Home | History | Annotate | Line # | Download | only in dkwedge
dk.c revision 1.156
      1 /*	$NetBSD: dk.c,v 1.156 2023/05/09 13:14:14 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.156 2023/05/09 13:14:14 riastradh Exp $");
     34 
     35 #ifdef _KERNEL_OPT
     36 #include "opt_dkwedge.h"
     37 #endif
     38 
     39 #include <sys/param.h>
     40 #include <sys/types.h>
     41 
     42 #include <sys/buf.h>
     43 #include <sys/bufq.h>
     44 #include <sys/callout.h>
     45 #include <sys/conf.h>
     46 #include <sys/device.h>
     47 #include <sys/disk.h>
     48 #include <sys/disklabel.h>
     49 #include <sys/errno.h>
     50 #include <sys/fcntl.h>
     51 #include <sys/ioctl.h>
     52 #include <sys/kauth.h>
     53 #include <sys/kernel.h>
     54 #include <sys/malloc.h>
     55 #include <sys/pool.h>
     56 #include <sys/proc.h>
     57 #include <sys/rwlock.h>
     58 #include <sys/stat.h>
     59 #include <sys/systm.h>
     60 #include <sys/vnode.h>
     61 
     62 #include <miscfs/specfs/specdev.h>
     63 
     64 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
     65 
     66 typedef enum {
     67 	DKW_STATE_LARVAL	= 0,
     68 	DKW_STATE_RUNNING	= 1,
     69 	DKW_STATE_DYING		= 2,
     70 	DKW_STATE_DEAD		= 666
     71 } dkwedge_state_t;
     72 
     73 struct dkwedge_softc {
     74 	device_t	sc_dev;	/* pointer to our pseudo-device */
     75 	struct cfdata	sc_cfdata;	/* our cfdata structure */
     76 	uint8_t		sc_wname[128];	/* wedge name (Unicode, UTF-8) */
     77 
     78 	dkwedge_state_t sc_state;	/* state this wedge is in */
     79 
     80 	struct disk	*sc_parent;	/* parent disk */
     81 	daddr_t		sc_offset;	/* LBA offset of wedge in parent */
     82 	krwlock_t	sc_sizelock;
     83 	uint64_t	sc_size;	/* size of wedge in blocks */
     84 	char		sc_ptype[32];	/* partition type */
     85 	dev_t		sc_pdev;	/* cached parent's dev_t */
     86 					/* link on parent's wedge list */
     87 	LIST_ENTRY(dkwedge_softc) sc_plink;
     88 
     89 	struct disk	sc_dk;		/* our own disk structure */
     90 	struct bufq_state *sc_bufq;	/* buffer queue */
     91 	struct callout	sc_restart_ch;	/* callout to restart I/O */
     92 
     93 	kmutex_t	sc_iolock;
     94 	bool		sc_iostop;	/* don't schedule restart */
     95 	int		sc_mode;	/* parent open mode */
     96 };
     97 
     98 static int	dkwedge_match(device_t, cfdata_t, void *);
     99 static void	dkwedge_attach(device_t, device_t, void *);
    100 static int	dkwedge_detach(device_t, int);
    101 
    102 static void	dkstart(struct dkwedge_softc *);
    103 static void	dkiodone(struct buf *);
    104 static void	dkrestart(void *);
    105 static void	dkminphys(struct buf *);
    106 
    107 static int	dkfirstopen(struct dkwedge_softc *, int);
    108 static void	dklastclose(struct dkwedge_softc *);
    109 static int	dkwedge_detach(device_t, int);
    110 static void	dkwedge_delall1(struct disk *, bool);
    111 static int	dkwedge_del1(struct dkwedge_info *, int);
    112 static int	dk_open_parent(dev_t, int, struct vnode **);
    113 static int	dk_close_parent(struct vnode *, int);
    114 
    115 static int	dkunit(dev_t);
    116 
    117 static dev_type_open(dkopen);
    118 static dev_type_close(dkclose);
    119 static dev_type_cancel(dkcancel);
    120 static dev_type_read(dkread);
    121 static dev_type_write(dkwrite);
    122 static dev_type_ioctl(dkioctl);
    123 static dev_type_strategy(dkstrategy);
    124 static dev_type_dump(dkdump);
    125 static dev_type_size(dksize);
    126 static dev_type_discard(dkdiscard);
    127 
    128 CFDRIVER_DECL(dk, DV_DISK, NULL);
    129 CFATTACH_DECL3_NEW(dk, 0,
    130     dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
    131     DVF_DETACH_SHUTDOWN);
    132 
    133 const struct bdevsw dk_bdevsw = {
    134 	.d_open = dkopen,
    135 	.d_close = dkclose,
    136 	.d_cancel = dkcancel,
    137 	.d_strategy = dkstrategy,
    138 	.d_ioctl = dkioctl,
    139 	.d_dump = dkdump,
    140 	.d_psize = dksize,
    141 	.d_discard = dkdiscard,
    142 	.d_cfdriver = &dk_cd,
    143 	.d_devtounit = dkunit,
    144 	.d_flag = D_DISK | D_MPSAFE
    145 };
    146 
    147 const struct cdevsw dk_cdevsw = {
    148 	.d_open = dkopen,
    149 	.d_close = dkclose,
    150 	.d_cancel = dkcancel,
    151 	.d_read = dkread,
    152 	.d_write = dkwrite,
    153 	.d_ioctl = dkioctl,
    154 	.d_stop = nostop,
    155 	.d_tty = notty,
    156 	.d_poll = nopoll,
    157 	.d_mmap = nommap,
    158 	.d_kqfilter = nokqfilter,
    159 	.d_discard = dkdiscard,
    160 	.d_cfdriver = &dk_cd,
    161 	.d_devtounit = dkunit,
    162 	.d_flag = D_DISK | D_MPSAFE
    163 };
    164 
    165 static struct dkwedge_softc **dkwedges;
    166 static u_int ndkwedges;
    167 static krwlock_t dkwedges_lock;
    168 
    169 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
    170 static krwlock_t dkwedge_discovery_methods_lock;
    171 
    172 /*
    173  * dkwedge_match:
    174  *
    175  *	Autoconfiguration match function for pseudo-device glue.
    176  */
    177 static int
    178 dkwedge_match(device_t parent, cfdata_t match, void *aux)
    179 {
    180 
    181 	/* Pseudo-device; always present. */
    182 	return 1;
    183 }
    184 
    185 /*
    186  * dkwedge_attach:
    187  *
    188  *	Autoconfiguration attach function for pseudo-device glue.
    189  */
    190 static void
    191 dkwedge_attach(device_t parent, device_t self, void *aux)
    192 {
    193 
    194 	if (!pmf_device_register(self, NULL, NULL))
    195 		aprint_error_dev(self, "couldn't establish power handler\n");
    196 }
    197 
    198 /*
    199  * dkwedge_compute_pdev:
    200  *
    201  *	Compute the parent disk's dev_t.
    202  */
    203 static int
    204 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
    205 {
    206 	const char *name, *cp;
    207 	devmajor_t pmaj;
    208 	int punit;
    209 	char devname[16];
    210 
    211 	name = pname;
    212 	switch (type) {
    213 	case VBLK:
    214 		pmaj = devsw_name2blk(name, devname, sizeof(devname));
    215 		break;
    216 	case VCHR:
    217 		pmaj = devsw_name2chr(name, devname, sizeof(devname));
    218 		break;
    219 	default:
    220 		pmaj = NODEVMAJOR;
    221 		break;
    222 	}
    223 	if (pmaj == NODEVMAJOR)
    224 		return ENXIO;
    225 
    226 	name += strlen(devname);
    227 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
    228 		punit = (punit * 10) + (*cp - '0');
    229 	if (cp == name) {
    230 		/* Invalid parent disk name. */
    231 		return ENXIO;
    232 	}
    233 
    234 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
    235 
    236 	return 0;
    237 }
    238 
    239 /*
    240  * dkwedge_array_expand:
    241  *
    242  *	Expand the dkwedges array.
    243  *
    244  *	Releases and reacquires dkwedges_lock as a writer.
