dk.c revision 1.141 1 /* $NetBSD: dk.c,v 1.141 2023/04/21 18:30:21 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.141 2023/04/21 18:30:21 riastradh Exp $");
34
35 #ifdef _KERNEL_OPT
36 #include "opt_dkwedge.h"
37 #endif
38
39 #include <sys/param.h>
40 #include <sys/types.h>
41
42 #include <sys/buf.h>
43 #include <sys/bufq.h>
44 #include <sys/callout.h>
45 #include <sys/conf.h>
46 #include <sys/device.h>
47 #include <sys/disk.h>
48 #include <sys/disklabel.h>
49 #include <sys/errno.h>
50 #include <sys/fcntl.h>
51 #include <sys/ioctl.h>
52 #include <sys/kauth.h>
53 #include <sys/kernel.h>
54 #include <sys/malloc.h>
55 #include <sys/pool.h>
56 #include <sys/proc.h>
57 #include <sys/rwlock.h>
58 #include <sys/stat.h>
59 #include <sys/systm.h>
60 #include <sys/vnode.h>
61
62 #include <miscfs/specfs/specdev.h>
63
64 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
65
66 typedef enum {
67 DKW_STATE_LARVAL = 0,
68 DKW_STATE_RUNNING = 1,
69 DKW_STATE_DYING = 2,
70 DKW_STATE_DEAD = 666
71 } dkwedge_state_t;
72
73 struct dkwedge_softc {
74 device_t sc_dev; /* pointer to our pseudo-device */
75 struct cfdata sc_cfdata; /* our cfdata structure */
76 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
77
78 dkwedge_state_t sc_state; /* state this wedge is in */
79
80 struct disk *sc_parent; /* parent disk */
81 daddr_t sc_offset; /* LBA offset of wedge in parent */
82 krwlock_t sc_sizelock;
83 uint64_t sc_size; /* size of wedge in blocks */
84 char sc_ptype[32]; /* partition type */
85 dev_t sc_pdev; /* cached parent's dev_t */
86 /* link on parent's wedge list */
87 LIST_ENTRY(dkwedge_softc) sc_plink;
88
89 struct disk sc_dk; /* our own disk structure */
90 struct bufq_state *sc_bufq; /* buffer queue */
91 struct callout sc_restart_ch; /* callout to restart I/O */
92
93 kmutex_t sc_iolock;
94 kcondvar_t sc_dkdrn;
95 u_int sc_iopend; /* I/Os pending */
96 int sc_mode; /* parent open mode */
97 };
98
99 static int dkwedge_match(device_t, cfdata_t, void *);
100 static void dkwedge_attach(device_t, device_t, void *);
101 static int dkwedge_detach(device_t, int);
102
103 static void dkstart(struct dkwedge_softc *);
104 static void dkiodone(struct buf *);
105 static void dkrestart(void *);
106 static void dkminphys(struct buf *);
107
108 static int dkfirstopen(struct dkwedge_softc *, int);
109 static void dklastclose(struct dkwedge_softc *);
110 static int dkwedge_cleanup_parent(struct dkwedge_softc *, int);
111 static int dkwedge_detach(device_t, int);
112 static void dkwedge_delall1(struct disk *, bool);
113 static int dkwedge_del1(struct dkwedge_info *, int);
114 static int dk_open_parent(dev_t, int, struct vnode **);
115 static int dk_close_parent(struct vnode *, int);
116
117 static dev_type_open(dkopen);
118 static dev_type_close(dkclose);
119 static dev_type_cancel(dkcancel);
120 static dev_type_read(dkread);
121 static dev_type_write(dkwrite);
122 static dev_type_ioctl(dkioctl);
123 static dev_type_strategy(dkstrategy);
124 static dev_type_dump(dkdump);
125 static dev_type_size(dksize);
126 static dev_type_discard(dkdiscard);
127
128 CFDRIVER_DECL(dk, DV_DISK, NULL);
129 CFATTACH_DECL3_NEW(dk, 0,
130 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
131 DVF_DETACH_SHUTDOWN);
132
133 const struct bdevsw dk_bdevsw = {
134 .d_open = dkopen,
135 .d_close = dkclose,
136 .d_cancel = dkcancel,
137 .d_strategy = dkstrategy,
138 .d_ioctl = dkioctl,
139 .d_dump = dkdump,
140 .d_psize = dksize,
141 .d_discard = dkdiscard,
142 .d_flag = D_DISK | D_MPSAFE
143 };
144
145 const struct cdevsw dk_cdevsw = {
146 .d_open = dkopen,
147 .d_close = dkclose,
148 .d_cancel = dkcancel,
149 .d_read = dkread,
150 .d_write = dkwrite,
151 .d_ioctl = dkioctl,
152 .d_stop = nostop,
153 .d_tty = notty,
154 .d_poll = nopoll,
155 .d_mmap = nommap,
156 .d_kqfilter = nokqfilter,
157 .d_discard = dkdiscard,
158 .d_flag = D_DISK | D_MPSAFE
159 };
160
161 static struct dkwedge_softc **dkwedges;
162 static u_int ndkwedges;
163 static krwlock_t dkwedges_lock;
164
165 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
166 static krwlock_t dkwedge_discovery_methods_lock;
167
168 /*
169 * dkwedge_match:
170 *
171 * Autoconfiguration match function for pseudo-device glue.
172 */
173 static int
174 dkwedge_match(device_t parent, cfdata_t match, void *aux)
175 {
176
177 /* Pseudo-device; always present. */
178 return 1;
179 }
180
181 /*
182 * dkwedge_attach:
183 *
184 * Autoconfiguration attach function for pseudo-device glue.
185 */
186 static void
187 dkwedge_attach(device_t parent, device_t self, void *aux)
188 {
189
190 if (!pmf_device_register(self, NULL, NULL))
191 aprint_error_dev(self, "couldn't establish power handler\n");
192 }
193
194 /*
195 * dkwedge_wait_drain:
196 *
197 * Wait for I/O on the wedge to drain.
198 */
199 static void
200 dkwedge_wait_drain(struct dkwedge_softc *sc)
201 {
202
203 mutex_enter(&sc->sc_iolock);
204 while (sc->sc_iopend != 0)
205 cv_wait(&sc->sc_dkdrn, &sc->sc_iolock);
206 mutex_exit(&sc->sc_iolock);
207 }
208
209 /*
210 * dkwedge_compute_pdev:
211 *
212 * Compute the parent disk's dev_t.
213 */
214 static int
215 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
216 {
217 const char *name, *cp;
218 devmajor_t pmaj;
219 int punit;
220 char devname[16];
221
222 name = pname;
223 switch (type) {
224 case VBLK:
225 pmaj = devsw_name2blk(name, devname, sizeof(devname));
226 break;
227 case VCHR:
228 pmaj = devsw_name2chr(name, devname, sizeof(devname));
229 break;
230 default:
231 pmaj = NODEVMAJOR;
232 break;
233 }
234 if (pmaj == NODEVMAJOR)
235 return ENXIO;
236
237 name += strlen(devname);
238 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
239 punit = (punit * 10) + (*cp - '0');
240 if (cp == name) {
241 /* Invalid parent disk name. */
242 return ENXIO;
243 }
244
245 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
246
247 return 0;
248 }
249
250 /*
251 * dkwedge_array_expand:
252 *
253 * Expand the dkwedges array.
