Home | History | Annotate | Line # | Download | only in dkwedge
dk.c revision 1.142
      1 /*	$NetBSD: dk.c,v 1.142 2023/04/21 18:30:32 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.142 2023/04/21 18:30:32 riastradh Exp $");
     34 
     35 #ifdef _KERNEL_OPT
     36 #include "opt_dkwedge.h"
     37 #endif
     38 
     39 #include <sys/param.h>
     40 #include <sys/types.h>
     41 
     42 #include <sys/buf.h>
     43 #include <sys/bufq.h>
     44 #include <sys/callout.h>
     45 #include <sys/conf.h>
     46 #include <sys/device.h>
     47 #include <sys/disk.h>
     48 #include <sys/disklabel.h>
     49 #include <sys/errno.h>
     50 #include <sys/fcntl.h>
     51 #include <sys/ioctl.h>
     52 #include <sys/kauth.h>
     53 #include <sys/kernel.h>
     54 #include <sys/malloc.h>
     55 #include <sys/pool.h>
     56 #include <sys/proc.h>
     57 #include <sys/rwlock.h>
     58 #include <sys/stat.h>
     59 #include <sys/systm.h>
     60 #include <sys/vnode.h>
     61 
     62 #include <miscfs/specfs/specdev.h>
     63 
     64 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
     65 
     66 typedef enum {
     67 	DKW_STATE_LARVAL	= 0,
     68 	DKW_STATE_RUNNING	= 1,
     69 	DKW_STATE_DYING		= 2,
     70 	DKW_STATE_DEAD		= 666
     71 } dkwedge_state_t;
     72 
     73 struct dkwedge_softc {
     74 	device_t	sc_dev;	/* pointer to our pseudo-device */
     75 	struct cfdata	sc_cfdata;	/* our cfdata structure */
     76 	uint8_t		sc_wname[128];	/* wedge name (Unicode, UTF-8) */
     77 
     78 	dkwedge_state_t sc_state;	/* state this wedge is in */
     79 
     80 	struct disk	*sc_parent;	/* parent disk */
     81 	daddr_t		sc_offset;	/* LBA offset of wedge in parent */
     82 	krwlock_t	sc_sizelock;
     83 	uint64_t	sc_size;	/* size of wedge in blocks */
     84 	char		sc_ptype[32];	/* partition type */
     85 	dev_t		sc_pdev;	/* cached parent's dev_t */
     86 					/* link on parent's wedge list */
     87 	LIST_ENTRY(dkwedge_softc) sc_plink;
     88 
     89 	struct disk	sc_dk;		/* our own disk structure */
     90 	struct bufq_state *sc_bufq;	/* buffer queue */
     91 	struct callout	sc_restart_ch;	/* callout to restart I/O */
     92 
     93 	kmutex_t	sc_iolock;
     94 	kcondvar_t	sc_dkdrn;
     95 	u_int		sc_iopend;	/* I/Os pending */
     96 	bool		sc_iostop;	/* don't schedule restart */
     97 	int		sc_mode;	/* parent open mode */
     98 };
     99 
    100 static int	dkwedge_match(device_t, cfdata_t, void *);
    101 static void	dkwedge_attach(device_t, device_t, void *);
    102 static int	dkwedge_detach(device_t, int);
    103 
    104 static void	dkstart(struct dkwedge_softc *);
    105 static void	dkiodone(struct buf *);
    106 static void	dkrestart(void *);
    107 static void	dkminphys(struct buf *);
    108 
    109 static int	dkfirstopen(struct dkwedge_softc *, int);
    110 static void	dklastclose(struct dkwedge_softc *);
    111 static int	dkwedge_cleanup_parent(struct dkwedge_softc *, int);
    112 static int	dkwedge_detach(device_t, int);
    113 static void	dkwedge_delall1(struct disk *, bool);
    114 static int	dkwedge_del1(struct dkwedge_info *, int);
    115 static int	dk_open_parent(dev_t, int, struct vnode **);
    116 static int	dk_close_parent(struct vnode *, int);
    117 
    118 static dev_type_open(dkopen);
    119 static dev_type_close(dkclose);
    120 static dev_type_cancel(dkcancel);
    121 static dev_type_read(dkread);
    122 static dev_type_write(dkwrite);
    123 static dev_type_ioctl(dkioctl);
    124 static dev_type_strategy(dkstrategy);
    125 static dev_type_dump(dkdump);
    126 static dev_type_size(dksize);
    127 static dev_type_discard(dkdiscard);
    128 
    129 CFDRIVER_DECL(dk, DV_DISK, NULL);
    130 CFATTACH_DECL3_NEW(dk, 0,
    131     dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
    132     DVF_DETACH_SHUTDOWN);
    133 
    134 const struct bdevsw dk_bdevsw = {
    135 	.d_open = dkopen,
    136 	.d_close = dkclose,
    137 	.d_cancel = dkcancel,
    138 	.d_strategy = dkstrategy,
    139 	.d_ioctl = dkioctl,
    140 	.d_dump = dkdump,
    141 	.d_psize = dksize,
    142 	.d_discard = dkdiscard,
    143 	.d_flag = D_DISK | D_MPSAFE
    144 };
    145 
    146 const struct cdevsw dk_cdevsw = {
    147 	.d_open = dkopen,
    148 	.d_close = dkclose,
    149 	.d_cancel = dkcancel,
    150 	.d_read = dkread,
    151 	.d_write = dkwrite,
    152 	.d_ioctl = dkioctl,
    153 	.d_stop = nostop,
    154 	.d_tty = notty,
    155 	.d_poll = nopoll,
    156 	.d_mmap = nommap,
    157 	.d_kqfilter = nokqfilter,
    158 	.d_discard = dkdiscard,
    159 	.d_flag = D_DISK | D_MPSAFE
    160 };
    161 
    162 static struct dkwedge_softc **dkwedges;
    163 static u_int ndkwedges;
    164 static krwlock_t dkwedges_lock;
    165 
    166 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
    167 static krwlock_t dkwedge_discovery_methods_lock;
    168 
    169 /*
    170  * dkwedge_match:
    171  *
    172  *	Autoconfiguration match function for pseudo-device glue.
    173  */
    174 static int
    175 dkwedge_match(device_t parent, cfdata_t match, void *aux)
    176 {
    177 
    178 	/* Pseudo-device; always present. */
    179 	return 1;
    180 }
    181 
    182 /*
    183  * dkwedge_attach:
    184  *
    185  *	Autoconfiguration attach function for pseudo-device glue.
    186  */
    187 static void
    188 dkwedge_attach(device_t parent, device_t self, void *aux)
    189 {
    190 
    191 	if (!pmf_device_register(self, NULL, NULL))
    192 		aprint_error_dev(self, "couldn't establish power handler\n");
    193 }
    194 
    195 /*
    196  * dkwedge_wait_drain:
    197  *
    198  *	Wait for I/O on the wedge to drain.
    199  */
    200 static void
    201 dkwedge_wait_drain(struct dkwedge_softc *sc)
    202 {
    203 
    204 	mutex_enter(&sc->sc_iolock);
    205 	while (sc->sc_iopend != 0)
    206 		cv_wait(&sc->sc_dkdrn, &sc->sc_iolock);
    207 	mutex_exit(&sc->sc_iolock);
    208 }
    209 
    210 /*
    211  * dkwedge_compute_pdev:
    212  *
    213  *	Compute the parent disk's dev_t.
    214  */
    215 static int
    216 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
    217 {
    218 	const char *name, *cp;
    219 	devmajor_t pmaj;
    220 	int punit;
    221 	char devname[16];
    222 
    223 	name = pname;
    224 	switch (type) {
    225 	case VBLK:
    226 		pmaj = devsw_name2blk(name, devname, sizeof(devname));
    227 		break;
    228 	case VCHR:
    229 		pmaj = devsw_name2chr(name, devname, sizeof(devname));
    230 		break;
    231 	default:
    232 		pmaj = NODEVMAJOR;
    233 		break;
    234 	}
    235 	if (pmaj == NODEVMAJOR)
    236 		return ENXIO;
    237 
    238 	name += strlen(devname);
    239 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
    240 		punit = (punit * 10) + (*cp - '0');
    241 	if (cp == name) {
    242 		/* Invalid parent disk name. */
    243 		return ENXIO;
    244 	}
    245 
    246 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
    247 
    248 	return 0;
    249 }
    250 
    251 /*
    252  * dkwedge_array_expand:
    253  *
    254  *	Expand the dkwedges array.