    245  */
    246 static int
    247 dkwedge_array_expand(void)
    248 {
    249 
    250 	const unsigned incr = 16;
    251 	unsigned newcnt, oldcnt;
    252 	struct dkwedge_softc **newarray = NULL, **oldarray = NULL;
    253 
    254 	KASSERT(rw_write_held(&dkwedges_lock));
    255 
    256 	oldcnt = ndkwedges;
    257 	oldarray = dkwedges;
    258 
    259 	if (oldcnt >= INT_MAX - incr)
    260 		return ENFILE;	/* XXX */
    261 	newcnt = oldcnt + incr;
    262 
    263 	rw_exit(&dkwedges_lock);
    264 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
    265 	    M_WAITOK|M_ZERO);
    266 	rw_enter(&dkwedges_lock, RW_WRITER);
    267 
    268 	if (ndkwedges != oldcnt || dkwedges != oldarray) {
    269 		oldarray = NULL; /* already recycled */
    270 		goto out;
    271 	}
    272 
    273 	if (oldarray != NULL)
    274 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
    275 	dkwedges = newarray;
    276 	newarray = NULL;	/* transferred to dkwedges */
    277 	ndkwedges = newcnt;
    278 
    279 out:	rw_exit(&dkwedges_lock);
    280 	if (oldarray != NULL)
    281 		free(oldarray, M_DKWEDGE);
    282 	if (newarray != NULL)
    283 		free(newarray, M_DKWEDGE);
    284 	rw_enter(&dkwedges_lock, RW_WRITER);
    285 	return 0;
    286 }
    287 
    288 static void
    289 dkwedge_size_init(struct dkwedge_softc *sc, uint64_t size)
    290 {
    291 
    292 	rw_init(&sc->sc_sizelock);
    293 	sc->sc_size = size;
    294 }
    295 
    296 static void
    297 dkwedge_size_fini(struct dkwedge_softc *sc)
    298 {
    299 
    300 	rw_destroy(&sc->sc_sizelock);
    301 }
    302 
    303 static uint64_t
    304 dkwedge_size(struct dkwedge_softc *sc)
    305 {
    306 	uint64_t size;
    307 
    308 	rw_enter(&sc->sc_sizelock, RW_READER);
    309 	size = sc->sc_size;
    310 	rw_exit(&sc->sc_sizelock);
    311 
    312 	return size;
    313 }
    314 
    315 static void
    316 dkwedge_size_increase(struct dkwedge_softc *sc, uint64_t size)
    317 {
    318 
    319 	KASSERT(mutex_owned(&sc->sc_parent->dk_openlock));
    320 
    321 	rw_enter(&sc->sc_sizelock, RW_WRITER);
    322 	KASSERTMSG(size >= sc->sc_size,
    323 	    "decreasing dkwedge size from %"PRIu64" to %"PRIu64,
    324 	    sc->sc_size, size);
    325 	sc->sc_size = size;
    326 	rw_exit(&sc->sc_sizelock);
    327 }
    328 
    329 static void
    330 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
    331 {
    332 	struct disk *dk = &sc->sc_dk;
    333 	struct disk_geom *dg = &dk->dk_geom;
    334 
    335 	KASSERT(mutex_owned(&pdk->dk_openlock));
    336 
    337 	memset(dg, 0, sizeof(*dg));
    338 
    339 	dg->dg_secperunit = dkwedge_size(sc);
    340 	dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
    341 
    342 	/* fake numbers, 1 cylinder is 1 MB with default sector size */
    343 	dg->dg_nsectors = 32;
    344 	dg->dg_ntracks = 64;
    345 	dg->dg_ncylinders =
    346 	    dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
    347 
    348 	disk_set_info(sc->sc_dev, dk, NULL);
    349 }
    350 
    351 /*
    352  * dkwedge_add:		[exported function]
    353  *
    354  *	Add a disk wedge based on the provided information.
    355  *
    356  *	The incoming dkw_devname[] is ignored, instead being
    357  *	filled in and returned to the caller.
    358  */
    359 int
    360 dkwedge_add(struct dkwedge_info *dkw)
    361 {
    362 	struct dkwedge_softc *sc, *lsc;
    363 	struct disk *pdk;
    364 	u_int unit;
    365 	int error;
    366 	dev_t pdev;
    367 
    368 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
    369 	pdk = disk_find(dkw->dkw_parent);
    370 	if (pdk == NULL)
    371 		return ENXIO;
    372 
    373 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
    374 	if (error)
    375 		return error;
    376 
    377 	if (dkw->dkw_offset < 0)
    378 		return EINVAL;
    379 
    380 	/*
    381 	 * Check for an existing wedge at the same disk offset. Allow
    382 	 * updating a wedge if the only change is the size, and the new
    383 	 * size is larger than the old.
    384 	 */
    385 	sc = NULL;
    386 	mutex_enter(&pdk->dk_openlock);
    387 	LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    388 		if (lsc->sc_offset != dkw->dkw_offset)
    389 			continue;
    390 		if (strcmp(lsc->sc_wname, dkw->dkw_wname) != 0)
    391 			break;
    392 		if (strcmp(lsc->sc_ptype, dkw->dkw_ptype) != 0)
    393 			break;
    394 		if (dkwedge_size(lsc) > dkw->dkw_size)
    395 			break;
    396 
    397 		sc = lsc;
    398 		dkwedge_size_increase(sc, dkw->dkw_size);
    399 		dk_set_geometry(sc, pdk);
    400 
    401 		break;
    402 	}
    403 	mutex_exit(&pdk->dk_openlock);
    404 
    405 	if (sc != NULL)
    406 		goto announce;
    407 
    408 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
    409 	sc->sc_state = DKW_STATE_LARVAL;
    410 	sc->sc_parent = pdk;
    411 	sc->sc_pdev = pdev;
    412 	sc->sc_offset = dkw->dkw_offset;
    413 	dkwedge_size_init(sc, dkw->dkw_size);
    414 
    415 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
    416 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
    417 
    418 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
    419 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
    420 
    421 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
    422 
    423 	callout_init(&sc->sc_restart_ch, 0);
    424 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
    425 
    426 	mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
    427 
    428 	/*
    429 	 * Wedge will be added; increment the wedge count for the parent.
    430 	 * Only allow this to happen if RAW_PART is the only thing open.
    431 	 */
    432 	mutex_enter(&pdk->dk_openlock);
    433 	if (pdk->dk_openmask & ~(1 << RAW_PART))
    434 		error = EBUSY;
    435 	else {
    436 		/* Check for wedge overlap. */
    437 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    438 			/* XXX arithmetic overflow */
    439 			uint64_t size = dkwedge_size(sc);
    440 			uint64_t lsize = dkwedge_size(lsc);
    441 			daddr_t lastblk = sc->sc_offset + size - 1;
    442 			daddr_t llastblk = lsc->sc_offset + lsize - 1;
    443 
    444 			if (sc->sc_offset >= lsc->sc_offset &&
    445 			    sc->sc_offset <= llastblk) {
    446 				/* Overlaps the tail of the existing wedge. */
    447 				break;
    448 			}
    449 			if (lastblk >= lsc->sc_offset &&
    450 			    lastblk <= llastblk) {
    451 				/* Overlaps the head of the existing wedge. */
    452 			    	break;
    453 			}
    454 		}
    455 		if (lsc != NULL) {
    456 			if (sc->sc_offset == lsc->sc_offset &&
    457 			    dkwedge_size(sc) == dkwedge_size(lsc) &&
    458 			    strcmp(sc->sc_wname, lsc->sc_wname) == 0)
    459 				error = EEXIST;
    460 			else
    461 				error = EINVAL;
    462 		} else {
    463 			pdk->dk_nwedges++;
    464 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
    465 		}
    466 	}
    467 	mutex_exit(&pdk->dk_openlock);
    468 	if (error) {
    469 		mutex_destroy(&sc->sc_iolock);
    470 		bufq_free(sc->sc_bufq);
    471 		dkwedge_size_fini(sc);
    472 		free(sc, M_DKWEDGE);
    473 		return error;
    474 	}
    475 
    476 	/* Fill in our cfdata for the pseudo-device glue. */
    477 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
    478 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
    479 	/* sc->sc_cfdata.cf_unit set below */
    480 	sc->sc_cfdata.cf_fstate = FSTATE_STAR;
    481 
    482 	/* Insert the larval wedge into the array. */
    483 	rw_enter(&dkwedges_lock, RW_WRITER);
    484 	for (error = 0;;) {
    485 		struct dkwedge_softc **scpp;
    486 
    487 		/*
    488 		 * Check for a duplicate wname while searching for
    489 		 * a slot.
