dk.c revision 1.154 1 /* $NetBSD: dk.c,v 1.154 2023/05/09 12:04:04 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.154 2023/05/09 12:04:04 riastradh Exp $");
34
35 #ifdef _KERNEL_OPT
36 #include "opt_dkwedge.h"
37 #endif
38
39 #include <sys/param.h>
40 #include <sys/types.h>
41
42 #include <sys/buf.h>
43 #include <sys/bufq.h>
44 #include <sys/callout.h>
45 #include <sys/conf.h>
46 #include <sys/device.h>
47 #include <sys/disk.h>
48 #include <sys/disklabel.h>
49 #include <sys/errno.h>
50 #include <sys/fcntl.h>
51 #include <sys/ioctl.h>
52 #include <sys/kauth.h>
53 #include <sys/kernel.h>
54 #include <sys/malloc.h>
55 #include <sys/pool.h>
56 #include <sys/proc.h>
57 #include <sys/rwlock.h>
58 #include <sys/stat.h>
59 #include <sys/systm.h>
60 #include <sys/vnode.h>
61
62 #include <miscfs/specfs/specdev.h>
63
64 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
65
66 typedef enum {
67 DKW_STATE_LARVAL = 0,
68 DKW_STATE_RUNNING = 1,
69 DKW_STATE_DYING = 2,
70 DKW_STATE_DEAD = 666
71 } dkwedge_state_t;
72
73 struct dkwedge_softc {
74 device_t sc_dev; /* pointer to our pseudo-device */
75 struct cfdata sc_cfdata; /* our cfdata structure */
76 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
77
78 dkwedge_state_t sc_state; /* state this wedge is in */
79
80 struct disk *sc_parent; /* parent disk */
81 daddr_t sc_offset; /* LBA offset of wedge in parent */
82 krwlock_t sc_sizelock;
83 uint64_t sc_size; /* size of wedge in blocks */
84 char sc_ptype[32]; /* partition type */
85 dev_t sc_pdev; /* cached parent's dev_t */
86 /* link on parent's wedge list */
87 LIST_ENTRY(dkwedge_softc) sc_plink;
88
89 struct disk sc_dk; /* our own disk structure */
90 struct bufq_state *sc_bufq; /* buffer queue */
91 struct callout sc_restart_ch; /* callout to restart I/O */
92
93 kmutex_t sc_iolock;
94 kcondvar_t sc_dkdrn;
95 u_int sc_iopend; /* I/Os pending */
96 bool sc_iostop; /* don't schedule restart */
97 int sc_mode; /* parent open mode */
98 };
99
100 static int dkwedge_match(device_t, cfdata_t, void *);
101 static void dkwedge_attach(device_t, device_t, void *);
102 static int dkwedge_detach(device_t, int);
103
104 static void dkstart(struct dkwedge_softc *);
105 static void dkiodone(struct buf *);
106 static void dkrestart(void *);
107 static void dkminphys(struct buf *);
108
109 static int dkfirstopen(struct dkwedge_softc *, int);
110 static void dklastclose(struct dkwedge_softc *);
111 static int dkwedge_detach(device_t, int);
112 static void dkwedge_delall1(struct disk *, bool);
113 static int dkwedge_del1(struct dkwedge_info *, int);
114 static int dk_open_parent(dev_t, int, struct vnode **);
115 static int dk_close_parent(struct vnode *, int);
116
117 static int dkunit(dev_t);
118
119 static dev_type_open(dkopen);
120 static dev_type_close(dkclose);
121 static dev_type_cancel(dkcancel);
122 static dev_type_read(dkread);
123 static dev_type_write(dkwrite);
124 static dev_type_ioctl(dkioctl);
125 static dev_type_strategy(dkstrategy);
126 static dev_type_dump(dkdump);
127 static dev_type_size(dksize);
128 static dev_type_discard(dkdiscard);
129
130 CFDRIVER_DECL(dk, DV_DISK, NULL);
131 CFATTACH_DECL3_NEW(dk, 0,
132 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
133 DVF_DETACH_SHUTDOWN);
134
135 const struct bdevsw dk_bdevsw = {
136 .d_open = dkopen,
137 .d_close = dkclose,
138 .d_cancel = dkcancel,
139 .d_strategy = dkstrategy,
140 .d_ioctl = dkioctl,
141 .d_dump = dkdump,
142 .d_psize = dksize,
143 .d_discard = dkdiscard,
144 .d_cfdriver = &dk_cd,
145 .d_devtounit = dkunit,
146 .d_flag = D_DISK | D_MPSAFE
147 };
148
149 const struct cdevsw dk_cdevsw = {
150 .d_open = dkopen,
151 .d_close = dkclose,
152 .d_cancel = dkcancel,
153 .d_read = dkread,
154 .d_write = dkwrite,
155 .d_ioctl = dkioctl,
156 .d_stop = nostop,
157 .d_tty = notty,
158 .d_poll = nopoll,
159 .d_mmap = nommap,
160 .d_kqfilter = nokqfilter,
161 .d_discard = dkdiscard,
162 .d_cfdriver = &dk_cd,
163 .d_devtounit = dkunit,
164 .d_flag = D_DISK | D_MPSAFE
165 };
166
167 static struct dkwedge_softc **dkwedges;
168 static u_int ndkwedges;
169 static krwlock_t dkwedges_lock;
170
171 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
172 static krwlock_t dkwedge_discovery_methods_lock;
173
174 /*
175 * dkwedge_match:
176 *
177 * Autoconfiguration match function for pseudo-device glue.
178 */
179 static int
180 dkwedge_match(device_t parent, cfdata_t match, void *aux)
181 {
182
183 /* Pseudo-device; always present. */
184 return 1;
185 }
186
187 /*
188 * dkwedge_attach:
189 *
190 * Autoconfiguration attach function for pseudo-device glue.
191 */
192 static void
193 dkwedge_attach(device_t parent, device_t self, void *aux)
194 {
195
196 if (!pmf_device_register(self, NULL, NULL))
197 aprint_error_dev(self, "couldn't establish power handler\n");
198 }
199
200 /*
201 * dkwedge_wait_drain:
202 *
203 * Wait for I/O on the wedge to drain.
204 */
205 static void
206 dkwedge_wait_drain(struct dkwedge_softc *sc)
207 {
208
209 mutex_enter(&sc->sc_iolock);
210 while (sc->sc_iopend != 0)
211 cv_wait(&sc->sc_dkdrn, &sc->sc_iolock);
212 mutex_exit(&sc->sc_iolock);
213 }
214
215 /*
216 * dkwedge_compute_pdev:
217 *
218 * Compute the parent disk's dev_t.
219 */
220 static int
221 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
222 {
223 const char *name, *cp;
224 devmajor_t pmaj;
225 int punit;
226 char devname[16];
227
228 name = pname;
229 switch (type) {
230 case VBLK:
231 pmaj = devsw_name2blk(name, devname, sizeof(devname));
232 break;
233 case VCHR:
234 pmaj = devsw_name2chr(name, devname, sizeof(devname));
235 break;
236 default:
237 pmaj = NODEVMAJOR;
238 break;
239 }
240 if (pmaj == NODEVMAJOR)
241 return ENXIO;
242
243 name += strlen(devname);
244 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
245 punit = (punit * 10) + (*cp - '0');
246 if (cp == name) {
247 /* Invalid parent disk name. */
248 return ENXIO;
249 }
250
251 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
252
253 return 0;
254 }
255
256 /*
257 * dkwedge_array_expand:
258 *
259 * Expand the dkwedges array.
