dk.c revision 1.152 1 /* $NetBSD: dk.c,v 1.152 2023/04/29 13:00:17 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.152 2023/04/29 13:00:17 riastradh Exp $");
34
35 #ifdef _KERNEL_OPT
36 #include "opt_dkwedge.h"
37 #endif
38
39 #include <sys/param.h>
40 #include <sys/types.h>
41
42 #include <sys/buf.h>
43 #include <sys/bufq.h>
44 #include <sys/callout.h>
45 #include <sys/conf.h>
46 #include <sys/device.h>
47 #include <sys/disk.h>
48 #include <sys/disklabel.h>
49 #include <sys/errno.h>
50 #include <sys/fcntl.h>
51 #include <sys/ioctl.h>
52 #include <sys/kauth.h>
53 #include <sys/kernel.h>
54 #include <sys/malloc.h>
55 #include <sys/pool.h>
56 #include <sys/proc.h>
57 #include <sys/rwlock.h>
58 #include <sys/stat.h>
59 #include <sys/systm.h>
60 #include <sys/vnode.h>
61
62 #include <miscfs/specfs/specdev.h>
63
64 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
65
66 typedef enum {
67 DKW_STATE_LARVAL = 0,
68 DKW_STATE_RUNNING = 1,
69 DKW_STATE_DYING = 2,
70 DKW_STATE_DEAD = 666
71 } dkwedge_state_t;
72
73 struct dkwedge_softc {
74 device_t sc_dev; /* pointer to our pseudo-device */
75 struct cfdata sc_cfdata; /* our cfdata structure */
76 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
77
78 dkwedge_state_t sc_state; /* state this wedge is in */
79
80 struct disk *sc_parent; /* parent disk */
81 daddr_t sc_offset; /* LBA offset of wedge in parent */
82 krwlock_t sc_sizelock;
83 uint64_t sc_size; /* size of wedge in blocks */
84 char sc_ptype[32]; /* partition type */
85 dev_t sc_pdev; /* cached parent's dev_t */
86 /* link on parent's wedge list */
87 LIST_ENTRY(dkwedge_softc) sc_plink;
88
89 struct disk sc_dk; /* our own disk structure */
90 struct bufq_state *sc_bufq; /* buffer queue */
91 struct callout sc_restart_ch; /* callout to restart I/O */
92
93 kmutex_t sc_iolock;
94 kcondvar_t sc_dkdrn;
95 u_int sc_iopend; /* I/Os pending */
96 bool sc_iostop; /* don't schedule restart */
97 int sc_mode; /* parent open mode */
98 };
99
100 static int dkwedge_match(device_t, cfdata_t, void *);
101 static void dkwedge_attach(device_t, device_t, void *);
102 static int dkwedge_detach(device_t, int);
103
104 static void dkstart(struct dkwedge_softc *);
105 static void dkiodone(struct buf *);
106 static void dkrestart(void *);
107 static void dkminphys(struct buf *);
108
109 static int dkfirstopen(struct dkwedge_softc *, int);
110 static void dklastclose(struct dkwedge_softc *);
111 static int dkwedge_detach(device_t, int);
112 static void dkwedge_delall1(struct disk *, bool);
113 static int dkwedge_del1(struct dkwedge_info *, int);
114 static int dk_open_parent(dev_t, int, struct vnode **);
115 static int dk_close_parent(struct vnode *, int);
116
117 static int dkunit(dev_t);
118
119 static dev_type_open(dkopen);
120 static dev_type_close(dkclose);
121 static dev_type_cancel(dkcancel);
122 static dev_type_read(dkread);
123 static dev_type_write(dkwrite);
124 static dev_type_ioctl(dkioctl);
125 static dev_type_strategy(dkstrategy);
126 static dev_type_dump(dkdump);
127 static dev_type_size(dksize);
128 static dev_type_discard(dkdiscard);
129
130 CFDRIVER_DECL(dk, DV_DISK, NULL);
131 CFATTACH_DECL3_NEW(dk, 0,
132 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
133 DVF_DETACH_SHUTDOWN);
134
135 const struct bdevsw dk_bdevsw = {
136 .d_open = dkopen,
137 .d_close = dkclose,
138 .d_cancel = dkcancel,
139 .d_strategy = dkstrategy,
140 .d_ioctl = dkioctl,
141 .d_dump = dkdump,
142 .d_psize = dksize,
143 .d_discard = dkdiscard,
144 .d_cfdriver = &dk_cd,
145 .d_devtounit = dkunit,
146 .d_flag = D_DISK | D_MPSAFE
147 };
148
149 const struct cdevsw dk_cdevsw = {
150 .d_open = dkopen,
151 .d_close = dkclose,
152 .d_cancel = dkcancel,
153 .d_read = dkread,
154 .d_write = dkwrite,
155 .d_ioctl = dkioctl,
156 .d_stop = nostop,
157 .d_tty = notty,
158 .d_poll = nopoll,
159 .d_mmap = nommap,
160 .d_kqfilter = nokqfilter,
161 .d_discard = dkdiscard,
162 .d_cfdriver = &dk_cd,
163 .d_devtounit = dkunit,
164 .d_flag = D_DISK | D_MPSAFE
165 };
166
167 static struct dkwedge_softc **dkwedges;
168 static u_int ndkwedges;
169 static krwlock_t dkwedges_lock;
170
171 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
172 static krwlock_t dkwedge_discovery_methods_lock;
173
174 /*
175 * dkwedge_match:
176 *
177 * Autoconfiguration match function for pseudo-device glue.
178 */
179 static int
180 dkwedge_match(device_t parent, cfdata_t match, void *aux)
181 {
182
183 /* Pseudo-device; always present. */
184 return 1;
185 }
186
187 /*
188 * dkwedge_attach:
189 *
190 * Autoconfiguration attach function for pseudo-device glue.
191 */
192 static void
193 dkwedge_attach(device_t parent, device_t self, void *aux)
194 {
195
196 if (!pmf_device_register(self, NULL, NULL))
197 aprint_error_dev(self, "couldn't establish power handler\n");
198 }
199
200 /*
201 * dkwedge_wait_drain:
202 *
203 * Wait for I/O on the wedge to drain.
204 */
205 static void
206 dkwedge_wait_drain(struct dkwedge_softc *sc)
207 {
208
209 mutex_enter(&sc->sc_iolock);
210 while (sc->sc_iopend != 0)
211 cv_wait(&sc->sc_dkdrn, &sc->sc_iolock);
212 mutex_exit(&sc->sc_iolock);
213 }
214
215 /*
216 * dkwedge_compute_pdev:
217 *
218 * Compute the parent disk's dev_t.
219 */
220 static int
221 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
222 {
223 const char *name, *cp;
224 devmajor_t pmaj;
225 int punit;
226 char devname[16];
227
228 name = pname;
229 switch (type) {
230 case VBLK:
231 pmaj = devsw_name2blk(name, devname, sizeof(devname));
232 break;
233 case VCHR:
234 pmaj = devsw_name2chr(name, devname, sizeof(devname));
235 break;
236 default:
237 pmaj = NODEVMAJOR;
238 break;
239 }
240 if (pmaj == NODEVMAJOR)
241 return ENXIO;
242
243 name += strlen(devname);
244 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
245 punit = (punit * 10) + (*cp - '0');
246 if (cp == name) {
247 /* Invalid parent disk name. */
248 return ENXIO;
249 }
250
251 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
252
253 return 0;
254 }
255
256 /*
257 * dkwedge_array_expand:
258 *
259 * Expand the dkwedges array.