    490 		 */
    491 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
    492 			if (dkwedges[unit] == NULL) {
    493 				if (scpp == NULL) {
    494 					scpp = &dkwedges[unit];
    495 					sc->sc_cfdata.cf_unit = unit;
    496 				}
    497 			} else {
    498 				/* XXX Unicode. */
    499 				if (strcmp(dkwedges[unit]->sc_wname,
    500 					sc->sc_wname) == 0) {
    501 					error = EEXIST;
    502 					break;
    503 				}
    504 			}
    505 		}
    506 		if (error)
    507 			break;
    508 		KASSERT(unit == ndkwedges);
    509 		if (scpp == NULL) {
    510 			error = dkwedge_array_expand();
    511 			if (error)
    512 				break;
    513 		} else {
    514 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
    515 			*scpp = sc;
    516 			break;
    517 		}
    518 	}
    519 	rw_exit(&dkwedges_lock);
    520 	if (error) {
    521 		mutex_enter(&pdk->dk_openlock);
    522 		pdk->dk_nwedges--;
    523 		LIST_REMOVE(sc, sc_plink);
    524 		mutex_exit(&pdk->dk_openlock);
    525 
    526 		mutex_destroy(&sc->sc_iolock);
    527 		bufq_free(sc->sc_bufq);
    528 		dkwedge_size_fini(sc);
    529 		free(sc, M_DKWEDGE);
    530 		return error;
    531 	}
    532 
    533 	/*
    534 	 * Now that we know the unit #, attach a pseudo-device for
    535 	 * this wedge instance.  This will provide us with the
    536 	 * device_t necessary for glue to other parts of the system.
    537 	 *
    538 	 * This should never fail, unless we're almost totally out of
    539 	 * memory.
    540 	 */
    541 	if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
    542 		aprint_error("%s%u: unable to attach pseudo-device\n",
    543 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
    544 
    545 		rw_enter(&dkwedges_lock, RW_WRITER);
    546 		KASSERT(dkwedges[sc->sc_cfdata.cf_unit] == sc);
    547 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
    548 		rw_exit(&dkwedges_lock);
    549 
    550 		mutex_enter(&pdk->dk_openlock);
    551 		pdk->dk_nwedges--;
    552 		LIST_REMOVE(sc, sc_plink);
    553 		mutex_exit(&pdk->dk_openlock);
    554 
    555 		mutex_destroy(&sc->sc_iolock);
    556 		bufq_free(sc->sc_bufq);
    557 		dkwedge_size_fini(sc);
    558 		free(sc, M_DKWEDGE);
    559 		return ENOMEM;
    560 	}
    561 
    562 	/*
    563 	 * XXX Really ought to make the disk_attach() and the changing
    564 	 * of state to RUNNING atomic.
    565 	 */
    566 
    567 	disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
    568 	mutex_enter(&pdk->dk_openlock);
    569 	dk_set_geometry(sc, pdk);
    570 	mutex_exit(&pdk->dk_openlock);
    571 	disk_attach(&sc->sc_dk);
    572 
    573 	/* Disk wedge is ready for use! */
    574 	sc->sc_state = DKW_STATE_RUNNING;
    575 
    576 announce:
    577 	/* Announce our arrival. */
    578 	aprint_normal(
    579 	    "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
    580 	    device_xname(sc->sc_dev), pdk->dk_name,
    581 	    sc->sc_wname,	/* XXX Unicode */
    582 	    dkwedge_size(sc), sc->sc_offset,
    583 	    sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
    584 
    585 	/* Return the devname to the caller. */
    586 	strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
    587 	    sizeof(dkw->dkw_devname));
    588 
    589 	return 0;
    590 }
    591 
    592 /*
    593  * dkwedge_find:
    594  *
    595  *	Lookup a disk wedge based on the provided information.
    596  *	NOTE: We look up the wedge based on the wedge devname,
    597  *	not wname.
    598  *
    599  *	Return NULL if the wedge is not found, otherwise return
    600  *	the wedge's softc.  Assign the wedge's unit number to unitp
    601  *	if unitp is not NULL.
    602  */
    603 static struct dkwedge_softc *
    604 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
    605 {
    606 	struct dkwedge_softc *sc = NULL;
    607 	u_int unit;
    608 
    609 	/* Find our softc. */
    610 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
    611 	rw_enter(&dkwedges_lock, RW_READER);
    612 	for (unit = 0; unit < ndkwedges; unit++) {
    613 		if ((sc = dkwedges[unit]) != NULL &&
    614 		    strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
    615 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
    616 			break;
    617 		}
    618 	}
    619 	rw_exit(&dkwedges_lock);
    620 	if (sc == NULL)
    621 		return NULL;
    622 
    623 	if (unitp != NULL)
    624 		*unitp = unit;
    625 
    626 	return sc;
    627 }
    628 
    629 /*
    630  * dkwedge_del:		[exported function]
    631  *
    632  *	Delete a disk wedge based on the provided information.
    633  *	NOTE: We look up the wedge based on the wedge devname,
    634  *	not wname.
    635  */
    636 int
    637 dkwedge_del(struct dkwedge_info *dkw)
    638 {
    639 
    640 	return dkwedge_del1(dkw, 0);
    641 }
    642 
    643 int
    644 dkwedge_del1(struct dkwedge_info *dkw, int flags)
    645 {
    646 	struct dkwedge_softc *sc = NULL;
    647 
    648 	/* Find our softc. */
    649 	if ((sc = dkwedge_find(dkw, NULL)) == NULL)
    650 		return ESRCH;
    651 
    652 	return config_detach(sc->sc_dev, flags);
    653 }
    654 
    655 /*
    656  * dkwedge_detach:
    657  *
    658  *	Autoconfiguration detach function for pseudo-device glue.
    659  */
    660 static int
    661 dkwedge_detach(device_t self, int flags)
    662 {
    663 	struct dkwedge_softc *sc = NULL;
    664 	u_int unit;
    665 	int bmaj, cmaj, rc;
    666 
    667 	rw_enter(&dkwedges_lock, RW_WRITER);
    668 	for (unit = 0; unit < ndkwedges; unit++) {
    669 		if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
    670 			break;
    671 	}
    672 	if (unit == ndkwedges)
    673 		rc = ENXIO;
    674 	else if ((rc = disk_begindetach(&sc->sc_dk, /*lastclose*/NULL, self,
    675 		    flags)) == 0) {
    676 		/* Mark the wedge as dying. */
    677 		sc->sc_state = DKW_STATE_DYING;
    678 	}
    679 	rw_exit(&dkwedges_lock);
    680 
    681 	if (rc != 0)
    682 		return rc;
    683 
    684 	pmf_device_deregister(self);
    685 
    686 	/* Kill any pending restart. */
    687 	mutex_enter(&sc->sc_iolock);
    688 	sc->sc_iostop = true;
    689 	mutex_exit(&sc->sc_iolock);
    690 	callout_halt(&sc->sc_restart_ch, NULL);
    691 
    692 	/* Locate the wedge major numbers. */
    693 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
    694 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
    695 
    696 	/* Nuke the vnodes for any open instances. */
    697 	vdevgone(bmaj, unit, unit, VBLK);
    698 	vdevgone(cmaj, unit, unit, VCHR);
    699 
    700 	/*
    701 	 * At this point, all block device opens have been closed,
    702 	 * synchronously flushing any buffered writes; and all
    703 	 * character device I/O operations have completed
    704 	 * synchronously, and character device opens have been closed.
    705 	 *
    706 	 * So there can be no more opens or queued buffers by now.