260 *
261 * Releases and reacquires dkwedges_lock as a writer.
262 */
263 static int
264 dkwedge_array_expand(void)
265 {
266
267 const unsigned incr = 16;
268 unsigned newcnt, oldcnt;
269 struct dkwedge_softc **newarray = NULL, **oldarray = NULL;
270
271 KASSERT(rw_write_held(&dkwedges_lock));
272
273 oldcnt = ndkwedges;
274 oldarray = dkwedges;
275
276 if (oldcnt >= INT_MAX - incr)
277 return ENFILE; /* XXX */
278 newcnt = oldcnt + incr;
279
280 rw_exit(&dkwedges_lock);
281 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
282 M_WAITOK|M_ZERO);
283 rw_enter(&dkwedges_lock, RW_WRITER);
284
285 if (ndkwedges != oldcnt || dkwedges != oldarray) {
286 oldarray = NULL; /* already recycled */
287 goto out;
288 }
289
290 if (oldarray != NULL)
291 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
292 dkwedges = newarray;
293 newarray = NULL; /* transferred to dkwedges */
294 ndkwedges = newcnt;
295
296 out: rw_exit(&dkwedges_lock);
297 if (oldarray != NULL)
298 free(oldarray, M_DKWEDGE);
299 if (newarray != NULL)
300 free(newarray, M_DKWEDGE);
301 rw_enter(&dkwedges_lock, RW_WRITER);
302 return 0;
303 }
304
305 static void
306 dkwedge_size_init(struct dkwedge_softc *sc, uint64_t size)
307 {
308
309 rw_init(&sc->sc_sizelock);
310 sc->sc_size = size;
311 }
312
313 static void
314 dkwedge_size_fini(struct dkwedge_softc *sc)
315 {
316
317 rw_destroy(&sc->sc_sizelock);
318 }
319
320 static uint64_t
321 dkwedge_size(struct dkwedge_softc *sc)
322 {
323 uint64_t size;
324
325 rw_enter(&sc->sc_sizelock, RW_READER);
326 size = sc->sc_size;
327 rw_exit(&sc->sc_sizelock);
328
329 return size;
330 }
331
332 static void
333 dkwedge_size_increase(struct dkwedge_softc *sc, uint64_t size)
334 {
335
336 KASSERT(mutex_owned(&sc->sc_parent->dk_openlock));
337
338 rw_enter(&sc->sc_sizelock, RW_WRITER);
339 KASSERTMSG(size >= sc->sc_size,
340 "decreasing dkwedge size from %"PRIu64" to %"PRIu64,
341 sc->sc_size, size);
342 sc->sc_size = size;
343 rw_exit(&sc->sc_sizelock);
344 }
345
346 static void
347 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
348 {
349 struct disk *dk = &sc->sc_dk;
350 struct disk_geom *dg = &dk->dk_geom;
351
352 KASSERT(mutex_owned(&pdk->dk_openlock));
353
354 memset(dg, 0, sizeof(*dg));
355
356 dg->dg_secperunit = dkwedge_size(sc);
357 dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
358
359 /* fake numbers, 1 cylinder is 1 MB with default sector size */
360 dg->dg_nsectors = 32;
361 dg->dg_ntracks = 64;
362 dg->dg_ncylinders =
363 dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
364
365 disk_set_info(sc->sc_dev, dk, NULL);
366 }
367
368 /*
369 * dkwedge_add: [exported function]
370 *
371 * Add a disk wedge based on the provided information.
372 *
373 * The incoming dkw_devname[] is ignored, instead being
374 * filled in and returned to the caller.
375 */
376 int
377 dkwedge_add(struct dkwedge_info *dkw)
378 {
379 struct dkwedge_softc *sc, *lsc;
380 struct disk *pdk;
381 u_int unit;
382 int error;
383 dev_t pdev;
384
385 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
386 pdk = disk_find(dkw->dkw_parent);
387 if (pdk == NULL)
388 return ENXIO;
389
390 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
391 if (error)
392 return error;
393
394 if (dkw->dkw_offset < 0)
395 return EINVAL;
396
397 /*
398 * Check for an existing wedge at the same disk offset. Allow
399 * updating a wedge if the only change is the size, and the new
400 * size is larger than the old.
401 */
402 sc = NULL;
403 mutex_enter(&pdk->dk_openlock);
404 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
405 if (lsc->sc_offset != dkw->dkw_offset)
406 continue;
407 if (strcmp(lsc->sc_wname, dkw->dkw_wname) != 0)
408 break;
409 if (strcmp(lsc->sc_ptype, dkw->dkw_ptype) != 0)
410 break;
411 if (dkwedge_size(lsc) > dkw->dkw_size)
412 break;
413
414 sc = lsc;
415 dkwedge_size_increase(sc, dkw->dkw_size);
416 dk_set_geometry(sc, pdk);
417
418 break;
419 }
420 mutex_exit(&pdk->dk_openlock);
421
422 if (sc != NULL)
423 goto announce;
424
425 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
426 sc->sc_state = DKW_STATE_LARVAL;
427 sc->sc_parent = pdk;
428 sc->sc_pdev = pdev;
429 sc->sc_offset = dkw->dkw_offset;
430 dkwedge_size_init(sc, dkw->dkw_size);
431
432 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
433 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
434
435 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
436 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
437
438 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
439
440 callout_init(&sc->sc_restart_ch, 0);
441 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
442
443 mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
444 cv_init(&sc->sc_dkdrn, "dkdrn");
445
446 /*
447 * Wedge will be added; increment the wedge count for the parent.
448 * Only allow this to happen if RAW_PART is the only thing open.
449 */
450 mutex_enter(&pdk->dk_openlock);
451 if (pdk->dk_openmask & ~(1 << RAW_PART))
452 error = EBUSY;
453 else {
454 /* Check for wedge overlap. */
455 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
456 /* XXX arithmetic overflow */
457 uint64_t size = dkwedge_size(sc);
458 uint64_t lsize = dkwedge_size(lsc);
459 daddr_t lastblk = sc->sc_offset + size - 1;
460 daddr_t llastblk = lsc->sc_offset + lsize - 1;
461
462 if (sc->sc_offset >= lsc->sc_offset &&
463 sc->sc_offset <= llastblk) {
464 /* Overlaps the tail of the existing wedge. */
465 break;
466 }
467 if (lastblk >= lsc->sc_offset &&
468 lastblk <= llastblk) {
469 /* Overlaps the head of the existing wedge. */
470 break;
471 }
472 }
473 if (lsc != NULL) {
474 if (sc->sc_offset == lsc->sc_offset &&
475 dkwedge_size(sc) == dkwedge_size(lsc) &&
476 strcmp(sc->sc_wname, lsc->sc_wname) == 0)
477 error = EEXIST;
478 else
479 error = EINVAL;
480 } else {
481 pdk->dk_nwedges++;
482 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
483 }
484 }
485 mutex_exit(&pdk->dk_openlock);
486 if (error) {
487 cv_destroy(&sc->sc_dkdrn);
488 mutex_destroy(&sc->sc_iolock);
489 bufq_free(sc->sc_bufq);
490 dkwedge_size_fini(sc);
491 free(sc, M_DKWEDGE);
492 return error;
493 }
494
495 /* Fill in our cfdata for the pseudo-device glue. */
496 sc->sc_cfdata.cf_name = dk_cd.cd_name;
497 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
498 /* sc->sc_cfdata.cf_unit set below */
499 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
500
501 /* Insert the larval wedge into the array. */
502 rw_enter(&dkwedges_lock, RW_WRITER);
503 for (error = 0;;) {
504 struct dkwedge_softc **scpp;
505
506 /*
507 * Check for a duplicate wname while searching for
508 * a slot.
