165
166 /*
167 * dkwedge_attach:
168 *
169 * Autoconfiguration attach function for pseudo-device glue.
170 */
171 static void
172 dkwedge_attach(device_t parent, device_t self,
173 void *aux)
174 {
175
176 if (!pmf_device_register(self, NULL, NULL))
177 aprint_error_dev(self, "couldn't establish power handler\n");
178 }
179
180 CFDRIVER_DECL(dk, DV_DISK, NULL);
181 CFATTACH_DECL3_NEW(dk, 0,
182 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
183 DVF_DETACH_SHUTDOWN);
184
185 /*
186 * dkwedge_wait_drain:
187 *
188 * Wait for I/O on the wedge to drain.
189 */
190 static void
191 dkwedge_wait_drain(struct dkwedge_softc *sc)
192 {
193
194 mutex_enter(&sc->sc_iolock);
195 while (sc->sc_iopend != 0)
196 cv_wait(&sc->sc_dkdrn, &sc->sc_iolock);
197 mutex_exit(&sc->sc_iolock);
198 }
199
200 /*
201 * dkwedge_compute_pdev:
202 *
203 * Compute the parent disk's dev_t.
204 */
205 static int
206 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
207 {
208 const char *name, *cp;
209 devmajor_t pmaj;
210 int punit;
211 char devname[16];
212
213 name = pname;
214 switch (type) {
215 case VBLK:
216 pmaj = devsw_name2blk(name, devname, sizeof(devname));
217 break;
218 case VCHR:
219 pmaj = devsw_name2chr(name, devname, sizeof(devname));
220 break;
221 default:
222 pmaj = NODEVMAJOR;
223 break;
224 }
225 if (pmaj == NODEVMAJOR)
226 return (ENODEV);
227
228 name += strlen(devname);
229 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
230 punit = (punit * 10) + (*cp - '0');
231 if (cp == name) {
232 /* Invalid parent disk name. */
233 return (ENODEV);
234 }
235
236 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
237
238 return (0);
239 }
240
241 /*
242 * dkwedge_array_expand:
243 *
244 * Expand the dkwedges array.
245 */
246 static void
247 dkwedge_array_expand(void)
248 {
249 int newcnt = ndkwedges + 16;
250 struct dkwedge_softc **newarray, **oldarray;
251
252 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
253 M_WAITOK|M_ZERO);
254 if ((oldarray = dkwedges) != NULL)
255 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
256 dkwedges = newarray;
257 ndkwedges = newcnt;
258 if (oldarray != NULL)
259 free(oldarray, M_DKWEDGE);
260 }
261
262 static void
263 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
264 {
265 struct disk *dk = &sc->sc_dk;
266 struct disk_geom *dg = &dk->dk_geom;
267
268 memset(dg, 0, sizeof(*dg));
269
270 dg->dg_secperunit = sc->sc_size;
271 dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
272
273 /* fake numbers, 1 cylinder is 1 MB with default sector size */
274 dg->dg_nsectors = 32;
275 dg->dg_ntracks = 64;
276 dg->dg_ncylinders = dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
277
278 disk_set_info(sc->sc_dev, dk, NULL);
279 }
280
281 /*
282 * dkwedge_add: [exported function]
283 *
284 * Add a disk wedge based on the provided information.
285 *
286 * The incoming dkw_devname[] is ignored, instead being
287 * filled in and returned to the caller.
288 */
289 int
290 dkwedge_add(struct dkwedge_info *dkw)
291 {
292 struct dkwedge_softc *sc, *lsc;
293 struct disk *pdk;
294 u_int unit;
295 int error;
296 dev_t pdev;
297
298 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
299 pdk = disk_find(dkw->dkw_parent);
300 if (pdk == NULL)
301 return (ENODEV);
302
303 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
304 if (error)
305 return (error);
306
307 if (dkw->dkw_offset < 0)
308 return (EINVAL);
309
310 /*
311 * Check for an existing wedge at the same disk offset. Allow
312 * updating a wedge if the only change is the size, and the new
313 * size is larger than the old.
314 */
315 sc = NULL;
316 mutex_enter(&pdk->dk_openlock);
317 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
318 if (lsc->sc_offset != dkw->dkw_offset)
319 continue;
320 if (strcmp(lsc->sc_wname, dkw->dkw_wname) != 0)
321 break;
322 if (strcmp(lsc->sc_ptype, dkw->dkw_ptype) != 0)
323 break;
324 if (lsc->sc_size > dkw->dkw_size)
325 break;
326
327 sc = lsc;
328 sc->sc_size = dkw->dkw_size;
329 dk_set_geometry(sc, pdk);
330
331 break;
332 }
333 mutex_exit(&pdk->dk_openlock);
334
335 if (sc != NULL)
336 goto announce;
337
338 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
339 sc->sc_state = DKW_STATE_LARVAL;
340 sc->sc_parent = pdk;
341 sc->sc_pdev = pdev;
342 sc->sc_offset = dkw->dkw_offset;
343 sc->sc_size = dkw->dkw_size;
344
345 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
346 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
347
348 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
349 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
350
351 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
352
353 callout_init(&sc->sc_restart_ch, 0);
354 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
355
356 mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
357 cv_init(&sc->sc_dkdrn, "dkdrn");
358
359 /*
360 * Wedge will be added; increment the wedge count for the parent.
361 * Only allow this to happen if RAW_PART is the only thing open.
