dk.c revision 1.128 1 /* $NetBSD: dk.c,v 1.128 2023/04/21 18:24:31 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.128 2023/04/21 18:24:31 riastradh Exp $");
34
35 #ifdef _KERNEL_OPT
36 #include "opt_dkwedge.h"
37 #endif
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/errno.h>
43 #include <sys/pool.h>
44 #include <sys/ioctl.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/fcntl.h>
48 #include <sys/buf.h>
49 #include <sys/bufq.h>
50 #include <sys/vnode.h>
51 #include <sys/stat.h>
52 #include <sys/conf.h>
53 #include <sys/callout.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/device.h>
57 #include <sys/kauth.h>
58
59 #include <miscfs/specfs/specdev.h>
60
61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
62
63 typedef enum {
64 DKW_STATE_LARVAL = 0,
65 DKW_STATE_RUNNING = 1,
66 DKW_STATE_DYING = 2,
67 DKW_STATE_DEAD = 666
68 } dkwedge_state_t;
69
70 struct dkwedge_softc {
71 device_t sc_dev; /* pointer to our pseudo-device */
72 struct cfdata sc_cfdata; /* our cfdata structure */
73 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
74
75 dkwedge_state_t sc_state; /* state this wedge is in */
76
77 struct disk *sc_parent; /* parent disk */
78 daddr_t sc_offset; /* LBA offset of wedge in parent */
79 uint64_t sc_size; /* size of wedge in blocks */
80 char sc_ptype[32]; /* partition type */
81 dev_t sc_pdev; /* cached parent's dev_t */
82 /* link on parent's wedge list */
83 LIST_ENTRY(dkwedge_softc) sc_plink;
84
85 struct disk sc_dk; /* our own disk structure */
86 struct bufq_state *sc_bufq; /* buffer queue */
87 struct callout sc_restart_ch; /* callout to restart I/O */
88
89 kmutex_t sc_iolock;
90 kcondvar_t sc_dkdrn;
91 u_int sc_iopend; /* I/Os pending */
92 int sc_mode; /* parent open mode */
93 };
94
95 static void dkstart(struct dkwedge_softc *);
96 static void dkiodone(struct buf *);
97 static void dkrestart(void *);
98 static void dkminphys(struct buf *);
99
100 static int dkfirstopen(struct dkwedge_softc *, int);
101 static void dklastclose(struct dkwedge_softc *);
102 static int dkwedge_cleanup_parent(struct dkwedge_softc *, int);
103 static int dkwedge_detach(device_t, int);
104 static void dkwedge_delall1(struct disk *, bool);
105 static int dkwedge_del1(struct dkwedge_info *, int);
106 static int dk_open_parent(dev_t, int, struct vnode **);
107 static int dk_close_parent(struct vnode *, int);
108
109 static dev_type_open(dkopen);
110 static dev_type_close(dkclose);
111 static dev_type_read(dkread);
112 static dev_type_write(dkwrite);
113 static dev_type_ioctl(dkioctl);
114 static dev_type_strategy(dkstrategy);
115 static dev_type_dump(dkdump);
116 static dev_type_size(dksize);
117 static dev_type_discard(dkdiscard);
118
119 const struct bdevsw dk_bdevsw = {
120 .d_open = dkopen,
121 .d_close = dkclose,
122 .d_strategy = dkstrategy,
123 .d_ioctl = dkioctl,
124 .d_dump = dkdump,
125 .d_psize = dksize,
126 .d_discard = dkdiscard,
127 .d_flag = D_DISK | D_MPSAFE
128 };
129
130 const struct cdevsw dk_cdevsw = {
131 .d_open = dkopen,
132 .d_close = dkclose,
133 .d_read = dkread,
134 .d_write = dkwrite,
135 .d_ioctl = dkioctl,
136 .d_stop = nostop,
137 .d_tty = notty,
138 .d_poll = nopoll,
139 .d_mmap = nommap,
140 .d_kqfilter = nokqfilter,
141 .d_discard = dkdiscard,
142 .d_flag = D_DISK | D_MPSAFE
143 };
144
145 static struct dkwedge_softc **dkwedges;
146 static u_int ndkwedges;
147 static krwlock_t dkwedges_lock;
148
149 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
150 static krwlock_t dkwedge_discovery_methods_lock;
151
152 /*
153 * dkwedge_match:
154 *
155 * Autoconfiguration match function for pseudo-device glue.
156 */
157 static int
158 dkwedge_match(device_t parent, cfdata_t match,
159 void *aux)
160 {
161
162 /* Pseudo-device; always present. */
163 return 1;
164 }
165
166 /*
167 * dkwedge_attach:
168 *
169 * Autoconfiguration attach function for pseudo-device glue.
170 */
171 static void
172 dkwedge_attach(device_t parent, device_t self,
173 void *aux)
174 {
175
176 if (!pmf_device_register(self, NULL, NULL))
177 aprint_error_dev(self, "couldn't establish power handler\n");
178 }
179
180 CFDRIVER_DECL(dk, DV_DISK, NULL);
181 CFATTACH_DECL3_NEW(dk, 0,
182 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
183 DVF_DETACH_SHUTDOWN);
184
185 /*
186 * dkwedge_wait_drain:
187 *
188 * Wait for I/O on the wedge to drain.
189 */
190 static void
191 dkwedge_wait_drain(struct dkwedge_softc *sc)
192 {
193
194 mutex_enter(&sc->sc_iolock);
195 while (sc->sc_iopend != 0)
196 cv_wait(&sc->sc_dkdrn, &sc->sc_iolock);
197 mutex_exit(&sc->sc_iolock);
198 }
199
200 /*
201 * dkwedge_compute_pdev:
202 *
203 * Compute the parent disk's dev_t.
204 */
205 static int
206 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
207 {
208 const char *name, *cp;
209 devmajor_t pmaj;
210 int punit;
211 char devname[16];
212
213 name = pname;
214 switch (type) {
215 case VBLK:
216 pmaj = devsw_name2blk(name, devname, sizeof(devname));
217 break;
218 case VCHR:
219 pmaj = devsw_name2chr(name, devname, sizeof(devname));
220 break;
221 default:
222 pmaj = NODEVMAJOR;
223 break;
224 }
225 if (pmaj == NODEVMAJOR)
226 return ENODEV;
227
228 name += strlen(devname);
229 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
230 punit = (punit * 10) + (*cp - '0');
231 if (cp == name) {
232 /* Invalid parent disk name. */
233 return ENODEV;
234 }
235
236 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
237
238 return 0;
239 }
240
241 /*
242 * dkwedge_array_expand:
243 *
244 * Expand the dkwedges array.
245 *
246 * Releases and reacquires dkwedges_lock as a writer.
