Home | History | Annotate | Line # | Download | only in dkwedge
dk.c revision 1.151
      1 /*	$NetBSD: dk.c,v 1.151 2023/04/29 06:23:37 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.151 2023/04/29 06:23:37 riastradh Exp $");
     34 
     35 #ifdef _KERNEL_OPT
     36 #include "opt_dkwedge.h"
     37 #endif
     38 
     39 #include <sys/param.h>
     40 #include <sys/types.h>
     41 
     42 #include <sys/buf.h>
     43 #include <sys/bufq.h>
     44 #include <sys/callout.h>
     45 #include <sys/conf.h>
     46 #include <sys/device.h>
     47 #include <sys/disk.h>
     48 #include <sys/disklabel.h>
     49 #include <sys/errno.h>
     50 #include <sys/fcntl.h>
     51 #include <sys/ioctl.h>
     52 #include <sys/kauth.h>
     53 #include <sys/kernel.h>
     54 #include <sys/malloc.h>
     55 #include <sys/pool.h>
     56 #include <sys/proc.h>
     57 #include <sys/rwlock.h>
     58 #include <sys/stat.h>
     59 #include <sys/systm.h>
     60 #include <sys/vnode.h>
     61 
     62 #include <miscfs/specfs/specdev.h>
     63 
     64 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
     65 
     66 typedef enum {
     67 	DKW_STATE_LARVAL	= 0,
     68 	DKW_STATE_RUNNING	= 1,
     69 	DKW_STATE_DYING		= 2,
     70 	DKW_STATE_DEAD		= 666
     71 } dkwedge_state_t;
     72 
     73 struct dkwedge_softc {
     74 	device_t	sc_dev;	/* pointer to our pseudo-device */
     75 	struct cfdata	sc_cfdata;	/* our cfdata structure */
     76 	uint8_t		sc_wname[128];	/* wedge name (Unicode, UTF-8) */
     77 
     78 	dkwedge_state_t sc_state;	/* state this wedge is in */
     79 
     80 	struct disk	*sc_parent;	/* parent disk */
     81 	daddr_t		sc_offset;	/* LBA offset of wedge in parent */
     82 	krwlock_t	sc_sizelock;
     83 	uint64_t	sc_size;	/* size of wedge in blocks */
     84 	char		sc_ptype[32];	/* partition type */
     85 	dev_t		sc_pdev;	/* cached parent's dev_t */
     86 					/* link on parent's wedge list */
     87 	LIST_ENTRY(dkwedge_softc) sc_plink;
     88 
     89 	struct disk	sc_dk;		/* our own disk structure */
     90 	struct bufq_state *sc_bufq;	/* buffer queue */
     91 	struct callout	sc_restart_ch;	/* callout to restart I/O */
     92 
     93 	kmutex_t	sc_iolock;
     94 	kcondvar_t	sc_dkdrn;
     95 	u_int		sc_iopend;	/* I/Os pending */
     96 	bool		sc_iostop;	/* don't schedule restart */
     97 	int		sc_mode;	/* parent open mode */
     98 };
     99 
    100 static int	dkwedge_match(device_t, cfdata_t, void *);
    101 static void	dkwedge_attach(device_t, device_t, void *);
    102 static int	dkwedge_detach(device_t, int);
    103 
    104 static void	dkstart(struct dkwedge_softc *);
    105 static void	dkiodone(struct buf *);
    106 static void	dkrestart(void *);
    107 static void	dkminphys(struct buf *);
    108 
    109 static int	dkfirstopen(struct dkwedge_softc *, int);
    110 static void	dklastclose(struct dkwedge_softc *);
    111 static int	dkwedge_detach(device_t, int);
    112 static void	dkwedge_delall1(struct disk *, bool);
    113 static int	dkwedge_del1(struct dkwedge_info *, int);
    114 static int	dk_open_parent(dev_t, int, struct vnode **);
    115 static int	dk_close_parent(struct vnode *, int);
    116 
    117 static int	dkunit(dev_t);
    118 
    119 static dev_type_open(dkopen);
    120 static dev_type_close(dkclose);
    121 static dev_type_cancel(dkcancel);
    122 static dev_type_read(dkread);
    123 static dev_type_write(dkwrite);
    124 static dev_type_ioctl(dkioctl);
    125 static dev_type_strategy(dkstrategy);
    126 static dev_type_dump(dkdump);
    127 static dev_type_size(dksize);
    128 static dev_type_discard(dkdiscard);
    129 
    130 CFDRIVER_DECL(dk, DV_DISK, NULL);
    131 CFATTACH_DECL3_NEW(dk, 0,
    132     dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
    133     DVF_DETACH_SHUTDOWN);
    134 
    135 const struct bdevsw dk_bdevsw = {
    136 	.d_open = dkopen,
    137 	.d_close = dkclose,
    138 	.d_cancel = dkcancel,
    139 	.d_strategy = dkstrategy,
    140 	.d_ioctl = dkioctl,
    141 	.d_dump = dkdump,
    142 	.d_psize = dksize,
    143 	.d_discard = dkdiscard,
    144 	.d_cfdriver = &dk_cd,
    145 	.d_devtounit = dkunit,
    146 	.d_flag = D_DISK | D_MPSAFE
    147 };
    148 
    149 const struct cdevsw dk_cdevsw = {
    150 	.d_open = dkopen,
    151 	.d_close = dkclose,
    152 	.d_cancel = dkcancel,
    153 	.d_read = dkread,
    154 	.d_write = dkwrite,
    155 	.d_ioctl = dkioctl,
    156 	.d_stop = nostop,
    157 	.d_tty = notty,
    158 	.d_poll = nopoll,
    159 	.d_mmap = nommap,
    160 	.d_kqfilter = nokqfilter,
    161 	.d_discard = dkdiscard,
    162 	.d_cfdriver = &dk_cd,
    163 	.d_devtounit = dkunit,
    164 	.d_flag = D_DISK | D_MPSAFE
    165 };
    166 
    167 static struct dkwedge_softc **dkwedges;
    168 static u_int ndkwedges;
    169 static krwlock_t dkwedges_lock;
    170 
    171 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
    172 static krwlock_t dkwedge_discovery_methods_lock;
    173 
    174 /*
    175  * dkwedge_match:
    176  *
    177  *	Autoconfiguration match function for pseudo-device glue.
    178  */
    179 static int
    180 dkwedge_match(device_t parent, cfdata_t match, void *aux)
    181 {
    182 
    183 	/* Pseudo-device; always present. */
    184 	return 1;
    185 }
    186 
    187 /*
    188  * dkwedge_attach:
    189  *
    190  *	Autoconfiguration attach function for pseudo-device glue.
    191  */
    192 static void
    193 dkwedge_attach(device_t parent, device_t self, void *aux)
    194 {
    195 
    196 	if (!pmf_device_register(self, NULL, NULL))
    197 		aprint_error_dev(self, "couldn't establish power handler\n");
    198 }
    199 
    200 /*
    201  * dkwedge_wait_drain:
    202  *
    203  *	Wait for I/O on the wedge to drain.
    204  */
    205 static void
    206 dkwedge_wait_drain(struct dkwedge_softc *sc)
    207 {
    208 
    209 	mutex_enter(&sc->sc_iolock);
    210 	while (sc->sc_iopend != 0)
    211 		cv_wait(&sc->sc_dkdrn, &sc->sc_iolock);
    212 	mutex_exit(&sc->sc_iolock);
    213 }
    214 
    215 /*
    216  * dkwedge_compute_pdev:
    217  *
    218  *	Compute the parent disk's dev_t.
    219  */
    220 static int
    221 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
    222 {
    223 	const char *name, *cp;
    224 	devmajor_t pmaj;
    225 	int punit;
    226 	char devname[16];
    227 
    228 	name = pname;
    229 	switch (type) {
    230 	case VBLK:
    231 		pmaj = devsw_name2blk(name, devname, sizeof(devname));
    232 		break;
    233 	case VCHR:
    234 		pmaj = devsw_name2chr(name, devname, sizeof(devname));
    235 		break;
    236 	default:
    237 		pmaj = NODEVMAJOR;
    238 		break;
    239 	}
    240 	if (pmaj == NODEVMAJOR)
    241 		return ENXIO;
    242 
    243 	name += strlen(devname);
    244 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
    245 		punit = (punit * 10) + (*cp - '0');
    246 	if (cp == name) {
    247 		/* Invalid parent disk name. */
    248 		return ENXIO;
    249 	}
    250 
    251 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
    252 
    253 	return 0;
    254 }
    255 
    256 /*
    257  * dkwedge_array_expand:
    258  *
    259  *	Expand the dkwedges array.
