dk.c revision 1.136 1 /* $NetBSD: dk.c,v 1.136 2023/04/21 18:26:35 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.136 2023/04/21 18:26:35 riastradh Exp $");
34
35 #ifdef _KERNEL_OPT
36 #include "opt_dkwedge.h"
37 #endif
38
39 #include <sys/param.h>
40 #include <sys/types.h>
41
42 #include <sys/buf.h>
43 #include <sys/bufq.h>
44 #include <sys/callout.h>
45 #include <sys/conf.h>
46 #include <sys/device.h>
47 #include <sys/disk.h>
48 #include <sys/disklabel.h>
49 #include <sys/errno.h>
50 #include <sys/fcntl.h>
51 #include <sys/ioctl.h>
52 #include <sys/kauth.h>
53 #include <sys/kernel.h>
54 #include <sys/malloc.h>
55 #include <sys/pool.h>
56 #include <sys/proc.h>
57 #include <sys/rwlock.h>
58 #include <sys/stat.h>
59 #include <sys/systm.h>
60 #include <sys/vnode.h>
61
62 #include <miscfs/specfs/specdev.h>
63
64 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
65
66 typedef enum {
67 DKW_STATE_LARVAL = 0,
68 DKW_STATE_RUNNING = 1,
69 DKW_STATE_DYING = 2,
70 DKW_STATE_DEAD = 666
71 } dkwedge_state_t;
72
73 struct dkwedge_softc {
74 device_t sc_dev; /* pointer to our pseudo-device */
75 struct cfdata sc_cfdata; /* our cfdata structure */
76 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
77
78 dkwedge_state_t sc_state; /* state this wedge is in */
79
80 struct disk *sc_parent; /* parent disk */
81 daddr_t sc_offset; /* LBA offset of wedge in parent */
82 krwlock_t sc_sizelock;
83 uint64_t sc_size; /* size of wedge in blocks */
84 char sc_ptype[32]; /* partition type */
85 dev_t sc_pdev; /* cached parent's dev_t */
86 /* link on parent's wedge list */
87 LIST_ENTRY(dkwedge_softc) sc_plink;
88
89 struct disk sc_dk; /* our own disk structure */
90 struct bufq_state *sc_bufq; /* buffer queue */
91 struct callout sc_restart_ch; /* callout to restart I/O */
92
93 kmutex_t sc_iolock;
94 kcondvar_t sc_dkdrn;
95 u_int sc_iopend; /* I/Os pending */
96 int sc_mode; /* parent open mode */
97 };
98
99 static int dkwedge_match(device_t, cfdata_t, void *);
100 static void dkwedge_attach(device_t, device_t, void *);
101 static int dkwedge_detach(device_t, int);
102
103 static void dkstart(struct dkwedge_softc *);
104 static void dkiodone(struct buf *);
105 static void dkrestart(void *);
106 static void dkminphys(struct buf *);
107
108 static int dkfirstopen(struct dkwedge_softc *, int);
109 static void dklastclose(struct dkwedge_softc *);
110 static int dkwedge_cleanup_parent(struct dkwedge_softc *, int);
111 static int dkwedge_detach(device_t, int);
112 static void dkwedge_delall1(struct disk *, bool);
113 static int dkwedge_del1(struct dkwedge_info *, int);
114 static int dk_open_parent(dev_t, int, struct vnode **);
115 static int dk_close_parent(struct vnode *, int);
116
117 static dev_type_open(dkopen);
118 static dev_type_close(dkclose);
119 static dev_type_read(dkread);
120 static dev_type_write(dkwrite);
121 static dev_type_ioctl(dkioctl);
122 static dev_type_strategy(dkstrategy);
123 static dev_type_dump(dkdump);
124 static dev_type_size(dksize);
125 static dev_type_discard(dkdiscard);
126
127 CFDRIVER_DECL(dk, DV_DISK, NULL);
128 CFATTACH_DECL3_NEW(dk, 0,
129 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
130 DVF_DETACH_SHUTDOWN);
131
132 const struct bdevsw dk_bdevsw = {
133 .d_open = dkopen,
134 .d_close = dkclose,
135 .d_strategy = dkstrategy,
136 .d_ioctl = dkioctl,
137 .d_dump = dkdump,
138 .d_psize = dksize,
139 .d_discard = dkdiscard,
140 .d_flag = D_DISK | D_MPSAFE
141 };
142
143 const struct cdevsw dk_cdevsw = {
144 .d_open = dkopen,
145 .d_close = dkclose,
146 .d_read = dkread,
147 .d_write = dkwrite,
148 .d_ioctl = dkioctl,
149 .d_stop = nostop,
150 .d_tty = notty,
151 .d_poll = nopoll,
152 .d_mmap = nommap,
153 .d_kqfilter = nokqfilter,
154 .d_discard = dkdiscard,
155 .d_flag = D_DISK | D_MPSAFE
156 };
157
158 static struct dkwedge_softc **dkwedges;
159 static u_int ndkwedges;
160 static krwlock_t dkwedges_lock;
161
162 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
163 static krwlock_t dkwedge_discovery_methods_lock;
164
165 /*
166 * dkwedge_match:
167 *
168 * Autoconfiguration match function for pseudo-device glue.
169 */
170 static int
171 dkwedge_match(device_t parent, cfdata_t match, void *aux)
172 {
173
174 /* Pseudo-device; always present. */
175 return 1;
176 }
177
178 /*
179 * dkwedge_attach:
180 *
181 * Autoconfiguration attach function for pseudo-device glue.
182 */
183 static void
184 dkwedge_attach(device_t parent, device_t self, void *aux)
185 {
186
187 if (!pmf_device_register(self, NULL, NULL))
188 aprint_error_dev(self, "couldn't establish power handler\n");
189 }
190
191 /*
192 * dkwedge_wait_drain:
193 *
194 * Wait for I/O on the wedge to drain.
195 */
196 static void
197 dkwedge_wait_drain(struct dkwedge_softc *sc)
198 {
199
200 mutex_enter(&sc->sc_iolock);
201 while (sc->sc_iopend != 0)
202 cv_wait(&sc->sc_dkdrn, &sc->sc_iolock);
203 mutex_exit(&sc->sc_iolock);
204 }
205
206 /*
207 * dkwedge_compute_pdev:
208 *
209 * Compute the parent disk's dev_t.
210 */
211 static int
212 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
213 {
214 const char *name, *cp;
215 devmajor_t pmaj;
216 int punit;
217 char devname[16];
218
219 name = pname;
220 switch (type) {
221 case VBLK:
222 pmaj = devsw_name2blk(name, devname, sizeof(devname));
223 break;
224 case VCHR:
225 pmaj = devsw_name2chr(name, devname, sizeof(devname));
226 break;
227 default:
228 pmaj = NODEVMAJOR;
229 break;
230 }
231 if (pmaj == NODEVMAJOR)
232 return ENXIO;
233
234 name += strlen(devname);
235 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
236 punit = (punit * 10) + (*cp - '0');
237 if (cp == name) {
238 /* Invalid parent disk name. */
239 return ENXIO;
240 }
241
242 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
243
244 return 0;
245 }
246
247 /*
248 * dkwedge_array_expand:
249 *
250 * Expand the dkwedges array.