    707 	 */
    708 	KASSERT(sc->sc_dk.dk_openmask == 0);
    709 	KASSERT(bufq_peek(sc->sc_bufq) == NULL);
    710 	bufq_drain(sc->sc_bufq);
    711 
    712 	/* Announce our departure. */
    713 	aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
    714 	    sc->sc_parent->dk_name,
    715 	    sc->sc_wname);	/* XXX Unicode */
    716 
    717 	mutex_enter(&sc->sc_parent->dk_openlock);
    718 	sc->sc_parent->dk_nwedges--;
    719 	LIST_REMOVE(sc, sc_plink);
    720 	mutex_exit(&sc->sc_parent->dk_openlock);
    721 
    722 	/* Delete our buffer queue. */
    723 	bufq_free(sc->sc_bufq);
    724 
    725 	/* Detach from the disk list. */
    726 	disk_detach(&sc->sc_dk);
    727 	disk_destroy(&sc->sc_dk);
    728 
    729 	/* Poof. */
    730 	rw_enter(&dkwedges_lock, RW_WRITER);
    731 	KASSERT(dkwedges[unit] == sc);
    732 	dkwedges[unit] = NULL;
    733 	sc->sc_state = DKW_STATE_DEAD;
    734 	rw_exit(&dkwedges_lock);
    735 
    736 	mutex_destroy(&sc->sc_iolock);
    737 	dkwedge_size_fini(sc);
    738 
    739 	free(sc, M_DKWEDGE);
    740 
    741 	return 0;
    742 }
    743 
    744 /*
    745  * dkwedge_delall:	[exported function]
    746  *
    747  *	Forcibly delete all of the wedges on the specified disk.  Used
    748  *	when a disk is being detached.
    749  */
    750 void
    751 dkwedge_delall(struct disk *pdk)
    752 {
    753 
    754 	dkwedge_delall1(pdk, /*idleonly*/false);
    755 }
    756 
    757 /*
    758  * dkwedge_delidle:	[exported function]
    759  *
    760  *	Delete all of the wedges on the specified disk if idle.  Used
    761  *	by ioctl(DIOCRMWEDGES).
    762  */
    763 void
    764 dkwedge_delidle(struct disk *pdk)
    765 {
    766 
    767 	dkwedge_delall1(pdk, /*idleonly*/true);
    768 }
    769 
    770 static void
    771 dkwedge_delall1(struct disk *pdk, bool idleonly)
    772 {
    773 	struct dkwedge_info dkw;
    774 	struct dkwedge_softc *sc;
    775 	int flags;
    776 
    777 	flags = DETACH_QUIET;
    778 	if (!idleonly)
    779 		flags |= DETACH_FORCE;
    780 
    781 	for (;;) {
    782 		mutex_enter(&pdk->dk_rawlock); /* for sc->sc_dk.dk_openmask */
    783 		mutex_enter(&pdk->dk_openlock);
    784 		LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    785 			if (!idleonly || sc->sc_dk.dk_openmask == 0)
    786 				break;
    787 		}
    788 		if (sc == NULL) {
    789 			KASSERT(idleonly || pdk->dk_nwedges == 0);
    790 			mutex_exit(&pdk->dk_openlock);
    791 			mutex_exit(&pdk->dk_rawlock);
    792 			return;
    793 		}
    794 		strlcpy(dkw.dkw_parent, pdk->dk_name, sizeof(dkw.dkw_parent));
    795 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    796 		    sizeof(dkw.dkw_devname));
    797 		mutex_exit(&pdk->dk_openlock);
    798 		mutex_exit(&pdk->dk_rawlock);
    799 		(void) dkwedge_del1(&dkw, flags);
    800 	}
    801 }
    802 
    803 /*
    804  * dkwedge_list:	[exported function]
    805  *
    806  *	List all of the wedges on a particular disk.
    807  */
    808 int
    809 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
    810 {
    811 	struct uio uio;
    812 	struct iovec iov;
    813 	struct dkwedge_softc *sc;
    814 	struct dkwedge_info dkw;
    815 	int error = 0;
    816 
    817 	iov.iov_base = dkwl->dkwl_buf;
    818 	iov.iov_len = dkwl->dkwl_bufsize;
    819 
    820 	uio.uio_iov = &iov;
    821 	uio.uio_iovcnt = 1;
    822 	uio.uio_offset = 0;
    823 	uio.uio_resid = dkwl->dkwl_bufsize;
    824 	uio.uio_rw = UIO_READ;
    825 	KASSERT(l == curlwp);
    826 	uio.uio_vmspace = l->l_proc->p_vmspace;
    827 
    828 	dkwl->dkwl_ncopied = 0;
    829 
    830 	mutex_enter(&pdk->dk_openlock);
    831 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    832 		if (uio.uio_resid < sizeof(dkw))
    833 			break;
    834 
    835 		if (sc->sc_state != DKW_STATE_RUNNING)
    836 			continue;
    837 
    838 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    839 		    sizeof(dkw.dkw_devname));
    840 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
    841 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
    842 		strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
    843 		    sizeof(dkw.dkw_parent));
    844 		dkw.dkw_offset = sc->sc_offset;
    845 		dkw.dkw_size = dkwedge_size(sc);
    846 		strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
    847 
    848 		error = uiomove(&dkw, sizeof(dkw), &uio);
    849 		if (error)
    850 			break;
    851 		dkwl->dkwl_ncopied++;
    852 	}
    853 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
    854 	mutex_exit(&pdk->dk_openlock);
    855 
    856 	return error;
    857 }
    858 
    859 device_t
    860 dkwedge_find_by_wname(const char *wname)
    861 {
    862 	device_t dv = NULL;
    863 	struct dkwedge_softc *sc;
    864 	int i;
    865 
    866 	rw_enter(&dkwedges_lock, RW_READER);
    867 	for (i = 0; i < ndkwedges; i++) {
    868 		if ((sc = dkwedges[i]) == NULL)
    869 			continue;
    870 		if (strcmp(sc->sc_wname, wname) == 0) {
    871 			if (dv != NULL) {
    872 				printf(
    873 				    "WARNING: double match for wedge name %s "
    874 				    "(%s, %s)\n", wname, device_xname(dv),
    875 				    device_xname(sc->sc_dev));
    876 				continue;
    877 			}
    878 			dv = sc->sc_dev;
    879 		}
    880 	}
    881 	rw_exit(&dkwedges_lock);
    882 	return dv;
    883 }
    884 
    885 device_t
    886 dkwedge_find_by_parent(const char *name, size_t *i)
    887 {
    888 
    889 	rw_enter(&dkwedges_lock, RW_READER);
    890 	for (; *i < (size_t)ndkwedges; (*i)++) {
    891 		struct dkwedge_softc *sc;
    892 		if ((sc = dkwedges[*i]) == NULL)
    893 			continue;
    894 		if (strcmp(sc->sc_parent->dk_name, name) != 0)
    895 			continue;
    896 		rw_exit(&dkwedges_lock);
    897 		return sc->sc_dev;
    898 	}
    899 	rw_exit(&dkwedges_lock);
    900 	return NULL;
    901 }
    902 
    903 void
    904 dkwedge_print_wnames(void)
    905 {
    906 	struct dkwedge_softc *sc;
    907 	int i;
    908 
    909 	rw_enter(&dkwedges_lock, RW_READER);
    910 	for (i = 0; i < ndkwedges; i++) {
    911 		if ((sc = dkwedges[i]) == NULL)
    912 			continue;
    913 		printf(" wedge:%s", sc->sc_wname);
    914 	}
    915 	rw_exit(&dkwedges_lock);
    916 }
    917 
    918 /*
    919  * We need a dummy object to stuff into the dkwedge discovery method link
    920  * set to ensure that there is always at least one object in the set.
    921  */
    922 static struct dkwedge_discovery_method dummy_discovery_method;
    923 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
    924 
    925 /*
    926  * dkwedge_init:
    927  *
    928  *	Initialize the disk wedge subsystem.