    260  *
    261  *	Releases and reacquires dkwedges_lock as a writer.
    262  */
    263 static int
    264 dkwedge_array_expand(void)
    265 {
    266 
    267 	const unsigned incr = 16;
    268 	unsigned newcnt, oldcnt;
    269 	struct dkwedge_softc **newarray = NULL, **oldarray = NULL;
    270 
    271 	KASSERT(rw_write_held(&dkwedges_lock));
    272 
    273 	oldcnt = ndkwedges;
    274 	oldarray = dkwedges;
    275 
    276 	if (oldcnt >= INT_MAX - incr)
    277 		return ENFILE;	/* XXX */
    278 	newcnt = oldcnt + incr;
    279 
    280 	rw_exit(&dkwedges_lock);
    281 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
    282 	    M_WAITOK|M_ZERO);
    283 	rw_enter(&dkwedges_lock, RW_WRITER);
    284 
    285 	if (ndkwedges != oldcnt || dkwedges != oldarray) {
    286 		oldarray = NULL; /* already recycled */
    287 		goto out;
    288 	}
    289 
    290 	if (oldarray != NULL)
    291 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
    292 	dkwedges = newarray;
    293 	newarray = NULL;	/* transferred to dkwedges */
    294 	ndkwedges = newcnt;
    295 
    296 out:	rw_exit(&dkwedges_lock);
    297 	if (oldarray != NULL)
    298 		free(oldarray, M_DKWEDGE);
    299 	if (newarray != NULL)
    300 		free(newarray, M_DKWEDGE);
    301 	rw_enter(&dkwedges_lock, RW_WRITER);
    302 	return 0;
    303 }
    304 
    305 static void
    306 dkwedge_size_init(struct dkwedge_softc *sc, uint64_t size)
    307 {
    308 
    309 	rw_init(&sc->sc_sizelock);
    310 	sc->sc_size = size;
    311 }
    312 
    313 static void
    314 dkwedge_size_fini(struct dkwedge_softc *sc)
    315 {
    316 
    317 	rw_destroy(&sc->sc_sizelock);
    318 }
    319 
    320 static uint64_t
    321 dkwedge_size(struct dkwedge_softc *sc)
    322 {
    323 	uint64_t size;
    324 
    325 	rw_enter(&sc->sc_sizelock, RW_READER);
    326 	size = sc->sc_size;
    327 	rw_exit(&sc->sc_sizelock);
    328 
    329 	return size;
    330 }
    331 
    332 static void
    333 dkwedge_size_increase(struct dkwedge_softc *sc, uint64_t size)
    334 {
    335 
    336 	KASSERT(mutex_owned(&sc->sc_parent->dk_openlock));
    337 
    338 	rw_enter(&sc->sc_sizelock, RW_WRITER);
    339 	KASSERTMSG(size >= sc->sc_size,
    340 	    "decreasing dkwedge size from %"PRIu64" to %"PRIu64,
    341 	    sc->sc_size, size);
    342 	sc->sc_size = size;
    343 	rw_exit(&sc->sc_sizelock);
    344 }
    345 
    346 static void
    347 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
    348 {
    349 	struct disk *dk = &sc->sc_dk;
    350 	struct disk_geom *dg = &dk->dk_geom;
    351 
    352 	KASSERT(mutex_owned(&pdk->dk_openlock));
    353 
    354 	memset(dg, 0, sizeof(*dg));
    355 
    356 	dg->dg_secperunit = dkwedge_size(sc);
    357 	dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
    358 
    359 	/* fake numbers, 1 cylinder is 1 MB with default sector size */
    360 	dg->dg_nsectors = 32;
    361 	dg->dg_ntracks = 64;
    362 	dg->dg_ncylinders =
    363 	    dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
    364 
    365 	disk_set_info(sc->sc_dev, dk, NULL);
    366 }
    367 
    368 /*
    369  * dkwedge_add:		[exported function]
    370  *
    371  *	Add a disk wedge based on the provided information.
    372  *
    373  *	The incoming dkw_devname[] is ignored, instead being
    374  *	filled in and returned to the caller.
    375  */
    376 int
    377 dkwedge_add(struct dkwedge_info *dkw)
    378 {
    379 	struct dkwedge_softc *sc, *lsc;
    380 	struct disk *pdk;
    381 	u_int unit;
    382 	int error;
    383 	dev_t pdev;
    384 
    385 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
    386 	pdk = disk_find(dkw->dkw_parent);
    387 	if (pdk == NULL)
    388 		return ENXIO;
    389 
    390 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
    391 	if (error)
    392 		return error;
    393 
    394 	if (dkw->dkw_offset < 0)
    395 		return EINVAL;
    396 
    397 	/*
    398 	 * Check for an existing wedge at the same disk offset. Allow
    399 	 * updating a wedge if the only change is the size, and the new
    400 	 * size is larger than the old.
    401 	 */
    402 	sc = NULL;
    403 	mutex_enter(&pdk->dk_openlock);
    404 	LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    405 		if (lsc->sc_offset != dkw->dkw_offset)
    406 			continue;
    407 		if (strcmp(lsc->sc_wname, dkw->dkw_wname) != 0)
    408 			break;
    409 		if (strcmp(lsc->sc_ptype, dkw->dkw_ptype) != 0)
    410 			break;
    411 		if (dkwedge_size(lsc) > dkw->dkw_size)
    412 			break;
    413 
    414 		sc = lsc;
    415 		dkwedge_size_increase(sc, dkw->dkw_size);
    416 		dk_set_geometry(sc, pdk);
    417 
    418 		break;
    419 	}
    420 	mutex_exit(&pdk->dk_openlock);
    421 
    422 	if (sc != NULL)
    423 		goto announce;
    424 
    425 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
    426 	sc->sc_state = DKW_STATE_LARVAL;
    427 	sc->sc_parent = pdk;
    428 	sc->sc_pdev = pdev;
    429 	sc->sc_offset = dkw->dkw_offset;
    430 	dkwedge_size_init(sc, dkw->dkw_size);
    431 
    432 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
    433 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
    434 
    435 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
    436 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
    437 
    438 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
    439 
    440 	callout_init(&sc->sc_restart_ch, 0);
    441 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
    442 
    443 	mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
    444 	cv_init(&sc->sc_dkdrn, "dkdrn");
    445 
    446 	/*
    447 	 * Wedge will be added; increment the wedge count for the parent.
    448 	 * Only allow this to happen if RAW_PART is the only thing open.
    449 	 */
    450 	mutex_enter(&pdk->dk_openlock);
    451 	if (pdk->dk_openmask & ~(1 << RAW_PART))
    452 		error = EBUSY;
    453 	else {
    454 		/* Check for wedge overlap. */
    455 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    456 			/* XXX arithmetic overflow */
    457 			uint64_t size = dkwedge_size(sc);
    458 			uint64_t lsize = dkwedge_size(lsc);
    459 			daddr_t lastblk = sc->sc_offset + size - 1;
    460 			daddr_t llastblk = lsc->sc_offset + lsize - 1;
    461 
    462 			if (sc->sc_offset >= lsc->sc_offset &&
    463 			    sc->sc_offset <= llastblk) {
    464 				/* Overlaps the tail of the existing wedge. */
    465 				break;
    466 			}
    467 			if (lastblk >= lsc->sc_offset &&
    468 			    lastblk <= llastblk) {
    469 				/* Overlaps the head of the existing wedge. */
    470 			    	break;
    471 			}
    472 		}
    473 		if (lsc != NULL) {
    474 			if (sc->sc_offset == lsc->sc_offset &&
    475 			    dkwedge_size(sc) == dkwedge_size(lsc) &&
    476 			    strcmp(sc->sc_wname, lsc->sc_wname) == 0)
    477 				error = EEXIST;
    478 			else
    479 				error = EINVAL;
    480 		} else {
    481 			pdk->dk_nwedges++;
    482 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
    483 		}
    484 	}
    485 	mutex_exit(&pdk->dk_openlock);
    486 	if (error) {
    487 		cv_destroy(&sc->sc_dkdrn);
    488 		mutex_destroy(&sc->sc_iolock);
    489 		bufq_free(sc->sc_bufq);
    490 		dkwedge_size_fini(sc);
    491 		free(sc, M_DKWEDGE);
    492 		return error;
    493 	}
    494 
    495 	/* Fill in our cfdata for the pseudo-device glue. */
    496 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
    497 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
    498 	/* sc->sc_cfdata.cf_unit set below */
    499 	sc->sc_cfdata.cf_fstate = FSTATE_STAR;
    500 
    501 	/* Insert the larval wedge into the array. */
    502 	rw_enter(&dkwedges_lock, RW_WRITER);
    503 	for (error = 0;;) {
    504 		struct dkwedge_softc **scpp;
    505 
    506 		/*
    507 		 * Check for a duplicate wname while searching for
    508 		 * a slot.