    255  *
    256  *	Releases and reacquires dkwedges_lock as a writer.
    257  */
    258 static int
    259 dkwedge_array_expand(void)
    260 {
    261 
    262 	const unsigned incr = 16;
    263 	unsigned newcnt, oldcnt;
    264 	struct dkwedge_softc **newarray = NULL, **oldarray = NULL;
    265 
    266 	KASSERT(rw_write_held(&dkwedges_lock));
    267 
    268 	oldcnt = ndkwedges;
    269 	oldarray = dkwedges;
    270 
    271 	if (oldcnt >= INT_MAX - incr)
    272 		return ENFILE;	/* XXX */
    273 	newcnt = oldcnt + incr;
    274 
    275 	rw_exit(&dkwedges_lock);
    276 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
    277 	    M_WAITOK|M_ZERO);
    278 	rw_enter(&dkwedges_lock, RW_WRITER);
    279 
    280 	if (ndkwedges != oldcnt || dkwedges != oldarray) {
    281 		oldarray = NULL; /* already recycled */
    282 		goto out;
    283 	}
    284 
    285 	if (oldarray != NULL)
    286 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
    287 	dkwedges = newarray;
    288 	newarray = NULL;	/* transferred to dkwedges */
    289 	ndkwedges = newcnt;
    290 
    291 out:	rw_exit(&dkwedges_lock);
    292 	if (oldarray != NULL)
    293 		free(oldarray, M_DKWEDGE);
    294 	if (newarray != NULL)
    295 		free(newarray, M_DKWEDGE);
    296 	rw_enter(&dkwedges_lock, RW_WRITER);
    297 	return 0;
    298 }
    299 
    300 static void
    301 dkwedge_size_init(struct dkwedge_softc *sc, uint64_t size)
    302 {
    303 
    304 	rw_init(&sc->sc_sizelock);
    305 	sc->sc_size = size;
    306 }
    307 
    308 static void
    309 dkwedge_size_fini(struct dkwedge_softc *sc)
    310 {
    311 
    312 	rw_destroy(&sc->sc_sizelock);
    313 }
    314 
    315 static uint64_t
    316 dkwedge_size(struct dkwedge_softc *sc)
    317 {
    318 	uint64_t size;
    319 
    320 	rw_enter(&sc->sc_sizelock, RW_READER);
    321 	size = sc->sc_size;
    322 	rw_exit(&sc->sc_sizelock);
    323 
    324 	return size;
    325 }
    326 
    327 static void
    328 dkwedge_size_increase(struct dkwedge_softc *sc, uint64_t size)
    329 {
    330 
    331 	KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
    332 
    333 	rw_enter(&sc->sc_sizelock, RW_WRITER);
    334 	KASSERTMSG(size >= sc->sc_size,
    335 	    "decreasing dkwedge size from %"PRIu64" to %"PRIu64,
    336 	    sc->sc_size, size);
    337 	sc->sc_size = size;
    338 	rw_exit(&sc->sc_sizelock);
    339 }
    340 
    341 static void
    342 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
    343 {
    344 	struct disk *dk = &sc->sc_dk;
    345 	struct disk_geom *dg = &dk->dk_geom;
    346 
    347 	KASSERT(mutex_owned(&pdk->dk_openlock));
    348 
    349 	memset(dg, 0, sizeof(*dg));
    350 
    351 	dg->dg_secperunit = dkwedge_size(sc);
    352 	dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
    353 
    354 	/* fake numbers, 1 cylinder is 1 MB with default sector size */
    355 	dg->dg_nsectors = 32;
    356 	dg->dg_ntracks = 64;
    357 	dg->dg_ncylinders =
    358 	    dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
    359 
    360 	disk_set_info(sc->sc_dev, dk, NULL);
    361 }
    362 
    363 /*
    364  * dkwedge_add:		[exported function]
    365  *
    366  *	Add a disk wedge based on the provided information.
    367  *
    368  *	The incoming dkw_devname[] is ignored, instead being
    369  *	filled in and returned to the caller.
    370  */
    371 int
    372 dkwedge_add(struct dkwedge_info *dkw)
    373 {
    374 	struct dkwedge_softc *sc, *lsc;
    375 	struct disk *pdk;
    376 	u_int unit;
    377 	int error;
    378 	dev_t pdev;
    379 
    380 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
    381 	pdk = disk_find(dkw->dkw_parent);
    382 	if (pdk == NULL)
    383 		return ENXIO;
    384 
    385 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
    386 	if (error)
    387 		return error;
    388 
    389 	if (dkw->dkw_offset < 0)
    390 		return EINVAL;
    391 
    392 	/*
    393 	 * Check for an existing wedge at the same disk offset. Allow
    394 	 * updating a wedge if the only change is the size, and the new
    395 	 * size is larger than the old.
    396 	 */
    397 	sc = NULL;
    398 	mutex_enter(&pdk->dk_openlock);
    399 	LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    400 		if (lsc->sc_offset != dkw->dkw_offset)
    401 			continue;
    402 		if (strcmp(lsc->sc_wname, dkw->dkw_wname) != 0)
    403 			break;
    404 		if (strcmp(lsc->sc_ptype, dkw->dkw_ptype) != 0)
    405 			break;
    406 		if (dkwedge_size(lsc) > dkw->dkw_size)
    407 			break;
    408 
    409 		sc = lsc;
    410 		dkwedge_size_increase(sc, dkw->dkw_size);
    411 		dk_set_geometry(sc, pdk);
    412 
    413 		break;
    414 	}
    415 	mutex_exit(&pdk->dk_openlock);
    416 
    417 	if (sc != NULL)
    418 		goto announce;
    419 
    420 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
    421 	sc->sc_state = DKW_STATE_LARVAL;
    422 	sc->sc_parent = pdk;
    423 	sc->sc_pdev = pdev;
    424 	sc->sc_offset = dkw->dkw_offset;
    425 	dkwedge_size_init(sc, dkw->dkw_size);
    426 
    427 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
    428 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
    429 
    430 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
    431 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
    432 
    433 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
    434 
    435 	callout_init(&sc->sc_restart_ch, 0);
    436 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
    437 
    438 	mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
    439 	cv_init(&sc->sc_dkdrn, "dkdrn");
    440 
    441 	/*
    442 	 * Wedge will be added; increment the wedge count for the parent.
    443 	 * Only allow this to happen if RAW_PART is the only thing open.
    444 	 */
    445 	mutex_enter(&pdk->dk_openlock);
    446 	if (pdk->dk_openmask & ~(1 << RAW_PART))
    447 		error = EBUSY;
    448 	else {
    449 		/* Check for wedge overlap. */
    450 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    451 			/* XXX arithmetic overflow */
    452 			uint64_t size = dkwedge_size(sc);
    453 			uint64_t lsize = dkwedge_size(lsc);
    454 			daddr_t lastblk = sc->sc_offset + size - 1;
    455 			daddr_t llastblk = lsc->sc_offset + lsize - 1;
    456 
    457 			if (sc->sc_offset >= lsc->sc_offset &&
    458 			    sc->sc_offset <= llastblk) {
    459 				/* Overlaps the tail of the existing wedge. */
    460 				break;
    461 			}
    462 			if (lastblk >= lsc->sc_offset &&
    463 			    lastblk <= llastblk) {
    464 				/* Overlaps the head of the existing wedge. */
    465 			    	break;
    466 			}
    467 		}
    468 		if (lsc != NULL) {
    469 			if (sc->sc_offset == lsc->sc_offset &&
    470 			    dkwedge_size(sc) == dkwedge_size(lsc) &&
    471 			    strcmp(sc->sc_wname, lsc->sc_wname) == 0)
    472 				error = EEXIST;
    473 			else
    474 				error = EINVAL;
    475 		} else {
    476 			pdk->dk_nwedges++;
    477 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
    478 		}
    479 	}
    480 	mutex_exit(&pdk->dk_openlock);
    481 	if (error) {
    482 		cv_destroy(&sc->sc_dkdrn);
    483 		mutex_destroy(&sc->sc_iolock);
    484 		bufq_free(sc->sc_bufq);
    485 		dkwedge_size_fini(sc);
    486 		free(sc, M_DKWEDGE);
    487 		return error;
    488 	}
    489 
    490 	/* Fill in our cfdata for the pseudo-device glue. */
    491 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
    492 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
    493 	/* sc->sc_cfdata.cf_unit set below */
    494 	sc->sc_cfdata.cf_fstate = FSTATE_STAR;
    495 
    496 	/* Insert the larval wedge into the array. */
    497 	rw_enter(&dkwedges_lock, RW_WRITER);
    498 	for (error = 0;;) {
    499 		struct dkwedge_softc **scpp;
    500 
    501 		/*
    502 		 * Check for a duplicate wname while searching for
    503 		 * a slot.