509 */
510 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
511 if (dkwedges[unit] == NULL) {
512 if (scpp == NULL) {
513 scpp = &dkwedges[unit];
514 sc->sc_cfdata.cf_unit = unit;
515 }
516 } else {
517 /* XXX Unicode. */
518 if (strcmp(dkwedges[unit]->sc_wname,
519 sc->sc_wname) == 0) {
520 error = EEXIST;
521 break;
522 }
523 }
524 }
525 if (error)
526 break;
527 KASSERT(unit == ndkwedges);
528 if (scpp == NULL) {
529 error = dkwedge_array_expand();
530 if (error)
531 break;
532 } else {
533 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
534 *scpp = sc;
535 break;
536 }
537 }
538 rw_exit(&dkwedges_lock);
539 if (error) {
540 mutex_enter(&pdk->dk_openlock);
541 pdk->dk_nwedges--;
542 LIST_REMOVE(sc, sc_plink);
543 mutex_exit(&pdk->dk_openlock);
544
545 cv_destroy(&sc->sc_dkdrn);
546 mutex_destroy(&sc->sc_iolock);
547 bufq_free(sc->sc_bufq);
548 dkwedge_size_fini(sc);
549 free(sc, M_DKWEDGE);
550 return error;
551 }
552
553 /*
554 * Now that we know the unit #, attach a pseudo-device for
555 * this wedge instance. This will provide us with the
556 * device_t necessary for glue to other parts of the system.
557 *
558 * This should never fail, unless we're almost totally out of
559 * memory.
560 */
561 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
562 aprint_error("%s%u: unable to attach pseudo-device\n",
563 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
564
565 rw_enter(&dkwedges_lock, RW_WRITER);
566 KASSERT(dkwedges[sc->sc_cfdata.cf_unit] == sc);
567 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
568 rw_exit(&dkwedges_lock);
569
570 mutex_enter(&pdk->dk_openlock);
571 pdk->dk_nwedges--;
572 LIST_REMOVE(sc, sc_plink);
573 mutex_exit(&pdk->dk_openlock);
574
575 cv_destroy(&sc->sc_dkdrn);
576 mutex_destroy(&sc->sc_iolock);
577 bufq_free(sc->sc_bufq);
578 dkwedge_size_fini(sc);
579 free(sc, M_DKWEDGE);
580 return ENOMEM;
581 }
582
583 /*
584 * XXX Really ought to make the disk_attach() and the changing
585 * of state to RUNNING atomic.
586 */
587
588 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
589 mutex_enter(&pdk->dk_openlock);
590 dk_set_geometry(sc, pdk);
591 mutex_exit(&pdk->dk_openlock);
592 disk_attach(&sc->sc_dk);
593
594 /* Disk wedge is ready for use! */
595 sc->sc_state = DKW_STATE_RUNNING;
596
597 announce:
598 /* Announce our arrival. */
599 aprint_normal(
600 "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
601 device_xname(sc->sc_dev), pdk->dk_name,
602 sc->sc_wname, /* XXX Unicode */
603 dkwedge_size(sc), sc->sc_offset,
604 sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
605
606 /* Return the devname to the caller. */
607 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
608 sizeof(dkw->dkw_devname));
609
610 return 0;
611 }
612
613 /*
614 * dkwedge_find:
615 *
616 * Lookup a disk wedge based on the provided information.
617 * NOTE: We look up the wedge based on the wedge devname,
618 * not wname.
619 *
620 * Return NULL if the wedge is not found, otherwise return
621 * the wedge's softc. Assign the wedge's unit number to unitp
622 * if unitp is not NULL.
623 */
624 static struct dkwedge_softc *
625 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
626 {
627 struct dkwedge_softc *sc = NULL;
628 u_int unit;
629
630 /* Find our softc. */
631 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
632 rw_enter(&dkwedges_lock, RW_READER);
633 for (unit = 0; unit < ndkwedges; unit++) {
634 if ((sc = dkwedges[unit]) != NULL &&
635 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
636 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
637 break;
638 }
639 }
640 rw_exit(&dkwedges_lock);
641 if (sc == NULL)
642 return NULL;
643
644 if (unitp != NULL)
645 *unitp = unit;
646
647 return sc;
648 }
649
650 /*
651 * dkwedge_del: [exported function]
652 *
653 * Delete a disk wedge based on the provided information.
654 * NOTE: We look up the wedge based on the wedge devname,
655 * not wname.
656 */
657 int
658 dkwedge_del(struct dkwedge_info *dkw)
659 {
660
661 return dkwedge_del1(dkw, 0);
662 }
663
664 int
665 dkwedge_del1(struct dkwedge_info *dkw, int flags)
666 {
667 struct dkwedge_softc *sc = NULL;
668
669 /* Find our softc. */
670 if ((sc = dkwedge_find(dkw, NULL)) == NULL)
671 return ESRCH;
672
673 return config_detach(sc->sc_dev, flags);
674 }
675
676 /*
677 * dkwedge_detach:
678 *
679 * Autoconfiguration detach function for pseudo-device glue.
680 */
681 static int
682 dkwedge_detach(device_t self, int flags)
683 {
684 struct dkwedge_softc *sc = NULL;
685 u_int unit;
686 int bmaj, cmaj, rc;
687
688 rw_enter(&dkwedges_lock, RW_WRITER);
689 for (unit = 0; unit < ndkwedges; unit++) {
690 if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
691 break;
692 }
693 if (unit == ndkwedges)
694 rc = ENXIO;
695 else if ((rc = disk_begindetach(&sc->sc_dk, /*lastclose*/NULL, self,
696 flags)) == 0) {
697 /* Mark the wedge as dying. */
698 sc->sc_state = DKW_STATE_DYING;
699 }
700 rw_exit(&dkwedges_lock);
701
702 if (rc != 0)
703 return rc;
704
705 pmf_device_deregister(self);
706
707 /* Kill any pending restart. */
708 mutex_enter(&sc->sc_iolock);
709 sc->sc_iostop = true;
710 mutex_exit(&sc->sc_iolock);
711 callout_halt(&sc->sc_restart_ch, NULL);
712
713 /*
714 * dkstart() will kill any queued buffers now that the
715 * state of the wedge is not RUNNING. Once we've done
716 * that, wait for any other pending I/O to complete.
717 */
718 dkstart(sc);
719 dkwedge_wait_drain(sc);
720
721 /* Locate the wedge major numbers. */
722 bmaj = bdevsw_lookup_major(&dk_bdevsw);
723 cmaj = cdevsw_lookup_major(&dk_cdevsw);
724
725 /* Nuke the vnodes for any open instances. */
726 vdevgone(bmaj, unit, unit, VBLK);
727 vdevgone(cmaj, unit, unit, VCHR);
728
729 /*
730 * At this point, all block device opens have been closed,
731 * synchronously flushing any buffered writes; and all
732 * character device I/O operations have completed
733 * synchronously, and character device opens have been closed.