    509 		 */
    510 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
    511 			if (dkwedges[unit] == NULL) {
    512 				if (scpp == NULL) {
    513 					scpp = &dkwedges[unit];
    514 					sc->sc_cfdata.cf_unit = unit;
    515 				}
    516 			} else {
    517 				/* XXX Unicode. */
    518 				if (strcmp(dkwedges[unit]->sc_wname,
    519 					sc->sc_wname) == 0) {
    520 					error = EEXIST;
    521 					break;
    522 				}
    523 			}
    524 		}
    525 		if (error)
    526 			break;
    527 		KASSERT(unit == ndkwedges);
    528 		if (scpp == NULL) {
    529 			error = dkwedge_array_expand();
    530 			if (error)
    531 				break;
    532 		} else {
    533 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
    534 			*scpp = sc;
    535 			break;
    536 		}
    537 	}
    538 	rw_exit(&dkwedges_lock);
    539 	if (error) {
    540 		mutex_enter(&pdk->dk_openlock);
    541 		pdk->dk_nwedges--;
    542 		LIST_REMOVE(sc, sc_plink);
    543 		mutex_exit(&pdk->dk_openlock);
    544 
    545 		cv_destroy(&sc->sc_dkdrn);
    546 		mutex_destroy(&sc->sc_iolock);
    547 		bufq_free(sc->sc_bufq);
    548 		dkwedge_size_fini(sc);
    549 		free(sc, M_DKWEDGE);
    550 		return error;
    551 	}
    552 
    553 	/*
    554 	 * Now that we know the unit #, attach a pseudo-device for
    555 	 * this wedge instance.  This will provide us with the
    556 	 * device_t necessary for glue to other parts of the system.
    557 	 *
    558 	 * This should never fail, unless we're almost totally out of
    559 	 * memory.
    560 	 */
    561 	if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
    562 		aprint_error("%s%u: unable to attach pseudo-device\n",
    563 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
    564 
    565 		rw_enter(&dkwedges_lock, RW_WRITER);
    566 		KASSERT(dkwedges[sc->sc_cfdata.cf_unit] == sc);
    567 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
    568 		rw_exit(&dkwedges_lock);
    569 
    570 		mutex_enter(&pdk->dk_openlock);
    571 		pdk->dk_nwedges--;
    572 		LIST_REMOVE(sc, sc_plink);
    573 		mutex_exit(&pdk->dk_openlock);
    574 
    575 		cv_destroy(&sc->sc_dkdrn);
    576 		mutex_destroy(&sc->sc_iolock);
    577 		bufq_free(sc->sc_bufq);
    578 		dkwedge_size_fini(sc);
    579 		free(sc, M_DKWEDGE);
    580 		return ENOMEM;
    581 	}
    582 
    583 	/*
    584 	 * XXX Really ought to make the disk_attach() and the changing
    585 	 * of state to RUNNING atomic.
    586 	 */
    587 
    588 	disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
    589 	mutex_enter(&pdk->dk_openlock);
    590 	dk_set_geometry(sc, pdk);
    591 	mutex_exit(&pdk->dk_openlock);
    592 	disk_attach(&sc->sc_dk);
    593 
    594 	/* Disk wedge is ready for use! */
    595 	sc->sc_state = DKW_STATE_RUNNING;
    596 
    597 announce:
    598 	/* Announce our arrival. */
    599 	aprint_normal(
    600 	    "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
    601 	    device_xname(sc->sc_dev), pdk->dk_name,
    602 	    sc->sc_wname,	/* XXX Unicode */
    603 	    dkwedge_size(sc), sc->sc_offset,
    604 	    sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
    605 
    606 	/* Return the devname to the caller. */
    607 	strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
    608 	    sizeof(dkw->dkw_devname));
    609 
    610 	return 0;
    611 }
    612 
    613 /*
    614  * dkwedge_find:
    615  *
    616  *	Lookup a disk wedge based on the provided information.
    617  *	NOTE: We look up the wedge based on the wedge devname,
    618  *	not wname.
    619  *
    620  *	Return NULL if the wedge is not found, otherwise return
    621  *	the wedge's softc.  Assign the wedge's unit number to unitp
    622  *	if unitp is not NULL.
    623  */
    624 static struct dkwedge_softc *
    625 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
    626 {
    627 	struct dkwedge_softc *sc = NULL;
    628 	u_int unit;
    629 
    630 	/* Find our softc. */
    631 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
    632 	rw_enter(&dkwedges_lock, RW_READER);
    633 	for (unit = 0; unit < ndkwedges; unit++) {
    634 		if ((sc = dkwedges[unit]) != NULL &&
    635 		    strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
    636 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
    637 			break;
    638 		}
    639 	}
    640 	rw_exit(&dkwedges_lock);
    641 	if (sc == NULL)
    642 		return NULL;
    643 
    644 	if (unitp != NULL)
    645 		*unitp = unit;
    646 
    647 	return sc;
    648 }
    649 
    650 /*
    651  * dkwedge_del:		[exported function]
    652  *
    653  *	Delete a disk wedge based on the provided information.
    654  *	NOTE: We look up the wedge based on the wedge devname,
    655  *	not wname.
    656  */
    657 int
    658 dkwedge_del(struct dkwedge_info *dkw)
    659 {
    660 
    661 	return dkwedge_del1(dkw, 0);
    662 }
    663 
    664 int
    665 dkwedge_del1(struct dkwedge_info *dkw, int flags)
    666 {
    667 	struct dkwedge_softc *sc = NULL;
    668 
    669 	/* Find our softc. */
    670 	if ((sc = dkwedge_find(dkw, NULL)) == NULL)
    671 		return ESRCH;
    672 
    673 	return config_detach(sc->sc_dev, flags);
    674 }
    675 
    676 /*
    677  * dkwedge_detach:
    678  *
    679  *	Autoconfiguration detach function for pseudo-device glue.
    680  */
    681 static int
    682 dkwedge_detach(device_t self, int flags)
    683 {
    684 	struct dkwedge_softc *sc = NULL;
    685 	u_int unit;
    686 	int bmaj, cmaj, rc;
    687 
    688 	rw_enter(&dkwedges_lock, RW_WRITER);
    689 	for (unit = 0; unit < ndkwedges; unit++) {
    690 		if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
    691 			break;
    692 	}
    693 	if (unit == ndkwedges)
    694 		rc = ENXIO;
    695 	else if ((rc = disk_begindetach(&sc->sc_dk, /*lastclose*/NULL, self,
    696 		    flags)) == 0) {
    697 		/* Mark the wedge as dying. */
    698 		sc->sc_state = DKW_STATE_DYING;
    699 	}
    700 	rw_exit(&dkwedges_lock);
    701 
    702 	if (rc != 0)
    703 		return rc;
    704 
    705 	pmf_device_deregister(self);
    706 
    707 	/* Kill any pending restart. */
    708 	mutex_enter(&sc->sc_iolock);
    709 	sc->sc_iostop = true;
    710 	mutex_exit(&sc->sc_iolock);
    711 	callout_halt(&sc->sc_restart_ch, NULL);
    712 
    713 	/*
    714 	 * dkstart() will kill any queued buffers now that the
    715 	 * state of the wedge is not RUNNING.  Once we've done
    716 	 * that, wait for any other pending I/O to complete.
