dk.c revision 1.142 1 /* $NetBSD: dk.c,v 1.142 2023/04/21 18:30:32 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.142 2023/04/21 18:30:32 riastradh Exp $");
34
35 #ifdef _KERNEL_OPT
36 #include "opt_dkwedge.h"
37 #endif
38
39 #include <sys/param.h>
40 #include <sys/types.h>
41
42 #include <sys/buf.h>
43 #include <sys/bufq.h>
44 #include <sys/callout.h>
45 #include <sys/conf.h>
46 #include <sys/device.h>
47 #include <sys/disk.h>
48 #include <sys/disklabel.h>
49 #include <sys/errno.h>
50 #include <sys/fcntl.h>
51 #include <sys/ioctl.h>
52 #include <sys/kauth.h>
53 #include <sys/kernel.h>
54 #include <sys/malloc.h>
55 #include <sys/pool.h>
56 #include <sys/proc.h>
57 #include <sys/rwlock.h>
58 #include <sys/stat.h>
59 #include <sys/systm.h>
60 #include <sys/vnode.h>
61
62 #include <miscfs/specfs/specdev.h>
63
64 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
65
66 typedef enum {
67 DKW_STATE_LARVAL = 0,
68 DKW_STATE_RUNNING = 1,
69 DKW_STATE_DYING = 2,
70 DKW_STATE_DEAD = 666
71 } dkwedge_state_t;
72
73 struct dkwedge_softc {
74 device_t sc_dev; /* pointer to our pseudo-device */
75 struct cfdata sc_cfdata; /* our cfdata structure */
76 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
77
78 dkwedge_state_t sc_state; /* state this wedge is in */
79
80 struct disk *sc_parent; /* parent disk */
81 daddr_t sc_offset; /* LBA offset of wedge in parent */
82 krwlock_t sc_sizelock;
83 uint64_t sc_size; /* size of wedge in blocks */
84 char sc_ptype[32]; /* partition type */
85 dev_t sc_pdev; /* cached parent's dev_t */
86 /* link on parent's wedge list */
87 LIST_ENTRY(dkwedge_softc) sc_plink;
88
89 struct disk sc_dk; /* our own disk structure */
90 struct bufq_state *sc_bufq; /* buffer queue */
91 struct callout sc_restart_ch; /* callout to restart I/O */
92
93 kmutex_t sc_iolock;
94 kcondvar_t sc_dkdrn;
95 u_int sc_iopend; /* I/Os pending */
96 bool sc_iostop; /* don't schedule restart */
97 int sc_mode; /* parent open mode */
98 };
99
100 static int dkwedge_match(device_t, cfdata_t, void *);
101 static void dkwedge_attach(device_t, device_t, void *);
102 static int dkwedge_detach(device_t, int);
103
104 static void dkstart(struct dkwedge_softc *);
105 static void dkiodone(struct buf *);
106 static void dkrestart(void *);
107 static void dkminphys(struct buf *);
108
109 static int dkfirstopen(struct dkwedge_softc *, int);
110 static void dklastclose(struct dkwedge_softc *);
111 static int dkwedge_cleanup_parent(struct dkwedge_softc *, int);
112 static int dkwedge_detach(device_t, int);
113 static void dkwedge_delall1(struct disk *, bool);
114 static int dkwedge_del1(struct dkwedge_info *, int);
115 static int dk_open_parent(dev_t, int, struct vnode **);
116 static int dk_close_parent(struct vnode *, int);
117
118 static dev_type_open(dkopen);
119 static dev_type_close(dkclose);
120 static dev_type_cancel(dkcancel);
121 static dev_type_read(dkread);
122 static dev_type_write(dkwrite);
123 static dev_type_ioctl(dkioctl);
124 static dev_type_strategy(dkstrategy);
125 static dev_type_dump(dkdump);
126 static dev_type_size(dksize);
127 static dev_type_discard(dkdiscard);
128
129 CFDRIVER_DECL(dk, DV_DISK, NULL);
130 CFATTACH_DECL3_NEW(dk, 0,
131 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
132 DVF_DETACH_SHUTDOWN);
133
134 const struct bdevsw dk_bdevsw = {
135 .d_open = dkopen,
136 .d_close = dkclose,
137 .d_cancel = dkcancel,
138 .d_strategy = dkstrategy,
139 .d_ioctl = dkioctl,
140 .d_dump = dkdump,
141 .d_psize = dksize,
142 .d_discard = dkdiscard,
143 .d_flag = D_DISK | D_MPSAFE
144 };
145
146 const struct cdevsw dk_cdevsw = {
147 .d_open = dkopen,
148 .d_close = dkclose,
149 .d_cancel = dkcancel,
150 .d_read = dkread,
151 .d_write = dkwrite,
152 .d_ioctl = dkioctl,
153 .d_stop = nostop,
154 .d_tty = notty,
155 .d_poll = nopoll,
156 .d_mmap = nommap,
157 .d_kqfilter = nokqfilter,
158 .d_discard = dkdiscard,
159 .d_flag = D_DISK | D_MPSAFE
160 };
161
162 static struct dkwedge_softc **dkwedges;
163 static u_int ndkwedges;
164 static krwlock_t dkwedges_lock;
165
166 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
167 static krwlock_t dkwedge_discovery_methods_lock;
168
169 /*
170 * dkwedge_match:
171 *
172 * Autoconfiguration match function for pseudo-device glue.
173 */
174 static int
175 dkwedge_match(device_t parent, cfdata_t match, void *aux)
176 {
177
178 /* Pseudo-device; always present. */
179 return 1;
180 }
181
182 /*
183 * dkwedge_attach:
184 *
185 * Autoconfiguration attach function for pseudo-device glue.
186 */
187 static void
188 dkwedge_attach(device_t parent, device_t self, void *aux)
189 {
190
191 if (!pmf_device_register(self, NULL, NULL))
192 aprint_error_dev(self, "couldn't establish power handler\n");
193 }
194
195 /*
196 * dkwedge_wait_drain:
197 *
198 * Wait for I/O on the wedge to drain.
199 */
200 static void
201 dkwedge_wait_drain(struct dkwedge_softc *sc)
202 {
203
204 mutex_enter(&sc->sc_iolock);
205 while (sc->sc_iopend != 0)
206 cv_wait(&sc->sc_dkdrn, &sc->sc_iolock);
207 mutex_exit(&sc->sc_iolock);
208 }
209
210 /*
211 * dkwedge_compute_pdev:
212 *
213 * Compute the parent disk's dev_t.
214 */
215 static int
216 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
217 {
218 const char *name, *cp;
219 devmajor_t pmaj;
220 int punit;
221 char devname[16];
222
223 name = pname;
224 switch (type) {
225 case VBLK:
226 pmaj = devsw_name2blk(name, devname, sizeof(devname));
227 break;
228 case VCHR:
229 pmaj = devsw_name2chr(name, devname, sizeof(devname));
230 break;
231 default:
232 pmaj = NODEVMAJOR;
233 break;
234 }
235 if (pmaj == NODEVMAJOR)
236 return ENXIO;
237
238 name += strlen(devname);
239 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
240 punit = (punit * 10) + (*cp - '0');
241 if (cp == name) {
242 /* Invalid parent disk name. */
243 return ENXIO;
244 }
245
246 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
247
248 return 0;
249 }
250
251 /*
252 * dkwedge_array_expand:
253 *
254 * Expand the dkwedges array.