260 *
261 * Releases and reacquires dkwedges_lock as a writer.
262 */
263 static int
264 dkwedge_array_expand(void)
265 {
266
267 const unsigned incr = 16;
268 unsigned newcnt, oldcnt;
269 struct dkwedge_softc **newarray = NULL, **oldarray = NULL;
270
271 KASSERT(rw_write_held(&dkwedges_lock));
272
273 oldcnt = ndkwedges;
274 oldarray = dkwedges;
275
276 if (oldcnt >= INT_MAX - incr)
277 return ENFILE; /* XXX */
278 newcnt = oldcnt + incr;
279
280 rw_exit(&dkwedges_lock);
281 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
282 M_WAITOK|M_ZERO);
283 rw_enter(&dkwedges_lock, RW_WRITER);
284
285 if (ndkwedges != oldcnt || dkwedges != oldarray) {
286 oldarray = NULL; /* already recycled */
287 goto out;
288 }
289
290 if (oldarray != NULL)
291 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
292 dkwedges = newarray;
293 newarray = NULL; /* transferred to dkwedges */
294 ndkwedges = newcnt;
295
296 out: rw_exit(&dkwedges_lock);
297 if (oldarray != NULL)
298 free(oldarray, M_DKWEDGE);
299 if (newarray != NULL)
300 free(newarray, M_DKWEDGE);
301 rw_enter(&dkwedges_lock, RW_WRITER);
302 return 0;
303 }
304
305 static void
306 dkwedge_size_init(struct dkwedge_softc *sc, uint64_t size)
307 {
308
309 rw_init(&sc->sc_sizelock);
310 sc->sc_size = size;
311 }
312
313 static void
314 dkwedge_size_fini(struct dkwedge_softc *sc)
315 {
316
317 rw_destroy(&sc->sc_sizelock);
318 }
319
320 static uint64_t
321 dkwedge_size(struct dkwedge_softc *sc)
322 {
323 uint64_t size;
324
325 rw_enter(&sc->sc_sizelock, RW_READER);
326 size = sc->sc_size;
327 rw_exit(&sc->sc_sizelock);
328
329 return size;
330 }
331
332 static void
333 dkwedge_size_increase(struct dkwedge_softc *sc, uint64_t size)
334 {
335
336 KASSERT(mutex_owned(&sc->sc_parent->dk_openlock));
337
338 rw_enter(&sc->sc_sizelock, RW_WRITER);
339 KASSERTMSG(size >= sc->sc_size,
340 "decreasing dkwedge size from %"PRIu64" to %"PRIu64,
341 sc->sc_size, size);
342 sc->sc_size = size;
343 rw_exit(&sc->sc_sizelock);
344 }
345
346 static void
347 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
348 {
349 struct disk *dk = &sc->sc_dk;
350 struct disk_geom *dg = &dk->dk_geom;
351
352 KASSERT(mutex_owned(&pdk->dk_openlock));
353
354 memset(dg, 0, sizeof(*dg));
355
356 dg->dg_secperunit = dkwedge_size(sc);
357 dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
358
359 /* fake numbers, 1 cylinder is 1 MB with default sector size */
360 dg->dg_nsectors = 32;
361 dg->dg_ntracks = 64;
362 dg->dg_ncylinders =
363 dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
364
365 disk_set_info(sc->sc_dev, dk, NULL);
366 }
367
368 /*
369 * dkwedge_add: [exported function]
370 *
371 * Add a disk wedge based on the provided information.
372 *
373 * The incoming dkw_devname[] is ignored, instead being
374 * filled in and returned to the caller.
375 */
376 int
377 dkwedge_add(struct dkwedge_info *dkw)
378 {
379 struct dkwedge_softc *sc, *lsc;
380 struct disk *pdk;
381 u_int unit;
382 int error;
383 dev_t pdev;
384
385 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
386 pdk = disk_find(dkw->dkw_parent);
387 if (pdk == NULL)
388 return ENXIO;
389
390 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
391 if (error)
392 return error;
393
394 if (dkw->dkw_offset < 0)
395 return EINVAL;
396
397 /*
398 * Check for an existing wedge at the same disk offset. Allow
399 * updating a wedge if the only change is the size, and the new
400 * size is larger than the old.
401 */
402 sc = NULL;
403 mutex_enter(&pdk->dk_openlock);
404 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
405 if (lsc->sc_offset != dkw->dkw_offset)
406 continue;
407 if (strcmp(lsc->sc_wname, dkw->dkw_wname) != 0)
408 break;
409 if (strcmp(lsc->sc_ptype, dkw->dkw_ptype) != 0)
410 break;
411 if (dkwedge_size(lsc) > dkw->dkw_size)
412 break;
413
414 sc = lsc;
415 dkwedge_size_increase(sc, dkw->dkw_size);
416 dk_set_geometry(sc, pdk);
417
418 break;
419 }
420 mutex_exit(&pdk->dk_openlock);
421
422 if (sc != NULL)
423 goto announce;
424
425 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
426 sc->sc_state = DKW_STATE_LARVAL;
427 sc->sc_parent = pdk;
428 sc->sc_pdev = pdev;
429 sc->sc_offset = dkw->dkw_offset;
430 dkwedge_size_init(sc, dkw->dkw_size);
431
432 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
433 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
434
435 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
436 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
437
438 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
439
440 callout_init(&sc->sc_restart_ch, 0);
441 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
442
443 mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
444 cv_init(&sc->sc_dkdrn, "dkdrn");
445
446 /*
447 * Wedge will be added; increment the wedge count for the parent.
448 * Only allow this to happen if RAW_PART is the only thing open.
449 */
450 mutex_enter(&pdk->dk_openlock);
451 if (pdk->dk_openmask & ~(1 << RAW_PART))
452 error = EBUSY;
453 else {
454 /* Check for wedge overlap. */
455 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
456 /* XXX arithmetic overflow */
457 uint64_t size = dkwedge_size(sc);
458 uint64_t lsize = dkwedge_size(lsc);
459 daddr_t lastblk = sc->sc_offset + size - 1;
460 daddr_t llastblk = lsc->sc_offset + lsize - 1;
461
462 if (sc->sc_offset >= lsc->sc_offset &&
463 sc->sc_offset <= llastblk) {
464 /* Overlaps the tail of the existing wedge. */
465 break;
466 }
467 if (lastblk >= lsc->sc_offset &&
468 lastblk <= llastblk) {
469 /* Overlaps the head of the existing wedge. */
470 break;
471 }
472 }
473 if (lsc != NULL) {
474 if (sc->sc_offset == lsc->sc_offset &&
475 dkwedge_size(sc) == dkwedge_size(lsc) &&
476 strcmp(sc->sc_wname, lsc->sc_wname) == 0)
477 error = EEXIST;
478 else
479 error = EINVAL;
480 } else {
481 pdk->dk_nwedges++;
482 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
483 }
484 }
485 mutex_exit(&pdk->dk_openlock);
486 if (error) {
487 cv_destroy(&sc->sc_dkdrn);
488 mutex_destroy(&sc->sc_iolock);
489 bufq_free(sc->sc_bufq);
490 dkwedge_size_fini(sc);
491 free(sc, M_DKWEDGE);
492 return error;
493 }
494
495 /* Fill in our cfdata for the pseudo-device glue. */
496 sc->sc_cfdata.cf_name = dk_cd.cd_name;
497 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
498 /* sc->sc_cfdata.cf_unit set below */
499 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
500
501 /* Insert the larval wedge into the array. */
502 rw_enter(&dkwedges_lock, RW_WRITER);
503 for (error = 0;;) {
504 struct dkwedge_softc **scpp;
505
506 /*
507 * Check for a duplicate wname while searching for
508 * a slot.