    929  */
    930 void
    931 dkwedge_init(void)
    932 {
    933 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
    934 	struct dkwedge_discovery_method * const *ddmp;
    935 	struct dkwedge_discovery_method *lddm, *ddm;
    936 
    937 	rw_init(&dkwedges_lock);
    938 	rw_init(&dkwedge_discovery_methods_lock);
    939 
    940 	if (config_cfdriver_attach(&dk_cd) != 0)
    941 		panic("dkwedge: unable to attach cfdriver");
    942 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
    943 		panic("dkwedge: unable to attach cfattach");
    944 
    945 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
    946 
    947 	LIST_INIT(&dkwedge_discovery_methods);
    948 
    949 	__link_set_foreach(ddmp, dkwedge_methods) {
    950 		ddm = *ddmp;
    951 		if (ddm == &dummy_discovery_method)
    952 			continue;
    953 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
    954 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
    955 			    ddm, ddm_list);
    956 			continue;
    957 		}
    958 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
    959 			if (ddm->ddm_priority == lddm->ddm_priority) {
    960 				aprint_error("dk-method-%s: method \"%s\" "
    961 				    "already exists at priority %d\n",
    962 				    ddm->ddm_name, lddm->ddm_name,
    963 				    lddm->ddm_priority);
    964 				/* Not inserted. */
    965 				break;
    966 			}
    967 			if (ddm->ddm_priority < lddm->ddm_priority) {
    968 				/* Higher priority; insert before. */
    969 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
    970 				break;
    971 			}
    972 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
    973 				/* Last one; insert after. */
    974 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
    975 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
    976 				break;
    977 			}
    978 		}
    979 	}
    980 
    981 	rw_exit(&dkwedge_discovery_methods_lock);
    982 }
    983 
    984 #ifdef DKWEDGE_AUTODISCOVER
    985 int	dkwedge_autodiscover = 1;
    986 #else
    987 int	dkwedge_autodiscover = 0;
    988 #endif
    989 
    990 /*
    991  * dkwedge_discover:	[exported function]
    992  *
    993  *	Discover the wedges on a newly attached disk.
    994  *	Remove all unused wedges on the disk first.
    995  */
    996 void
    997 dkwedge_discover(struct disk *pdk)
    998 {
    999 	struct dkwedge_discovery_method *ddm;
   1000 	struct vnode *vp;
   1001 	int error;
   1002 	dev_t pdev;
   1003 
   1004 	/*
   1005 	 * Require people playing with wedges to enable this explicitly.
   1006 	 */
   1007 	if (dkwedge_autodiscover == 0)
   1008 		return;
   1009 
   1010 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
   1011 
   1012 	/*
   1013 	 * Use the character device for scanning, the block device
   1014 	 * is busy if there are already wedges attached.
   1015 	 */
   1016 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
   1017 	if (error) {
   1018 		aprint_error("%s: unable to compute pdev, error = %d\n",
   1019 		    pdk->dk_name, error);
   1020 		goto out;
   1021 	}
   1022 
   1023 	error = cdevvp(pdev, &vp);
   1024 	if (error) {
   1025 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
   1026 		    pdk->dk_name, error);
   1027 		goto out;
   1028 	}
   1029 
   1030 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1031 	if (error) {
   1032 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
   1033 		    pdk->dk_name, error);
   1034 		vrele(vp);
   1035 		goto out;
   1036 	}
   1037 
   1038 	error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
   1039 	if (error) {
   1040 		if (error != ENXIO)
   1041 			aprint_error("%s: unable to open device, error = %d\n",
   1042 			    pdk->dk_name, error);
   1043 		vput(vp);
   1044 		goto out;
   1045 	}
   1046 	VOP_UNLOCK(vp);
   1047 
   1048 	/*
   1049 	 * Remove unused wedges
   1050 	 */
   1051 	dkwedge_delidle(pdk);
   1052 
   1053 	/*
   1054 	 * For each supported partition map type, look to see if
   1055 	 * this map type exists.  If so, parse it and add the
   1056 	 * corresponding wedges.
   1057 	 */
   1058 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
   1059 		error = (*ddm->ddm_discover)(pdk, vp);
   1060 		if (error == 0) {
   1061 			/* Successfully created wedges; we're done. */
   1062 			break;
   1063 		}
   1064 	}
   1065 
   1066 	error = vn_close(vp, FREAD, NOCRED);
   1067 	if (error) {
   1068 		aprint_error("%s: unable to close device, error = %d\n",
   1069 		    pdk->dk_name, error);
   1070 		/* We'll just assume the vnode has been cleaned up. */
   1071 	}
   1072 
   1073 out:
   1074 	rw_exit(&dkwedge_discovery_methods_lock);
   1075 }
   1076 
   1077 /*
   1078  * dkwedge_read:
   1079  *
   1080  *	Read some data from the specified disk, used for
   1081  *	partition discovery.
   1082  */
   1083 int
   1084 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
   1085     void *tbuf, size_t len)
   1086 {
   1087 	buf_t *bp;
   1088 	int error;
   1089 	bool isopen;
   1090 	dev_t bdev;
   1091 	struct vnode *bdvp;
   1092 
   1093 	/*
   1094 	 * The kernel cannot read from a character device vnode
   1095 	 * as physio() only handles user memory.
   1096 	 *
   1097 	 * If the block device has already been opened by a wedge
   1098 	 * use that vnode and temporarily bump the open counter.
   1099 	 *
   1100 	 * Otherwise try to open the block device.
   1101 	 */
   1102 
   1103 	bdev = devsw_chr2blk(vp->v_rdev);
   1104 
   1105 	mutex_enter(&pdk->dk_rawlock);
   1106 	if (pdk->dk_rawopens != 0) {
   1107 		KASSERT(pdk->dk_rawvp != NULL);
   1108 		isopen = true;
   1109 		++pdk->dk_rawopens;
   1110 		bdvp = pdk->dk_rawvp;
   1111 		error = 0;
   1112 	} else {
   1113 		isopen = false;
   1114 		error = dk_open_parent(bdev, FREAD, &bdvp);
   1115 	}
   1116 	mutex_exit(&pdk->dk_rawlock);
   1117 
   1118 	if (error)
   1119 		return error;
   1120 
   1121 	bp = getiobuf(bdvp, true);
   1122 	bp->b_flags = B_READ;
   1123 	bp->b_cflags = BC_BUSY;
   1124 	bp->b_dev = bdev;
   1125 	bp->b_data = tbuf;
   1126 	bp->b_bufsize = bp->b_bcount = len;
   1127 	bp->b_blkno = blkno;
   1128 	bp->b_cylinder = 0;
   1129 	bp->b_error = 0;
   1130 
   1131 	VOP_STRATEGY(bdvp, bp);
   1132 	error = biowait(bp);
   1133 	putiobuf(bp);
   1134 
   1135 	mutex_enter(&pdk->dk_rawlock);
   1136 	if (isopen) {
   1137 		--pdk->dk_rawopens;
   1138 	} else {
   1139 		dk_close_parent(bdvp, FREAD);
   1140 	}
   1141 	mutex_exit(&pdk->dk_rawlock);
   1142 
   1143 	return error;
   1144 }
   1145 
   1146 /*
   1147  * dkwedge_lookup:
   1148  *
   1149  *	Look up a dkwedge_softc based on the provided dev_t.
