Home | History | Annotate | Line # | Download | only in dkwedge
dk.c revision 1.141
      1 /*	$NetBSD: dk.c,v 1.141 2023/04/21 18:30:21 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.141 2023/04/21 18:30:21 riastradh Exp $");
     34 
     35 #ifdef _KERNEL_OPT
     36 #include "opt_dkwedge.h"
     37 #endif
     38 
     39 #include <sys/param.h>
     40 #include <sys/types.h>
     41 
     42 #include <sys/buf.h>
     43 #include <sys/bufq.h>
     44 #include <sys/callout.h>
     45 #include <sys/conf.h>
     46 #include <sys/device.h>
     47 #include <sys/disk.h>
     48 #include <sys/disklabel.h>
     49 #include <sys/errno.h>
     50 #include <sys/fcntl.h>
     51 #include <sys/ioctl.h>
     52 #include <sys/kauth.h>
     53 #include <sys/kernel.h>
     54 #include <sys/malloc.h>
     55 #include <sys/pool.h>
     56 #include <sys/proc.h>
     57 #include <sys/rwlock.h>
     58 #include <sys/stat.h>
     59 #include <sys/systm.h>
     60 #include <sys/vnode.h>
     61 
     62 #include <miscfs/specfs/specdev.h>
     63 
     64 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
     65 
     66 typedef enum {
     67 	DKW_STATE_LARVAL	= 0,
     68 	DKW_STATE_RUNNING	= 1,
     69 	DKW_STATE_DYING		= 2,
     70 	DKW_STATE_DEAD		= 666
     71 } dkwedge_state_t;
     72 
     73 struct dkwedge_softc {
     74 	device_t	sc_dev;	/* pointer to our pseudo-device */
     75 	struct cfdata	sc_cfdata;	/* our cfdata structure */
     76 	uint8_t		sc_wname[128];	/* wedge name (Unicode, UTF-8) */
     77 
     78 	dkwedge_state_t sc_state;	/* state this wedge is in */
     79 
     80 	struct disk	*sc_parent;	/* parent disk */
     81 	daddr_t		sc_offset;	/* LBA offset of wedge in parent */
     82 	krwlock_t	sc_sizelock;
     83 	uint64_t	sc_size;	/* size of wedge in blocks */
     84 	char		sc_ptype[32];	/* partition type */
     85 	dev_t		sc_pdev;	/* cached parent's dev_t */
     86 					/* link on parent's wedge list */
     87 	LIST_ENTRY(dkwedge_softc) sc_plink;
     88 
     89 	struct disk	sc_dk;		/* our own disk structure */
     90 	struct bufq_state *sc_bufq;	/* buffer queue */
     91 	struct callout	sc_restart_ch;	/* callout to restart I/O */
     92 
     93 	kmutex_t	sc_iolock;
     94 	kcondvar_t	sc_dkdrn;
     95 	u_int		sc_iopend;	/* I/Os pending */
     96 	int		sc_mode;	/* parent open mode */
     97 };
     98 
     99 static int	dkwedge_match(device_t, cfdata_t, void *);
    100 static void	dkwedge_attach(device_t, device_t, void *);
    101 static int	dkwedge_detach(device_t, int);
    102 
    103 static void	dkstart(struct dkwedge_softc *);
    104 static void	dkiodone(struct buf *);
    105 static void	dkrestart(void *);
    106 static void	dkminphys(struct buf *);
    107 
    108 static int	dkfirstopen(struct dkwedge_softc *, int);
    109 static void	dklastclose(struct dkwedge_softc *);
    110 static int	dkwedge_cleanup_parent(struct dkwedge_softc *, int);
    111 static int	dkwedge_detach(device_t, int);
    112 static void	dkwedge_delall1(struct disk *, bool);
    113 static int	dkwedge_del1(struct dkwedge_info *, int);
    114 static int	dk_open_parent(dev_t, int, struct vnode **);
    115 static int	dk_close_parent(struct vnode *, int);
    116 
    117 static dev_type_open(dkopen);
    118 static dev_type_close(dkclose);
    119 static dev_type_cancel(dkcancel);
    120 static dev_type_read(dkread);
    121 static dev_type_write(dkwrite);
    122 static dev_type_ioctl(dkioctl);
    123 static dev_type_strategy(dkstrategy);
    124 static dev_type_dump(dkdump);
    125 static dev_type_size(dksize);
    126 static dev_type_discard(dkdiscard);
    127 
    128 CFDRIVER_DECL(dk, DV_DISK, NULL);
    129 CFATTACH_DECL3_NEW(dk, 0,
    130     dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
    131     DVF_DETACH_SHUTDOWN);
    132 
    133 const struct bdevsw dk_bdevsw = {
    134 	.d_open = dkopen,
    135 	.d_close = dkclose,
    136 	.d_cancel = dkcancel,
    137 	.d_strategy = dkstrategy,
    138 	.d_ioctl = dkioctl,
    139 	.d_dump = dkdump,
    140 	.d_psize = dksize,
    141 	.d_discard = dkdiscard,
    142 	.d_flag = D_DISK | D_MPSAFE
    143 };
    144 
    145 const struct cdevsw dk_cdevsw = {
    146 	.d_open = dkopen,
    147 	.d_close = dkclose,
    148 	.d_cancel = dkcancel,
    149 	.d_read = dkread,
    150 	.d_write = dkwrite,
    151 	.d_ioctl = dkioctl,
    152 	.d_stop = nostop,
    153 	.d_tty = notty,
    154 	.d_poll = nopoll,
    155 	.d_mmap = nommap,
    156 	.d_kqfilter = nokqfilter,
    157 	.d_discard = dkdiscard,
    158 	.d_flag = D_DISK | D_MPSAFE
    159 };
    160 
    161 static struct dkwedge_softc **dkwedges;
    162 static u_int ndkwedges;
    163 static krwlock_t dkwedges_lock;
    164 
    165 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
    166 static krwlock_t dkwedge_discovery_methods_lock;
    167 
    168 /*
    169  * dkwedge_match:
    170  *
    171  *	Autoconfiguration match function for pseudo-device glue.
    172  */
    173 static int
    174 dkwedge_match(device_t parent, cfdata_t match, void *aux)
    175 {
    176 
    177 	/* Pseudo-device; always present. */
    178 	return 1;
    179 }
    180 
    181 /*
    182  * dkwedge_attach:
    183  *
    184  *	Autoconfiguration attach function for pseudo-device glue.
    185  */
    186 static void
    187 dkwedge_attach(device_t parent, device_t self, void *aux)
    188 {
    189 
    190 	if (!pmf_device_register(self, NULL, NULL))
    191 		aprint_error_dev(self, "couldn't establish power handler\n");
    192 }
    193 
    194 /*
    195  * dkwedge_wait_drain:
    196  *
    197  *	Wait for I/O on the wedge to drain.
    198  */
    199 static void
    200 dkwedge_wait_drain(struct dkwedge_softc *sc)
    201 {
    202 
    203 	mutex_enter(&sc->sc_iolock);
    204 	while (sc->sc_iopend != 0)
    205 		cv_wait(&sc->sc_dkdrn, &sc->sc_iolock);
    206 	mutex_exit(&sc->sc_iolock);
    207 }
    208 
    209 /*
    210  * dkwedge_compute_pdev:
    211  *
    212  *	Compute the parent disk's dev_t.
    213  */
    214 static int
    215 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
    216 {
    217 	const char *name, *cp;
    218 	devmajor_t pmaj;
    219 	int punit;
    220 	char devname[16];
    221 
    222 	name = pname;
    223 	switch (type) {
    224 	case VBLK:
    225 		pmaj = devsw_name2blk(name, devname, sizeof(devname));
    226 		break;
    227 	case VCHR:
    228 		pmaj = devsw_name2chr(name, devname, sizeof(devname));
    229 		break;
    230 	default:
    231 		pmaj = NODEVMAJOR;
    232 		break;
    233 	}
    234 	if (pmaj == NODEVMAJOR)
    235 		return ENXIO;
    236 
    237 	name += strlen(devname);
    238 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
    239 		punit = (punit * 10) + (*cp - '0');
    240 	if (cp == name) {
    241 		/* Invalid parent disk name. */
    242 		return ENXIO;
    243 	}
    244 
    245 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
    246 
    247 	return 0;
    248 }
    249 
    250 /*
    251  * dkwedge_array_expand:
    252  *
    253  *	Expand the dkwedges array.