251 *
252 * Releases and reacquires dkwedges_lock as a writer.
253 */
254 static int
255 dkwedge_array_expand(void)
256 {
257
258 const unsigned incr = 16;
259 unsigned newcnt, oldcnt;
260 struct dkwedge_softc **newarray = NULL, **oldarray = NULL;
261
262 KASSERT(rw_write_held(&dkwedges_lock));
263
264 oldcnt = ndkwedges;
265 oldarray = dkwedges;
266
267 if (oldcnt >= INT_MAX - incr)
268 return ENFILE; /* XXX */
269 newcnt = oldcnt + incr;
270
271 rw_exit(&dkwedges_lock);
272 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
273 M_WAITOK|M_ZERO);
274 rw_enter(&dkwedges_lock, RW_WRITER);
275
276 if (ndkwedges != oldcnt || dkwedges != oldarray) {
277 oldarray = NULL; /* already recycled */
278 goto out;
279 }
280
281 if (oldarray != NULL)
282 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
283 dkwedges = newarray;
284 newarray = NULL; /* transferred to dkwedges */
285 ndkwedges = newcnt;
286
287 out: rw_exit(&dkwedges_lock);
288 if (oldarray != NULL)
289 free(oldarray, M_DKWEDGE);
290 if (newarray != NULL)
291 free(newarray, M_DKWEDGE);
292 rw_enter(&dkwedges_lock, RW_WRITER);
293 return 0;
294 }
295
296 static void
297 dkwedge_size_init(struct dkwedge_softc *sc, uint64_t size)
298 {
299
300 rw_init(&sc->sc_sizelock);
301 sc->sc_size = size;
302 }
303
304 static void
305 dkwedge_size_fini(struct dkwedge_softc *sc)
306 {
307
308 rw_destroy(&sc->sc_sizelock);
309 }
310
311 static uint64_t
312 dkwedge_size(struct dkwedge_softc *sc)
313 {
314 uint64_t size;
315
316 rw_enter(&sc->sc_sizelock, RW_READER);
317 size = sc->sc_size;
318 rw_exit(&sc->sc_sizelock);
319
320 return size;
321 }
322
323 static void
324 dkwedge_size_increase(struct dkwedge_softc *sc, uint64_t size)
325 {
326
327 KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
328
329 rw_enter(&sc->sc_sizelock, RW_WRITER);
330 KASSERTMSG(size >= sc->sc_size,
331 "decreasing dkwedge size from %"PRIu64" to %"PRIu64,
332 sc->sc_size, size);
333 sc->sc_size = size;
334 rw_exit(&sc->sc_sizelock);
335 }
336
337 static void
338 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
339 {
340 struct disk *dk = &sc->sc_dk;
341 struct disk_geom *dg = &dk->dk_geom;
342
343 memset(dg, 0, sizeof(*dg));
344
345 dg->dg_secperunit = dkwedge_size(sc);
346 dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
347
348 /* fake numbers, 1 cylinder is 1 MB with default sector size */
349 dg->dg_nsectors = 32;
350 dg->dg_ntracks = 64;
351 dg->dg_ncylinders =
352 dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
353
354 disk_set_info(sc->sc_dev, dk, NULL);
355 }
356
357 /*
358 * dkwedge_add: [exported function]
359 *
360 * Add a disk wedge based on the provided information.
361 *
362 * The incoming dkw_devname[] is ignored, instead being
363 * filled in and returned to the caller.
364 */
365 int
366 dkwedge_add(struct dkwedge_info *dkw)
367 {
368 struct dkwedge_softc *sc, *lsc;
369 struct disk *pdk;
370 u_int unit;
371 int error;
372 dev_t pdev;
373
374 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
375 pdk = disk_find(dkw->dkw_parent);
376 if (pdk == NULL)
377 return ENXIO;
378
379 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
380 if (error)
381 return error;
382
383 if (dkw->dkw_offset < 0)
384 return EINVAL;
385
386 /*
387 * Check for an existing wedge at the same disk offset. Allow
388 * updating a wedge if the only change is the size, and the new
389 * size is larger than the old.
390 */
391 sc = NULL;
392 mutex_enter(&pdk->dk_openlock);
393 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
394 if (lsc->sc_offset != dkw->dkw_offset)
395 continue;
396 if (strcmp(lsc->sc_wname, dkw->dkw_wname) != 0)
397 break;
398 if (strcmp(lsc->sc_ptype, dkw->dkw_ptype) != 0)
399 break;
400 if (dkwedge_size(lsc) > dkw->dkw_size)
401 break;
402
403 sc = lsc;
404 dkwedge_size_increase(sc, dkw->dkw_size);
405 dk_set_geometry(sc, pdk);
406
407 break;
408 }
409 mutex_exit(&pdk->dk_openlock);
410
411 if (sc != NULL)
412 goto announce;
413
414 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
415 sc->sc_state = DKW_STATE_LARVAL;
416 sc->sc_parent = pdk;
417 sc->sc_pdev = pdev;
418 sc->sc_offset = dkw->dkw_offset;
419 dkwedge_size_init(sc, dkw->dkw_size);
420
421 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
422 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
423
424 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
425 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
426
427 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
428
429 callout_init(&sc->sc_restart_ch, 0);
430 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
431
432 mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
433 cv_init(&sc->sc_dkdrn, "dkdrn");
434
435 /*
436 * Wedge will be added; increment the wedge count for the parent.
437 * Only allow this to happen if RAW_PART is the only thing open.
438 */
439 mutex_enter(&pdk->dk_openlock);
440 if (pdk->dk_openmask & ~(1 << RAW_PART))
441 error = EBUSY;
442 else {
443 /* Check for wedge overlap. */
444 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
445 /* XXX arithmetic overflow */
446 uint64_t size = dkwedge_size(sc);
447 uint64_t lsize = dkwedge_size(lsc);
448 daddr_t lastblk = sc->sc_offset + size - 1;
449 daddr_t llastblk = lsc->sc_offset + lsize - 1;
450
451 if (sc->sc_offset >= lsc->sc_offset &&
452 sc->sc_offset <= llastblk) {
453 /* Overlaps the tail of the existing wedge. */
454 break;
455 }
456 if (lastblk >= lsc->sc_offset &&
457 lastblk <= llastblk) {
458 /* Overlaps the head of the existing wedge. */
459 break;
460 }
461 }
462 if (lsc != NULL) {
463 if (sc->sc_offset == lsc->sc_offset &&
464 dkwedge_size(sc) == dkwedge_size(lsc) &&
465 strcmp(sc->sc_wname, lsc->sc_wname) == 0)
466 error = EEXIST;
467 else
468 error = EINVAL;
469 } else {
470 pdk->dk_nwedges++;
471 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
472 }
473 }
474 mutex_exit(&pdk->dk_openlock);
475 if (error) {
476 cv_destroy(&sc->sc_dkdrn);
477 mutex_destroy(&sc->sc_iolock);
478 bufq_free(sc->sc_bufq);
479 dkwedge_size_fini(sc);
480 free(sc, M_DKWEDGE);
481 return error;
482 }
483
484 /* Fill in our cfdata for the pseudo-device glue. */
485 sc->sc_cfdata.cf_name = dk_cd.cd_name;
486 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
487 /* sc->sc_cfdata.cf_unit set below */
488 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
489
490 /* Insert the larval wedge into the array. */
491 rw_enter(&dkwedges_lock, RW_WRITER);
492 for (error = 0;;) {
493 struct dkwedge_softc **scpp;
494
495 /*
496 * Check for a duplicate wname while searching for
497 * a slot.