   1150  */
   1151 static struct dkwedge_softc *
   1152 dkwedge_lookup(dev_t dev)
   1153 {
   1154 	const int unit = minor(dev);
   1155 	struct dkwedge_softc *sc;
   1156 
   1157 	rw_enter(&dkwedges_lock, RW_READER);
   1158 	if (unit < 0 || unit >= ndkwedges)
   1159 		sc = NULL;
   1160 	else
   1161 		sc = dkwedges[unit];
   1162 	rw_exit(&dkwedges_lock);
   1163 
   1164 	return sc;
   1165 }
   1166 
   1167 static int
   1168 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
   1169 {
   1170 	struct vnode *vp;
   1171 	int error;
   1172 
   1173 	error = bdevvp(dev, &vp);
   1174 	if (error)
   1175 		return error;
   1176 
   1177 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1178 	if (error) {
   1179 		vrele(vp);
   1180 		return error;
   1181 	}
   1182 	error = VOP_OPEN(vp, mode, NOCRED);
   1183 	if (error) {
   1184 		vput(vp);
   1185 		return error;
   1186 	}
   1187 
   1188 	/* VOP_OPEN() doesn't do this for us. */
   1189 	if (mode & FWRITE) {
   1190 		mutex_enter(vp->v_interlock);
   1191 		vp->v_writecount++;
   1192 		mutex_exit(vp->v_interlock);
   1193 	}
   1194 
   1195 	VOP_UNLOCK(vp);
   1196 
   1197 	*vpp = vp;
   1198 
   1199 	return 0;
   1200 }
   1201 
   1202 static int
   1203 dk_close_parent(struct vnode *vp, int mode)
   1204 {
   1205 	int error;
   1206 
   1207 	error = vn_close(vp, mode, NOCRED);
   1208 	return error;
   1209 }
   1210 
   1211 /*
   1212  * dkunit:		[devsw entry point]
   1213  *
   1214  *	Return the autoconf device_t unit number of a wedge by its
   1215  *	devsw dev_t number, or -1 if there is none.
   1216  *
   1217  *	XXX This is a temporary hack until dkwedge numbering is made to
   1218  *	correspond 1:1 to autoconf device numbering.
   1219  */
   1220 static int
   1221 dkunit(dev_t dev)
   1222 {
   1223 	int mn = minor(dev);
   1224 	struct dkwedge_softc *sc;
   1225 	device_t dv;
   1226 	int unit = -1;
   1227 
   1228 	if (mn < 0)
   1229 		return -1;
   1230 
   1231 	rw_enter(&dkwedges_lock, RW_READER);
   1232 	if (mn < ndkwedges &&
   1233 	    (sc = dkwedges[minor(dev)]) != NULL &&
   1234 	    (dv = sc->sc_dev) != NULL)
   1235 		unit = device_unit(dv);
   1236 	rw_exit(&dkwedges_lock);
   1237 
   1238 	return unit;
   1239 }
   1240 
   1241 /*
   1242  * dkopen:		[devsw entry point]
   1243  *
   1244  *	Open a wedge.
   1245  */
   1246 static int
   1247 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
   1248 {
   1249 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1250 	int error = 0;
   1251 
   1252 	if (sc == NULL)
   1253 		return ENXIO;
   1254 	if (sc->sc_state != DKW_STATE_RUNNING)
   1255 		return ENXIO;
   1256 
   1257 	/*
   1258 	 * We go through a complicated little dance to only open the parent
   1259 	 * vnode once per wedge, no matter how many times the wedge is
   1260 	 * opened.  The reason?  We see one dkopen() per open call, but
   1261 	 * only dkclose() on the last close.
   1262 	 */
   1263 	mutex_enter(&sc->sc_dk.dk_openlock);
   1264 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1265 	if (sc->sc_dk.dk_openmask == 0) {
   1266 		error = dkfirstopen(sc, flags);
   1267 		if (error)
   1268 			goto out;
   1269 	}
   1270 	KASSERT(sc->sc_mode != 0);
   1271 	if (flags & ~sc->sc_mode & FWRITE) {
   1272 		error = EROFS;
   1273 		goto out;
   1274 	}
   1275 	if (fmt == S_IFCHR)
   1276 		sc->sc_dk.dk_copenmask |= 1;
   1277 	else
   1278 		sc->sc_dk.dk_bopenmask |= 1;
   1279 	sc->sc_dk.dk_openmask =
   1280 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1281 
   1282 out:	mutex_exit(&sc->sc_parent->dk_rawlock);
   1283 	mutex_exit(&sc->sc_dk.dk_openlock);
   1284 	return error;
   1285 }
   1286 
   1287 static int
   1288 dkfirstopen(struct dkwedge_softc *sc, int flags)
   1289 {
   1290 	struct dkwedge_softc *nsc;
   1291 	struct vnode *vp;
   1292 	int mode;
   1293 	int error;
   1294 
   1295 	KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
   1296 	KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
   1297 
   1298 	if (sc->sc_parent->dk_rawopens == 0) {
   1299 		KASSERT(sc->sc_parent->dk_rawvp == NULL);
   1300 		/*
   1301 		 * Try open read-write. If this fails for EROFS
   1302 		 * and wedge is read-only, retry to open read-only.
   1303 		 */
   1304 		mode = FREAD | FWRITE;
   1305 		error = dk_open_parent(sc->sc_pdev, mode, &vp);
   1306 		if (error == EROFS && (flags & FWRITE) == 0) {
   1307 			mode &= ~FWRITE;
   1308 			error = dk_open_parent(sc->sc_pdev, mode, &vp);
   1309 		}
   1310 		if (error)
   1311 			return error;
   1312 		KASSERT(vp != NULL);
   1313 		sc->sc_parent->dk_rawvp = vp;
   1314 	} else {
   1315 		/*
   1316 		 * Retrieve mode from an already opened wedge.
   1317 		 *
   1318 		 * At this point, dk_rawopens is bounded by the number
   1319 		 * of dkwedge devices in the system, which is limited
   1320 		 * by autoconf device numbering to INT_MAX.  Since
   1321 		 * dk_rawopens is unsigned, this can't overflow.
   1322 		 */
   1323 		KASSERT(sc->sc_parent->dk_rawopens < UINT_MAX);
   1324 		KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1325 		mode = 0;
   1326 		LIST_FOREACH(nsc, &sc->sc_parent->dk_wedges, sc_plink) {
   1327 			if (nsc == sc || nsc->sc_dk.dk_openmask == 0)
   1328 				continue;
   1329 			mode = nsc->sc_mode;
   1330 			break;
   1331 		}
   1332 	}
   1333 	sc->sc_mode = mode;
   1334 	sc->sc_parent->dk_rawopens++;
   1335 
   1336 	return 0;
   1337 }
   1338 
   1339 static void
   1340 dklastclose(struct dkwedge_softc *sc)
   1341 {
   1342 
   1343 	KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
   1344 	KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
   1345 	KASSERT(sc->sc_parent->dk_rawopens > 0);
   1346 	KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1347 
   1348 	if (--sc->sc_parent->dk_rawopens == 0) {
   1349 		struct vnode *const vp = sc->sc_parent->dk_rawvp;
   1350 		const int mode = sc->sc_mode;
   1351 
   1352 		sc->sc_parent->dk_rawvp = NULL;
   1353 		sc->sc_mode = 0;
   1354 
   1355 		dk_close_parent(vp, mode);
   1356 	}
   1357 }
   1358 
   1359 /*
   1360  * dkclose:		[devsw entry point]
   1361  *
   1362  *	Close a wedge.
   1363  */
   1364 static int
   1365 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
   1366 {
   1367 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1368 
   1369 	if (sc == NULL)
   1370 		return ENXIO;
   1371 	if (sc->sc_state != DKW_STATE_RUNNING &&
   1372 	    sc->sc_state != DKW_STATE_DYING)
   1373 		return ENXIO;
   1374 
   1375 	mutex_enter(&sc->sc_dk.dk_openlock);
   1376 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1377 
   1378 	KASSERT(sc->sc_dk.dk_openmask != 0);
   1379 
   1380 	if (fmt == S_IFCHR)
   1381 		sc->sc_dk.dk_copenmask &= ~1;
   1382 	else
   1383 		sc->sc_dk.dk_bopenmask &= ~1;
   1384 	sc->sc_dk.dk_openmask =
   1385 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1386 
   1387 	if (sc->sc_dk.dk_openmask == 0) {
   1388 		dklastclose(sc);
   1389 	}
   1390 
   1391 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1392 	mutex_exit(&sc->sc_dk.dk_openlock);
   1393 
   1394 	return 0;
   1395 }
   1396 
   1397 /*
   1398  * dkcancel:		[devsw entry point]
   1399  *
   1400  *	Cancel any pending I/O operations waiting on a wedge.