254 *
255 * Releases and reacquires dkwedges_lock as a writer.
256 */
257 static int
258 dkwedge_array_expand(void)
259 {
260
261 const unsigned incr = 16;
262 unsigned newcnt, oldcnt;
263 struct dkwedge_softc **newarray = NULL, **oldarray = NULL;
264
265 KASSERT(rw_write_held(&dkwedges_lock));
266
267 oldcnt = ndkwedges;
268 oldarray = dkwedges;
269
270 if (oldcnt >= INT_MAX - incr)
271 return ENFILE; /* XXX */
272 newcnt = oldcnt + incr;
273
274 rw_exit(&dkwedges_lock);
275 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
276 M_WAITOK|M_ZERO);
277 rw_enter(&dkwedges_lock, RW_WRITER);
278
279 if (ndkwedges != oldcnt || dkwedges != oldarray) {
280 oldarray = NULL; /* already recycled */
281 goto out;
282 }
283
284 if (oldarray != NULL)
285 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
286 dkwedges = newarray;
287 newarray = NULL; /* transferred to dkwedges */
288 ndkwedges = newcnt;
289
290 out: rw_exit(&dkwedges_lock);
291 if (oldarray != NULL)
292 free(oldarray, M_DKWEDGE);
293 if (newarray != NULL)
294 free(newarray, M_DKWEDGE);
295 rw_enter(&dkwedges_lock, RW_WRITER);
296 return 0;
297 }
298
299 static void
300 dkwedge_size_init(struct dkwedge_softc *sc, uint64_t size)
301 {
302
303 rw_init(&sc->sc_sizelock);
304 sc->sc_size = size;
305 }
306
307 static void
308 dkwedge_size_fini(struct dkwedge_softc *sc)
309 {
310
311 rw_destroy(&sc->sc_sizelock);
312 }
313
314 static uint64_t
315 dkwedge_size(struct dkwedge_softc *sc)
316 {
317 uint64_t size;
318
319 rw_enter(&sc->sc_sizelock, RW_READER);
320 size = sc->sc_size;
321 rw_exit(&sc->sc_sizelock);
322
323 return size;
324 }
325
326 static void
327 dkwedge_size_increase(struct dkwedge_softc *sc, uint64_t size)
328 {
329
330 KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
331
332 rw_enter(&sc->sc_sizelock, RW_WRITER);
333 KASSERTMSG(size >= sc->sc_size,
334 "decreasing dkwedge size from %"PRIu64" to %"PRIu64,
335 sc->sc_size, size);
336 sc->sc_size = size;
337 rw_exit(&sc->sc_sizelock);
338 }
339
340 static void
341 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
342 {
343 struct disk *dk = &sc->sc_dk;
344 struct disk_geom *dg = &dk->dk_geom;
345
346 KASSERT(mutex_owned(&pdk->dk_openlock));
347
348 memset(dg, 0, sizeof(*dg));
349
350 dg->dg_secperunit = dkwedge_size(sc);
351 dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
352
353 /* fake numbers, 1 cylinder is 1 MB with default sector size */
354 dg->dg_nsectors = 32;
355 dg->dg_ntracks = 64;
356 dg->dg_ncylinders =
357 dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
358
359 disk_set_info(sc->sc_dev, dk, NULL);
360 }
361
362 /*
363 * dkwedge_add: [exported function]
364 *
365 * Add a disk wedge based on the provided information.
366 *
367 * The incoming dkw_devname[] is ignored, instead being
368 * filled in and returned to the caller.
369 */
370 int
371 dkwedge_add(struct dkwedge_info *dkw)
372 {
373 struct dkwedge_softc *sc, *lsc;
374 struct disk *pdk;
375 u_int unit;
376 int error;
377 dev_t pdev;
378
379 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
380 pdk = disk_find(dkw->dkw_parent);
381 if (pdk == NULL)
382 return ENXIO;
383
384 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
385 if (error)
386 return error;
387
388 if (dkw->dkw_offset < 0)
389 return EINVAL;
390
391 /*
392 * Check for an existing wedge at the same disk offset. Allow
393 * updating a wedge if the only change is the size, and the new
394 * size is larger than the old.
395 */
396 sc = NULL;
397 mutex_enter(&pdk->dk_openlock);
398 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
399 if (lsc->sc_offset != dkw->dkw_offset)
400 continue;
401 if (strcmp(lsc->sc_wname, dkw->dkw_wname) != 0)
402 break;
403 if (strcmp(lsc->sc_ptype, dkw->dkw_ptype) != 0)
404 break;
405 if (dkwedge_size(lsc) > dkw->dkw_size)
406 break;
407
408 sc = lsc;
409 dkwedge_size_increase(sc, dkw->dkw_size);
410 dk_set_geometry(sc, pdk);
411
412 break;
413 }
414 mutex_exit(&pdk->dk_openlock);
415
416 if (sc != NULL)
417 goto announce;
418
419 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
420 sc->sc_state = DKW_STATE_LARVAL;
421 sc->sc_parent = pdk;
422 sc->sc_pdev = pdev;
423 sc->sc_offset = dkw->dkw_offset;
424 dkwedge_size_init(sc, dkw->dkw_size);
425
426 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
427 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
428
429 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
430 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
431
432 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
433
434 callout_init(&sc->sc_restart_ch, 0);
435 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
436
437 mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
438 cv_init(&sc->sc_dkdrn, "dkdrn");
439
440 /*
441 * Wedge will be added; increment the wedge count for the parent.
442 * Only allow this to happen if RAW_PART is the only thing open.
443 */
444 mutex_enter(&pdk->dk_openlock);
445 if (pdk->dk_openmask & ~(1 << RAW_PART))
446 error = EBUSY;
447 else {
448 /* Check for wedge overlap. */
449 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
450 /* XXX arithmetic overflow */
451 uint64_t size = dkwedge_size(sc);
452 uint64_t lsize = dkwedge_size(lsc);
453 daddr_t lastblk = sc->sc_offset + size - 1;
454 daddr_t llastblk = lsc->sc_offset + lsize - 1;
455
456 if (sc->sc_offset >= lsc->sc_offset &&
457 sc->sc_offset <= llastblk) {
458 /* Overlaps the tail of the existing wedge. */
459 break;
460 }
461 if (lastblk >= lsc->sc_offset &&
462 lastblk <= llastblk) {
463 /* Overlaps the head of the existing wedge. */
464 break;
465 }
466 }
467 if (lsc != NULL) {
468 if (sc->sc_offset == lsc->sc_offset &&
469 dkwedge_size(sc) == dkwedge_size(lsc) &&
470 strcmp(sc->sc_wname, lsc->sc_wname) == 0)
471 error = EEXIST;
472 else
473 error = EINVAL;
474 } else {
475 pdk->dk_nwedges++;
476 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
477 }
478 }
479 mutex_exit(&pdk->dk_openlock);
480 if (error) {
481 cv_destroy(&sc->sc_dkdrn);
482 mutex_destroy(&sc->sc_iolock);
483 bufq_free(sc->sc_bufq);
484 dkwedge_size_fini(sc);
485 free(sc, M_DKWEDGE);
486 return error;
487 }
488
489 /* Fill in our cfdata for the pseudo-device glue. */
490 sc->sc_cfdata.cf_name = dk_cd.cd_name;
491 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
492 /* sc->sc_cfdata.cf_unit set below */
493 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
494
495 /* Insert the larval wedge into the array. */
496 rw_enter(&dkwedges_lock, RW_WRITER);
497 for (error = 0;;) {
498 struct dkwedge_softc **scpp;
499
500 /*
501 * Check for a duplicate wname while searching for
502 * a slot.