498 */
499 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
500 if (dkwedges[unit] == NULL) {
501 if (scpp == NULL) {
502 scpp = &dkwedges[unit];
503 sc->sc_cfdata.cf_unit = unit;
504 }
505 } else {
506 /* XXX Unicode. */
507 if (strcmp(dkwedges[unit]->sc_wname,
508 sc->sc_wname) == 0) {
509 error = EEXIST;
510 break;
511 }
512 }
513 }
514 if (error)
515 break;
516 KASSERT(unit == ndkwedges);
517 if (scpp == NULL) {
518 error = dkwedge_array_expand();
519 if (error)
520 break;
521 } else {
522 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
523 *scpp = sc;
524 break;
525 }
526 }
527 rw_exit(&dkwedges_lock);
528 if (error) {
529 mutex_enter(&pdk->dk_openlock);
530 pdk->dk_nwedges--;
531 LIST_REMOVE(sc, sc_plink);
532 mutex_exit(&pdk->dk_openlock);
533
534 cv_destroy(&sc->sc_dkdrn);
535 mutex_destroy(&sc->sc_iolock);
536 bufq_free(sc->sc_bufq);
537 dkwedge_size_fini(sc);
538 free(sc, M_DKWEDGE);
539 return error;
540 }
541
542 /*
543 * Now that we know the unit #, attach a pseudo-device for
544 * this wedge instance. This will provide us with the
545 * device_t necessary for glue to other parts of the system.
546 *
547 * This should never fail, unless we're almost totally out of
548 * memory.
549 */
550 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
551 aprint_error("%s%u: unable to attach pseudo-device\n",
552 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
553
554 rw_enter(&dkwedges_lock, RW_WRITER);
555 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
556 rw_exit(&dkwedges_lock);
557
558 mutex_enter(&pdk->dk_openlock);
559 pdk->dk_nwedges--;
560 LIST_REMOVE(sc, sc_plink);
561 mutex_exit(&pdk->dk_openlock);
562
563 cv_destroy(&sc->sc_dkdrn);
564 mutex_destroy(&sc->sc_iolock);
565 bufq_free(sc->sc_bufq);
566 dkwedge_size_fini(sc);
567 free(sc, M_DKWEDGE);
568 return ENOMEM;
569 }
570
571 /*
572 * XXX Really ought to make the disk_attach() and the changing
573 * of state to RUNNING atomic.
574 */
575
576 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
577 dk_set_geometry(sc, pdk);
578 disk_attach(&sc->sc_dk);
579
580 /* Disk wedge is ready for use! */
581 sc->sc_state = DKW_STATE_RUNNING;
582
583 announce:
584 /* Announce our arrival. */
585 aprint_normal(
586 "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
587 device_xname(sc->sc_dev), pdk->dk_name,
588 sc->sc_wname, /* XXX Unicode */
589 dkwedge_size(sc), sc->sc_offset,
590 sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
591
592 /* Return the devname to the caller. */
593 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
594 sizeof(dkw->dkw_devname));
595
596 return 0;
597 }
598
599 /*
600 * dkwedge_find:
601 *
602 * Lookup a disk wedge based on the provided information.
603 * NOTE: We look up the wedge based on the wedge devname,
604 * not wname.
605 *
606 * Return NULL if the wedge is not found, otherwise return
607 * the wedge's softc. Assign the wedge's unit number to unitp
608 * if unitp is not NULL.
609 */
610 static struct dkwedge_softc *
611 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
612 {
613 struct dkwedge_softc *sc = NULL;
614 u_int unit;
615
616 /* Find our softc. */
617 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
618 rw_enter(&dkwedges_lock, RW_READER);
619 for (unit = 0; unit < ndkwedges; unit++) {
620 if ((sc = dkwedges[unit]) != NULL &&
621 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
622 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
623 break;
624 }
625 }
626 rw_exit(&dkwedges_lock);
627 if (unit == ndkwedges)
628 return NULL;
629
630 if (unitp != NULL)
631 *unitp = unit;
632
633 return sc;
634 }
635
636 /*
637 * dkwedge_del: [exported function]
638 *
639 * Delete a disk wedge based on the provided information.
640 * NOTE: We look up the wedge based on the wedge devname,
641 * not wname.
642 */
643 int
644 dkwedge_del(struct dkwedge_info *dkw)
645 {
646
647 return dkwedge_del1(dkw, 0);
648 }
649
650 int
651 dkwedge_del1(struct dkwedge_info *dkw, int flags)
652 {
653 struct dkwedge_softc *sc = NULL;
654
655 /* Find our softc. */
656 if ((sc = dkwedge_find(dkw, NULL)) == NULL)
657 return ESRCH;
658
659 return config_detach(sc->sc_dev, flags);
660 }
661
662 static int
663 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags)
664 {
665 struct disk *dk = &sc->sc_dk;
666 int rc;
667
668 rc = 0;
669 mutex_enter(&dk->dk_openlock);
670 if (dk->dk_openmask == 0) {
671 /* nothing to do */
672 } else if ((flags & DETACH_FORCE) == 0) {
673 rc = EBUSY;
674 } else {
675 mutex_enter(&sc->sc_parent->dk_rawlock);
676 dklastclose(sc);
677 mutex_exit(&sc->sc_parent->dk_rawlock);
678 }
679 mutex_exit(&sc->sc_dk.dk_openlock);
680
681 return rc;
682 }
683
684 /*
685 * dkwedge_detach:
686 *
687 * Autoconfiguration detach function for pseudo-device glue.
688 */
689 static int
690 dkwedge_detach(device_t self, int flags)
691 {
692 struct dkwedge_softc *sc = NULL;
693 u_int unit;
694 int bmaj, cmaj, rc;
695
696 rw_enter(&dkwedges_lock, RW_WRITER);
697 for (unit = 0; unit < ndkwedges; unit++) {
698 if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
699 break;
700 }
701 if (unit == ndkwedges)
702 rc = ENXIO;
703 else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) {
704 /* Mark the wedge as dying. */
705 sc->sc_state = DKW_STATE_DYING;
706 }
707 rw_exit(&dkwedges_lock);
708
709 if (rc != 0)
710 return rc;
711
712 pmf_device_deregister(self);
713
714 /* Locate the wedge major numbers. */
715 bmaj = bdevsw_lookup_major(&dk_bdevsw);
716 cmaj = cdevsw_lookup_major(&dk_cdevsw);
717
718 /* Kill any pending restart. */
719 callout_stop(&sc->sc_restart_ch);
720
721 /*
722 * dkstart() will kill any queued buffers now that the
723 * state of the wedge is not RUNNING. Once we've done
724 * that, wait for any other pending I/O to complete.