    254  *
    255  *	Releases and reacquires dkwedges_lock as a writer.
    256  */
    257 static int
    258 dkwedge_array_expand(void)
    259 {
    260 
    261 	const unsigned incr = 16;
    262 	unsigned newcnt, oldcnt;
    263 	struct dkwedge_softc **newarray = NULL, **oldarray = NULL;
    264 
    265 	KASSERT(rw_write_held(&dkwedges_lock));
    266 
    267 	oldcnt = ndkwedges;
    268 	oldarray = dkwedges;
    269 
    270 	if (oldcnt >= INT_MAX - incr)
    271 		return ENFILE;	/* XXX */
    272 	newcnt = oldcnt + incr;
    273 
    274 	rw_exit(&dkwedges_lock);
    275 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
    276 	    M_WAITOK|M_ZERO);
    277 	rw_enter(&dkwedges_lock, RW_WRITER);
    278 
    279 	if (ndkwedges != oldcnt || dkwedges != oldarray) {
    280 		oldarray = NULL; /* already recycled */
    281 		goto out;
    282 	}
    283 
    284 	if (oldarray != NULL)
    285 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
    286 	dkwedges = newarray;
    287 	newarray = NULL;	/* transferred to dkwedges */
    288 	ndkwedges = newcnt;
    289 
    290 out:	rw_exit(&dkwedges_lock);
    291 	if (oldarray != NULL)
    292 		free(oldarray, M_DKWEDGE);
    293 	if (newarray != NULL)
    294 		free(newarray, M_DKWEDGE);
    295 	rw_enter(&dkwedges_lock, RW_WRITER);
    296 	return 0;
    297 }
    298 
    299 static void
    300 dkwedge_size_init(struct dkwedge_softc *sc, uint64_t size)
    301 {
    302 
    303 	rw_init(&sc->sc_sizelock);
    304 	sc->sc_size = size;
    305 }
    306 
    307 static void
    308 dkwedge_size_fini(struct dkwedge_softc *sc)
    309 {
    310 
    311 	rw_destroy(&sc->sc_sizelock);
    312 }
    313 
    314 static uint64_t
    315 dkwedge_size(struct dkwedge_softc *sc)
    316 {
    317 	uint64_t size;
    318 
    319 	rw_enter(&sc->sc_sizelock, RW_READER);
    320 	size = sc->sc_size;
    321 	rw_exit(&sc->sc_sizelock);
    322 
    323 	return size;
    324 }
    325 
    326 static void
    327 dkwedge_size_increase(struct dkwedge_softc *sc, uint64_t size)
    328 {
    329 
    330 	KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
    331 
    332 	rw_enter(&sc->sc_sizelock, RW_WRITER);
    333 	KASSERTMSG(size >= sc->sc_size,
    334 	    "decreasing dkwedge size from %"PRIu64" to %"PRIu64,
    335 	    sc->sc_size, size);
    336 	sc->sc_size = size;
    337 	rw_exit(&sc->sc_sizelock);
    338 }
    339 
    340 static void
    341 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
    342 {
    343 	struct disk *dk = &sc->sc_dk;
    344 	struct disk_geom *dg = &dk->dk_geom;
    345 
    346 	KASSERT(mutex_owned(&pdk->dk_openlock));
    347 
    348 	memset(dg, 0, sizeof(*dg));
    349 
    350 	dg->dg_secperunit = dkwedge_size(sc);
    351 	dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
    352 
    353 	/* fake numbers, 1 cylinder is 1 MB with default sector size */
    354 	dg->dg_nsectors = 32;
    355 	dg->dg_ntracks = 64;
    356 	dg->dg_ncylinders =
    357 	    dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
    358 
    359 	disk_set_info(sc->sc_dev, dk, NULL);
    360 }
    361 
    362 /*
    363  * dkwedge_add:		[exported function]
    364  *
    365  *	Add a disk wedge based on the provided information.
    366  *
    367  *	The incoming dkw_devname[] is ignored, instead being
    368  *	filled in and returned to the caller.
    369  */
    370 int
    371 dkwedge_add(struct dkwedge_info *dkw)
    372 {
    373 	struct dkwedge_softc *sc, *lsc;
    374 	struct disk *pdk;
    375 	u_int unit;
    376 	int error;
    377 	dev_t pdev;
    378 
    379 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
    380 	pdk = disk_find(dkw->dkw_parent);
    381 	if (pdk == NULL)
    382 		return ENXIO;
    383 
    384 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
    385 	if (error)
    386 		return error;
    387 
    388 	if (dkw->dkw_offset < 0)
    389 		return EINVAL;
    390 
    391 	/*
    392 	 * Check for an existing wedge at the same disk offset. Allow
    393 	 * updating a wedge if the only change is the size, and the new
    394 	 * size is larger than the old.
    395 	 */
    396 	sc = NULL;
    397 	mutex_enter(&pdk->dk_openlock);
    398 	LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    399 		if (lsc->sc_offset != dkw->dkw_offset)
    400 			continue;
    401 		if (strcmp(lsc->sc_wname, dkw->dkw_wname) != 0)
    402 			break;
    403 		if (strcmp(lsc->sc_ptype, dkw->dkw_ptype) != 0)
    404 			break;
    405 		if (dkwedge_size(lsc) > dkw->dkw_size)
    406 			break;
    407 
    408 		sc = lsc;
    409 		dkwedge_size_increase(sc, dkw->dkw_size);
    410 		dk_set_geometry(sc, pdk);
    411 
    412 		break;
    413 	}
    414 	mutex_exit(&pdk->dk_openlock);
    415 
    416 	if (sc != NULL)
    417 		goto announce;
    418 
    419 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
    420 	sc->sc_state = DKW_STATE_LARVAL;
    421 	sc->sc_parent = pdk;
    422 	sc->sc_pdev = pdev;
    423 	sc->sc_offset = dkw->dkw_offset;
    424 	dkwedge_size_init(sc, dkw->dkw_size);
    425 
    426 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
    427 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
    428 
    429 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
    430 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
    431 
    432 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
    433 
    434 	callout_init(&sc->sc_restart_ch, 0);
    435 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
    436 
    437 	mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
    438 	cv_init(&sc->sc_dkdrn, "dkdrn");
    439 
    440 	/*
    441 	 * Wedge will be added; increment the wedge count for the parent.
    442 	 * Only allow this to happen if RAW_PART is the only thing open.
    443 	 */
    444 	mutex_enter(&pdk->dk_openlock);
    445 	if (pdk->dk_openmask & ~(1 << RAW_PART))
    446 		error = EBUSY;
    447 	else {
    448 		/* Check for wedge overlap. */
    449 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    450 			/* XXX arithmetic overflow */
    451 			uint64_t size = dkwedge_size(sc);
    452 			uint64_t lsize = dkwedge_size(lsc);
    453 			daddr_t lastblk = sc->sc_offset + size - 1;
    454 			daddr_t llastblk = lsc->sc_offset + lsize - 1;
    455 
    456 			if (sc->sc_offset >= lsc->sc_offset &&
    457 			    sc->sc_offset <= llastblk) {
    458 				/* Overlaps the tail of the existing wedge. */
    459 				break;
    460 			}
    461 			if (lastblk >= lsc->sc_offset &&
    462 			    lastblk <= llastblk) {
    463 				/* Overlaps the head of the existing wedge. */
    464 			    	break;
    465 			}
    466 		}
    467 		if (lsc != NULL) {
    468 			if (sc->sc_offset == lsc->sc_offset &&
    469 			    dkwedge_size(sc) == dkwedge_size(lsc) &&
    470 			    strcmp(sc->sc_wname, lsc->sc_wname) == 0)
    471 				error = EEXIST;
    472 			else
    473 				error = EINVAL;
    474 		} else {
    475 			pdk->dk_nwedges++;
    476 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
    477 		}
    478 	}
    479 	mutex_exit(&pdk->dk_openlock);
    480 	if (error) {
    481 		cv_destroy(&sc->sc_dkdrn);
    482 		mutex_destroy(&sc->sc_iolock);
    483 		bufq_free(sc->sc_bufq);
    484 		dkwedge_size_fini(sc);
    485 		free(sc, M_DKWEDGE);
    486 		return error;
    487 	}
    488 
    489 	/* Fill in our cfdata for the pseudo-device glue. */
    490 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
    491 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
    492 	/* sc->sc_cfdata.cf_unit set below */
    493 	sc->sc_cfdata.cf_fstate = FSTATE_STAR;
    494 
    495 	/* Insert the larval wedge into the array. */
    496 	rw_enter(&dkwedges_lock, RW_WRITER);
    497 	for (error = 0;;) {
    498 		struct dkwedge_softc **scpp;
    499 
    500 		/*
    501 		 * Check for a duplicate wname while searching for
    502 		 * a slot.