734 *
735 * So there can be no more opens or queued buffers by now.
736 */
737 KASSERT(sc->sc_dk.dk_openmask == 0);
738 KASSERT(bufq_peek(sc->sc_bufq) == NULL);
739 bufq_drain(sc->sc_bufq);
740
741 /* Announce our departure. */
742 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
743 sc->sc_parent->dk_name,
744 sc->sc_wname); /* XXX Unicode */
745
746 mutex_enter(&sc->sc_parent->dk_openlock);
747 sc->sc_parent->dk_nwedges--;
748 LIST_REMOVE(sc, sc_plink);
749 mutex_exit(&sc->sc_parent->dk_openlock);
750
751 /* Delete our buffer queue. */
752 bufq_free(sc->sc_bufq);
753
754 /* Detach from the disk list. */
755 disk_detach(&sc->sc_dk);
756 disk_destroy(&sc->sc_dk);
757
758 /* Poof. */
759 rw_enter(&dkwedges_lock, RW_WRITER);
760 KASSERT(dkwedges[unit] == sc);
761 dkwedges[unit] = NULL;
762 sc->sc_state = DKW_STATE_DEAD;
763 rw_exit(&dkwedges_lock);
764
765 mutex_destroy(&sc->sc_iolock);
766 cv_destroy(&sc->sc_dkdrn);
767 dkwedge_size_fini(sc);
768
769 free(sc, M_DKWEDGE);
770
771 return 0;
772 }
773
774 /*
775 * dkwedge_delall: [exported function]
776 *
777 * Forcibly delete all of the wedges on the specified disk. Used
778 * when a disk is being detached.
779 */
780 void
781 dkwedge_delall(struct disk *pdk)
782 {
783
784 dkwedge_delall1(pdk, /*idleonly*/false);
785 }
786
787 /*
788 * dkwedge_delidle: [exported function]
789 *
790 * Delete all of the wedges on the specified disk if idle. Used
791 * by ioctl(DIOCRMWEDGES).
792 */
793 void
794 dkwedge_delidle(struct disk *pdk)
795 {
796
797 dkwedge_delall1(pdk, /*idleonly*/true);
798 }
799
800 static void
801 dkwedge_delall1(struct disk *pdk, bool idleonly)
802 {
803 struct dkwedge_info dkw;
804 struct dkwedge_softc *sc;
805 int flags;
806
807 flags = DETACH_QUIET;
808 if (!idleonly)
809 flags |= DETACH_FORCE;
810
811 for (;;) {
812 mutex_enter(&pdk->dk_rawlock); /* for sc->sc_dk.dk_openmask */
813 mutex_enter(&pdk->dk_openlock);
814 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
815 if (!idleonly || sc->sc_dk.dk_openmask == 0)
816 break;
817 }
818 if (sc == NULL) {
819 KASSERT(idleonly || pdk->dk_nwedges == 0);
820 mutex_exit(&pdk->dk_openlock);
821 mutex_exit(&pdk->dk_rawlock);
822 return;
823 }
824 strlcpy(dkw.dkw_parent, pdk->dk_name, sizeof(dkw.dkw_parent));
825 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
826 sizeof(dkw.dkw_devname));
827 mutex_exit(&pdk->dk_openlock);
828 mutex_exit(&pdk->dk_rawlock);
829 (void) dkwedge_del1(&dkw, flags);
830 }
831 }
832
833 /*
834 * dkwedge_list: [exported function]
835 *
836 * List all of the wedges on a particular disk.
837 */
838 int
839 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
840 {
841 struct uio uio;
842 struct iovec iov;
843 struct dkwedge_softc *sc;
844 struct dkwedge_info dkw;
845 int error = 0;
846
847 iov.iov_base = dkwl->dkwl_buf;
848 iov.iov_len = dkwl->dkwl_bufsize;
849
850 uio.uio_iov = &iov;
851 uio.uio_iovcnt = 1;
852 uio.uio_offset = 0;
853 uio.uio_resid = dkwl->dkwl_bufsize;
854 uio.uio_rw = UIO_READ;
855 KASSERT(l == curlwp);
856 uio.uio_vmspace = l->l_proc->p_vmspace;
857
858 dkwl->dkwl_ncopied = 0;
859
860 mutex_enter(&pdk->dk_openlock);
861 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
862 if (uio.uio_resid < sizeof(dkw))
863 break;
864
865 if (sc->sc_state != DKW_STATE_RUNNING)
866 continue;
867
868 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
869 sizeof(dkw.dkw_devname));
870 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
871 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
872 strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
873 sizeof(dkw.dkw_parent));
874 dkw.dkw_offset = sc->sc_offset;
875 dkw.dkw_size = dkwedge_size(sc);
876 strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
877
878 error = uiomove(&dkw, sizeof(dkw), &uio);
879 if (error)
880 break;
881 dkwl->dkwl_ncopied++;
882 }
883 dkwl->dkwl_nwedges = pdk->dk_nwedges;
884 mutex_exit(&pdk->dk_openlock);
885
886 return error;
887 }
888
889 device_t
890 dkwedge_find_by_wname(const char *wname)
891 {
892 device_t dv = NULL;
893 struct dkwedge_softc *sc;
894 int i;
895
896 rw_enter(&dkwedges_lock, RW_READER);
897 for (i = 0; i < ndkwedges; i++) {
898 if ((sc = dkwedges[i]) == NULL)
899 continue;
900 if (strcmp(sc->sc_wname, wname) == 0) {
901 if (dv != NULL) {
902 printf(
903 "WARNING: double match for wedge name %s "
904 "(%s, %s)\n", wname, device_xname(dv),
905 device_xname(sc->sc_dev));
906 continue;
907 }
908 dv = sc->sc_dev;
909 }
910 }
911 rw_exit(&dkwedges_lock);
912 return dv;
913 }
914
915 device_t
916 dkwedge_find_by_parent(const char *name, size_t *i)
917 {
918
919 rw_enter(&dkwedges_lock, RW_READER);
920 for (; *i < (size_t)ndkwedges; (*i)++) {
921 struct dkwedge_softc *sc;
922 if ((sc = dkwedges[*i]) == NULL)
923 continue;
924 if (strcmp(sc->sc_parent->dk_name, name) != 0)
925 continue;
926 rw_exit(&dkwedges_lock);
927 return sc->sc_dev;
928 }
929 rw_exit(&dkwedges_lock);
930 return NULL;
931 }
932
933 void
934 dkwedge_print_wnames(void)
935 {
936 struct dkwedge_softc *sc;
937 int i;
938
939 rw_enter(&dkwedges_lock, RW_READER);
940 for (i = 0; i < ndkwedges; i++) {
941 if ((sc = dkwedges[i]) == NULL)
942 continue;
943 printf(" wedge:%s", sc->sc_wname);
944 }
945 rw_exit(&dkwedges_lock);
946 }
947
948 /*
949 * We need a dummy object to stuff into the dkwedge discovery method link
950 * set to ensure that there is always at least one object in the set.
951 */
952 static struct dkwedge_discovery_method dummy_discovery_method;
953 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
954
955 /*
956 * dkwedge_init:
957 *
958 * Initialize the disk wedge subsystem.