247 */
248 static int
249 dkwedge_array_expand(void)
250 {
251
252 const unsigned incr = 16;
253 unsigned newcnt, oldcnt;
254 struct dkwedge_softc **newarray = NULL, **oldarray = NULL;
255
256 KASSERT(rw_write_held(&dkwedges_lock));
257
258 oldcnt = ndkwedges;
259 oldarray = dkwedges;
260
261 if (oldcnt >= INT_MAX - incr)
262 return ENFILE; /* XXX */
263 newcnt = oldcnt + incr;
264
265 rw_exit(&dkwedges_lock);
266 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
267 M_WAITOK|M_ZERO);
268 rw_enter(&dkwedges_lock, RW_WRITER);
269
270 if (ndkwedges != oldcnt || dkwedges != oldarray) {
271 oldarray = NULL; /* already recycled */
272 goto out;
273 }
274
275 if (oldarray != NULL)
276 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
277 dkwedges = newarray;
278 newarray = NULL; /* transferred to dkwedges */
279 ndkwedges = newcnt;
280
281 out: rw_exit(&dkwedges_lock);
282 if (oldarray != NULL)
283 free(oldarray, M_DKWEDGE);
284 if (newarray != NULL)
285 free(newarray, M_DKWEDGE);
286 rw_enter(&dkwedges_lock, RW_WRITER);
287 return 0;
288 }
289
290 static void
291 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
292 {
293 struct disk *dk = &sc->sc_dk;
294 struct disk_geom *dg = &dk->dk_geom;
295
296 memset(dg, 0, sizeof(*dg));
297
298 dg->dg_secperunit = sc->sc_size;
299 dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
300
301 /* fake numbers, 1 cylinder is 1 MB with default sector size */
302 dg->dg_nsectors = 32;
303 dg->dg_ntracks = 64;
304 dg->dg_ncylinders = dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
305
306 disk_set_info(sc->sc_dev, dk, NULL);
307 }
308
309 /*
310 * dkwedge_add: [exported function]
311 *
312 * Add a disk wedge based on the provided information.
313 *
314 * The incoming dkw_devname[] is ignored, instead being
315 * filled in and returned to the caller.
316 */
317 int
318 dkwedge_add(struct dkwedge_info *dkw)
319 {
320 struct dkwedge_softc *sc, *lsc;
321 struct disk *pdk;
322 u_int unit;
323 int error;
324 dev_t pdev;
325
326 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
327 pdk = disk_find(dkw->dkw_parent);
328 if (pdk == NULL)
329 return ENODEV;
330
331 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
332 if (error)
333 return error;
334
335 if (dkw->dkw_offset < 0)
336 return EINVAL;
337
338 /*
339 * Check for an existing wedge at the same disk offset. Allow
340 * updating a wedge if the only change is the size, and the new
341 * size is larger than the old.
342 */
343 sc = NULL;
344 mutex_enter(&pdk->dk_openlock);
345 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
346 if (lsc->sc_offset != dkw->dkw_offset)
347 continue;
348 if (strcmp(lsc->sc_wname, dkw->dkw_wname) != 0)
349 break;
350 if (strcmp(lsc->sc_ptype, dkw->dkw_ptype) != 0)
351 break;
352 if (lsc->sc_size > dkw->dkw_size)
353 break;
354
355 sc = lsc;
356 sc->sc_size = dkw->dkw_size;
357 dk_set_geometry(sc, pdk);
358
359 break;
360 }
361 mutex_exit(&pdk->dk_openlock);
362
363 if (sc != NULL)
364 goto announce;
365
366 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
367 sc->sc_state = DKW_STATE_LARVAL;
368 sc->sc_parent = pdk;
369 sc->sc_pdev = pdev;
370 sc->sc_offset = dkw->dkw_offset;
371 sc->sc_size = dkw->dkw_size;
372
373 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
374 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
375
376 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
377 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
378
379 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
380
381 callout_init(&sc->sc_restart_ch, 0);
382 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
383
384 mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
385 cv_init(&sc->sc_dkdrn, "dkdrn");
386
387 /*
388 * Wedge will be added; increment the wedge count for the parent.
389 * Only allow this to happen if RAW_PART is the only thing open.
390 */
391 mutex_enter(&pdk->dk_openlock);
392 if (pdk->dk_openmask & ~(1 << RAW_PART))
393 error = EBUSY;
394 else {
395 /* Check for wedge overlap. */
396 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
397 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
398 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
399
400 if (sc->sc_offset >= lsc->sc_offset &&
401 sc->sc_offset <= llastblk) {
402 /* Overlaps the tail of the existing wedge. */
403 break;
404 }
405 if (lastblk >= lsc->sc_offset &&
406 lastblk <= llastblk) {
407 /* Overlaps the head of the existing wedge. */
408 break;
409 }
410 }
411 if (lsc != NULL) {
412 if (sc->sc_offset == lsc->sc_offset &&
413 sc->sc_size == lsc->sc_size &&
414 strcmp(sc->sc_wname, lsc->sc_wname) == 0)
415 error = EEXIST;
416 else
417 error = EINVAL;
418 } else {
419 pdk->dk_nwedges++;
420 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
421 }
422 }
423 mutex_exit(&pdk->dk_openlock);
424 if (error) {
425 cv_destroy(&sc->sc_dkdrn);
426 mutex_destroy(&sc->sc_iolock);
427 bufq_free(sc->sc_bufq);
428 free(sc, M_DKWEDGE);
429 return error;
430 }
431
432 /* Fill in our cfdata for the pseudo-device glue. */
433 sc->sc_cfdata.cf_name = dk_cd.cd_name;
434 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
435 /* sc->sc_cfdata.cf_unit set below */
436 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
437
438 /* Insert the larval wedge into the array. */
439 rw_enter(&dkwedges_lock, RW_WRITER);
440 for (error = 0;;) {
441 struct dkwedge_softc **scpp;
442
443 /*
444 * Check for a duplicate wname while searching for
445 * a slot.
446 */
447 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
448 if (dkwedges[unit] == NULL) {
449 if (scpp == NULL) {
450 scpp = &dkwedges[unit];
451 sc->sc_cfdata.cf_unit = unit;
452 }
453 } else {
454 /* XXX Unicode. */
455 if (strcmp(dkwedges[unit]->sc_wname,
456 sc->sc_wname) == 0) {
457 error = EEXIST;
458 break;
459 }
460 }
461 }
462 if (error)
463 break;
464 KASSERT(unit == ndkwedges);
465 if (scpp == NULL) {
466 error = dkwedge_array_expand();
467 if (error)
468 break;
469 } else {
470 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
471 *scpp = sc;
472 break;
473 }
474 }
475 rw_exit(&dkwedges_lock);
476 if (error) {
477 mutex_enter(&pdk->dk_openlock);
478 pdk->dk_nwedges--;
479 LIST_REMOVE(sc, sc_plink);
480 mutex_exit(&pdk->dk_openlock);
481
482 cv_destroy(&sc->sc_dkdrn);
483 mutex_destroy(&sc->sc_iolock);
484 bufq_free(sc->sc_bufq);
485 free(sc, M_DKWEDGE);
486 return error;
487 }
488
489 /*
490 * Now that we know the unit #, attach a pseudo-device for
491 * this wedge instance. This will provide us with the
492 * device_t necessary for glue to other parts of the system.