    503 		 */
    504 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
    505 			if (dkwedges[unit] == NULL) {
    506 				if (scpp == NULL) {
    507 					scpp = &dkwedges[unit];
    508 					sc->sc_cfdata.cf_unit = unit;
    509 				}
    510 			} else {
    511 				/* XXX Unicode. */
    512 				if (strcmp(dkwedges[unit]->sc_wname,
    513 					sc->sc_wname) == 0) {
    514 					error = EEXIST;
    515 					break;
    516 				}
    517 			}
    518 		}
    519 		if (error)
    520 			break;
    521 		KASSERT(unit == ndkwedges);
    522 		if (scpp == NULL) {
    523 			error = dkwedge_array_expand();
    524 			if (error)
    525 				break;
    526 		} else {
    527 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
    528 			*scpp = sc;
    529 			break;
    530 		}
    531 	}
    532 	rw_exit(&dkwedges_lock);
    533 	if (error) {
    534 		mutex_enter(&pdk->dk_openlock);
    535 		pdk->dk_nwedges--;
    536 		LIST_REMOVE(sc, sc_plink);
    537 		mutex_exit(&pdk->dk_openlock);
    538 
    539 		cv_destroy(&sc->sc_dkdrn);
    540 		mutex_destroy(&sc->sc_iolock);
    541 		bufq_free(sc->sc_bufq);
    542 		dkwedge_size_fini(sc);
    543 		free(sc, M_DKWEDGE);
    544 		return error;
    545 	}
    546 
    547 	/*
    548 	 * Now that we know the unit #, attach a pseudo-device for
    549 	 * this wedge instance.  This will provide us with the
    550 	 * device_t necessary for glue to other parts of the system.
    551 	 *
    552 	 * This should never fail, unless we're almost totally out of
    553 	 * memory.
    554 	 */
    555 	if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
    556 		aprint_error("%s%u: unable to attach pseudo-device\n",
    557 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
    558 
    559 		rw_enter(&dkwedges_lock, RW_WRITER);
    560 		KASSERT(dkwedges[sc->sc_cfdata.cf_unit] == sc);
    561 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
    562 		rw_exit(&dkwedges_lock);
    563 
    564 		mutex_enter(&pdk->dk_openlock);
    565 		pdk->dk_nwedges--;
    566 		LIST_REMOVE(sc, sc_plink);
    567 		mutex_exit(&pdk->dk_openlock);
    568 
    569 		cv_destroy(&sc->sc_dkdrn);
    570 		mutex_destroy(&sc->sc_iolock);
    571 		bufq_free(sc->sc_bufq);
    572 		dkwedge_size_fini(sc);
    573 		free(sc, M_DKWEDGE);
    574 		return ENOMEM;
    575 	}
    576 
    577 	/*
    578 	 * XXX Really ought to make the disk_attach() and the changing
    579 	 * of state to RUNNING atomic.
    580 	 */
    581 
    582 	disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
    583 	mutex_enter(&pdk->dk_openlock);
    584 	dk_set_geometry(sc, pdk);
    585 	mutex_exit(&pdk->dk_openlock);
    586 	disk_attach(&sc->sc_dk);
    587 
    588 	/* Disk wedge is ready for use! */
    589 	sc->sc_state = DKW_STATE_RUNNING;
    590 
    591 announce:
    592 	/* Announce our arrival. */
    593 	aprint_normal(
    594 	    "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
    595 	    device_xname(sc->sc_dev), pdk->dk_name,
    596 	    sc->sc_wname,	/* XXX Unicode */
    597 	    dkwedge_size(sc), sc->sc_offset,
    598 	    sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
    599 
    600 	/* Return the devname to the caller. */
    601 	strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
    602 	    sizeof(dkw->dkw_devname));
    603 
    604 	return 0;
    605 }
    606 
    607 /*
    608  * dkwedge_find:
    609  *
    610  *	Lookup a disk wedge based on the provided information.
    611  *	NOTE: We look up the wedge based on the wedge devname,
    612  *	not wname.
    613  *
    614  *	Return NULL if the wedge is not found, otherwise return
    615  *	the wedge's softc.  Assign the wedge's unit number to unitp
    616  *	if unitp is not NULL.
    617  */
    618 static struct dkwedge_softc *
    619 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
    620 {
    621 	struct dkwedge_softc *sc = NULL;
    622 	u_int unit;
    623 
    624 	/* Find our softc. */
    625 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
    626 	rw_enter(&dkwedges_lock, RW_READER);
    627 	for (unit = 0; unit < ndkwedges; unit++) {
    628 		if ((sc = dkwedges[unit]) != NULL &&
    629 		    strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
    630 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
    631 			break;
    632 		}
    633 	}
    634 	rw_exit(&dkwedges_lock);
    635 	if (sc == NULL)
    636 		return NULL;
    637 
    638 	if (unitp != NULL)
    639 		*unitp = unit;
    640 
    641 	return sc;
    642 }
    643 
    644 /*
    645  * dkwedge_del:		[exported function]
    646  *
    647  *	Delete a disk wedge based on the provided information.
    648  *	NOTE: We look up the wedge based on the wedge devname,
    649  *	not wname.
    650  */
    651 int
    652 dkwedge_del(struct dkwedge_info *dkw)
    653 {
    654 
    655 	return dkwedge_del1(dkw, 0);
    656 }
    657 
    658 int
    659 dkwedge_del1(struct dkwedge_info *dkw, int flags)
    660 {
    661 	struct dkwedge_softc *sc = NULL;
    662 
    663 	/* Find our softc. */
    664 	if ((sc = dkwedge_find(dkw, NULL)) == NULL)
    665 		return ESRCH;
    666 
    667 	return config_detach(sc->sc_dev, flags);
    668 }
    669 
    670 static int
    671 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags)
    672 {
    673 	struct disk *dk = &sc->sc_dk;
    674 	int rc;
    675 
    676 	rc = 0;
    677 	mutex_enter(&dk->dk_openlock);
    678 	if (dk->dk_openmask == 0) {
    679 		/* nothing to do */
    680 	} else if ((flags & DETACH_FORCE) == 0) {
    681 		rc = EBUSY;
    682 	}  else {
    683 		mutex_enter(&sc->sc_parent->dk_rawlock);
    684 		dklastclose(sc);
    685 		mutex_exit(&sc->sc_parent->dk_rawlock);
    686 	}
    687 	mutex_exit(&sc->sc_dk.dk_openlock);
    688 
    689 	return rc;
    690 }
    691 
    692 /*
    693  * dkwedge_detach:
    694  *
    695  *	Autoconfiguration detach function for pseudo-device glue.
    696  */
    697 static int
    698 dkwedge_detach(device_t self, int flags)
    699 {
    700 	struct dkwedge_softc *sc = NULL;
    701 	u_int unit;
    702 	int bmaj, cmaj, rc;
    703 
    704 	rw_enter(&dkwedges_lock, RW_WRITER);
    705 	for (unit = 0; unit < ndkwedges; unit++) {
    706 		if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
    707 			break;
    708 	}
    709 	if (unit == ndkwedges)
    710 		rc = ENXIO;
    711 	else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) {
    712 		/* Mark the wedge as dying. */
    713 		sc->sc_state = DKW_STATE_DYING;
    714 	}
    715 	rw_exit(&dkwedges_lock);
    716 
    717 	if (rc != 0)
    718 		return rc;
    719 
    720 	pmf_device_deregister(self);
    721 
    722 	/* Locate the wedge major numbers. */
    723 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
    724 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
    725 
    726 	/* Kill any pending restart. */
    727 	callout_stop(&sc->sc_restart_ch);
    728 
    729 	/*
    730 	 * dkstart() will kill any queued buffers now that the
    731 	 * state of the wedge is not RUNNING.  Once we've done
    732 	 * that, wait for any other pending I/O to complete.