    717 	 */
    718 	dkstart(sc);
    719 	dkwedge_wait_drain(sc);
    720 
    721 	/* Locate the wedge major numbers. */
    722 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
    723 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
    724 
    725 	/* Nuke the vnodes for any open instances. */
    726 	vdevgone(bmaj, unit, unit, VBLK);
    727 	vdevgone(cmaj, unit, unit, VCHR);
    728 
    729 	/*
    730 	 * At this point, all block device opens have been closed,
    731 	 * synchronously flushing any buffered writes; and all
    732 	 * character device I/O operations have completed
    733 	 * synchronously, and character device opens have been closed.
    734 	 *
    735 	 * So there can be no more opens or queued buffers by now.
    736 	 */
    737 	KASSERT(sc->sc_dk.dk_openmask == 0);
    738 	KASSERT(bufq_peek(sc->sc_bufq) == NULL);
    739 	bufq_drain(sc->sc_bufq);
    740 
    741 	/* Announce our departure. */
    742 	aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
    743 	    sc->sc_parent->dk_name,
    744 	    sc->sc_wname);	/* XXX Unicode */
    745 
    746 	mutex_enter(&sc->sc_parent->dk_openlock);
    747 	sc->sc_parent->dk_nwedges--;
    748 	LIST_REMOVE(sc, sc_plink);
    749 	mutex_exit(&sc->sc_parent->dk_openlock);
    750 
    751 	/* Delete our buffer queue. */
    752 	bufq_free(sc->sc_bufq);
    753 
    754 	/* Detach from the disk list. */
    755 	disk_detach(&sc->sc_dk);
    756 	disk_destroy(&sc->sc_dk);
    757 
    758 	/* Poof. */
    759 	rw_enter(&dkwedges_lock, RW_WRITER);
    760 	KASSERT(dkwedges[unit] == sc);
    761 	dkwedges[unit] = NULL;
    762 	sc->sc_state = DKW_STATE_DEAD;
    763 	rw_exit(&dkwedges_lock);
    764 
    765 	mutex_destroy(&sc->sc_iolock);
    766 	cv_destroy(&sc->sc_dkdrn);
    767 	dkwedge_size_fini(sc);
    768 
    769 	free(sc, M_DKWEDGE);
    770 
    771 	return 0;
    772 }
    773 
    774 /*
    775  * dkwedge_delall:	[exported function]
    776  *
    777  *	Delete all of the wedges on the specified disk.  Used when
    778  *	a disk is being detached.
    779  */
    780 void
    781 dkwedge_delall(struct disk *pdk)
    782 {
    783 
    784 	dkwedge_delall1(pdk, false);
    785 }
    786 
    787 static void
    788 dkwedge_delall1(struct disk *pdk, bool idleonly)
    789 {
    790 	struct dkwedge_info dkw;
    791 	struct dkwedge_softc *sc;
    792 	int flags;
    793 
    794 	flags = DETACH_QUIET;
    795 	if (!idleonly)
    796 		flags |= DETACH_FORCE;
    797 
    798 	for (;;) {
    799 		mutex_enter(&pdk->dk_rawlock); /* for sc->sc_dk.dk_openmask */
    800 		mutex_enter(&pdk->dk_openlock);
    801 		LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    802 			if (!idleonly || sc->sc_dk.dk_openmask == 0)
    803 				break;
    804 		}
    805 		if (sc == NULL) {
    806 			KASSERT(idleonly || pdk->dk_nwedges == 0);
    807 			mutex_exit(&pdk->dk_openlock);
    808 			mutex_exit(&pdk->dk_rawlock);
    809 			return;
    810 		}
    811 		strlcpy(dkw.dkw_parent, pdk->dk_name, sizeof(dkw.dkw_parent));
    812 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    813 		    sizeof(dkw.dkw_devname));
    814 		mutex_exit(&pdk->dk_openlock);
    815 		mutex_exit(&pdk->dk_rawlock);
    816 		(void) dkwedge_del1(&dkw, flags);
    817 	}
    818 }
    819 
    820 /*
    821  * dkwedge_list:	[exported function]
    822  *
    823  *	List all of the wedges on a particular disk.
    824  */
    825 int
    826 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
    827 {
    828 	struct uio uio;
    829 	struct iovec iov;
    830 	struct dkwedge_softc *sc;
    831 	struct dkwedge_info dkw;
    832 	int error = 0;
    833 
    834 	iov.iov_base = dkwl->dkwl_buf;
    835 	iov.iov_len = dkwl->dkwl_bufsize;
    836 
    837 	uio.uio_iov = &iov;
    838 	uio.uio_iovcnt = 1;
    839 	uio.uio_offset = 0;
    840 	uio.uio_resid = dkwl->dkwl_bufsize;
    841 	uio.uio_rw = UIO_READ;
    842 	KASSERT(l == curlwp);
    843 	uio.uio_vmspace = l->l_proc->p_vmspace;
    844 
    845 	dkwl->dkwl_ncopied = 0;
    846 
    847 	mutex_enter(&pdk->dk_openlock);
    848 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    849 		if (uio.uio_resid < sizeof(dkw))
    850 			break;
    851 
    852 		if (sc->sc_state != DKW_STATE_RUNNING)
    853 			continue;
    854 
    855 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    856 		    sizeof(dkw.dkw_devname));
    857 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
    858 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
    859 		strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
    860 		    sizeof(dkw.dkw_parent));
    861 		dkw.dkw_offset = sc->sc_offset;
    862 		dkw.dkw_size = dkwedge_size(sc);
    863 		strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
    864 
    865 		error = uiomove(&dkw, sizeof(dkw), &uio);
    866 		if (error)
    867 			break;
    868 		dkwl->dkwl_ncopied++;
    869 	}
    870 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
    871 	mutex_exit(&pdk->dk_openlock);
    872 
    873 	return error;
    874 }
    875 
    876 device_t
    877 dkwedge_find_by_wname(const char *wname)
    878 {
    879 	device_t dv = NULL;
    880 	struct dkwedge_softc *sc;
    881 	int i;
    882 
    883 	rw_enter(&dkwedges_lock, RW_READER);
    884 	for (i = 0; i < ndkwedges; i++) {
    885 		if ((sc = dkwedges[i]) == NULL)
    886 			continue;
    887 		if (strcmp(sc->sc_wname, wname) == 0) {
    888 			if (dv != NULL) {
    889 				printf(
    890 				    "WARNING: double match for wedge name %s "
    891 				    "(%s, %s)\n", wname, device_xname(dv),
    892 				    device_xname(sc->sc_dev));
    893 				continue;
    894 			}
    895 			dv = sc->sc_dev;
    896 		}
    897 	}
    898 	rw_exit(&dkwedges_lock);
    899 	return dv;
    900 }
    901 
    902 device_t
    903 dkwedge_find_by_parent(const char *name, size_t *i)
    904 {
    905 
    906 	rw_enter(&dkwedges_lock, RW_READER);
    907 	for (; *i < (size_t)ndkwedges; (*i)++) {
    908 		struct dkwedge_softc *sc;
    909 		if ((sc = dkwedges[*i]) == NULL)
    910 			continue;
    911 		if (strcmp(sc->sc_parent->dk_name, name) != 0)
    912 			continue;
    913 		rw_exit(&dkwedges_lock);
    914 		return sc->sc_dev;
    915 	}
    916 	rw_exit(&dkwedges_lock);
    917 	return NULL;
    918 }
    919 
    920 void
    921 dkwedge_print_wnames(void)
    922 {
    923 	struct dkwedge_softc *sc;
    924 	int i;
    925 
    926 	rw_enter(&dkwedges_lock, RW_READER);
    927 	for (i = 0; i < ndkwedges; i++) {
    928 		if ((sc = dkwedges[i]) == NULL)
    929 			continue;
    930 		printf(" wedge:%s", sc->sc_wname);
    931 	}
    932 	rw_exit(&dkwedges_lock);
    933 }
    934 
    935 /*
    936  * We need a dummy object to stuff into the dkwedge discovery method link
    937  * set to ensure that there is always at least one object in the set.
    938  */
    939 static struct dkwedge_discovery_method dummy_discovery_method;
    940 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
    941 
    942 /*
    943  * dkwedge_init:
    944  *
    945  *	Initialize the disk wedge subsystem.