255 *
256 * Releases and reacquires dkwedges_lock as a writer.
257 */
258 static int
259 dkwedge_array_expand(void)
260 {
261
262 const unsigned incr = 16;
263 unsigned newcnt, oldcnt;
264 struct dkwedge_softc **newarray = NULL, **oldarray = NULL;
265
266 KASSERT(rw_write_held(&dkwedges_lock));
267
268 oldcnt = ndkwedges;
269 oldarray = dkwedges;
270
271 if (oldcnt >= INT_MAX - incr)
272 return ENFILE; /* XXX */
273 newcnt = oldcnt + incr;
274
275 rw_exit(&dkwedges_lock);
276 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
277 M_WAITOK|M_ZERO);
278 rw_enter(&dkwedges_lock, RW_WRITER);
279
280 if (ndkwedges != oldcnt || dkwedges != oldarray) {
281 oldarray = NULL; /* already recycled */
282 goto out;
283 }
284
285 if (oldarray != NULL)
286 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
287 dkwedges = newarray;
288 newarray = NULL; /* transferred to dkwedges */
289 ndkwedges = newcnt;
290
291 out: rw_exit(&dkwedges_lock);
292 if (oldarray != NULL)
293 free(oldarray, M_DKWEDGE);
294 if (newarray != NULL)
295 free(newarray, M_DKWEDGE);
296 rw_enter(&dkwedges_lock, RW_WRITER);
297 return 0;
298 }
299
300 static void
301 dkwedge_size_init(struct dkwedge_softc *sc, uint64_t size)
302 {
303
304 rw_init(&sc->sc_sizelock);
305 sc->sc_size = size;
306 }
307
308 static void
309 dkwedge_size_fini(struct dkwedge_softc *sc)
310 {
311
312 rw_destroy(&sc->sc_sizelock);
313 }
314
315 static uint64_t
316 dkwedge_size(struct dkwedge_softc *sc)
317 {
318 uint64_t size;
319
320 rw_enter(&sc->sc_sizelock, RW_READER);
321 size = sc->sc_size;
322 rw_exit(&sc->sc_sizelock);
323
324 return size;
325 }
326
327 static void
328 dkwedge_size_increase(struct dkwedge_softc *sc, uint64_t size)
329 {
330
331 KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
332
333 rw_enter(&sc->sc_sizelock, RW_WRITER);
334 KASSERTMSG(size >= sc->sc_size,
335 "decreasing dkwedge size from %"PRIu64" to %"PRIu64,
336 sc->sc_size, size);
337 sc->sc_size = size;
338 rw_exit(&sc->sc_sizelock);
339 }
340
341 static void
342 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
343 {
344 struct disk *dk = &sc->sc_dk;
345 struct disk_geom *dg = &dk->dk_geom;
346
347 KASSERT(mutex_owned(&pdk->dk_openlock));
348
349 memset(dg, 0, sizeof(*dg));
350
351 dg->dg_secperunit = dkwedge_size(sc);
352 dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
353
354 /* fake numbers, 1 cylinder is 1 MB with default sector size */
355 dg->dg_nsectors = 32;
356 dg->dg_ntracks = 64;
357 dg->dg_ncylinders =
358 dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
359
360 disk_set_info(sc->sc_dev, dk, NULL);
361 }
362
363 /*
364 * dkwedge_add: [exported function]
365 *
366 * Add a disk wedge based on the provided information.
367 *
368 * The incoming dkw_devname[] is ignored, instead being
369 * filled in and returned to the caller.
370 */
371 int
372 dkwedge_add(struct dkwedge_info *dkw)
373 {
374 struct dkwedge_softc *sc, *lsc;
375 struct disk *pdk;
376 u_int unit;
377 int error;
378 dev_t pdev;
379
380 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
381 pdk = disk_find(dkw->dkw_parent);
382 if (pdk == NULL)
383 return ENXIO;
384
385 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
386 if (error)
387 return error;
388
389 if (dkw->dkw_offset < 0)
390 return EINVAL;
391
392 /*
393 * Check for an existing wedge at the same disk offset. Allow
394 * updating a wedge if the only change is the size, and the new
395 * size is larger than the old.
396 */
397 sc = NULL;
398 mutex_enter(&pdk->dk_openlock);
399 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
400 if (lsc->sc_offset != dkw->dkw_offset)
401 continue;
402 if (strcmp(lsc->sc_wname, dkw->dkw_wname) != 0)
403 break;
404 if (strcmp(lsc->sc_ptype, dkw->dkw_ptype) != 0)
405 break;
406 if (dkwedge_size(lsc) > dkw->dkw_size)
407 break;
408
409 sc = lsc;
410 dkwedge_size_increase(sc, dkw->dkw_size);
411 dk_set_geometry(sc, pdk);
412
413 break;
414 }
415 mutex_exit(&pdk->dk_openlock);
416
417 if (sc != NULL)
418 goto announce;
419
420 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
421 sc->sc_state = DKW_STATE_LARVAL;
422 sc->sc_parent = pdk;
423 sc->sc_pdev = pdev;
424 sc->sc_offset = dkw->dkw_offset;
425 dkwedge_size_init(sc, dkw->dkw_size);
426
427 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
428 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
429
430 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
431 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
432
433 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
434
435 callout_init(&sc->sc_restart_ch, 0);
436 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
437
438 mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
439 cv_init(&sc->sc_dkdrn, "dkdrn");
440
441 /*
442 * Wedge will be added; increment the wedge count for the parent.
443 * Only allow this to happen if RAW_PART is the only thing open.
444 */
445 mutex_enter(&pdk->dk_openlock);
446 if (pdk->dk_openmask & ~(1 << RAW_PART))
447 error = EBUSY;
448 else {
449 /* Check for wedge overlap. */
450 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
451 /* XXX arithmetic overflow */
452 uint64_t size = dkwedge_size(sc);
453 uint64_t lsize = dkwedge_size(lsc);
454 daddr_t lastblk = sc->sc_offset + size - 1;
455 daddr_t llastblk = lsc->sc_offset + lsize - 1;
456
457 if (sc->sc_offset >= lsc->sc_offset &&
458 sc->sc_offset <= llastblk) {
459 /* Overlaps the tail of the existing wedge. */
460 break;
461 }
462 if (lastblk >= lsc->sc_offset &&
463 lastblk <= llastblk) {
464 /* Overlaps the head of the existing wedge. */
465 break;
466 }
467 }
468 if (lsc != NULL) {
469 if (sc->sc_offset == lsc->sc_offset &&
470 dkwedge_size(sc) == dkwedge_size(lsc) &&
471 strcmp(sc->sc_wname, lsc->sc_wname) == 0)
472 error = EEXIST;
473 else
474 error = EINVAL;
475 } else {
476 pdk->dk_nwedges++;
477 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
478 }
479 }
480 mutex_exit(&pdk->dk_openlock);
481 if (error) {
482 cv_destroy(&sc->sc_dkdrn);
483 mutex_destroy(&sc->sc_iolock);
484 bufq_free(sc->sc_bufq);
485 dkwedge_size_fini(sc);
486 free(sc, M_DKWEDGE);
487 return error;
488 }
489
490 /* Fill in our cfdata for the pseudo-device glue. */
491 sc->sc_cfdata.cf_name = dk_cd.cd_name;
492 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
493 /* sc->sc_cfdata.cf_unit set below */
494 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
495
496 /* Insert the larval wedge into the array. */
497 rw_enter(&dkwedges_lock, RW_WRITER);
498 for (error = 0;;) {
499 struct dkwedge_softc **scpp;
500
501 /*
502 * Check for a duplicate wname while searching for
503 * a slot.