    733 	 */
    734 	dkstart(sc);
    735 	dkwedge_wait_drain(sc);
    736 
    737 	/* Nuke the vnodes for any open instances. */
    738 	vdevgone(bmaj, unit, unit, VBLK);
    739 	vdevgone(cmaj, unit, unit, VCHR);
    740 
    741 	/* Clean up the parent. */
    742 	dkwedge_cleanup_parent(sc, flags | DETACH_FORCE);
    743 
    744 	/* Announce our departure. */
    745 	aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
    746 	    sc->sc_parent->dk_name,
    747 	    sc->sc_wname);	/* XXX Unicode */
    748 
    749 	mutex_enter(&sc->sc_parent->dk_openlock);
    750 	sc->sc_parent->dk_nwedges--;
    751 	LIST_REMOVE(sc, sc_plink);
    752 	mutex_exit(&sc->sc_parent->dk_openlock);
    753 
    754 	/* Delete our buffer queue. */
    755 	bufq_free(sc->sc_bufq);
    756 
    757 	/* Detach from the disk list. */
    758 	disk_detach(&sc->sc_dk);
    759 	disk_destroy(&sc->sc_dk);
    760 
    761 	/* Poof. */
    762 	rw_enter(&dkwedges_lock, RW_WRITER);
    763 	KASSERT(dkwedges[unit] == sc);
    764 	dkwedges[unit] = NULL;
    765 	sc->sc_state = DKW_STATE_DEAD;
    766 	rw_exit(&dkwedges_lock);
    767 
    768 	mutex_destroy(&sc->sc_iolock);
    769 	cv_destroy(&sc->sc_dkdrn);
    770 	dkwedge_size_fini(sc);
    771 
    772 	free(sc, M_DKWEDGE);
    773 
    774 	return 0;
    775 }
    776 
    777 /*
    778  * dkwedge_delall:	[exported function]
    779  *
    780  *	Delete all of the wedges on the specified disk.  Used when
    781  *	a disk is being detached.
    782  */
    783 void
    784 dkwedge_delall(struct disk *pdk)
    785 {
    786 
    787 	dkwedge_delall1(pdk, false);
    788 }
    789 
    790 static void
    791 dkwedge_delall1(struct disk *pdk, bool idleonly)
    792 {
    793 	struct dkwedge_info dkw;
    794 	struct dkwedge_softc *sc;
    795 	int flags;
    796 
    797 	flags = DETACH_QUIET;
    798 	if (!idleonly)
    799 		flags |= DETACH_FORCE;
    800 
    801 	for (;;) {
    802 		mutex_enter(&pdk->dk_openlock);
    803 		LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    804 			if (!idleonly || sc->sc_dk.dk_openmask == 0)
    805 				break;
    806 		}
    807 		if (sc == NULL) {
    808 			KASSERT(idleonly || pdk->dk_nwedges == 0);
    809 			mutex_exit(&pdk->dk_openlock);
    810 			return;
    811 		}
    812 		strlcpy(dkw.dkw_parent, pdk->dk_name, sizeof(dkw.dkw_parent));
    813 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    814 		    sizeof(dkw.dkw_devname));
    815 		mutex_exit(&pdk->dk_openlock);
    816 		(void) dkwedge_del1(&dkw, flags);
    817 	}
    818 }
    819 
    820 /*
    821  * dkwedge_list:	[exported function]
    822  *
    823  *	List all of the wedges on a particular disk.
    824  */
    825 int
    826 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
    827 {
    828 	struct uio uio;
    829 	struct iovec iov;
    830 	struct dkwedge_softc *sc;
    831 	struct dkwedge_info dkw;
    832 	int error = 0;
    833 
    834 	iov.iov_base = dkwl->dkwl_buf;
    835 	iov.iov_len = dkwl->dkwl_bufsize;
    836 
    837 	uio.uio_iov = &iov;
    838 	uio.uio_iovcnt = 1;
    839 	uio.uio_offset = 0;
    840 	uio.uio_resid = dkwl->dkwl_bufsize;
    841 	uio.uio_rw = UIO_READ;
    842 	KASSERT(l == curlwp);
    843 	uio.uio_vmspace = l->l_proc->p_vmspace;
    844 
    845 	dkwl->dkwl_ncopied = 0;
    846 
    847 	mutex_enter(&pdk->dk_openlock);
    848 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    849 		if (uio.uio_resid < sizeof(dkw))
    850 			break;
    851 
    852 		if (sc->sc_state != DKW_STATE_RUNNING)
    853 			continue;
    854 
    855 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    856 		    sizeof(dkw.dkw_devname));
    857 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
    858 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
    859 		strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
    860 		    sizeof(dkw.dkw_parent));
    861 		dkw.dkw_offset = sc->sc_offset;
    862 		dkw.dkw_size = dkwedge_size(sc);
    863 		strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
    864 
    865 		error = uiomove(&dkw, sizeof(dkw), &uio);
    866 		if (error)
    867 			break;
    868 		dkwl->dkwl_ncopied++;
    869 	}
    870 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
    871 	mutex_exit(&pdk->dk_openlock);
    872 
    873 	return error;
    874 }
    875 
    876 device_t
    877 dkwedge_find_by_wname(const char *wname)
    878 {
    879 	device_t dv = NULL;
    880 	struct dkwedge_softc *sc;
    881 	int i;
    882 
    883 	rw_enter(&dkwedges_lock, RW_WRITER);
    884 	for (i = 0; i < ndkwedges; i++) {
    885 		if ((sc = dkwedges[i]) == NULL)
    886 			continue;
    887 		if (strcmp(sc->sc_wname, wname) == 0) {
    888 			if (dv != NULL) {
    889 				printf(
    890 				    "WARNING: double match for wedge name %s "
    891 				    "(%s, %s)\n", wname, device_xname(dv),
    892 				    device_xname(sc->sc_dev));
    893 				continue;
    894 			}
    895 			dv = sc->sc_dev;
    896 		}
    897 	}
    898 	rw_exit(&dkwedges_lock);
    899 	return dv;
    900 }
    901 
    902 device_t
    903 dkwedge_find_by_parent(const char *name, size_t *i)
    904 {
    905 
    906 	rw_enter(&dkwedges_lock, RW_WRITER);
    907 	for (; *i < (size_t)ndkwedges; (*i)++) {
    908 		struct dkwedge_softc *sc;
    909 		if ((sc = dkwedges[*i]) == NULL)
    910 			continue;
    911 		if (strcmp(sc->sc_parent->dk_name, name) != 0)
    912 			continue;
    913 		rw_exit(&dkwedges_lock);
    914 		return sc->sc_dev;
    915 	}
    916 	rw_exit(&dkwedges_lock);
    917 	return NULL;
    918 }
    919 
    920 void
    921 dkwedge_print_wnames(void)
    922 {
    923 	struct dkwedge_softc *sc;
    924 	int i;
    925 
    926 	rw_enter(&dkwedges_lock, RW_WRITER);
    927 	for (i = 0; i < ndkwedges; i++) {
    928 		if ((sc = dkwedges[i]) == NULL)
    929 			continue;
    930 		printf(" wedge:%s", sc->sc_wname);
    931 	}
    932 	rw_exit(&dkwedges_lock);
    933 }
    934 
    935 /*
    936  * We need a dummy object to stuff into the dkwedge discovery method link
    937  * set to ensure that there is always at least one object in the set.
    938  */
    939 static struct dkwedge_discovery_method dummy_discovery_method;
    940 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
    941 
    942 /*
    943  * dkwedge_init:
    944  *
    945  *	Initialize the disk wedge subsystem.