    504 		 */
    505 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
    506 			if (dkwedges[unit] == NULL) {
    507 				if (scpp == NULL) {
    508 					scpp = &dkwedges[unit];
    509 					sc->sc_cfdata.cf_unit = unit;
    510 				}
    511 			} else {
    512 				/* XXX Unicode. */
    513 				if (strcmp(dkwedges[unit]->sc_wname,
    514 					sc->sc_wname) == 0) {
    515 					error = EEXIST;
    516 					break;
    517 				}
    518 			}
    519 		}
    520 		if (error)
    521 			break;
    522 		KASSERT(unit == ndkwedges);
    523 		if (scpp == NULL) {
    524 			error = dkwedge_array_expand();
    525 			if (error)
    526 				break;
    527 		} else {
    528 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
    529 			*scpp = sc;
    530 			break;
    531 		}
    532 	}
    533 	rw_exit(&dkwedges_lock);
    534 	if (error) {
    535 		mutex_enter(&pdk->dk_openlock);
    536 		pdk->dk_nwedges--;
    537 		LIST_REMOVE(sc, sc_plink);
    538 		mutex_exit(&pdk->dk_openlock);
    539 
    540 		cv_destroy(&sc->sc_dkdrn);
    541 		mutex_destroy(&sc->sc_iolock);
    542 		bufq_free(sc->sc_bufq);
    543 		dkwedge_size_fini(sc);
    544 		free(sc, M_DKWEDGE);
    545 		return error;
    546 	}
    547 
    548 	/*
    549 	 * Now that we know the unit #, attach a pseudo-device for
    550 	 * this wedge instance.  This will provide us with the
    551 	 * device_t necessary for glue to other parts of the system.
    552 	 *
    553 	 * This should never fail, unless we're almost totally out of
    554 	 * memory.
    555 	 */
    556 	if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
    557 		aprint_error("%s%u: unable to attach pseudo-device\n",
    558 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
    559 
    560 		rw_enter(&dkwedges_lock, RW_WRITER);
    561 		KASSERT(dkwedges[sc->sc_cfdata.cf_unit] == sc);
    562 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
    563 		rw_exit(&dkwedges_lock);
    564 
    565 		mutex_enter(&pdk->dk_openlock);
    566 		pdk->dk_nwedges--;
    567 		LIST_REMOVE(sc, sc_plink);
    568 		mutex_exit(&pdk->dk_openlock);
    569 
    570 		cv_destroy(&sc->sc_dkdrn);
    571 		mutex_destroy(&sc->sc_iolock);
    572 		bufq_free(sc->sc_bufq);
    573 		dkwedge_size_fini(sc);
    574 		free(sc, M_DKWEDGE);
    575 		return ENOMEM;
    576 	}
    577 
    578 	/*
    579 	 * XXX Really ought to make the disk_attach() and the changing
    580 	 * of state to RUNNING atomic.
    581 	 */
    582 
    583 	disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
    584 	mutex_enter(&pdk->dk_openlock);
    585 	dk_set_geometry(sc, pdk);
    586 	mutex_exit(&pdk->dk_openlock);
    587 	disk_attach(&sc->sc_dk);
    588 
    589 	/* Disk wedge is ready for use! */
    590 	sc->sc_state = DKW_STATE_RUNNING;
    591 
    592 announce:
    593 	/* Announce our arrival. */
    594 	aprint_normal(
    595 	    "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
    596 	    device_xname(sc->sc_dev), pdk->dk_name,
    597 	    sc->sc_wname,	/* XXX Unicode */
    598 	    dkwedge_size(sc), sc->sc_offset,
    599 	    sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
    600 
    601 	/* Return the devname to the caller. */
    602 	strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
    603 	    sizeof(dkw->dkw_devname));
    604 
    605 	return 0;
    606 }
    607 
    608 /*
    609  * dkwedge_find:
    610  *
    611  *	Lookup a disk wedge based on the provided information.
    612  *	NOTE: We look up the wedge based on the wedge devname,
    613  *	not wname.
    614  *
    615  *	Return NULL if the wedge is not found, otherwise return
    616  *	the wedge's softc.  Assign the wedge's unit number to unitp
    617  *	if unitp is not NULL.
    618  */
    619 static struct dkwedge_softc *
    620 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
    621 {
    622 	struct dkwedge_softc *sc = NULL;
    623 	u_int unit;
    624 
    625 	/* Find our softc. */
    626 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
    627 	rw_enter(&dkwedges_lock, RW_READER);
    628 	for (unit = 0; unit < ndkwedges; unit++) {
    629 		if ((sc = dkwedges[unit]) != NULL &&
    630 		    strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
    631 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
    632 			break;
    633 		}
    634 	}
    635 	rw_exit(&dkwedges_lock);
    636 	if (sc == NULL)
    637 		return NULL;
    638 
    639 	if (unitp != NULL)
    640 		*unitp = unit;
    641 
    642 	return sc;
    643 }
    644 
    645 /*
    646  * dkwedge_del:		[exported function]
    647  *
    648  *	Delete a disk wedge based on the provided information.
    649  *	NOTE: We look up the wedge based on the wedge devname,
    650  *	not wname.
    651  */
    652 int
    653 dkwedge_del(struct dkwedge_info *dkw)
    654 {
    655 
    656 	return dkwedge_del1(dkw, 0);
    657 }
    658 
    659 int
    660 dkwedge_del1(struct dkwedge_info *dkw, int flags)
    661 {
    662 	struct dkwedge_softc *sc = NULL;
    663 
    664 	/* Find our softc. */
    665 	if ((sc = dkwedge_find(dkw, NULL)) == NULL)
    666 		return ESRCH;
    667 
    668 	return config_detach(sc->sc_dev, flags);
    669 }
    670 
    671 static int
    672 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags)
    673 {
    674 	struct disk *dk = &sc->sc_dk;
    675 	int rc;
    676 
    677 	rc = 0;
    678 	mutex_enter(&dk->dk_openlock);
    679 	if (dk->dk_openmask == 0) {
    680 		/* nothing to do */
    681 	} else if ((flags & DETACH_FORCE) == 0) {
    682 		rc = EBUSY;
    683 	}  else {
    684 		mutex_enter(&sc->sc_parent->dk_rawlock);
    685 		dklastclose(sc);
    686 		mutex_exit(&sc->sc_parent->dk_rawlock);
    687 	}
    688 	mutex_exit(&sc->sc_dk.dk_openlock);
    689 
    690 	return rc;
    691 }
    692 
    693 /*
    694  * dkwedge_detach:
    695  *
    696  *	Autoconfiguration detach function for pseudo-device glue.
    697  */
    698 static int
    699 dkwedge_detach(device_t self, int flags)
    700 {
    701 	struct dkwedge_softc *sc = NULL;
    702 	u_int unit;
    703 	int bmaj, cmaj, rc;
    704 
    705 	rw_enter(&dkwedges_lock, RW_WRITER);
    706 	for (unit = 0; unit < ndkwedges; unit++) {
    707 		if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
    708 			break;
    709 	}
    710 	if (unit == ndkwedges)
    711 		rc = ENXIO;
    712 	else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) {
    713 		/* Mark the wedge as dying. */
    714 		sc->sc_state = DKW_STATE_DYING;
    715 	}
    716 	rw_exit(&dkwedges_lock);
    717 
    718 	if (rc != 0)
    719 		return rc;
    720 
    721 	pmf_device_deregister(self);
    722 
    723 	/* Locate the wedge major numbers. */
    724 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
    725 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
    726 
    727 	/* Kill any pending restart. */
    728 	mutex_enter(&sc->sc_iolock);
    729 	sc->sc_iostop = true;
    730 	mutex_exit(&sc->sc_iolock);
    731 	callout_halt(&sc->sc_restart_ch, NULL);
    732 
    733 	/*
    734 	 * dkstart() will kill any queued buffers now that the
    735 	 * state of the wedge is not RUNNING.  Once we've done
    736 	 * that, wait for any other pending I/O to complete.