504 */
505 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
506 if (dkwedges[unit] == NULL) {
507 if (scpp == NULL) {
508 scpp = &dkwedges[unit];
509 sc->sc_cfdata.cf_unit = unit;
510 }
511 } else {
512 /* XXX Unicode. */
513 if (strcmp(dkwedges[unit]->sc_wname,
514 sc->sc_wname) == 0) {
515 error = EEXIST;
516 break;
517 }
518 }
519 }
520 if (error)
521 break;
522 KASSERT(unit == ndkwedges);
523 if (scpp == NULL) {
524 error = dkwedge_array_expand();
525 if (error)
526 break;
527 } else {
528 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
529 *scpp = sc;
530 break;
531 }
532 }
533 rw_exit(&dkwedges_lock);
534 if (error) {
535 mutex_enter(&pdk->dk_openlock);
536 pdk->dk_nwedges--;
537 LIST_REMOVE(sc, sc_plink);
538 mutex_exit(&pdk->dk_openlock);
539
540 cv_destroy(&sc->sc_dkdrn);
541 mutex_destroy(&sc->sc_iolock);
542 bufq_free(sc->sc_bufq);
543 dkwedge_size_fini(sc);
544 free(sc, M_DKWEDGE);
545 return error;
546 }
547
548 /*
549 * Now that we know the unit #, attach a pseudo-device for
550 * this wedge instance. This will provide us with the
551 * device_t necessary for glue to other parts of the system.
552 *
553 * This should never fail, unless we're almost totally out of
554 * memory.
555 */
556 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
557 aprint_error("%s%u: unable to attach pseudo-device\n",
558 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
559
560 rw_enter(&dkwedges_lock, RW_WRITER);
561 KASSERT(dkwedges[sc->sc_cfdata.cf_unit] == sc);
562 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
563 rw_exit(&dkwedges_lock);
564
565 mutex_enter(&pdk->dk_openlock);
566 pdk->dk_nwedges--;
567 LIST_REMOVE(sc, sc_plink);
568 mutex_exit(&pdk->dk_openlock);
569
570 cv_destroy(&sc->sc_dkdrn);
571 mutex_destroy(&sc->sc_iolock);
572 bufq_free(sc->sc_bufq);
573 dkwedge_size_fini(sc);
574 free(sc, M_DKWEDGE);
575 return ENOMEM;
576 }
577
578 /*
579 * XXX Really ought to make the disk_attach() and the changing
580 * of state to RUNNING atomic.
581 */
582
583 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
584 mutex_enter(&pdk->dk_openlock);
585 dk_set_geometry(sc, pdk);
586 mutex_exit(&pdk->dk_openlock);
587 disk_attach(&sc->sc_dk);
588
589 /* Disk wedge is ready for use! */
590 sc->sc_state = DKW_STATE_RUNNING;
591
592 announce:
593 /* Announce our arrival. */
594 aprint_normal(
595 "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
596 device_xname(sc->sc_dev), pdk->dk_name,
597 sc->sc_wname, /* XXX Unicode */
598 dkwedge_size(sc), sc->sc_offset,
599 sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
600
601 /* Return the devname to the caller. */
602 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
603 sizeof(dkw->dkw_devname));
604
605 return 0;
606 }
607
608 /*
609 * dkwedge_find:
610 *
611 * Lookup a disk wedge based on the provided information.
612 * NOTE: We look up the wedge based on the wedge devname,
613 * not wname.
614 *
615 * Return NULL if the wedge is not found, otherwise return
616 * the wedge's softc. Assign the wedge's unit number to unitp
617 * if unitp is not NULL.
618 */
619 static struct dkwedge_softc *
620 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
621 {
622 struct dkwedge_softc *sc = NULL;
623 u_int unit;
624
625 /* Find our softc. */
626 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
627 rw_enter(&dkwedges_lock, RW_READER);
628 for (unit = 0; unit < ndkwedges; unit++) {
629 if ((sc = dkwedges[unit]) != NULL &&
630 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
631 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
632 break;
633 }
634 }
635 rw_exit(&dkwedges_lock);
636 if (sc == NULL)
637 return NULL;
638
639 if (unitp != NULL)
640 *unitp = unit;
641
642 return sc;
643 }
644
645 /*
646 * dkwedge_del: [exported function]
647 *
648 * Delete a disk wedge based on the provided information.
649 * NOTE: We look up the wedge based on the wedge devname,
650 * not wname.
651 */
652 int
653 dkwedge_del(struct dkwedge_info *dkw)
654 {
655
656 return dkwedge_del1(dkw, 0);
657 }
658
659 int
660 dkwedge_del1(struct dkwedge_info *dkw, int flags)
661 {
662 struct dkwedge_softc *sc = NULL;
663
664 /* Find our softc. */
665 if ((sc = dkwedge_find(dkw, NULL)) == NULL)
666 return ESRCH;
667
668 return config_detach(sc->sc_dev, flags);
669 }
670
671 static int
672 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags)
673 {
674 struct disk *dk = &sc->sc_dk;
675 int rc;
676
677 rc = 0;
678 mutex_enter(&dk->dk_openlock);
679 if (dk->dk_openmask == 0) {
680 /* nothing to do */
681 } else if ((flags & DETACH_FORCE) == 0) {
682 rc = EBUSY;
683 } else {
684 mutex_enter(&sc->sc_parent->dk_rawlock);
685 dklastclose(sc);
686 mutex_exit(&sc->sc_parent->dk_rawlock);
687 }
688 mutex_exit(&sc->sc_dk.dk_openlock);
689
690 return rc;
691 }
692
693 /*
694 * dkwedge_detach:
695 *
696 * Autoconfiguration detach function for pseudo-device glue.
697 */
698 static int
699 dkwedge_detach(device_t self, int flags)
700 {
701 struct dkwedge_softc *sc = NULL;
702 u_int unit;
703 int bmaj, cmaj, rc;
704
705 rw_enter(&dkwedges_lock, RW_WRITER);
706 for (unit = 0; unit < ndkwedges; unit++) {
707 if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
708 break;
709 }
710 if (unit == ndkwedges)
711 rc = ENXIO;
712 else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) {
713 /* Mark the wedge as dying. */
714 sc->sc_state = DKW_STATE_DYING;
715 }
716 rw_exit(&dkwedges_lock);
717
718 if (rc != 0)
719 return rc;
720
721 pmf_device_deregister(self);
722
723 /* Locate the wedge major numbers. */
724 bmaj = bdevsw_lookup_major(&dk_bdevsw);
725 cmaj = cdevsw_lookup_major(&dk_cdevsw);
726
727 /* Kill any pending restart. */
728 mutex_enter(&sc->sc_iolock);
729 sc->sc_iostop = true;
730 mutex_exit(&sc->sc_iolock);
731 callout_halt(&sc->sc_restart_ch, NULL);
732
733 /*
734 * dkstart() will kill any queued buffers now that the
735 * state of the wedge is not RUNNING. Once we've done
736 * that, wait for any other pending I/O to complete.
