dk.c revision 1.144 1 /* $NetBSD: dk.c,v 1.144 2023/04/21 18:31:00 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.144 2023/04/21 18:31:00 riastradh Exp $");
34
35 #ifdef _KERNEL_OPT
36 #include "opt_dkwedge.h"
37 #endif
38
39 #include <sys/param.h>
40 #include <sys/types.h>
41
42 #include <sys/buf.h>
43 #include <sys/bufq.h>
44 #include <sys/callout.h>
45 #include <sys/conf.h>
46 #include <sys/device.h>
47 #include <sys/disk.h>
48 #include <sys/disklabel.h>
49 #include <sys/errno.h>
50 #include <sys/fcntl.h>
51 #include <sys/ioctl.h>
52 #include <sys/kauth.h>
53 #include <sys/kernel.h>
54 #include <sys/malloc.h>
55 #include <sys/pool.h>
56 #include <sys/proc.h>
57 #include <sys/rwlock.h>
58 #include <sys/stat.h>
59 #include <sys/systm.h>
60 #include <sys/vnode.h>
61
62 #include <miscfs/specfs/specdev.h>
63
64 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
65
66 typedef enum {
67 DKW_STATE_LARVAL = 0,
68 DKW_STATE_RUNNING = 1,
69 DKW_STATE_DYING = 2,
70 DKW_STATE_DEAD = 666
71 } dkwedge_state_t;
72
73 struct dkwedge_softc {
74 device_t sc_dev; /* pointer to our pseudo-device */
75 struct cfdata sc_cfdata; /* our cfdata structure */
76 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
77
78 dkwedge_state_t sc_state; /* state this wedge is in */
79
80 struct disk *sc_parent; /* parent disk */
81 daddr_t sc_offset; /* LBA offset of wedge in parent */
82 krwlock_t sc_sizelock;
83 uint64_t sc_size; /* size of wedge in blocks */
84 char sc_ptype[32]; /* partition type */
85 dev_t sc_pdev; /* cached parent's dev_t */
86 /* link on parent's wedge list */
87 LIST_ENTRY(dkwedge_softc) sc_plink;
88
89 struct disk sc_dk; /* our own disk structure */
90 struct bufq_state *sc_bufq; /* buffer queue */
91 struct callout sc_restart_ch; /* callout to restart I/O */
92
93 kmutex_t sc_iolock;
94 kcondvar_t sc_dkdrn;
95 u_int sc_iopend; /* I/Os pending */
96 bool sc_iostop; /* don't schedule restart */
97 int sc_mode; /* parent open mode */
98 };
99
100 static int dkwedge_match(device_t, cfdata_t, void *);
101 static void dkwedge_attach(device_t, device_t, void *);
102 static int dkwedge_detach(device_t, int);
103
104 static void dkstart(struct dkwedge_softc *);
105 static void dkiodone(struct buf *);
106 static void dkrestart(void *);
107 static void dkminphys(struct buf *);
108
109 static int dkfirstopen(struct dkwedge_softc *, int);
110 static void dklastclose(struct dkwedge_softc *);
111 static int dkwedge_detach(device_t, int);
112 static void dkwedge_delall1(struct disk *, bool);
113 static int dkwedge_del1(struct dkwedge_info *, int);
114 static int dk_open_parent(dev_t, int, struct vnode **);
115 static int dk_close_parent(struct vnode *, int);
116
117 static int dkunit(dev_t);
118
119 static dev_type_open(dkopen);
120 static dev_type_close(dkclose);
121 static dev_type_cancel(dkcancel);
122 static dev_type_read(dkread);
123 static dev_type_write(dkwrite);
124 static dev_type_ioctl(dkioctl);
125 static dev_type_strategy(dkstrategy);
126 static dev_type_dump(dkdump);
127 static dev_type_size(dksize);
128 static dev_type_discard(dkdiscard);
129
130 CFDRIVER_DECL(dk, DV_DISK, NULL);
131 CFATTACH_DECL3_NEW(dk, 0,
132 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
133 DVF_DETACH_SHUTDOWN);
134
135 const struct bdevsw dk_bdevsw = {
136 .d_open = dkopen,
137 .d_close = dkclose,
138 .d_cancel = dkcancel,
139 .d_strategy = dkstrategy,
140 .d_ioctl = dkioctl,
141 .d_dump = dkdump,
142 .d_psize = dksize,
143 .d_discard = dkdiscard,
144 .d_cfdriver = &dk_cd,
145 .d_devtounit = dkunit,
146 .d_flag = D_DISK | D_MPSAFE
147 };
148
149 const struct cdevsw dk_cdevsw = {
150 .d_open = dkopen,
151 .d_close = dkclose,
152 .d_cancel = dkcancel,
153 .d_read = dkread,
154 .d_write = dkwrite,
155 .d_ioctl = dkioctl,
156 .d_stop = nostop,
157 .d_tty = notty,
158 .d_poll = nopoll,
159 .d_mmap = nommap,
160 .d_kqfilter = nokqfilter,
161 .d_discard = dkdiscard,
162 .d_cfdriver = &dk_cd,
163 .d_devtounit = dkunit,
164 .d_flag = D_DISK | D_MPSAFE
165 };
166
167 static struct dkwedge_softc **dkwedges;
168 static u_int ndkwedges;
169 static krwlock_t dkwedges_lock;
170
171 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
172 static krwlock_t dkwedge_discovery_methods_lock;
173
174 /*
175 * dkwedge_match:
176 *
177 * Autoconfiguration match function for pseudo-device glue.
178 */
179 static int
180 dkwedge_match(device_t parent, cfdata_t match, void *aux)
181 {
182
183 /* Pseudo-device; always present. */
184 return 1;
185 }
186
187 /*
188 * dkwedge_attach:
189 *
190 * Autoconfiguration attach function for pseudo-device glue.
191 */
192 static void
193 dkwedge_attach(device_t parent, device_t self, void *aux)
194 {
195
196 if (!pmf_device_register(self, NULL, NULL))
197 aprint_error_dev(self, "couldn't establish power handler\n");
198 }
199
200 /*
201 * dkwedge_wait_drain:
202 *
203 * Wait for I/O on the wedge to drain.
204 */
205 static void
206 dkwedge_wait_drain(struct dkwedge_softc *sc)
207 {
208
209 mutex_enter(&sc->sc_iolock);
210 while (sc->sc_iopend != 0)
211 cv_wait(&sc->sc_dkdrn, &sc->sc_iolock);
212 mutex_exit(&sc->sc_iolock);
213 }
214
215 /*
216 * dkwedge_compute_pdev:
217 *
218 * Compute the parent disk's dev_t.
219 */
220 static int
221 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
222 {
223 const char *name, *cp;
224 devmajor_t pmaj;
225 int punit;
226 char devname[16];
227
228 name = pname;
229 switch (type) {
230 case VBLK:
231 pmaj = devsw_name2blk(name, devname, sizeof(devname));
232 break;
233 case VCHR:
234 pmaj = devsw_name2chr(name, devname, sizeof(devname));
235 break;
236 default:
237 pmaj = NODEVMAJOR;
238 break;
239 }
240 if (pmaj == NODEVMAJOR)
241 return ENXIO;
242
243 name += strlen(devname);
244 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
245 punit = (punit * 10) + (*cp - '0');
246 if (cp == name) {
247 /* Invalid parent disk name. */
248 return ENXIO;
249 }
250
251 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
252
253 return 0;
254 }
255
256 /*
257 * dkwedge_array_expand:
258 *
259 * Expand the dkwedges array.