    737 	 */
    738 	dkstart(sc);
    739 	dkwedge_wait_drain(sc);
    740 
    741 	/* Nuke the vnodes for any open instances. */
    742 	vdevgone(bmaj, unit, unit, VBLK);
    743 	vdevgone(cmaj, unit, unit, VCHR);
    744 
    745 	/* Clean up the parent. */
    746 	dkwedge_cleanup_parent(sc, flags | DETACH_FORCE);
    747 
    748 	/* Announce our departure. */
    749 	aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
    750 	    sc->sc_parent->dk_name,
    751 	    sc->sc_wname);	/* XXX Unicode */
    752 
    753 	mutex_enter(&sc->sc_parent->dk_openlock);
    754 	sc->sc_parent->dk_nwedges--;
    755 	LIST_REMOVE(sc, sc_plink);
    756 	mutex_exit(&sc->sc_parent->dk_openlock);
    757 
    758 	/* Delete our buffer queue. */
    759 	bufq_free(sc->sc_bufq);
    760 
    761 	/* Detach from the disk list. */
    762 	disk_detach(&sc->sc_dk);
    763 	disk_destroy(&sc->sc_dk);
    764 
    765 	/* Poof. */
    766 	rw_enter(&dkwedges_lock, RW_WRITER);
    767 	KASSERT(dkwedges[unit] == sc);
    768 	dkwedges[unit] = NULL;
    769 	sc->sc_state = DKW_STATE_DEAD;
    770 	rw_exit(&dkwedges_lock);
    771 
    772 	mutex_destroy(&sc->sc_iolock);
    773 	cv_destroy(&sc->sc_dkdrn);
    774 	dkwedge_size_fini(sc);
    775 
    776 	free(sc, M_DKWEDGE);
    777 
    778 	return 0;
    779 }
    780 
    781 /*
    782  * dkwedge_delall:	[exported function]
    783  *
    784  *	Delete all of the wedges on the specified disk.  Used when
    785  *	a disk is being detached.
    786  */
    787 void
    788 dkwedge_delall(struct disk *pdk)
    789 {
    790 
    791 	dkwedge_delall1(pdk, false);
    792 }
    793 
    794 static void
    795 dkwedge_delall1(struct disk *pdk, bool idleonly)
    796 {
    797 	struct dkwedge_info dkw;
    798 	struct dkwedge_softc *sc;
    799 	int flags;
    800 
    801 	flags = DETACH_QUIET;
    802 	if (!idleonly)
    803 		flags |= DETACH_FORCE;
    804 
    805 	for (;;) {
    806 		mutex_enter(&pdk->dk_openlock);
    807 		LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    808 			if (!idleonly || sc->sc_dk.dk_openmask == 0)
    809 				break;
    810 		}
    811 		if (sc == NULL) {
    812 			KASSERT(idleonly || pdk->dk_nwedges == 0);
    813 			mutex_exit(&pdk->dk_openlock);
    814 			return;
    815 		}
    816 		strlcpy(dkw.dkw_parent, pdk->dk_name, sizeof(dkw.dkw_parent));
    817 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    818 		    sizeof(dkw.dkw_devname));
    819 		mutex_exit(&pdk->dk_openlock);
    820 		(void) dkwedge_del1(&dkw, flags);
    821 	}
    822 }
    823 
    824 /*
    825  * dkwedge_list:	[exported function]
    826  *
    827  *	List all of the wedges on a particular disk.
    828  */
    829 int
    830 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
    831 {
    832 	struct uio uio;
    833 	struct iovec iov;
    834 	struct dkwedge_softc *sc;
    835 	struct dkwedge_info dkw;
    836 	int error = 0;
    837 
    838 	iov.iov_base = dkwl->dkwl_buf;
    839 	iov.iov_len = dkwl->dkwl_bufsize;
    840 
    841 	uio.uio_iov = &iov;
    842 	uio.uio_iovcnt = 1;
    843 	uio.uio_offset = 0;
    844 	uio.uio_resid = dkwl->dkwl_bufsize;
    845 	uio.uio_rw = UIO_READ;
    846 	KASSERT(l == curlwp);
    847 	uio.uio_vmspace = l->l_proc->p_vmspace;
    848 
    849 	dkwl->dkwl_ncopied = 0;
    850 
    851 	mutex_enter(&pdk->dk_openlock);
    852 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    853 		if (uio.uio_resid < sizeof(dkw))
    854 			break;
    855 
    856 		if (sc->sc_state != DKW_STATE_RUNNING)
    857 			continue;
    858 
    859 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    860 		    sizeof(dkw.dkw_devname));
    861 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
    862 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
    863 		strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
    864 		    sizeof(dkw.dkw_parent));
    865 		dkw.dkw_offset = sc->sc_offset;
    866 		dkw.dkw_size = dkwedge_size(sc);
    867 		strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
    868 
    869 		error = uiomove(&dkw, sizeof(dkw), &uio);
    870 		if (error)
    871 			break;
    872 		dkwl->dkwl_ncopied++;
    873 	}
    874 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
    875 	mutex_exit(&pdk->dk_openlock);
    876 
    877 	return error;
    878 }
    879 
    880 device_t
    881 dkwedge_find_by_wname(const char *wname)
    882 {
    883 	device_t dv = NULL;
    884 	struct dkwedge_softc *sc;
    885 	int i;
    886 
    887 	rw_enter(&dkwedges_lock, RW_WRITER);
    888 	for (i = 0; i < ndkwedges; i++) {
    889 		if ((sc = dkwedges[i]) == NULL)
    890 			continue;
    891 		if (strcmp(sc->sc_wname, wname) == 0) {
    892 			if (dv != NULL) {
    893 				printf(
    894 				    "WARNING: double match for wedge name %s "
    895 				    "(%s, %s)\n", wname, device_xname(dv),
    896 				    device_xname(sc->sc_dev));
    897 				continue;
    898 			}
    899 			dv = sc->sc_dev;
    900 		}
    901 	}
    902 	rw_exit(&dkwedges_lock);
    903 	return dv;
    904 }
    905 
    906 device_t
    907 dkwedge_find_by_parent(const char *name, size_t *i)
    908 {
    909 
    910 	rw_enter(&dkwedges_lock, RW_WRITER);
    911 	for (; *i < (size_t)ndkwedges; (*i)++) {
    912 		struct dkwedge_softc *sc;
    913 		if ((sc = dkwedges[*i]) == NULL)
    914 			continue;
    915 		if (strcmp(sc->sc_parent->dk_name, name) != 0)
    916 			continue;
    917 		rw_exit(&dkwedges_lock);
    918 		return sc->sc_dev;
    919 	}
    920 	rw_exit(&dkwedges_lock);
    921 	return NULL;
    922 }
    923 
    924 void
    925 dkwedge_print_wnames(void)
    926 {
    927 	struct dkwedge_softc *sc;
    928 	int i;
    929 
    930 	rw_enter(&dkwedges_lock, RW_WRITER);
    931 	for (i = 0; i < ndkwedges; i++) {
    932 		if ((sc = dkwedges[i]) == NULL)
    933 			continue;
    934 		printf(" wedge:%s", sc->sc_wname);
    935 	}
    936 	rw_exit(&dkwedges_lock);
    937 }
    938 
    939 /*
    940  * We need a dummy object to stuff into the dkwedge discovery method link
    941  * set to ensure that there is always at least one object in the set.
    942  */
    943 static struct dkwedge_discovery_method dummy_discovery_method;
    944 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
    945 
    946 /*
    947  * dkwedge_init:
    948  *
    949  *	Initialize the disk wedge subsystem.