    946  */
    947 void
    948 dkwedge_init(void)
    949 {
    950 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
    951 	struct dkwedge_discovery_method * const *ddmp;
    952 	struct dkwedge_discovery_method *lddm, *ddm;
    953 
    954 	rw_init(&dkwedges_lock);
    955 	rw_init(&dkwedge_discovery_methods_lock);
    956 
    957 	if (config_cfdriver_attach(&dk_cd) != 0)
    958 		panic("dkwedge: unable to attach cfdriver");
    959 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
    960 		panic("dkwedge: unable to attach cfattach");
    961 
    962 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
    963 
    964 	LIST_INIT(&dkwedge_discovery_methods);
    965 
    966 	__link_set_foreach(ddmp, dkwedge_methods) {
    967 		ddm = *ddmp;
    968 		if (ddm == &dummy_discovery_method)
    969 			continue;
    970 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
    971 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
    972 			    ddm, ddm_list);
    973 			continue;
    974 		}
    975 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
    976 			if (ddm->ddm_priority == lddm->ddm_priority) {
    977 				aprint_error("dk-method-%s: method \"%s\" "
    978 				    "already exists at priority %d\n",
    979 				    ddm->ddm_name, lddm->ddm_name,
    980 				    lddm->ddm_priority);
    981 				/* Not inserted. */
    982 				break;
    983 			}
    984 			if (ddm->ddm_priority < lddm->ddm_priority) {
    985 				/* Higher priority; insert before. */
    986 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
    987 				break;
    988 			}
    989 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
    990 				/* Last one; insert after. */
    991 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
    992 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
    993 				break;
    994 			}
    995 		}
    996 	}
    997 
    998 	rw_exit(&dkwedge_discovery_methods_lock);
    999 }
   1000 
   1001 #ifdef DKWEDGE_AUTODISCOVER
   1002 int	dkwedge_autodiscover = 1;
   1003 #else
   1004 int	dkwedge_autodiscover = 0;
   1005 #endif
   1006 
   1007 /*
   1008  * dkwedge_discover:	[exported function]
   1009  *
   1010  *	Discover the wedges on a newly attached disk.
   1011  *	Remove all unused wedges on the disk first.
   1012  */
   1013 void
   1014 dkwedge_discover(struct disk *pdk)
   1015 {
   1016 	struct dkwedge_discovery_method *ddm;
   1017 	struct vnode *vp;
   1018 	int error;
   1019 	dev_t pdev;
   1020 
   1021 	/*
   1022 	 * Require people playing with wedges to enable this explicitly.
   1023 	 */
   1024 	if (dkwedge_autodiscover == 0)
   1025 		return;
   1026 
   1027 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
   1028 
   1029 	/*
   1030 	 * Use the character device for scanning, the block device
   1031 	 * is busy if there are already wedges attached.
   1032 	 */
   1033 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
   1034 	if (error) {
   1035 		aprint_error("%s: unable to compute pdev, error = %d\n",
   1036 		    pdk->dk_name, error);
   1037 		goto out;
   1038 	}
   1039 
   1040 	error = cdevvp(pdev, &vp);
   1041 	if (error) {
   1042 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
   1043 		    pdk->dk_name, error);
   1044 		goto out;
   1045 	}
   1046 
   1047 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1048 	if (error) {
   1049 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
   1050 		    pdk->dk_name, error);
   1051 		vrele(vp);
   1052 		goto out;
   1053 	}
   1054 
   1055 	error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
   1056 	if (error) {
   1057 		if (error != ENXIO)
   1058 			aprint_error("%s: unable to open device, error = %d\n",
   1059 			    pdk->dk_name, error);
   1060 		vput(vp);
   1061 		goto out;
   1062 	}
   1063 	VOP_UNLOCK(vp);
   1064 
   1065 	/*
   1066 	 * Remove unused wedges
   1067 	 */
   1068 	dkwedge_delall1(pdk, true);
   1069 
   1070 	/*
   1071 	 * For each supported partition map type, look to see if
   1072 	 * this map type exists.  If so, parse it and add the
   1073 	 * corresponding wedges.
   1074 	 */
   1075 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
   1076 		error = (*ddm->ddm_discover)(pdk, vp);
   1077 		if (error == 0) {
   1078 			/* Successfully created wedges; we're done. */
   1079 			break;
   1080 		}
   1081 	}
   1082 
   1083 	error = vn_close(vp, FREAD, NOCRED);
   1084 	if (error) {
   1085 		aprint_error("%s: unable to close device, error = %d\n",
   1086 		    pdk->dk_name, error);
   1087 		/* We'll just assume the vnode has been cleaned up. */
   1088 	}
   1089 
   1090 out:
   1091 	rw_exit(&dkwedge_discovery_methods_lock);
   1092 }
   1093 
   1094 /*
   1095  * dkwedge_read:
   1096  *
   1097  *	Read some data from the specified disk, used for
   1098  *	partition discovery.
   1099  */
   1100 int
   1101 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
   1102     void *tbuf, size_t len)
   1103 {
   1104 	buf_t *bp;
   1105 	int error;
   1106 	bool isopen;
   1107 	dev_t bdev;
   1108 	struct vnode *bdvp;
   1109 
   1110 	/*
   1111 	 * The kernel cannot read from a character device vnode
   1112 	 * as physio() only handles user memory.
   1113 	 *
   1114 	 * If the block device has already been opened by a wedge
   1115 	 * use that vnode and temporarily bump the open counter.
   1116 	 *
   1117 	 * Otherwise try to open the block device.
   1118 	 */
   1119 
   1120 	bdev = devsw_chr2blk(vp->v_rdev);
   1121 
   1122 	mutex_enter(&pdk->dk_rawlock);
   1123 	if (pdk->dk_rawopens != 0) {
   1124 		KASSERT(pdk->dk_rawvp != NULL);
   1125 		isopen = true;
   1126 		++pdk->dk_rawopens;
   1127 		bdvp = pdk->dk_rawvp;
   1128 		error = 0;
   1129 	} else {
   1130 		isopen = false;
   1131 		error = dk_open_parent(bdev, FREAD, &bdvp);
   1132 	}
   1133 	mutex_exit(&pdk->dk_rawlock);
   1134 
   1135 	if (error)
   1136 		return error;
   1137 
   1138 	bp = getiobuf(bdvp, true);
   1139 	bp->b_flags = B_READ;
   1140 	bp->b_cflags = BC_BUSY;
   1141 	bp->b_dev = bdev;
   1142 	bp->b_data = tbuf;
   1143 	bp->b_bufsize = bp->b_bcount = len;
   1144 	bp->b_blkno = blkno;
   1145 	bp->b_cylinder = 0;
   1146 	bp->b_error = 0;
   1147 
   1148 	VOP_STRATEGY(bdvp, bp);
   1149 	error = biowait(bp);
   1150 	putiobuf(bp);
   1151 
   1152 	mutex_enter(&pdk->dk_rawlock);
   1153 	if (isopen) {
   1154 		--pdk->dk_rawopens;
   1155 	} else {
   1156 		dk_close_parent(bdvp, FREAD);
   1157 	}
   1158 	mutex_exit(&pdk->dk_rawlock);
   1159 
   1160 	return error;
   1161 }
   1162 
   1163 /*
   1164  * dkwedge_lookup:
   1165  *
   1166  *	Look up a dkwedge_softc based on the provided dev_t.