493 *
494 * This should never fail, unless we're almost totally out of
495 * memory.
496 */
497 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
498 aprint_error("%s%u: unable to attach pseudo-device\n",
499 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
500
501 rw_enter(&dkwedges_lock, RW_WRITER);
502 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
503 rw_exit(&dkwedges_lock);
504
505 mutex_enter(&pdk->dk_openlock);
506 pdk->dk_nwedges--;
507 LIST_REMOVE(sc, sc_plink);
508 mutex_exit(&pdk->dk_openlock);
509
510 cv_destroy(&sc->sc_dkdrn);
511 mutex_destroy(&sc->sc_iolock);
512 bufq_free(sc->sc_bufq);
513 free(sc, M_DKWEDGE);
514 return ENOMEM;
515 }
516
517 /*
518 * XXX Really ought to make the disk_attach() and the changing
519 * of state to RUNNING atomic.
520 */
521
522 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
523 dk_set_geometry(sc, pdk);
524 disk_attach(&sc->sc_dk);
525
526 /* Disk wedge is ready for use! */
527 sc->sc_state = DKW_STATE_RUNNING;
528
529 announce:
530 /* Announce our arrival. */
531 aprint_normal(
532 "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
533 device_xname(sc->sc_dev), pdk->dk_name,
534 sc->sc_wname, /* XXX Unicode */
535 sc->sc_size, sc->sc_offset,
536 sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
537
538 /* Return the devname to the caller. */
539 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
540 sizeof(dkw->dkw_devname));
541
542 return 0;
543 }
544
545 /*
546 * dkwedge_find:
547 *
548 * Lookup a disk wedge based on the provided information.
549 * NOTE: We look up the wedge based on the wedge devname,
550 * not wname.
551 *
552 * Return NULL if the wedge is not found, otherwise return
553 * the wedge's softc. Assign the wedge's unit number to unitp
554 * if unitp is not NULL.
555 */
556 static struct dkwedge_softc *
557 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
558 {
559 struct dkwedge_softc *sc = NULL;
560 u_int unit;
561
562 /* Find our softc. */
563 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
564 rw_enter(&dkwedges_lock, RW_READER);
565 for (unit = 0; unit < ndkwedges; unit++) {
566 if ((sc = dkwedges[unit]) != NULL &&
567 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
568 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
569 break;
570 }
571 }
572 rw_exit(&dkwedges_lock);
573 if (unit == ndkwedges)
574 return NULL;
575
576 if (unitp != NULL)
577 *unitp = unit;
578
579 return sc;
580 }
581
582 /*
583 * dkwedge_del: [exported function]
584 *
585 * Delete a disk wedge based on the provided information.
586 * NOTE: We look up the wedge based on the wedge devname,
587 * not wname.
588 */
589 int
590 dkwedge_del(struct dkwedge_info *dkw)
591 {
592 return dkwedge_del1(dkw, 0);
593 }
594
595 int
596 dkwedge_del1(struct dkwedge_info *dkw, int flags)
597 {
598 struct dkwedge_softc *sc = NULL;
599
600 /* Find our softc. */
601 if ((sc = dkwedge_find(dkw, NULL)) == NULL)
602 return ESRCH;
603
604 return config_detach(sc->sc_dev, flags);
605 }
606
607 static int
608 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags)
609 {
610 struct disk *dk = &sc->sc_dk;
611 int rc;
612
613 rc = 0;
614 mutex_enter(&dk->dk_openlock);
615 if (dk->dk_openmask == 0) {
616 /* nothing to do */
617 } else if ((flags & DETACH_FORCE) == 0) {
618 rc = EBUSY;
619 } else {
620 mutex_enter(&sc->sc_parent->dk_rawlock);
621 dklastclose(sc);
622 mutex_exit(&sc->sc_parent->dk_rawlock);
623 }
624 mutex_exit(&sc->sc_dk.dk_openlock);
625
626 return rc;
627 }
628
629 /*
630 * dkwedge_detach:
631 *
632 * Autoconfiguration detach function for pseudo-device glue.
633 */
634 static int
635 dkwedge_detach(device_t self, int flags)
636 {
637 struct dkwedge_softc *sc = NULL;
638 u_int unit;
639 int bmaj, cmaj, rc;
640
641 rw_enter(&dkwedges_lock, RW_WRITER);
642 for (unit = 0; unit < ndkwedges; unit++) {
643 if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
644 break;
645 }
646 if (unit == ndkwedges)
647 rc = ENXIO;
648 else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) {
649 /* Mark the wedge as dying. */
650 sc->sc_state = DKW_STATE_DYING;
651 }
652 rw_exit(&dkwedges_lock);
653
654 if (rc != 0)
655 return rc;
656
657 pmf_device_deregister(self);
658
659 /* Locate the wedge major numbers. */
660 bmaj = bdevsw_lookup_major(&dk_bdevsw);
661 cmaj = cdevsw_lookup_major(&dk_cdevsw);
662
663 /* Kill any pending restart. */
664 callout_stop(&sc->sc_restart_ch);
665
666 /*
667 * dkstart() will kill any queued buffers now that the
668 * state of the wedge is not RUNNING. Once we've done
669 * that, wait for any other pending I/O to complete.
670 */
671 dkstart(sc);
672 dkwedge_wait_drain(sc);
673
674 /* Nuke the vnodes for any open instances. */
675 vdevgone(bmaj, unit, unit, VBLK);
676 vdevgone(cmaj, unit, unit, VCHR);
677
678 /* Clean up the parent. */
679 dkwedge_cleanup_parent(sc, flags | DETACH_FORCE);
680
681 /* Announce our departure. */
682 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
683 sc->sc_parent->dk_name,
684 sc->sc_wname); /* XXX Unicode */
685
686 mutex_enter(&sc->sc_parent->dk_openlock);
687 sc->sc_parent->dk_nwedges--;
688 LIST_REMOVE(sc, sc_plink);
689 mutex_exit(&sc->sc_parent->dk_openlock);
690
691 /* Delete our buffer queue. */
692 bufq_free(sc->sc_bufq);
693
694 /* Detach from the disk list. */
695 disk_detach(&sc->sc_dk);
696 disk_destroy(&sc->sc_dk);
697
698 /* Poof. */
699 rw_enter(&dkwedges_lock, RW_WRITER);
700 dkwedges[unit] = NULL;
701 sc->sc_state = DKW_STATE_DEAD;
702 rw_exit(&dkwedges_lock);
703
704 mutex_destroy(&sc->sc_iolock);
705 cv_destroy(&sc->sc_dkdrn);
706
707 free(sc, M_DKWEDGE);
708
709 return 0;
710 }
711
712 /*
713 * dkwedge_delall: [exported function]
714 *
715 * Delete all of the wedges on the specified disk. Used when
716 * a disk is being detached.