503 */
504 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
505 if (dkwedges[unit] == NULL) {
506 if (scpp == NULL) {
507 scpp = &dkwedges[unit];
508 sc->sc_cfdata.cf_unit = unit;
509 }
510 } else {
511 /* XXX Unicode. */
512 if (strcmp(dkwedges[unit]->sc_wname,
513 sc->sc_wname) == 0) {
514 error = EEXIST;
515 break;
516 }
517 }
518 }
519 if (error)
520 break;
521 KASSERT(unit == ndkwedges);
522 if (scpp == NULL) {
523 error = dkwedge_array_expand();
524 if (error)
525 break;
526 } else {
527 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
528 *scpp = sc;
529 break;
530 }
531 }
532 rw_exit(&dkwedges_lock);
533 if (error) {
534 mutex_enter(&pdk->dk_openlock);
535 pdk->dk_nwedges--;
536 LIST_REMOVE(sc, sc_plink);
537 mutex_exit(&pdk->dk_openlock);
538
539 cv_destroy(&sc->sc_dkdrn);
540 mutex_destroy(&sc->sc_iolock);
541 bufq_free(sc->sc_bufq);
542 dkwedge_size_fini(sc);
543 free(sc, M_DKWEDGE);
544 return error;
545 }
546
547 /*
548 * Now that we know the unit #, attach a pseudo-device for
549 * this wedge instance. This will provide us with the
550 * device_t necessary for glue to other parts of the system.
551 *
552 * This should never fail, unless we're almost totally out of
553 * memory.
554 */
555 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
556 aprint_error("%s%u: unable to attach pseudo-device\n",
557 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
558
559 rw_enter(&dkwedges_lock, RW_WRITER);
560 KASSERT(dkwedges[sc->sc_cfdata.cf_unit] == sc);
561 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
562 rw_exit(&dkwedges_lock);
563
564 mutex_enter(&pdk->dk_openlock);
565 pdk->dk_nwedges--;
566 LIST_REMOVE(sc, sc_plink);
567 mutex_exit(&pdk->dk_openlock);
568
569 cv_destroy(&sc->sc_dkdrn);
570 mutex_destroy(&sc->sc_iolock);
571 bufq_free(sc->sc_bufq);
572 dkwedge_size_fini(sc);
573 free(sc, M_DKWEDGE);
574 return ENOMEM;
575 }
576
577 /*
578 * XXX Really ought to make the disk_attach() and the changing
579 * of state to RUNNING atomic.
580 */
581
582 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
583 mutex_enter(&pdk->dk_openlock);
584 dk_set_geometry(sc, pdk);
585 mutex_exit(&pdk->dk_openlock);
586 disk_attach(&sc->sc_dk);
587
588 /* Disk wedge is ready for use! */
589 sc->sc_state = DKW_STATE_RUNNING;
590
591 announce:
592 /* Announce our arrival. */
593 aprint_normal(
594 "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
595 device_xname(sc->sc_dev), pdk->dk_name,
596 sc->sc_wname, /* XXX Unicode */
597 dkwedge_size(sc), sc->sc_offset,
598 sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
599
600 /* Return the devname to the caller. */
601 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
602 sizeof(dkw->dkw_devname));
603
604 return 0;
605 }
606
607 /*
608 * dkwedge_find:
609 *
610 * Lookup a disk wedge based on the provided information.
611 * NOTE: We look up the wedge based on the wedge devname,
612 * not wname.
613 *
614 * Return NULL if the wedge is not found, otherwise return
615 * the wedge's softc. Assign the wedge's unit number to unitp
616 * if unitp is not NULL.
617 */
618 static struct dkwedge_softc *
619 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
620 {
621 struct dkwedge_softc *sc = NULL;
622 u_int unit;
623
624 /* Find our softc. */
625 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
626 rw_enter(&dkwedges_lock, RW_READER);
627 for (unit = 0; unit < ndkwedges; unit++) {
628 if ((sc = dkwedges[unit]) != NULL &&
629 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
630 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
631 break;
632 }
633 }
634 rw_exit(&dkwedges_lock);
635 if (sc == NULL)
636 return NULL;
637
638 if (unitp != NULL)
639 *unitp = unit;
640
641 return sc;
642 }
643
644 /*
645 * dkwedge_del: [exported function]
646 *
647 * Delete a disk wedge based on the provided information.
648 * NOTE: We look up the wedge based on the wedge devname,
649 * not wname.
650 */
651 int
652 dkwedge_del(struct dkwedge_info *dkw)
653 {
654
655 return dkwedge_del1(dkw, 0);
656 }
657
658 int
659 dkwedge_del1(struct dkwedge_info *dkw, int flags)
660 {
661 struct dkwedge_softc *sc = NULL;
662
663 /* Find our softc. */
664 if ((sc = dkwedge_find(dkw, NULL)) == NULL)
665 return ESRCH;
666
667 return config_detach(sc->sc_dev, flags);
668 }
669
670 static int
671 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags)
672 {
673 struct disk *dk = &sc->sc_dk;
674 int rc;
675
676 rc = 0;
677 mutex_enter(&dk->dk_openlock);
678 if (dk->dk_openmask == 0) {
679 /* nothing to do */
680 } else if ((flags & DETACH_FORCE) == 0) {
681 rc = EBUSY;
682 } else {
683 mutex_enter(&sc->sc_parent->dk_rawlock);
684 dklastclose(sc);
685 mutex_exit(&sc->sc_parent->dk_rawlock);
686 }
687 mutex_exit(&sc->sc_dk.dk_openlock);
688
689 return rc;
690 }
691
692 /*
693 * dkwedge_detach:
694 *
695 * Autoconfiguration detach function for pseudo-device glue.
696 */
697 static int
698 dkwedge_detach(device_t self, int flags)
699 {
700 struct dkwedge_softc *sc = NULL;
701 u_int unit;
702 int bmaj, cmaj, rc;
703
704 rw_enter(&dkwedges_lock, RW_WRITER);
705 for (unit = 0; unit < ndkwedges; unit++) {
706 if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
707 break;
708 }
709 if (unit == ndkwedges)
710 rc = ENXIO;
711 else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) {
712 /* Mark the wedge as dying. */
713 sc->sc_state = DKW_STATE_DYING;
714 }
715 rw_exit(&dkwedges_lock);
716
717 if (rc != 0)
718 return rc;
719
720 pmf_device_deregister(self);
721
722 /* Locate the wedge major numbers. */
723 bmaj = bdevsw_lookup_major(&dk_bdevsw);
724 cmaj = cdevsw_lookup_major(&dk_cdevsw);
725
726 /* Kill any pending restart. */
727 callout_stop(&sc->sc_restart_ch);
728
729 /*
730 * dkstart() will kill any queued buffers now that the
731 * state of the wedge is not RUNNING. Once we've done
732 * that, wait for any other pending I/O to complete.