    946  */
    947 void
    948 dkwedge_init(void)
    949 {
    950 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
    951 	struct dkwedge_discovery_method * const *ddmp;
    952 	struct dkwedge_discovery_method *lddm, *ddm;
    953 
    954 	rw_init(&dkwedges_lock);
    955 	rw_init(&dkwedge_discovery_methods_lock);
    956 
    957 	if (config_cfdriver_attach(&dk_cd) != 0)
    958 		panic("dkwedge: unable to attach cfdriver");
    959 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
    960 		panic("dkwedge: unable to attach cfattach");
    961 
    962 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
    963 
    964 	LIST_INIT(&dkwedge_discovery_methods);
    965 
    966 	__link_set_foreach(ddmp, dkwedge_methods) {
    967 		ddm = *ddmp;
    968 		if (ddm == &dummy_discovery_method)
    969 			continue;
    970 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
    971 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
    972 			    ddm, ddm_list);
    973 			continue;
    974 		}
    975 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
    976 			if (ddm->ddm_priority == lddm->ddm_priority) {
    977 				aprint_error("dk-method-%s: method \"%s\" "
    978 				    "already exists at priority %d\n",
    979 				    ddm->ddm_name, lddm->ddm_name,
    980 				    lddm->ddm_priority);
    981 				/* Not inserted. */
    982 				break;
    983 			}
    984 			if (ddm->ddm_priority < lddm->ddm_priority) {
    985 				/* Higher priority; insert before. */
    986 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
    987 				break;
    988 			}
    989 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
    990 				/* Last one; insert after. */
    991 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
    992 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
    993 				break;
    994 			}
    995 		}
    996 	}
    997 
    998 	rw_exit(&dkwedge_discovery_methods_lock);
    999 }
   1000 
   1001 #ifdef DKWEDGE_AUTODISCOVER
   1002 int	dkwedge_autodiscover = 1;
   1003 #else
   1004 int	dkwedge_autodiscover = 0;
   1005 #endif
   1006 
   1007 /*
   1008  * dkwedge_discover:	[exported function]
   1009  *
   1010  *	Discover the wedges on a newly attached disk.
   1011  *	Remove all unused wedges on the disk first.
   1012  */
   1013 void
   1014 dkwedge_discover(struct disk *pdk)
   1015 {
   1016 	struct dkwedge_discovery_method *ddm;
   1017 	struct vnode *vp;
   1018 	int error;
   1019 	dev_t pdev;
   1020 
   1021 	/*
   1022 	 * Require people playing with wedges to enable this explicitly.
   1023 	 */
   1024 	if (dkwedge_autodiscover == 0)
   1025 		return;
   1026 
   1027 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
   1028 
   1029 	/*
   1030 	 * Use the character device for scanning, the block device
   1031 	 * is busy if there are already wedges attached.
   1032 	 */
   1033 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
   1034 	if (error) {
   1035 		aprint_error("%s: unable to compute pdev, error = %d\n",
   1036 		    pdk->dk_name, error);
   1037 		goto out;
   1038 	}
   1039 
   1040 	error = cdevvp(pdev, &vp);
   1041 	if (error) {
   1042 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
   1043 		    pdk->dk_name, error);
   1044 		goto out;
   1045 	}
   1046 
   1047 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1048 	if (error) {
   1049 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
   1050 		    pdk->dk_name, error);
   1051 		vrele(vp);
   1052 		goto out;
   1053 	}
   1054 
   1055 	error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
   1056 	if (error) {
   1057 		if (error != ENXIO)
   1058 			aprint_error("%s: unable to open device, error = %d\n",
   1059 			    pdk->dk_name, error);
   1060 		vput(vp);
   1061 		goto out;
   1062 	}
   1063 	VOP_UNLOCK(vp);
   1064 
   1065 	/*
   1066 	 * Remove unused wedges
   1067 	 */
   1068 	dkwedge_delall1(pdk, true);
   1069 
   1070 	/*
   1071 	 * For each supported partition map type, look to see if
   1072 	 * this map type exists.  If so, parse it and add the
   1073 	 * corresponding wedges.
   1074 	 */
   1075 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
   1076 		error = (*ddm->ddm_discover)(pdk, vp);
   1077 		if (error == 0) {
   1078 			/* Successfully created wedges; we're done. */
   1079 			break;
   1080 		}
   1081 	}
   1082 
   1083 	error = vn_close(vp, FREAD, NOCRED);
   1084 	if (error) {
   1085 		aprint_error("%s: unable to close device, error = %d\n",
   1086 		    pdk->dk_name, error);
   1087 		/* We'll just assume the vnode has been cleaned up. */
   1088 	}
   1089 
   1090 out:
   1091 	rw_exit(&dkwedge_discovery_methods_lock);
   1092 }
   1093 
   1094 /*
   1095  * dkwedge_read:
   1096  *
   1097  *	Read some data from the specified disk, used for
   1098  *	partition discovery.
   1099  */
   1100 int
   1101 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
   1102     void *tbuf, size_t len)
   1103 {
   1104 	buf_t *bp;
   1105 	int error;
   1106 	bool isopen;
   1107 	dev_t bdev;
   1108 	struct vnode *bdvp;
   1109 
   1110 	/*
   1111 	 * The kernel cannot read from a character device vnode
   1112 	 * as physio() only handles user memory.
   1113 	 *
   1114 	 * If the block device has already been opened by a wedge
   1115 	 * use that vnode and temporarily bump the open counter.
   1116 	 *
   1117 	 * Otherwise try to open the block device.
   1118 	 */
   1119 
   1120 	bdev = devsw_chr2blk(vp->v_rdev);
   1121 
   1122 	mutex_enter(&pdk->dk_rawlock);
   1123 	if (pdk->dk_rawopens != 0) {
   1124 		KASSERT(pdk->dk_rawvp != NULL);
   1125 		isopen = true;
   1126 		++pdk->dk_rawopens;
   1127 		bdvp = pdk->dk_rawvp;
   1128 		error = 0;
   1129 	} else {
   1130 		isopen = false;
   1131 		error = dk_open_parent(bdev, FREAD, &bdvp);
   1132 	}
   1133 	mutex_exit(&pdk->dk_rawlock);
   1134 
   1135 	if (error)
   1136 		return error;
   1137 
   1138 	bp = getiobuf(bdvp, true);
   1139 	bp->b_flags = B_READ;
   1140 	bp->b_cflags = BC_BUSY;
   1141 	bp->b_dev = bdev;
   1142 	bp->b_data = tbuf;
   1143 	bp->b_bufsize = bp->b_bcount = len;
   1144 	bp->b_blkno = blkno;
   1145 	bp->b_cylinder = 0;
   1146 	bp->b_error = 0;
   1147 
   1148 	VOP_STRATEGY(bdvp, bp);
   1149 	error = biowait(bp);
   1150 	putiobuf(bp);
   1151 
   1152 	mutex_enter(&pdk->dk_rawlock);
   1153 	if (isopen) {
   1154 		--pdk->dk_rawopens;
   1155 	} else {
   1156 		dk_close_parent(bdvp, FREAD);
   1157 	}
   1158 	mutex_exit(&pdk->dk_rawlock);
   1159 
   1160 	return error;
   1161 }
   1162 
   1163 /*
   1164  * dkwedge_lookup:
   1165  *
   1166  *	Look up a dkwedge_softc based on the provided dev_t.
   1167  */
   1168 static struct dkwedge_softc *
   1169 dkwedge_lookup(dev_t dev)
   1170 {
   1171 	const int unit = minor(dev);
   1172 	struct dkwedge_softc *sc;
   1173 
   1174 	rw_enter(&dkwedges_lock, RW_READER);
   1175 	if (unit < 0 || unit >= ndkwedges)
   1176 		sc = NULL;
   1177 	else
   1178 		sc = dkwedges[unit];
   1179 	rw_exit(&dkwedges_lock);
   1180 
   1181 	return sc;
   1182 }
   1183 
   1184 static int
   1185 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
   1186 {
   1187 	struct vnode *vp;
   1188 	int error;
   1189 
   1190 	error = bdevvp(dev, &vp);
   1191 	if (error)
   1192 		return error;
   1193 
   1194 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1195 	if (error) {
   1196 		vrele(vp);
   1197 		return error;
   1198 	}
   1199 	error = VOP_OPEN(vp, mode, NOCRED);
   1200 	if (error) {
   1201 		vput(vp);
   1202 		return error;
   1203 	}
   1204 
   1205 	/* VOP_OPEN() doesn't do this for us. */
   1206 	if (mode & FWRITE) {
   1207 		mutex_enter(vp->v_interlock);
   1208 		vp->v_writecount++;
   1209 		mutex_exit(vp->v_interlock);
   1210 	}
   1211 
   1212 	VOP_UNLOCK(vp);
   1213 
   1214 	*vpp = vp;
   1215 
   1216 	return 0;
   1217 }
   1218 
   1219 static int
   1220 dk_close_parent(struct vnode *vp, int mode)
   1221 {
   1222 	int error;
   1223 
   1224 	error = vn_close(vp, mode, NOCRED);
   1225 	return error;
   1226 }
   1227 
   1228 /*
   1229  * dkopen:		[devsw entry point]
   1230  *
   1231  *	Open a wedge.