717 */
718 void
719 dkwedge_delall(struct disk *pdk)
720 {
721 dkwedge_delall1(pdk, false);
722 }
723
724 static void
725 dkwedge_delall1(struct disk *pdk, bool idleonly)
726 {
727 struct dkwedge_info dkw;
728 struct dkwedge_softc *sc;
729 int flags;
730
731 flags = DETACH_QUIET;
732 if (!idleonly) flags |= DETACH_FORCE;
733
734 for (;;) {
735 mutex_enter(&pdk->dk_openlock);
736 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
737 if (!idleonly || sc->sc_dk.dk_openmask == 0)
738 break;
739 }
740 if (sc == NULL) {
741 KASSERT(idleonly || pdk->dk_nwedges == 0);
742 mutex_exit(&pdk->dk_openlock);
743 return;
744 }
745 strlcpy(dkw.dkw_parent, pdk->dk_name, sizeof(dkw.dkw_parent));
746 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
747 sizeof(dkw.dkw_devname));
748 mutex_exit(&pdk->dk_openlock);
749 (void) dkwedge_del1(&dkw, flags);
750 }
751 }
752
753 /*
754 * dkwedge_list: [exported function]
755 *
756 * List all of the wedges on a particular disk.
757 */
758 int
759 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
760 {
761 struct uio uio;
762 struct iovec iov;
763 struct dkwedge_softc *sc;
764 struct dkwedge_info dkw;
765 int error = 0;
766
767 iov.iov_base = dkwl->dkwl_buf;
768 iov.iov_len = dkwl->dkwl_bufsize;
769
770 uio.uio_iov = &iov;
771 uio.uio_iovcnt = 1;
772 uio.uio_offset = 0;
773 uio.uio_resid = dkwl->dkwl_bufsize;
774 uio.uio_rw = UIO_READ;
775 KASSERT(l == curlwp);
776 uio.uio_vmspace = l->l_proc->p_vmspace;
777
778 dkwl->dkwl_ncopied = 0;
779
780 mutex_enter(&pdk->dk_openlock);
781 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
782 if (uio.uio_resid < sizeof(dkw))
783 break;
784
785 if (sc->sc_state != DKW_STATE_RUNNING)
786 continue;
787
788 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
789 sizeof(dkw.dkw_devname));
790 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
791 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
792 strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
793 sizeof(dkw.dkw_parent));
794 dkw.dkw_offset = sc->sc_offset;
795 dkw.dkw_size = sc->sc_size;
796 strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
797
798 error = uiomove(&dkw, sizeof(dkw), &uio);
799 if (error)
800 break;
801 dkwl->dkwl_ncopied++;
802 }
803 dkwl->dkwl_nwedges = pdk->dk_nwedges;
804 mutex_exit(&pdk->dk_openlock);
805
806 return error;
807 }
808
809 device_t
810 dkwedge_find_by_wname(const char *wname)
811 {
812 device_t dv = NULL;
813 struct dkwedge_softc *sc;
814 int i;
815
816 rw_enter(&dkwedges_lock, RW_WRITER);
817 for (i = 0; i < ndkwedges; i++) {
818 if ((sc = dkwedges[i]) == NULL)
819 continue;
820 if (strcmp(sc->sc_wname, wname) == 0) {
821 if (dv != NULL) {
822 printf(
823 "WARNING: double match for wedge name %s "
824 "(%s, %s)\n", wname, device_xname(dv),
825 device_xname(sc->sc_dev));
826 continue;
827 }
828 dv = sc->sc_dev;
829 }
830 }
831 rw_exit(&dkwedges_lock);
832 return dv;
833 }
834
835 device_t
836 dkwedge_find_by_parent(const char *name, size_t *i)
837 {
838 rw_enter(&dkwedges_lock, RW_WRITER);
839 for (; *i < (size_t)ndkwedges; (*i)++) {
840 struct dkwedge_softc *sc;
841 if ((sc = dkwedges[*i]) == NULL)
842 continue;
843 if (strcmp(sc->sc_parent->dk_name, name) != 0)
844 continue;
845 rw_exit(&dkwedges_lock);
846 return sc->sc_dev;
847 }
848 rw_exit(&dkwedges_lock);
849 return NULL;
850 }
851
852 void
853 dkwedge_print_wnames(void)
854 {
855 struct dkwedge_softc *sc;
856 int i;
857
858 rw_enter(&dkwedges_lock, RW_WRITER);
859 for (i = 0; i < ndkwedges; i++) {
860 if ((sc = dkwedges[i]) == NULL)
861 continue;
862 printf(" wedge:%s", sc->sc_wname);
863 }
864 rw_exit(&dkwedges_lock);
865 }
866
867 /*
868 * We need a dummy object to stuff into the dkwedge discovery method link
869 * set to ensure that there is always at least one object in the set.
870 */
871 static struct dkwedge_discovery_method dummy_discovery_method;
872 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
873
874 /*
875 * dkwedge_init:
876 *
877 * Initialize the disk wedge subsystem.
878 */
879 void
880 dkwedge_init(void)
881 {
882 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
883 struct dkwedge_discovery_method * const *ddmp;
884 struct dkwedge_discovery_method *lddm, *ddm;
885
886 rw_init(&dkwedges_lock);
887 rw_init(&dkwedge_discovery_methods_lock);
888
889 if (config_cfdriver_attach(&dk_cd) != 0)
890 panic("dkwedge: unable to attach cfdriver");
891 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
892 panic("dkwedge: unable to attach cfattach");
893
894 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
895
896 LIST_INIT(&dkwedge_discovery_methods);
897
898 __link_set_foreach(ddmp, dkwedge_methods) {
899 ddm = *ddmp;
900 if (ddm == &dummy_discovery_method)
901 continue;
902 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
903 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
904 ddm, ddm_list);
905 continue;
906 }
907 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
908 if (ddm->ddm_priority == lddm->ddm_priority) {
909 aprint_error("dk-method-%s: method \"%s\" "
910 "already exists at priority %d\n",
911 ddm->ddm_name, lddm->ddm_name,
912 lddm->ddm_priority);
913 /* Not inserted. */
914 break;
915 }
916 if (ddm->ddm_priority < lddm->ddm_priority) {
917 /* Higher priority; insert before. */
918 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
919 break;
920 }
921 if (LIST_NEXT(lddm, ddm_list) == NULL) {
922 /* Last one; insert after. */
923 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
924 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
925 break;
926 }
927 }
928 }
929
930 rw_exit(&dkwedge_discovery_methods_lock);
931 }
932
933 #ifdef DKWEDGE_AUTODISCOVER
934 int dkwedge_autodiscover = 1;
935 #else
936 int dkwedge_autodiscover = 0;
937 #endif
938
939 /*
940 * dkwedge_discover: [exported function]
941 *
942 * Discover the wedges on a newly attached disk.