737 */
738 dkstart(sc);
739 dkwedge_wait_drain(sc);
740
741 /* Nuke the vnodes for any open instances. */
742 vdevgone(bmaj, unit, unit, VBLK);
743 vdevgone(cmaj, unit, unit, VCHR);
744
745 /* Clean up the parent. */
746 dkwedge_cleanup_parent(sc, flags | DETACH_FORCE);
747
748 /* Announce our departure. */
749 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
750 sc->sc_parent->dk_name,
751 sc->sc_wname); /* XXX Unicode */
752
753 mutex_enter(&sc->sc_parent->dk_openlock);
754 sc->sc_parent->dk_nwedges--;
755 LIST_REMOVE(sc, sc_plink);
756 mutex_exit(&sc->sc_parent->dk_openlock);
757
758 /* Delete our buffer queue. */
759 bufq_free(sc->sc_bufq);
760
761 /* Detach from the disk list. */
762 disk_detach(&sc->sc_dk);
763 disk_destroy(&sc->sc_dk);
764
765 /* Poof. */
766 rw_enter(&dkwedges_lock, RW_WRITER);
767 KASSERT(dkwedges[unit] == sc);
768 dkwedges[unit] = NULL;
769 sc->sc_state = DKW_STATE_DEAD;
770 rw_exit(&dkwedges_lock);
771
772 mutex_destroy(&sc->sc_iolock);
773 cv_destroy(&sc->sc_dkdrn);
774 dkwedge_size_fini(sc);
775
776 free(sc, M_DKWEDGE);
777
778 return 0;
779 }
780
781 /*
782 * dkwedge_delall: [exported function]
783 *
784 * Delete all of the wedges on the specified disk. Used when
785 * a disk is being detached.
786 */
787 void
788 dkwedge_delall(struct disk *pdk)
789 {
790
791 dkwedge_delall1(pdk, false);
792 }
793
794 static void
795 dkwedge_delall1(struct disk *pdk, bool idleonly)
796 {
797 struct dkwedge_info dkw;
798 struct dkwedge_softc *sc;
799 int flags;
800
801 flags = DETACH_QUIET;
802 if (!idleonly)
803 flags |= DETACH_FORCE;
804
805 for (;;) {
806 mutex_enter(&pdk->dk_openlock);
807 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
808 if (!idleonly || sc->sc_dk.dk_openmask == 0)
809 break;
810 }
811 if (sc == NULL) {
812 KASSERT(idleonly || pdk->dk_nwedges == 0);
813 mutex_exit(&pdk->dk_openlock);
814 return;
815 }
816 strlcpy(dkw.dkw_parent, pdk->dk_name, sizeof(dkw.dkw_parent));
817 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
818 sizeof(dkw.dkw_devname));
819 mutex_exit(&pdk->dk_openlock);
820 (void) dkwedge_del1(&dkw, flags);
821 }
822 }
823
824 /*
825 * dkwedge_list: [exported function]
826 *
827 * List all of the wedges on a particular disk.
828 */
829 int
830 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
831 {
832 struct uio uio;
833 struct iovec iov;
834 struct dkwedge_softc *sc;
835 struct dkwedge_info dkw;
836 int error = 0;
837
838 iov.iov_base = dkwl->dkwl_buf;
839 iov.iov_len = dkwl->dkwl_bufsize;
840
841 uio.uio_iov = &iov;
842 uio.uio_iovcnt = 1;
843 uio.uio_offset = 0;
844 uio.uio_resid = dkwl->dkwl_bufsize;
845 uio.uio_rw = UIO_READ;
846 KASSERT(l == curlwp);
847 uio.uio_vmspace = l->l_proc->p_vmspace;
848
849 dkwl->dkwl_ncopied = 0;
850
851 mutex_enter(&pdk->dk_openlock);
852 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
853 if (uio.uio_resid < sizeof(dkw))
854 break;
855
856 if (sc->sc_state != DKW_STATE_RUNNING)
857 continue;
858
859 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
860 sizeof(dkw.dkw_devname));
861 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
862 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
863 strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
864 sizeof(dkw.dkw_parent));
865 dkw.dkw_offset = sc->sc_offset;
866 dkw.dkw_size = dkwedge_size(sc);
867 strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
868
869 error = uiomove(&dkw, sizeof(dkw), &uio);
870 if (error)
871 break;
872 dkwl->dkwl_ncopied++;
873 }
874 dkwl->dkwl_nwedges = pdk->dk_nwedges;
875 mutex_exit(&pdk->dk_openlock);
876
877 return error;
878 }
879
880 device_t
881 dkwedge_find_by_wname(const char *wname)
882 {
883 device_t dv = NULL;
884 struct dkwedge_softc *sc;
885 int i;
886
887 rw_enter(&dkwedges_lock, RW_WRITER);
888 for (i = 0; i < ndkwedges; i++) {
889 if ((sc = dkwedges[i]) == NULL)
890 continue;
891 if (strcmp(sc->sc_wname, wname) == 0) {
892 if (dv != NULL) {
893 printf(
894 "WARNING: double match for wedge name %s "
895 "(%s, %s)\n", wname, device_xname(dv),
896 device_xname(sc->sc_dev));
897 continue;
898 }
899 dv = sc->sc_dev;
900 }
901 }
902 rw_exit(&dkwedges_lock);
903 return dv;
904 }
905
906 device_t
907 dkwedge_find_by_parent(const char *name, size_t *i)
908 {
909
910 rw_enter(&dkwedges_lock, RW_WRITER);
911 for (; *i < (size_t)ndkwedges; (*i)++) {
912 struct dkwedge_softc *sc;
913 if ((sc = dkwedges[*i]) == NULL)
914 continue;
915 if (strcmp(sc->sc_parent->dk_name, name) != 0)
916 continue;
917 rw_exit(&dkwedges_lock);
918 return sc->sc_dev;
919 }
920 rw_exit(&dkwedges_lock);
921 return NULL;
922 }
923
924 void
925 dkwedge_print_wnames(void)
926 {
927 struct dkwedge_softc *sc;
928 int i;
929
930 rw_enter(&dkwedges_lock, RW_WRITER);
931 for (i = 0; i < ndkwedges; i++) {
932 if ((sc = dkwedges[i]) == NULL)
933 continue;
934 printf(" wedge:%s", sc->sc_wname);
935 }
936 rw_exit(&dkwedges_lock);
937 }
938
939 /*
940 * We need a dummy object to stuff into the dkwedge discovery method link
941 * set to ensure that there is always at least one object in the set.
942 */
943 static struct dkwedge_discovery_method dummy_discovery_method;
944 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
945
946 /*
947 * dkwedge_init:
948 *
949 * Initialize the disk wedge subsystem.