   1232  */
   1233 static int
   1234 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
   1235 {
   1236 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1237 	int error = 0;
   1238 
   1239 	if (sc == NULL)
   1240 		return ENXIO;
   1241 	if (sc->sc_state != DKW_STATE_RUNNING)
   1242 		return ENXIO;
   1243 
   1244 	/*
   1245 	 * We go through a complicated little dance to only open the parent
   1246 	 * vnode once per wedge, no matter how many times the wedge is
   1247 	 * opened.  The reason?  We see one dkopen() per open call, but
   1248 	 * only dkclose() on the last close.
   1249 	 */
   1250 	mutex_enter(&sc->sc_dk.dk_openlock);
   1251 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1252 	if (sc->sc_dk.dk_openmask == 0) {
   1253 		error = dkfirstopen(sc, flags);
   1254 		if (error)
   1255 			goto popen_fail;
   1256 	}
   1257 	KASSERT(sc->sc_mode != 0);
   1258 	if (flags & ~sc->sc_mode & FWRITE) {
   1259 		error = EROFS;
   1260 		goto popen_fail;
   1261 	}
   1262 	if (fmt == S_IFCHR)
   1263 		sc->sc_dk.dk_copenmask |= 1;
   1264 	else
   1265 		sc->sc_dk.dk_bopenmask |= 1;
   1266 	sc->sc_dk.dk_openmask =
   1267 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1268 
   1269 popen_fail:
   1270 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1271 	mutex_exit(&sc->sc_dk.dk_openlock);
   1272 	return error;
   1273 }
   1274 
   1275 static int
   1276 dkfirstopen(struct dkwedge_softc *sc, int flags)
   1277 {
   1278 	struct dkwedge_softc *nsc;
   1279 	struct vnode *vp;
   1280 	int mode;
   1281 	int error;
   1282 
   1283 	KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
   1284 	KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
   1285 
   1286 	if (sc->sc_parent->dk_rawopens == 0) {
   1287 		KASSERT(sc->sc_parent->dk_rawvp == NULL);
   1288 		/*
   1289 		 * Try open read-write. If this fails for EROFS
   1290 		 * and wedge is read-only, retry to open read-only.
   1291 		 */
   1292 		mode = FREAD | FWRITE;
   1293 		error = dk_open_parent(sc->sc_pdev, mode, &vp);
   1294 		if (error == EROFS && (flags & FWRITE) == 0) {
   1295 			mode &= ~FWRITE;
   1296 			error = dk_open_parent(sc->sc_pdev, mode, &vp);
   1297 		}
   1298 		if (error)
   1299 			return error;
   1300 		KASSERT(vp != NULL);
   1301 		sc->sc_parent->dk_rawvp = vp;
   1302 	} else {
   1303 		/*
   1304 		 * Retrieve mode from an already opened wedge.
   1305 		 *
   1306 		 * At this point, dk_rawopens is bounded by the number
   1307 		 * of dkwedge devices in the system, which is limited
   1308 		 * by autoconf device numbering to INT_MAX.  Since
   1309 		 * dk_rawopens is unsigned, this can't overflow.
   1310 		 */
   1311 		KASSERT(sc->sc_parent->dk_rawopens < UINT_MAX);
   1312 		KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1313 		mode = 0;
   1314 		LIST_FOREACH(nsc, &sc->sc_parent->dk_wedges, sc_plink) {
   1315 			if (nsc == sc || nsc->sc_dk.dk_openmask == 0)
   1316 				continue;
   1317 			mode = nsc->sc_mode;
   1318 			break;
   1319 		}
   1320 	}
   1321 	sc->sc_mode = mode;
   1322 	sc->sc_parent->dk_rawopens++;
   1323 
   1324 	return 0;
   1325 }
   1326 
   1327 static void
   1328 dklastclose(struct dkwedge_softc *sc)
   1329 {
   1330 
   1331 	KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
   1332 	KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
   1333 	KASSERT(sc->sc_parent->dk_rawopens > 0);
   1334 	KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1335 
   1336 	if (--sc->sc_parent->dk_rawopens == 0) {
   1337 		struct vnode *const vp = sc->sc_parent->dk_rawvp;
   1338 		const int mode = sc->sc_mode;
   1339 
   1340 		sc->sc_parent->dk_rawvp = NULL;
   1341 		sc->sc_mode = 0;
   1342 
   1343 		dk_close_parent(vp, mode);
   1344 	}
   1345 }
   1346 
   1347 /*
   1348  * dkclose:		[devsw entry point]
   1349  *
   1350  *	Close a wedge.
   1351  */
   1352 static int
   1353 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
   1354 {
   1355 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1356 
   1357 	if (sc == NULL)
   1358 		return ENXIO;
   1359 	if (sc->sc_state != DKW_STATE_RUNNING)
   1360 		return ENXIO;
   1361 
   1362 	mutex_enter(&sc->sc_dk.dk_openlock);
   1363 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1364 
   1365 	KASSERT(sc->sc_dk.dk_openmask != 0);
   1366 
   1367 	if (fmt == S_IFCHR)
   1368 		sc->sc_dk.dk_copenmask &= ~1;
   1369 	else
   1370 		sc->sc_dk.dk_bopenmask &= ~1;
   1371 	sc->sc_dk.dk_openmask =
   1372 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1373 
   1374 	if (sc->sc_dk.dk_openmask == 0) {
   1375 		dklastclose(sc);
   1376 	}
   1377 
   1378 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1379 	mutex_exit(&sc->sc_dk.dk_openlock);
   1380 
   1381 	return 0;
   1382 }
   1383 
   1384 /*
   1385  * dkcancel:		[devsw entry point]
   1386  *
   1387  *	Cancel any pending I/O operations waiting on a wedge.
   1388  */
   1389 static int
   1390 dkcancel(dev_t dev, int flags, int fmt, struct lwp *l)
   1391 {
   1392 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1393 
   1394 	KASSERT(sc != NULL);
   1395 	KASSERT(sc->sc_dev != NULL);
   1396 
   1397 	/*
   1398 	 * Disk I/O is expected to complete or fail within a reasonable
   1399 	 * timeframe -- it's storage, not communication.  Further, the
   1400 	 * character and block device interface guarantees that prior
   1401 	 * reads and writes have completed or failed by the time close
   1402 	 * returns -- we are not to cancel them here.  If the parent
   1403 	 * device's hardware is gone, the parent driver can make them
   1404 	 * fail.  Nothing for dk(4) itself to do.
   1405 	 */
   1406 
   1407 	return 0;
   1408 }
   1409 
   1410 /*
   1411  * dkstrategy:		[devsw entry point]
   1412  *
   1413  *	Perform I/O based on the wedge I/O strategy.