943 * Remove all unused wedges on the disk first.
944 */
945 void
946 dkwedge_discover(struct disk *pdk)
947 {
948 struct dkwedge_discovery_method *ddm;
949 struct vnode *vp;
950 int error;
951 dev_t pdev;
952
953 /*
954 * Require people playing with wedges to enable this explicitly.
955 */
956 if (dkwedge_autodiscover == 0)
957 return;
958
959 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
960
961 /*
962 * Use the character device for scanning, the block device
963 * is busy if there are already wedges attached.
964 */
965 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
966 if (error) {
967 aprint_error("%s: unable to compute pdev, error = %d\n",
968 pdk->dk_name, error);
969 goto out;
970 }
971
972 error = cdevvp(pdev, &vp);
973 if (error) {
974 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
975 pdk->dk_name, error);
976 goto out;
977 }
978
979 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
980 if (error) {
981 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
982 pdk->dk_name, error);
983 vrele(vp);
984 goto out;
985 }
986
987 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
988 if (error) {
989 if (error != ENODEV)
990 aprint_error("%s: unable to open device, error = %d\n",
991 pdk->dk_name, error);
992 vput(vp);
993 goto out;
994 }
995 VOP_UNLOCK(vp);
996
997 /*
998 * Remove unused wedges
999 */
1000 dkwedge_delall1(pdk, true);
1001
1002 /*
1003 * For each supported partition map type, look to see if
1004 * this map type exists. If so, parse it and add the
1005 * corresponding wedges.
1006 */
1007 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
1008 error = (*ddm->ddm_discover)(pdk, vp);
1009 if (error == 0) {
1010 /* Successfully created wedges; we're done. */
1011 break;
1012 }
1013 }
1014
1015 error = vn_close(vp, FREAD, NOCRED);
1016 if (error) {
1017 aprint_error("%s: unable to close device, error = %d\n",
1018 pdk->dk_name, error);
1019 /* We'll just assume the vnode has been cleaned up. */
1020 }
1021
1022 out:
1023 rw_exit(&dkwedge_discovery_methods_lock);
1024 }
1025
1026 /*
1027 * dkwedge_read:
1028 *
1029 * Read some data from the specified disk, used for
1030 * partition discovery.
1031 */
1032 int
1033 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
1034 void *tbuf, size_t len)
1035 {
1036 buf_t *bp;
1037 int error;
1038 bool isopen;
1039 dev_t bdev;
1040 struct vnode *bdvp;
1041
1042 /*
1043 * The kernel cannot read from a character device vnode
1044 * as physio() only handles user memory.
1045 *
1046 * If the block device has already been opened by a wedge
1047 * use that vnode and temporarily bump the open counter.
1048 *
1049 * Otherwise try to open the block device.
1050 */
1051
1052 bdev = devsw_chr2blk(vp->v_rdev);
1053
1054 mutex_enter(&pdk->dk_rawlock);
1055 if (pdk->dk_rawopens != 0) {
1056 KASSERT(pdk->dk_rawvp != NULL);
1057 isopen = true;
1058 ++pdk->dk_rawopens;
1059 bdvp = pdk->dk_rawvp;
1060 error = 0;
1061 } else {
1062 isopen = false;
1063 error = dk_open_parent(bdev, FREAD, &bdvp);
1064 }
1065 mutex_exit(&pdk->dk_rawlock);
1066
1067 if (error)
1068 return error;
1069
1070 bp = getiobuf(bdvp, true);
1071 bp->b_flags = B_READ;
1072 bp->b_cflags = BC_BUSY;
1073 bp->b_dev = bdev;
1074 bp->b_data = tbuf;
1075 bp->b_bufsize = bp->b_bcount = len;
1076 bp->b_blkno = blkno;
1077 bp->b_cylinder = 0;
1078 bp->b_error = 0;
1079
1080 VOP_STRATEGY(bdvp, bp);
1081 error = biowait(bp);
1082 putiobuf(bp);
1083
1084 mutex_enter(&pdk->dk_rawlock);
1085 if (isopen) {
1086 --pdk->dk_rawopens;
1087 } else {
1088 dk_close_parent(bdvp, FREAD);
1089 }
1090 mutex_exit(&pdk->dk_rawlock);
1091
1092 return error;
1093 }
1094
1095 /*
1096 * dkwedge_lookup:
1097 *
1098 * Look up a dkwedge_softc based on the provided dev_t.
1099 */
1100 static struct dkwedge_softc *
1101 dkwedge_lookup(dev_t dev)
1102 {
1103 int unit = minor(dev);
1104
1105 if (unit >= ndkwedges)
1106 return NULL;
1107
1108 KASSERT(dkwedges != NULL);
1109
1110 return dkwedges[unit];
1111 }
1112
1113 static int
1114 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
1115 {
1116 struct vnode *vp;
1117 int error;
1118
1119 error = bdevvp(dev, &vp);
1120 if (error)
1121 return error;
1122
1123 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1124 if (error) {
1125 vrele(vp);
1126 return error;
1127 }
1128 error = VOP_OPEN(vp, mode, NOCRED);
1129 if (error) {
1130 vput(vp);
1131 return error;
1132 }
1133
1134 /* VOP_OPEN() doesn't do this for us. */
1135 if (mode & FWRITE) {
1136 mutex_enter(vp->v_interlock);
1137 vp->v_writecount++;
1138 mutex_exit(vp->v_interlock);
1139 }
1140
1141 VOP_UNLOCK(vp);
1142
1143 *vpp = vp;
1144
1145 return 0;
1146 }
1147
1148 static int
1149 dk_close_parent(struct vnode *vp, int mode)
1150 {
1151 int error;
1152
1153 error = vn_close(vp, mode, NOCRED);
1154 return error;
1155 }
1156
1157 /*
1158 * dkopen: [devsw entry point]
1159 *
1160 * Open a wedge.