260 *
261 * Releases and reacquires dkwedges_lock as a writer.
262 */
263 static int
264 dkwedge_array_expand(void)
265 {
266
267 const unsigned incr = 16;
268 unsigned newcnt, oldcnt;
269 struct dkwedge_softc **newarray = NULL, **oldarray = NULL;
270
271 KASSERT(rw_write_held(&dkwedges_lock));
272
273 oldcnt = ndkwedges;
274 oldarray = dkwedges;
275
276 if (oldcnt >= INT_MAX - incr)
277 return ENFILE; /* XXX */
278 newcnt = oldcnt + incr;
279
280 rw_exit(&dkwedges_lock);
281 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
282 M_WAITOK|M_ZERO);
283 rw_enter(&dkwedges_lock, RW_WRITER);
284
285 if (ndkwedges != oldcnt || dkwedges != oldarray) {
286 oldarray = NULL; /* already recycled */
287 goto out;
288 }
289
290 if (oldarray != NULL)
291 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
292 dkwedges = newarray;
293 newarray = NULL; /* transferred to dkwedges */
294 ndkwedges = newcnt;
295
296 out: rw_exit(&dkwedges_lock);
297 if (oldarray != NULL)
298 free(oldarray, M_DKWEDGE);
299 if (newarray != NULL)
300 free(newarray, M_DKWEDGE);
301 rw_enter(&dkwedges_lock, RW_WRITER);
302 return 0;
303 }
304
305 static void
306 dkwedge_size_init(struct dkwedge_softc *sc, uint64_t size)
307 {
308
309 rw_init(&sc->sc_sizelock);
310 sc->sc_size = size;
311 }
312
313 static void
314 dkwedge_size_fini(struct dkwedge_softc *sc)
315 {
316
317 rw_destroy(&sc->sc_sizelock);
318 }
319
320 static uint64_t
321 dkwedge_size(struct dkwedge_softc *sc)
322 {
323 uint64_t size;
324
325 rw_enter(&sc->sc_sizelock, RW_READER);
326 size = sc->sc_size;
327 rw_exit(&sc->sc_sizelock);
328
329 return size;
330 }
331
332 static void
333 dkwedge_size_increase(struct dkwedge_softc *sc, uint64_t size)
334 {
335
336 KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
337
338 rw_enter(&sc->sc_sizelock, RW_WRITER);
339 KASSERTMSG(size >= sc->sc_size,
340 "decreasing dkwedge size from %"PRIu64" to %"PRIu64,
341 sc->sc_size, size);
342 sc->sc_size = size;
343 rw_exit(&sc->sc_sizelock);
344 }
345
346 static void
347 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
348 {
349 struct disk *dk = &sc->sc_dk;
350 struct disk_geom *dg = &dk->dk_geom;
351
352 KASSERT(mutex_owned(&pdk->dk_openlock));
353
354 memset(dg, 0, sizeof(*dg));
355
356 dg->dg_secperunit = dkwedge_size(sc);
357 dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
358
359 /* fake numbers, 1 cylinder is 1 MB with default sector size */
360 dg->dg_nsectors = 32;
361 dg->dg_ntracks = 64;
362 dg->dg_ncylinders =
363 dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
364
365 disk_set_info(sc->sc_dev, dk, NULL);
366 }
367
368 /*
369 * dkwedge_add: [exported function]
370 *
371 * Add a disk wedge based on the provided information.
372 *
373 * The incoming dkw_devname[] is ignored, instead being
374 * filled in and returned to the caller.
375 */
376 int
377 dkwedge_add(struct dkwedge_info *dkw)
378 {
379 struct dkwedge_softc *sc, *lsc;
380 struct disk *pdk;
381 u_int unit;
382 int error;
383 dev_t pdev;
384
385 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
386 pdk = disk_find(dkw->dkw_parent);
387 if (pdk == NULL)
388 return ENXIO;
389
390 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
391 if (error)
392 return error;
393
394 if (dkw->dkw_offset < 0)
395 return EINVAL;
396
397 /*
398 * Check for an existing wedge at the same disk offset. Allow
399 * updating a wedge if the only change is the size, and the new
400 * size is larger than the old.
401 */
402 sc = NULL;
403 mutex_enter(&pdk->dk_openlock);
404 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
405 if (lsc->sc_offset != dkw->dkw_offset)
406 continue;
407 if (strcmp(lsc->sc_wname, dkw->dkw_wname) != 0)
408 break;
409 if (strcmp(lsc->sc_ptype, dkw->dkw_ptype) != 0)
410 break;
411 if (dkwedge_size(lsc) > dkw->dkw_size)
412 break;
413
414 sc = lsc;
415 dkwedge_size_increase(sc, dkw->dkw_size);
416 dk_set_geometry(sc, pdk);
417
418 break;
419 }
420 mutex_exit(&pdk->dk_openlock);
421
422 if (sc != NULL)
423 goto announce;
424
425 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
426 sc->sc_state = DKW_STATE_LARVAL;
427 sc->sc_parent = pdk;
428 sc->sc_pdev = pdev;
429 sc->sc_offset = dkw->dkw_offset;
430 dkwedge_size_init(sc, dkw->dkw_size);
431
432 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
433 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
434
435 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
436 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
437
438 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
439
440 callout_init(&sc->sc_restart_ch, 0);
441 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
442
443 mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
444 cv_init(&sc->sc_dkdrn, "dkdrn");
445
446 /*
447 * Wedge will be added; increment the wedge count for the parent.
448 * Only allow this to happen if RAW_PART is the only thing open.
449 */
450 mutex_enter(&pdk->dk_openlock);
451 if (pdk->dk_openmask & ~(1 << RAW_PART))
452 error = EBUSY;
453 else {
454 /* Check for wedge overlap. */
455 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
456 /* XXX arithmetic overflow */
457 uint64_t size = dkwedge_size(sc);
458 uint64_t lsize = dkwedge_size(lsc);
459 daddr_t lastblk = sc->sc_offset + size - 1;
460 daddr_t llastblk = lsc->sc_offset + lsize - 1;
461
462 if (sc->sc_offset >= lsc->sc_offset &&
463 sc->sc_offset <= llastblk) {
464 /* Overlaps the tail of the existing wedge. */
465 break;
466 }
467 if (lastblk >= lsc->sc_offset &&
468 lastblk <= llastblk) {
469 /* Overlaps the head of the existing wedge. */
470 break;
471 }
472 }
473 if (lsc != NULL) {
474 if (sc->sc_offset == lsc->sc_offset &&
475 dkwedge_size(sc) == dkwedge_size(lsc) &&
476 strcmp(sc->sc_wname, lsc->sc_wname) == 0)
477 error = EEXIST;
478 else
479 error = EINVAL;
480 } else {
481 pdk->dk_nwedges++;
482 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
483 }
484 }
485 mutex_exit(&pdk->dk_openlock);
486 if (error) {
487 cv_destroy(&sc->sc_dkdrn);
488 mutex_destroy(&sc->sc_iolock);
489 bufq_free(sc->sc_bufq);
490 dkwedge_size_fini(sc);
491 free(sc, M_DKWEDGE);
492 return error;
493 }
494
495 /* Fill in our cfdata for the pseudo-device glue. */
496 sc->sc_cfdata.cf_name = dk_cd.cd_name;
497 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
498 /* sc->sc_cfdata.cf_unit set below */
499 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
500
501 /* Insert the larval wedge into the array. */
502 rw_enter(&dkwedges_lock, RW_WRITER);
503 for (error = 0;;) {
504 struct dkwedge_softc **scpp;
505
506 /*
507 * Check for a duplicate wname while searching for
508 * a slot.