950 */
951 void
952 dkwedge_init(void)
953 {
954 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
955 struct dkwedge_discovery_method * const *ddmp;
956 struct dkwedge_discovery_method *lddm, *ddm;
957
958 rw_init(&dkwedges_lock);
959 rw_init(&dkwedge_discovery_methods_lock);
960
961 if (config_cfdriver_attach(&dk_cd) != 0)
962 panic("dkwedge: unable to attach cfdriver");
963 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
964 panic("dkwedge: unable to attach cfattach");
965
966 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
967
968 LIST_INIT(&dkwedge_discovery_methods);
969
970 __link_set_foreach(ddmp, dkwedge_methods) {
971 ddm = *ddmp;
972 if (ddm == &dummy_discovery_method)
973 continue;
974 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
975 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
976 ddm, ddm_list);
977 continue;
978 }
979 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
980 if (ddm->ddm_priority == lddm->ddm_priority) {
981 aprint_error("dk-method-%s: method \"%s\" "
982 "already exists at priority %d\n",
983 ddm->ddm_name, lddm->ddm_name,
984 lddm->ddm_priority);
985 /* Not inserted. */
986 break;
987 }
988 if (ddm->ddm_priority < lddm->ddm_priority) {
989 /* Higher priority; insert before. */
990 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
991 break;
992 }
993 if (LIST_NEXT(lddm, ddm_list) == NULL) {
994 /* Last one; insert after. */
995 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
996 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
997 break;
998 }
999 }
1000 }
1001
1002 rw_exit(&dkwedge_discovery_methods_lock);
1003 }
1004
1005 #ifdef DKWEDGE_AUTODISCOVER
1006 int dkwedge_autodiscover = 1;
1007 #else
1008 int dkwedge_autodiscover = 0;
1009 #endif
1010
1011 /*
1012 * dkwedge_discover: [exported function]
1013 *
1014 * Discover the wedges on a newly attached disk.
1015 * Remove all unused wedges on the disk first.
1016 */
1017 void
1018 dkwedge_discover(struct disk *pdk)
1019 {
1020 struct dkwedge_discovery_method *ddm;
1021 struct vnode *vp;
1022 int error;
1023 dev_t pdev;
1024
1025 /*
1026 * Require people playing with wedges to enable this explicitly.
1027 */
1028 if (dkwedge_autodiscover == 0)
1029 return;
1030
1031 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
1032
1033 /*
1034 * Use the character device for scanning, the block device
1035 * is busy if there are already wedges attached.
1036 */
1037 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
1038 if (error) {
1039 aprint_error("%s: unable to compute pdev, error = %d\n",
1040 pdk->dk_name, error);
1041 goto out;
1042 }
1043
1044 error = cdevvp(pdev, &vp);
1045 if (error) {
1046 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
1047 pdk->dk_name, error);
1048 goto out;
1049 }
1050
1051 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1052 if (error) {
1053 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
1054 pdk->dk_name, error);
1055 vrele(vp);
1056 goto out;
1057 }
1058
1059 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
1060 if (error) {
1061 if (error != ENXIO)
1062 aprint_error("%s: unable to open device, error = %d\n",
1063 pdk->dk_name, error);
1064 vput(vp);
1065 goto out;
1066 }
1067 VOP_UNLOCK(vp);
1068
1069 /*
1070 * Remove unused wedges
1071 */
1072 dkwedge_delall1(pdk, true);
1073
1074 /*
1075 * For each supported partition map type, look to see if
1076 * this map type exists. If so, parse it and add the
1077 * corresponding wedges.
1078 */
1079 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
1080 error = (*ddm->ddm_discover)(pdk, vp);
1081 if (error == 0) {
1082 /* Successfully created wedges; we're done. */
1083 break;
1084 }
1085 }
1086
1087 error = vn_close(vp, FREAD, NOCRED);
1088 if (error) {
1089 aprint_error("%s: unable to close device, error = %d\n",
1090 pdk->dk_name, error);
1091 /* We'll just assume the vnode has been cleaned up. */
1092 }
1093
1094 out:
1095 rw_exit(&dkwedge_discovery_methods_lock);
1096 }
1097
1098 /*
1099 * dkwedge_read:
1100 *
1101 * Read some data from the specified disk, used for
1102 * partition discovery.
1103 */
1104 int
1105 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
1106 void *tbuf, size_t len)
1107 {
1108 buf_t *bp;
1109 int error;
1110 bool isopen;
1111 dev_t bdev;
1112 struct vnode *bdvp;
1113
1114 /*
1115 * The kernel cannot read from a character device vnode
1116 * as physio() only handles user memory.
1117 *
1118 * If the block device has already been opened by a wedge
1119 * use that vnode and temporarily bump the open counter.
1120 *
1121 * Otherwise try to open the block device.
1122 */
1123
1124 bdev = devsw_chr2blk(vp->v_rdev);
1125
1126 mutex_enter(&pdk->dk_rawlock);
1127 if (pdk->dk_rawopens != 0) {
1128 KASSERT(pdk->dk_rawvp != NULL);
1129 isopen = true;
1130 ++pdk->dk_rawopens;
1131 bdvp = pdk->dk_rawvp;
1132 error = 0;
1133 } else {
1134 isopen = false;
1135 error = dk_open_parent(bdev, FREAD, &bdvp);
1136 }
1137 mutex_exit(&pdk->dk_rawlock);
1138
1139 if (error)
1140 return error;
1141
1142 bp = getiobuf(bdvp, true);
1143 bp->b_flags = B_READ;
1144 bp->b_cflags = BC_BUSY;
1145 bp->b_dev = bdev;
1146 bp->b_data = tbuf;
1147 bp->b_bufsize = bp->b_bcount = len;
1148 bp->b_blkno = blkno;
1149 bp->b_cylinder = 0;
1150 bp->b_error = 0;
1151
1152 VOP_STRATEGY(bdvp, bp);
1153 error = biowait(bp);
1154 putiobuf(bp);
1155
1156 mutex_enter(&pdk->dk_rawlock);
1157 if (isopen) {
1158 --pdk->dk_rawopens;
1159 } else {
1160 dk_close_parent(bdvp, FREAD);
1161 }
1162 mutex_exit(&pdk->dk_rawlock);
1163
1164 return error;
1165 }
1166
1167 /*
1168 * dkwedge_lookup:
1169 *
1170 * Look up a dkwedge_softc based on the provided dev_t.
1171 */
1172 static struct dkwedge_softc *
1173 dkwedge_lookup(dev_t dev)
1174 {
1175 const int unit = minor(dev);
1176 struct dkwedge_softc *sc;
1177
1178 rw_enter(&dkwedges_lock, RW_READER);
1179 if (unit < 0 || unit >= ndkwedges)
1180 sc = NULL;
1181 else
1182 sc = dkwedges[unit];
1183 rw_exit(&dkwedges_lock);
1184
1185 return sc;
1186 }
1187
1188 static int
1189 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
1190 {
1191 struct vnode *vp;
1192 int error;
1193
1194 error = bdevvp(dev, &vp);
1195 if (error)
1196 return error;
1197
1198 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1199 if (error) {
1200 vrele(vp);
1201 return error;
1202 }
1203 error = VOP_OPEN(vp, mode, NOCRED);
1204 if (error) {
1205 vput(vp);
1206 return error;
1207 }
1208
1209 /* VOP_OPEN() doesn't do this for us. */
1210 if (mode & FWRITE) {
1211 mutex_enter(vp->v_interlock);
1212 vp->v_writecount++;
1213 mutex_exit(vp->v_interlock);
1214 }
1215
1216 VOP_UNLOCK(vp);
1217
1218 *vpp = vp;
1219
1220 return 0;
1221 }
1222
1223 static int
1224 dk_close_parent(struct vnode *vp, int mode)
1225 {
1226 int error;
1227
1228 error = vn_close(vp, mode, NOCRED);
1229 return error;
1230 }
1231
1232 /*
1233 * dkopen: [devsw entry point]
1234 *
1235 * Open a wedge.