509 */
510 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
511 if (dkwedges[unit] == NULL) {
512 if (scpp == NULL) {
513 scpp = &dkwedges[unit];
514 sc->sc_cfdata.cf_unit = unit;
515 }
516 } else {
517 /* XXX Unicode. */
518 if (strcmp(dkwedges[unit]->sc_wname,
519 sc->sc_wname) == 0) {
520 error = EEXIST;
521 break;
522 }
523 }
524 }
525 if (error)
526 break;
527 KASSERT(unit == ndkwedges);
528 if (scpp == NULL) {
529 error = dkwedge_array_expand();
530 if (error)
531 break;
532 } else {
533 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
534 *scpp = sc;
535 break;
536 }
537 }
538 rw_exit(&dkwedges_lock);
539 if (error) {
540 mutex_enter(&pdk->dk_openlock);
541 pdk->dk_nwedges--;
542 LIST_REMOVE(sc, sc_plink);
543 mutex_exit(&pdk->dk_openlock);
544
545 cv_destroy(&sc->sc_dkdrn);
546 mutex_destroy(&sc->sc_iolock);
547 bufq_free(sc->sc_bufq);
548 dkwedge_size_fini(sc);
549 free(sc, M_DKWEDGE);
550 return error;
551 }
552
553 /*
554 * Now that we know the unit #, attach a pseudo-device for
555 * this wedge instance. This will provide us with the
556 * device_t necessary for glue to other parts of the system.
557 *
558 * This should never fail, unless we're almost totally out of
559 * memory.
560 */
561 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
562 aprint_error("%s%u: unable to attach pseudo-device\n",
563 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
564
565 rw_enter(&dkwedges_lock, RW_WRITER);
566 KASSERT(dkwedges[sc->sc_cfdata.cf_unit] == sc);
567 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
568 rw_exit(&dkwedges_lock);
569
570 mutex_enter(&pdk->dk_openlock);
571 pdk->dk_nwedges--;
572 LIST_REMOVE(sc, sc_plink);
573 mutex_exit(&pdk->dk_openlock);
574
575 cv_destroy(&sc->sc_dkdrn);
576 mutex_destroy(&sc->sc_iolock);
577 bufq_free(sc->sc_bufq);
578 dkwedge_size_fini(sc);
579 free(sc, M_DKWEDGE);
580 return ENOMEM;
581 }
582
583 /*
584 * XXX Really ought to make the disk_attach() and the changing
585 * of state to RUNNING atomic.
586 */
587
588 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
589 mutex_enter(&pdk->dk_openlock);
590 dk_set_geometry(sc, pdk);
591 mutex_exit(&pdk->dk_openlock);
592 disk_attach(&sc->sc_dk);
593
594 /* Disk wedge is ready for use! */
595 sc->sc_state = DKW_STATE_RUNNING;
596
597 announce:
598 /* Announce our arrival. */
599 aprint_normal(
600 "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
601 device_xname(sc->sc_dev), pdk->dk_name,
602 sc->sc_wname, /* XXX Unicode */
603 dkwedge_size(sc), sc->sc_offset,
604 sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
605
606 /* Return the devname to the caller. */
607 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
608 sizeof(dkw->dkw_devname));
609
610 return 0;
611 }
612
613 /*
614 * dkwedge_find:
615 *
616 * Lookup a disk wedge based on the provided information.
617 * NOTE: We look up the wedge based on the wedge devname,
618 * not wname.
619 *
620 * Return NULL if the wedge is not found, otherwise return
621 * the wedge's softc. Assign the wedge's unit number to unitp
622 * if unitp is not NULL.
623 */
624 static struct dkwedge_softc *
625 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
626 {
627 struct dkwedge_softc *sc = NULL;
628 u_int unit;
629
630 /* Find our softc. */
631 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
632 rw_enter(&dkwedges_lock, RW_READER);
633 for (unit = 0; unit < ndkwedges; unit++) {
634 if ((sc = dkwedges[unit]) != NULL &&
635 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
636 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
637 break;
638 }
639 }
640 rw_exit(&dkwedges_lock);
641 if (sc == NULL)
642 return NULL;
643
644 if (unitp != NULL)
645 *unitp = unit;
646
647 return sc;
648 }
649
650 /*
651 * dkwedge_del: [exported function]
652 *
653 * Delete a disk wedge based on the provided information.
654 * NOTE: We look up the wedge based on the wedge devname,
655 * not wname.
656 */
657 int
658 dkwedge_del(struct dkwedge_info *dkw)
659 {
660
661 return dkwedge_del1(dkw, 0);
662 }
663
664 int
665 dkwedge_del1(struct dkwedge_info *dkw, int flags)
666 {
667 struct dkwedge_softc *sc = NULL;
668
669 /* Find our softc. */
670 if ((sc = dkwedge_find(dkw, NULL)) == NULL)
671 return ESRCH;
672
673 return config_detach(sc->sc_dev, flags);
674 }
675
676 /*
677 * dkwedge_detach:
678 *
679 * Autoconfiguration detach function for pseudo-device glue.
680 */
681 static int
682 dkwedge_detach(device_t self, int flags)
683 {
684 struct dkwedge_softc *sc = NULL;
685 u_int unit;
686 int bmaj, cmaj, rc;
687
688 rw_enter(&dkwedges_lock, RW_WRITER);
689 for (unit = 0; unit < ndkwedges; unit++) {
690 if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
691 break;
692 }
693 if (unit == ndkwedges)
694 rc = ENXIO;
695 else if ((rc = disk_begindetach(&sc->sc_dk, /*lastclose*/NULL, self,
696 flags)) == 0) {
697 /* Mark the wedge as dying. */
698 sc->sc_state = DKW_STATE_DYING;
699 }
700 rw_exit(&dkwedges_lock);
701
702 if (rc != 0)
703 return rc;
704
705 pmf_device_deregister(self);
706
707 /* Kill any pending restart. */
708 mutex_enter(&sc->sc_iolock);
709 sc->sc_iostop = true;
710 mutex_exit(&sc->sc_iolock);
711 callout_halt(&sc->sc_restart_ch, NULL);
712
713 /*
714 * dkstart() will kill any queued buffers now that the
715 * state of the wedge is not RUNNING. Once we've done
716 * that, wait for any other pending I/O to complete.