509 */
510 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
511 if (dkwedges[unit] == NULL) {
512 if (scpp == NULL) {
513 scpp = &dkwedges[unit];
514 sc->sc_cfdata.cf_unit = unit;
515 }
516 } else {
517 /* XXX Unicode. */
518 if (strcmp(dkwedges[unit]->sc_wname,
519 sc->sc_wname) == 0) {
520 error = EEXIST;
521 break;
522 }
523 }
524 }
525 if (error)
526 break;
527 KASSERT(unit == ndkwedges);
528 if (scpp == NULL) {
529 error = dkwedge_array_expand();
530 if (error)
531 break;
532 } else {
533 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
534 *scpp = sc;
535 break;
536 }
537 }
538 rw_exit(&dkwedges_lock);
539 if (error) {
540 mutex_enter(&pdk->dk_openlock);
541 pdk->dk_nwedges--;
542 LIST_REMOVE(sc, sc_plink);
543 mutex_exit(&pdk->dk_openlock);
544
545 cv_destroy(&sc->sc_dkdrn);
546 mutex_destroy(&sc->sc_iolock);
547 bufq_free(sc->sc_bufq);
548 dkwedge_size_fini(sc);
549 free(sc, M_DKWEDGE);
550 return error;
551 }
552
553 /*
554 * Now that we know the unit #, attach a pseudo-device for
555 * this wedge instance. This will provide us with the
556 * device_t necessary for glue to other parts of the system.
557 *
558 * This should never fail, unless we're almost totally out of
559 * memory.
560 */
561 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
562 aprint_error("%s%u: unable to attach pseudo-device\n",
563 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
564
565 rw_enter(&dkwedges_lock, RW_WRITER);
566 KASSERT(dkwedges[sc->sc_cfdata.cf_unit] == sc);
567 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
568 rw_exit(&dkwedges_lock);
569
570 mutex_enter(&pdk->dk_openlock);
571 pdk->dk_nwedges--;
572 LIST_REMOVE(sc, sc_plink);
573 mutex_exit(&pdk->dk_openlock);
574
575 cv_destroy(&sc->sc_dkdrn);
576 mutex_destroy(&sc->sc_iolock);
577 bufq_free(sc->sc_bufq);
578 dkwedge_size_fini(sc);
579 free(sc, M_DKWEDGE);
580 return ENOMEM;
581 }
582
583 /*
584 * XXX Really ought to make the disk_attach() and the changing
585 * of state to RUNNING atomic.
586 */
587
588 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
589 mutex_enter(&pdk->dk_openlock);
590 dk_set_geometry(sc, pdk);
591 mutex_exit(&pdk->dk_openlock);
592 disk_attach(&sc->sc_dk);
593
594 /* Disk wedge is ready for use! */
595 sc->sc_state = DKW_STATE_RUNNING;
596
597 announce:
598 /* Announce our arrival. */
599 aprint_normal(
600 "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
601 device_xname(sc->sc_dev), pdk->dk_name,
602 sc->sc_wname, /* XXX Unicode */
603 dkwedge_size(sc), sc->sc_offset,
604 sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
605
606 /* Return the devname to the caller. */
607 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
608 sizeof(dkw->dkw_devname));
609
610 return 0;
611 }
612
613 /*
614 * dkwedge_find:
615 *
616 * Lookup a disk wedge based on the provided information.
617 * NOTE: We look up the wedge based on the wedge devname,
618 * not wname.
619 *
620 * Return NULL if the wedge is not found, otherwise return
621 * the wedge's softc. Assign the wedge's unit number to unitp
622 * if unitp is not NULL.
623 */
624 static struct dkwedge_softc *
625 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
626 {
627 struct dkwedge_softc *sc = NULL;
628 u_int unit;
629
630 /* Find our softc. */
631 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
632 rw_enter(&dkwedges_lock, RW_READER);
633 for (unit = 0; unit < ndkwedges; unit++) {
634 if ((sc = dkwedges[unit]) != NULL &&
635 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
636 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
637 break;
638 }
639 }
640 rw_exit(&dkwedges_lock);
641 if (sc == NULL)
642 return NULL;
643
644 if (unitp != NULL)
645 *unitp = unit;
646
647 return sc;
648 }
649
650 /*
651 * dkwedge_del: [exported function]
652 *
653 * Delete a disk wedge based on the provided information.
654 * NOTE: We look up the wedge based on the wedge devname,
655 * not wname.
656 */
657 int
658 dkwedge_del(struct dkwedge_info *dkw)
659 {
660
661 return dkwedge_del1(dkw, 0);
662 }
663
664 int
665 dkwedge_del1(struct dkwedge_info *dkw, int flags)
666 {
667 struct dkwedge_softc *sc = NULL;
668
669 /* Find our softc. */
670 if ((sc = dkwedge_find(dkw, NULL)) == NULL)
671 return ESRCH;
672
673 return config_detach(sc->sc_dev, flags);
674 }
675
676 /*
677 * dkwedge_detach:
678 *
679 * Autoconfiguration detach function for pseudo-device glue.
680 */
681 static int
682 dkwedge_detach(device_t self, int flags)
683 {
684 struct dkwedge_softc *sc = NULL;
685 u_int unit;
686 int bmaj, cmaj, rc;
687
688 rw_enter(&dkwedges_lock, RW_WRITER);
689 for (unit = 0; unit < ndkwedges; unit++) {
690 if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
691 break;
692 }
693 if (unit == ndkwedges)
694 rc = ENXIO;
695 else if ((rc = disk_begindetach(&sc->sc_dk, /*lastclose*/NULL, self,
696 flags)) == 0) {
697 /* Mark the wedge as dying. */
698 sc->sc_state = DKW_STATE_DYING;
699 }
700 rw_exit(&dkwedges_lock);
701
702 if (rc != 0)
703 return rc;
704
705 pmf_device_deregister(self);
706
707 /* Locate the wedge major numbers. */
708 bmaj = bdevsw_lookup_major(&dk_bdevsw);
709 cmaj = cdevsw_lookup_major(&dk_cdevsw);
710
711 /* Kill any pending restart. */
712 mutex_enter(&sc->sc_iolock);
713 sc->sc_iostop = true;
714 mutex_exit(&sc->sc_iolock);
715 callout_halt(&sc->sc_restart_ch, NULL);
716
717 /*
718 * dkstart() will kill any queued buffers now that the
719 * state of the wedge is not RUNNING. Once we've done
720 * that, wait for any other pending I/O to complete.
721 */
722 dkstart(sc);
723 dkwedge_wait_drain(sc);
724
725 /* Nuke the vnodes for any open instances. */
726 vdevgone(bmaj, unit, unit, VBLK);
727 vdevgone(cmaj, unit, unit, VCHR);
728
729 /*
730 * At this point, all block device opens have been closed,
731 * synchronously flushing any buffered writes; and all
732 * character device I/O operations have completed
733 * synchronously, and character device opens have been closed.