   1401  */
   1402 static int
   1403 dkcancel(dev_t dev, int flags, int fmt, struct lwp *l)
   1404 {
   1405 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1406 
   1407 	KASSERT(sc != NULL);
   1408 	KASSERT(sc->sc_dev != NULL);
   1409 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1410 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1411 
   1412 	/*
   1413 	 * Disk I/O is expected to complete or fail within a reasonable
   1414 	 * timeframe -- it's storage, not communication.  Further, the
   1415 	 * character and block device interface guarantees that prior
   1416 	 * reads and writes have completed or failed by the time close
   1417 	 * returns -- we are not to cancel them here.  If the parent
   1418 	 * device's hardware is gone, the parent driver can make them
   1419 	 * fail.  Nothing for dk(4) itself to do.
   1420 	 */
   1421 
   1422 	return 0;
   1423 }
   1424 
   1425 /*
   1426  * dkstrategy:		[devsw entry point]
   1427  *
   1428  *	Perform I/O based on the wedge I/O strategy.
   1429  */
   1430 static void
   1431 dkstrategy(struct buf *bp)
   1432 {
   1433 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1434 	uint64_t p_size, p_offset;
   1435 
   1436 	KASSERT(sc != NULL);
   1437 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1438 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1439 	KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1440 
   1441 	/* If it's an empty transfer, wake up the top half now. */
   1442 	if (bp->b_bcount == 0)
   1443 		goto done;
   1444 
   1445 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
   1446 	p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
   1447 
   1448 	/* Make sure it's in-range. */
   1449 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
   1450 		goto done;
   1451 
   1452 	/* Translate it to the parent's raw LBA. */
   1453 	bp->b_rawblkno = bp->b_blkno + p_offset;
   1454 
   1455 	/* Place it in the queue and start I/O on the unit. */
   1456 	mutex_enter(&sc->sc_iolock);
   1457 	disk_wait(&sc->sc_dk);
   1458 	bufq_put(sc->sc_bufq, bp);
   1459 	mutex_exit(&sc->sc_iolock);
   1460 
   1461 	dkstart(sc);
   1462 	return;
   1463 
   1464 done:
   1465 	bp->b_resid = bp->b_bcount;
   1466 	biodone(bp);
   1467 }
   1468 
   1469 /*
   1470  * dkstart:
   1471  *
   1472  *	Start I/O that has been enqueued on the wedge.
   1473  */
   1474 static void
   1475 dkstart(struct dkwedge_softc *sc)
   1476 {
   1477 	struct vnode *vp;
   1478 	struct buf *bp, *nbp;
   1479 
   1480 	mutex_enter(&sc->sc_iolock);
   1481 
   1482 	/* Do as much work as has been enqueued. */
   1483 	while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
   1484 		if (sc->sc_iostop) {
   1485 			(void) bufq_get(sc->sc_bufq);
   1486 			mutex_exit(&sc->sc_iolock);
   1487 			bp->b_error = ENXIO;
   1488 			bp->b_resid = bp->b_bcount;
   1489 			biodone(bp);
   1490 			mutex_enter(&sc->sc_iolock);
   1491 			continue;
   1492 		}
   1493 
   1494 		/* fetch an I/O buf with sc_iolock dropped */
   1495 		mutex_exit(&sc->sc_iolock);
   1496 		nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
   1497 		mutex_enter(&sc->sc_iolock);
   1498 		if (nbp == NULL) {
   1499 			/*
   1500 			 * No resources to run this request; leave the
   1501 			 * buffer queued up, and schedule a timer to
   1502 			 * restart the queue in 1/2 a second.
   1503 			 */
   1504 			if (!sc->sc_iostop)
   1505 				callout_schedule(&sc->sc_restart_ch, hz/2);
   1506 			break;
   1507 		}
   1508 
   1509 		/*
   1510 		 * fetch buf, this can fail if another thread
   1511 		 * has already processed the queue, it can also
   1512 		 * return a completely different buf.
   1513 		 */
   1514 		bp = bufq_get(sc->sc_bufq);
   1515 		if (bp == NULL) {
   1516 			mutex_exit(&sc->sc_iolock);
   1517 			putiobuf(nbp);
   1518 			mutex_enter(&sc->sc_iolock);
   1519 			continue;
   1520 		}
   1521 
   1522 		/* Instrumentation. */
   1523 		disk_busy(&sc->sc_dk);
   1524 
   1525 		/* release lock for VOP_STRATEGY */
   1526 		mutex_exit(&sc->sc_iolock);
   1527 
   1528 		nbp->b_data = bp->b_data;
   1529 		nbp->b_flags = bp->b_flags;
   1530 		nbp->b_oflags = bp->b_oflags;
   1531 		nbp->b_cflags = bp->b_cflags;
   1532 		nbp->b_iodone = dkiodone;
   1533 		nbp->b_proc = bp->b_proc;
   1534 		nbp->b_blkno = bp->b_rawblkno;
   1535 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
   1536 		nbp->b_bcount = bp->b_bcount;
   1537 		nbp->b_private = bp;
   1538 		BIO_COPYPRIO(nbp, bp);
   1539 
   1540 		vp = nbp->b_vp;
   1541 		if ((nbp->b_flags & B_READ) == 0) {
   1542 			mutex_enter(vp->v_interlock);
   1543 			vp->v_numoutput++;
   1544 			mutex_exit(vp->v_interlock);
   1545 		}
   1546 		VOP_STRATEGY(vp, nbp);
   1547 
   1548 		mutex_enter(&sc->sc_iolock);
   1549 	}
   1550 
   1551 	mutex_exit(&sc->sc_iolock);
   1552 }
   1553 
   1554 /*
   1555  * dkiodone:
   1556  *
   1557  *	I/O to a wedge has completed; alert the top half.
   1558  */
   1559 static void
   1560 dkiodone(struct buf *bp)
   1561 {
   1562 	struct buf *obp = bp->b_private;
   1563 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
   1564 
   1565 	if (bp->b_error != 0)
   1566 		obp->b_error = bp->b_error;
   1567 	obp->b_resid = bp->b_resid;
   1568 	putiobuf(bp);
   1569 
   1570 	mutex_enter(&sc->sc_iolock);
   1571 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
   1572 	    obp->b_flags & B_READ);
   1573 	mutex_exit(&sc->sc_iolock);
   1574 
   1575 	biodone(obp);
   1576 
   1577 	/* Kick the queue in case there is more work we can do. */
   1578 	dkstart(sc);
   1579 }
   1580 
   1581 /*
   1582  * dkrestart:
   1583  *
   1584  *	Restart the work queue after it was stalled due to
   1585  *	a resource shortage.  Invoked via a callout.
   1586  */
   1587 static void
   1588 dkrestart(void *v)
   1589 {
   1590 	struct dkwedge_softc *sc = v;
   1591 
   1592 	dkstart(sc);
   1593 }
   1594 
   1595 /*
   1596  * dkminphys:
   1597  *
   1598  *	Call parent's minphys function.
   1599  */
   1600 static void
   1601 dkminphys(struct buf *bp)
   1602 {
   1603 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1604 	dev_t dev;
   1605 
   1606 	dev = bp->b_dev;
   1607 	bp->b_dev = sc->sc_pdev;
   1608 	if (sc->sc_parent->dk_driver && sc->sc_parent->dk_driver->d_minphys)
   1609 		(*sc->sc_parent->dk_driver->d_minphys)(bp);
   1610 	else
   1611 		minphys(bp);
   1612 	bp->b_dev = dev;
   1613 }
   1614 
   1615 /*
   1616  * dkread:		[devsw entry point]
   1617  *
   1618  *	Read from a wedge.
   1619  */
   1620 static int
   1621 dkread(dev_t dev, struct uio *uio, int flags)
   1622 {
   1623 	struct dkwedge_softc *sc __diagused = dkwedge_lookup(dev);
   1624 
   1625 	KASSERT(sc != NULL);
   1626 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1627 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1628 
   1629 	return physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio);
   1630 }
   1631 
   1632 /*
   1633  * dkwrite:		[devsw entry point]
   1634  *
   1635  *	Write to a wedge.
   1636  */
   1637 static int
   1638 dkwrite(dev_t dev, struct uio *uio, int flags)
   1639 {
   1640 	struct dkwedge_softc *sc __diagused = dkwedge_lookup(dev);
   1641 
   1642 	KASSERT(sc != NULL);
   1643 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1644 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1645 
   1646 	return physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio);
   1647 }
   1648 
   1649 /*
   1650  * dkioctl:		[devsw entry point]
   1651  *
   1652  *	Perform an ioctl request on a wedge.