733 */
734 dkstart(sc);
735 dkwedge_wait_drain(sc);
736
737 /* Nuke the vnodes for any open instances. */
738 vdevgone(bmaj, unit, unit, VBLK);
739 vdevgone(cmaj, unit, unit, VCHR);
740
741 /* Clean up the parent. */
742 dkwedge_cleanup_parent(sc, flags | DETACH_FORCE);
743
744 /* Announce our departure. */
745 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
746 sc->sc_parent->dk_name,
747 sc->sc_wname); /* XXX Unicode */
748
749 mutex_enter(&sc->sc_parent->dk_openlock);
750 sc->sc_parent->dk_nwedges--;
751 LIST_REMOVE(sc, sc_plink);
752 mutex_exit(&sc->sc_parent->dk_openlock);
753
754 /* Delete our buffer queue. */
755 bufq_free(sc->sc_bufq);
756
757 /* Detach from the disk list. */
758 disk_detach(&sc->sc_dk);
759 disk_destroy(&sc->sc_dk);
760
761 /* Poof. */
762 rw_enter(&dkwedges_lock, RW_WRITER);
763 KASSERT(dkwedges[unit] == sc);
764 dkwedges[unit] = NULL;
765 sc->sc_state = DKW_STATE_DEAD;
766 rw_exit(&dkwedges_lock);
767
768 mutex_destroy(&sc->sc_iolock);
769 cv_destroy(&sc->sc_dkdrn);
770 dkwedge_size_fini(sc);
771
772 free(sc, M_DKWEDGE);
773
774 return 0;
775 }
776
777 /*
778 * dkwedge_delall: [exported function]
779 *
780 * Delete all of the wedges on the specified disk. Used when
781 * a disk is being detached.
782 */
783 void
784 dkwedge_delall(struct disk *pdk)
785 {
786
787 dkwedge_delall1(pdk, false);
788 }
789
790 static void
791 dkwedge_delall1(struct disk *pdk, bool idleonly)
792 {
793 struct dkwedge_info dkw;
794 struct dkwedge_softc *sc;
795 int flags;
796
797 flags = DETACH_QUIET;
798 if (!idleonly)
799 flags |= DETACH_FORCE;
800
801 for (;;) {
802 mutex_enter(&pdk->dk_openlock);
803 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
804 if (!idleonly || sc->sc_dk.dk_openmask == 0)
805 break;
806 }
807 if (sc == NULL) {
808 KASSERT(idleonly || pdk->dk_nwedges == 0);
809 mutex_exit(&pdk->dk_openlock);
810 return;
811 }
812 strlcpy(dkw.dkw_parent, pdk->dk_name, sizeof(dkw.dkw_parent));
813 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
814 sizeof(dkw.dkw_devname));
815 mutex_exit(&pdk->dk_openlock);
816 (void) dkwedge_del1(&dkw, flags);
817 }
818 }
819
820 /*
821 * dkwedge_list: [exported function]
822 *
823 * List all of the wedges on a particular disk.
824 */
825 int
826 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
827 {
828 struct uio uio;
829 struct iovec iov;
830 struct dkwedge_softc *sc;
831 struct dkwedge_info dkw;
832 int error = 0;
833
834 iov.iov_base = dkwl->dkwl_buf;
835 iov.iov_len = dkwl->dkwl_bufsize;
836
837 uio.uio_iov = &iov;
838 uio.uio_iovcnt = 1;
839 uio.uio_offset = 0;
840 uio.uio_resid = dkwl->dkwl_bufsize;
841 uio.uio_rw = UIO_READ;
842 KASSERT(l == curlwp);
843 uio.uio_vmspace = l->l_proc->p_vmspace;
844
845 dkwl->dkwl_ncopied = 0;
846
847 mutex_enter(&pdk->dk_openlock);
848 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
849 if (uio.uio_resid < sizeof(dkw))
850 break;
851
852 if (sc->sc_state != DKW_STATE_RUNNING)
853 continue;
854
855 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
856 sizeof(dkw.dkw_devname));
857 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
858 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
859 strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
860 sizeof(dkw.dkw_parent));
861 dkw.dkw_offset = sc->sc_offset;
862 dkw.dkw_size = dkwedge_size(sc);
863 strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
864
865 error = uiomove(&dkw, sizeof(dkw), &uio);
866 if (error)
867 break;
868 dkwl->dkwl_ncopied++;
869 }
870 dkwl->dkwl_nwedges = pdk->dk_nwedges;
871 mutex_exit(&pdk->dk_openlock);
872
873 return error;
874 }
875
876 device_t
877 dkwedge_find_by_wname(const char *wname)
878 {
879 device_t dv = NULL;
880 struct dkwedge_softc *sc;
881 int i;
882
883 rw_enter(&dkwedges_lock, RW_WRITER);
884 for (i = 0; i < ndkwedges; i++) {
885 if ((sc = dkwedges[i]) == NULL)
886 continue;
887 if (strcmp(sc->sc_wname, wname) == 0) {
888 if (dv != NULL) {
889 printf(
890 "WARNING: double match for wedge name %s "
891 "(%s, %s)\n", wname, device_xname(dv),
892 device_xname(sc->sc_dev));
893 continue;
894 }
895 dv = sc->sc_dev;
896 }
897 }
898 rw_exit(&dkwedges_lock);
899 return dv;
900 }
901
902 device_t
903 dkwedge_find_by_parent(const char *name, size_t *i)
904 {
905
906 rw_enter(&dkwedges_lock, RW_WRITER);
907 for (; *i < (size_t)ndkwedges; (*i)++) {
908 struct dkwedge_softc *sc;
909 if ((sc = dkwedges[*i]) == NULL)
910 continue;
911 if (strcmp(sc->sc_parent->dk_name, name) != 0)
912 continue;
913 rw_exit(&dkwedges_lock);
914 return sc->sc_dev;
915 }
916 rw_exit(&dkwedges_lock);
917 return NULL;
918 }
919
920 void
921 dkwedge_print_wnames(void)
922 {
923 struct dkwedge_softc *sc;
924 int i;
925
926 rw_enter(&dkwedges_lock, RW_WRITER);
927 for (i = 0; i < ndkwedges; i++) {
928 if ((sc = dkwedges[i]) == NULL)
929 continue;
930 printf(" wedge:%s", sc->sc_wname);
931 }
932 rw_exit(&dkwedges_lock);
933 }
934
935 /*
936 * We need a dummy object to stuff into the dkwedge discovery method link
937 * set to ensure that there is always at least one object in the set.
938 */
939 static struct dkwedge_discovery_method dummy_discovery_method;
940 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
941
942 /*
943 * dkwedge_init:
944 *
945 * Initialize the disk wedge subsystem.