734 *
735 * So there can be no more opens or queued buffers by now.
736 */
737 KASSERT(sc->sc_dk.dk_openmask == 0);
738 KASSERT(bufq_peek(sc->sc_bufq) == NULL);
739 bufq_drain(sc->sc_bufq);
740
741 /* Announce our departure. */
742 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
743 sc->sc_parent->dk_name,
744 sc->sc_wname); /* XXX Unicode */
745
746 mutex_enter(&sc->sc_parent->dk_openlock);
747 sc->sc_parent->dk_nwedges--;
748 LIST_REMOVE(sc, sc_plink);
749 mutex_exit(&sc->sc_parent->dk_openlock);
750
751 /* Delete our buffer queue. */
752 bufq_free(sc->sc_bufq);
753
754 /* Detach from the disk list. */
755 disk_detach(&sc->sc_dk);
756 disk_destroy(&sc->sc_dk);
757
758 /* Poof. */
759 rw_enter(&dkwedges_lock, RW_WRITER);
760 KASSERT(dkwedges[unit] == sc);
761 dkwedges[unit] = NULL;
762 sc->sc_state = DKW_STATE_DEAD;
763 rw_exit(&dkwedges_lock);
764
765 mutex_destroy(&sc->sc_iolock);
766 cv_destroy(&sc->sc_dkdrn);
767 dkwedge_size_fini(sc);
768
769 free(sc, M_DKWEDGE);
770
771 return 0;
772 }
773
774 /*
775 * dkwedge_delall: [exported function]
776 *
777 * Delete all of the wedges on the specified disk. Used when
778 * a disk is being detached.
779 */
780 void
781 dkwedge_delall(struct disk *pdk)
782 {
783
784 dkwedge_delall1(pdk, false);
785 }
786
787 static void
788 dkwedge_delall1(struct disk *pdk, bool idleonly)
789 {
790 struct dkwedge_info dkw;
791 struct dkwedge_softc *sc;
792 int flags;
793
794 flags = DETACH_QUIET;
795 if (!idleonly)
796 flags |= DETACH_FORCE;
797
798 for (;;) {
799 mutex_enter(&pdk->dk_openlock);
800 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
801 if (!idleonly || sc->sc_dk.dk_openmask == 0)
802 break;
803 }
804 if (sc == NULL) {
805 KASSERT(idleonly || pdk->dk_nwedges == 0);
806 mutex_exit(&pdk->dk_openlock);
807 return;
808 }
809 strlcpy(dkw.dkw_parent, pdk->dk_name, sizeof(dkw.dkw_parent));
810 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
811 sizeof(dkw.dkw_devname));
812 mutex_exit(&pdk->dk_openlock);
813 (void) dkwedge_del1(&dkw, flags);
814 }
815 }
816
817 /*
818 * dkwedge_list: [exported function]
819 *
820 * List all of the wedges on a particular disk.
821 */
822 int
823 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
824 {
825 struct uio uio;
826 struct iovec iov;
827 struct dkwedge_softc *sc;
828 struct dkwedge_info dkw;
829 int error = 0;
830
831 iov.iov_base = dkwl->dkwl_buf;
832 iov.iov_len = dkwl->dkwl_bufsize;
833
834 uio.uio_iov = &iov;
835 uio.uio_iovcnt = 1;
836 uio.uio_offset = 0;
837 uio.uio_resid = dkwl->dkwl_bufsize;
838 uio.uio_rw = UIO_READ;
839 KASSERT(l == curlwp);
840 uio.uio_vmspace = l->l_proc->p_vmspace;
841
842 dkwl->dkwl_ncopied = 0;
843
844 mutex_enter(&pdk->dk_openlock);
845 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
846 if (uio.uio_resid < sizeof(dkw))
847 break;
848
849 if (sc->sc_state != DKW_STATE_RUNNING)
850 continue;
851
852 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
853 sizeof(dkw.dkw_devname));
854 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
855 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
856 strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
857 sizeof(dkw.dkw_parent));
858 dkw.dkw_offset = sc->sc_offset;
859 dkw.dkw_size = dkwedge_size(sc);
860 strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
861
862 error = uiomove(&dkw, sizeof(dkw), &uio);
863 if (error)
864 break;
865 dkwl->dkwl_ncopied++;
866 }
867 dkwl->dkwl_nwedges = pdk->dk_nwedges;
868 mutex_exit(&pdk->dk_openlock);
869
870 return error;
871 }
872
873 device_t
874 dkwedge_find_by_wname(const char *wname)
875 {
876 device_t dv = NULL;
877 struct dkwedge_softc *sc;
878 int i;
879
880 rw_enter(&dkwedges_lock, RW_WRITER);
881 for (i = 0; i < ndkwedges; i++) {
882 if ((sc = dkwedges[i]) == NULL)
883 continue;
884 if (strcmp(sc->sc_wname, wname) == 0) {
885 if (dv != NULL) {
886 printf(
887 "WARNING: double match for wedge name %s "
888 "(%s, %s)\n", wname, device_xname(dv),
889 device_xname(sc->sc_dev));
890 continue;
891 }
892 dv = sc->sc_dev;
893 }
894 }
895 rw_exit(&dkwedges_lock);
896 return dv;
897 }
898
899 device_t
900 dkwedge_find_by_parent(const char *name, size_t *i)
901 {
902
903 rw_enter(&dkwedges_lock, RW_WRITER);
904 for (; *i < (size_t)ndkwedges; (*i)++) {
905 struct dkwedge_softc *sc;
906 if ((sc = dkwedges[*i]) == NULL)
907 continue;
908 if (strcmp(sc->sc_parent->dk_name, name) != 0)
909 continue;
910 rw_exit(&dkwedges_lock);
911 return sc->sc_dev;
912 }
913 rw_exit(&dkwedges_lock);
914 return NULL;
915 }
916
917 void
918 dkwedge_print_wnames(void)
919 {
920 struct dkwedge_softc *sc;
921 int i;
922
923 rw_enter(&dkwedges_lock, RW_WRITER);
924 for (i = 0; i < ndkwedges; i++) {
925 if ((sc = dkwedges[i]) == NULL)
926 continue;
927 printf(" wedge:%s", sc->sc_wname);
928 }
929 rw_exit(&dkwedges_lock);
930 }
931
932 /*
933 * We need a dummy object to stuff into the dkwedge discovery method link
934 * set to ensure that there is always at least one object in the set.
935 */
936 static struct dkwedge_discovery_method dummy_discovery_method;
937 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
938
939 /*
940 * dkwedge_init:
941 *
942 * Initialize the disk wedge subsystem.