362 */
363 mutex_enter(&pdk->dk_openlock);
364 if (pdk->dk_openmask & ~(1 << RAW_PART))
365 error = EBUSY;
366 else {
367 /* Check for wedge overlap. */
368 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
369 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
370 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
371
372 if (sc->sc_offset >= lsc->sc_offset &&
373 sc->sc_offset <= llastblk) {
374 /* Overlaps the tail of the existing wedge. */
375 break;
376 }
377 if (lastblk >= lsc->sc_offset &&
378 lastblk <= llastblk) {
379 /* Overlaps the head of the existing wedge. */
380 break;
381 }
382 }
383 if (lsc != NULL) {
384 if (sc->sc_offset == lsc->sc_offset &&
385 sc->sc_size == lsc->sc_size &&
386 strcmp(sc->sc_wname, lsc->sc_wname) == 0)
387 error = EEXIST;
388 else
389 error = EINVAL;
390 } else {
391 pdk->dk_nwedges++;
392 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
393 }
394 }
395 mutex_exit(&pdk->dk_openlock);
396 if (error) {
397 cv_destroy(&sc->sc_dkdrn);
398 mutex_destroy(&sc->sc_iolock);
399 bufq_free(sc->sc_bufq);
400 free(sc, M_DKWEDGE);
401 return (error);
402 }
403
404 /* Fill in our cfdata for the pseudo-device glue. */
405 sc->sc_cfdata.cf_name = dk_cd.cd_name;
406 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
407 /* sc->sc_cfdata.cf_unit set below */
408 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
409
410 /* Insert the larval wedge into the array. */
411 rw_enter(&dkwedges_lock, RW_WRITER);
412 for (error = 0;;) {
413 struct dkwedge_softc **scpp;
414
415 /*
416 * Check for a duplicate wname while searching for
417 * a slot.
418 */
419 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
420 if (dkwedges[unit] == NULL) {
421 if (scpp == NULL) {
422 scpp = &dkwedges[unit];
423 sc->sc_cfdata.cf_unit = unit;
424 }
425 } else {
426 /* XXX Unicode. */
427 if (strcmp(dkwedges[unit]->sc_wname,
428 sc->sc_wname) == 0) {
429 error = EEXIST;
430 break;
431 }
432 }
433 }
434 if (error)
435 break;
436 KASSERT(unit == ndkwedges);
437 if (scpp == NULL)
438 dkwedge_array_expand();
439 else {
440 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
441 *scpp = sc;
442 break;
443 }
444 }
445 rw_exit(&dkwedges_lock);
446 if (error) {
447 mutex_enter(&pdk->dk_openlock);
448 pdk->dk_nwedges--;
449 LIST_REMOVE(sc, sc_plink);
450 mutex_exit(&pdk->dk_openlock);
451
452 cv_destroy(&sc->sc_dkdrn);
453 mutex_destroy(&sc->sc_iolock);
454 bufq_free(sc->sc_bufq);
455 free(sc, M_DKWEDGE);
456 return (error);
457 }
458
459 /*
460 * Now that we know the unit #, attach a pseudo-device for
461 * this wedge instance. This will provide us with the
462 * device_t necessary for glue to other parts of the system.
463 *
464 * This should never fail, unless we're almost totally out of
465 * memory.
466 */
467 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
468 aprint_error("%s%u: unable to attach pseudo-device\n",
469 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
470
471 rw_enter(&dkwedges_lock, RW_WRITER);
472 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
473 rw_exit(&dkwedges_lock);
474
475 mutex_enter(&pdk->dk_openlock);
476 pdk->dk_nwedges--;
477 LIST_REMOVE(sc, sc_plink);
478 mutex_exit(&pdk->dk_openlock);
479
480 cv_destroy(&sc->sc_dkdrn);
481 mutex_destroy(&sc->sc_iolock);
482 bufq_free(sc->sc_bufq);
483 free(sc, M_DKWEDGE);
484 return (ENOMEM);
485 }
486
487 /*
488 * XXX Really ought to make the disk_attach() and the changing
489 * of state to RUNNING atomic.
490 */
491
492 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
493 dk_set_geometry(sc, pdk);
494 disk_attach(&sc->sc_dk);
495
496 /* Disk wedge is ready for use! */
497 sc->sc_state = DKW_STATE_RUNNING;
498
499 announce:
500 /* Announce our arrival. */
501 aprint_normal(
502 "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
503 device_xname(sc->sc_dev), pdk->dk_name,
504 sc->sc_wname, /* XXX Unicode */
505 sc->sc_size, sc->sc_offset,
506 sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
507
508 /* Return the devname to the caller. */
509 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
510 sizeof(dkw->dkw_devname));
511
512 return (0);
513 }
514
515 /*
516 * dkwedge_find:
517 *
518 * Lookup a disk wedge based on the provided information.
519 * NOTE: We look up the wedge based on the wedge devname,
520 * not wname.
521 *
522 * Return NULL if the wedge is not found, otherwise return
523 * the wedge's softc. Assign the wedge's unit number to unitp
524 * if unitp is not NULL.
525 */
526 static struct dkwedge_softc *
527 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
528 {
529 struct dkwedge_softc *sc = NULL;
530 u_int unit;
531
532 /* Find our softc. */
533 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
534 rw_enter(&dkwedges_lock, RW_READER);
535 for (unit = 0; unit < ndkwedges; unit++) {
536 if ((sc = dkwedges[unit]) != NULL &&
537 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
538 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
539 break;
540 }
541 }
542 rw_exit(&dkwedges_lock);
543 if (unit == ndkwedges)
544 return NULL;
545
546 if (unitp != NULL)
547 *unitp = unit;
548
549 return sc;
550 }
551
552 /*
553 * dkwedge_del: [exported function]
554 *
555 * Delete a disk wedge based on the provided information.
556 * NOTE: We look up the wedge based on the wedge devname,
557 * not wname.
558 */
559 int
560 dkwedge_del(struct dkwedge_info *dkw)
561 {
562 return dkwedge_del1(dkw, 0);
563 }
564
565 int
566 dkwedge_del1(struct dkwedge_info *dkw, int flags)
567 {
568 struct dkwedge_softc *sc = NULL;
569
570 /* Find our softc. */
571 if ((sc = dkwedge_find(dkw, NULL)) == NULL)
572 return (ESRCH);
573
574 return config_detach(sc->sc_dev, flags);
575 }
576
577 static int
578 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags)
579 {
580 struct disk *dk = &sc->sc_dk;
581 int rc;
582
583 rc = 0;
584 mutex_enter(&dk->dk_openlock);
585 if (dk->dk_openmask == 0) {
586 /* nothing to do */
587 } else if ((flags & DETACH_FORCE) == 0) {
588 rc = EBUSY;
589 } else {
590 mutex_enter(&sc->sc_parent->dk_rawlock);
591 dklastclose(sc);
592 mutex_exit(&sc->sc_parent->dk_rawlock);
593 }
594 mutex_exit(&sc->sc_dk.dk_openlock);
595
596 return rc;
597 }
598
599 /*
600 * dkwedge_detach:
601 *
602 * Autoconfiguration detach function for pseudo-device glue.