1236 */
1237 static int
1238 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
1239 {
1240 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1241 int error = 0;
1242
1243 if (sc == NULL)
1244 return ENXIO;
1245 if (sc->sc_state != DKW_STATE_RUNNING)
1246 return ENXIO;
1247
1248 /*
1249 * We go through a complicated little dance to only open the parent
1250 * vnode once per wedge, no matter how many times the wedge is
1251 * opened. The reason? We see one dkopen() per open call, but
1252 * only dkclose() on the last close.
1253 */
1254 mutex_enter(&sc->sc_dk.dk_openlock);
1255 mutex_enter(&sc->sc_parent->dk_rawlock);
1256 if (sc->sc_dk.dk_openmask == 0) {
1257 error = dkfirstopen(sc, flags);
1258 if (error)
1259 goto popen_fail;
1260 }
1261 KASSERT(sc->sc_mode != 0);
1262 if (flags & ~sc->sc_mode & FWRITE) {
1263 error = EROFS;
1264 goto popen_fail;
1265 }
1266 if (fmt == S_IFCHR)
1267 sc->sc_dk.dk_copenmask |= 1;
1268 else
1269 sc->sc_dk.dk_bopenmask |= 1;
1270 sc->sc_dk.dk_openmask =
1271 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1272
1273 popen_fail:
1274 mutex_exit(&sc->sc_parent->dk_rawlock);
1275 mutex_exit(&sc->sc_dk.dk_openlock);
1276 return error;
1277 }
1278
1279 static int
1280 dkfirstopen(struct dkwedge_softc *sc, int flags)
1281 {
1282 struct dkwedge_softc *nsc;
1283 struct vnode *vp;
1284 int mode;
1285 int error;
1286
1287 KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
1288 KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
1289
1290 if (sc->sc_parent->dk_rawopens == 0) {
1291 KASSERT(sc->sc_parent->dk_rawvp == NULL);
1292 /*
1293 * Try open read-write. If this fails for EROFS
1294 * and wedge is read-only, retry to open read-only.
1295 */
1296 mode = FREAD | FWRITE;
1297 error = dk_open_parent(sc->sc_pdev, mode, &vp);
1298 if (error == EROFS && (flags & FWRITE) == 0) {
1299 mode &= ~FWRITE;
1300 error = dk_open_parent(sc->sc_pdev, mode, &vp);
1301 }
1302 if (error)
1303 return error;
1304 KASSERT(vp != NULL);
1305 sc->sc_parent->dk_rawvp = vp;
1306 } else {
1307 /*
1308 * Retrieve mode from an already opened wedge.
1309 *
1310 * At this point, dk_rawopens is bounded by the number
1311 * of dkwedge devices in the system, which is limited
1312 * by autoconf device numbering to INT_MAX. Since
1313 * dk_rawopens is unsigned, this can't overflow.
1314 */
1315 KASSERT(sc->sc_parent->dk_rawopens < UINT_MAX);
1316 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1317 mode = 0;
1318 LIST_FOREACH(nsc, &sc->sc_parent->dk_wedges, sc_plink) {
1319 if (nsc == sc || nsc->sc_dk.dk_openmask == 0)
1320 continue;
1321 mode = nsc->sc_mode;
1322 break;
1323 }
1324 }
1325 sc->sc_mode = mode;
1326 sc->sc_parent->dk_rawopens++;
1327
1328 return 0;
1329 }
1330
1331 static void
1332 dklastclose(struct dkwedge_softc *sc)
1333 {
1334
1335 KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
1336 KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
1337 KASSERT(sc->sc_parent->dk_rawopens > 0);
1338 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1339
1340 if (--sc->sc_parent->dk_rawopens == 0) {
1341 struct vnode *const vp = sc->sc_parent->dk_rawvp;
1342 const int mode = sc->sc_mode;
1343
1344 sc->sc_parent->dk_rawvp = NULL;
1345 sc->sc_mode = 0;
1346
1347 dk_close_parent(vp, mode);
1348 }
1349 }
1350
1351 /*
1352 * dkclose: [devsw entry point]
1353 *
1354 * Close a wedge.
1355 */
1356 static int
1357 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1358 {
1359 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1360
1361 if (sc == NULL)
1362 return ENXIO;
1363 if (sc->sc_state != DKW_STATE_RUNNING)
1364 return ENXIO;
1365
1366 mutex_enter(&sc->sc_dk.dk_openlock);
1367 mutex_enter(&sc->sc_parent->dk_rawlock);
1368
1369 KASSERT(sc->sc_dk.dk_openmask != 0);
1370
1371 if (fmt == S_IFCHR)
1372 sc->sc_dk.dk_copenmask &= ~1;
1373 else
1374 sc->sc_dk.dk_bopenmask &= ~1;
1375 sc->sc_dk.dk_openmask =
1376 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1377
1378 if (sc->sc_dk.dk_openmask == 0) {
1379 dklastclose(sc);
1380 }
1381
1382 mutex_exit(&sc->sc_parent->dk_rawlock);
1383 mutex_exit(&sc->sc_dk.dk_openlock);
1384
1385 return 0;
1386 }
1387
1388 /*
1389 * dkcancel: [devsw entry point]
1390 *
1391 * Cancel any pending I/O operations waiting on a wedge.
1392 */
1393 static int
1394 dkcancel(dev_t dev, int flags, int fmt, struct lwp *l)
1395 {
1396 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1397
1398 KASSERT(sc != NULL);
1399 KASSERT(sc->sc_dev != NULL);
1400
1401 /*
1402 * Disk I/O is expected to complete or fail within a reasonable
1403 * timeframe -- it's storage, not communication. Further, the
1404 * character and block device interface guarantees that prior
1405 * reads and writes have completed or failed by the time close
1406 * returns -- we are not to cancel them here. If the parent
1407 * device's hardware is gone, the parent driver can make them
1408 * fail. Nothing for dk(4) itself to do.
1409 */
1410
1411 return 0;
1412 }
1413
1414 /*
1415 * dkstrategy: [devsw entry point]
1416 *
1417 * Perform I/O based on the wedge I/O strategy.