    950  */
    951 void
    952 dkwedge_init(void)
    953 {
    954 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
    955 	struct dkwedge_discovery_method * const *ddmp;
    956 	struct dkwedge_discovery_method *lddm, *ddm;
    957 
    958 	rw_init(&dkwedges_lock);
    959 	rw_init(&dkwedge_discovery_methods_lock);
    960 
    961 	if (config_cfdriver_attach(&dk_cd) != 0)
    962 		panic("dkwedge: unable to attach cfdriver");
    963 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
    964 		panic("dkwedge: unable to attach cfattach");
    965 
    966 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
    967 
    968 	LIST_INIT(&dkwedge_discovery_methods);
    969 
    970 	__link_set_foreach(ddmp, dkwedge_methods) {
    971 		ddm = *ddmp;
    972 		if (ddm == &dummy_discovery_method)
    973 			continue;
    974 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
    975 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
    976 			    ddm, ddm_list);
    977 			continue;
    978 		}
    979 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
    980 			if (ddm->ddm_priority == lddm->ddm_priority) {
    981 				aprint_error("dk-method-%s: method \"%s\" "
    982 				    "already exists at priority %d\n",
    983 				    ddm->ddm_name, lddm->ddm_name,
    984 				    lddm->ddm_priority);
    985 				/* Not inserted. */
    986 				break;
    987 			}
    988 			if (ddm->ddm_priority < lddm->ddm_priority) {
    989 				/* Higher priority; insert before. */
    990 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
    991 				break;
    992 			}
    993 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
    994 				/* Last one; insert after. */
    995 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
    996 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
    997 				break;
    998 			}
    999 		}
   1000 	}
   1001 
   1002 	rw_exit(&dkwedge_discovery_methods_lock);
   1003 }
   1004 
   1005 #ifdef DKWEDGE_AUTODISCOVER
   1006 int	dkwedge_autodiscover = 1;
   1007 #else
   1008 int	dkwedge_autodiscover = 0;
   1009 #endif
   1010 
   1011 /*
   1012  * dkwedge_discover:	[exported function]
   1013  *
   1014  *	Discover the wedges on a newly attached disk.
   1015  *	Remove all unused wedges on the disk first.
   1016  */
   1017 void
   1018 dkwedge_discover(struct disk *pdk)
   1019 {
   1020 	struct dkwedge_discovery_method *ddm;
   1021 	struct vnode *vp;
   1022 	int error;
   1023 	dev_t pdev;
   1024 
   1025 	/*
   1026 	 * Require people playing with wedges to enable this explicitly.
   1027 	 */
   1028 	if (dkwedge_autodiscover == 0)
   1029 		return;
   1030 
   1031 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
   1032 
   1033 	/*
   1034 	 * Use the character device for scanning, the block device
   1035 	 * is busy if there are already wedges attached.
   1036 	 */
   1037 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
   1038 	if (error) {
   1039 		aprint_error("%s: unable to compute pdev, error = %d\n",
   1040 		    pdk->dk_name, error);
   1041 		goto out;
   1042 	}
   1043 
   1044 	error = cdevvp(pdev, &vp);
   1045 	if (error) {
   1046 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
   1047 		    pdk->dk_name, error);
   1048 		goto out;
   1049 	}
   1050 
   1051 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1052 	if (error) {
   1053 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
   1054 		    pdk->dk_name, error);
   1055 		vrele(vp);
   1056 		goto out;
   1057 	}
   1058 
   1059 	error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
   1060 	if (error) {
   1061 		if (error != ENXIO)
   1062 			aprint_error("%s: unable to open device, error = %d\n",
   1063 			    pdk->dk_name, error);
   1064 		vput(vp);
   1065 		goto out;
   1066 	}
   1067 	VOP_UNLOCK(vp);
   1068 
   1069 	/*
   1070 	 * Remove unused wedges
   1071 	 */
   1072 	dkwedge_delall1(pdk, true);
   1073 
   1074 	/*
   1075 	 * For each supported partition map type, look to see if
   1076 	 * this map type exists.  If so, parse it and add the
   1077 	 * corresponding wedges.
   1078 	 */
   1079 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
   1080 		error = (*ddm->ddm_discover)(pdk, vp);
   1081 		if (error == 0) {
   1082 			/* Successfully created wedges; we're done. */
   1083 			break;
   1084 		}
   1085 	}
   1086 
   1087 	error = vn_close(vp, FREAD, NOCRED);
   1088 	if (error) {
   1089 		aprint_error("%s: unable to close device, error = %d\n",
   1090 		    pdk->dk_name, error);
   1091 		/* We'll just assume the vnode has been cleaned up. */
   1092 	}
   1093 
   1094 out:
   1095 	rw_exit(&dkwedge_discovery_methods_lock);
   1096 }
   1097 
   1098 /*
   1099  * dkwedge_read:
   1100  *
   1101  *	Read some data from the specified disk, used for
   1102  *	partition discovery.
   1103  */
   1104 int
   1105 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
   1106     void *tbuf, size_t len)
   1107 {
   1108 	buf_t *bp;
   1109 	int error;
   1110 	bool isopen;
   1111 	dev_t bdev;
   1112 	struct vnode *bdvp;
   1113 
   1114 	/*
   1115 	 * The kernel cannot read from a character device vnode
   1116 	 * as physio() only handles user memory.
   1117 	 *
   1118 	 * If the block device has already been opened by a wedge
   1119 	 * use that vnode and temporarily bump the open counter.
   1120 	 *
   1121 	 * Otherwise try to open the block device.
   1122 	 */
   1123 
   1124 	bdev = devsw_chr2blk(vp->v_rdev);
   1125 
   1126 	mutex_enter(&pdk->dk_rawlock);
   1127 	if (pdk->dk_rawopens != 0) {
   1128 		KASSERT(pdk->dk_rawvp != NULL);
   1129 		isopen = true;
   1130 		++pdk->dk_rawopens;
   1131 		bdvp = pdk->dk_rawvp;
   1132 		error = 0;
   1133 	} else {
   1134 		isopen = false;
   1135 		error = dk_open_parent(bdev, FREAD, &bdvp);
   1136 	}
   1137 	mutex_exit(&pdk->dk_rawlock);
   1138 
   1139 	if (error)
   1140 		return error;
   1141 
   1142 	bp = getiobuf(bdvp, true);
   1143 	bp->b_flags = B_READ;
   1144 	bp->b_cflags = BC_BUSY;
   1145 	bp->b_dev = bdev;
   1146 	bp->b_data = tbuf;
   1147 	bp->b_bufsize = bp->b_bcount = len;
   1148 	bp->b_blkno = blkno;
   1149 	bp->b_cylinder = 0;
   1150 	bp->b_error = 0;
   1151 
   1152 	VOP_STRATEGY(bdvp, bp);
   1153 	error = biowait(bp);
   1154 	putiobuf(bp);
   1155 
   1156 	mutex_enter(&pdk->dk_rawlock);
   1157 	if (isopen) {
   1158 		--pdk->dk_rawopens;
   1159 	} else {
   1160 		dk_close_parent(bdvp, FREAD);
   1161 	}
   1162 	mutex_exit(&pdk->dk_rawlock);
   1163 
   1164 	return error;
   1165 }
   1166 
   1167 /*
   1168  * dkwedge_lookup:
   1169  *
   1170  *	Look up a dkwedge_softc based on the provided dev_t.
   1171  */
   1172 static struct dkwedge_softc *
   1173 dkwedge_lookup(dev_t dev)
   1174 {
   1175 	const int unit = minor(dev);
   1176 	struct dkwedge_softc *sc;
   1177 
   1178 	rw_enter(&dkwedges_lock, RW_READER);
   1179 	if (unit < 0 || unit >= ndkwedges)
   1180 		sc = NULL;
   1181 	else
   1182 		sc = dkwedges[unit];
   1183 	rw_exit(&dkwedges_lock);
   1184 
   1185 	return sc;
   1186 }
   1187 
   1188 static int
   1189 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
   1190 {
   1191 	struct vnode *vp;
   1192 	int error;
   1193 
   1194 	error = bdevvp(dev, &vp);
   1195 	if (error)
   1196 		return error;
   1197 
   1198 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1199 	if (error) {
   1200 		vrele(vp);
   1201 		return error;
   1202 	}
   1203 	error = VOP_OPEN(vp, mode, NOCRED);
   1204 	if (error) {
   1205 		vput(vp);
   1206 		return error;
   1207 	}
   1208 
   1209 	/* VOP_OPEN() doesn't do this for us. */
   1210 	if (mode & FWRITE) {
   1211 		mutex_enter(vp->v_interlock);
   1212 		vp->v_writecount++;
   1213 		mutex_exit(vp->v_interlock);
   1214 	}
   1215 
   1216 	VOP_UNLOCK(vp);
   1217 
   1218 	*vpp = vp;
   1219 
   1220 	return 0;
   1221 }
   1222 
   1223 static int
   1224 dk_close_parent(struct vnode *vp, int mode)
   1225 {
   1226 	int error;
   1227 
   1228 	error = vn_close(vp, mode, NOCRED);
   1229 	return error;
   1230 }
   1231 
   1232 /*
   1233  * dkopen:		[devsw entry point]
   1234  *
   1235  *	Open a wedge.