959 */
960 void
961 dkwedge_init(void)
962 {
963 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
964 struct dkwedge_discovery_method * const *ddmp;
965 struct dkwedge_discovery_method *lddm, *ddm;
966
967 rw_init(&dkwedges_lock);
968 rw_init(&dkwedge_discovery_methods_lock);
969
970 if (config_cfdriver_attach(&dk_cd) != 0)
971 panic("dkwedge: unable to attach cfdriver");
972 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
973 panic("dkwedge: unable to attach cfattach");
974
975 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
976
977 LIST_INIT(&dkwedge_discovery_methods);
978
979 __link_set_foreach(ddmp, dkwedge_methods) {
980 ddm = *ddmp;
981 if (ddm == &dummy_discovery_method)
982 continue;
983 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
984 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
985 ddm, ddm_list);
986 continue;
987 }
988 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
989 if (ddm->ddm_priority == lddm->ddm_priority) {
990 aprint_error("dk-method-%s: method \"%s\" "
991 "already exists at priority %d\n",
992 ddm->ddm_name, lddm->ddm_name,
993 lddm->ddm_priority);
994 /* Not inserted. */
995 break;
996 }
997 if (ddm->ddm_priority < lddm->ddm_priority) {
998 /* Higher priority; insert before. */
999 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
1000 break;
1001 }
1002 if (LIST_NEXT(lddm, ddm_list) == NULL) {
1003 /* Last one; insert after. */
1004 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
1005 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
1006 break;
1007 }
1008 }
1009 }
1010
1011 rw_exit(&dkwedge_discovery_methods_lock);
1012 }
1013
1014 #ifdef DKWEDGE_AUTODISCOVER
1015 int dkwedge_autodiscover = 1;
1016 #else
1017 int dkwedge_autodiscover = 0;
1018 #endif
1019
1020 /*
1021 * dkwedge_discover: [exported function]
1022 *
1023 * Discover the wedges on a newly attached disk.
1024 * Remove all unused wedges on the disk first.
1025 */
1026 void
1027 dkwedge_discover(struct disk *pdk)
1028 {
1029 struct dkwedge_discovery_method *ddm;
1030 struct vnode *vp;
1031 int error;
1032 dev_t pdev;
1033
1034 /*
1035 * Require people playing with wedges to enable this explicitly.
1036 */
1037 if (dkwedge_autodiscover == 0)
1038 return;
1039
1040 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
1041
1042 /*
1043 * Use the character device for scanning, the block device
1044 * is busy if there are already wedges attached.
1045 */
1046 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
1047 if (error) {
1048 aprint_error("%s: unable to compute pdev, error = %d\n",
1049 pdk->dk_name, error);
1050 goto out;
1051 }
1052
1053 error = cdevvp(pdev, &vp);
1054 if (error) {
1055 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
1056 pdk->dk_name, error);
1057 goto out;
1058 }
1059
1060 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1061 if (error) {
1062 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
1063 pdk->dk_name, error);
1064 vrele(vp);
1065 goto out;
1066 }
1067
1068 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
1069 if (error) {
1070 if (error != ENXIO)
1071 aprint_error("%s: unable to open device, error = %d\n",
1072 pdk->dk_name, error);
1073 vput(vp);
1074 goto out;
1075 }
1076 VOP_UNLOCK(vp);
1077
1078 /*
1079 * Remove unused wedges
1080 */
1081 dkwedge_delidle(pdk);
1082
1083 /*
1084 * For each supported partition map type, look to see if
1085 * this map type exists. If so, parse it and add the
1086 * corresponding wedges.
1087 */
1088 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
1089 error = (*ddm->ddm_discover)(pdk, vp);
1090 if (error == 0) {
1091 /* Successfully created wedges; we're done. */
1092 break;
1093 }
1094 }
1095
1096 error = vn_close(vp, FREAD, NOCRED);
1097 if (error) {
1098 aprint_error("%s: unable to close device, error = %d\n",
1099 pdk->dk_name, error);
1100 /* We'll just assume the vnode has been cleaned up. */
1101 }
1102
1103 out:
1104 rw_exit(&dkwedge_discovery_methods_lock);
1105 }
1106
1107 /*
1108 * dkwedge_read:
1109 *
1110 * Read some data from the specified disk, used for
1111 * partition discovery.
1112 */
1113 int
1114 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
1115 void *tbuf, size_t len)
1116 {
1117 buf_t *bp;
1118 int error;
1119 bool isopen;
1120 dev_t bdev;
1121 struct vnode *bdvp;
1122
1123 /*
1124 * The kernel cannot read from a character device vnode
1125 * as physio() only handles user memory.
1126 *
1127 * If the block device has already been opened by a wedge
1128 * use that vnode and temporarily bump the open counter.
1129 *
1130 * Otherwise try to open the block device.
1131 */
1132
1133 bdev = devsw_chr2blk(vp->v_rdev);
1134
1135 mutex_enter(&pdk->dk_rawlock);
1136 if (pdk->dk_rawopens != 0) {
1137 KASSERT(pdk->dk_rawvp != NULL);
1138 isopen = true;
1139 ++pdk->dk_rawopens;
1140 bdvp = pdk->dk_rawvp;
1141 error = 0;
1142 } else {
1143 isopen = false;
1144 error = dk_open_parent(bdev, FREAD, &bdvp);
1145 }
1146 mutex_exit(&pdk->dk_rawlock);
1147
1148 if (error)
1149 return error;
1150
1151 bp = getiobuf(bdvp, true);
1152 bp->b_flags = B_READ;
1153 bp->b_cflags = BC_BUSY;
1154 bp->b_dev = bdev;
1155 bp->b_data = tbuf;
1156 bp->b_bufsize = bp->b_bcount = len;
1157 bp->b_blkno = blkno;
1158 bp->b_cylinder = 0;
1159 bp->b_error = 0;
1160
1161 VOP_STRATEGY(bdvp, bp);
1162 error = biowait(bp);
1163 putiobuf(bp);
1164
1165 mutex_enter(&pdk->dk_rawlock);
1166 if (isopen) {
1167 --pdk->dk_rawopens;
1168 } else {
1169 dk_close_parent(bdvp, FREAD);
1170 }
1171 mutex_exit(&pdk->dk_rawlock);
1172
1173 return error;
1174 }
1175
1176 /*
1177 * dkwedge_lookup:
1178 *
1179 * Look up a dkwedge_softc based on the provided dev_t.
1180 */
1181 static struct dkwedge_softc *
1182 dkwedge_lookup(dev_t dev)
1183 {
1184 const int unit = minor(dev);
1185 struct dkwedge_softc *sc;
1186
1187 rw_enter(&dkwedges_lock, RW_READER);
1188 if (unit < 0 || unit >= ndkwedges)
1189 sc = NULL;
1190 else
1191 sc = dkwedges[unit];
1192 rw_exit(&dkwedges_lock);
1193
1194 return sc;
1195 }
1196
1197 static int
1198 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
1199 {
1200 struct vnode *vp;
1201 int error;
1202
1203 error = bdevvp(dev, &vp);
1204 if (error)
1205 return error;
1206
1207 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1208 if (error) {
1209 vrele(vp);
1210 return error;
1211 }
1212 error = VOP_OPEN(vp, mode, NOCRED);
1213 if (error) {
1214 vput(vp);
1215 return error;
1216 }
1217
1218 /* VOP_OPEN() doesn't do this for us. */
1219 if (mode & FWRITE) {
1220 mutex_enter(vp->v_interlock);
1221 vp->v_writecount++;
1222 mutex_exit(vp->v_interlock);
1223 }
1224
1225 VOP_UNLOCK(vp);
1226
1227 *vpp = vp;
1228
1229 return 0;
1230 }
1231
1232 static int
1233 dk_close_parent(struct vnode *vp, int mode)
1234 {
1235 int error;
1236
1237 error = vn_close(vp, mode, NOCRED);
1238 return error;
1239 }
1240
1241 /*
1242 * dkunit: [devsw entry point]
1243 *
1244 * Return the autoconf device_t unit number of a wedge by its
1245 * devsw dev_t number, or -1 if there is none.
