Home | History | Annotate | Line # | Download | only in dkwedge
dk.c revision 1.159
      1 /*	$NetBSD: dk.c,v 1.159 2023/05/22 14:58:32 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.159 2023/05/22 14:58:32 riastradh Exp $");
     34 
     35 #ifdef _KERNEL_OPT
     36 #include "opt_dkwedge.h"
     37 #endif
     38 
     39 #include <sys/param.h>
     40 #include <sys/types.h>
     41 
     42 #include <sys/buf.h>
     43 #include <sys/bufq.h>
     44 #include <sys/callout.h>
     45 #include <sys/conf.h>
     46 #include <sys/device.h>
     47 #include <sys/disk.h>
     48 #include <sys/disklabel.h>
     49 #include <sys/errno.h>
     50 #include <sys/fcntl.h>
     51 #include <sys/ioctl.h>
     52 #include <sys/kauth.h>
     53 #include <sys/kernel.h>
     54 #include <sys/malloc.h>
     55 #include <sys/pool.h>
     56 #include <sys/proc.h>
     57 #include <sys/rwlock.h>
     58 #include <sys/stat.h>
     59 #include <sys/systm.h>
     60 #include <sys/vnode.h>
     61 
     62 #include <miscfs/specfs/specdev.h>
     63 
     64 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
     65 
     66 typedef enum {
     67 	DKW_STATE_LARVAL	= 0,
     68 	DKW_STATE_RUNNING	= 1,
     69 	DKW_STATE_DYING		= 2,
     70 	DKW_STATE_DEAD		= 666
     71 } dkwedge_state_t;
     72 
     73 struct dkwedge_softc {
     74 	device_t	sc_dev;	/* pointer to our pseudo-device */
     75 	struct cfdata	sc_cfdata;	/* our cfdata structure */
     76 	uint8_t		sc_wname[128];	/* wedge name (Unicode, UTF-8) */
     77 
     78 	dkwedge_state_t sc_state;	/* state this wedge is in */
     79 
     80 	struct disk	*sc_parent;	/* parent disk */
     81 	daddr_t		sc_offset;	/* LBA offset of wedge in parent */
     82 	krwlock_t	sc_sizelock;
     83 	uint64_t	sc_size;	/* size of wedge in blocks */
     84 	char		sc_ptype[32];	/* partition type */
     85 	dev_t		sc_pdev;	/* cached parent's dev_t */
     86 					/* link on parent's wedge list */
     87 	LIST_ENTRY(dkwedge_softc) sc_plink;
     88 
     89 	struct disk	sc_dk;		/* our own disk structure */
     90 	struct bufq_state *sc_bufq;	/* buffer queue */
     91 	struct callout	sc_restart_ch;	/* callout to restart I/O */
     92 
     93 	kmutex_t	sc_iolock;
     94 	bool		sc_iostop;	/* don't schedule restart */
     95 	int		sc_mode;	/* parent open mode */
     96 };
     97 
     98 static int	dkwedge_match(device_t, cfdata_t, void *);
     99 static void	dkwedge_attach(device_t, device_t, void *);
    100 static int	dkwedge_detach(device_t, int);
    101 
    102 static void	dk_set_geometry(struct dkwedge_softc *, struct disk *);
    103 
    104 static void	dkstart(struct dkwedge_softc *);
    105 static void	dkiodone(struct buf *);
    106 static void	dkrestart(void *);
    107 static void	dkminphys(struct buf *);
    108 
    109 static int	dkfirstopen(struct dkwedge_softc *, int);
    110 static void	dklastclose(struct dkwedge_softc *);
    111 static int	dkwedge_detach(device_t, int);
    112 static void	dkwedge_delall1(struct disk *, bool);
    113 static int	dkwedge_del1(struct dkwedge_info *, int);
    114 static int	dk_open_parent(dev_t, int, struct vnode **);
    115 static int	dk_close_parent(struct vnode *, int);
    116 
    117 static int	dkunit(dev_t);
    118 
    119 static dev_type_open(dkopen);
    120 static dev_type_close(dkclose);
    121 static dev_type_cancel(dkcancel);
    122 static dev_type_read(dkread);