   1236  */
   1237 static int
   1238 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
   1239 {
   1240 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1241 	int error = 0;
   1242 
   1243 	if (sc == NULL)
   1244 		return ENXIO;
   1245 	if (sc->sc_state != DKW_STATE_RUNNING)
   1246 		return ENXIO;
   1247 
   1248 	/*
   1249 	 * We go through a complicated little dance to only open the parent
   1250 	 * vnode once per wedge, no matter how many times the wedge is
   1251 	 * opened.  The reason?  We see one dkopen() per open call, but
   1252 	 * only dkclose() on the last close.
   1253 	 */
   1254 	mutex_enter(&sc->sc_dk.dk_openlock);
   1255 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1256 	if (sc->sc_dk.dk_openmask == 0) {
   1257 		error = dkfirstopen(sc, flags);
   1258 		if (error)
   1259 			goto popen_fail;
   1260 	}
   1261 	KASSERT(sc->sc_mode != 0);
   1262 	if (flags & ~sc->sc_mode & FWRITE) {
   1263 		error = EROFS;
   1264 		goto popen_fail;
   1265 	}
   1266 	if (fmt == S_IFCHR)
   1267 		sc->sc_dk.dk_copenmask |= 1;
   1268 	else
   1269 		sc->sc_dk.dk_bopenmask |= 1;
   1270 	sc->sc_dk.dk_openmask =
   1271 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1272 
   1273 popen_fail:
   1274 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1275 	mutex_exit(&sc->sc_dk.dk_openlock);
   1276 	return error;
   1277 }
   1278 
   1279 static int
   1280 dkfirstopen(struct dkwedge_softc *sc, int flags)
   1281 {
   1282 	struct dkwedge_softc *nsc;
   1283 	struct vnode *vp;
   1284 	int mode;
   1285 	int error;
   1286 
   1287 	KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
   1288 	KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
   1289 
   1290 	if (sc->sc_parent->dk_rawopens == 0) {
   1291 		KASSERT(sc->sc_parent->dk_rawvp == NULL);
   1292 		/*
   1293 		 * Try open read-write. If this fails for EROFS
   1294 		 * and wedge is read-only, retry to open read-only.
   1295 		 */
   1296 		mode = FREAD | FWRITE;
   1297 		error = dk_open_parent(sc->sc_pdev, mode, &vp);
   1298 		if (error == EROFS && (flags & FWRITE) == 0) {
   1299 			mode &= ~FWRITE;
   1300 			error = dk_open_parent(sc->sc_pdev, mode, &vp);
   1301 		}
   1302 		if (error)
   1303 			return error;
   1304 		KASSERT(vp != NULL);
   1305 		sc->sc_parent->dk_rawvp = vp;
   1306 	} else {
   1307 		/*
   1308 		 * Retrieve mode from an already opened wedge.
   1309 		 *
   1310 		 * At this point, dk_rawopens is bounded by the number
   1311 		 * of dkwedge devices in the system, which is limited
   1312 		 * by autoconf device numbering to INT_MAX.  Since
   1313 		 * dk_rawopens is unsigned, this can't overflow.
   1314 		 */
   1315 		KASSERT(sc->sc_parent->dk_rawopens < UINT_MAX);
   1316 		KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1317 		mode = 0;
   1318 		LIST_FOREACH(nsc, &sc->sc_parent->dk_wedges, sc_plink) {
   1319 			if (nsc == sc || nsc->sc_dk.dk_openmask == 0)
   1320 				continue;
   1321 			mode = nsc->sc_mode;
   1322 			break;
   1323 		}
   1324 	}
   1325 	sc->sc_mode = mode;
   1326 	sc->sc_parent->dk_rawopens++;
   1327 
   1328 	return 0;
   1329 }
   1330 
   1331 static void
   1332 dklastclose(struct dkwedge_softc *sc)
   1333 {
   1334 
   1335 	KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
   1336 	KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
   1337 	KASSERT(sc->sc_parent->dk_rawopens > 0);
   1338 	KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1339 
   1340 	if (--sc->sc_parent->dk_rawopens == 0) {
   1341 		struct vnode *const vp = sc->sc_parent->dk_rawvp;
   1342 		const int mode = sc->sc_mode;
   1343 
   1344 		sc->sc_parent->dk_rawvp = NULL;
   1345 		sc->sc_mode = 0;
   1346 
   1347 		dk_close_parent(vp, mode);
   1348 	}
   1349 }
   1350 
   1351 /*
   1352  * dkclose:		[devsw entry point]
   1353  *
   1354  *	Close a wedge.
   1355  */
   1356 static int
   1357 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
   1358 {
   1359 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1360 
   1361 	if (sc == NULL)
   1362 		return ENXIO;
   1363 	if (sc->sc_state != DKW_STATE_RUNNING)
   1364 		return ENXIO;
   1365 
   1366 	mutex_enter(&sc->sc_dk.dk_openlock);
   1367 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1368 
   1369 	KASSERT(sc->sc_dk.dk_openmask != 0);
   1370 
   1371 	if (fmt == S_IFCHR)
   1372 		sc->sc_dk.dk_copenmask &= ~1;
   1373 	else
   1374 		sc->sc_dk.dk_bopenmask &= ~1;
   1375 	sc->sc_dk.dk_openmask =
   1376 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1377 
   1378 	if (sc->sc_dk.dk_openmask == 0) {
   1379 		dklastclose(sc);
   1380 	}
   1381 
   1382 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1383 	mutex_exit(&sc->sc_dk.dk_openlock);
   1384 
   1385 	return 0;
   1386 }
   1387 
   1388 /*
   1389  * dkcancel:		[devsw entry point]
   1390  *
   1391  *	Cancel any pending I/O operations waiting on a wedge.
   1392  */
   1393 static int
   1394 dkcancel(dev_t dev, int flags, int fmt, struct lwp *l)
   1395 {
   1396 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1397 
   1398 	KASSERT(sc != NULL);
   1399 	KASSERT(sc->sc_dev != NULL);
   1400 
   1401 	/*
   1402 	 * Disk I/O is expected to complete or fail within a reasonable
   1403 	 * timeframe -- it's storage, not communication.  Further, the
   1404 	 * character and block device interface guarantees that prior
   1405 	 * reads and writes have completed or failed by the time close
   1406 	 * returns -- we are not to cancel them here.  If the parent
   1407 	 * device's hardware is gone, the parent driver can make them
   1408 	 * fail.  Nothing for dk(4) itself to do.
   1409 	 */
   1410 
   1411 	return 0;
   1412 }
   1413 
   1414 /*
   1415  * dkstrategy:		[devsw entry point]
   1416  *
   1417  *	Perform I/O based on the wedge I/O strategy.