603 */
604 static int
605 dkwedge_detach(device_t self, int flags)
606 {
607 struct dkwedge_softc *sc = NULL;
608 u_int unit;
609 int bmaj, cmaj, rc;
610
611 rw_enter(&dkwedges_lock, RW_WRITER);
612 for (unit = 0; unit < ndkwedges; unit++) {
613 if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
614 break;
615 }
616 if (unit == ndkwedges)
617 rc = ENXIO;
618 else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) {
619 /* Mark the wedge as dying. */
620 sc->sc_state = DKW_STATE_DYING;
621 }
622 rw_exit(&dkwedges_lock);
623
624 if (rc != 0)
625 return rc;
626
627 pmf_device_deregister(self);
628
629 /* Locate the wedge major numbers. */
630 bmaj = bdevsw_lookup_major(&dk_bdevsw);
631 cmaj = cdevsw_lookup_major(&dk_cdevsw);
632
633 /* Kill any pending restart. */
634 callout_stop(&sc->sc_restart_ch);
635
636 /*
637 * dkstart() will kill any queued buffers now that the
638 * state of the wedge is not RUNNING. Once we've done
639 * that, wait for any other pending I/O to complete.
640 */
641 dkstart(sc);
642 dkwedge_wait_drain(sc);
643
644 /* Nuke the vnodes for any open instances. */
645 vdevgone(bmaj, unit, unit, VBLK);
646 vdevgone(cmaj, unit, unit, VCHR);
647
648 /* Clean up the parent. */
649 dkwedge_cleanup_parent(sc, flags | DETACH_FORCE);
650
651 /* Announce our departure. */
652 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
653 sc->sc_parent->dk_name,
654 sc->sc_wname); /* XXX Unicode */
655
656 mutex_enter(&sc->sc_parent->dk_openlock);
657 sc->sc_parent->dk_nwedges--;
658 LIST_REMOVE(sc, sc_plink);
659 mutex_exit(&sc->sc_parent->dk_openlock);
660
661 /* Delete our buffer queue. */
662 bufq_free(sc->sc_bufq);
663
664 /* Detach from the disk list. */
665 disk_detach(&sc->sc_dk);
666 disk_destroy(&sc->sc_dk);
667
668 /* Poof. */
669 rw_enter(&dkwedges_lock, RW_WRITER);
670 dkwedges[unit] = NULL;
671 sc->sc_state = DKW_STATE_DEAD;
672 rw_exit(&dkwedges_lock);
673
674 mutex_destroy(&sc->sc_iolock);
675 cv_destroy(&sc->sc_dkdrn);
676
677 free(sc, M_DKWEDGE);
678
679 return 0;
680 }
681
682 /*
683 * dkwedge_delall: [exported function]
684 *
685 * Delete all of the wedges on the specified disk. Used when
686 * a disk is being detached.
687 */
688 void
689 dkwedge_delall(struct disk *pdk)
690 {
691 dkwedge_delall1(pdk, false);
692 }
693
694 static void
695 dkwedge_delall1(struct disk *pdk, bool idleonly)
696 {
697 struct dkwedge_info dkw;
698 struct dkwedge_softc *sc;
699 int flags;
700
701 flags = DETACH_QUIET;
702 if (!idleonly) flags |= DETACH_FORCE;
703
704 for (;;) {
705 mutex_enter(&pdk->dk_openlock);
706 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
707 if (!idleonly || sc->sc_dk.dk_openmask == 0)
708 break;
709 }
710 if (sc == NULL) {
711 KASSERT(idleonly || pdk->dk_nwedges == 0);
712 mutex_exit(&pdk->dk_openlock);
713 return;
714 }
715 strlcpy(dkw.dkw_parent, pdk->dk_name, sizeof(dkw.dkw_parent));
716 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
717 sizeof(dkw.dkw_devname));
718 mutex_exit(&pdk->dk_openlock);
719 (void) dkwedge_del1(&dkw, flags);
720 }
721 }
722
723 /*
724 * dkwedge_list: [exported function]
725 *
726 * List all of the wedges on a particular disk.