943 */
944 void
945 dkwedge_init(void)
946 {
947 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
948 struct dkwedge_discovery_method * const *ddmp;
949 struct dkwedge_discovery_method *lddm, *ddm;
950
951 rw_init(&dkwedges_lock);
952 rw_init(&dkwedge_discovery_methods_lock);
953
954 if (config_cfdriver_attach(&dk_cd) != 0)
955 panic("dkwedge: unable to attach cfdriver");
956 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
957 panic("dkwedge: unable to attach cfattach");
958
959 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
960
961 LIST_INIT(&dkwedge_discovery_methods);
962
963 __link_set_foreach(ddmp, dkwedge_methods) {
964 ddm = *ddmp;
965 if (ddm == &dummy_discovery_method)
966 continue;
967 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
968 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
969 ddm, ddm_list);
970 continue;
971 }
972 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
973 if (ddm->ddm_priority == lddm->ddm_priority) {
974 aprint_error("dk-method-%s: method \"%s\" "
975 "already exists at priority %d\n",
976 ddm->ddm_name, lddm->ddm_name,
977 lddm->ddm_priority);
978 /* Not inserted. */
979 break;
980 }
981 if (ddm->ddm_priority < lddm->ddm_priority) {
982 /* Higher priority; insert before. */
983 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
984 break;
985 }
986 if (LIST_NEXT(lddm, ddm_list) == NULL) {
987 /* Last one; insert after. */
988 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
989 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
990 break;
991 }
992 }
993 }
994
995 rw_exit(&dkwedge_discovery_methods_lock);
996 }
997
998 #ifdef DKWEDGE_AUTODISCOVER
999 int dkwedge_autodiscover = 1;
1000 #else
1001 int dkwedge_autodiscover = 0;
1002 #endif
1003
1004 /*
1005 * dkwedge_discover: [exported function]
1006 *
1007 * Discover the wedges on a newly attached disk.
1008 * Remove all unused wedges on the disk first.
1009 */
1010 void
1011 dkwedge_discover(struct disk *pdk)
1012 {
1013 struct dkwedge_discovery_method *ddm;
1014 struct vnode *vp;
1015 int error;
1016 dev_t pdev;
1017
1018 /*
1019 * Require people playing with wedges to enable this explicitly.
1020 */
1021 if (dkwedge_autodiscover == 0)
1022 return;
1023
1024 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
1025
1026 /*
1027 * Use the character device for scanning, the block device
1028 * is busy if there are already wedges attached.
1029 */
1030 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
1031 if (error) {
1032 aprint_error("%s: unable to compute pdev, error = %d\n",
1033 pdk->dk_name, error);
1034 goto out;
1035 }
1036
1037 error = cdevvp(pdev, &vp);
1038 if (error) {
1039 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
1040 pdk->dk_name, error);
1041 goto out;
1042 }
1043
1044 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1045 if (error) {
1046 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
1047 pdk->dk_name, error);
1048 vrele(vp);
1049 goto out;
1050 }
1051
1052 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
1053 if (error) {
1054 if (error != ENXIO)
1055 aprint_error("%s: unable to open device, error = %d\n",
1056 pdk->dk_name, error);
1057 vput(vp);
1058 goto out;
1059 }
1060 VOP_UNLOCK(vp);
1061
1062 /*
1063 * Remove unused wedges
1064 */
1065 dkwedge_delall1(pdk, true);
1066
1067 /*
1068 * For each supported partition map type, look to see if
1069 * this map type exists. If so, parse it and add the
1070 * corresponding wedges.
1071 */
1072 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
1073 error = (*ddm->ddm_discover)(pdk, vp);
1074 if (error == 0) {
1075 /* Successfully created wedges; we're done. */
1076 break;
1077 }
1078 }
1079
1080 error = vn_close(vp, FREAD, NOCRED);
1081 if (error) {
1082 aprint_error("%s: unable to close device, error = %d\n",
1083 pdk->dk_name, error);
1084 /* We'll just assume the vnode has been cleaned up. */
1085 }
1086
1087 out:
1088 rw_exit(&dkwedge_discovery_methods_lock);
1089 }
1090
1091 /*
1092 * dkwedge_read:
1093 *
1094 * Read some data from the specified disk, used for
1095 * partition discovery.
1096 */
1097 int
1098 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
1099 void *tbuf, size_t len)
1100 {
1101 buf_t *bp;
1102 int error;
1103 bool isopen;
1104 dev_t bdev;
1105 struct vnode *bdvp;
1106
1107 /*
1108 * The kernel cannot read from a character device vnode
1109 * as physio() only handles user memory.
1110 *
1111 * If the block device has already been opened by a wedge
1112 * use that vnode and temporarily bump the open counter.
1113 *
1114 * Otherwise try to open the block device.
1115 */
1116
1117 bdev = devsw_chr2blk(vp->v_rdev);
1118
1119 mutex_enter(&pdk->dk_rawlock);
1120 if (pdk->dk_rawopens != 0) {
1121 KASSERT(pdk->dk_rawvp != NULL);
1122 isopen = true;
1123 ++pdk->dk_rawopens;
1124 bdvp = pdk->dk_rawvp;
1125 error = 0;
1126 } else {
1127 isopen = false;
1128 error = dk_open_parent(bdev, FREAD, &bdvp);
1129 }
1130 mutex_exit(&pdk->dk_rawlock);
1131
1132 if (error)
1133 return error;
1134
1135 bp = getiobuf(bdvp, true);
1136 bp->b_flags = B_READ;
1137 bp->b_cflags = BC_BUSY;
1138 bp->b_dev = bdev;
1139 bp->b_data = tbuf;
1140 bp->b_bufsize = bp->b_bcount = len;
1141 bp->b_blkno = blkno;
1142 bp->b_cylinder = 0;
1143 bp->b_error = 0;
1144
1145 VOP_STRATEGY(bdvp, bp);
1146 error = biowait(bp);
1147 putiobuf(bp);
1148
1149 mutex_enter(&pdk->dk_rawlock);
1150 if (isopen) {
1151 --pdk->dk_rawopens;
1152 } else {
1153 dk_close_parent(bdvp, FREAD);
1154 }
1155 mutex_exit(&pdk->dk_rawlock);
1156
1157 return error;
1158 }
1159
1160 /*
1161 * dkwedge_lookup:
1162 *
1163 * Look up a dkwedge_softc based on the provided dev_t.
1164 */
1165 static struct dkwedge_softc *
1166 dkwedge_lookup(dev_t dev)
1167 {
1168 const int unit = minor(dev);
1169 struct dkwedge_softc *sc;
1170
1171 rw_enter(&dkwedges_lock, RW_READER);
1172 if (unit < 0 || unit >= ndkwedges)
1173 sc = NULL;
1174 else
1175 sc = dkwedges[unit];
1176 rw_exit(&dkwedges_lock);
1177
1178 return sc;
1179 }
1180
1181 static int
1182 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
1183 {
1184 struct vnode *vp;
1185 int error;
1186
1187 error = bdevvp(dev, &vp);
1188 if (error)
1189 return error;
1190
1191 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1192 if (error) {
1193 vrele(vp);
1194 return error;
1195 }
1196 error = VOP_OPEN(vp, mode, NOCRED);
1197 if (error) {
1198 vput(vp);
1199 return error;
1200 }
1201
1202 /* VOP_OPEN() doesn't do this for us. */
1203 if (mode & FWRITE) {
1204 mutex_enter(vp->v_interlock);
1205 vp->v_writecount++;
1206 mutex_exit(vp->v_interlock);
1207 }
1208
1209 VOP_UNLOCK(vp);
1210
1211 *vpp = vp;
1212
1213 return 0;
1214 }
1215
1216 static int
1217 dk_close_parent(struct vnode *vp, int mode)
1218 {
1219 int error;
1220
1221 error = vn_close(vp, mode, NOCRED);
1222 return error;
1223 }
1224
1225 /*
1226 * dkunit: [devsw entry point]
1227 *
1228 * Return the autoconf device_t unit number of a wedge by its
1229 * devsw dev_t number, or -1 if there is none.