1161 */
1162 static int
1163 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
1164 {
1165 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1166 int error = 0;
1167
1168 if (sc == NULL)
1169 return ENODEV;
1170 if (sc->sc_state != DKW_STATE_RUNNING)
1171 return ENXIO;
1172
1173 /*
1174 * We go through a complicated little dance to only open the parent
1175 * vnode once per wedge, no matter how many times the wedge is
1176 * opened. The reason? We see one dkopen() per open call, but
1177 * only dkclose() on the last close.
1178 */
1179 mutex_enter(&sc->sc_dk.dk_openlock);
1180 mutex_enter(&sc->sc_parent->dk_rawlock);
1181 if (sc->sc_dk.dk_openmask == 0) {
1182 error = dkfirstopen(sc, flags);
1183 if (error)
1184 goto popen_fail;
1185 }
1186 KASSERT(sc->sc_mode != 0);
1187 if (flags & ~sc->sc_mode & FWRITE) {
1188 error = EROFS;
1189 goto popen_fail;
1190 }
1191 if (fmt == S_IFCHR)
1192 sc->sc_dk.dk_copenmask |= 1;
1193 else
1194 sc->sc_dk.dk_bopenmask |= 1;
1195 sc->sc_dk.dk_openmask =
1196 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1197
1198 popen_fail:
1199 mutex_exit(&sc->sc_parent->dk_rawlock);
1200 mutex_exit(&sc->sc_dk.dk_openlock);
1201 return error;
1202 }
1203
1204 static int
1205 dkfirstopen(struct dkwedge_softc *sc, int flags)
1206 {
1207 struct dkwedge_softc *nsc;
1208 struct vnode *vp;
1209 int mode;
1210 int error;
1211
1212 KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
1213 KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
1214
1215 if (sc->sc_parent->dk_rawopens == 0) {
1216 KASSERT(sc->sc_parent->dk_rawvp == NULL);
1217 /*
1218 * Try open read-write. If this fails for EROFS
1219 * and wedge is read-only, retry to open read-only.
1220 */
1221 mode = FREAD | FWRITE;
1222 error = dk_open_parent(sc->sc_pdev, mode, &vp);
1223 if (error == EROFS && (flags & FWRITE) == 0) {
1224 mode &= ~FWRITE;
1225 error = dk_open_parent(sc->sc_pdev, mode, &vp);
1226 }
1227 if (error)
1228 return error;
1229 sc->sc_parent->dk_rawvp = vp;
1230 } else {
1231 /*
1232 * Retrieve mode from an already opened wedge.
1233 *
1234 * At this point, dk_rawopens is bounded by the number
1235 * of dkwedge devices in the system, which is limited
1236 * by autoconf device numbering to INT_MAX. Since
1237 * dk_rawopens is unsigned, this can't overflow.
1238 */
1239 KASSERT(sc->sc_parent->dk_rawopens < UINT_MAX);
1240 mode = 0;
1241 LIST_FOREACH(nsc, &sc->sc_parent->dk_wedges, sc_plink) {
1242 if (nsc == sc || nsc->sc_dk.dk_openmask == 0)
1243 continue;
1244 mode = nsc->sc_mode;
1245 break;
1246 }
1247 }
1248 sc->sc_mode = mode;
1249 sc->sc_parent->dk_rawopens++;
1250
1251 return 0;
1252 }
1253
1254 static void
1255 dklastclose(struct dkwedge_softc *sc)
1256 {
1257
1258 KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
1259 KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
1260 KASSERT(sc->sc_parent->dk_rawopens > 0);
1261 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1262
1263 if (--sc->sc_parent->dk_rawopens == 0) {
1264 struct vnode *const vp = sc->sc_parent->dk_rawvp;
1265 const int mode = sc->sc_mode;
1266
1267 sc->sc_parent->dk_rawvp = NULL;
1268 sc->sc_mode = 0;
1269
1270 dk_close_parent(vp, mode);
1271 }
1272 }
1273
1274 /*
1275 * dkclose: [devsw entry point]
1276 *
1277 * Close a wedge.
1278 */
1279 static int
1280 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1281 {
1282 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1283
1284 if (sc == NULL)
1285 return ENODEV;
1286 if (sc->sc_state != DKW_STATE_RUNNING)
1287 return ENXIO;
1288
1289 mutex_enter(&sc->sc_dk.dk_openlock);
1290 mutex_enter(&sc->sc_parent->dk_rawlock);
1291
1292 KASSERT(sc->sc_dk.dk_openmask != 0);
1293
1294 if (fmt == S_IFCHR)
1295 sc->sc_dk.dk_copenmask &= ~1;
1296 else
1297 sc->sc_dk.dk_bopenmask &= ~1;
1298 sc->sc_dk.dk_openmask =
1299 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1300
1301 if (sc->sc_dk.dk_openmask == 0) {
1302 dklastclose(sc);
1303 }
1304
1305 mutex_exit(&sc->sc_parent->dk_rawlock);
1306 mutex_exit(&sc->sc_dk.dk_openlock);
1307
1308 return 0;
1309 }
1310
1311 /*
1312 * dkstragegy: [devsw entry point]
1313 *
1314 * Perform I/O based on the wedge I/O strategy.
1315 */
1316 static void
1317 dkstrategy(struct buf *bp)
1318 {
1319 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1320 uint64_t p_size, p_offset;
1321
1322 if (sc == NULL) {
1323 bp->b_error = ENODEV;
1324 goto done;
1325 }
1326
1327 if (sc->sc_state != DKW_STATE_RUNNING ||
1328 sc->sc_parent->dk_rawvp == NULL) {
1329 bp->b_error = ENXIO;
1330 goto done;
1331 }
1332
1333 /* If it's an empty transfer, wake up the top half now. */
1334 if (bp->b_bcount == 0)
1335 goto done;
1336
1337 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1338 p_size = sc->sc_size << sc->sc_parent->dk_blkshift;
1339
1340 /* Make sure it's in-range. */
1341 if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1342 goto done;
1343
1344 /* Translate it to the parent's raw LBA. */
1345 bp->b_rawblkno = bp->b_blkno + p_offset;
1346
1347 /* Place it in the queue and start I/O on the unit. */
1348 mutex_enter(&sc->sc_iolock);
1349 sc->sc_iopend++;
1350 disk_wait(&sc->sc_dk);
1351 bufq_put(sc->sc_bufq, bp);
1352 mutex_exit(&sc->sc_iolock);
1353
1354 dkstart(sc);
1355 return;
1356
1357 done:
1358 bp->b_resid = bp->b_bcount;
1359 biodone(bp);
1360 }
1361
1362 /*
1363 * dkstart:
1364 *
1365 * Start I/O that has been enqueued on the wedge.