727 */
728 int
729 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
730 {
731 struct uio uio;
732 struct iovec iov;
733 struct dkwedge_softc *sc;
734 struct dkwedge_info dkw;
735 int error = 0;
736
737 iov.iov_base = dkwl->dkwl_buf;
738 iov.iov_len = dkwl->dkwl_bufsize;
739
740 uio.uio_iov = &iov;
741 uio.uio_iovcnt = 1;
742 uio.uio_offset = 0;
743 uio.uio_resid = dkwl->dkwl_bufsize;
744 uio.uio_rw = UIO_READ;
745 KASSERT(l == curlwp);
746 uio.uio_vmspace = l->l_proc->p_vmspace;
747
748 dkwl->dkwl_ncopied = 0;
749
750 mutex_enter(&pdk->dk_openlock);
751 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
752 if (uio.uio_resid < sizeof(dkw))
753 break;
754
755 if (sc->sc_state != DKW_STATE_RUNNING)
756 continue;
757
758 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
759 sizeof(dkw.dkw_devname));
760 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
761 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
762 strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
763 sizeof(dkw.dkw_parent));
764 dkw.dkw_offset = sc->sc_offset;
765 dkw.dkw_size = sc->sc_size;
766 strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
767
768 error = uiomove(&dkw, sizeof(dkw), &uio);
769 if (error)
770 break;
771 dkwl->dkwl_ncopied++;
772 }
773 dkwl->dkwl_nwedges = pdk->dk_nwedges;
774 mutex_exit(&pdk->dk_openlock);
775
776 return (error);
777 }
778
779 device_t
780 dkwedge_find_by_wname(const char *wname)
781 {
782 device_t dv = NULL;
783 struct dkwedge_softc *sc;
784 int i;
785
786 rw_enter(&dkwedges_lock, RW_WRITER);
787 for (i = 0; i < ndkwedges; i++) {
788 if ((sc = dkwedges[i]) == NULL)
789 continue;
790 if (strcmp(sc->sc_wname, wname) == 0) {
791 if (dv != NULL) {
792 printf(
793 "WARNING: double match for wedge name %s "
794 "(%s, %s)\n", wname, device_xname(dv),
795 device_xname(sc->sc_dev));
796 continue;
797 }
798 dv = sc->sc_dev;
799 }
800 }
801 rw_exit(&dkwedges_lock);
802 return dv;
803 }
804
805 device_t
806 dkwedge_find_by_parent(const char *name, size_t *i)
807 {
808 rw_enter(&dkwedges_lock, RW_WRITER);
809 for (; *i < (size_t)ndkwedges; (*i)++) {
810 struct dkwedge_softc *sc;
811 if ((sc = dkwedges[*i]) == NULL)
812 continue;
813 if (strcmp(sc->sc_parent->dk_name, name) != 0)
814 continue;
815 rw_exit(&dkwedges_lock);
816 return sc->sc_dev;
817 }
818 rw_exit(&dkwedges_lock);
819 return NULL;
820 }
821
822 void
823 dkwedge_print_wnames(void)
824 {
825 struct dkwedge_softc *sc;
826 int i;
827
828 rw_enter(&dkwedges_lock, RW_WRITER);
829 for (i = 0; i < ndkwedges; i++) {
830 if ((sc = dkwedges[i]) == NULL)
831 continue;
832 printf(" wedge:%s", sc->sc_wname);
833 }
834 rw_exit(&dkwedges_lock);
835 }
836
837 /*
838 * We need a dummy object to stuff into the dkwedge discovery method link
839 * set to ensure that there is always at least one object in the set.
840 */
841 static struct dkwedge_discovery_method dummy_discovery_method;
842 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
843
844 /*
845 * dkwedge_init:
846 *
847 * Initialize the disk wedge subsystem.
848 */
849 void
850 dkwedge_init(void)
851 {
852 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
853 struct dkwedge_discovery_method * const *ddmp;
854 struct dkwedge_discovery_method *lddm, *ddm;
855
856 rw_init(&dkwedges_lock);
857 rw_init(&dkwedge_discovery_methods_lock);
858
859 if (config_cfdriver_attach(&dk_cd) != 0)
860 panic("dkwedge: unable to attach cfdriver");
861 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
862 panic("dkwedge: unable to attach cfattach");
863
864 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
865
866 LIST_INIT(&dkwedge_discovery_methods);
867
868 __link_set_foreach(ddmp, dkwedge_methods) {
869 ddm = *ddmp;
870 if (ddm == &dummy_discovery_method)
871 continue;
872 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
873 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
874 ddm, ddm_list);
875 continue;
876 }
877 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
878 if (ddm->ddm_priority == lddm->ddm_priority) {
879 aprint_error("dk-method-%s: method \"%s\" "
880 "already exists at priority %d\n",
881 ddm->ddm_name, lddm->ddm_name,
882 lddm->ddm_priority);
883 /* Not inserted. */
884 break;
885 }
886 if (ddm->ddm_priority < lddm->ddm_priority) {
887 /* Higher priority; insert before. */
888 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
889 break;
890 }
891 if (LIST_NEXT(lddm, ddm_list) == NULL) {
892 /* Last one; insert after. */
893 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
894 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
895 break;
896 }
897 }
898 }
899
900 rw_exit(&dkwedge_discovery_methods_lock);
901 }
902
903 #ifdef DKWEDGE_AUTODISCOVER
904 int dkwedge_autodiscover = 1;
905 #else
906 int dkwedge_autodiscover = 0;
907 #endif
908
909 /*
910 * dkwedge_discover: [exported function]
911 *
912 * Discover the wedges on a newly attached disk.
913 * Remove all unused wedges on the disk first.
914 */
915 void
916 dkwedge_discover(struct disk *pdk)
917 {
918 struct dkwedge_discovery_method *ddm;
919 struct vnode *vp;
920 int error;
921 dev_t pdev;
922
923 /*
924 * Require people playing with wedges to enable this explicitly.
925 */
926 if (dkwedge_autodiscover == 0)
927 return;
928
929 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
930
931 /*
932 * Use the character device for scanning, the block device
933 * is busy if there are already wedges attached.
934 */
935 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
936 if (error) {
937 aprint_error("%s: unable to compute pdev, error = %d\n",
938 pdk->dk_name, error);
939 goto out;
940 }
941
942 error = cdevvp(pdev, &vp);
943 if (error) {
944 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
945 pdk->dk_name, error);
946 goto out;
947 }
948
949 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
950 if (error) {
951 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
952 pdk->dk_name, error);
953 vrele(vp);
954 goto out;
955 }
956
957 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
958 if (error) {
959 if (error != ENODEV)
960 aprint_error("%s: unable to open device, error = %d\n",
961 pdk->dk_name, error);
962 vput(vp);
963 goto out;
964 }
965 VOP_UNLOCK(vp);
966
967 /*
968 * Remove unused wedges
969 */
970 dkwedge_delall1(pdk, true);
971
972 /*
973 * For each supported partition map type, look to see if
974 * this map type exists. If so, parse it and add the
975 * corresponding wedges.
976 */
977 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
978 error = (*ddm->ddm_discover)(pdk, vp);
979 if (error == 0) {
980 /* Successfully created wedges; we're done. */
981 break;
982 }
983 }
984
985 error = vn_close(vp, FREAD, NOCRED);
986 if (error) {
987 aprint_error("%s: unable to close device, error = %d\n",
988 pdk->dk_name, error);
989 /* We'll just assume the vnode has been cleaned up. */
990 }
991
992 out:
993 rw_exit(&dkwedge_discovery_methods_lock);
994 }
995
996 /*
997 * dkwedge_read:
998 *
999 * Read some data from the specified disk, used for
1000 * partition discovery.