1246 *
1247 * XXX This is a temporary hack until dkwedge numbering is made to
1248 * correspond 1:1 to autoconf device numbering.
1249 */
1250 static int
1251 dkunit(dev_t dev)
1252 {
1253 int mn = minor(dev);
1254 struct dkwedge_softc *sc;
1255 device_t dv;
1256 int unit = -1;
1257
1258 if (mn < 0)
1259 return -1;
1260
1261 rw_enter(&dkwedges_lock, RW_READER);
1262 if (mn < ndkwedges &&
1263 (sc = dkwedges[minor(dev)]) != NULL &&
1264 (dv = sc->sc_dev) != NULL)
1265 unit = device_unit(dv);
1266 rw_exit(&dkwedges_lock);
1267
1268 return unit;
1269 }
1270
1271 /*
1272 * dkopen: [devsw entry point]
1273 *
1274 * Open a wedge.
1275 */
1276 static int
1277 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
1278 {
1279 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1280 int error = 0;
1281
1282 if (sc == NULL)
1283 return ENXIO;
1284 if (sc->sc_state != DKW_STATE_RUNNING)
1285 return ENXIO;
1286
1287 /*
1288 * We go through a complicated little dance to only open the parent
1289 * vnode once per wedge, no matter how many times the wedge is
1290 * opened. The reason? We see one dkopen() per open call, but
1291 * only dkclose() on the last close.
1292 */
1293 mutex_enter(&sc->sc_dk.dk_openlock);
1294 mutex_enter(&sc->sc_parent->dk_rawlock);
1295 if (sc->sc_dk.dk_openmask == 0) {
1296 error = dkfirstopen(sc, flags);
1297 if (error)
1298 goto out;
1299 }
1300 KASSERT(sc->sc_mode != 0);
1301 if (flags & ~sc->sc_mode & FWRITE) {
1302 error = EROFS;
1303 goto out;
1304 }
1305 if (fmt == S_IFCHR)
1306 sc->sc_dk.dk_copenmask |= 1;
1307 else
1308 sc->sc_dk.dk_bopenmask |= 1;
1309 sc->sc_dk.dk_openmask =
1310 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1311
1312 out: mutex_exit(&sc->sc_parent->dk_rawlock);
1313 mutex_exit(&sc->sc_dk.dk_openlock);
1314 return error;
1315 }
1316
1317 static int
1318 dkfirstopen(struct dkwedge_softc *sc, int flags)
1319 {
1320 struct dkwedge_softc *nsc;
1321 struct vnode *vp;
1322 int mode;
1323 int error;
1324
1325 KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
1326 KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
1327
1328 if (sc->sc_parent->dk_rawopens == 0) {
1329 KASSERT(sc->sc_parent->dk_rawvp == NULL);
1330 /*
1331 * Try open read-write. If this fails for EROFS
1332 * and wedge is read-only, retry to open read-only.
1333 */
1334 mode = FREAD | FWRITE;
1335 error = dk_open_parent(sc->sc_pdev, mode, &vp);
1336 if (error == EROFS && (flags & FWRITE) == 0) {
1337 mode &= ~FWRITE;
1338 error = dk_open_parent(sc->sc_pdev, mode, &vp);
1339 }
1340 if (error)
1341 return error;
1342 KASSERT(vp != NULL);
1343 sc->sc_parent->dk_rawvp = vp;
1344 } else {
1345 /*
1346 * Retrieve mode from an already opened wedge.
1347 *
1348 * At this point, dk_rawopens is bounded by the number
1349 * of dkwedge devices in the system, which is limited
1350 * by autoconf device numbering to INT_MAX. Since
1351 * dk_rawopens is unsigned, this can't overflow.
1352 */
1353 KASSERT(sc->sc_parent->dk_rawopens < UINT_MAX);
1354 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1355 mode = 0;
1356 LIST_FOREACH(nsc, &sc->sc_parent->dk_wedges, sc_plink) {
1357 if (nsc == sc || nsc->sc_dk.dk_openmask == 0)
1358 continue;
1359 mode = nsc->sc_mode;
1360 break;
1361 }
1362 }
1363 sc->sc_mode = mode;
1364 sc->sc_parent->dk_rawopens++;
1365
1366 return 0;
1367 }
1368
1369 static void
1370 dklastclose(struct dkwedge_softc *sc)
1371 {
1372
1373 KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
1374 KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
1375 KASSERT(sc->sc_parent->dk_rawopens > 0);
1376 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1377
1378 if (--sc->sc_parent->dk_rawopens == 0) {
1379 struct vnode *const vp = sc->sc_parent->dk_rawvp;
1380 const int mode = sc->sc_mode;
1381
1382 sc->sc_parent->dk_rawvp = NULL;
1383 sc->sc_mode = 0;
1384
1385 dk_close_parent(vp, mode);
1386 }
1387 }
1388
1389 /*
1390 * dkclose: [devsw entry point]
1391 *
1392 * Close a wedge.
1393 */
1394 static int
1395 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1396 {
1397 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1398
1399 if (sc == NULL)
1400 return ENXIO;
1401 if (sc->sc_state != DKW_STATE_RUNNING &&
1402 sc->sc_satte != DKW_STATE_DYING)
1403 return ENXIO;
1404
1405 mutex_enter(&sc->sc_dk.dk_openlock);
1406 mutex_enter(&sc->sc_parent->dk_rawlock);
1407
1408 KASSERT(sc->sc_dk.dk_openmask != 0);
1409
1410 if (fmt == S_IFCHR)
1411 sc->sc_dk.dk_copenmask &= ~1;
1412 else
1413 sc->sc_dk.dk_bopenmask &= ~1;
1414 sc->sc_dk.dk_openmask =
1415 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1416
1417 if (sc->sc_dk.dk_openmask == 0) {
1418 dklastclose(sc);
1419 }
1420
1421 mutex_exit(&sc->sc_parent->dk_rawlock);
1422 mutex_exit(&sc->sc_dk.dk_openlock);
1423
1424 return 0;
1425 }
1426
1427 /*
1428 * dkcancel: [devsw entry point]
1429 *
1430 * Cancel any pending I/O operations waiting on a wedge.
1431 */
1432 static int
1433 dkcancel(dev_t dev, int flags, int fmt, struct lwp *l)
1434 {
1435 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1436
1437 KASSERT(sc != NULL);
1438 KASSERT(sc->sc_dev != NULL);
1439 KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1440 KASSERT(sc->sc_state != DKW_STATE_DEAD);
1441
1442 /*
1443 * Disk I/O is expected to complete or fail within a reasonable
1444 * timeframe -- it's storage, not communication. Further, the
1445 * character and block device interface guarantees that prior
1446 * reads and writes have completed or failed by the time close
1447 * returns -- we are not to cancel them here. If the parent
1448 * device's hardware is gone, the parent driver can make them
1449 * fail. Nothing for dk(4) itself to do.