725 */
726 dkstart(sc);
727 dkwedge_wait_drain(sc);
728
729 /* Nuke the vnodes for any open instances. */
730 vdevgone(bmaj, unit, unit, VBLK);
731 vdevgone(cmaj, unit, unit, VCHR);
732
733 /* Clean up the parent. */
734 dkwedge_cleanup_parent(sc, flags | DETACH_FORCE);
735
736 /* Announce our departure. */
737 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
738 sc->sc_parent->dk_name,
739 sc->sc_wname); /* XXX Unicode */
740
741 mutex_enter(&sc->sc_parent->dk_openlock);
742 sc->sc_parent->dk_nwedges--;
743 LIST_REMOVE(sc, sc_plink);
744 mutex_exit(&sc->sc_parent->dk_openlock);
745
746 /* Delete our buffer queue. */
747 bufq_free(sc->sc_bufq);
748
749 /* Detach from the disk list. */
750 disk_detach(&sc->sc_dk);
751 disk_destroy(&sc->sc_dk);
752
753 /* Poof. */
754 rw_enter(&dkwedges_lock, RW_WRITER);
755 dkwedges[unit] = NULL;
756 sc->sc_state = DKW_STATE_DEAD;
757 rw_exit(&dkwedges_lock);
758
759 mutex_destroy(&sc->sc_iolock);
760 cv_destroy(&sc->sc_dkdrn);
761 dkwedge_size_fini(sc);
762
763 free(sc, M_DKWEDGE);
764
765 return 0;
766 }
767
768 /*
769 * dkwedge_delall: [exported function]
770 *
771 * Delete all of the wedges on the specified disk. Used when
772 * a disk is being detached.
773 */
774 void
775 dkwedge_delall(struct disk *pdk)
776 {
777
778 dkwedge_delall1(pdk, false);
779 }
780
781 static void
782 dkwedge_delall1(struct disk *pdk, bool idleonly)
783 {
784 struct dkwedge_info dkw;
785 struct dkwedge_softc *sc;
786 int flags;
787
788 flags = DETACH_QUIET;
789 if (!idleonly)
790 flags |= DETACH_FORCE;
791
792 for (;;) {
793 mutex_enter(&pdk->dk_openlock);
794 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
795 if (!idleonly || sc->sc_dk.dk_openmask == 0)
796 break;
797 }
798 if (sc == NULL) {
799 KASSERT(idleonly || pdk->dk_nwedges == 0);
800 mutex_exit(&pdk->dk_openlock);
801 return;
802 }
803 strlcpy(dkw.dkw_parent, pdk->dk_name, sizeof(dkw.dkw_parent));
804 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
805 sizeof(dkw.dkw_devname));
806 mutex_exit(&pdk->dk_openlock);
807 (void) dkwedge_del1(&dkw, flags);
808 }
809 }
810
811 /*
812 * dkwedge_list: [exported function]
813 *
814 * List all of the wedges on a particular disk.
815 */
816 int
817 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
818 {
819 struct uio uio;
820 struct iovec iov;
821 struct dkwedge_softc *sc;
822 struct dkwedge_info dkw;
823 int error = 0;
824
825 iov.iov_base = dkwl->dkwl_buf;
826 iov.iov_len = dkwl->dkwl_bufsize;
827
828 uio.uio_iov = &iov;
829 uio.uio_iovcnt = 1;
830 uio.uio_offset = 0;
831 uio.uio_resid = dkwl->dkwl_bufsize;
832 uio.uio_rw = UIO_READ;
833 KASSERT(l == curlwp);
834 uio.uio_vmspace = l->l_proc->p_vmspace;
835
836 dkwl->dkwl_ncopied = 0;
837
838 mutex_enter(&pdk->dk_openlock);
839 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
840 if (uio.uio_resid < sizeof(dkw))
841 break;
842
843 if (sc->sc_state != DKW_STATE_RUNNING)
844 continue;
845
846 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
847 sizeof(dkw.dkw_devname));
848 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
849 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
850 strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
851 sizeof(dkw.dkw_parent));
852 dkw.dkw_offset = sc->sc_offset;
853 dkw.dkw_size = dkwedge_size(sc);
854 strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
855
856 error = uiomove(&dkw, sizeof(dkw), &uio);
857 if (error)
858 break;
859 dkwl->dkwl_ncopied++;
860 }
861 dkwl->dkwl_nwedges = pdk->dk_nwedges;
862 mutex_exit(&pdk->dk_openlock);
863
864 return error;
865 }
866
867 device_t
868 dkwedge_find_by_wname(const char *wname)
869 {
870 device_t dv = NULL;
871 struct dkwedge_softc *sc;
872 int i;
873
874 rw_enter(&dkwedges_lock, RW_WRITER);
875 for (i = 0; i < ndkwedges; i++) {
876 if ((sc = dkwedges[i]) == NULL)
877 continue;
878 if (strcmp(sc->sc_wname, wname) == 0) {
879 if (dv != NULL) {
880 printf(
881 "WARNING: double match for wedge name %s "
882 "(%s, %s)\n", wname, device_xname(dv),
883 device_xname(sc->sc_dev));
884 continue;
885 }
886 dv = sc->sc_dev;
887 }
888 }
889 rw_exit(&dkwedges_lock);
890 return dv;
891 }
892
893 device_t
894 dkwedge_find_by_parent(const char *name, size_t *i)
895 {
896
897 rw_enter(&dkwedges_lock, RW_WRITER);
898 for (; *i < (size_t)ndkwedges; (*i)++) {
899 struct dkwedge_softc *sc;
900 if ((sc = dkwedges[*i]) == NULL)
901 continue;
902 if (strcmp(sc->sc_parent->dk_name, name) != 0)
903 continue;
904 rw_exit(&dkwedges_lock);
905 return sc->sc_dev;
906 }
907 rw_exit(&dkwedges_lock);
908 return NULL;
909 }
910
911 void
912 dkwedge_print_wnames(void)
913 {
914 struct dkwedge_softc *sc;
915 int i;
916
917 rw_enter(&dkwedges_lock, RW_WRITER);
918 for (i = 0; i < ndkwedges; i++) {
919 if ((sc = dkwedges[i]) == NULL)
920 continue;
921 printf(" wedge:%s", sc->sc_wname);
922 }
923 rw_exit(&dkwedges_lock);
924 }
925
926 /*
927 * We need a dummy object to stuff into the dkwedge discovery method link
928 * set to ensure that there is always at least one object in the set.
929 */
930 static struct dkwedge_discovery_method dummy_discovery_method;
931 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
932
933 /*
934 * dkwedge_init:
935 *
936 * Initialize the disk wedge subsystem.