1001 */
1002 int
1003 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
1004 void *tbuf, size_t len)
1005 {
1006 buf_t *bp;
1007 int error;
1008 bool isopen;
1009 dev_t bdev;
1010 struct vnode *bdvp;
1011
1012 /*
1013 * The kernel cannot read from a character device vnode
1014 * as physio() only handles user memory.
1015 *
1016 * If the block device has already been opened by a wedge
1017 * use that vnode and temporarily bump the open counter.
1018 *
1019 * Otherwise try to open the block device.
1020 */
1021
1022 bdev = devsw_chr2blk(vp->v_rdev);
1023
1024 mutex_enter(&pdk->dk_rawlock);
1025 if (pdk->dk_rawopens != 0) {
1026 KASSERT(pdk->dk_rawvp != NULL);
1027 isopen = true;
1028 ++pdk->dk_rawopens;
1029 bdvp = pdk->dk_rawvp;
1030 error = 0;
1031 } else {
1032 isopen = false;
1033 error = dk_open_parent(bdev, FREAD, &bdvp);
1034 }
1035 mutex_exit(&pdk->dk_rawlock);
1036
1037 if (error)
1038 return error;
1039
1040 bp = getiobuf(bdvp, true);
1041 bp->b_flags = B_READ;
1042 bp->b_cflags = BC_BUSY;
1043 bp->b_dev = bdev;
1044 bp->b_data = tbuf;
1045 bp->b_bufsize = bp->b_bcount = len;
1046 bp->b_blkno = blkno;
1047 bp->b_cylinder = 0;
1048 bp->b_error = 0;
1049
1050 VOP_STRATEGY(bdvp, bp);
1051 error = biowait(bp);
1052 putiobuf(bp);
1053
1054 mutex_enter(&pdk->dk_rawlock);
1055 if (isopen) {
1056 --pdk->dk_rawopens;
1057 } else {
1058 dk_close_parent(bdvp, FREAD);
1059 }
1060 mutex_exit(&pdk->dk_rawlock);
1061
1062 return error;
1063 }
1064
1065 /*
1066 * dkwedge_lookup:
1067 *
1068 * Look up a dkwedge_softc based on the provided dev_t.
1069 */
1070 static struct dkwedge_softc *
1071 dkwedge_lookup(dev_t dev)
1072 {
1073 int unit = minor(dev);
1074
1075 if (unit >= ndkwedges)
1076 return (NULL);
1077
1078 KASSERT(dkwedges != NULL);
1079
1080 return (dkwedges[unit]);
1081 }
1082
1083 static int
1084 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
1085 {
1086 struct vnode *vp;
1087 int error;
1088
1089 error = bdevvp(dev, &vp);
1090 if (error)
1091 return error;
1092
1093 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1094 if (error) {
1095 vrele(vp);
1096 return error;
1097 }
1098 error = VOP_OPEN(vp, mode, NOCRED);
1099 if (error) {
1100 vput(vp);
1101 return error;
1102 }
1103
1104 /* VOP_OPEN() doesn't do this for us. */
1105 if (mode & FWRITE) {
1106 mutex_enter(vp->v_interlock);
1107 vp->v_writecount++;
1108 mutex_exit(vp->v_interlock);
1109 }
1110
1111 VOP_UNLOCK(vp);
1112
1113 *vpp = vp;
1114
1115 return 0;
1116 }
1117
1118 static int
1119 dk_close_parent(struct vnode *vp, int mode)
1120 {
1121 int error;
1122
1123 error = vn_close(vp, mode, NOCRED);
1124 return error;
1125 }
1126
1127 /*
1128 * dkopen: [devsw entry point]
1129 *
1130 * Open a wedge.
1131 */
1132 static int
1133 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
1134 {
1135 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1136 int error = 0;
1137
1138 if (sc == NULL)
1139 return (ENODEV);
1140 if (sc->sc_state != DKW_STATE_RUNNING)
1141 return (ENXIO);
1142
1143 /*
1144 * We go through a complicated little dance to only open the parent
1145 * vnode once per wedge, no matter how many times the wedge is
1146 * opened. The reason? We see one dkopen() per open call, but
1147 * only dkclose() on the last close.
1148 */
1149 mutex_enter(&sc->sc_dk.dk_openlock);
1150 mutex_enter(&sc->sc_parent->dk_rawlock);
1151 if (sc->sc_dk.dk_openmask == 0) {
1152 error = dkfirstopen(sc, flags);
1153 if (error)
1154 goto popen_fail;
1155 }
1156 KASSERT(sc->sc_mode != 0);
1157 if (flags & ~sc->sc_mode & FWRITE) {
1158 error = EROFS;
1159 goto popen_fail;
1160 }
1161 if (fmt == S_IFCHR)
1162 sc->sc_dk.dk_copenmask |= 1;
1163 else
1164 sc->sc_dk.dk_bopenmask |= 1;
1165 sc->sc_dk.dk_openmask =
1166 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1167
1168 popen_fail:
1169 mutex_exit(&sc->sc_parent->dk_rawlock);
1170 mutex_exit(&sc->sc_dk.dk_openlock);
1171 return (error);
1172 }
1173
1174 static int
1175 dkfirstopen(struct dkwedge_softc *sc, int flags)
1176 {
1177 struct dkwedge_softc *nsc;
1178 struct vnode *vp;
1179 int mode;
1180 int error;
1181
1182 KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
1183 KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
1184
1185 if (sc->sc_parent->dk_rawopens == 0) {
1186 KASSERT(sc->sc_parent->dk_rawvp == NULL);
1187 /*
1188 * Try open read-write. If this fails for EROFS
1189 * and wedge is read-only, retry to open read-only.
1190 */
1191 mode = FREAD | FWRITE;
1192 error = dk_open_parent(sc->sc_pdev, mode, &vp);
1193 if (error == EROFS && (flags & FWRITE) == 0) {
1194 mode &= ~FWRITE;
1195 error = dk_open_parent(sc->sc_pdev, mode, &vp);
1196 }
1197 if (error)
1198 return error;
1199 sc->sc_parent->dk_rawvp = vp;
1200 } else {
1201 /*
1202 * Retrieve mode from an already opened wedge.