1450 */
1451
1452 return 0;
1453 }
1454
1455 /*
1456 * dkstrategy: [devsw entry point]
1457 *
1458 * Perform I/O based on the wedge I/O strategy.
1459 */
1460 static void
1461 dkstrategy(struct buf *bp)
1462 {
1463 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1464 uint64_t p_size, p_offset;
1465
1466 KASSERT(sc != NULL);
1467 KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1468 KASSERT(sc->sc_state != DKW_STATE_DEAD);
1469 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1470
1471 /* If it's an empty transfer, wake up the top half now. */
1472 if (bp->b_bcount == 0)
1473 goto done;
1474
1475 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1476 p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1477
1478 /* Make sure it's in-range. */
1479 if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1480 goto done;
1481
1482 /* Translate it to the parent's raw LBA. */
1483 bp->b_rawblkno = bp->b_blkno + p_offset;
1484
1485 /* Place it in the queue and start I/O on the unit. */
1486 mutex_enter(&sc->sc_iolock);
1487 sc->sc_iopend++;
1488 disk_wait(&sc->sc_dk);
1489 bufq_put(sc->sc_bufq, bp);
1490 mutex_exit(&sc->sc_iolock);
1491
1492 dkstart(sc);
1493 return;
1494
1495 done:
1496 bp->b_resid = bp->b_bcount;
1497 biodone(bp);
1498 }
1499
1500 /*
1501 * dkstart:
1502 *
1503 * Start I/O that has been enqueued on the wedge.
1504 */
1505 static void
1506 dkstart(struct dkwedge_softc *sc)
1507 {
1508 struct vnode *vp;
1509 struct buf *bp, *nbp;
1510
1511 mutex_enter(&sc->sc_iolock);
1512
1513 /* Do as much work as has been enqueued. */
1514 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1515 if (sc->sc_iostop) {
1516 (void) bufq_get(sc->sc_bufq);
1517 if (--sc->sc_iopend == 0)
1518 cv_broadcast(&sc->sc_dkdrn);
1519 mutex_exit(&sc->sc_iolock);
1520 bp->b_error = ENXIO;
1521 bp->b_resid = bp->b_bcount;
1522 biodone(bp);
1523 mutex_enter(&sc->sc_iolock);
1524 continue;
1525 }
1526
1527 /* fetch an I/O buf with sc_iolock dropped */
1528 mutex_exit(&sc->sc_iolock);
1529 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1530 mutex_enter(&sc->sc_iolock);
1531 if (nbp == NULL) {
1532 /*
1533 * No resources to run this request; leave the
1534 * buffer queued up, and schedule a timer to
1535 * restart the queue in 1/2 a second.
1536 */
1537 if (!sc->sc_iostop)
1538 callout_schedule(&sc->sc_restart_ch, hz/2);
1539 break;
1540 }
1541
1542 /*
1543 * fetch buf, this can fail if another thread
1544 * has already processed the queue, it can also
1545 * return a completely different buf.
1546 */
1547 bp = bufq_get(sc->sc_bufq);
1548 if (bp == NULL) {
1549 mutex_exit(&sc->sc_iolock);
1550 putiobuf(nbp);
1551 mutex_enter(&sc->sc_iolock);
1552 continue;
1553 }
1554
1555 /* Instrumentation. */
1556 disk_busy(&sc->sc_dk);
1557
1558 /* release lock for VOP_STRATEGY */
1559 mutex_exit(&sc->sc_iolock);
1560
1561 nbp->b_data = bp->b_data;
1562 nbp->b_flags = bp->b_flags;
1563 nbp->b_oflags = bp->b_oflags;
1564 nbp->b_cflags = bp->b_cflags;
1565 nbp->b_iodone = dkiodone;
1566 nbp->b_proc = bp->b_proc;
1567 nbp->b_blkno = bp->b_rawblkno;
1568 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1569 nbp->b_bcount = bp->b_bcount;
1570 nbp->b_private = bp;
1571 BIO_COPYPRIO(nbp, bp);
1572
1573 vp = nbp->b_vp;
1574 if ((nbp->b_flags & B_READ) == 0) {
1575 mutex_enter(vp->v_interlock);
1576 vp->v_numoutput++;
1577 mutex_exit(vp->v_interlock);
1578 }
1579 VOP_STRATEGY(vp, nbp);
1580
1581 mutex_enter(&sc->sc_iolock);
1582 }
1583
1584 mutex_exit(&sc->sc_iolock);
1585 }
1586
1587 /*
1588 * dkiodone:
1589 *
1590 * I/O to a wedge has completed; alert the top half.
1591 */
1592 static void
1593 dkiodone(struct buf *bp)
1594 {
1595 struct buf *obp = bp->b_private;
1596 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1597
1598 if (bp->b_error != 0)
1599 obp->b_error = bp->b_error;
1600 obp->b_resid = bp->b_resid;
1601 putiobuf(bp);
1602
1603 mutex_enter(&sc->sc_iolock);
1604 if (--sc->sc_iopend == 0)
1605 cv_broadcast(&sc->sc_dkdrn);
1606
1607 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1608 obp->b_flags & B_READ);
1609 mutex_exit(&sc->sc_iolock);
1610
1611 biodone(obp);
1612
1613 /* Kick the queue in case there is more work we can do. */
1614 dkstart(sc);
1615 }
1616
1617 /*
1618 * dkrestart:
1619 *
1620 * Restart the work queue after it was stalled due to
1621 * a resource shortage. Invoked via a callout.
1622 */
1623 static void
1624 dkrestart(void *v)
1625 {
1626 struct dkwedge_softc *sc = v;
1627
1628 dkstart(sc);
1629 }
1630
1631 /*
1632 * dkminphys:
1633 *
1634 * Call parent's minphys function.
1635 */
1636 static void
1637 dkminphys(struct buf *bp)
1638 {
1639 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1640 dev_t dev;
1641
1642 dev = bp->b_dev;
1643 bp->b_dev = sc->sc_pdev;
1644 if (sc->sc_parent->dk_driver && sc->sc_parent->dk_driver->d_minphys)
1645 (*sc->sc_parent->dk_driver->d_minphys)(bp);
1646 else
1647 minphys(bp);
1648 bp->b_dev = dev;
1649 }
1650
1651 /*
1652 * dkread: [devsw entry point]
1653 *
1654 * Read from a wedge.
1655 */
1656 static int
1657 dkread(dev_t dev, struct uio *uio, int flags)
1658 {
1659 struct dkwedge_softc *sc __diagused = dkwedge_lookup(dev);
1660
1661 KASSERT(sc != NULL);
1662 KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1663 KASSERT(sc->sc_state != DKW_STATE_DEAD);
1664
1665 return physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio);
1666 }
1667
1668 /*
1669 * dkwrite: [devsw entry point]
1670 *
1671 * Write to a wedge.