    123 static dev_type_write(dkwrite);
    124 static dev_type_ioctl(dkioctl);
    125 static dev_type_strategy(dkstrategy);
    126 static dev_type_dump(dkdump);
    127 static dev_type_size(dksize);
    128 static dev_type_discard(dkdiscard);
    129 
    130 CFDRIVER_DECL(dk, DV_DISK, NULL);
    131 CFATTACH_DECL3_NEW(dk, 0,
    132     dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
    133     DVF_DETACH_SHUTDOWN);
    134 
    135 const struct bdevsw dk_bdevsw = {
    136 	.d_open = dkopen,
    137 	.d_close = dkclose,
    138 	.d_cancel = dkcancel,
    139 	.d_strategy = dkstrategy,
    140 	.d_ioctl = dkioctl,
    141 	.d_dump = dkdump,
    142 	.d_psize = dksize,
    143 	.d_discard = dkdiscard,
    144 	.d_cfdriver = &dk_cd,
    145 	.d_devtounit = dkunit,
    146 	.d_flag = D_DISK | D_MPSAFE
    147 };
    148 
    149 const struct cdevsw dk_cdevsw = {
    150 	.d_open = dkopen,
    151 	.d_close = dkclose,
    152 	.d_cancel = dkcancel,
    153 	.d_read = dkread,
    154 	.d_write = dkwrite,
    155 	.d_ioctl = dkioctl,
    156 	.d_stop = nostop,
    157 	.d_tty = notty,
    158 	.d_poll = nopoll,
    159 	.d_mmap = nommap,
    160 	.d_kqfilter = nokqfilter,
    161 	.d_discard = dkdiscard,
    162 	.d_cfdriver = &dk_cd,
    163 	.d_devtounit = dkunit,
    164 	.d_flag = D_DISK | D_MPSAFE
    165 };
    166 
    167 static struct dkwedge_softc **dkwedges;
    168 static u_int ndkwedges;
    169 static krwlock_t dkwedges_lock;
    170 
    171 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
    172 static krwlock_t dkwedge_discovery_methods_lock;
    173 
    174 /*
    175  * dkwedge_match:
    176  *
    177  *	Autoconfiguration match function for pseudo-device glue.
    178  */
    179 static int
    180 dkwedge_match(device_t parent, cfdata_t match, void *aux)
    181 {
    182 
    183 	/* Pseudo-device; always present. */
    184 	return 1;
    185 }
    186 
    187 /*
    188  * dkwedge_attach:
    189  *
    190  *	Autoconfiguration attach function for pseudo-device glue.
    191  */
    192 static void
    193 dkwedge_attach(device_t parent, device_t self, void *aux)
    194 {
    195 	struct dkwedge_softc *sc = aux;
    196 	struct disk *pdk = sc->sc_parent;
    197 	int unit = device_unit(self);
    198 
    199 	KASSERTMSG(unit >= 0, "unit=%d", unit);
    200 
    201 	if (!pmf_device_register(self, NULL, NULL))
    202 		aprint_error_dev(self, "couldn't establish power handler\n");
    203 
    204 	mutex_enter(&pdk->dk_openlock);
    205 	rw_enter(&dkwedges_lock, RW_WRITER);
    206 	KASSERTMSG(unit < ndkwedges, "unit=%d ndkwedges=%u", unit, ndkwedges);
    207 	KASSERTMSG(sc == dkwedges[unit], "sc=%p dkwedges[%d]=%p",
    208 	    sc, unit, dkwedges[unit]);
    209 	KASSERTMSG(sc->sc_dev == NULL, "sc=%p sc->sc_dev=%p", sc, sc->sc_dev);
    210 	sc->sc_dev = self;
    211 	rw_exit(&dkwedges_lock);
    212 	mutex_exit(&pdk->dk_openlock);
    213 
    214 	disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
    215 	mutex_enter(&pdk->dk_openlock);
    216 	dk_set_geometry(sc, pdk);
    217 	mutex_exit(&pdk->dk_openlock);
    218 	disk_attach(&sc->sc_dk);
    219 
    220 	/* Disk wedge is ready for use! */
    221 	device_set_private(self, sc);
    222 	sc->sc_state = DKW_STATE_RUNNING;
    223 }
    224 
    225 /*
    226  * dkwedge_compute_pdev:
    227  *
    228  *	Compute the parent disk's dev_t.