1203 *
1204 * At this point, dk_rawopens is bounded by the number
1205 * of dkwedge devices in the system, which is limited
1206 * by autoconf device numbering to INT_MAX. Since
1207 * dk_rawopens is unsigned, this can't overflow.
1208 */
1209 KASSERT(sc->sc_parent->dk_rawopens < UINT_MAX);
1210 mode = 0;
1211 LIST_FOREACH(nsc, &sc->sc_parent->dk_wedges, sc_plink) {
1212 if (nsc == sc || nsc->sc_dk.dk_openmask == 0)
1213 continue;
1214 mode = nsc->sc_mode;
1215 break;
1216 }
1217 }
1218 sc->sc_mode = mode;
1219 sc->sc_parent->dk_rawopens++;
1220
1221 return 0;
1222 }
1223
1224 static void
1225 dklastclose(struct dkwedge_softc *sc)
1226 {
1227
1228 KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
1229 KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
1230 KASSERT(sc->sc_parent->dk_rawopens > 0);
1231 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1232
1233 if (--sc->sc_parent->dk_rawopens == 0) {
1234 struct vnode *const vp = sc->sc_parent->dk_rawvp;
1235 const int mode = sc->sc_mode;
1236
1237 sc->sc_parent->dk_rawvp = NULL;
1238 sc->sc_mode = 0;
1239
1240 dk_close_parent(vp, mode);
1241 }
1242 }
1243
1244 /*
1245 * dkclose: [devsw entry point]
1246 *
1247 * Close a wedge.
1248 */
1249 static int
1250 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1251 {
1252 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1253
1254 if (sc == NULL)
1255 return ENODEV;
1256 if (sc->sc_state != DKW_STATE_RUNNING)
1257 return ENXIO;
1258
1259 mutex_enter(&sc->sc_dk.dk_openlock);
1260 mutex_enter(&sc->sc_parent->dk_rawlock);
1261
1262 KASSERT(sc->sc_dk.dk_openmask != 0);
1263
1264 if (fmt == S_IFCHR)
1265 sc->sc_dk.dk_copenmask &= ~1;
1266 else
1267 sc->sc_dk.dk_bopenmask &= ~1;
1268 sc->sc_dk.dk_openmask =
1269 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1270
1271 if (sc->sc_dk.dk_openmask == 0) {
1272 dklastclose(sc);
1273 }
1274
1275 mutex_exit(&sc->sc_parent->dk_rawlock);
1276 mutex_exit(&sc->sc_dk.dk_openlock);
1277
1278 return 0;
1279 }
1280
1281 /*
1282 * dkstragegy: [devsw entry point]
1283 *
1284 * Perform I/O based on the wedge I/O strategy.
1285 */
1286 static void
1287 dkstrategy(struct buf *bp)
1288 {
1289 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1290 uint64_t p_size, p_offset;
1291
1292 if (sc == NULL) {
1293 bp->b_error = ENODEV;
1294 goto done;
1295 }
1296
1297 if (sc->sc_state != DKW_STATE_RUNNING ||
1298 sc->sc_parent->dk_rawvp == NULL) {
1299 bp->b_error = ENXIO;
1300 goto done;
1301 }
1302
1303 /* If it's an empty transfer, wake up the top half now. */
1304 if (bp->b_bcount == 0)
1305 goto done;
1306
1307 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1308 p_size = sc->sc_size << sc->sc_parent->dk_blkshift;
1309
1310 /* Make sure it's in-range. */
1311 if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1312 goto done;
1313
1314 /* Translate it to the parent's raw LBA. */
1315 bp->b_rawblkno = bp->b_blkno + p_offset;
1316
1317 /* Place it in the queue and start I/O on the unit. */
1318 mutex_enter(&sc->sc_iolock);
1319 sc->sc_iopend++;
1320 disk_wait(&sc->sc_dk);
1321 bufq_put(sc->sc_bufq, bp);
1322 mutex_exit(&sc->sc_iolock);
1323
1324 dkstart(sc);
1325 return;
1326
1327 done:
1328 bp->b_resid = bp->b_bcount;
1329 biodone(bp);
1330 }
1331
1332 /*
1333 * dkstart:
1334 *
1335 * Start I/O that has been enqueued on the wedge.
1336 */
1337 static void
1338 dkstart(struct dkwedge_softc *sc)
1339 {
1340 struct vnode *vp;
1341 struct buf *bp, *nbp;
1342
1343 mutex_enter(&sc->sc_iolock);
1344
1345 /* Do as much work as has been enqueued. */
1346 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1347 if (sc->sc_state != DKW_STATE_RUNNING) {
1348 (void) bufq_get(sc->sc_bufq);
1349 if (--sc->sc_iopend == 0)
1350 cv_broadcast(&sc->sc_dkdrn);
1351 mutex_exit(&sc->sc_iolock);
1352 bp->b_error = ENXIO;
1353 bp->b_resid = bp->b_bcount;
1354 biodone(bp);
1355 mutex_enter(&sc->sc_iolock);
1356 continue;
1357 }
1358
1359 /* fetch an I/O buf with sc_iolock dropped */
1360 mutex_exit(&sc->sc_iolock);
1361 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1362 mutex_enter(&sc->sc_iolock);
1363 if (nbp == NULL) {
1364 /*
1365 * No resources to run this request; leave the
1366 * buffer queued up, and schedule a timer to
1367 * restart the queue in 1/2 a second.
1368 */
1369 callout_schedule(&sc->sc_restart_ch, hz / 2);
1370 break;
1371 }
1372
1373 /*
1374 * fetch buf, this can fail if another thread
1375 * has already processed the queue, it can also
1376 * return a completely different buf.