   1414  */
   1415 static void
   1416 dkstrategy(struct buf *bp)
   1417 {
   1418 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1419 	uint64_t p_size, p_offset;
   1420 
   1421 	if (sc == NULL) {
   1422 		bp->b_error = ENXIO;
   1423 		goto done;
   1424 	}
   1425 
   1426 	if (sc->sc_state != DKW_STATE_RUNNING ||
   1427 	    sc->sc_parent->dk_rawvp == NULL) {
   1428 		bp->b_error = ENXIO;
   1429 		goto done;
   1430 	}
   1431 
   1432 	/* If it's an empty transfer, wake up the top half now. */
   1433 	if (bp->b_bcount == 0)
   1434 		goto done;
   1435 
   1436 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
   1437 	p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
   1438 
   1439 	/* Make sure it's in-range. */
   1440 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
   1441 		goto done;
   1442 
   1443 	/* Translate it to the parent's raw LBA. */
   1444 	bp->b_rawblkno = bp->b_blkno + p_offset;
   1445 
   1446 	/* Place it in the queue and start I/O on the unit. */
   1447 	mutex_enter(&sc->sc_iolock);
   1448 	sc->sc_iopend++;
   1449 	disk_wait(&sc->sc_dk);
   1450 	bufq_put(sc->sc_bufq, bp);
   1451 	mutex_exit(&sc->sc_iolock);
   1452 
   1453 	dkstart(sc);
   1454 	return;
   1455 
   1456 done:
   1457 	bp->b_resid = bp->b_bcount;
   1458 	biodone(bp);
   1459 }
   1460 
   1461 /*
   1462  * dkstart:
   1463  *
   1464  *	Start I/O that has been enqueued on the wedge.
   1465  */
   1466 static void
   1467 dkstart(struct dkwedge_softc *sc)
   1468 {
   1469 	struct vnode *vp;
   1470 	struct buf *bp, *nbp;
   1471 
   1472 	mutex_enter(&sc->sc_iolock);
   1473 
   1474 	/* Do as much work as has been enqueued. */
   1475 	while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
   1476 		if (sc->sc_state != DKW_STATE_RUNNING) {
   1477 			(void) bufq_get(sc->sc_bufq);
   1478 			if (--sc->sc_iopend == 0)
   1479 				cv_broadcast(&sc->sc_dkdrn);
   1480 			mutex_exit(&sc->sc_iolock);
   1481 			bp->b_error = ENXIO;
   1482 			bp->b_resid = bp->b_bcount;
   1483 			biodone(bp);
   1484 			mutex_enter(&sc->sc_iolock);
   1485 			continue;
   1486 		}
   1487 
   1488 		/* fetch an I/O buf with sc_iolock dropped */
   1489 		mutex_exit(&sc->sc_iolock);
   1490 		nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
   1491 		mutex_enter(&sc->sc_iolock);
   1492 		if (nbp == NULL) {
   1493 			/*
   1494 			 * No resources to run this request; leave the
   1495 			 * buffer queued up, and schedule a timer to
   1496 			 * restart the queue in 1/2 a second.
   1497 			 */
   1498 			callout_schedule(&sc->sc_restart_ch, hz/2);
   1499 			break;
   1500 		}
   1501 
   1502 		/*
   1503 		 * fetch buf, this can fail if another thread
   1504 		 * has already processed the queue, it can also
   1505 		 * return a completely different buf.
   1506 		 */
   1507 		bp = bufq_get(sc->sc_bufq);
   1508 		if (bp == NULL) {
   1509 			mutex_exit(&sc->sc_iolock);
   1510 			putiobuf(nbp);
   1511 			mutex_enter(&sc->sc_iolock);
   1512 			continue;
   1513 		}
   1514 
   1515 		/* Instrumentation. */
   1516 		disk_busy(&sc->sc_dk);
   1517 
   1518 		/* release lock for VOP_STRATEGY */
   1519 		mutex_exit(&sc->sc_iolock);
   1520 
   1521 		nbp->b_data = bp->b_data;
   1522 		nbp->b_flags = bp->b_flags;
   1523 		nbp->b_oflags = bp->b_oflags;
   1524 		nbp->b_cflags = bp->b_cflags;
   1525 		nbp->b_iodone = dkiodone;
   1526 		nbp->b_proc = bp->b_proc;
   1527 		nbp->b_blkno = bp->b_rawblkno;
   1528 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
   1529 		nbp->b_bcount = bp->b_bcount;
   1530 		nbp->b_private = bp;
   1531 		BIO_COPYPRIO(nbp, bp);
   1532 
   1533 		vp = nbp->b_vp;
   1534 		if ((nbp->b_flags & B_READ) == 0) {
   1535 			mutex_enter(vp->v_interlock);
   1536 			vp->v_numoutput++;
   1537 			mutex_exit(vp->v_interlock);
   1538 		}
   1539 		VOP_STRATEGY(vp, nbp);
   1540 
   1541 		mutex_enter(&sc->sc_iolock);
   1542 	}
   1543 
   1544 	mutex_exit(&sc->sc_iolock);
   1545 }
   1546 
   1547 /*
   1548  * dkiodone:
   1549  *
   1550  *	I/O to a wedge has completed; alert the top half.
   1551  */
   1552 static void
   1553 dkiodone(struct buf *bp)
   1554 {
   1555 	struct buf *obp = bp->b_private;
   1556 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
   1557 
   1558 	if (bp->b_error != 0)
   1559 		obp->b_error = bp->b_error;
   1560 	obp->b_resid = bp->b_resid;
   1561 	putiobuf(bp);
   1562 
   1563 	mutex_enter(&sc->sc_iolock);
   1564 	if (--sc->sc_iopend == 0)
   1565 		cv_broadcast(&sc->sc_dkdrn);
   1566 
   1567 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
   1568 	    obp->b_flags & B_READ);
   1569 	mutex_exit(&sc->sc_iolock);
   1570 
   1571 	biodone(obp);
   1572 
   1573 	/* Kick the queue in case there is more work we can do. */
   1574 	dkstart(sc);
   1575 }
   1576 
   1577 /*
   1578  * dkrestart:
   1579  *
   1580  *	Restart the work queue after it was stalled due to
   1581  *	a resource shortage.  Invoked via a callout.
   1582  */
   1583 static void
   1584 dkrestart(void *v)
   1585 {
   1586 	struct dkwedge_softc *sc = v;
   1587 
   1588 	dkstart(sc);
   1589 }
   1590 
   1591 /*
   1592  * dkminphys:
   1593  *
   1594  *	Call parent's minphys function.
   1595  */
   1596 static void
   1597 dkminphys(struct buf *bp)
   1598 {
   1599 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1600 	dev_t dev;
   1601 
   1602 	dev = bp->b_dev;
   1603 	bp->b_dev = sc->sc_pdev;
   1604 	if (sc->sc_parent->dk_driver && sc->sc_parent->dk_driver->d_minphys)
   1605 		(*sc->sc_parent->dk_driver->d_minphys)(bp);
   1606 	else
   1607 		minphys(bp);
   1608 	bp->b_dev = dev;
   1609 }
   1610 
   1611 /*
   1612  * dkread:		[devsw entry point]
   1613  *
   1614  *	Read from a wedge.
   1615  */
   1616 static int
   1617 dkread(dev_t dev, struct uio *uio, int flags)
   1618 {
   1619 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1620 
   1621 	if (sc == NULL)
   1622 		return ENXIO;
   1623 	if (sc->sc_state != DKW_STATE_RUNNING)
   1624 		return ENXIO;
   1625 
   1626 	return physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio);
   1627 }
   1628 
   1629 /*
   1630  * dkwrite:		[devsw entry point]
   1631  *
   1632  *	Write to a wedge.
   1633  */
   1634 static int
   1635 dkwrite(dev_t dev, struct uio *uio, int flags)
   1636 {
   1637 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1638 
   1639 	if (sc == NULL)
   1640 		return ENXIO;
   1641 	if (sc->sc_state != DKW_STATE_RUNNING)
   1642 		return ENXIO;
   1643 
   1644 	return physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio);
   1645 }
   1646 
   1647 /*
   1648  * dkioctl:		[devsw entry point]
   1649  *
   1650  *	Perform an ioctl request on a wedge.