937 */
938 void
939 dkwedge_init(void)
940 {
941 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
942 struct dkwedge_discovery_method * const *ddmp;
943 struct dkwedge_discovery_method *lddm, *ddm;
944
945 rw_init(&dkwedges_lock);
946 rw_init(&dkwedge_discovery_methods_lock);
947
948 if (config_cfdriver_attach(&dk_cd) != 0)
949 panic("dkwedge: unable to attach cfdriver");
950 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
951 panic("dkwedge: unable to attach cfattach");
952
953 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
954
955 LIST_INIT(&dkwedge_discovery_methods);
956
957 __link_set_foreach(ddmp, dkwedge_methods) {
958 ddm = *ddmp;
959 if (ddm == &dummy_discovery_method)
960 continue;
961 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
962 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
963 ddm, ddm_list);
964 continue;
965 }
966 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
967 if (ddm->ddm_priority == lddm->ddm_priority) {
968 aprint_error("dk-method-%s: method \"%s\" "
969 "already exists at priority %d\n",
970 ddm->ddm_name, lddm->ddm_name,
971 lddm->ddm_priority);
972 /* Not inserted. */
973 break;
974 }
975 if (ddm->ddm_priority < lddm->ddm_priority) {
976 /* Higher priority; insert before. */
977 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
978 break;
979 }
980 if (LIST_NEXT(lddm, ddm_list) == NULL) {
981 /* Last one; insert after. */
982 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
983 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
984 break;
985 }
986 }
987 }
988
989 rw_exit(&dkwedge_discovery_methods_lock);
990 }
991
992 #ifdef DKWEDGE_AUTODISCOVER
993 int dkwedge_autodiscover = 1;
994 #else
995 int dkwedge_autodiscover = 0;
996 #endif
997
998 /*
999 * dkwedge_discover: [exported function]
1000 *
1001 * Discover the wedges on a newly attached disk.
1002 * Remove all unused wedges on the disk first.
1003 */
1004 void
1005 dkwedge_discover(struct disk *pdk)
1006 {
1007 struct dkwedge_discovery_method *ddm;
1008 struct vnode *vp;
1009 int error;
1010 dev_t pdev;
1011
1012 /*
1013 * Require people playing with wedges to enable this explicitly.
1014 */
1015 if (dkwedge_autodiscover == 0)
1016 return;
1017
1018 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
1019
1020 /*
1021 * Use the character device for scanning, the block device
1022 * is busy if there are already wedges attached.
1023 */
1024 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
1025 if (error) {
1026 aprint_error("%s: unable to compute pdev, error = %d\n",
1027 pdk->dk_name, error);
1028 goto out;
1029 }
1030
1031 error = cdevvp(pdev, &vp);
1032 if (error) {
1033 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
1034 pdk->dk_name, error);
1035 goto out;
1036 }
1037
1038 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1039 if (error) {
1040 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
1041 pdk->dk_name, error);
1042 vrele(vp);
1043 goto out;
1044 }
1045
1046 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
1047 if (error) {
1048 if (error != ENXIO)
1049 aprint_error("%s: unable to open device, error = %d\n",
1050 pdk->dk_name, error);
1051 vput(vp);
1052 goto out;
1053 }
1054 VOP_UNLOCK(vp);
1055
1056 /*
1057 * Remove unused wedges
1058 */
1059 dkwedge_delall1(pdk, true);
1060
1061 /*
1062 * For each supported partition map type, look to see if
1063 * this map type exists. If so, parse it and add the
1064 * corresponding wedges.
1065 */
1066 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
1067 error = (*ddm->ddm_discover)(pdk, vp);
1068 if (error == 0) {
1069 /* Successfully created wedges; we're done. */
1070 break;
1071 }
1072 }
1073
1074 error = vn_close(vp, FREAD, NOCRED);
1075 if (error) {
1076 aprint_error("%s: unable to close device, error = %d\n",
1077 pdk->dk_name, error);
1078 /* We'll just assume the vnode has been cleaned up. */
1079 }
1080
1081 out:
1082 rw_exit(&dkwedge_discovery_methods_lock);
1083 }
1084
1085 /*
1086 * dkwedge_read:
1087 *
1088 * Read some data from the specified disk, used for
1089 * partition discovery.
1090 */
1091 int
1092 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
1093 void *tbuf, size_t len)
1094 {
1095 buf_t *bp;
1096 int error;
1097 bool isopen;
1098 dev_t bdev;
1099 struct vnode *bdvp;
1100
1101 /*
1102 * The kernel cannot read from a character device vnode
1103 * as physio() only handles user memory.
1104 *
1105 * If the block device has already been opened by a wedge
1106 * use that vnode and temporarily bump the open counter.
1107 *
1108 * Otherwise try to open the block device.
1109 */
1110
1111 bdev = devsw_chr2blk(vp->v_rdev);
1112
1113 mutex_enter(&pdk->dk_rawlock);
1114 if (pdk->dk_rawopens != 0) {
1115 KASSERT(pdk->dk_rawvp != NULL);
1116 isopen = true;
1117 ++pdk->dk_rawopens;
1118 bdvp = pdk->dk_rawvp;
1119 error = 0;
1120 } else {
1121 isopen = false;
1122 error = dk_open_parent(bdev, FREAD, &bdvp);
1123 }
1124 mutex_exit(&pdk->dk_rawlock);
1125
1126 if (error)
1127 return error;
1128
1129 bp = getiobuf(bdvp, true);
1130 bp->b_flags = B_READ;
1131 bp->b_cflags = BC_BUSY;
1132 bp->b_dev = bdev;
1133 bp->b_data = tbuf;
1134 bp->b_bufsize = bp->b_bcount = len;
1135 bp->b_blkno = blkno;
1136 bp->b_cylinder = 0;
1137 bp->b_error = 0;
1138
1139 VOP_STRATEGY(bdvp, bp);
1140 error = biowait(bp);
1141 putiobuf(bp);
1142
1143 mutex_enter(&pdk->dk_rawlock);
1144 if (isopen) {
1145 --pdk->dk_rawopens;
1146 } else {
1147 dk_close_parent(bdvp, FREAD);
1148 }
1149 mutex_exit(&pdk->dk_rawlock);
1150
1151 return error;
1152 }
1153
1154 /*
1155 * dkwedge_lookup:
1156 *
1157 * Look up a dkwedge_softc based on the provided dev_t.