   1167  */
   1168 static struct dkwedge_softc *
   1169 dkwedge_lookup(dev_t dev)
   1170 {
   1171 	const int unit = minor(dev);
   1172 	struct dkwedge_softc *sc;
   1173 
   1174 	rw_enter(&dkwedges_lock, RW_READER);
   1175 	if (unit < 0 || unit >= ndkwedges)
   1176 		sc = NULL;
   1177 	else
   1178 		sc = dkwedges[unit];
   1179 	rw_exit(&dkwedges_lock);
   1180 
   1181 	return sc;
   1182 }
   1183 
   1184 static int
   1185 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
   1186 {
   1187 	struct vnode *vp;
   1188 	int error;
   1189 
   1190 	error = bdevvp(dev, &vp);
   1191 	if (error)
   1192 		return error;
   1193 
   1194 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1195 	if (error) {
   1196 		vrele(vp);
   1197 		return error;
   1198 	}
   1199 	error = VOP_OPEN(vp, mode, NOCRED);
   1200 	if (error) {
   1201 		vput(vp);
   1202 		return error;
   1203 	}
   1204 
   1205 	/* VOP_OPEN() doesn't do this for us. */
   1206 	if (mode & FWRITE) {
   1207 		mutex_enter(vp->v_interlock);
   1208 		vp->v_writecount++;
   1209 		mutex_exit(vp->v_interlock);
   1210 	}
   1211 
   1212 	VOP_UNLOCK(vp);
   1213 
   1214 	*vpp = vp;
   1215 
   1216 	return 0;
   1217 }
   1218 
   1219 static int
   1220 dk_close_parent(struct vnode *vp, int mode)
   1221 {
   1222 	int error;
   1223 
   1224 	error = vn_close(vp, mode, NOCRED);
   1225 	return error;
   1226 }
   1227 
   1228 /*
   1229  * dkunit:		[devsw entry point]
   1230  *
   1231  *	Return the autoconf device_t unit number of a wedge by its
   1232  *	devsw dev_t number, or -1 if there is none.
   1233  *
   1234  *	XXX This is a temporary hack until dkwedge numbering is made to
   1235  *	correspond 1:1 to autoconf device numbering.
   1236  */
   1237 static int
   1238 dkunit(dev_t dev)
   1239 {
   1240 	int mn = minor(dev);
   1241 	struct dkwedge_softc *sc;
   1242 	device_t dv;
   1243 	int unit = -1;
   1244 
   1245 	if (mn < 0)
   1246 		return -1;
   1247 
   1248 	rw_enter(&dkwedges_lock, RW_READER);
   1249 	if (mn < ndkwedges &&
   1250 	    (sc = dkwedges[minor(dev)]) != NULL &&
   1251 	    (dv = sc->sc_dev) != NULL)
   1252 		unit = device_unit(dv);
   1253 	rw_exit(&dkwedges_lock);
   1254 
   1255 	return unit;
   1256 }
   1257 
   1258 /*
   1259  * dkopen:		[devsw entry point]
   1260  *
   1261  *	Open a wedge.
   1262  */
   1263 static int
   1264 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
   1265 {
   1266 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1267 	int error = 0;
   1268 
   1269 	if (sc == NULL)
   1270 		return ENXIO;
   1271 	if (sc->sc_state != DKW_STATE_RUNNING)
   1272 		return ENXIO;
   1273 
   1274 	/*
   1275 	 * We go through a complicated little dance to only open the parent
   1276 	 * vnode once per wedge, no matter how many times the wedge is
   1277 	 * opened.  The reason?  We see one dkopen() per open call, but
   1278 	 * only dkclose() on the last close.
   1279 	 */
   1280 	mutex_enter(&sc->sc_dk.dk_openlock);
   1281 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1282 	if (sc->sc_dk.dk_openmask == 0) {
   1283 		error = dkfirstopen(sc, flags);
   1284 		if (error)
   1285 			goto popen_fail;
   1286 	}
   1287 	KASSERT(sc->sc_mode != 0);
   1288 	if (flags & ~sc->sc_mode & FWRITE) {
   1289 		error = EROFS;
   1290 		goto popen_fail;
   1291 	}
   1292 	if (fmt == S_IFCHR)
   1293 		sc->sc_dk.dk_copenmask |= 1;
   1294 	else
   1295 		sc->sc_dk.dk_bopenmask |= 1;
   1296 	sc->sc_dk.dk_openmask =
   1297 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1298 
   1299 popen_fail:
   1300 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1301 	mutex_exit(&sc->sc_dk.dk_openlock);
   1302 	return error;
   1303 }
   1304 
   1305 static int
   1306 dkfirstopen(struct dkwedge_softc *sc, int flags)
   1307 {
   1308 	struct dkwedge_softc *nsc;
   1309 	struct vnode *vp;
   1310 	int mode;
   1311 	int error;
   1312 
   1313 	KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
   1314 	KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
   1315 
   1316 	if (sc->sc_parent->dk_rawopens == 0) {
   1317 		KASSERT(sc->sc_parent->dk_rawvp == NULL);
   1318 		/*
   1319 		 * Try open read-write. If this fails for EROFS
   1320 		 * and wedge is read-only, retry to open read-only.
   1321 		 */
   1322 		mode = FREAD | FWRITE;
   1323 		error = dk_open_parent(sc->sc_pdev, mode, &vp);
   1324 		if (error == EROFS && (flags & FWRITE) == 0) {
   1325 			mode &= ~FWRITE;
   1326 			error = dk_open_parent(sc->sc_pdev, mode, &vp);
   1327 		}
   1328 		if (error)
   1329 			return error;
   1330 		KASSERT(vp != NULL);
   1331 		sc->sc_parent->dk_rawvp = vp;
   1332 	} else {
   1333 		/*
   1334 		 * Retrieve mode from an already opened wedge.
   1335 		 *
   1336 		 * At this point, dk_rawopens is bounded by the number
   1337 		 * of dkwedge devices in the system, which is limited
   1338 		 * by autoconf device numbering to INT_MAX.  Since
   1339 		 * dk_rawopens is unsigned, this can't overflow.
   1340 		 */
   1341 		KASSERT(sc->sc_parent->dk_rawopens < UINT_MAX);
   1342 		KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1343 		mode = 0;
   1344 		LIST_FOREACH(nsc, &sc->sc_parent->dk_wedges, sc_plink) {
   1345 			if (nsc == sc || nsc->sc_dk.dk_openmask == 0)
   1346 				continue;
   1347 			mode = nsc->sc_mode;
   1348 			break;
   1349 		}
   1350 	}
   1351 	sc->sc_mode = mode;
   1352 	sc->sc_parent->dk_rawopens++;
   1353 
   1354 	return 0;
   1355 }
   1356 
   1357 static void
   1358 dklastclose(struct dkwedge_softc *sc)
   1359 {
   1360 
   1361 	KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
   1362 	KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
   1363 	KASSERT(sc->sc_parent->dk_rawopens > 0);
   1364 	KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1365 
   1366 	if (--sc->sc_parent->dk_rawopens == 0) {
   1367 		struct vnode *const vp = sc->sc_parent->dk_rawvp;
   1368 		const int mode = sc->sc_mode;
   1369 
   1370 		sc->sc_parent->dk_rawvp = NULL;
   1371 		sc->sc_mode = 0;
   1372 
   1373 		dk_close_parent(vp, mode);
   1374 	}
   1375 }
   1376 
   1377 /*
   1378  * dkclose:		[devsw entry point]
   1379  *
   1380  *	Close a wedge.
   1381  */
   1382 static int
   1383 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
   1384 {
   1385 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1386 
   1387 	if (sc == NULL)
   1388 		return ENXIO;
   1389 	if (sc->sc_state != DKW_STATE_RUNNING)
   1390 		return ENXIO;
   1391 
   1392 	mutex_enter(&sc->sc_dk.dk_openlock);
   1393 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1394 
   1395 	KASSERT(sc->sc_dk.dk_openmask != 0);
   1396 
   1397 	if (fmt == S_IFCHR)
   1398 		sc->sc_dk.dk_copenmask &= ~1;
   1399 	else
   1400 		sc->sc_dk.dk_bopenmask &= ~1;
   1401 	sc->sc_dk.dk_openmask =
   1402 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1403 
   1404 	if (sc->sc_dk.dk_openmask == 0) {
   1405 		dklastclose(sc);
   1406 	}
   1407 
   1408 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1409 	mutex_exit(&sc->sc_dk.dk_openlock);
   1410 
   1411 	return 0;
   1412 }
   1413 
   1414 /*
   1415  * dkcancel:		[devsw entry point]
   1416  *
   1417  *	Cancel any pending I/O operations waiting on a wedge.