1377 */
1378 bp = bufq_get(sc->sc_bufq);
1379 if (bp == NULL) {
1380 mutex_exit(&sc->sc_iolock);
1381 putiobuf(nbp);
1382 mutex_enter(&sc->sc_iolock);
1383 continue;
1384 }
1385
1386 /* Instrumentation. */
1387 disk_busy(&sc->sc_dk);
1388
1389 /* release lock for VOP_STRATEGY */
1390 mutex_exit(&sc->sc_iolock);
1391
1392 nbp->b_data = bp->b_data;
1393 nbp->b_flags = bp->b_flags;
1394 nbp->b_oflags = bp->b_oflags;
1395 nbp->b_cflags = bp->b_cflags;
1396 nbp->b_iodone = dkiodone;
1397 nbp->b_proc = bp->b_proc;
1398 nbp->b_blkno = bp->b_rawblkno;
1399 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1400 nbp->b_bcount = bp->b_bcount;
1401 nbp->b_private = bp;
1402 BIO_COPYPRIO(nbp, bp);
1403
1404 vp = nbp->b_vp;
1405 if ((nbp->b_flags & B_READ) == 0) {
1406 mutex_enter(vp->v_interlock);
1407 vp->v_numoutput++;
1408 mutex_exit(vp->v_interlock);
1409 }
1410 VOP_STRATEGY(vp, nbp);
1411
1412 mutex_enter(&sc->sc_iolock);
1413 }
1414
1415 mutex_exit(&sc->sc_iolock);
1416 }
1417
1418 /*
1419 * dkiodone:
1420 *
1421 * I/O to a wedge has completed; alert the top half.
1422 */
1423 static void
1424 dkiodone(struct buf *bp)
1425 {
1426 struct buf *obp = bp->b_private;
1427 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1428
1429 if (bp->b_error != 0)
1430 obp->b_error = bp->b_error;
1431 obp->b_resid = bp->b_resid;
1432 putiobuf(bp);
1433
1434 mutex_enter(&sc->sc_iolock);
1435 if (--sc->sc_iopend == 0)
1436 cv_broadcast(&sc->sc_dkdrn);
1437
1438 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1439 obp->b_flags & B_READ);
1440 mutex_exit(&sc->sc_iolock);
1441
1442 biodone(obp);
1443
1444 /* Kick the queue in case there is more work we can do. */
1445 dkstart(sc);
1446 }
1447
1448 /*
1449 * dkrestart:
1450 *
1451 * Restart the work queue after it was stalled due to
1452 * a resource shortage. Invoked via a callout.
1453 */
1454 static void
1455 dkrestart(void *v)
1456 {
1457 struct dkwedge_softc *sc = v;
1458
1459 dkstart(sc);
1460 }
1461
1462 /*
1463 * dkminphys:
1464 *
1465 * Call parent's minphys function.
1466 */
1467 static void
1468 dkminphys(struct buf *bp)
1469 {
1470 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1471 dev_t dev;
1472
1473 dev = bp->b_dev;
1474 bp->b_dev = sc->sc_pdev;
1475 if (sc->sc_parent->dk_driver && sc->sc_parent->dk_driver->d_minphys)
1476 (*sc->sc_parent->dk_driver->d_minphys)(bp);
1477 else
1478 minphys(bp);
1479 bp->b_dev = dev;
1480 }
1481
1482 /*
1483 * dkread: [devsw entry point]
1484 *
1485 * Read from a wedge.
1486 */
1487 static int
1488 dkread(dev_t dev, struct uio *uio, int flags)
1489 {
1490 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1491
1492 if (sc == NULL)
1493 return (ENODEV);
1494 if (sc->sc_state != DKW_STATE_RUNNING)
1495 return (ENXIO);
1496
1497 return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio));
1498 }
1499
1500 /*
1501 * dkwrite: [devsw entry point]
1502 *
1503 * Write to a wedge.
1504 */
1505 static int
1506 dkwrite(dev_t dev, struct uio *uio, int flags)
1507 {
1508 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1509
1510 if (sc == NULL)
1511 return (ENODEV);
1512 if (sc->sc_state != DKW_STATE_RUNNING)
1513 return (ENXIO);
1514
1515 return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio));
1516 }
1517
1518 /*
1519 * dkioctl: [devsw entry point]
1520 *
1521 * Perform an ioctl request on a wedge.
1522 */
1523 static int
1524 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1525 {
1526 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1527 int error = 0;
1528
1529 if (sc == NULL)
1530 return (ENODEV);
1531 if (sc->sc_state != DKW_STATE_RUNNING)
1532 return (ENXIO);
1533 if (sc->sc_parent->dk_rawvp == NULL)
1534 return (ENXIO);
1535
1536 /*
1537 * We pass NODEV instead of our device to indicate we don't
1538 * want to handle disklabel ioctls
1539 */
1540 error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
1541 if (error != EPASSTHROUGH)
1542 return (error);
1543
1544 error = 0;
1545
1546 switch (cmd) {
1547 case DIOCGSTRATEGY:
1548 case DIOCGCACHE:
1549 case DIOCCACHESYNC:
1550 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, data, flag,
1551 l != NULL ? l->l_cred : NOCRED);
1552 break;
1553 case DIOCGWEDGEINFO:
1554 {
1555 struct dkwedge_info *dkw = (void *) data;
1556
1557 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1558 sizeof(dkw->dkw_devname));
1559 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1560 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1561 strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
1562 sizeof(dkw->dkw_parent));
1563 dkw->dkw_offset = sc->sc_offset;
1564 dkw->dkw_size = sc->sc_size;
1565 strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
1566
1567 break;
1568 }
1569 case DIOCGSECTORALIGN:
1570 {
1571 struct disk_sectoralign *dsa = data;
1572 uint32_t r;
1573
1574 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, dsa, flag,
1575 l != NULL ? l->l_cred : NOCRED);
1576 if (error)
1577 break;
1578
1579 r = sc->sc_offset % dsa->dsa_alignment;
1580 if (r < dsa->dsa_firstaligned)
1581 dsa->dsa_firstaligned = dsa->dsa_firstaligned - r;
1582 else
1583 dsa->dsa_firstaligned = (dsa->dsa_firstaligned +
1584 dsa->dsa_alignment) - r;
1585 break;
1586 }
1587 default:
1588 error = ENOTTY;
1589 }
1590
1591 return (error);
1592 }
1593
1594 /*
1595 * dkdiscard: [devsw entry point]
1596 *
1597 * Perform a discard-range request on a wedge.