1230 *
1231 * XXX This is a temporary hack until dkwedge numbering is made to
1232 * correspond 1:1 to autoconf device numbering.
1233 */
1234 static int
1235 dkunit(dev_t dev)
1236 {
1237 int mn = minor(dev);
1238 struct dkwedge_softc *sc;
1239 device_t dv;
1240 int unit = -1;
1241
1242 if (mn < 0)
1243 return -1;
1244
1245 rw_enter(&dkwedges_lock, RW_READER);
1246 if (mn < ndkwedges &&
1247 (sc = dkwedges[minor(dev)]) != NULL &&
1248 (dv = sc->sc_dev) != NULL)
1249 unit = device_unit(dv);
1250 rw_exit(&dkwedges_lock);
1251
1252 return unit;
1253 }
1254
1255 /*
1256 * dkopen: [devsw entry point]
1257 *
1258 * Open a wedge.
1259 */
1260 static int
1261 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
1262 {
1263 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1264 int error = 0;
1265
1266 if (sc == NULL)
1267 return ENXIO;
1268 if (sc->sc_state != DKW_STATE_RUNNING)
1269 return ENXIO;
1270
1271 /*
1272 * We go through a complicated little dance to only open the parent
1273 * vnode once per wedge, no matter how many times the wedge is
1274 * opened. The reason? We see one dkopen() per open call, but
1275 * only dkclose() on the last close.
1276 */
1277 mutex_enter(&sc->sc_dk.dk_openlock);
1278 mutex_enter(&sc->sc_parent->dk_rawlock);
1279 if (sc->sc_dk.dk_openmask == 0) {
1280 error = dkfirstopen(sc, flags);
1281 if (error)
1282 goto popen_fail;
1283 }
1284 KASSERT(sc->sc_mode != 0);
1285 if (flags & ~sc->sc_mode & FWRITE) {
1286 error = EROFS;
1287 goto popen_fail;
1288 }
1289 if (fmt == S_IFCHR)
1290 sc->sc_dk.dk_copenmask |= 1;
1291 else
1292 sc->sc_dk.dk_bopenmask |= 1;
1293 sc->sc_dk.dk_openmask =
1294 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1295
1296 popen_fail:
1297 mutex_exit(&sc->sc_parent->dk_rawlock);
1298 mutex_exit(&sc->sc_dk.dk_openlock);
1299 return error;
1300 }
1301
1302 static int
1303 dkfirstopen(struct dkwedge_softc *sc, int flags)
1304 {
1305 struct dkwedge_softc *nsc;
1306 struct vnode *vp;
1307 int mode;
1308 int error;
1309
1310 KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
1311 KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
1312
1313 if (sc->sc_parent->dk_rawopens == 0) {
1314 KASSERT(sc->sc_parent->dk_rawvp == NULL);
1315 /*
1316 * Try open read-write. If this fails for EROFS
1317 * and wedge is read-only, retry to open read-only.
1318 */
1319 mode = FREAD | FWRITE;
1320 error = dk_open_parent(sc->sc_pdev, mode, &vp);
1321 if (error == EROFS && (flags & FWRITE) == 0) {
1322 mode &= ~FWRITE;
1323 error = dk_open_parent(sc->sc_pdev, mode, &vp);
1324 }
1325 if (error)
1326 return error;
1327 KASSERT(vp != NULL);
1328 sc->sc_parent->dk_rawvp = vp;
1329 } else {
1330 /*
1331 * Retrieve mode from an already opened wedge.
1332 *
1333 * At this point, dk_rawopens is bounded by the number
1334 * of dkwedge devices in the system, which is limited
1335 * by autoconf device numbering to INT_MAX. Since
1336 * dk_rawopens is unsigned, this can't overflow.
1337 */
1338 KASSERT(sc->sc_parent->dk_rawopens < UINT_MAX);
1339 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1340 mode = 0;
1341 LIST_FOREACH(nsc, &sc->sc_parent->dk_wedges, sc_plink) {
1342 if (nsc == sc || nsc->sc_dk.dk_openmask == 0)
1343 continue;
1344 mode = nsc->sc_mode;
1345 break;
1346 }
1347 }
1348 sc->sc_mode = mode;
1349 sc->sc_parent->dk_rawopens++;
1350
1351 return 0;
1352 }
1353
1354 static void
1355 dklastclose(struct dkwedge_softc *sc)
1356 {
1357
1358 KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
1359 KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
1360 KASSERT(sc->sc_parent->dk_rawopens > 0);
1361 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1362
1363 if (--sc->sc_parent->dk_rawopens == 0) {
1364 struct vnode *const vp = sc->sc_parent->dk_rawvp;
1365 const int mode = sc->sc_mode;
1366
1367 sc->sc_parent->dk_rawvp = NULL;
1368 sc->sc_mode = 0;
1369
1370 dk_close_parent(vp, mode);
1371 }
1372 }
1373
1374 /*
1375 * dkclose: [devsw entry point]
1376 *
1377 * Close a wedge.
1378 */
1379 static int
1380 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1381 {
1382 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1383
1384 if (sc == NULL)
1385 return ENXIO;
1386 if (sc->sc_state != DKW_STATE_RUNNING)
1387 return ENXIO;
1388
1389 mutex_enter(&sc->sc_dk.dk_openlock);
1390 mutex_enter(&sc->sc_parent->dk_rawlock);
1391
1392 KASSERT(sc->sc_dk.dk_openmask != 0);
1393
1394 if (fmt == S_IFCHR)
1395 sc->sc_dk.dk_copenmask &= ~1;
1396 else
1397 sc->sc_dk.dk_bopenmask &= ~1;
1398 sc->sc_dk.dk_openmask =
1399 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1400
1401 if (sc->sc_dk.dk_openmask == 0) {
1402 dklastclose(sc);
1403 }
1404
1405 mutex_exit(&sc->sc_parent->dk_rawlock);
1406 mutex_exit(&sc->sc_dk.dk_openlock);
1407
1408 return 0;
1409 }
1410
1411 /*
1412 * dkcancel: [devsw entry point]
1413 *
1414 * Cancel any pending I/O operations waiting on a wedge.
1415 */
1416 static int
1417 dkcancel(dev_t dev, int flags, int fmt, struct lwp *l)
1418 {
1419 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1420
1421 KASSERT(sc != NULL);
1422 KASSERT(sc->sc_dev != NULL);
1423
1424 /*
1425 * Disk I/O is expected to complete or fail within a reasonable
1426 * timeframe -- it's storage, not communication. Further, the
1427 * character and block device interface guarantees that prior
1428 * reads and writes have completed or failed by the time close
1429 * returns -- we are not to cancel them here. If the parent
1430 * device's hardware is gone, the parent driver can make them
1431 * fail. Nothing for dk(4) itself to do.
1432 */
1433
1434 return 0;
1435 }
1436
1437 /*
1438 * dkstrategy: [devsw entry point]
1439 *
1440 * Perform I/O based on the wedge I/O strategy.