717 */
718 dkstart(sc);
719 dkwedge_wait_drain(sc);
720
721 /* Locate the wedge major numbers. */
722 bmaj = bdevsw_lookup_major(&dk_bdevsw);
723 cmaj = cdevsw_lookup_major(&dk_cdevsw);
724
725 /* Nuke the vnodes for any open instances. */
726 vdevgone(bmaj, unit, unit, VBLK);
727 vdevgone(cmaj, unit, unit, VCHR);
728
729 /*
730 * At this point, all block device opens have been closed,
731 * synchronously flushing any buffered writes; and all
732 * character device I/O operations have completed
733 * synchronously, and character device opens have been closed.
734 *
735 * So there can be no more opens or queued buffers by now.
736 */
737 KASSERT(sc->sc_dk.dk_openmask == 0);
738 KASSERT(bufq_peek(sc->sc_bufq) == NULL);
739 bufq_drain(sc->sc_bufq);
740
741 /* Announce our departure. */
742 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
743 sc->sc_parent->dk_name,
744 sc->sc_wname); /* XXX Unicode */
745
746 mutex_enter(&sc->sc_parent->dk_openlock);
747 sc->sc_parent->dk_nwedges--;
748 LIST_REMOVE(sc, sc_plink);
749 mutex_exit(&sc->sc_parent->dk_openlock);
750
751 /* Delete our buffer queue. */
752 bufq_free(sc->sc_bufq);
753
754 /* Detach from the disk list. */
755 disk_detach(&sc->sc_dk);
756 disk_destroy(&sc->sc_dk);
757
758 /* Poof. */
759 rw_enter(&dkwedges_lock, RW_WRITER);
760 KASSERT(dkwedges[unit] == sc);
761 dkwedges[unit] = NULL;
762 sc->sc_state = DKW_STATE_DEAD;
763 rw_exit(&dkwedges_lock);
764
765 mutex_destroy(&sc->sc_iolock);
766 cv_destroy(&sc->sc_dkdrn);
767 dkwedge_size_fini(sc);
768
769 free(sc, M_DKWEDGE);
770
771 return 0;
772 }
773
774 /*
775 * dkwedge_delall: [exported function]
776 *
777 * Delete all of the wedges on the specified disk. Used when
778 * a disk is being detached.
779 */
780 void
781 dkwedge_delall(struct disk *pdk)
782 {
783
784 dkwedge_delall1(pdk, false);
785 }
786
787 static void
788 dkwedge_delall1(struct disk *pdk, bool idleonly)
789 {
790 struct dkwedge_info dkw;
791 struct dkwedge_softc *sc;
792 int flags;
793
794 flags = DETACH_QUIET;
795 if (!idleonly)
796 flags |= DETACH_FORCE;
797
798 for (;;) {
799 mutex_enter(&pdk->dk_rawlock); /* for sc->sc_dk.dk_openmask */
800 mutex_enter(&pdk->dk_openlock);
801 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
802 if (!idleonly || sc->sc_dk.dk_openmask == 0)
803 break;
804 }
805 if (sc == NULL) {
806 KASSERT(idleonly || pdk->dk_nwedges == 0);
807 mutex_exit(&pdk->dk_openlock);
808 mutex_exit(&pdk->dk_rawlock);
809 return;
810 }
811 strlcpy(dkw.dkw_parent, pdk->dk_name, sizeof(dkw.dkw_parent));
812 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
813 sizeof(dkw.dkw_devname));
814 mutex_exit(&pdk->dk_openlock);
815 mutex_exit(&pdk->dk_rawlock);
816 (void) dkwedge_del1(&dkw, flags);
817 }
818 }
819
820 /*
821 * dkwedge_list: [exported function]
822 *
823 * List all of the wedges on a particular disk.
824 */
825 int
826 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
827 {
828 struct uio uio;
829 struct iovec iov;
830 struct dkwedge_softc *sc;
831 struct dkwedge_info dkw;
832 int error = 0;
833
834 iov.iov_base = dkwl->dkwl_buf;
835 iov.iov_len = dkwl->dkwl_bufsize;
836
837 uio.uio_iov = &iov;
838 uio.uio_iovcnt = 1;
839 uio.uio_offset = 0;
840 uio.uio_resid = dkwl->dkwl_bufsize;
841 uio.uio_rw = UIO_READ;
842 KASSERT(l == curlwp);
843 uio.uio_vmspace = l->l_proc->p_vmspace;
844
845 dkwl->dkwl_ncopied = 0;
846
847 mutex_enter(&pdk->dk_openlock);
848 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
849 if (uio.uio_resid < sizeof(dkw))
850 break;
851
852 if (sc->sc_state != DKW_STATE_RUNNING)
853 continue;
854
855 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
856 sizeof(dkw.dkw_devname));
857 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
858 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
859 strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
860 sizeof(dkw.dkw_parent));
861 dkw.dkw_offset = sc->sc_offset;
862 dkw.dkw_size = dkwedge_size(sc);
863 strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
864
865 error = uiomove(&dkw, sizeof(dkw), &uio);
866 if (error)
867 break;
868 dkwl->dkwl_ncopied++;
869 }
870 dkwl->dkwl_nwedges = pdk->dk_nwedges;
871 mutex_exit(&pdk->dk_openlock);
872
873 return error;
874 }
875
876 device_t
877 dkwedge_find_by_wname(const char *wname)
878 {
879 device_t dv = NULL;
880 struct dkwedge_softc *sc;
881 int i;
882
883 rw_enter(&dkwedges_lock, RW_READER);
884 for (i = 0; i < ndkwedges; i++) {
885 if ((sc = dkwedges[i]) == NULL)
886 continue;
887 if (strcmp(sc->sc_wname, wname) == 0) {
888 if (dv != NULL) {
889 printf(
890 "WARNING: double match for wedge name %s "
891 "(%s, %s)\n", wname, device_xname(dv),
892 device_xname(sc->sc_dev));
893 continue;
894 }
895 dv = sc->sc_dev;
896 }
897 }
898 rw_exit(&dkwedges_lock);
899 return dv;
900 }
901
902 device_t
903 dkwedge_find_by_parent(const char *name, size_t *i)
904 {
905
906 rw_enter(&dkwedges_lock, RW_READER);
907 for (; *i < (size_t)ndkwedges; (*i)++) {
908 struct dkwedge_softc *sc;
909 if ((sc = dkwedges[*i]) == NULL)
910 continue;
911 if (strcmp(sc->sc_parent->dk_name, name) != 0)
912 continue;
913 rw_exit(&dkwedges_lock);
914 return sc->sc_dev;
915 }
916 rw_exit(&dkwedges_lock);
917 return NULL;
918 }
919
920 void
921 dkwedge_print_wnames(void)
922 {
923 struct dkwedge_softc *sc;
924 int i;
925
926 rw_enter(&dkwedges_lock, RW_READER);
927 for (i = 0; i < ndkwedges; i++) {
928 if ((sc = dkwedges[i]) == NULL)
929 continue;
930 printf(" wedge:%s", sc->sc_wname);
931 }
932 rw_exit(&dkwedges_lock);
933 }
934
935 /*
936 * We need a dummy object to stuff into the dkwedge discovery method link
937 * set to ensure that there is always at least one object in the set.
938 */
939 static struct dkwedge_discovery_method dummy_discovery_method;
940 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
941
942 /*
943 * dkwedge_init:
944 *
945 * Initialize the disk wedge subsystem.