946 */
947 void
948 dkwedge_init(void)
949 {
950 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
951 struct dkwedge_discovery_method * const *ddmp;
952 struct dkwedge_discovery_method *lddm, *ddm;
953
954 rw_init(&dkwedges_lock);
955 rw_init(&dkwedge_discovery_methods_lock);
956
957 if (config_cfdriver_attach(&dk_cd) != 0)
958 panic("dkwedge: unable to attach cfdriver");
959 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
960 panic("dkwedge: unable to attach cfattach");
961
962 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
963
964 LIST_INIT(&dkwedge_discovery_methods);
965
966 __link_set_foreach(ddmp, dkwedge_methods) {
967 ddm = *ddmp;
968 if (ddm == &dummy_discovery_method)
969 continue;
970 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
971 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
972 ddm, ddm_list);
973 continue;
974 }
975 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
976 if (ddm->ddm_priority == lddm->ddm_priority) {
977 aprint_error("dk-method-%s: method \"%s\" "
978 "already exists at priority %d\n",
979 ddm->ddm_name, lddm->ddm_name,
980 lddm->ddm_priority);
981 /* Not inserted. */
982 break;
983 }
984 if (ddm->ddm_priority < lddm->ddm_priority) {
985 /* Higher priority; insert before. */
986 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
987 break;
988 }
989 if (LIST_NEXT(lddm, ddm_list) == NULL) {
990 /* Last one; insert after. */
991 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
992 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
993 break;
994 }
995 }
996 }
997
998 rw_exit(&dkwedge_discovery_methods_lock);
999 }
1000
1001 #ifdef DKWEDGE_AUTODISCOVER
1002 int dkwedge_autodiscover = 1;
1003 #else
1004 int dkwedge_autodiscover = 0;
1005 #endif
1006
1007 /*
1008 * dkwedge_discover: [exported function]
1009 *
1010 * Discover the wedges on a newly attached disk.
1011 * Remove all unused wedges on the disk first.
1012 */
1013 void
1014 dkwedge_discover(struct disk *pdk)
1015 {
1016 struct dkwedge_discovery_method *ddm;
1017 struct vnode *vp;
1018 int error;
1019 dev_t pdev;
1020
1021 /*
1022 * Require people playing with wedges to enable this explicitly.
1023 */
1024 if (dkwedge_autodiscover == 0)
1025 return;
1026
1027 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
1028
1029 /*
1030 * Use the character device for scanning, the block device
1031 * is busy if there are already wedges attached.
1032 */
1033 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
1034 if (error) {
1035 aprint_error("%s: unable to compute pdev, error = %d\n",
1036 pdk->dk_name, error);
1037 goto out;
1038 }
1039
1040 error = cdevvp(pdev, &vp);
1041 if (error) {
1042 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
1043 pdk->dk_name, error);
1044 goto out;
1045 }
1046
1047 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1048 if (error) {
1049 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
1050 pdk->dk_name, error);
1051 vrele(vp);
1052 goto out;
1053 }
1054
1055 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
1056 if (error) {
1057 if (error != ENXIO)
1058 aprint_error("%s: unable to open device, error = %d\n",
1059 pdk->dk_name, error);
1060 vput(vp);
1061 goto out;
1062 }
1063 VOP_UNLOCK(vp);
1064
1065 /*
1066 * Remove unused wedges
1067 */
1068 dkwedge_delall1(pdk, true);
1069
1070 /*
1071 * For each supported partition map type, look to see if
1072 * this map type exists. If so, parse it and add the
1073 * corresponding wedges.
1074 */
1075 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
1076 error = (*ddm->ddm_discover)(pdk, vp);
1077 if (error == 0) {
1078 /* Successfully created wedges; we're done. */
1079 break;
1080 }
1081 }
1082
1083 error = vn_close(vp, FREAD, NOCRED);
1084 if (error) {
1085 aprint_error("%s: unable to close device, error = %d\n",
1086 pdk->dk_name, error);
1087 /* We'll just assume the vnode has been cleaned up. */
1088 }
1089
1090 out:
1091 rw_exit(&dkwedge_discovery_methods_lock);
1092 }
1093
1094 /*
1095 * dkwedge_read:
1096 *
1097 * Read some data from the specified disk, used for
1098 * partition discovery.
1099 */
1100 int
1101 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
1102 void *tbuf, size_t len)
1103 {
1104 buf_t *bp;
1105 int error;
1106 bool isopen;
1107 dev_t bdev;
1108 struct vnode *bdvp;
1109
1110 /*
1111 * The kernel cannot read from a character device vnode
1112 * as physio() only handles user memory.
1113 *
1114 * If the block device has already been opened by a wedge
1115 * use that vnode and temporarily bump the open counter.
1116 *
1117 * Otherwise try to open the block device.
1118 */
1119
1120 bdev = devsw_chr2blk(vp->v_rdev);
1121
1122 mutex_enter(&pdk->dk_rawlock);
1123 if (pdk->dk_rawopens != 0) {
1124 KASSERT(pdk->dk_rawvp != NULL);
1125 isopen = true;
1126 ++pdk->dk_rawopens;
1127 bdvp = pdk->dk_rawvp;
1128 error = 0;
1129 } else {
1130 isopen = false;
1131 error = dk_open_parent(bdev, FREAD, &bdvp);
1132 }
1133 mutex_exit(&pdk->dk_rawlock);
1134
1135 if (error)
1136 return error;
1137
1138 bp = getiobuf(bdvp, true);
1139 bp->b_flags = B_READ;
1140 bp->b_cflags = BC_BUSY;
1141 bp->b_dev = bdev;
1142 bp->b_data = tbuf;
1143 bp->b_bufsize = bp->b_bcount = len;
1144 bp->b_blkno = blkno;
1145 bp->b_cylinder = 0;
1146 bp->b_error = 0;
1147
1148 VOP_STRATEGY(bdvp, bp);
1149 error = biowait(bp);
1150 putiobuf(bp);
1151
1152 mutex_enter(&pdk->dk_rawlock);
1153 if (isopen) {
1154 --pdk->dk_rawopens;
1155 } else {
1156 dk_close_parent(bdvp, FREAD);
1157 }
1158 mutex_exit(&pdk->dk_rawlock);
1159
1160 return error;
1161 }
1162
1163 /*
1164 * dkwedge_lookup:
1165 *
1166 * Look up a dkwedge_softc based on the provided dev_t.
1167 */
1168 static struct dkwedge_softc *
1169 dkwedge_lookup(dev_t dev)
1170 {
1171 const int unit = minor(dev);
1172 struct dkwedge_softc *sc;
1173
1174 rw_enter(&dkwedges_lock, RW_READER);
1175 if (unit < 0 || unit >= ndkwedges)
1176 sc = NULL;
1177 else
1178 sc = dkwedges[unit];
1179 rw_exit(&dkwedges_lock);
1180
1181 return sc;
1182 }
1183
1184 static int
1185 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
1186 {
1187 struct vnode *vp;
1188 int error;
1189
1190 error = bdevvp(dev, &vp);
1191 if (error)
1192 return error;
1193
1194 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1195 if (error) {
1196 vrele(vp);
1197 return error;
1198 }
1199 error = VOP_OPEN(vp, mode, NOCRED);
1200 if (error) {
1201 vput(vp);
1202 return error;
1203 }
1204
1205 /* VOP_OPEN() doesn't do this for us. */
1206 if (mode & FWRITE) {
1207 mutex_enter(vp->v_interlock);
1208 vp->v_writecount++;
1209 mutex_exit(vp->v_interlock);
1210 }
1211
1212 VOP_UNLOCK(vp);
1213
1214 *vpp = vp;
1215
1216 return 0;
1217 }
1218
1219 static int
1220 dk_close_parent(struct vnode *vp, int mode)
1221 {
1222 int error;
1223
1224 error = vn_close(vp, mode, NOCRED);
1225 return error;
1226 }
1227
1228 /*
1229 * dkopen: [devsw entry point]
1230 *
1231 * Open a wedge.