1441 */
1442 static void
1443 dkstrategy(struct buf *bp)
1444 {
1445 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1446 uint64_t p_size, p_offset;
1447
1448 if (sc == NULL) {
1449 bp->b_error = ENXIO;
1450 goto done;
1451 }
1452
1453 if (sc->sc_state != DKW_STATE_RUNNING ||
1454 sc->sc_parent->dk_rawvp == NULL) {
1455 bp->b_error = ENXIO;
1456 goto done;
1457 }
1458
1459 /* If it's an empty transfer, wake up the top half now. */
1460 if (bp->b_bcount == 0)
1461 goto done;
1462
1463 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1464 p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1465
1466 /* Make sure it's in-range. */
1467 if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1468 goto done;
1469
1470 /* Translate it to the parent's raw LBA. */
1471 bp->b_rawblkno = bp->b_blkno + p_offset;
1472
1473 /* Place it in the queue and start I/O on the unit. */
1474 mutex_enter(&sc->sc_iolock);
1475 sc->sc_iopend++;
1476 disk_wait(&sc->sc_dk);
1477 bufq_put(sc->sc_bufq, bp);
1478 mutex_exit(&sc->sc_iolock);
1479
1480 dkstart(sc);
1481 return;
1482
1483 done:
1484 bp->b_resid = bp->b_bcount;
1485 biodone(bp);
1486 }
1487
1488 /*
1489 * dkstart:
1490 *
1491 * Start I/O that has been enqueued on the wedge.
1492 */
1493 static void
1494 dkstart(struct dkwedge_softc *sc)
1495 {
1496 struct vnode *vp;
1497 struct buf *bp, *nbp;
1498
1499 mutex_enter(&sc->sc_iolock);
1500
1501 /* Do as much work as has been enqueued. */
1502 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1503 if (sc->sc_iostop) {
1504 (void) bufq_get(sc->sc_bufq);
1505 if (--sc->sc_iopend == 0)
1506 cv_broadcast(&sc->sc_dkdrn);
1507 mutex_exit(&sc->sc_iolock);
1508 bp->b_error = ENXIO;
1509 bp->b_resid = bp->b_bcount;
1510 biodone(bp);
1511 mutex_enter(&sc->sc_iolock);
1512 continue;
1513 }
1514
1515 /* fetch an I/O buf with sc_iolock dropped */
1516 mutex_exit(&sc->sc_iolock);
1517 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1518 mutex_enter(&sc->sc_iolock);
1519 if (nbp == NULL) {
1520 /*
1521 * No resources to run this request; leave the
1522 * buffer queued up, and schedule a timer to
1523 * restart the queue in 1/2 a second.
1524 */
1525 if (!sc->sc_iostop)
1526 callout_schedule(&sc->sc_restart_ch, hz/2);
1527 break;
1528 }
1529
1530 /*
1531 * fetch buf, this can fail if another thread
1532 * has already processed the queue, it can also
1533 * return a completely different buf.
1534 */
1535 bp = bufq_get(sc->sc_bufq);
1536 if (bp == NULL) {
1537 mutex_exit(&sc->sc_iolock);
1538 putiobuf(nbp);
1539 mutex_enter(&sc->sc_iolock);
1540 continue;
1541 }
1542
1543 /* Instrumentation. */
1544 disk_busy(&sc->sc_dk);
1545
1546 /* release lock for VOP_STRATEGY */
1547 mutex_exit(&sc->sc_iolock);
1548
1549 nbp->b_data = bp->b_data;
1550 nbp->b_flags = bp->b_flags;
1551 nbp->b_oflags = bp->b_oflags;
1552 nbp->b_cflags = bp->b_cflags;
1553 nbp->b_iodone = dkiodone;
1554 nbp->b_proc = bp->b_proc;
1555 nbp->b_blkno = bp->b_rawblkno;
1556 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1557 nbp->b_bcount = bp->b_bcount;
1558 nbp->b_private = bp;
1559 BIO_COPYPRIO(nbp, bp);
1560
1561 vp = nbp->b_vp;
1562 if ((nbp->b_flags & B_READ) == 0) {
1563 mutex_enter(vp->v_interlock);
1564 vp->v_numoutput++;
1565 mutex_exit(vp->v_interlock);
1566 }
1567 VOP_STRATEGY(vp, nbp);
1568
1569 mutex_enter(&sc->sc_iolock);
1570 }
1571
1572 mutex_exit(&sc->sc_iolock);
1573 }
1574
1575 /*
1576 * dkiodone:
1577 *
1578 * I/O to a wedge has completed; alert the top half.
1579 */
1580 static void
1581 dkiodone(struct buf *bp)
1582 {
1583 struct buf *obp = bp->b_private;
1584 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1585
1586 if (bp->b_error != 0)
1587 obp->b_error = bp->b_error;
1588 obp->b_resid = bp->b_resid;
1589 putiobuf(bp);
1590
1591 mutex_enter(&sc->sc_iolock);
1592 if (--sc->sc_iopend == 0)
1593 cv_broadcast(&sc->sc_dkdrn);
1594
1595 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1596 obp->b_flags & B_READ);
1597 mutex_exit(&sc->sc_iolock);
1598
1599 biodone(obp);
1600
1601 /* Kick the queue in case there is more work we can do. */
1602 dkstart(sc);
1603 }
1604
1605 /*
1606 * dkrestart:
1607 *
1608 * Restart the work queue after it was stalled due to
1609 * a resource shortage. Invoked via a callout.
1610 */
1611 static void
1612 dkrestart(void *v)
1613 {
1614 struct dkwedge_softc *sc = v;
1615
1616 dkstart(sc);
1617 }
1618
1619 /*
1620 * dkminphys:
1621 *
1622 * Call parent's minphys function.
1623 */
1624 static void
1625 dkminphys(struct buf *bp)
1626 {
1627 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1628 dev_t dev;
1629
1630 dev = bp->b_dev;
1631 bp->b_dev = sc->sc_pdev;
1632 if (sc->sc_parent->dk_driver && sc->sc_parent->dk_driver->d_minphys)
1633 (*sc->sc_parent->dk_driver->d_minphys)(bp);
1634 else
1635 minphys(bp);
1636 bp->b_dev = dev;
1637 }
1638
1639 /*
1640 * dkread: [devsw entry point]
1641 *
1642 * Read from a wedge.
1643 */
1644 static int
1645 dkread(dev_t dev, struct uio *uio, int flags)
1646 {
1647 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1648
1649 if (sc == NULL)
1650 return ENXIO;
1651 if (sc->sc_state != DKW_STATE_RUNNING)
1652 return ENXIO;
1653
1654 return physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio);
1655 }
1656
1657 /*
1658 * dkwrite: [devsw entry point]
1659 *
1660 * Write to a wedge.
1661 */
1662 static int
1663 dkwrite(dev_t dev, struct uio *uio, int flags)
1664 {
1665 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1666
1667 if (sc == NULL)
1668 return ENXIO;
1669 if (sc->sc_state != DKW_STATE_RUNNING)
1670 return ENXIO;
1671
1672 return physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio);
1673 }
1674
1675 /*
1676 * dkioctl: [devsw entry point]
1677 *
1678 * Perform an ioctl request on a wedge.