1158 */
1159 static struct dkwedge_softc *
1160 dkwedge_lookup(dev_t dev)
1161 {
1162 int unit = minor(dev);
1163
1164 if (unit >= ndkwedges)
1165 return NULL;
1166
1167 KASSERT(dkwedges != NULL);
1168
1169 return dkwedges[unit];
1170 }
1171
1172 static int
1173 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
1174 {
1175 struct vnode *vp;
1176 int error;
1177
1178 error = bdevvp(dev, &vp);
1179 if (error)
1180 return error;
1181
1182 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1183 if (error) {
1184 vrele(vp);
1185 return error;
1186 }
1187 error = VOP_OPEN(vp, mode, NOCRED);
1188 if (error) {
1189 vput(vp);
1190 return error;
1191 }
1192
1193 /* VOP_OPEN() doesn't do this for us. */
1194 if (mode & FWRITE) {
1195 mutex_enter(vp->v_interlock);
1196 vp->v_writecount++;
1197 mutex_exit(vp->v_interlock);
1198 }
1199
1200 VOP_UNLOCK(vp);
1201
1202 *vpp = vp;
1203
1204 return 0;
1205 }
1206
1207 static int
1208 dk_close_parent(struct vnode *vp, int mode)
1209 {
1210 int error;
1211
1212 error = vn_close(vp, mode, NOCRED);
1213 return error;
1214 }
1215
1216 /*
1217 * dkopen: [devsw entry point]
1218 *
1219 * Open a wedge.
1220 */
1221 static int
1222 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
1223 {
1224 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1225 int error = 0;
1226
1227 if (sc == NULL)
1228 return ENXIO;
1229 if (sc->sc_state != DKW_STATE_RUNNING)
1230 return ENXIO;
1231
1232 /*
1233 * We go through a complicated little dance to only open the parent
1234 * vnode once per wedge, no matter how many times the wedge is
1235 * opened. The reason? We see one dkopen() per open call, but
1236 * only dkclose() on the last close.
1237 */
1238 mutex_enter(&sc->sc_dk.dk_openlock);
1239 mutex_enter(&sc->sc_parent->dk_rawlock);
1240 if (sc->sc_dk.dk_openmask == 0) {
1241 error = dkfirstopen(sc, flags);
1242 if (error)
1243 goto popen_fail;
1244 }
1245 KASSERT(sc->sc_mode != 0);
1246 if (flags & ~sc->sc_mode & FWRITE) {
1247 error = EROFS;
1248 goto popen_fail;
1249 }
1250 if (fmt == S_IFCHR)
1251 sc->sc_dk.dk_copenmask |= 1;
1252 else
1253 sc->sc_dk.dk_bopenmask |= 1;
1254 sc->sc_dk.dk_openmask =
1255 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1256
1257 popen_fail:
1258 mutex_exit(&sc->sc_parent->dk_rawlock);
1259 mutex_exit(&sc->sc_dk.dk_openlock);
1260 return error;
1261 }
1262
1263 static int
1264 dkfirstopen(struct dkwedge_softc *sc, int flags)
1265 {
1266 struct dkwedge_softc *nsc;
1267 struct vnode *vp;
1268 int mode;
1269 int error;
1270
1271 KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
1272 KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
1273
1274 if (sc->sc_parent->dk_rawopens == 0) {
1275 KASSERT(sc->sc_parent->dk_rawvp == NULL);
1276 /*
1277 * Try open read-write. If this fails for EROFS
1278 * and wedge is read-only, retry to open read-only.
1279 */
1280 mode = FREAD | FWRITE;
1281 error = dk_open_parent(sc->sc_pdev, mode, &vp);
1282 if (error == EROFS && (flags & FWRITE) == 0) {
1283 mode &= ~FWRITE;
1284 error = dk_open_parent(sc->sc_pdev, mode, &vp);
1285 }
1286 if (error)
1287 return error;
1288 sc->sc_parent->dk_rawvp = vp;
1289 } else {
1290 /*
1291 * Retrieve mode from an already opened wedge.
1292 *
1293 * At this point, dk_rawopens is bounded by the number
1294 * of dkwedge devices in the system, which is limited
1295 * by autoconf device numbering to INT_MAX. Since
1296 * dk_rawopens is unsigned, this can't overflow.
1297 */
1298 KASSERT(sc->sc_parent->dk_rawopens < UINT_MAX);
1299 mode = 0;
1300 LIST_FOREACH(nsc, &sc->sc_parent->dk_wedges, sc_plink) {
1301 if (nsc == sc || nsc->sc_dk.dk_openmask == 0)
1302 continue;
1303 mode = nsc->sc_mode;
1304 break;
1305 }
1306 }
1307 sc->sc_mode = mode;
1308 sc->sc_parent->dk_rawopens++;
1309
1310 return 0;
1311 }
1312
1313 static void
1314 dklastclose(struct dkwedge_softc *sc)
1315 {
1316
1317 KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
1318 KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
1319 KASSERT(sc->sc_parent->dk_rawopens > 0);
1320 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1321
1322 if (--sc->sc_parent->dk_rawopens == 0) {
1323 struct vnode *const vp = sc->sc_parent->dk_rawvp;
1324 const int mode = sc->sc_mode;
1325
1326 sc->sc_parent->dk_rawvp = NULL;
1327 sc->sc_mode = 0;
1328
1329 dk_close_parent(vp, mode);
1330 }
1331 }
1332
1333 /*
1334 * dkclose: [devsw entry point]
1335 *
1336 * Close a wedge.
1337 */
1338 static int
1339 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1340 {
1341 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1342
1343 if (sc == NULL)
1344 return ENXIO;
1345 if (sc->sc_state != DKW_STATE_RUNNING)
1346 return ENXIO;
1347
1348 mutex_enter(&sc->sc_dk.dk_openlock);
1349 mutex_enter(&sc->sc_parent->dk_rawlock);
1350
1351 KASSERT(sc->sc_dk.dk_openmask != 0);
1352
1353 if (fmt == S_IFCHR)
1354 sc->sc_dk.dk_copenmask &= ~1;
1355 else
1356 sc->sc_dk.dk_bopenmask &= ~1;
1357 sc->sc_dk.dk_openmask =
1358 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1359
1360 if (sc->sc_dk.dk_openmask == 0) {
1361 dklastclose(sc);
1362 }
1363
1364 mutex_exit(&sc->sc_parent->dk_rawlock);
1365 mutex_exit(&sc->sc_dk.dk_openlock);
1366
1367 return 0;
1368 }
1369
1370 /*
1371 * dkstrategy: [devsw entry point]
1372 *
1373 * Perform I/O based on the wedge I/O strategy.
1374 */
1375 static void
1376 dkstrategy(struct buf *bp)
1377 {
1378 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1379 uint64_t p_size, p_offset;
1380
1381 if (sc == NULL) {
1382 bp->b_error = ENXIO;
1383 goto done;
1384 }
1385
1386 if (sc->sc_state != DKW_STATE_RUNNING ||
1387 sc->sc_parent->dk_rawvp == NULL) {
1388 bp->b_error = ENXIO;
1389 goto done;
1390 }
1391
1392 /* If it's an empty transfer, wake up the top half now. */
1393 if (bp->b_bcount == 0)
1394 goto done;
1395
1396 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1397 p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1398
1399 /* Make sure it's in-range. */
1400 if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1401 goto done;
1402
1403 /* Translate it to the parent's raw LBA. */
1404 bp->b_rawblkno = bp->b_blkno + p_offset;
1405
1406 /* Place it in the queue and start I/O on the unit. */
1407 mutex_enter(&sc->sc_iolock);
1408 sc->sc_iopend++;
1409 disk_wait(&sc->sc_dk);
1410 bufq_put(sc->sc_bufq, bp);
1411 mutex_exit(&sc->sc_iolock);
1412
1413 dkstart(sc);
1414 return;
1415
1416 done:
1417 bp->b_resid = bp->b_bcount;
1418 biodone(bp);
1419 }
1420
1421 /*
1422 * dkstart:
1423 *
1424 * Start I/O that has been enqueued on the wedge.