1232 */
1233 static int
1234 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
1235 {
1236 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1237 int error = 0;
1238
1239 if (sc == NULL)
1240 return ENXIO;
1241 if (sc->sc_state != DKW_STATE_RUNNING)
1242 return ENXIO;
1243
1244 /*
1245 * We go through a complicated little dance to only open the parent
1246 * vnode once per wedge, no matter how many times the wedge is
1247 * opened. The reason? We see one dkopen() per open call, but
1248 * only dkclose() on the last close.
1249 */
1250 mutex_enter(&sc->sc_dk.dk_openlock);
1251 mutex_enter(&sc->sc_parent->dk_rawlock);
1252 if (sc->sc_dk.dk_openmask == 0) {
1253 error = dkfirstopen(sc, flags);
1254 if (error)
1255 goto popen_fail;
1256 }
1257 KASSERT(sc->sc_mode != 0);
1258 if (flags & ~sc->sc_mode & FWRITE) {
1259 error = EROFS;
1260 goto popen_fail;
1261 }
1262 if (fmt == S_IFCHR)
1263 sc->sc_dk.dk_copenmask |= 1;
1264 else
1265 sc->sc_dk.dk_bopenmask |= 1;
1266 sc->sc_dk.dk_openmask =
1267 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1268
1269 popen_fail:
1270 mutex_exit(&sc->sc_parent->dk_rawlock);
1271 mutex_exit(&sc->sc_dk.dk_openlock);
1272 return error;
1273 }
1274
1275 static int
1276 dkfirstopen(struct dkwedge_softc *sc, int flags)
1277 {
1278 struct dkwedge_softc *nsc;
1279 struct vnode *vp;
1280 int mode;
1281 int error;
1282
1283 KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
1284 KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
1285
1286 if (sc->sc_parent->dk_rawopens == 0) {
1287 KASSERT(sc->sc_parent->dk_rawvp == NULL);
1288 /*
1289 * Try open read-write. If this fails for EROFS
1290 * and wedge is read-only, retry to open read-only.
1291 */
1292 mode = FREAD | FWRITE;
1293 error = dk_open_parent(sc->sc_pdev, mode, &vp);
1294 if (error == EROFS && (flags & FWRITE) == 0) {
1295 mode &= ~FWRITE;
1296 error = dk_open_parent(sc->sc_pdev, mode, &vp);
1297 }
1298 if (error)
1299 return error;
1300 KASSERT(vp != NULL);
1301 sc->sc_parent->dk_rawvp = vp;
1302 } else {
1303 /*
1304 * Retrieve mode from an already opened wedge.
1305 *
1306 * At this point, dk_rawopens is bounded by the number
1307 * of dkwedge devices in the system, which is limited
1308 * by autoconf device numbering to INT_MAX. Since
1309 * dk_rawopens is unsigned, this can't overflow.
1310 */
1311 KASSERT(sc->sc_parent->dk_rawopens < UINT_MAX);
1312 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1313 mode = 0;
1314 LIST_FOREACH(nsc, &sc->sc_parent->dk_wedges, sc_plink) {
1315 if (nsc == sc || nsc->sc_dk.dk_openmask == 0)
1316 continue;
1317 mode = nsc->sc_mode;
1318 break;
1319 }
1320 }
1321 sc->sc_mode = mode;
1322 sc->sc_parent->dk_rawopens++;
1323
1324 return 0;
1325 }
1326
1327 static void
1328 dklastclose(struct dkwedge_softc *sc)
1329 {
1330
1331 KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
1332 KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
1333 KASSERT(sc->sc_parent->dk_rawopens > 0);
1334 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1335
1336 if (--sc->sc_parent->dk_rawopens == 0) {
1337 struct vnode *const vp = sc->sc_parent->dk_rawvp;
1338 const int mode = sc->sc_mode;
1339
1340 sc->sc_parent->dk_rawvp = NULL;
1341 sc->sc_mode = 0;
1342
1343 dk_close_parent(vp, mode);
1344 }
1345 }
1346
1347 /*
1348 * dkclose: [devsw entry point]
1349 *
1350 * Close a wedge.
1351 */
1352 static int
1353 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1354 {
1355 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1356
1357 if (sc == NULL)
1358 return ENXIO;
1359 if (sc->sc_state != DKW_STATE_RUNNING)
1360 return ENXIO;
1361
1362 mutex_enter(&sc->sc_dk.dk_openlock);
1363 mutex_enter(&sc->sc_parent->dk_rawlock);
1364
1365 KASSERT(sc->sc_dk.dk_openmask != 0);
1366
1367 if (fmt == S_IFCHR)
1368 sc->sc_dk.dk_copenmask &= ~1;
1369 else
1370 sc->sc_dk.dk_bopenmask &= ~1;
1371 sc->sc_dk.dk_openmask =
1372 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1373
1374 if (sc->sc_dk.dk_openmask == 0) {
1375 dklastclose(sc);
1376 }
1377
1378 mutex_exit(&sc->sc_parent->dk_rawlock);
1379 mutex_exit(&sc->sc_dk.dk_openlock);
1380
1381 return 0;
1382 }
1383
1384 /*
1385 * dkcancel: [devsw entry point]
1386 *
1387 * Cancel any pending I/O operations waiting on a wedge.
1388 */
1389 static int
1390 dkcancel(dev_t dev, int flags, int fmt, struct lwp *l)
1391 {
1392 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1393
1394 KASSERT(sc != NULL);
1395 KASSERT(sc->sc_dev != NULL);
1396
1397 /*
1398 * Disk I/O is expected to complete or fail within a reasonable
1399 * timeframe -- it's storage, not communication. Further, the
1400 * character and block device interface guarantees that prior
1401 * reads and writes have completed or failed by the time close
1402 * returns -- we are not to cancel them here. If the parent
1403 * device's hardware is gone, the parent driver can make them
1404 * fail. Nothing for dk(4) itself to do.
1405 */
1406
1407 return 0;
1408 }
1409
1410 /*
1411 * dkstrategy: [devsw entry point]
1412 *
1413 * Perform I/O based on the wedge I/O strategy.