1366 */
1367 static void
1368 dkstart(struct dkwedge_softc *sc)
1369 {
1370 struct vnode *vp;
1371 struct buf *bp, *nbp;
1372
1373 mutex_enter(&sc->sc_iolock);
1374
1375 /* Do as much work as has been enqueued. */
1376 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1377 if (sc->sc_state != DKW_STATE_RUNNING) {
1378 (void) bufq_get(sc->sc_bufq);
1379 if (--sc->sc_iopend == 0)
1380 cv_broadcast(&sc->sc_dkdrn);
1381 mutex_exit(&sc->sc_iolock);
1382 bp->b_error = ENXIO;
1383 bp->b_resid = bp->b_bcount;
1384 biodone(bp);
1385 mutex_enter(&sc->sc_iolock);
1386 continue;
1387 }
1388
1389 /* fetch an I/O buf with sc_iolock dropped */
1390 mutex_exit(&sc->sc_iolock);
1391 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1392 mutex_enter(&sc->sc_iolock);
1393 if (nbp == NULL) {
1394 /*
1395 * No resources to run this request; leave the
1396 * buffer queued up, and schedule a timer to
1397 * restart the queue in 1/2 a second.
1398 */
1399 callout_schedule(&sc->sc_restart_ch, hz / 2);
1400 break;
1401 }
1402
1403 /*
1404 * fetch buf, this can fail if another thread
1405 * has already processed the queue, it can also
1406 * return a completely different buf.
1407 */
1408 bp = bufq_get(sc->sc_bufq);
1409 if (bp == NULL) {
1410 mutex_exit(&sc->sc_iolock);
1411 putiobuf(nbp);
1412 mutex_enter(&sc->sc_iolock);
1413 continue;
1414 }
1415
1416 /* Instrumentation. */
1417 disk_busy(&sc->sc_dk);
1418
1419 /* release lock for VOP_STRATEGY */
1420 mutex_exit(&sc->sc_iolock);
1421
1422 nbp->b_data = bp->b_data;
1423 nbp->b_flags = bp->b_flags;
1424 nbp->b_oflags = bp->b_oflags;
1425 nbp->b_cflags = bp->b_cflags;
1426 nbp->b_iodone = dkiodone;
1427 nbp->b_proc = bp->b_proc;
1428 nbp->b_blkno = bp->b_rawblkno;
1429 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1430 nbp->b_bcount = bp->b_bcount;
1431 nbp->b_private = bp;
1432 BIO_COPYPRIO(nbp, bp);
1433
1434 vp = nbp->b_vp;
1435 if ((nbp->b_flags & B_READ) == 0) {
1436 mutex_enter(vp->v_interlock);
1437 vp->v_numoutput++;
1438 mutex_exit(vp->v_interlock);
1439 }
1440 VOP_STRATEGY(vp, nbp);
1441
1442 mutex_enter(&sc->sc_iolock);
1443 }
1444
1445 mutex_exit(&sc->sc_iolock);
1446 }
1447
1448 /*
1449 * dkiodone:
1450 *
1451 * I/O to a wedge has completed; alert the top half.
1452 */
1453 static void
1454 dkiodone(struct buf *bp)
1455 {
1456 struct buf *obp = bp->b_private;
1457 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1458
1459 if (bp->b_error != 0)
1460 obp->b_error = bp->b_error;
1461 obp->b_resid = bp->b_resid;
1462 putiobuf(bp);
1463
1464 mutex_enter(&sc->sc_iolock);
1465 if (--sc->sc_iopend == 0)
1466 cv_broadcast(&sc->sc_dkdrn);
1467
1468 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1469 obp->b_flags & B_READ);
1470 mutex_exit(&sc->sc_iolock);
1471
1472 biodone(obp);
1473
1474 /* Kick the queue in case there is more work we can do. */
1475 dkstart(sc);
1476 }
1477
1478 /*
1479 * dkrestart:
1480 *
1481 * Restart the work queue after it was stalled due to
1482 * a resource shortage. Invoked via a callout.
1483 */
1484 static void
1485 dkrestart(void *v)
1486 {
1487 struct dkwedge_softc *sc = v;
1488
1489 dkstart(sc);
1490 }
1491
1492 /*
1493 * dkminphys:
1494 *
1495 * Call parent's minphys function.
1496 */
1497 static void
1498 dkminphys(struct buf *bp)
1499 {
1500 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1501 dev_t dev;
1502
1503 dev = bp->b_dev;
1504 bp->b_dev = sc->sc_pdev;
1505 if (sc->sc_parent->dk_driver && sc->sc_parent->dk_driver->d_minphys)
1506 (*sc->sc_parent->dk_driver->d_minphys)(bp);
1507 else
1508 minphys(bp);
1509 bp->b_dev = dev;
1510 }
1511
1512 /*
1513 * dkread: [devsw entry point]
1514 *
1515 * Read from a wedge.
1516 */
1517 static int
1518 dkread(dev_t dev, struct uio *uio, int flags)
1519 {
1520 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1521
1522 if (sc == NULL)
1523 return ENODEV;
1524 if (sc->sc_state != DKW_STATE_RUNNING)
1525 return ENXIO;
1526
1527 return physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio);
1528 }
1529
1530 /*
1531 * dkwrite: [devsw entry point]
1532 *
1533 * Write to a wedge.
1534 */
1535 static int
1536 dkwrite(dev_t dev, struct uio *uio, int flags)
1537 {
1538 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1539
1540 if (sc == NULL)
1541 return ENODEV;
1542 if (sc->sc_state != DKW_STATE_RUNNING)
1543 return ENXIO;
1544
1545 return physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio);
1546 }
1547
1548 /*
1549 * dkioctl: [devsw entry point]
1550 *
1551 * Perform an ioctl request on a wedge.
1552 */
1553 static int
1554 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1555 {
1556 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1557 int error = 0;
1558
1559 if (sc == NULL)
1560 return ENODEV;
1561 if (sc->sc_state != DKW_STATE_RUNNING)
1562 return ENXIO;
1563 if (sc->sc_parent->dk_rawvp == NULL)
1564 return ENXIO;
1565
1566 /*
1567 * We pass NODEV instead of our device to indicate we don't
1568 * want to handle disklabel ioctls
1569 */
1570 error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
1571 if (error != EPASSTHROUGH)
1572 return error;
1573
1574 error = 0;
1575
1576 switch (cmd) {
1577 case DIOCGSTRATEGY:
1578 case DIOCGCACHE:
1579 case DIOCCACHESYNC:
1580 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, data, flag,
1581 l != NULL ? l->l_cred : NOCRED);
1582 break;
1583 case DIOCGWEDGEINFO:
1584 {
1585 struct dkwedge_info *dkw = (void *) data;
1586
1587 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1588 sizeof(dkw->dkw_devname));
1589 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1590 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1591 strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
1592 sizeof(dkw->dkw_parent));
1593 dkw->dkw_offset = sc->sc_offset;
1594 dkw->dkw_size = sc->sc_size;
1595 strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
1596
1597 break;
1598 }
1599 case DIOCGSECTORALIGN:
1600 {
1601 struct disk_sectoralign *dsa = data;
1602 uint32_t r;
1603
1604 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, dsa, flag,
1605 l != NULL ? l->l_cred : NOCRED);
1606 if (error)
1607 break;
1608
1609 r = sc->sc_offset % dsa->dsa_alignment;
1610 if (r < dsa->dsa_firstaligned)
1611 dsa->dsa_firstaligned = dsa->dsa_firstaligned - r;
1612 else
1613 dsa->dsa_firstaligned = (dsa->dsa_firstaligned +
1614 dsa->dsa_alignment) - r;
1615 break;
1616 }
1617 default:
1618 error = ENOTTY;
1619 }
1620
1621 return error;
1622 }
1623
1624 /*
1625 * dkdiscard: [devsw entry point]
1626 *
1627 * Perform a discard-range request on a wedge.