946 */
947 void
948 dkwedge_init(void)
949 {
950 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
951 struct dkwedge_discovery_method * const *ddmp;
952 struct dkwedge_discovery_method *lddm, *ddm;
953
954 rw_init(&dkwedges_lock);
955 rw_init(&dkwedge_discovery_methods_lock);
956
957 if (config_cfdriver_attach(&dk_cd) != 0)
958 panic("dkwedge: unable to attach cfdriver");
959 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
960 panic("dkwedge: unable to attach cfattach");
961
962 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
963
964 LIST_INIT(&dkwedge_discovery_methods);
965
966 __link_set_foreach(ddmp, dkwedge_methods) {
967 ddm = *ddmp;
968 if (ddm == &dummy_discovery_method)
969 continue;
970 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
971 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
972 ddm, ddm_list);
973 continue;
974 }
975 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
976 if (ddm->ddm_priority == lddm->ddm_priority) {
977 aprint_error("dk-method-%s: method \"%s\" "
978 "already exists at priority %d\n",
979 ddm->ddm_name, lddm->ddm_name,
980 lddm->ddm_priority);
981 /* Not inserted. */
982 break;
983 }
984 if (ddm->ddm_priority < lddm->ddm_priority) {
985 /* Higher priority; insert before. */
986 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
987 break;
988 }
989 if (LIST_NEXT(lddm, ddm_list) == NULL) {
990 /* Last one; insert after. */
991 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
992 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
993 break;
994 }
995 }
996 }
997
998 rw_exit(&dkwedge_discovery_methods_lock);
999 }
1000
1001 #ifdef DKWEDGE_AUTODISCOVER
1002 int dkwedge_autodiscover = 1;
1003 #else
1004 int dkwedge_autodiscover = 0;
1005 #endif
1006
1007 /*
1008 * dkwedge_discover: [exported function]
1009 *
1010 * Discover the wedges on a newly attached disk.
1011 * Remove all unused wedges on the disk first.
1012 */
1013 void
1014 dkwedge_discover(struct disk *pdk)
1015 {
1016 struct dkwedge_discovery_method *ddm;
1017 struct vnode *vp;
1018 int error;
1019 dev_t pdev;
1020
1021 /*
1022 * Require people playing with wedges to enable this explicitly.
1023 */
1024 if (dkwedge_autodiscover == 0)
1025 return;
1026
1027 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
1028
1029 /*
1030 * Use the character device for scanning, the block device
1031 * is busy if there are already wedges attached.
1032 */
1033 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
1034 if (error) {
1035 aprint_error("%s: unable to compute pdev, error = %d\n",
1036 pdk->dk_name, error);
1037 goto out;
1038 }
1039
1040 error = cdevvp(pdev, &vp);
1041 if (error) {
1042 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
1043 pdk->dk_name, error);
1044 goto out;
1045 }
1046
1047 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1048 if (error) {
1049 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
1050 pdk->dk_name, error);
1051 vrele(vp);
1052 goto out;
1053 }
1054
1055 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
1056 if (error) {
1057 if (error != ENXIO)
1058 aprint_error("%s: unable to open device, error = %d\n",
1059 pdk->dk_name, error);
1060 vput(vp);
1061 goto out;
1062 }
1063 VOP_UNLOCK(vp);
1064
1065 /*
1066 * Remove unused wedges
1067 */
1068 dkwedge_delall1(pdk, true);
1069
1070 /*
1071 * For each supported partition map type, look to see if
1072 * this map type exists. If so, parse it and add the
1073 * corresponding wedges.
1074 */
1075 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
1076 error = (*ddm->ddm_discover)(pdk, vp);
1077 if (error == 0) {
1078 /* Successfully created wedges; we're done. */
1079 break;
1080 }
1081 }
1082
1083 error = vn_close(vp, FREAD, NOCRED);
1084 if (error) {
1085 aprint_error("%s: unable to close device, error = %d\n",
1086 pdk->dk_name, error);
1087 /* We'll just assume the vnode has been cleaned up. */
1088 }
1089
1090 out:
1091 rw_exit(&dkwedge_discovery_methods_lock);
1092 }
1093
1094 /*
1095 * dkwedge_read:
1096 *
1097 * Read some data from the specified disk, used for
1098 * partition discovery.
1099 */
1100 int
1101 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
1102 void *tbuf, size_t len)
1103 {
1104 buf_t *bp;
1105 int error;
1106 bool isopen;
1107 dev_t bdev;
1108 struct vnode *bdvp;
1109
1110 /*
1111 * The kernel cannot read from a character device vnode
1112 * as physio() only handles user memory.
1113 *
1114 * If the block device has already been opened by a wedge
1115 * use that vnode and temporarily bump the open counter.
1116 *
1117 * Otherwise try to open the block device.
1118 */
1119
1120 bdev = devsw_chr2blk(vp->v_rdev);
1121
1122 mutex_enter(&pdk->dk_rawlock);
1123 if (pdk->dk_rawopens != 0) {
1124 KASSERT(pdk->dk_rawvp != NULL);
1125 isopen = true;
1126 ++pdk->dk_rawopens;
1127 bdvp = pdk->dk_rawvp;
1128 error = 0;
1129 } else {
1130 isopen = false;
1131 error = dk_open_parent(bdev, FREAD, &bdvp);
1132 }
1133 mutex_exit(&pdk->dk_rawlock);
1134
1135 if (error)
1136 return error;
1137
1138 bp = getiobuf(bdvp, true);
1139 bp->b_flags = B_READ;
1140 bp->b_cflags = BC_BUSY;
1141 bp->b_dev = bdev;
1142 bp->b_data = tbuf;
1143 bp->b_bufsize = bp->b_bcount = len;
1144 bp->b_blkno = blkno;
1145 bp->b_cylinder = 0;
1146 bp->b_error = 0;
1147
1148 VOP_STRATEGY(bdvp, bp);
1149 error = biowait(bp);
1150 putiobuf(bp);
1151
1152 mutex_enter(&pdk->dk_rawlock);
1153 if (isopen) {
1154 --pdk->dk_rawopens;
1155 } else {
1156 dk_close_parent(bdvp, FREAD);
1157 }
1158 mutex_exit(&pdk->dk_rawlock);
1159
1160 return error;
1161 }
1162
1163 /*
1164 * dkwedge_lookup:
1165 *
1166 * Look up a dkwedge_softc based on the provided dev_t.
1167 */
1168 static struct dkwedge_softc *
1169 dkwedge_lookup(dev_t dev)
1170 {
1171 const int unit = minor(dev);
1172 struct dkwedge_softc *sc;
1173
1174 rw_enter(&dkwedges_lock, RW_READER);
1175 if (unit < 0 || unit >= ndkwedges)
1176 sc = NULL;
1177 else
1178 sc = dkwedges[unit];
1179 rw_exit(&dkwedges_lock);
1180
1181 return sc;
1182 }
1183
1184 static int
1185 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
1186 {
1187 struct vnode *vp;
1188 int error;
1189
1190 error = bdevvp(dev, &vp);
1191 if (error)
1192 return error;
1193
1194 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1195 if (error) {
1196 vrele(vp);
1197 return error;
1198 }
1199 error = VOP_OPEN(vp, mode, NOCRED);
1200 if (error) {
1201 vput(vp);
1202 return error;
1203 }
1204
1205 /* VOP_OPEN() doesn't do this for us. */
1206 if (mode & FWRITE) {
1207 mutex_enter(vp->v_interlock);
1208 vp->v_writecount++;
1209 mutex_exit(vp->v_interlock);
1210 }
1211
1212 VOP_UNLOCK(vp);
1213
1214 *vpp = vp;
1215
1216 return 0;
1217 }
1218
1219 static int
1220 dk_close_parent(struct vnode *vp, int mode)
1221 {
1222 int error;
1223
1224 error = vn_close(vp, mode, NOCRED);
1225 return error;
1226 }
1227
1228 /*
1229 * dkunit: [devsw entry point]
1230 *
1231 * Return the autoconf device_t unit number of a wedge by its
1232 * devsw dev_t number, or -1 if there is none.