1414 */
1415 static void
1416 dkstrategy(struct buf *bp)
1417 {
1418 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1419 uint64_t p_size, p_offset;
1420
1421 if (sc == NULL) {
1422 bp->b_error = ENXIO;
1423 goto done;
1424 }
1425
1426 if (sc->sc_state != DKW_STATE_RUNNING ||
1427 sc->sc_parent->dk_rawvp == NULL) {
1428 bp->b_error = ENXIO;
1429 goto done;
1430 }
1431
1432 /* If it's an empty transfer, wake up the top half now. */
1433 if (bp->b_bcount == 0)
1434 goto done;
1435
1436 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1437 p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1438
1439 /* Make sure it's in-range. */
1440 if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1441 goto done;
1442
1443 /* Translate it to the parent's raw LBA. */
1444 bp->b_rawblkno = bp->b_blkno + p_offset;
1445
1446 /* Place it in the queue and start I/O on the unit. */
1447 mutex_enter(&sc->sc_iolock);
1448 sc->sc_iopend++;
1449 disk_wait(&sc->sc_dk);
1450 bufq_put(sc->sc_bufq, bp);
1451 mutex_exit(&sc->sc_iolock);
1452
1453 dkstart(sc);
1454 return;
1455
1456 done:
1457 bp->b_resid = bp->b_bcount;
1458 biodone(bp);
1459 }
1460
1461 /*
1462 * dkstart:
1463 *
1464 * Start I/O that has been enqueued on the wedge.
1465 */
1466 static void
1467 dkstart(struct dkwedge_softc *sc)
1468 {
1469 struct vnode *vp;
1470 struct buf *bp, *nbp;
1471
1472 mutex_enter(&sc->sc_iolock);
1473
1474 /* Do as much work as has been enqueued. */
1475 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1476 if (sc->sc_state != DKW_STATE_RUNNING) {
1477 (void) bufq_get(sc->sc_bufq);
1478 if (--sc->sc_iopend == 0)
1479 cv_broadcast(&sc->sc_dkdrn);
1480 mutex_exit(&sc->sc_iolock);
1481 bp->b_error = ENXIO;
1482 bp->b_resid = bp->b_bcount;
1483 biodone(bp);
1484 mutex_enter(&sc->sc_iolock);
1485 continue;
1486 }
1487
1488 /* fetch an I/O buf with sc_iolock dropped */
1489 mutex_exit(&sc->sc_iolock);
1490 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1491 mutex_enter(&sc->sc_iolock);
1492 if (nbp == NULL) {
1493 /*
1494 * No resources to run this request; leave the
1495 * buffer queued up, and schedule a timer to
1496 * restart the queue in 1/2 a second.
1497 */
1498 callout_schedule(&sc->sc_restart_ch, hz/2);
1499 break;
1500 }
1501
1502 /*
1503 * fetch buf, this can fail if another thread
1504 * has already processed the queue, it can also
1505 * return a completely different buf.
1506 */
1507 bp = bufq_get(sc->sc_bufq);
1508 if (bp == NULL) {
1509 mutex_exit(&sc->sc_iolock);
1510 putiobuf(nbp);
1511 mutex_enter(&sc->sc_iolock);
1512 continue;
1513 }
1514
1515 /* Instrumentation. */
1516 disk_busy(&sc->sc_dk);
1517
1518 /* release lock for VOP_STRATEGY */
1519 mutex_exit(&sc->sc_iolock);
1520
1521 nbp->b_data = bp->b_data;
1522 nbp->b_flags = bp->b_flags;
1523 nbp->b_oflags = bp->b_oflags;
1524 nbp->b_cflags = bp->b_cflags;
1525 nbp->b_iodone = dkiodone;
1526 nbp->b_proc = bp->b_proc;
1527 nbp->b_blkno = bp->b_rawblkno;
1528 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1529 nbp->b_bcount = bp->b_bcount;
1530 nbp->b_private = bp;
1531 BIO_COPYPRIO(nbp, bp);
1532
1533 vp = nbp->b_vp;
1534 if ((nbp->b_flags & B_READ) == 0) {
1535 mutex_enter(vp->v_interlock);
1536 vp->v_numoutput++;
1537 mutex_exit(vp->v_interlock);
1538 }
1539 VOP_STRATEGY(vp, nbp);
1540
1541 mutex_enter(&sc->sc_iolock);
1542 }
1543
1544 mutex_exit(&sc->sc_iolock);
1545 }
1546
1547 /*
1548 * dkiodone:
1549 *
1550 * I/O to a wedge has completed; alert the top half.
1551 */
1552 static void
1553 dkiodone(struct buf *bp)
1554 {
1555 struct buf *obp = bp->b_private;
1556 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1557
1558 if (bp->b_error != 0)
1559 obp->b_error = bp->b_error;
1560 obp->b_resid = bp->b_resid;
1561 putiobuf(bp);
1562
1563 mutex_enter(&sc->sc_iolock);
1564 if (--sc->sc_iopend == 0)
1565 cv_broadcast(&sc->sc_dkdrn);
1566
1567 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1568 obp->b_flags & B_READ);
1569 mutex_exit(&sc->sc_iolock);
1570
1571 biodone(obp);
1572
1573 /* Kick the queue in case there is more work we can do. */
1574 dkstart(sc);
1575 }
1576
1577 /*
1578 * dkrestart:
1579 *
1580 * Restart the work queue after it was stalled due to
1581 * a resource shortage. Invoked via a callout.
1582 */
1583 static void
1584 dkrestart(void *v)
1585 {
1586 struct dkwedge_softc *sc = v;
1587
1588 dkstart(sc);
1589 }
1590
1591 /*
1592 * dkminphys:
1593 *
1594 * Call parent's minphys function.
1595 */
1596 static void
1597 dkminphys(struct buf *bp)
1598 {
1599 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1600 dev_t dev;
1601
1602 dev = bp->b_dev;
1603 bp->b_dev = sc->sc_pdev;
1604 if (sc->sc_parent->dk_driver && sc->sc_parent->dk_driver->d_minphys)
1605 (*sc->sc_parent->dk_driver->d_minphys)(bp);
1606 else
1607 minphys(bp);
1608 bp->b_dev = dev;
1609 }
1610
1611 /*
1612 * dkread: [devsw entry point]
1613 *
1614 * Read from a wedge.
1615 */
1616 static int
1617 dkread(dev_t dev, struct uio *uio, int flags)
1618 {
1619 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1620
1621 if (sc == NULL)
1622 return ENXIO;
1623 if (sc->sc_state != DKW_STATE_RUNNING)
1624 return ENXIO;
1625
1626 return physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio);
1627 }
1628
1629 /*
1630 * dkwrite: [devsw entry point]
1631 *
1632 * Write to a wedge.
1633 */
1634 static int
1635 dkwrite(dev_t dev, struct uio *uio, int flags)
1636 {
1637 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1638
1639 if (sc == NULL)
1640 return ENXIO;
1641 if (sc->sc_state != DKW_STATE_RUNNING)
1642 return ENXIO;
1643
1644 return physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio);
1645 }
1646
1647 /*
1648 * dkioctl: [devsw entry point]
1649 *
1650 * Perform an ioctl request on a wedge.