1628 */
1629 static int
1630 dkdiscard(dev_t dev, off_t pos, off_t len)
1631 {
1632 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1633 unsigned shift;
1634 off_t offset, maxlen;
1635 int error;
1636
1637 if (sc == NULL)
1638 return ENODEV;
1639 if (sc->sc_state != DKW_STATE_RUNNING)
1640 return ENXIO;
1641 if (sc->sc_parent->dk_rawvp == NULL)
1642 return ENXIO;
1643
1644 shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
1645 KASSERT(__type_fit(off_t, sc->sc_size));
1646 KASSERT(__type_fit(off_t, sc->sc_offset));
1647 KASSERT(0 <= sc->sc_offset);
1648 KASSERT(sc->sc_size <= (__type_max(off_t) >> shift));
1649 KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - sc->sc_size));
1650 offset = ((off_t)sc->sc_offset << shift);
1651 maxlen = ((off_t)sc->sc_size << shift);
1652
1653 if (len > maxlen)
1654 return EINVAL;
1655 if (pos > (maxlen - len))
1656 return EINVAL;
1657
1658 pos += offset;
1659
1660 vn_lock(sc->sc_parent->dk_rawvp, LK_EXCLUSIVE | LK_RETRY);
1661 error = VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
1662 VOP_UNLOCK(sc->sc_parent->dk_rawvp);
1663
1664 return error;
1665 }
1666
1667 /*
1668 * dksize: [devsw entry point]
1669 *
1670 * Query the size of a wedge for the purpose of performing a dump
1671 * or for swapping to.
1672 */
1673 static int
1674 dksize(dev_t dev)
1675 {
1676 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1677 uint64_t p_size;
1678 int rv = -1;
1679
1680 if (sc == NULL)
1681 return -1;
1682 if (sc->sc_state != DKW_STATE_RUNNING)
1683 return -1;
1684
1685 mutex_enter(&sc->sc_dk.dk_openlock);
1686 mutex_enter(&sc->sc_parent->dk_rawlock);
1687
1688 /* Our content type is static, no need to open the device. */
1689
1690 p_size = sc->sc_size << sc->sc_parent->dk_blkshift;
1691 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1692 /* Saturate if we are larger than INT_MAX. */
1693 if (p_size > INT_MAX)
1694 rv = INT_MAX;
1695 else
1696 rv = (int) p_size;
1697 }
1698
1699 mutex_exit(&sc->sc_parent->dk_rawlock);
1700 mutex_exit(&sc->sc_dk.dk_openlock);
1701
1702 return rv;
1703 }
1704
1705 /*
1706 * dkdump: [devsw entry point]
1707 *
1708 * Perform a crash dump to a wedge.
1709 */
1710 static int
1711 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1712 {
1713 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1714 const struct bdevsw *bdev;
1715 uint64_t p_size, p_offset;
1716 int rv = 0;
1717
1718 if (sc == NULL)
1719 return ENODEV;
1720 if (sc->sc_state != DKW_STATE_RUNNING)
1721 return ENXIO;
1722
1723 mutex_enter(&sc->sc_dk.dk_openlock);
1724 mutex_enter(&sc->sc_parent->dk_rawlock);
1725
1726 /* Our content type is static, no need to open the device. */
1727
1728 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
1729 strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0 &&
1730 strcmp(sc->sc_ptype, DKW_PTYPE_CGD) != 0) {
1731 rv = ENXIO;
1732 goto out;
1733 }
1734 if (size % DEV_BSIZE != 0) {
1735 rv = EINVAL;
1736 goto out;
1737 }
1738
1739 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1740 p_size = sc->sc_size << sc->sc_parent->dk_blkshift;
1741
1742 if (blkno < 0 || blkno + size / DEV_BSIZE > p_size) {
1743 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1744 "p_size (%" PRIu64 ")\n", __func__, blkno,
1745 size / DEV_BSIZE, p_size);
1746 rv = EINVAL;
1747 goto out;
1748 }
1749
1750 bdev = bdevsw_lookup(sc->sc_pdev);
1751 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + p_offset, va, size);
1752
1753 out:
1754 mutex_exit(&sc->sc_parent->dk_rawlock);
1755 mutex_exit(&sc->sc_dk.dk_openlock);
1756
1757 return rv;
1758 }
1759
1760 /*
1761 * config glue
1762 */
1763
1764 /*
1765 * dkwedge_find_partition
1766 *
1767 * Find wedge corresponding to the specified parent name
1768 * and offset/length.
1769 */
1770 device_t
1771 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
1772 {
1773 struct dkwedge_softc *sc;
1774 int i;
1775 device_t wedge = NULL;
1776
1777 rw_enter(&dkwedges_lock, RW_READER);
1778 for (i = 0; i < ndkwedges; i++) {
1779 if ((sc = dkwedges[i]) == NULL)
1780 continue;
1781 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
1782 sc->sc_offset == startblk &&
1783 sc->sc_size == nblks) {
1784 if (wedge) {
1785 printf("WARNING: double match for boot wedge "
1786 "(%s, %s)\n",
1787 device_xname(wedge),
1788 device_xname(sc->sc_dev));
1789 continue;
1790 }
1791 wedge = sc->sc_dev;
1792 }
1793 }
1794 rw_exit(&dkwedges_lock);
1795
1796 return wedge;
1797 }
1798
1799 const char *
1800 dkwedge_get_parent_name(dev_t dev)
1801 {
1802 /* XXX: perhaps do this in lookup? */
1803 int bmaj = bdevsw_lookup_major(&dk_bdevsw);
1804 int cmaj = cdevsw_lookup_major(&dk_cdevsw);
1805 if (major(dev) != bmaj && major(dev) != cmaj)
1806 return NULL;
1807 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1808 if (sc == NULL)
1809 return NULL;
1810 return sc->sc_parent->dk_name;
1811 }
1812