1233 *
1234 * XXX This is a temporary hack until dkwedge numbering is made to
1235 * correspond 1:1 to autoconf device numbering.
1236 */
1237 static int
1238 dkunit(dev_t dev)
1239 {
1240 int mn = minor(dev);
1241 struct dkwedge_softc *sc;
1242 device_t dv;
1243 int unit = -1;
1244
1245 if (mn < 0)
1246 return -1;
1247
1248 rw_enter(&dkwedges_lock, RW_READER);
1249 if (mn < ndkwedges &&
1250 (sc = dkwedges[minor(dev)]) != NULL &&
1251 (dv = sc->sc_dev) != NULL)
1252 unit = device_unit(dv);
1253 rw_exit(&dkwedges_lock);
1254
1255 return unit;
1256 }
1257
1258 /*
1259 * dkopen: [devsw entry point]
1260 *
1261 * Open a wedge.
1262 */
1263 static int
1264 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
1265 {
1266 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1267 int error = 0;
1268
1269 if (sc == NULL)
1270 return ENXIO;
1271 if (sc->sc_state != DKW_STATE_RUNNING)
1272 return ENXIO;
1273
1274 /*
1275 * We go through a complicated little dance to only open the parent
1276 * vnode once per wedge, no matter how many times the wedge is
1277 * opened. The reason? We see one dkopen() per open call, but
1278 * only dkclose() on the last close.
1279 */
1280 mutex_enter(&sc->sc_dk.dk_openlock);
1281 mutex_enter(&sc->sc_parent->dk_rawlock);
1282 if (sc->sc_dk.dk_openmask == 0) {
1283 error = dkfirstopen(sc, flags);
1284 if (error)
1285 goto out;
1286 }
1287 KASSERT(sc->sc_mode != 0);
1288 if (flags & ~sc->sc_mode & FWRITE) {
1289 error = EROFS;
1290 goto out;
1291 }
1292 if (fmt == S_IFCHR)
1293 sc->sc_dk.dk_copenmask |= 1;
1294 else
1295 sc->sc_dk.dk_bopenmask |= 1;
1296 sc->sc_dk.dk_openmask =
1297 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1298
1299 out: mutex_exit(&sc->sc_parent->dk_rawlock);
1300 mutex_exit(&sc->sc_dk.dk_openlock);
1301 return error;
1302 }
1303
1304 static int
1305 dkfirstopen(struct dkwedge_softc *sc, int flags)
1306 {
1307 struct dkwedge_softc *nsc;
1308 struct vnode *vp;
1309 int mode;
1310 int error;
1311
1312 KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
1313 KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
1314
1315 if (sc->sc_parent->dk_rawopens == 0) {
1316 KASSERT(sc->sc_parent->dk_rawvp == NULL);
1317 /*
1318 * Try open read-write. If this fails for EROFS
1319 * and wedge is read-only, retry to open read-only.
1320 */
1321 mode = FREAD | FWRITE;
1322 error = dk_open_parent(sc->sc_pdev, mode, &vp);
1323 if (error == EROFS && (flags & FWRITE) == 0) {
1324 mode &= ~FWRITE;
1325 error = dk_open_parent(sc->sc_pdev, mode, &vp);
1326 }
1327 if (error)
1328 return error;
1329 KASSERT(vp != NULL);
1330 sc->sc_parent->dk_rawvp = vp;
1331 } else {
1332 /*
1333 * Retrieve mode from an already opened wedge.
1334 *
1335 * At this point, dk_rawopens is bounded by the number
1336 * of dkwedge devices in the system, which is limited
1337 * by autoconf device numbering to INT_MAX. Since
1338 * dk_rawopens is unsigned, this can't overflow.
1339 */
1340 KASSERT(sc->sc_parent->dk_rawopens < UINT_MAX);
1341 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1342 mode = 0;
1343 LIST_FOREACH(nsc, &sc->sc_parent->dk_wedges, sc_plink) {
1344 if (nsc == sc || nsc->sc_dk.dk_openmask == 0)
1345 continue;
1346 mode = nsc->sc_mode;
1347 break;
1348 }
1349 }
1350 sc->sc_mode = mode;
1351 sc->sc_parent->dk_rawopens++;
1352
1353 return 0;
1354 }
1355
1356 static void
1357 dklastclose(struct dkwedge_softc *sc)
1358 {
1359
1360 KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
1361 KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
1362 KASSERT(sc->sc_parent->dk_rawopens > 0);
1363 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1364
1365 if (--sc->sc_parent->dk_rawopens == 0) {
1366 struct vnode *const vp = sc->sc_parent->dk_rawvp;
1367 const int mode = sc->sc_mode;
1368
1369 sc->sc_parent->dk_rawvp = NULL;
1370 sc->sc_mode = 0;
1371
1372 dk_close_parent(vp, mode);
1373 }
1374 }
1375
1376 /*
1377 * dkclose: [devsw entry point]
1378 *
1379 * Close a wedge.
1380 */
1381 static int
1382 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1383 {
1384 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1385
1386 if (sc == NULL)
1387 return ENXIO;
1388 if (sc->sc_state != DKW_STATE_RUNNING)
1389 return ENXIO;
1390
1391 mutex_enter(&sc->sc_dk.dk_openlock);
1392 mutex_enter(&sc->sc_parent->dk_rawlock);
1393
1394 KASSERT(sc->sc_dk.dk_openmask != 0);
1395
1396 if (fmt == S_IFCHR)
1397 sc->sc_dk.dk_copenmask &= ~1;
1398 else
1399 sc->sc_dk.dk_bopenmask &= ~1;
1400 sc->sc_dk.dk_openmask =
1401 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1402
1403 if (sc->sc_dk.dk_openmask == 0) {
1404 dklastclose(sc);
1405 }
1406
1407 mutex_exit(&sc->sc_parent->dk_rawlock);
1408 mutex_exit(&sc->sc_dk.dk_openlock);
1409
1410 return 0;
1411 }
1412
1413 /*
1414 * dkcancel: [devsw entry point]
1415 *
1416 * Cancel any pending I/O operations waiting on a wedge.
1417 */
1418 static int
1419 dkcancel(dev_t dev, int flags, int fmt, struct lwp *l)
1420 {
1421 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1422
1423 KASSERT(sc != NULL);
1424 KASSERT(sc->sc_dev != NULL);
1425 KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1426 KASSERT(sc->sc_state != DKW_STATE_DEAD);
1427
1428 /*
1429 * Disk I/O is expected to complete or fail within a reasonable
1430 * timeframe -- it's storage, not communication. Further, the
1431 * character and block device interface guarantees that prior
1432 * reads and writes have completed or failed by the time close
1433 * returns -- we are not to cancel them here. If the parent
1434 * device's hardware is gone, the parent driver can make them
1435 * fail. Nothing for dk(4) itself to do.