1418 */
1419 static void
1420 dkstrategy(struct buf *bp)
1421 {
1422 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1423 uint64_t p_size, p_offset;
1424
1425 if (sc == NULL) {
1426 bp->b_error = ENXIO;
1427 goto done;
1428 }
1429
1430 if (sc->sc_state != DKW_STATE_RUNNING ||
1431 sc->sc_parent->dk_rawvp == NULL) {
1432 bp->b_error = ENXIO;
1433 goto done;
1434 }
1435
1436 /* If it's an empty transfer, wake up the top half now. */
1437 if (bp->b_bcount == 0)
1438 goto done;
1439
1440 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1441 p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1442
1443 /* Make sure it's in-range. */
1444 if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1445 goto done;
1446
1447 /* Translate it to the parent's raw LBA. */
1448 bp->b_rawblkno = bp->b_blkno + p_offset;
1449
1450 /* Place it in the queue and start I/O on the unit. */
1451 mutex_enter(&sc->sc_iolock);
1452 sc->sc_iopend++;
1453 disk_wait(&sc->sc_dk);
1454 bufq_put(sc->sc_bufq, bp);
1455 mutex_exit(&sc->sc_iolock);
1456
1457 dkstart(sc);
1458 return;
1459
1460 done:
1461 bp->b_resid = bp->b_bcount;
1462 biodone(bp);
1463 }
1464
1465 /*
1466 * dkstart:
1467 *
1468 * Start I/O that has been enqueued on the wedge.
1469 */
1470 static void
1471 dkstart(struct dkwedge_softc *sc)
1472 {
1473 struct vnode *vp;
1474 struct buf *bp, *nbp;
1475
1476 mutex_enter(&sc->sc_iolock);
1477
1478 /* Do as much work as has been enqueued. */
1479 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1480 if (sc->sc_iostop) {
1481 (void) bufq_get(sc->sc_bufq);
1482 if (--sc->sc_iopend == 0)
1483 cv_broadcast(&sc->sc_dkdrn);
1484 mutex_exit(&sc->sc_iolock);
1485 bp->b_error = ENXIO;
1486 bp->b_resid = bp->b_bcount;
1487 biodone(bp);
1488 mutex_enter(&sc->sc_iolock);
1489 continue;
1490 }
1491
1492 /* fetch an I/O buf with sc_iolock dropped */
1493 mutex_exit(&sc->sc_iolock);
1494 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1495 mutex_enter(&sc->sc_iolock);
1496 if (nbp == NULL) {
1497 /*
1498 * No resources to run this request; leave the
1499 * buffer queued up, and schedule a timer to
1500 * restart the queue in 1/2 a second.
1501 */
1502 if (!sc->sc_iostop)
1503 callout_schedule(&sc->sc_restart_ch, hz/2);
1504 break;
1505 }
1506
1507 /*
1508 * fetch buf, this can fail if another thread
1509 * has already processed the queue, it can also
1510 * return a completely different buf.
1511 */
1512 bp = bufq_get(sc->sc_bufq);
1513 if (bp == NULL) {
1514 mutex_exit(&sc->sc_iolock);
1515 putiobuf(nbp);
1516 mutex_enter(&sc->sc_iolock);
1517 continue;
1518 }
1519
1520 /* Instrumentation. */
1521 disk_busy(&sc->sc_dk);
1522
1523 /* release lock for VOP_STRATEGY */
1524 mutex_exit(&sc->sc_iolock);
1525
1526 nbp->b_data = bp->b_data;
1527 nbp->b_flags = bp->b_flags;
1528 nbp->b_oflags = bp->b_oflags;
1529 nbp->b_cflags = bp->b_cflags;
1530 nbp->b_iodone = dkiodone;
1531 nbp->b_proc = bp->b_proc;
1532 nbp->b_blkno = bp->b_rawblkno;
1533 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1534 nbp->b_bcount = bp->b_bcount;
1535 nbp->b_private = bp;
1536 BIO_COPYPRIO(nbp, bp);
1537
1538 vp = nbp->b_vp;
1539 if ((nbp->b_flags & B_READ) == 0) {
1540 mutex_enter(vp->v_interlock);
1541 vp->v_numoutput++;
1542 mutex_exit(vp->v_interlock);
1543 }
1544 VOP_STRATEGY(vp, nbp);
1545
1546 mutex_enter(&sc->sc_iolock);
1547 }
1548
1549 mutex_exit(&sc->sc_iolock);
1550 }
1551
1552 /*
1553 * dkiodone:
1554 *
1555 * I/O to a wedge has completed; alert the top half.
1556 */
1557 static void
1558 dkiodone(struct buf *bp)
1559 {
1560 struct buf *obp = bp->b_private;
1561 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1562
1563 if (bp->b_error != 0)
1564 obp->b_error = bp->b_error;
1565 obp->b_resid = bp->b_resid;
1566 putiobuf(bp);
1567
1568 mutex_enter(&sc->sc_iolock);
1569 if (--sc->sc_iopend == 0)
1570 cv_broadcast(&sc->sc_dkdrn);
1571
1572 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1573 obp->b_flags & B_READ);
1574 mutex_exit(&sc->sc_iolock);
1575
1576 biodone(obp);
1577
1578 /* Kick the queue in case there is more work we can do. */
1579 dkstart(sc);
1580 }
1581
1582 /*
1583 * dkrestart:
1584 *
1585 * Restart the work queue after it was stalled due to
1586 * a resource shortage. Invoked via a callout.
1587 */
1588 static void
1589 dkrestart(void *v)
1590 {
1591 struct dkwedge_softc *sc = v;
1592
1593 dkstart(sc);
1594 }
1595
1596 /*
1597 * dkminphys:
1598 *
1599 * Call parent's minphys function.
1600 */
1601 static void
1602 dkminphys(struct buf *bp)
1603 {
1604 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1605 dev_t dev;
1606
1607 dev = bp->b_dev;
1608 bp->b_dev = sc->sc_pdev;
1609 if (sc->sc_parent->dk_driver && sc->sc_parent->dk_driver->d_minphys)
1610 (*sc->sc_parent->dk_driver->d_minphys)(bp);
1611 else
1612 minphys(bp);
1613 bp->b_dev = dev;
1614 }
1615
1616 /*
1617 * dkread: [devsw entry point]
1618 *
1619 * Read from a wedge.
1620 */
1621 static int
1622 dkread(dev_t dev, struct uio *uio, int flags)
1623 {
1624 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1625
1626 if (sc == NULL)
1627 return ENXIO;
1628 if (sc->sc_state != DKW_STATE_RUNNING)
1629 return ENXIO;
1630
1631 return physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio);
1632 }
1633
1634 /*
1635 * dkwrite: [devsw entry point]
1636 *
1637 * Write to a wedge.
1638 */
1639 static int
1640 dkwrite(dev_t dev, struct uio *uio, int flags)
1641 {
1642 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1643
1644 if (sc == NULL)
1645 return ENXIO;
1646 if (sc->sc_state != DKW_STATE_RUNNING)
1647 return ENXIO;
1648
1649 return physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio);
1650 }
1651
1652 /*
1653 * dkioctl: [devsw entry point]
1654 *
1655 * Perform an ioctl request on a wedge.