1425 */
1426 static void
1427 dkstart(struct dkwedge_softc *sc)
1428 {
1429 struct vnode *vp;
1430 struct buf *bp, *nbp;
1431
1432 mutex_enter(&sc->sc_iolock);
1433
1434 /* Do as much work as has been enqueued. */
1435 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1436 if (sc->sc_state != DKW_STATE_RUNNING) {
1437 (void) bufq_get(sc->sc_bufq);
1438 if (--sc->sc_iopend == 0)
1439 cv_broadcast(&sc->sc_dkdrn);
1440 mutex_exit(&sc->sc_iolock);
1441 bp->b_error = ENXIO;
1442 bp->b_resid = bp->b_bcount;
1443 biodone(bp);
1444 mutex_enter(&sc->sc_iolock);
1445 continue;
1446 }
1447
1448 /* fetch an I/O buf with sc_iolock dropped */
1449 mutex_exit(&sc->sc_iolock);
1450 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1451 mutex_enter(&sc->sc_iolock);
1452 if (nbp == NULL) {
1453 /*
1454 * No resources to run this request; leave the
1455 * buffer queued up, and schedule a timer to
1456 * restart the queue in 1/2 a second.
1457 */
1458 callout_schedule(&sc->sc_restart_ch, hz/2);
1459 break;
1460 }
1461
1462 /*
1463 * fetch buf, this can fail if another thread
1464 * has already processed the queue, it can also
1465 * return a completely different buf.
1466 */
1467 bp = bufq_get(sc->sc_bufq);
1468 if (bp == NULL) {
1469 mutex_exit(&sc->sc_iolock);
1470 putiobuf(nbp);
1471 mutex_enter(&sc->sc_iolock);
1472 continue;
1473 }
1474
1475 /* Instrumentation. */
1476 disk_busy(&sc->sc_dk);
1477
1478 /* release lock for VOP_STRATEGY */
1479 mutex_exit(&sc->sc_iolock);
1480
1481 nbp->b_data = bp->b_data;
1482 nbp->b_flags = bp->b_flags;
1483 nbp->b_oflags = bp->b_oflags;
1484 nbp->b_cflags = bp->b_cflags;
1485 nbp->b_iodone = dkiodone;
1486 nbp->b_proc = bp->b_proc;
1487 nbp->b_blkno = bp->b_rawblkno;
1488 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1489 nbp->b_bcount = bp->b_bcount;
1490 nbp->b_private = bp;
1491 BIO_COPYPRIO(nbp, bp);
1492
1493 vp = nbp->b_vp;
1494 if ((nbp->b_flags & B_READ) == 0) {
1495 mutex_enter(vp->v_interlock);
1496 vp->v_numoutput++;
1497 mutex_exit(vp->v_interlock);
1498 }
1499 VOP_STRATEGY(vp, nbp);
1500
1501 mutex_enter(&sc->sc_iolock);
1502 }
1503
1504 mutex_exit(&sc->sc_iolock);
1505 }
1506
1507 /*
1508 * dkiodone:
1509 *
1510 * I/O to a wedge has completed; alert the top half.
1511 */
1512 static void
1513 dkiodone(struct buf *bp)
1514 {
1515 struct buf *obp = bp->b_private;
1516 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1517
1518 if (bp->b_error != 0)
1519 obp->b_error = bp->b_error;
1520 obp->b_resid = bp->b_resid;
1521 putiobuf(bp);
1522
1523 mutex_enter(&sc->sc_iolock);
1524 if (--sc->sc_iopend == 0)
1525 cv_broadcast(&sc->sc_dkdrn);
1526
1527 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1528 obp->b_flags & B_READ);
1529 mutex_exit(&sc->sc_iolock);
1530
1531 biodone(obp);
1532
1533 /* Kick the queue in case there is more work we can do. */
1534 dkstart(sc);
1535 }
1536
1537 /*
1538 * dkrestart:
1539 *
1540 * Restart the work queue after it was stalled due to
1541 * a resource shortage. Invoked via a callout.
1542 */
1543 static void
1544 dkrestart(void *v)
1545 {
1546 struct dkwedge_softc *sc = v;
1547
1548 dkstart(sc);
1549 }
1550
1551 /*
1552 * dkminphys:
1553 *
1554 * Call parent's minphys function.
1555 */
1556 static void
1557 dkminphys(struct buf *bp)
1558 {
1559 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1560 dev_t dev;
1561
1562 dev = bp->b_dev;
1563 bp->b_dev = sc->sc_pdev;
1564 if (sc->sc_parent->dk_driver && sc->sc_parent->dk_driver->d_minphys)
1565 (*sc->sc_parent->dk_driver->d_minphys)(bp);
1566 else
1567 minphys(bp);
1568 bp->b_dev = dev;
1569 }
1570
1571 /*
1572 * dkread: [devsw entry point]
1573 *
1574 * Read from a wedge.
1575 */
1576 static int
1577 dkread(dev_t dev, struct uio *uio, int flags)
1578 {
1579 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1580
1581 if (sc == NULL)
1582 return ENXIO;
1583 if (sc->sc_state != DKW_STATE_RUNNING)
1584 return ENXIO;
1585
1586 return physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio);
1587 }
1588
1589 /*
1590 * dkwrite: [devsw entry point]
1591 *
1592 * Write to a wedge.
1593 */
1594 static int
1595 dkwrite(dev_t dev, struct uio *uio, int flags)
1596 {
1597 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1598
1599 if (sc == NULL)
1600 return ENXIO;
1601 if (sc->sc_state != DKW_STATE_RUNNING)
1602 return ENXIO;
1603
1604 return physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio);
1605 }
1606
1607 /*
1608 * dkioctl: [devsw entry point]
1609 *
1610 * Perform an ioctl request on a wedge.