1679 */
1680 static int
1681 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1682 {
1683 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1684 int error = 0;
1685
1686 if (sc == NULL)
1687 return ENXIO;
1688 if (sc->sc_state != DKW_STATE_RUNNING)
1689 return ENXIO;
1690 if (sc->sc_parent->dk_rawvp == NULL)
1691 return ENXIO;
1692
1693 /*
1694 * We pass NODEV instead of our device to indicate we don't
1695 * want to handle disklabel ioctls
1696 */
1697 error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
1698 if (error != EPASSTHROUGH)
1699 return error;
1700
1701 error = 0;
1702
1703 switch (cmd) {
1704 case DIOCGSTRATEGY:
1705 case DIOCGCACHE:
1706 case DIOCCACHESYNC:
1707 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, data, flag,
1708 l != NULL ? l->l_cred : NOCRED);
1709 break;
1710 case DIOCGWEDGEINFO: {
1711 struct dkwedge_info *dkw = data;
1712
1713 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1714 sizeof(dkw->dkw_devname));
1715 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1716 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1717 strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
1718 sizeof(dkw->dkw_parent));
1719 dkw->dkw_offset = sc->sc_offset;
1720 dkw->dkw_size = dkwedge_size(sc);
1721 strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
1722
1723 break;
1724 }
1725 case DIOCGSECTORALIGN: {
1726 struct disk_sectoralign *dsa = data;
1727 uint32_t r;
1728
1729 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, dsa, flag,
1730 l != NULL ? l->l_cred : NOCRED);
1731 if (error)
1732 break;
1733
1734 r = sc->sc_offset % dsa->dsa_alignment;
1735 if (r < dsa->dsa_firstaligned)
1736 dsa->dsa_firstaligned = dsa->dsa_firstaligned - r;
1737 else
1738 dsa->dsa_firstaligned = (dsa->dsa_firstaligned +
1739 dsa->dsa_alignment) - r;
1740 break;
1741 }
1742 default:
1743 error = ENOTTY;
1744 }
1745
1746 return error;
1747 }
1748
1749 /*
1750 * dkdiscard: [devsw entry point]
1751 *
1752 * Perform a discard-range request on a wedge.
1753 */
1754 static int
1755 dkdiscard(dev_t dev, off_t pos, off_t len)
1756 {
1757 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1758 uint64_t size = dkwedge_size(sc);
1759 unsigned shift;
1760 off_t offset, maxlen;
1761 int error;
1762
1763 if (sc == NULL)
1764 return ENXIO;
1765 if (sc->sc_state != DKW_STATE_RUNNING)
1766 return ENXIO;
1767 if (sc->sc_parent->dk_rawvp == NULL)
1768 return ENXIO;
1769
1770 /* XXX check bounds on size/offset up front */
1771 shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
1772 KASSERT(__type_fit(off_t, size));
1773 KASSERT(__type_fit(off_t, sc->sc_offset));
1774 KASSERT(0 <= sc->sc_offset);
1775 KASSERT(size <= (__type_max(off_t) >> shift));
1776 KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - size));
1777 offset = ((off_t)sc->sc_offset << shift);
1778 maxlen = ((off_t)size << shift);
1779
1780 if (len > maxlen)
1781 return EINVAL;
1782 if (pos > (maxlen - len))
1783 return EINVAL;
1784
1785 pos += offset;
1786
1787 vn_lock(sc->sc_parent->dk_rawvp, LK_EXCLUSIVE | LK_RETRY);
1788 error = VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
1789 VOP_UNLOCK(sc->sc_parent->dk_rawvp);
1790
1791 return error;
1792 }
1793
1794 /*
1795 * dksize: [devsw entry point]
1796 *
1797 * Query the size of a wedge for the purpose of performing a dump
1798 * or for swapping to.
1799 */
1800 static int
1801 dksize(dev_t dev)
1802 {
1803 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1804 uint64_t p_size;
1805 int rv = -1;
1806
1807 if (sc == NULL)
1808 return -1;
1809 if (sc->sc_state != DKW_STATE_RUNNING)
1810 return -1;
1811
1812 mutex_enter(&sc->sc_dk.dk_openlock);
1813 mutex_enter(&sc->sc_parent->dk_rawlock);
1814
1815 /* Our content type is static, no need to open the device. */
1816
1817 p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1818 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1819 /* Saturate if we are larger than INT_MAX. */
1820 if (p_size > INT_MAX)
1821 rv = INT_MAX;
1822 else
1823 rv = (int)p_size;
1824 }
1825
1826 mutex_exit(&sc->sc_parent->dk_rawlock);
1827 mutex_exit(&sc->sc_dk.dk_openlock);
1828
1829 return rv;
1830 }
1831
1832 /*
1833 * dkdump: [devsw entry point]
1834 *
1835 * Perform a crash dump to a wedge.
1836 */
1837 static int
1838 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1839 {
1840 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1841 const struct bdevsw *bdev;
1842 uint64_t p_size, p_offset;
1843 int rv = 0;
1844
1845 if (sc == NULL)
1846 return ENXIO;
1847 if (sc->sc_state != DKW_STATE_RUNNING)
1848 return ENXIO;
1849
1850 mutex_enter(&sc->sc_dk.dk_openlock);
1851 mutex_enter(&sc->sc_parent->dk_rawlock);
1852
1853 /* Our content type is static, no need to open the device. */
1854
1855 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
1856 strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0 &&
1857 strcmp(sc->sc_ptype, DKW_PTYPE_CGD) != 0) {
1858 rv = ENXIO;
1859 goto out;
1860 }
1861 if (size % DEV_BSIZE != 0) {
1862 rv = EINVAL;
1863 goto out;
1864 }
1865
1866 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1867 p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1868
1869 if (blkno < 0 || blkno + size/DEV_BSIZE > p_size) {
1870 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1871 "p_size (%" PRIu64 ")\n", __func__, blkno,
1872 size/DEV_BSIZE, p_size);
1873 rv = EINVAL;
1874 goto out;
1875 }
1876
1877 bdev = bdevsw_lookup(sc->sc_pdev);
1878 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + p_offset, va, size);
1879
1880 out:
1881 mutex_exit(&sc->sc_parent->dk_rawlock);
1882 mutex_exit(&sc->sc_dk.dk_openlock);
1883
1884 return rv;
1885 }
1886
1887 /*
1888 * config glue
1889 */
1890
1891 /*
1892 * dkwedge_find_partition
1893 *
1894 * Find wedge corresponding to the specified parent name
1895 * and offset/length.
1896 */
1897 device_t
1898 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
1899 {
1900 struct dkwedge_softc *sc;
1901 int i;
1902 device_t wedge = NULL;
1903
1904 rw_enter(&dkwedges_lock, RW_READER);
1905 for (i = 0; i < ndkwedges; i++) {
1906 if ((sc = dkwedges[i]) == NULL)
1907 continue;
1908 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
1909 sc->sc_offset == startblk &&
1910 dkwedge_size(sc) == nblks) {
1911 if (wedge) {
1912 printf("WARNING: double match for boot wedge "
1913 "(%s, %s)\n",
1914 device_xname(wedge),
1915 device_xname(sc->sc_dev));
1916 continue;
1917 }
1918 wedge = sc->sc_dev;
1919 }
1920 }
1921 rw_exit(&dkwedges_lock);
1922
1923 return wedge;
1924 }
1925
1926 const char *
1927 dkwedge_get_parent_name(dev_t dev)
1928 {
1929 /* XXX: perhaps do this in lookup? */
1930 int bmaj = bdevsw_lookup_major(&dk_bdevsw);
1931 int cmaj = cdevsw_lookup_major(&dk_cdevsw);
1932
1933 if (major(dev) != bmaj && major(dev) != cmaj)
1934 return NULL;
1935 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1936 if (sc == NULL)
1937 return NULL;
1938 return sc->sc_parent->dk_name;
1939 }
1940