   1418  */
   1419 static int
   1420 dkcancel(dev_t dev, int flags, int fmt, struct lwp *l)
   1421 {
   1422 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1423 
   1424 	KASSERT(sc != NULL);
   1425 	KASSERT(sc->sc_dev != NULL);
   1426 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1427 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1428 
   1429 	/*
   1430 	 * Disk I/O is expected to complete or fail within a reasonable
   1431 	 * timeframe -- it's storage, not communication.  Further, the
   1432 	 * character and block device interface guarantees that prior
   1433 	 * reads and writes have completed or failed by the time close
   1434 	 * returns -- we are not to cancel them here.  If the parent
   1435 	 * device's hardware is gone, the parent driver can make them
   1436 	 * fail.  Nothing for dk(4) itself to do.
   1437 	 */
   1438 
   1439 	return 0;
   1440 }
   1441 
   1442 /*
   1443  * dkstrategy:		[devsw entry point]
   1444  *
   1445  *	Perform I/O based on the wedge I/O strategy.
   1446  */
   1447 static void
   1448 dkstrategy(struct buf *bp)
   1449 {
   1450 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1451 	uint64_t p_size, p_offset;
   1452 
   1453 	KASSERT(sc != NULL);
   1454 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1455 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1456 	KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1457 
   1458 	/* If it's an empty transfer, wake up the top half now. */
   1459 	if (bp->b_bcount == 0)
   1460 		goto done;
   1461 
   1462 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
   1463 	p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
   1464 
   1465 	/* Make sure it's in-range. */
   1466 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
   1467 		goto done;
   1468 
   1469 	/* Translate it to the parent's raw LBA. */
   1470 	bp->b_rawblkno = bp->b_blkno + p_offset;
   1471 
   1472 	/* Place it in the queue and start I/O on the unit. */
   1473 	mutex_enter(&sc->sc_iolock);
   1474 	sc->sc_iopend++;
   1475 	disk_wait(&sc->sc_dk);
   1476 	bufq_put(sc->sc_bufq, bp);
   1477 	mutex_exit(&sc->sc_iolock);
   1478 
   1479 	dkstart(sc);
   1480 	return;
   1481 
   1482 done:
   1483 	bp->b_resid = bp->b_bcount;
   1484 	biodone(bp);
   1485 }
   1486 
   1487 /*
   1488  * dkstart:
   1489  *
   1490  *	Start I/O that has been enqueued on the wedge.
   1491  */
   1492 static void
   1493 dkstart(struct dkwedge_softc *sc)
   1494 {
   1495 	struct vnode *vp;
   1496 	struct buf *bp, *nbp;
   1497 
   1498 	mutex_enter(&sc->sc_iolock);
   1499 
   1500 	/* Do as much work as has been enqueued. */
   1501 	while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
   1502 		if (sc->sc_iostop) {
   1503 			(void) bufq_get(sc->sc_bufq);
   1504 			if (--sc->sc_iopend == 0)
   1505 				cv_broadcast(&sc->sc_dkdrn);
   1506 			mutex_exit(&sc->sc_iolock);
   1507 			bp->b_error = ENXIO;
   1508 			bp->b_resid = bp->b_bcount;
   1509 			biodone(bp);
   1510 			mutex_enter(&sc->sc_iolock);
   1511 			continue;
   1512 		}
   1513 
   1514 		/* fetch an I/O buf with sc_iolock dropped */
   1515 		mutex_exit(&sc->sc_iolock);
   1516 		nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
   1517 		mutex_enter(&sc->sc_iolock);
   1518 		if (nbp == NULL) {
   1519 			/*
   1520 			 * No resources to run this request; leave the
   1521 			 * buffer queued up, and schedule a timer to
   1522 			 * restart the queue in 1/2 a second.
   1523 			 */
   1524 			if (!sc->sc_iostop)
   1525 				callout_schedule(&sc->sc_restart_ch, hz/2);
   1526 			break;
   1527 		}
   1528 
   1529 		/*
   1530 		 * fetch buf, this can fail if another thread
   1531 		 * has already processed the queue, it can also
   1532 		 * return a completely different buf.
   1533 		 */
   1534 		bp = bufq_get(sc->sc_bufq);
   1535 		if (bp == NULL) {
   1536 			mutex_exit(&sc->sc_iolock);
   1537 			putiobuf(nbp);
   1538 			mutex_enter(&sc->sc_iolock);
   1539 			continue;
   1540 		}
   1541 
   1542 		/* Instrumentation. */
   1543 		disk_busy(&sc->sc_dk);
   1544 
   1545 		/* release lock for VOP_STRATEGY */
   1546 		mutex_exit(&sc->sc_iolock);
   1547 
   1548 		nbp->b_data = bp->b_data;
   1549 		nbp->b_flags = bp->b_flags;
   1550 		nbp->b_oflags = bp->b_oflags;
   1551 		nbp->b_cflags = bp->b_cflags;
   1552 		nbp->b_iodone = dkiodone;
   1553 		nbp->b_proc = bp->b_proc;
   1554 		nbp->b_blkno = bp->b_rawblkno;
   1555 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
   1556 		nbp->b_bcount = bp->b_bcount;
   1557 		nbp->b_private = bp;
   1558 		BIO_COPYPRIO(nbp, bp);
   1559 
   1560 		vp = nbp->b_vp;
   1561 		if ((nbp->b_flags & B_READ) == 0) {
   1562 			mutex_enter(vp->v_interlock);
   1563 			vp->v_numoutput++;
   1564 			mutex_exit(vp->v_interlock);
   1565 		}
   1566 		VOP_STRATEGY(vp, nbp);
   1567 
   1568 		mutex_enter(&sc->sc_iolock);
   1569 	}
   1570 
   1571 	mutex_exit(&sc->sc_iolock);
   1572 }
   1573 
   1574 /*
   1575  * dkiodone:
   1576  *
   1577  *	I/O to a wedge has completed; alert the top half.
   1578  */
   1579 static void
   1580 dkiodone(struct buf *bp)
   1581 {
   1582 	struct buf *obp = bp->b_private;
   1583 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
   1584 
   1585 	if (bp->b_error != 0)
   1586 		obp->b_error = bp->b_error;
   1587 	obp->b_resid = bp->b_resid;
   1588 	putiobuf(bp);
   1589 
   1590 	mutex_enter(&sc->sc_iolock);
   1591 	if (--sc->sc_iopend == 0)
   1592 		cv_broadcast(&sc->sc_dkdrn);
   1593 
   1594 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
   1595 	    obp->b_flags & B_READ);
   1596 	mutex_exit(&sc->sc_iolock);
   1597 
   1598 	biodone(obp);
   1599 
   1600 	/* Kick the queue in case there is more work we can do. */
   1601 	dkstart(sc);
   1602 }
   1603 
   1604 /*
   1605  * dkrestart:
   1606  *
   1607  *	Restart the work queue after it was stalled due to
   1608  *	a resource shortage.  Invoked via a callout.
   1609  */
   1610 static void
   1611 dkrestart(void *v)
   1612 {
   1613 	struct dkwedge_softc *sc = v;
   1614 
   1615 	dkstart(sc);
   1616 }
   1617 
   1618 /*
   1619  * dkminphys:
   1620  *
   1621  *	Call parent's minphys function.
   1622  */
   1623 static void
   1624 dkminphys(struct buf *bp)
   1625 {
   1626 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1627 	dev_t dev;
   1628 
   1629 	dev = bp->b_dev;
   1630 	bp->b_dev = sc->sc_pdev;
   1631 	if (sc->sc_parent->dk_driver && sc->sc_parent->dk_driver->d_minphys)
   1632 		(*sc->sc_parent->dk_driver->d_minphys)(bp);
   1633 	else
   1634 		minphys(bp);
   1635 	bp->b_dev = dev;
   1636 }
   1637 
   1638 /*
   1639  * dkread:		[devsw entry point]
   1640  *
   1641  *	Read from a wedge.
   1642  */
   1643 static int
   1644 dkread(dev_t dev, struct uio *uio, int flags)
   1645 {
   1646 	struct dkwedge_softc *sc __diagused = dkwedge_lookup(dev);
   1647 
   1648 	KASSERT(sc != NULL);
   1649 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1650 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1651 
   1652 	return physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio);
   1653 }
   1654 
   1655 /*
   1656  * dkwrite:		[devsw entry point]
   1657  *
   1658  *	Write to a wedge.