   1653  */
   1654 static int
   1655 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1656 {
   1657 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1658 	int error = 0;
   1659 
   1660 	KASSERT(sc != NULL);
   1661 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1662 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1663 	KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1664 
   1665 	/*
   1666 	 * We pass NODEV instead of our device to indicate we don't
   1667 	 * want to handle disklabel ioctls
   1668 	 */
   1669 	error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
   1670 	if (error != EPASSTHROUGH)
   1671 		return error;
   1672 
   1673 	error = 0;
   1674 
   1675 	switch (cmd) {
   1676 	case DIOCGSTRATEGY:
   1677 	case DIOCGCACHE:
   1678 	case DIOCCACHESYNC:
   1679 		error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, data, flag,
   1680 		    l != NULL ? l->l_cred : NOCRED);
   1681 		break;
   1682 	case DIOCGWEDGEINFO: {
   1683 		struct dkwedge_info *dkw = data;
   1684 
   1685 		strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
   1686 		    sizeof(dkw->dkw_devname));
   1687 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
   1688 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
   1689 		strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
   1690 		    sizeof(dkw->dkw_parent));
   1691 		dkw->dkw_offset = sc->sc_offset;
   1692 		dkw->dkw_size = dkwedge_size(sc);
   1693 		strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
   1694 
   1695 		break;
   1696 	}
   1697 	case DIOCGSECTORALIGN: {
   1698 		struct disk_sectoralign *dsa = data;
   1699 		uint32_t r;
   1700 
   1701 		error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, dsa, flag,
   1702 		    l != NULL ? l->l_cred : NOCRED);
   1703 		if (error)
   1704 			break;
   1705 
   1706 		r = sc->sc_offset % dsa->dsa_alignment;
   1707 		if (r < dsa->dsa_firstaligned)
   1708 			dsa->dsa_firstaligned = dsa->dsa_firstaligned - r;
   1709 		else
   1710 			dsa->dsa_firstaligned = (dsa->dsa_firstaligned +
   1711 			    dsa->dsa_alignment) - r;
   1712 		break;
   1713 	}
   1714 	default:
   1715 		error = ENOTTY;
   1716 	}
   1717 
   1718 	return error;
   1719 }
   1720 
   1721 /*
   1722  * dkdiscard:		[devsw entry point]
   1723  *
   1724  *	Perform a discard-range request on a wedge.
   1725  */
   1726 static int
   1727 dkdiscard(dev_t dev, off_t pos, off_t len)
   1728 {
   1729 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1730 	uint64_t size = dkwedge_size(sc);
   1731 	unsigned shift;
   1732 	off_t offset, maxlen;
   1733 	int error;
   1734 
   1735 	KASSERT(sc != NULL);
   1736 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1737 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1738 	KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1739 
   1740 	/* XXX check bounds on size/offset up front */
   1741 	shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
   1742 	KASSERT(__type_fit(off_t, size));
   1743 	KASSERT(__type_fit(off_t, sc->sc_offset));
   1744 	KASSERT(0 <= sc->sc_offset);
   1745 	KASSERT(size <= (__type_max(off_t) >> shift));
   1746 	KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - size));
   1747 	offset = ((off_t)sc->sc_offset << shift);
   1748 	maxlen = ((off_t)size << shift);
   1749 
   1750 	if (len > maxlen)
   1751 		return EINVAL;
   1752 	if (pos > (maxlen - len))
   1753 		return EINVAL;
   1754 
   1755 	pos += offset;
   1756 
   1757 	vn_lock(sc->sc_parent->dk_rawvp, LK_EXCLUSIVE | LK_RETRY);
   1758 	error = VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
   1759 	VOP_UNLOCK(sc->sc_parent->dk_rawvp);
   1760 
   1761 	return error;
   1762 }
   1763 
   1764 /*
   1765  * dksize:		[devsw entry point]
   1766  *
   1767  *	Query the size of a wedge for the purpose of performing a dump
   1768  *	or for swapping to.
   1769  */
   1770 static int
   1771 dksize(dev_t dev)
   1772 {
   1773 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1774 	uint64_t p_size;
   1775 	int rv = -1;
   1776 
   1777 	if (sc == NULL)
   1778 		return -1;
   1779 	if (sc->sc_state != DKW_STATE_RUNNING)
   1780 		return -1;
   1781 
   1782 	/* Our content type is static, no need to open the device. */
   1783 
   1784 	p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
   1785 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
   1786 		/* Saturate if we are larger than INT_MAX. */
   1787 		if (p_size > INT_MAX)
   1788 			rv = INT_MAX;
   1789 		else
   1790 			rv = (int)p_size;
   1791 	}
   1792 
   1793 	return rv;
   1794 }
   1795 
   1796 /*
   1797  * dkdump:		[devsw entry point]
   1798  *
   1799  *	Perform a crash dump to a wedge.
   1800  */
   1801 static int
   1802 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
   1803 {
   1804 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1805 	const struct bdevsw *bdev;
   1806 	uint64_t p_size, p_offset;
   1807 
   1808 	if (sc == NULL)
   1809 		return ENXIO;
   1810 	if (sc->sc_state != DKW_STATE_RUNNING)
   1811 		return ENXIO;
   1812 
   1813 	/* Our content type is static, no need to open the device. */
   1814 
   1815 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
   1816 	    strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0 &&
   1817 	    strcmp(sc->sc_ptype, DKW_PTYPE_CGD) != 0)
   1818 		return ENXIO;
   1819 	if (size % DEV_BSIZE != 0)
   1820 		return EINVAL;
   1821 
   1822 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
   1823 	p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
   1824 
   1825 	if (blkno < 0 || blkno + size/DEV_BSIZE > p_size) {
   1826 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
   1827 		    "p_size (%" PRIu64 ")\n", __func__, blkno,
   1828 		    size/DEV_BSIZE, p_size);
   1829 		return EINVAL;
   1830 	}
   1831 
   1832 	bdev = bdevsw_lookup(sc->sc_pdev);
   1833 	return (*bdev->d_dump)(sc->sc_pdev, blkno + p_offset, va, size);
   1834 }
   1835 
   1836 /*
   1837  * config glue
   1838  */
   1839 
   1840 /*
   1841  * dkwedge_find_partition
   1842  *
   1843  *	Find wedge corresponding to the specified parent name
   1844  *	and offset/length.
   1845  */
   1846 device_t
   1847 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
   1848 {
   1849 	struct dkwedge_softc *sc;
   1850 	int i;
   1851 	device_t wedge = NULL;
   1852 
   1853 	rw_enter(&dkwedges_lock, RW_READER);
   1854 	for (i = 0; i < ndkwedges; i++) {
   1855 		if ((sc = dkwedges[i]) == NULL)
   1856 			continue;
   1857 		if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
   1858 		    sc->sc_offset == startblk &&
   1859 		    dkwedge_size(sc) == nblks) {
   1860 			if (wedge) {
   1861 				printf("WARNING: double match for boot wedge "
   1862 				    "(%s, %s)\n",
   1863 				    device_xname(wedge),
   1864 				    device_xname(sc->sc_dev));
   1865 				continue;
   1866 			}
   1867 			wedge = sc->sc_dev;
   1868 		}
   1869 	}
   1870 	rw_exit(&dkwedges_lock);
   1871 
   1872 	return wedge;
   1873 }
   1874 
   1875 const char *
   1876 dkwedge_get_parent_name(dev_t dev)
   1877 {
   1878 	/* XXX: perhaps do this in lookup? */
   1879 	int bmaj = bdevsw_lookup_major(&dk_bdevsw);
   1880 	int cmaj = cdevsw_lookup_major(&dk_cdevsw);
   1881 
   1882 	if (major(dev) != bmaj && major(dev) != cmaj)
   1883 		return NULL;
   1884 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1885 	if (sc == NULL)
   1886 		return NULL;
   1887 	return sc->sc_parent->dk_name;
   1888 }
   1889