1672 */
1673 static int
1674 dkwrite(dev_t dev, struct uio *uio, int flags)
1675 {
1676 struct dkwedge_softc *sc __diagused = dkwedge_lookup(dev);
1677
1678 KASSERT(sc != NULL);
1679 KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1680 KASSERT(sc->sc_state != DKW_STATE_DEAD);
1681
1682 return physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio);
1683 }
1684
1685 /*
1686 * dkioctl: [devsw entry point]
1687 *
1688 * Perform an ioctl request on a wedge.
1689 */
1690 static int
1691 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1692 {
1693 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1694 int error = 0;
1695
1696 KASSERT(sc != NULL);
1697 KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1698 KASSERT(sc->sc_state != DKW_STATE_DEAD);
1699 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1700
1701 /*
1702 * We pass NODEV instead of our device to indicate we don't
1703 * want to handle disklabel ioctls
1704 */
1705 error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
1706 if (error != EPASSTHROUGH)
1707 return error;
1708
1709 error = 0;
1710
1711 switch (cmd) {
1712 case DIOCGSTRATEGY:
1713 case DIOCGCACHE:
1714 case DIOCCACHESYNC:
1715 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, data, flag,
1716 l != NULL ? l->l_cred : NOCRED);
1717 break;
1718 case DIOCGWEDGEINFO: {
1719 struct dkwedge_info *dkw = data;
1720
1721 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1722 sizeof(dkw->dkw_devname));
1723 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1724 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1725 strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
1726 sizeof(dkw->dkw_parent));
1727 dkw->dkw_offset = sc->sc_offset;
1728 dkw->dkw_size = dkwedge_size(sc);
1729 strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
1730
1731 break;
1732 }
1733 case DIOCGSECTORALIGN: {
1734 struct disk_sectoralign *dsa = data;
1735 uint32_t r;
1736
1737 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, dsa, flag,
1738 l != NULL ? l->l_cred : NOCRED);
1739 if (error)
1740 break;
1741
1742 r = sc->sc_offset % dsa->dsa_alignment;
1743 if (r < dsa->dsa_firstaligned)
1744 dsa->dsa_firstaligned = dsa->dsa_firstaligned - r;
1745 else
1746 dsa->dsa_firstaligned = (dsa->dsa_firstaligned +
1747 dsa->dsa_alignment) - r;
1748 break;
1749 }
1750 default:
1751 error = ENOTTY;
1752 }
1753
1754 return error;
1755 }
1756
1757 /*
1758 * dkdiscard: [devsw entry point]
1759 *
1760 * Perform a discard-range request on a wedge.
1761 */
1762 static int
1763 dkdiscard(dev_t dev, off_t pos, off_t len)
1764 {
1765 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1766 uint64_t size = dkwedge_size(sc);
1767 unsigned shift;
1768 off_t offset, maxlen;
1769 int error;
1770
1771 KASSERT(sc != NULL);
1772 KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1773 KASSERT(sc->sc_state != DKW_STATE_DEAD);
1774 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1775
1776 /* XXX check bounds on size/offset up front */
1777 shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
1778 KASSERT(__type_fit(off_t, size));
1779 KASSERT(__type_fit(off_t, sc->sc_offset));
1780 KASSERT(0 <= sc->sc_offset);
1781 KASSERT(size <= (__type_max(off_t) >> shift));
1782 KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - size));
1783 offset = ((off_t)sc->sc_offset << shift);
1784 maxlen = ((off_t)size << shift);
1785
1786 if (len > maxlen)
1787 return EINVAL;
1788 if (pos > (maxlen - len))
1789 return EINVAL;
1790
1791 pos += offset;
1792
1793 vn_lock(sc->sc_parent->dk_rawvp, LK_EXCLUSIVE | LK_RETRY);
1794 error = VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
1795 VOP_UNLOCK(sc->sc_parent->dk_rawvp);
1796
1797 return error;
1798 }
1799
1800 /*
1801 * dksize: [devsw entry point]
1802 *
1803 * Query the size of a wedge for the purpose of performing a dump
1804 * or for swapping to.
1805 */
1806 static int
1807 dksize(dev_t dev)
1808 {
1809 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1810 uint64_t p_size;
1811 int rv = -1;
1812
1813 if (sc == NULL)
1814 return -1;
1815 if (sc->sc_state != DKW_STATE_RUNNING)
1816 return -1;
1817
1818 /* Our content type is static, no need to open the device. */
1819
1820 p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1821 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1822 /* Saturate if we are larger than INT_MAX. */
1823 if (p_size > INT_MAX)
1824 rv = INT_MAX;
1825 else
1826 rv = (int)p_size;
1827 }
1828
1829 return rv;
1830 }
1831
1832 /*
1833 * dkdump: [devsw entry point]
1834 *
1835 * Perform a crash dump to a wedge.
1836 */
1837 static int
1838 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1839 {
1840 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1841 const struct bdevsw *bdev;
1842 uint64_t p_size, p_offset;
1843
1844 if (sc == NULL)
1845 return ENXIO;
1846 if (sc->sc_state != DKW_STATE_RUNNING)
1847 return ENXIO;
1848
1849 /* Our content type is static, no need to open the device. */
1850
1851 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
1852 strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0 &&
1853 strcmp(sc->sc_ptype, DKW_PTYPE_CGD) != 0)
1854 return ENXIO;
1855 if (size % DEV_BSIZE != 0)
1856 return EINVAL;
1857
1858 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1859 p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1860
1861 if (blkno < 0 || blkno + size/DEV_BSIZE > p_size) {
1862 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1863 "p_size (%" PRIu64 ")\n", __func__, blkno,
1864 size/DEV_BSIZE, p_size);
1865 return EINVAL;
1866 }
1867
1868 bdev = bdevsw_lookup(sc->sc_pdev);
1869 return (*bdev->d_dump)(sc->sc_pdev, blkno + p_offset, va, size);
1870 }
1871
1872 /*
1873 * config glue
1874 */
1875
1876 /*
1877 * dkwedge_find_partition
1878 *
1879 * Find wedge corresponding to the specified parent name
1880 * and offset/length.
1881 */
1882 device_t
1883 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
1884 {
1885 struct dkwedge_softc *sc;
1886 int i;
1887 device_t wedge = NULL;
1888
1889 rw_enter(&dkwedges_lock, RW_READER);
1890 for (i = 0; i < ndkwedges; i++) {
1891 if ((sc = dkwedges[i]) == NULL)
1892 continue;
1893 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
1894 sc->sc_offset == startblk &&
1895 dkwedge_size(sc) == nblks) {
1896 if (wedge) {
1897 printf("WARNING: double match for boot wedge "
1898 "(%s, %s)\n",
1899 device_xname(wedge),
1900 device_xname(sc->sc_dev));
1901 continue;
1902 }
1903 wedge = sc->sc_dev;
1904 }
1905 }
1906 rw_exit(&dkwedges_lock);
1907
1908 return wedge;
1909 }
1910
1911 const char *
1912 dkwedge_get_parent_name(dev_t dev)
1913 {
1914 /* XXX: perhaps do this in lookup? */
1915 int bmaj = bdevsw_lookup_major(&dk_bdevsw);
1916 int cmaj = cdevsw_lookup_major(&dk_cdevsw);
1917
1918 if (major(dev) != bmaj && major(dev) != cmaj)
1919 return NULL;
1920 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1921 if (sc == NULL)
1922 return NULL;
1923 return sc->sc_parent->dk_name;
1924 }
1925