1611 */
1612 static int
1613 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1614 {
1615 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1616 int error = 0;
1617
1618 if (sc == NULL)
1619 return ENXIO;
1620 if (sc->sc_state != DKW_STATE_RUNNING)
1621 return ENXIO;
1622 if (sc->sc_parent->dk_rawvp == NULL)
1623 return ENXIO;
1624
1625 /*
1626 * We pass NODEV instead of our device to indicate we don't
1627 * want to handle disklabel ioctls
1628 */
1629 error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
1630 if (error != EPASSTHROUGH)
1631 return error;
1632
1633 error = 0;
1634
1635 switch (cmd) {
1636 case DIOCGSTRATEGY:
1637 case DIOCGCACHE:
1638 case DIOCCACHESYNC:
1639 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, data, flag,
1640 l != NULL ? l->l_cred : NOCRED);
1641 break;
1642 case DIOCGWEDGEINFO: {
1643 struct dkwedge_info *dkw = data;
1644
1645 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1646 sizeof(dkw->dkw_devname));
1647 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1648 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1649 strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
1650 sizeof(dkw->dkw_parent));
1651 dkw->dkw_offset = sc->sc_offset;
1652 dkw->dkw_size = dkwedge_size(sc);
1653 strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
1654
1655 break;
1656 }
1657 case DIOCGSECTORALIGN: {
1658 struct disk_sectoralign *dsa = data;
1659 uint32_t r;
1660
1661 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, dsa, flag,
1662 l != NULL ? l->l_cred : NOCRED);
1663 if (error)
1664 break;
1665
1666 r = sc->sc_offset % dsa->dsa_alignment;
1667 if (r < dsa->dsa_firstaligned)
1668 dsa->dsa_firstaligned = dsa->dsa_firstaligned - r;
1669 else
1670 dsa->dsa_firstaligned = (dsa->dsa_firstaligned +
1671 dsa->dsa_alignment) - r;
1672 break;
1673 }
1674 default:
1675 error = ENOTTY;
1676 }
1677
1678 return error;
1679 }
1680
1681 /*
1682 * dkdiscard: [devsw entry point]
1683 *
1684 * Perform a discard-range request on a wedge.
1685 */
1686 static int
1687 dkdiscard(dev_t dev, off_t pos, off_t len)
1688 {
1689 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1690 uint64_t size = dkwedge_size(sc);
1691 unsigned shift;
1692 off_t offset, maxlen;
1693 int error;
1694
1695 if (sc == NULL)
1696 return ENXIO;
1697 if (sc->sc_state != DKW_STATE_RUNNING)
1698 return ENXIO;
1699 if (sc->sc_parent->dk_rawvp == NULL)
1700 return ENXIO;
1701
1702 /* XXX check bounds on size/offset up front */
1703 shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
1704 KASSERT(__type_fit(off_t, size));
1705 KASSERT(__type_fit(off_t, sc->sc_offset));
1706 KASSERT(0 <= sc->sc_offset);
1707 KASSERT(size <= (__type_max(off_t) >> shift));
1708 KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - size));
1709 offset = ((off_t)sc->sc_offset << shift);
1710 maxlen = ((off_t)size << shift);
1711
1712 if (len > maxlen)
1713 return EINVAL;
1714 if (pos > (maxlen - len))
1715 return EINVAL;
1716
1717 pos += offset;
1718
1719 vn_lock(sc->sc_parent->dk_rawvp, LK_EXCLUSIVE | LK_RETRY);
1720 error = VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
1721 VOP_UNLOCK(sc->sc_parent->dk_rawvp);
1722
1723 return error;
1724 }
1725
1726 /*
1727 * dksize: [devsw entry point]
1728 *
1729 * Query the size of a wedge for the purpose of performing a dump
1730 * or for swapping to.
1731 */
1732 static int
1733 dksize(dev_t dev)
1734 {
1735 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1736 uint64_t p_size;
1737 int rv = -1;
1738
1739 if (sc == NULL)
1740 return -1;
1741 if (sc->sc_state != DKW_STATE_RUNNING)
1742 return -1;
1743
1744 mutex_enter(&sc->sc_dk.dk_openlock);
1745 mutex_enter(&sc->sc_parent->dk_rawlock);
1746
1747 /* Our content type is static, no need to open the device. */
1748
1749 p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1750 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1751 /* Saturate if we are larger than INT_MAX. */
1752 if (p_size > INT_MAX)
1753 rv = INT_MAX;
1754 else
1755 rv = (int)p_size;
1756 }
1757
1758 mutex_exit(&sc->sc_parent->dk_rawlock);
1759 mutex_exit(&sc->sc_dk.dk_openlock);
1760
1761 return rv;
1762 }
1763
1764 /*
1765 * dkdump: [devsw entry point]
1766 *
1767 * Perform a crash dump to a wedge.
1768 */
1769 static int
1770 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1771 {
1772 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1773 const struct bdevsw *bdev;
1774 uint64_t p_size, p_offset;
1775 int rv = 0;
1776
1777 if (sc == NULL)
1778 return ENXIO;
1779 if (sc->sc_state != DKW_STATE_RUNNING)
1780 return ENXIO;
1781
1782 mutex_enter(&sc->sc_dk.dk_openlock);
1783 mutex_enter(&sc->sc_parent->dk_rawlock);
1784
1785 /* Our content type is static, no need to open the device. */
1786
1787 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
1788 strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0 &&
1789 strcmp(sc->sc_ptype, DKW_PTYPE_CGD) != 0) {
1790 rv = ENXIO;
1791 goto out;
1792 }
1793 if (size % DEV_BSIZE != 0) {
1794 rv = EINVAL;
1795 goto out;
1796 }
1797
1798 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1799 p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1800
1801 if (blkno < 0 || blkno + size/DEV_BSIZE > p_size) {
1802 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1803 "p_size (%" PRIu64 ")\n", __func__, blkno,
1804 size/DEV_BSIZE, p_size);
1805 rv = EINVAL;
1806 goto out;
1807 }
1808
1809 bdev = bdevsw_lookup(sc->sc_pdev);
1810 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + p_offset, va, size);
1811
1812 out:
1813 mutex_exit(&sc->sc_parent->dk_rawlock);
1814 mutex_exit(&sc->sc_dk.dk_openlock);
1815
1816 return rv;
1817 }
1818
1819 /*
1820 * config glue
1821 */
1822
1823 /*
1824 * dkwedge_find_partition
1825 *
1826 * Find wedge corresponding to the specified parent name
1827 * and offset/length.
1828 */
1829 device_t
1830 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
1831 {
1832 struct dkwedge_softc *sc;
1833 int i;
1834 device_t wedge = NULL;
1835
1836 rw_enter(&dkwedges_lock, RW_READER);
1837 for (i = 0; i < ndkwedges; i++) {
1838 if ((sc = dkwedges[i]) == NULL)
1839 continue;
1840 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
1841 sc->sc_offset == startblk &&
1842 dkwedge_size(sc) == nblks) {
1843 if (wedge) {
1844 printf("WARNING: double match for boot wedge "
1845 "(%s, %s)\n",
1846 device_xname(wedge),
1847 device_xname(sc->sc_dev));
1848 continue;
1849 }
1850 wedge = sc->sc_dev;
1851 }
1852 }
1853 rw_exit(&dkwedges_lock);
1854
1855 return wedge;
1856 }
1857
1858 const char *
1859 dkwedge_get_parent_name(dev_t dev)
1860 {
1861 /* XXX: perhaps do this in lookup? */
1862 int bmaj = bdevsw_lookup_major(&dk_bdevsw);
1863 int cmaj = cdevsw_lookup_major(&dk_cdevsw);
1864
1865 if (major(dev) != bmaj && major(dev) != cmaj)
1866 return NULL;
1867 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1868 if (sc == NULL)
1869 return NULL;
1870 return sc->sc_parent->dk_name;
1871 }
1872