1598 */
1599 static int
1600 dkdiscard(dev_t dev, off_t pos, off_t len)
1601 {
1602 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1603 unsigned shift;
1604 off_t offset, maxlen;
1605 int error;
1606
1607 if (sc == NULL)
1608 return (ENODEV);
1609 if (sc->sc_state != DKW_STATE_RUNNING)
1610 return (ENXIO);
1611 if (sc->sc_parent->dk_rawvp == NULL)
1612 return (ENXIO);
1613
1614 shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
1615 KASSERT(__type_fit(off_t, sc->sc_size));
1616 KASSERT(__type_fit(off_t, sc->sc_offset));
1617 KASSERT(0 <= sc->sc_offset);
1618 KASSERT(sc->sc_size <= (__type_max(off_t) >> shift));
1619 KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - sc->sc_size));
1620 offset = ((off_t)sc->sc_offset << shift);
1621 maxlen = ((off_t)sc->sc_size << shift);
1622
1623 if (len > maxlen)
1624 return (EINVAL);
1625 if (pos > (maxlen - len))
1626 return (EINVAL);
1627
1628 pos += offset;
1629
1630 vn_lock(sc->sc_parent->dk_rawvp, LK_EXCLUSIVE | LK_RETRY);
1631 error = VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
1632 VOP_UNLOCK(sc->sc_parent->dk_rawvp);
1633
1634 return error;
1635 }
1636
1637 /*
1638 * dksize: [devsw entry point]
1639 *
1640 * Query the size of a wedge for the purpose of performing a dump
1641 * or for swapping to.
1642 */
1643 static int
1644 dksize(dev_t dev)
1645 {
1646 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1647 uint64_t p_size;
1648 int rv = -1;
1649
1650 if (sc == NULL)
1651 return (-1);
1652 if (sc->sc_state != DKW_STATE_RUNNING)
1653 return (-1);
1654
1655 mutex_enter(&sc->sc_dk.dk_openlock);
1656 mutex_enter(&sc->sc_parent->dk_rawlock);
1657
1658 /* Our content type is static, no need to open the device. */
1659
1660 p_size = sc->sc_size << sc->sc_parent->dk_blkshift;
1661 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1662 /* Saturate if we are larger than INT_MAX. */
1663 if (p_size > INT_MAX)
1664 rv = INT_MAX;
1665 else
1666 rv = (int) p_size;
1667 }
1668
1669 mutex_exit(&sc->sc_parent->dk_rawlock);
1670 mutex_exit(&sc->sc_dk.dk_openlock);
1671
1672 return (rv);
1673 }
1674
1675 /*
1676 * dkdump: [devsw entry point]
1677 *
1678 * Perform a crash dump to a wedge.
1679 */
1680 static int
1681 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1682 {
1683 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1684 const struct bdevsw *bdev;
1685 uint64_t p_size, p_offset;
1686 int rv = 0;
1687
1688 if (sc == NULL)
1689 return (ENODEV);
1690 if (sc->sc_state != DKW_STATE_RUNNING)
1691 return (ENXIO);
1692
1693 mutex_enter(&sc->sc_dk.dk_openlock);
1694 mutex_enter(&sc->sc_parent->dk_rawlock);
1695
1696 /* Our content type is static, no need to open the device. */
1697
1698 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
1699 strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0 &&
1700 strcmp(sc->sc_ptype, DKW_PTYPE_CGD) != 0) {
1701 rv = ENXIO;
1702 goto out;
1703 }
1704 if (size % DEV_BSIZE != 0) {
1705 rv = EINVAL;
1706 goto out;
1707 }
1708
1709 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1710 p_size = sc->sc_size << sc->sc_parent->dk_blkshift;
1711
1712 if (blkno < 0 || blkno + size / DEV_BSIZE > p_size) {
1713 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1714 "p_size (%" PRIu64 ")\n", __func__, blkno,
1715 size / DEV_BSIZE, p_size);
1716 rv = EINVAL;
1717 goto out;
1718 }
1719
1720 bdev = bdevsw_lookup(sc->sc_pdev);
1721 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + p_offset, va, size);
1722
1723 out:
1724 mutex_exit(&sc->sc_parent->dk_rawlock);
1725 mutex_exit(&sc->sc_dk.dk_openlock);
1726
1727 return rv;
1728 }
1729
1730 /*
1731 * config glue
1732 */
1733
1734 /*
1735 * dkwedge_find_partition
1736 *
1737 * Find wedge corresponding to the specified parent name
1738 * and offset/length.
1739 */
1740 device_t
1741 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
1742 {
1743 struct dkwedge_softc *sc;
1744 int i;
1745 device_t wedge = NULL;
1746
1747 rw_enter(&dkwedges_lock, RW_READER);
1748 for (i = 0; i < ndkwedges; i++) {
1749 if ((sc = dkwedges[i]) == NULL)
1750 continue;
1751 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
1752 sc->sc_offset == startblk &&
1753 sc->sc_size == nblks) {
1754 if (wedge) {
1755 printf("WARNING: double match for boot wedge "
1756 "(%s, %s)\n",
1757 device_xname(wedge),
1758 device_xname(sc->sc_dev));
1759 continue;
1760 }
1761 wedge = sc->sc_dev;
1762 }
1763 }
1764 rw_exit(&dkwedges_lock);
1765
1766 return wedge;
1767 }
1768
1769 const char *
1770 dkwedge_get_parent_name(dev_t dev)
1771 {
1772 /* XXX: perhaps do this in lookup? */
1773 int bmaj = bdevsw_lookup_major(&dk_bdevsw);
1774 int cmaj = cdevsw_lookup_major(&dk_cdevsw);
1775 if (major(dev) != bmaj && major(dev) != cmaj)
1776 return NULL;
1777 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1778 if (sc == NULL)
1779 return NULL;
1780 return sc->sc_parent->dk_name;
1781 }
1782