1651 */
1652 static int
1653 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1654 {
1655 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1656 int error = 0;
1657
1658 if (sc == NULL)
1659 return ENXIO;
1660 if (sc->sc_state != DKW_STATE_RUNNING)
1661 return ENXIO;
1662 if (sc->sc_parent->dk_rawvp == NULL)
1663 return ENXIO;
1664
1665 /*
1666 * We pass NODEV instead of our device to indicate we don't
1667 * want to handle disklabel ioctls
1668 */
1669 error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
1670 if (error != EPASSTHROUGH)
1671 return error;
1672
1673 error = 0;
1674
1675 switch (cmd) {
1676 case DIOCGSTRATEGY:
1677 case DIOCGCACHE:
1678 case DIOCCACHESYNC:
1679 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, data, flag,
1680 l != NULL ? l->l_cred : NOCRED);
1681 break;
1682 case DIOCGWEDGEINFO: {
1683 struct dkwedge_info *dkw = data;
1684
1685 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1686 sizeof(dkw->dkw_devname));
1687 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1688 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1689 strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
1690 sizeof(dkw->dkw_parent));
1691 dkw->dkw_offset = sc->sc_offset;
1692 dkw->dkw_size = dkwedge_size(sc);
1693 strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
1694
1695 break;
1696 }
1697 case DIOCGSECTORALIGN: {
1698 struct disk_sectoralign *dsa = data;
1699 uint32_t r;
1700
1701 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, dsa, flag,
1702 l != NULL ? l->l_cred : NOCRED);
1703 if (error)
1704 break;
1705
1706 r = sc->sc_offset % dsa->dsa_alignment;
1707 if (r < dsa->dsa_firstaligned)
1708 dsa->dsa_firstaligned = dsa->dsa_firstaligned - r;
1709 else
1710 dsa->dsa_firstaligned = (dsa->dsa_firstaligned +
1711 dsa->dsa_alignment) - r;
1712 break;
1713 }
1714 default:
1715 error = ENOTTY;
1716 }
1717
1718 return error;
1719 }
1720
1721 /*
1722 * dkdiscard: [devsw entry point]
1723 *
1724 * Perform a discard-range request on a wedge.
1725 */
1726 static int
1727 dkdiscard(dev_t dev, off_t pos, off_t len)
1728 {
1729 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1730 uint64_t size = dkwedge_size(sc);
1731 unsigned shift;
1732 off_t offset, maxlen;
1733 int error;
1734
1735 if (sc == NULL)
1736 return ENXIO;
1737 if (sc->sc_state != DKW_STATE_RUNNING)
1738 return ENXIO;
1739 if (sc->sc_parent->dk_rawvp == NULL)
1740 return ENXIO;
1741
1742 /* XXX check bounds on size/offset up front */
1743 shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
1744 KASSERT(__type_fit(off_t, size));
1745 KASSERT(__type_fit(off_t, sc->sc_offset));
1746 KASSERT(0 <= sc->sc_offset);
1747 KASSERT(size <= (__type_max(off_t) >> shift));
1748 KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - size));
1749 offset = ((off_t)sc->sc_offset << shift);
1750 maxlen = ((off_t)size << shift);
1751
1752 if (len > maxlen)
1753 return EINVAL;
1754 if (pos > (maxlen - len))
1755 return EINVAL;
1756
1757 pos += offset;
1758
1759 vn_lock(sc->sc_parent->dk_rawvp, LK_EXCLUSIVE | LK_RETRY);
1760 error = VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
1761 VOP_UNLOCK(sc->sc_parent->dk_rawvp);
1762
1763 return error;
1764 }
1765
1766 /*
1767 * dksize: [devsw entry point]
1768 *
1769 * Query the size of a wedge for the purpose of performing a dump
1770 * or for swapping to.
1771 */
1772 static int
1773 dksize(dev_t dev)
1774 {
1775 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1776 uint64_t p_size;
1777 int rv = -1;
1778
1779 if (sc == NULL)
1780 return -1;
1781 if (sc->sc_state != DKW_STATE_RUNNING)
1782 return -1;
1783
1784 mutex_enter(&sc->sc_dk.dk_openlock);
1785 mutex_enter(&sc->sc_parent->dk_rawlock);
1786
1787 /* Our content type is static, no need to open the device. */
1788
1789 p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1790 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1791 /* Saturate if we are larger than INT_MAX. */
1792 if (p_size > INT_MAX)
1793 rv = INT_MAX;
1794 else
1795 rv = (int)p_size;
1796 }
1797
1798 mutex_exit(&sc->sc_parent->dk_rawlock);
1799 mutex_exit(&sc->sc_dk.dk_openlock);
1800
1801 return rv;
1802 }
1803
1804 /*
1805 * dkdump: [devsw entry point]
1806 *
1807 * Perform a crash dump to a wedge.
1808 */
1809 static int
1810 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1811 {
1812 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1813 const struct bdevsw *bdev;
1814 uint64_t p_size, p_offset;
1815 int rv = 0;
1816
1817 if (sc == NULL)
1818 return ENXIO;
1819 if (sc->sc_state != DKW_STATE_RUNNING)
1820 return ENXIO;
1821
1822 mutex_enter(&sc->sc_dk.dk_openlock);
1823 mutex_enter(&sc->sc_parent->dk_rawlock);
1824
1825 /* Our content type is static, no need to open the device. */
1826
1827 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
1828 strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0 &&
1829 strcmp(sc->sc_ptype, DKW_PTYPE_CGD) != 0) {
1830 rv = ENXIO;
1831 goto out;
1832 }
1833 if (size % DEV_BSIZE != 0) {
1834 rv = EINVAL;
1835 goto out;
1836 }
1837
1838 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1839 p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1840
1841 if (blkno < 0 || blkno + size/DEV_BSIZE > p_size) {
1842 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1843 "p_size (%" PRIu64 ")\n", __func__, blkno,
1844 size/DEV_BSIZE, p_size);
1845 rv = EINVAL;
1846 goto out;
1847 }
1848
1849 bdev = bdevsw_lookup(sc->sc_pdev);
1850 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + p_offset, va, size);
1851
1852 out:
1853 mutex_exit(&sc->sc_parent->dk_rawlock);
1854 mutex_exit(&sc->sc_dk.dk_openlock);
1855
1856 return rv;
1857 }
1858
1859 /*
1860 * config glue
1861 */
1862
1863 /*
1864 * dkwedge_find_partition
1865 *
1866 * Find wedge corresponding to the specified parent name
1867 * and offset/length.
1868 */
1869 device_t
1870 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
1871 {
1872 struct dkwedge_softc *sc;
1873 int i;
1874 device_t wedge = NULL;
1875
1876 rw_enter(&dkwedges_lock, RW_READER);
1877 for (i = 0; i < ndkwedges; i++) {
1878 if ((sc = dkwedges[i]) == NULL)
1879 continue;
1880 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
1881 sc->sc_offset == startblk &&
1882 dkwedge_size(sc) == nblks) {
1883 if (wedge) {
1884 printf("WARNING: double match for boot wedge "
1885 "(%s, %s)\n",
1886 device_xname(wedge),
1887 device_xname(sc->sc_dev));
1888 continue;
1889 }
1890 wedge = sc->sc_dev;
1891 }
1892 }
1893 rw_exit(&dkwedges_lock);
1894
1895 return wedge;
1896 }
1897
1898 const char *
1899 dkwedge_get_parent_name(dev_t dev)
1900 {
1901 /* XXX: perhaps do this in lookup? */
1902 int bmaj = bdevsw_lookup_major(&dk_bdevsw);
1903 int cmaj = cdevsw_lookup_major(&dk_cdevsw);
1904
1905 if (major(dev) != bmaj && major(dev) != cmaj)
1906 return NULL;
1907 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1908 if (sc == NULL)
1909 return NULL;
1910 return sc->sc_parent->dk_name;
1911 }
1912