   1651  */
   1652 static int
   1653 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1654 {
   1655 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1656 	int error = 0;
   1657 
   1658 	if (sc == NULL)
   1659 		return ENXIO;
   1660 	if (sc->sc_state != DKW_STATE_RUNNING)
   1661 		return ENXIO;
   1662 	if (sc->sc_parent->dk_rawvp == NULL)
   1663 		return ENXIO;
   1664 
   1665 	/*
   1666 	 * We pass NODEV instead of our device to indicate we don't
   1667 	 * want to handle disklabel ioctls
   1668 	 */
   1669 	error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
   1670 	if (error != EPASSTHROUGH)
   1671 		return error;
   1672 
   1673 	error = 0;
   1674 
   1675 	switch (cmd) {
   1676 	case DIOCGSTRATEGY:
   1677 	case DIOCGCACHE:
   1678 	case DIOCCACHESYNC:
   1679 		error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, data, flag,
   1680 		    l != NULL ? l->l_cred : NOCRED);
   1681 		break;
   1682 	case DIOCGWEDGEINFO: {
   1683 		struct dkwedge_info *dkw = data;
   1684 
   1685 		strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
   1686 		    sizeof(dkw->dkw_devname));
   1687 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
   1688 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
   1689 		strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
   1690 		    sizeof(dkw->dkw_parent));
   1691 		dkw->dkw_offset = sc->sc_offset;
   1692 		dkw->dkw_size = dkwedge_size(sc);
   1693 		strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
   1694 
   1695 		break;
   1696 	}
   1697 	case DIOCGSECTORALIGN: {
   1698 		struct disk_sectoralign *dsa = data;
   1699 		uint32_t r;
   1700 
   1701 		error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, dsa, flag,
   1702 		    l != NULL ? l->l_cred : NOCRED);
   1703 		if (error)
   1704 			break;
   1705 
   1706 		r = sc->sc_offset % dsa->dsa_alignment;
   1707 		if (r < dsa->dsa_firstaligned)
   1708 			dsa->dsa_firstaligned = dsa->dsa_firstaligned - r;
   1709 		else
   1710 			dsa->dsa_firstaligned = (dsa->dsa_firstaligned +
   1711 			    dsa->dsa_alignment) - r;
   1712 		break;
   1713 	}
   1714 	default:
   1715 		error = ENOTTY;
   1716 	}
   1717 
   1718 	return error;
   1719 }
   1720 
   1721 /*
   1722  * dkdiscard:		[devsw entry point]
   1723  *
   1724  *	Perform a discard-range request on a wedge.
   1725  */
   1726 static int
   1727 dkdiscard(dev_t dev, off_t pos, off_t len)
   1728 {
   1729 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1730 	uint64_t size = dkwedge_size(sc);
   1731 	unsigned shift;
   1732 	off_t offset, maxlen;
   1733 	int error;
   1734 
   1735 	if (sc == NULL)
   1736 		return ENXIO;
   1737 	if (sc->sc_state != DKW_STATE_RUNNING)
   1738 		return ENXIO;
   1739 	if (sc->sc_parent->dk_rawvp == NULL)
   1740 		return ENXIO;
   1741 
   1742 	/* XXX check bounds on size/offset up front */
   1743 	shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
   1744 	KASSERT(__type_fit(off_t, size));
   1745 	KASSERT(__type_fit(off_t, sc->sc_offset));
   1746 	KASSERT(0 <= sc->sc_offset);
   1747 	KASSERT(size <= (__type_max(off_t) >> shift));
   1748 	KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - size));
   1749 	offset = ((off_t)sc->sc_offset << shift);
   1750 	maxlen = ((off_t)size << shift);
   1751 
   1752 	if (len > maxlen)
   1753 		return EINVAL;
   1754 	if (pos > (maxlen - len))
   1755 		return EINVAL;
   1756 
   1757 	pos += offset;
   1758 
   1759 	vn_lock(sc->sc_parent->dk_rawvp, LK_EXCLUSIVE | LK_RETRY);
   1760 	error = VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
   1761 	VOP_UNLOCK(sc->sc_parent->dk_rawvp);
   1762 
   1763 	return error;
   1764 }
   1765 
   1766 /*
   1767  * dksize:		[devsw entry point]
   1768  *
   1769  *	Query the size of a wedge for the purpose of performing a dump
   1770  *	or for swapping to.
   1771  */
   1772 static int
   1773 dksize(dev_t dev)
   1774 {
   1775 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1776 	uint64_t p_size;
   1777 	int rv = -1;
   1778 
   1779 	if (sc == NULL)
   1780 		return -1;
   1781 	if (sc->sc_state != DKW_STATE_RUNNING)
   1782 		return -1;
   1783 
   1784 	mutex_enter(&sc->sc_dk.dk_openlock);
   1785 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1786 
   1787 	/* Our content type is static, no need to open the device. */
   1788 
   1789 	p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
   1790 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
   1791 		/* Saturate if we are larger than INT_MAX. */
   1792 		if (p_size > INT_MAX)
   1793 			rv = INT_MAX;
   1794 		else
   1795 			rv = (int)p_size;
   1796 	}
   1797 
   1798 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1799 	mutex_exit(&sc->sc_dk.dk_openlock);
   1800 
   1801 	return rv;
   1802 }
   1803 
   1804 /*
   1805  * dkdump:		[devsw entry point]
   1806  *
   1807  *	Perform a crash dump to a wedge.
   1808  */
   1809 static int
   1810 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
   1811 {
   1812 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1813 	const struct bdevsw *bdev;
   1814 	uint64_t p_size, p_offset;
   1815 	int rv = 0;
   1816 
   1817 	if (sc == NULL)
   1818 		return ENXIO;
   1819 	if (sc->sc_state != DKW_STATE_RUNNING)
   1820 		return ENXIO;
   1821 
   1822 	mutex_enter(&sc->sc_dk.dk_openlock);
   1823 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1824 
   1825 	/* Our content type is static, no need to open the device. */
   1826 
   1827 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
   1828 	    strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0 &&
   1829 	    strcmp(sc->sc_ptype, DKW_PTYPE_CGD) != 0) {
   1830 		rv = ENXIO;
   1831 		goto out;
   1832 	}
   1833 	if (size % DEV_BSIZE != 0) {
   1834 		rv = EINVAL;
   1835 		goto out;
   1836 	}
   1837 
   1838 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
   1839 	p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
   1840 
   1841 	if (blkno < 0 || blkno + size/DEV_BSIZE > p_size) {
   1842 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
   1843 		    "p_size (%" PRIu64 ")\n", __func__, blkno,
   1844 		    size/DEV_BSIZE, p_size);
   1845 		rv = EINVAL;
   1846 		goto out;
   1847 	}
   1848 
   1849 	bdev = bdevsw_lookup(sc->sc_pdev);
   1850 	rv = (*bdev->d_dump)(sc->sc_pdev, blkno + p_offset, va, size);
   1851 
   1852 out:
   1853 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1854 	mutex_exit(&sc->sc_dk.dk_openlock);
   1855 
   1856 	return rv;
   1857 }
   1858 
   1859 /*
   1860  * config glue
   1861  */
   1862 
   1863 /*
   1864  * dkwedge_find_partition
   1865  *
   1866  *	Find wedge corresponding to the specified parent name
   1867  *	and offset/length.
   1868  */
   1869 device_t
   1870 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
   1871 {
   1872 	struct dkwedge_softc *sc;
   1873 	int i;
   1874 	device_t wedge = NULL;
   1875 
   1876 	rw_enter(&dkwedges_lock, RW_READER);
   1877 	for (i = 0; i < ndkwedges; i++) {
   1878 		if ((sc = dkwedges[i]) == NULL)
   1879 			continue;
   1880 		if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
   1881 		    sc->sc_offset == startblk &&
   1882 		    dkwedge_size(sc) == nblks) {
   1883 			if (wedge) {
   1884 				printf("WARNING: double match for boot wedge "
   1885 				    "(%s, %s)\n",
   1886 				    device_xname(wedge),
   1887 				    device_xname(sc->sc_dev));
   1888 				continue;
   1889 			}
   1890 			wedge = sc->sc_dev;
   1891 		}
   1892 	}
   1893 	rw_exit(&dkwedges_lock);
   1894 
   1895 	return wedge;
   1896 }
   1897 
   1898 const char *
   1899 dkwedge_get_parent_name(dev_t dev)
   1900 {
   1901 	/* XXX: perhaps do this in lookup? */
   1902 	int bmaj = bdevsw_lookup_major(&dk_bdevsw);
   1903 	int cmaj = cdevsw_lookup_major(&dk_cdevsw);
   1904 
   1905 	if (major(dev) != bmaj && major(dev) != cmaj)
   1906 		return NULL;
   1907 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1908 	if (sc == NULL)
   1909 		return NULL;
   1910 	return sc->sc_parent->dk_name;
   1911 }
   1912