1656 */
1657 static int
1658 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1659 {
1660 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1661 int error = 0;
1662
1663 if (sc == NULL)
1664 return ENXIO;
1665 if (sc->sc_state != DKW_STATE_RUNNING)
1666 return ENXIO;
1667 if (sc->sc_parent->dk_rawvp == NULL)
1668 return ENXIO;
1669
1670 /*
1671 * We pass NODEV instead of our device to indicate we don't
1672 * want to handle disklabel ioctls
1673 */
1674 error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
1675 if (error != EPASSTHROUGH)
1676 return error;
1677
1678 error = 0;
1679
1680 switch (cmd) {
1681 case DIOCGSTRATEGY:
1682 case DIOCGCACHE:
1683 case DIOCCACHESYNC:
1684 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, data, flag,
1685 l != NULL ? l->l_cred : NOCRED);
1686 break;
1687 case DIOCGWEDGEINFO: {
1688 struct dkwedge_info *dkw = data;
1689
1690 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1691 sizeof(dkw->dkw_devname));
1692 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1693 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1694 strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
1695 sizeof(dkw->dkw_parent));
1696 dkw->dkw_offset = sc->sc_offset;
1697 dkw->dkw_size = dkwedge_size(sc);
1698 strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
1699
1700 break;
1701 }
1702 case DIOCGSECTORALIGN: {
1703 struct disk_sectoralign *dsa = data;
1704 uint32_t r;
1705
1706 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, dsa, flag,
1707 l != NULL ? l->l_cred : NOCRED);
1708 if (error)
1709 break;
1710
1711 r = sc->sc_offset % dsa->dsa_alignment;
1712 if (r < dsa->dsa_firstaligned)
1713 dsa->dsa_firstaligned = dsa->dsa_firstaligned - r;
1714 else
1715 dsa->dsa_firstaligned = (dsa->dsa_firstaligned +
1716 dsa->dsa_alignment) - r;
1717 break;
1718 }
1719 default:
1720 error = ENOTTY;
1721 }
1722
1723 return error;
1724 }
1725
1726 /*
1727 * dkdiscard: [devsw entry point]
1728 *
1729 * Perform a discard-range request on a wedge.
1730 */
1731 static int
1732 dkdiscard(dev_t dev, off_t pos, off_t len)
1733 {
1734 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1735 uint64_t size = dkwedge_size(sc);
1736 unsigned shift;
1737 off_t offset, maxlen;
1738 int error;
1739
1740 if (sc == NULL)
1741 return ENXIO;
1742 if (sc->sc_state != DKW_STATE_RUNNING)
1743 return ENXIO;
1744 if (sc->sc_parent->dk_rawvp == NULL)
1745 return ENXIO;
1746
1747 /* XXX check bounds on size/offset up front */
1748 shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
1749 KASSERT(__type_fit(off_t, size));
1750 KASSERT(__type_fit(off_t, sc->sc_offset));
1751 KASSERT(0 <= sc->sc_offset);
1752 KASSERT(size <= (__type_max(off_t) >> shift));
1753 KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - size));
1754 offset = ((off_t)sc->sc_offset << shift);
1755 maxlen = ((off_t)size << shift);
1756
1757 if (len > maxlen)
1758 return EINVAL;
1759 if (pos > (maxlen - len))
1760 return EINVAL;
1761
1762 pos += offset;
1763
1764 vn_lock(sc->sc_parent->dk_rawvp, LK_EXCLUSIVE | LK_RETRY);
1765 error = VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
1766 VOP_UNLOCK(sc->sc_parent->dk_rawvp);
1767
1768 return error;
1769 }
1770
1771 /*
1772 * dksize: [devsw entry point]
1773 *
1774 * Query the size of a wedge for the purpose of performing a dump
1775 * or for swapping to.
1776 */
1777 static int
1778 dksize(dev_t dev)
1779 {
1780 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1781 uint64_t p_size;
1782 int rv = -1;
1783
1784 if (sc == NULL)
1785 return -1;
1786 if (sc->sc_state != DKW_STATE_RUNNING)
1787 return -1;
1788
1789 mutex_enter(&sc->sc_dk.dk_openlock);
1790 mutex_enter(&sc->sc_parent->dk_rawlock);
1791
1792 /* Our content type is static, no need to open the device. */
1793
1794 p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1795 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1796 /* Saturate if we are larger than INT_MAX. */
1797 if (p_size > INT_MAX)
1798 rv = INT_MAX;
1799 else
1800 rv = (int)p_size;
1801 }
1802
1803 mutex_exit(&sc->sc_parent->dk_rawlock);
1804 mutex_exit(&sc->sc_dk.dk_openlock);
1805
1806 return rv;
1807 }
1808
1809 /*
1810 * dkdump: [devsw entry point]
1811 *
1812 * Perform a crash dump to a wedge.
1813 */
1814 static int
1815 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1816 {
1817 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1818 const struct bdevsw *bdev;
1819 uint64_t p_size, p_offset;
1820 int rv = 0;
1821
1822 if (sc == NULL)
1823 return ENXIO;
1824 if (sc->sc_state != DKW_STATE_RUNNING)
1825 return ENXIO;
1826
1827 mutex_enter(&sc->sc_dk.dk_openlock);
1828 mutex_enter(&sc->sc_parent->dk_rawlock);
1829
1830 /* Our content type is static, no need to open the device. */
1831
1832 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
1833 strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0 &&
1834 strcmp(sc->sc_ptype, DKW_PTYPE_CGD) != 0) {
1835 rv = ENXIO;
1836 goto out;
1837 }
1838 if (size % DEV_BSIZE != 0) {
1839 rv = EINVAL;
1840 goto out;
1841 }
1842
1843 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1844 p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1845
1846 if (blkno < 0 || blkno + size/DEV_BSIZE > p_size) {
1847 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1848 "p_size (%" PRIu64 ")\n", __func__, blkno,
1849 size/DEV_BSIZE, p_size);
1850 rv = EINVAL;
1851 goto out;
1852 }
1853
1854 bdev = bdevsw_lookup(sc->sc_pdev);
1855 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + p_offset, va, size);
1856
1857 out:
1858 mutex_exit(&sc->sc_parent->dk_rawlock);
1859 mutex_exit(&sc->sc_dk.dk_openlock);
1860
1861 return rv;
1862 }
1863
1864 /*
1865 * config glue
1866 */
1867
1868 /*
1869 * dkwedge_find_partition
1870 *
1871 * Find wedge corresponding to the specified parent name
1872 * and offset/length.
1873 */
1874 device_t
1875 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
1876 {
1877 struct dkwedge_softc *sc;
1878 int i;
1879 device_t wedge = NULL;
1880
1881 rw_enter(&dkwedges_lock, RW_READER);
1882 for (i = 0; i < ndkwedges; i++) {
1883 if ((sc = dkwedges[i]) == NULL)
1884 continue;
1885 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
1886 sc->sc_offset == startblk &&
1887 dkwedge_size(sc) == nblks) {
1888 if (wedge) {
1889 printf("WARNING: double match for boot wedge "
1890 "(%s, %s)\n",
1891 device_xname(wedge),
1892 device_xname(sc->sc_dev));
1893 continue;
1894 }
1895 wedge = sc->sc_dev;
1896 }
1897 }
1898 rw_exit(&dkwedges_lock);
1899
1900 return wedge;
1901 }
1902
1903 const char *
1904 dkwedge_get_parent_name(dev_t dev)
1905 {
1906 /* XXX: perhaps do this in lookup? */
1907 int bmaj = bdevsw_lookup_major(&dk_bdevsw);
1908 int cmaj = cdevsw_lookup_major(&dk_cdevsw);
1909
1910 if (major(dev) != bmaj && major(dev) != cmaj)
1911 return NULL;
1912 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1913 if (sc == NULL)
1914 return NULL;
1915 return sc->sc_parent->dk_name;
1916 }
1917