   1418  */
   1419 static void
   1420 dkstrategy(struct buf *bp)
   1421 {
   1422 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1423 	uint64_t p_size, p_offset;
   1424 
   1425 	if (sc == NULL) {
   1426 		bp->b_error = ENXIO;
   1427 		goto done;
   1428 	}
   1429 
   1430 	if (sc->sc_state != DKW_STATE_RUNNING ||
   1431 	    sc->sc_parent->dk_rawvp == NULL) {
   1432 		bp->b_error = ENXIO;
   1433 		goto done;
   1434 	}
   1435 
   1436 	/* If it's an empty transfer, wake up the top half now. */
   1437 	if (bp->b_bcount == 0)
   1438 		goto done;
   1439 
   1440 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
   1441 	p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
   1442 
   1443 	/* Make sure it's in-range. */
   1444 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
   1445 		goto done;
   1446 
   1447 	/* Translate it to the parent's raw LBA. */
   1448 	bp->b_rawblkno = bp->b_blkno + p_offset;
   1449 
   1450 	/* Place it in the queue and start I/O on the unit. */
   1451 	mutex_enter(&sc->sc_iolock);
   1452 	sc->sc_iopend++;
   1453 	disk_wait(&sc->sc_dk);
   1454 	bufq_put(sc->sc_bufq, bp);
   1455 	mutex_exit(&sc->sc_iolock);
   1456 
   1457 	dkstart(sc);
   1458 	return;
   1459 
   1460 done:
   1461 	bp->b_resid = bp->b_bcount;
   1462 	biodone(bp);
   1463 }
   1464 
   1465 /*
   1466  * dkstart:
   1467  *
   1468  *	Start I/O that has been enqueued on the wedge.
   1469  */
   1470 static void
   1471 dkstart(struct dkwedge_softc *sc)
   1472 {
   1473 	struct vnode *vp;
   1474 	struct buf *bp, *nbp;
   1475 
   1476 	mutex_enter(&sc->sc_iolock);
   1477 
   1478 	/* Do as much work as has been enqueued. */
   1479 	while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
   1480 		if (sc->sc_iostop) {
   1481 			(void) bufq_get(sc->sc_bufq);
   1482 			if (--sc->sc_iopend == 0)
   1483 				cv_broadcast(&sc->sc_dkdrn);
   1484 			mutex_exit(&sc->sc_iolock);
   1485 			bp->b_error = ENXIO;
   1486 			bp->b_resid = bp->b_bcount;
   1487 			biodone(bp);
   1488 			mutex_enter(&sc->sc_iolock);
   1489 			continue;
   1490 		}
   1491 
   1492 		/* fetch an I/O buf with sc_iolock dropped */
   1493 		mutex_exit(&sc->sc_iolock);
   1494 		nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
   1495 		mutex_enter(&sc->sc_iolock);
   1496 		if (nbp == NULL) {
   1497 			/*
   1498 			 * No resources to run this request; leave the
   1499 			 * buffer queued up, and schedule a timer to
   1500 			 * restart the queue in 1/2 a second.
   1501 			 */
   1502 			if (!sc->sc_iostop)
   1503 				callout_schedule(&sc->sc_restart_ch, hz/2);
   1504 			break;
   1505 		}
   1506 
   1507 		/*
   1508 		 * fetch buf, this can fail if another thread
   1509 		 * has already processed the queue, it can also
   1510 		 * return a completely different buf.
   1511 		 */
   1512 		bp = bufq_get(sc->sc_bufq);
   1513 		if (bp == NULL) {
   1514 			mutex_exit(&sc->sc_iolock);
   1515 			putiobuf(nbp);
   1516 			mutex_enter(&sc->sc_iolock);
   1517 			continue;
   1518 		}
   1519 
   1520 		/* Instrumentation. */
   1521 		disk_busy(&sc->sc_dk);
   1522 
   1523 		/* release lock for VOP_STRATEGY */
   1524 		mutex_exit(&sc->sc_iolock);
   1525 
   1526 		nbp->b_data = bp->b_data;
   1527 		nbp->b_flags = bp->b_flags;
   1528 		nbp->b_oflags = bp->b_oflags;
   1529 		nbp->b_cflags = bp->b_cflags;
   1530 		nbp->b_iodone = dkiodone;
   1531 		nbp->b_proc = bp->b_proc;
   1532 		nbp->b_blkno = bp->b_rawblkno;
   1533 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
   1534 		nbp->b_bcount = bp->b_bcount;
   1535 		nbp->b_private = bp;
   1536 		BIO_COPYPRIO(nbp, bp);
   1537 
   1538 		vp = nbp->b_vp;
   1539 		if ((nbp->b_flags & B_READ) == 0) {
   1540 			mutex_enter(vp->v_interlock);
   1541 			vp->v_numoutput++;
   1542 			mutex_exit(vp->v_interlock);
   1543 		}
   1544 		VOP_STRATEGY(vp, nbp);
   1545 
   1546 		mutex_enter(&sc->sc_iolock);
   1547 	}
   1548 
   1549 	mutex_exit(&sc->sc_iolock);
   1550 }
   1551 
   1552 /*
   1553  * dkiodone:
   1554  *
   1555  *	I/O to a wedge has completed; alert the top half.
   1556  */
   1557 static void
   1558 dkiodone(struct buf *bp)
   1559 {
   1560 	struct buf *obp = bp->b_private;
   1561 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
   1562 
   1563 	if (bp->b_error != 0)
   1564 		obp->b_error = bp->b_error;
   1565 	obp->b_resid = bp->b_resid;
   1566 	putiobuf(bp);
   1567 
   1568 	mutex_enter(&sc->sc_iolock);
   1569 	if (--sc->sc_iopend == 0)
   1570 		cv_broadcast(&sc->sc_dkdrn);
   1571 
   1572 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
   1573 	    obp->b_flags & B_READ);
   1574 	mutex_exit(&sc->sc_iolock);
   1575 
   1576 	biodone(obp);
   1577 
   1578 	/* Kick the queue in case there is more work we can do. */
   1579 	dkstart(sc);
   1580 }
   1581 
   1582 /*
   1583  * dkrestart:
   1584  *
   1585  *	Restart the work queue after it was stalled due to
   1586  *	a resource shortage.  Invoked via a callout.
   1587  */
   1588 static void
   1589 dkrestart(void *v)
   1590 {
   1591 	struct dkwedge_softc *sc = v;
   1592 
   1593 	dkstart(sc);
   1594 }
   1595 
   1596 /*
   1597  * dkminphys:
   1598  *
   1599  *	Call parent's minphys function.
   1600  */
   1601 static void
   1602 dkminphys(struct buf *bp)
   1603 {
   1604 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1605 	dev_t dev;
   1606 
   1607 	dev = bp->b_dev;
   1608 	bp->b_dev = sc->sc_pdev;
   1609 	if (sc->sc_parent->dk_driver && sc->sc_parent->dk_driver->d_minphys)
   1610 		(*sc->sc_parent->dk_driver->d_minphys)(bp);
   1611 	else
   1612 		minphys(bp);
   1613 	bp->b_dev = dev;
   1614 }
   1615 
   1616 /*
   1617  * dkread:		[devsw entry point]
   1618  *
   1619  *	Read from a wedge.
   1620  */
   1621 static int
   1622 dkread(dev_t dev, struct uio *uio, int flags)
   1623 {
   1624 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1625 
   1626 	if (sc == NULL)
   1627 		return ENXIO;
   1628 	if (sc->sc_state != DKW_STATE_RUNNING)
   1629 		return ENXIO;
   1630 
   1631 	return physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio);
   1632 }
   1633 
   1634 /*
   1635  * dkwrite:		[devsw entry point]
   1636  *
   1637  *	Write to a wedge.
   1638  */
   1639 static int
   1640 dkwrite(dev_t dev, struct uio *uio, int flags)
   1641 {
   1642 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1643 
   1644 	if (sc == NULL)
   1645 		return ENXIO;
   1646 	if (sc->sc_state != DKW_STATE_RUNNING)
   1647 		return ENXIO;
   1648 
   1649 	return physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio);
   1650 }
   1651 
   1652 /*
   1653  * dkioctl:		[devsw entry point]
   1654  *
   1655  *	Perform an ioctl request on a wedge.