   1659  */
   1660 static int
   1661 dkwrite(dev_t dev, struct uio *uio, int flags)
   1662 {
   1663 	struct dkwedge_softc *sc __diagused = dkwedge_lookup(dev);
   1664 
   1665 	KASSERT(sc != NULL);
   1666 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1667 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1668 
   1669 	return physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio);
   1670 }
   1671 
   1672 /*
   1673  * dkioctl:		[devsw entry point]
   1674  *
   1675  *	Perform an ioctl request on a wedge.
   1676  */
   1677 static int
   1678 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1679 {
   1680 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1681 	int error = 0;
   1682 
   1683 	KASSERT(sc != NULL);
   1684 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1685 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1686 	KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1687 
   1688 	/*
   1689 	 * We pass NODEV instead of our device to indicate we don't
   1690 	 * want to handle disklabel ioctls
   1691 	 */
   1692 	error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
   1693 	if (error != EPASSTHROUGH)
   1694 		return error;
   1695 
   1696 	error = 0;
   1697 
   1698 	switch (cmd) {
   1699 	case DIOCGSTRATEGY:
   1700 	case DIOCGCACHE:
   1701 	case DIOCCACHESYNC:
   1702 		error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, data, flag,
   1703 		    l != NULL ? l->l_cred : NOCRED);
   1704 		break;
   1705 	case DIOCGWEDGEINFO: {
   1706 		struct dkwedge_info *dkw = data;
   1707 
   1708 		strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
   1709 		    sizeof(dkw->dkw_devname));
   1710 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
   1711 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
   1712 		strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
   1713 		    sizeof(dkw->dkw_parent));
   1714 		dkw->dkw_offset = sc->sc_offset;
   1715 		dkw->dkw_size = dkwedge_size(sc);
   1716 		strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
   1717 
   1718 		break;
   1719 	}
   1720 	case DIOCGSECTORALIGN: {
   1721 		struct disk_sectoralign *dsa = data;
   1722 		uint32_t r;
   1723 
   1724 		error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, dsa, flag,
   1725 		    l != NULL ? l->l_cred : NOCRED);
   1726 		if (error)
   1727 			break;
   1728 
   1729 		r = sc->sc_offset % dsa->dsa_alignment;
   1730 		if (r < dsa->dsa_firstaligned)
   1731 			dsa->dsa_firstaligned = dsa->dsa_firstaligned - r;
   1732 		else
   1733 			dsa->dsa_firstaligned = (dsa->dsa_firstaligned +
   1734 			    dsa->dsa_alignment) - r;
   1735 		break;
   1736 	}
   1737 	default:
   1738 		error = ENOTTY;
   1739 	}
   1740 
   1741 	return error;
   1742 }
   1743 
   1744 /*
   1745  * dkdiscard:		[devsw entry point]
   1746  *
   1747  *	Perform a discard-range request on a wedge.
   1748  */
   1749 static int
   1750 dkdiscard(dev_t dev, off_t pos, off_t len)
   1751 {
   1752 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1753 	uint64_t size = dkwedge_size(sc);
   1754 	unsigned shift;
   1755 	off_t offset, maxlen;
   1756 	int error;
   1757 
   1758 	KASSERT(sc != NULL);
   1759 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1760 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1761 	KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1762 
   1763 	/* XXX check bounds on size/offset up front */
   1764 	shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
   1765 	KASSERT(__type_fit(off_t, size));
   1766 	KASSERT(__type_fit(off_t, sc->sc_offset));
   1767 	KASSERT(0 <= sc->sc_offset);
   1768 	KASSERT(size <= (__type_max(off_t) >> shift));
   1769 	KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - size));
   1770 	offset = ((off_t)sc->sc_offset << shift);
   1771 	maxlen = ((off_t)size << shift);
   1772 
   1773 	if (len > maxlen)
   1774 		return EINVAL;
   1775 	if (pos > (maxlen - len))
   1776 		return EINVAL;
   1777 
   1778 	pos += offset;
   1779 
   1780 	vn_lock(sc->sc_parent->dk_rawvp, LK_EXCLUSIVE | LK_RETRY);
   1781 	error = VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
   1782 	VOP_UNLOCK(sc->sc_parent->dk_rawvp);
   1783 
   1784 	return error;
   1785 }
   1786 
   1787 /*
   1788  * dksize:		[devsw entry point]
   1789  *
   1790  *	Query the size of a wedge for the purpose of performing a dump
   1791  *	or for swapping to.
   1792  */
   1793 static int
   1794 dksize(dev_t dev)
   1795 {
   1796 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1797 	uint64_t p_size;
   1798 	int rv = -1;
   1799 
   1800 	if (sc == NULL)
   1801 		return -1;
   1802 	if (sc->sc_state != DKW_STATE_RUNNING)
   1803 		return -1;
   1804 
   1805 	/* Our content type is static, no need to open the device. */
   1806 
   1807 	p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
   1808 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
   1809 		/* Saturate if we are larger than INT_MAX. */
   1810 		if (p_size > INT_MAX)
   1811 			rv = INT_MAX;
   1812 		else
   1813 			rv = (int)p_size;
   1814 	}
   1815 
   1816 	return rv;
   1817 }
   1818 
   1819 /*
   1820  * dkdump:		[devsw entry point]
   1821  *
   1822  *	Perform a crash dump to a wedge.
   1823  */
   1824 static int
   1825 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
   1826 {
   1827 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1828 	const struct bdevsw *bdev;
   1829 	uint64_t p_size, p_offset;
   1830 
   1831 	if (sc == NULL)
   1832 		return ENXIO;
   1833 	if (sc->sc_state != DKW_STATE_RUNNING)
   1834 		return ENXIO;
   1835 
   1836 	/* Our content type is static, no need to open the device. */
   1837 
   1838 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
   1839 	    strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0 &&
   1840 	    strcmp(sc->sc_ptype, DKW_PTYPE_CGD) != 0)
   1841 		return ENXIO;
   1842 	if (size % DEV_BSIZE != 0)
   1843 		return EINVAL;
   1844 
   1845 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
   1846 	p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
   1847 
   1848 	if (blkno < 0 || blkno + size/DEV_BSIZE > p_size) {
   1849 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
   1850 		    "p_size (%" PRIu64 ")\n", __func__, blkno,
   1851 		    size/DEV_BSIZE, p_size);
   1852 		return EINVAL;
   1853 	}
   1854 
   1855 	bdev = bdevsw_lookup(sc->sc_pdev);
   1856 	return (*bdev->d_dump)(sc->sc_pdev, blkno + p_offset, va, size);
   1857 }
   1858 
   1859 /*
   1860  * config glue
   1861  */
   1862 
   1863 /*
   1864  * dkwedge_find_partition
   1865  *
   1866  *	Find wedge corresponding to the specified parent name
   1867  *	and offset/length.
   1868  */
   1869 device_t
   1870 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
   1871 {
   1872 	struct dkwedge_softc *sc;
   1873 	int i;
   1874 	device_t wedge = NULL;
   1875 
   1876 	rw_enter(&dkwedges_lock, RW_READER);
   1877 	for (i = 0; i < ndkwedges; i++) {
   1878 		if ((sc = dkwedges[i]) == NULL)
   1879 			continue;
   1880 		if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
   1881 		    sc->sc_offset == startblk &&
   1882 		    dkwedge_size(sc) == nblks) {
   1883 			if (wedge) {
   1884 				printf("WARNING: double match for boot wedge "
   1885 				    "(%s, %s)\n",
   1886 				    device_xname(wedge),
   1887 				    device_xname(sc->sc_dev));
   1888 				continue;
   1889 			}
   1890 			wedge = sc->sc_dev;
   1891 		}
   1892 	}
   1893 	rw_exit(&dkwedges_lock);
   1894 
   1895 	return wedge;
   1896 }
   1897 
   1898 const char *
   1899 dkwedge_get_parent_name(dev_t dev)
   1900 {
   1901 	/* XXX: perhaps do this in lookup? */
   1902 	int bmaj = bdevsw_lookup_major(&dk_bdevsw);
   1903 	int cmaj = cdevsw_lookup_major(&dk_cdevsw);
   1904 
   1905 	if (major(dev) != bmaj && major(dev) != cmaj)
   1906 		return NULL;
   1907 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1908 	if (sc == NULL)
   1909 		return NULL;
   1910 	return sc->sc_parent->dk_name;
   1911 }
   1912