1436 */
1437
1438 return 0;
1439 }
1440
1441 /*
1442 * dkstrategy: [devsw entry point]
1443 *
1444 * Perform I/O based on the wedge I/O strategy.
1445 */
1446 static void
1447 dkstrategy(struct buf *bp)
1448 {
1449 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1450 uint64_t p_size, p_offset;
1451
1452 KASSERT(sc != NULL);
1453 KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1454 KASSERT(sc->sc_state != DKW_STATE_DEAD);
1455 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1456
1457 /* If it's an empty transfer, wake up the top half now. */
1458 if (bp->b_bcount == 0)
1459 goto done;
1460
1461 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1462 p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1463
1464 /* Make sure it's in-range. */
1465 if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1466 goto done;
1467
1468 /* Translate it to the parent's raw LBA. */
1469 bp->b_rawblkno = bp->b_blkno + p_offset;
1470
1471 /* Place it in the queue and start I/O on the unit. */
1472 mutex_enter(&sc->sc_iolock);
1473 sc->sc_iopend++;
1474 disk_wait(&sc->sc_dk);
1475 bufq_put(sc->sc_bufq, bp);
1476 mutex_exit(&sc->sc_iolock);
1477
1478 dkstart(sc);
1479 return;
1480
1481 done:
1482 bp->b_resid = bp->b_bcount;
1483 biodone(bp);
1484 }
1485
1486 /*
1487 * dkstart:
1488 *
1489 * Start I/O that has been enqueued on the wedge.
1490 */
1491 static void
1492 dkstart(struct dkwedge_softc *sc)
1493 {
1494 struct vnode *vp;
1495 struct buf *bp, *nbp;
1496
1497 mutex_enter(&sc->sc_iolock);
1498
1499 /* Do as much work as has been enqueued. */
1500 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1501 if (sc->sc_iostop) {
1502 (void) bufq_get(sc->sc_bufq);
1503 if (--sc->sc_iopend == 0)
1504 cv_broadcast(&sc->sc_dkdrn);
1505 mutex_exit(&sc->sc_iolock);
1506 bp->b_error = ENXIO;
1507 bp->b_resid = bp->b_bcount;
1508 biodone(bp);
1509 mutex_enter(&sc->sc_iolock);
1510 continue;
1511 }
1512
1513 /* fetch an I/O buf with sc_iolock dropped */
1514 mutex_exit(&sc->sc_iolock);
1515 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1516 mutex_enter(&sc->sc_iolock);
1517 if (nbp == NULL) {
1518 /*
1519 * No resources to run this request; leave the
1520 * buffer queued up, and schedule a timer to
1521 * restart the queue in 1/2 a second.
1522 */
1523 if (!sc->sc_iostop)
1524 callout_schedule(&sc->sc_restart_ch, hz/2);
1525 break;
1526 }
1527
1528 /*
1529 * fetch buf, this can fail if another thread
1530 * has already processed the queue, it can also
1531 * return a completely different buf.
1532 */
1533 bp = bufq_get(sc->sc_bufq);
1534 if (bp == NULL) {
1535 mutex_exit(&sc->sc_iolock);
1536 putiobuf(nbp);
1537 mutex_enter(&sc->sc_iolock);
1538 continue;
1539 }
1540
1541 /* Instrumentation. */
1542 disk_busy(&sc->sc_dk);
1543
1544 /* release lock for VOP_STRATEGY */
1545 mutex_exit(&sc->sc_iolock);
1546
1547 nbp->b_data = bp->b_data;
1548 nbp->b_flags = bp->b_flags;
1549 nbp->b_oflags = bp->b_oflags;
1550 nbp->b_cflags = bp->b_cflags;
1551 nbp->b_iodone = dkiodone;
1552 nbp->b_proc = bp->b_proc;
1553 nbp->b_blkno = bp->b_rawblkno;
1554 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1555 nbp->b_bcount = bp->b_bcount;
1556 nbp->b_private = bp;
1557 BIO_COPYPRIO(nbp, bp);
1558
1559 vp = nbp->b_vp;
1560 if ((nbp->b_flags & B_READ) == 0) {
1561 mutex_enter(vp->v_interlock);
1562 vp->v_numoutput++;
1563 mutex_exit(vp->v_interlock);
1564 }
1565 VOP_STRATEGY(vp, nbp);
1566
1567 mutex_enter(&sc->sc_iolock);
1568 }
1569
1570 mutex_exit(&sc->sc_iolock);
1571 }
1572
1573 /*
1574 * dkiodone:
1575 *
1576 * I/O to a wedge has completed; alert the top half.
1577 */
1578 static void
1579 dkiodone(struct buf *bp)
1580 {
1581 struct buf *obp = bp->b_private;
1582 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1583
1584 if (bp->b_error != 0)
1585 obp->b_error = bp->b_error;
1586 obp->b_resid = bp->b_resid;
1587 putiobuf(bp);
1588
1589 mutex_enter(&sc->sc_iolock);
1590 if (--sc->sc_iopend == 0)
1591 cv_broadcast(&sc->sc_dkdrn);
1592
1593 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1594 obp->b_flags & B_READ);
1595 mutex_exit(&sc->sc_iolock);
1596
1597 biodone(obp);
1598
1599 /* Kick the queue in case there is more work we can do. */
1600 dkstart(sc);
1601 }
1602
1603 /*
1604 * dkrestart:
1605 *
1606 * Restart the work queue after it was stalled due to
1607 * a resource shortage. Invoked via a callout.
1608 */
1609 static void
1610 dkrestart(void *v)
1611 {
1612 struct dkwedge_softc *sc = v;
1613
1614 dkstart(sc);
1615 }
1616
1617 /*
1618 * dkminphys:
1619 *
1620 * Call parent's minphys function.
1621 */
1622 static void
1623 dkminphys(struct buf *bp)
1624 {
1625 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1626 dev_t dev;
1627
1628 dev = bp->b_dev;
1629 bp->b_dev = sc->sc_pdev;
1630 if (sc->sc_parent->dk_driver && sc->sc_parent->dk_driver->d_minphys)
1631 (*sc->sc_parent->dk_driver->d_minphys)(bp);
1632 else
1633 minphys(bp);
1634 bp->b_dev = dev;
1635 }
1636
1637 /*
1638 * dkread: [devsw entry point]
1639 *
1640 * Read from a wedge.
1641 */
1642 static int
1643 dkread(dev_t dev, struct uio *uio, int flags)
1644 {
1645 struct dkwedge_softc *sc __diagused = dkwedge_lookup(dev);
1646
1647 KASSERT(sc != NULL);
1648 KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1649 KASSERT(sc->sc_state != DKW_STATE_DEAD);
1650
1651 return physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio);
1652 }
1653
1654 /*
1655 * dkwrite: [devsw entry point]
1656 *
1657 * Write to a wedge.