   1656  */
   1657 static int
   1658 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1659 {
   1660 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1661 	int error = 0;
   1662 
   1663 	if (sc == NULL)
   1664 		return ENXIO;
   1665 	if (sc->sc_state != DKW_STATE_RUNNING)
   1666 		return ENXIO;
   1667 	if (sc->sc_parent->dk_rawvp == NULL)
   1668 		return ENXIO;
   1669 
   1670 	/*
   1671 	 * We pass NODEV instead of our device to indicate we don't
   1672 	 * want to handle disklabel ioctls
   1673 	 */
   1674 	error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
   1675 	if (error != EPASSTHROUGH)
   1676 		return error;
   1677 
   1678 	error = 0;
   1679 
   1680 	switch (cmd) {
   1681 	case DIOCGSTRATEGY:
   1682 	case DIOCGCACHE:
   1683 	case DIOCCACHESYNC:
   1684 		error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, data, flag,
   1685 		    l != NULL ? l->l_cred : NOCRED);
   1686 		break;
   1687 	case DIOCGWEDGEINFO: {
   1688 		struct dkwedge_info *dkw = data;
   1689 
   1690 		strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
   1691 		    sizeof(dkw->dkw_devname));
   1692 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
   1693 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
   1694 		strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
   1695 		    sizeof(dkw->dkw_parent));
   1696 		dkw->dkw_offset = sc->sc_offset;
   1697 		dkw->dkw_size = dkwedge_size(sc);
   1698 		strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
   1699 
   1700 		break;
   1701 	}
   1702 	case DIOCGSECTORALIGN: {
   1703 		struct disk_sectoralign *dsa = data;
   1704 		uint32_t r;
   1705 
   1706 		error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, dsa, flag,
   1707 		    l != NULL ? l->l_cred : NOCRED);
   1708 		if (error)
   1709 			break;
   1710 
   1711 		r = sc->sc_offset % dsa->dsa_alignment;
   1712 		if (r < dsa->dsa_firstaligned)
   1713 			dsa->dsa_firstaligned = dsa->dsa_firstaligned - r;
   1714 		else
   1715 			dsa->dsa_firstaligned = (dsa->dsa_firstaligned +
   1716 			    dsa->dsa_alignment) - r;
   1717 		break;
   1718 	}
   1719 	default:
   1720 		error = ENOTTY;
   1721 	}
   1722 
   1723 	return error;
   1724 }
   1725 
   1726 /*
   1727  * dkdiscard:		[devsw entry point]
   1728  *
   1729  *	Perform a discard-range request on a wedge.
   1730  */
   1731 static int
   1732 dkdiscard(dev_t dev, off_t pos, off_t len)
   1733 {
   1734 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1735 	uint64_t size = dkwedge_size(sc);
   1736 	unsigned shift;
   1737 	off_t offset, maxlen;
   1738 	int error;
   1739 
   1740 	if (sc == NULL)
   1741 		return ENXIO;
   1742 	if (sc->sc_state != DKW_STATE_RUNNING)
   1743 		return ENXIO;
   1744 	if (sc->sc_parent->dk_rawvp == NULL)
   1745 		return ENXIO;
   1746 
   1747 	/* XXX check bounds on size/offset up front */
   1748 	shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
   1749 	KASSERT(__type_fit(off_t, size));
   1750 	KASSERT(__type_fit(off_t, sc->sc_offset));
   1751 	KASSERT(0 <= sc->sc_offset);
   1752 	KASSERT(size <= (__type_max(off_t) >> shift));
   1753 	KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - size));
   1754 	offset = ((off_t)sc->sc_offset << shift);
   1755 	maxlen = ((off_t)size << shift);
   1756 
   1757 	if (len > maxlen)
   1758 		return EINVAL;
   1759 	if (pos > (maxlen - len))
   1760 		return EINVAL;
   1761 
   1762 	pos += offset;
   1763 
   1764 	vn_lock(sc->sc_parent->dk_rawvp, LK_EXCLUSIVE | LK_RETRY);
   1765 	error = VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
   1766 	VOP_UNLOCK(sc->sc_parent->dk_rawvp);
   1767 
   1768 	return error;
   1769 }
   1770 
   1771 /*
   1772  * dksize:		[devsw entry point]
   1773  *
   1774  *	Query the size of a wedge for the purpose of performing a dump
   1775  *	or for swapping to.
   1776  */
   1777 static int
   1778 dksize(dev_t dev)
   1779 {
   1780 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1781 	uint64_t p_size;
   1782 	int rv = -1;
   1783 
   1784 	if (sc == NULL)
   1785 		return -1;
   1786 	if (sc->sc_state != DKW_STATE_RUNNING)
   1787 		return -1;
   1788 
   1789 	mutex_enter(&sc->sc_dk.dk_openlock);
   1790 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1791 
   1792 	/* Our content type is static, no need to open the device. */
   1793 
   1794 	p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
   1795 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
   1796 		/* Saturate if we are larger than INT_MAX. */
   1797 		if (p_size > INT_MAX)
   1798 			rv = INT_MAX;
   1799 		else
   1800 			rv = (int)p_size;
   1801 	}
   1802 
   1803 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1804 	mutex_exit(&sc->sc_dk.dk_openlock);
   1805 
   1806 	return rv;
   1807 }
   1808 
   1809 /*
   1810  * dkdump:		[devsw entry point]
   1811  *
   1812  *	Perform a crash dump to a wedge.
   1813  */
   1814 static int
   1815 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
   1816 {
   1817 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1818 	const struct bdevsw *bdev;
   1819 	uint64_t p_size, p_offset;
   1820 	int rv = 0;
   1821 
   1822 	if (sc == NULL)
   1823 		return ENXIO;
   1824 	if (sc->sc_state != DKW_STATE_RUNNING)
   1825 		return ENXIO;
   1826 
   1827 	mutex_enter(&sc->sc_dk.dk_openlock);
   1828 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1829 
   1830 	/* Our content type is static, no need to open the device. */
   1831 
   1832 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
   1833 	    strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0 &&
   1834 	    strcmp(sc->sc_ptype, DKW_PTYPE_CGD) != 0) {
   1835 		rv = ENXIO;
   1836 		goto out;
   1837 	}
   1838 	if (size % DEV_BSIZE != 0) {
   1839 		rv = EINVAL;
   1840 		goto out;
   1841 	}
   1842 
   1843 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
   1844 	p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
   1845 
   1846 	if (blkno < 0 || blkno + size/DEV_BSIZE > p_size) {
   1847 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
   1848 		    "p_size (%" PRIu64 ")\n", __func__, blkno,
   1849 		    size/DEV_BSIZE, p_size);
   1850 		rv = EINVAL;
   1851 		goto out;
   1852 	}
   1853 
   1854 	bdev = bdevsw_lookup(sc->sc_pdev);
   1855 	rv = (*bdev->d_dump)(sc->sc_pdev, blkno + p_offset, va, size);
   1856 
   1857 out:
   1858 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1859 	mutex_exit(&sc->sc_dk.dk_openlock);
   1860 
   1861 	return rv;
   1862 }
   1863 
   1864 /*
   1865  * config glue
   1866  */
   1867 
   1868 /*
   1869  * dkwedge_find_partition
   1870  *
   1871  *	Find wedge corresponding to the specified parent name
   1872  *	and offset/length.
   1873  */
   1874 device_t
   1875 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
   1876 {
   1877 	struct dkwedge_softc *sc;
   1878 	int i;
   1879 	device_t wedge = NULL;
   1880 
   1881 	rw_enter(&dkwedges_lock, RW_READER);
   1882 	for (i = 0; i < ndkwedges; i++) {
   1883 		if ((sc = dkwedges[i]) == NULL)
   1884 			continue;
   1885 		if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
   1886 		    sc->sc_offset == startblk &&
   1887 		    dkwedge_size(sc) == nblks) {
   1888 			if (wedge) {
   1889 				printf("WARNING: double match for boot wedge "
   1890 				    "(%s, %s)\n",
   1891 				    device_xname(wedge),
   1892 				    device_xname(sc->sc_dev));
   1893 				continue;
   1894 			}
   1895 			wedge = sc->sc_dev;
   1896 		}
   1897 	}
   1898 	rw_exit(&dkwedges_lock);
   1899 
   1900 	return wedge;
   1901 }
   1902 
   1903 const char *
   1904 dkwedge_get_parent_name(dev_t dev)
   1905 {
   1906 	/* XXX: perhaps do this in lookup? */
   1907 	int bmaj = bdevsw_lookup_major(&dk_bdevsw);
   1908 	int cmaj = cdevsw_lookup_major(&dk_cdevsw);
   1909 
   1910 	if (major(dev) != bmaj && major(dev) != cmaj)
   1911 		return NULL;
   1912 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1913 	if (sc == NULL)
   1914 		return NULL;
   1915 	return sc->sc_parent->dk_name;
   1916 }
   1917