1658 */
1659 static int
1660 dkwrite(dev_t dev, struct uio *uio, int flags)
1661 {
1662 struct dkwedge_softc *sc __diagused = dkwedge_lookup(dev);
1663
1664 KASSERT(sc != NULL);
1665 KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1666 KASSERT(sc->sc_state != DKW_STATE_DEAD);
1667
1668 return physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio);
1669 }
1670
1671 /*
1672 * dkioctl: [devsw entry point]
1673 *
1674 * Perform an ioctl request on a wedge.
1675 */
1676 static int
1677 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1678 {
1679 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1680 int error = 0;
1681
1682 KASSERT(sc != NULL);
1683 KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1684 KASSERT(sc->sc_state != DKW_STATE_DEAD);
1685 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1686
1687 /*
1688 * We pass NODEV instead of our device to indicate we don't
1689 * want to handle disklabel ioctls
1690 */
1691 error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
1692 if (error != EPASSTHROUGH)
1693 return error;
1694
1695 error = 0;
1696
1697 switch (cmd) {
1698 case DIOCGSTRATEGY:
1699 case DIOCGCACHE:
1700 case DIOCCACHESYNC:
1701 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, data, flag,
1702 l != NULL ? l->l_cred : NOCRED);
1703 break;
1704 case DIOCGWEDGEINFO: {
1705 struct dkwedge_info *dkw = data;
1706
1707 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1708 sizeof(dkw->dkw_devname));
1709 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1710 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1711 strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
1712 sizeof(dkw->dkw_parent));
1713 dkw->dkw_offset = sc->sc_offset;
1714 dkw->dkw_size = dkwedge_size(sc);
1715 strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
1716
1717 break;
1718 }
1719 case DIOCGSECTORALIGN: {
1720 struct disk_sectoralign *dsa = data;
1721 uint32_t r;
1722
1723 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, dsa, flag,
1724 l != NULL ? l->l_cred : NOCRED);
1725 if (error)
1726 break;
1727
1728 r = sc->sc_offset % dsa->dsa_alignment;
1729 if (r < dsa->dsa_firstaligned)
1730 dsa->dsa_firstaligned = dsa->dsa_firstaligned - r;
1731 else
1732 dsa->dsa_firstaligned = (dsa->dsa_firstaligned +
1733 dsa->dsa_alignment) - r;
1734 break;
1735 }
1736 default:
1737 error = ENOTTY;
1738 }
1739
1740 return error;
1741 }
1742
1743 /*
1744 * dkdiscard: [devsw entry point]
1745 *
1746 * Perform a discard-range request on a wedge.
1747 */
1748 static int
1749 dkdiscard(dev_t dev, off_t pos, off_t len)
1750 {
1751 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1752 uint64_t size = dkwedge_size(sc);
1753 unsigned shift;
1754 off_t offset, maxlen;
1755 int error;
1756
1757 KASSERT(sc != NULL);
1758 KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1759 KASSERT(sc->sc_state != DKW_STATE_DEAD);
1760 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1761
1762 /* XXX check bounds on size/offset up front */
1763 shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
1764 KASSERT(__type_fit(off_t, size));
1765 KASSERT(__type_fit(off_t, sc->sc_offset));
1766 KASSERT(0 <= sc->sc_offset);
1767 KASSERT(size <= (__type_max(off_t) >> shift));
1768 KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - size));
1769 offset = ((off_t)sc->sc_offset << shift);
1770 maxlen = ((off_t)size << shift);
1771
1772 if (len > maxlen)
1773 return EINVAL;
1774 if (pos > (maxlen - len))
1775 return EINVAL;
1776
1777 pos += offset;
1778
1779 vn_lock(sc->sc_parent->dk_rawvp, LK_EXCLUSIVE | LK_RETRY);
1780 error = VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
1781 VOP_UNLOCK(sc->sc_parent->dk_rawvp);
1782
1783 return error;
1784 }
1785
1786 /*
1787 * dksize: [devsw entry point]
1788 *
1789 * Query the size of a wedge for the purpose of performing a dump
1790 * or for swapping to.
1791 */
1792 static int
1793 dksize(dev_t dev)
1794 {
1795 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1796 uint64_t p_size;
1797 int rv = -1;
1798
1799 if (sc == NULL)
1800 return -1;
1801 if (sc->sc_state != DKW_STATE_RUNNING)
1802 return -1;
1803
1804 /* Our content type is static, no need to open the device. */
1805
1806 p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1807 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1808 /* Saturate if we are larger than INT_MAX. */
1809 if (p_size > INT_MAX)
1810 rv = INT_MAX;
1811 else
1812 rv = (int)p_size;
1813 }
1814
1815 return rv;
1816 }
1817
1818 /*
1819 * dkdump: [devsw entry point]
1820 *
1821 * Perform a crash dump to a wedge.
1822 */
1823 static int
1824 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1825 {
1826 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1827 const struct bdevsw *bdev;
1828 uint64_t p_size, p_offset;
1829
1830 if (sc == NULL)
1831 return ENXIO;
1832 if (sc->sc_state != DKW_STATE_RUNNING)
1833 return ENXIO;
1834
1835 /* Our content type is static, no need to open the device. */
1836
1837 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
1838 strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0 &&
1839 strcmp(sc->sc_ptype, DKW_PTYPE_CGD) != 0)
1840 return ENXIO;
1841 if (size % DEV_BSIZE != 0)
1842 return EINVAL;
1843
1844 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1845 p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1846
1847 if (blkno < 0 || blkno + size/DEV_BSIZE > p_size) {
1848 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1849 "p_size (%" PRIu64 ")\n", __func__, blkno,
1850 size/DEV_BSIZE, p_size);
1851 return EINVAL;
1852 }
1853
1854 bdev = bdevsw_lookup(sc->sc_pdev);
1855 return (*bdev->d_dump)(sc->sc_pdev, blkno + p_offset, va, size);
1856 }
1857
1858 /*
1859 * config glue
1860 */
1861
1862 /*
1863 * dkwedge_find_partition
1864 *
1865 * Find wedge corresponding to the specified parent name
1866 * and offset/length.
1867 */
1868 device_t
1869 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
1870 {
1871 struct dkwedge_softc *sc;
1872 int i;
1873 device_t wedge = NULL;
1874
1875 rw_enter(&dkwedges_lock, RW_READER);
1876 for (i = 0; i < ndkwedges; i++) {
1877 if ((sc = dkwedges[i]) == NULL)
1878 continue;
1879 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
1880 sc->sc_offset == startblk &&
1881 dkwedge_size(sc) == nblks) {
1882 if (wedge) {
1883 printf("WARNING: double match for boot wedge "
1884 "(%s, %s)\n",
1885 device_xname(wedge),
1886 device_xname(sc->sc_dev));
1887 continue;
1888 }
1889 wedge = sc->sc_dev;
1890 }
1891 }
1892 rw_exit(&dkwedges_lock);
1893
1894 return wedge;
1895 }
1896
1897 const char *
1898 dkwedge_get_parent_name(dev_t dev)
1899 {
1900 /* XXX: perhaps do this in lookup? */
1901 int bmaj = bdevsw_lookup_major(&dk_bdevsw);
1902 int cmaj = cdevsw_lookup_major(&dk_cdevsw);
1903
1904 if (major(dev) != bmaj && major(dev) != cmaj)
1905 return NULL;
1906 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1907 if (sc == NULL)
1908 return NULL;
1909 return sc->sc_parent->dk_name;
1910 }
1911