    229  */
    230 static int
    231 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
    232 {
    233 	const char *name, *cp;
    234 	devmajor_t pmaj;
    235 	int punit;
    236 	char devname[16];
    237 
    238 	name = pname;
    239 	switch (type) {
    240 	case VBLK:
    241 		pmaj = devsw_name2blk(name, devname, sizeof(devname));
    242 		break;
    243 	case VCHR:
    244 		pmaj = devsw_name2chr(name, devname, sizeof(devname));
    245 		break;
    246 	default:
    247 		pmaj = NODEVMAJOR;
    248 		break;
    249 	}
    250 	if (pmaj == NODEVMAJOR)
    251 		return ENXIO;
    252 
    253 	name += strlen(devname);
    254 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
    255 		punit = (punit * 10) + (*cp - '0');
    256 	if (cp == name) {
    257 		/* Invalid parent disk name. */
    258 		return ENXIO;
    259 	}
    260 
    261 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
    262 
    263 	return 0;
    264 }
    265 
    266 /*
    267  * dkwedge_array_expand:
    268  *
    269  *	Expand the dkwedges array.
    270  *
    271  *	Releases and reacquires dkwedges_lock as a writer.
    272  */
    273 static int
    274 dkwedge_array_expand(void)
    275 {
    276 
    277 	const unsigned incr = 16;
    278 	unsigned newcnt, oldcnt;
    279 	struct dkwedge_softc **newarray = NULL, **oldarray = NULL;
    280 
    281 	KASSERT(rw_write_held(&dkwedges_lock));
    282 
    283 	oldcnt = ndkwedges;
    284 	oldarray = dkwedges;
    285 
    286 	if (oldcnt >= INT_MAX - incr)
    287 		return ENFILE;	/* XXX */
    288 	newcnt = oldcnt + incr;
    289 
    290 	rw_exit(&dkwedges_lock);
    291 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
    292 	    M_WAITOK|M_ZERO);
    293 	rw_enter(&dkwedges_lock, RW_WRITER);
    294 
    295 	if (ndkwedges != oldcnt || dkwedges != oldarray) {
    296 		oldarray = NULL; /* already recycled */
    297 		goto out;
    298 	}
    299 
    300 	if (oldarray != NULL)
    301 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
    302 	dkwedges = newarray;
    303 	newarray = NULL;	/* transferred to dkwedges */
    304 	ndkwedges = newcnt;
    305 
    306 out:	rw_exit(&dkwedges_lock);
    307 	if (oldarray != NULL)
    308 		free(oldarray, M_DKWEDGE);
    309 	if (newarray != NULL)
    310 		free(newarray, M_DKWEDGE);
    311 	rw_enter(&dkwedges_lock, RW_WRITER);
    312 	return 0;
    313 }
    314 
    315 static void
    316 dkwedge_size_init(struct dkwedge_softc *sc, uint64_t size)
    317 {
    318 
    319 	rw_init(&sc->sc_sizelock);
    320 	sc->sc_size = size;
    321 }
    322 
    323 static void
    324 dkwedge_size_fini(struct dkwedge_softc *sc)
    325 {
    326 
    327 	rw_destroy(&sc->sc_sizelock);
    328 }
    329 
    330 static uint64_t
    331 dkwedge_size(struct dkwedge_softc *sc)
    332 {
    333 	uint64_t size;
    334 
    335 	rw_enter(&sc->sc_sizelock, RW_READER);
    336 	size = sc->sc_size;
    337 	rw_exit(&sc->sc_sizelock);
    338 
    339 	return size;
    340 }
    341 
    342 static void
    343 dkwedge_size_increase(struct dkwedge_softc *sc, uint64_t size)
    344 {
    345 
    346 	KASSERT(mutex_owned(&sc->sc_parent->dk_openlock));
    347 
    348 	rw_enter(&sc->sc_sizelock, RW_WRITER);
    349 	KASSERTMSG(size >= sc->sc_size,
    350 	    "decreasing dkwedge size from %"PRIu64" to %"PRIu64,
    351 	    sc->sc_size, size);
    352 	sc->sc_size = size;
    353 	rw_exit(&sc->sc_sizelock);
    354 }
    355 
    356 static void
    357 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
    358 {
    359 	struct disk *dk = &sc->sc_dk;
    360 	struct disk_geom *dg = &dk->dk_geom;
    361 
    362 	KASSERT(mutex_owned(&pdk->dk_openlock));
    363 
    364 	memset(dg, 0, sizeof(*dg));
    365 
    366 	dg->dg_secperunit = dkwedge_size(sc);
    367 	dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
    368 
    369 	/* fake numbers, 1 cylinder is 1 MB with default sector size */
    370 	dg->dg_nsectors = 32;
    371 	dg->dg_ntracks = 64;
    372 	dg->dg_ncylinders =
    373 	    dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
    374 
    375 	disk_set_info(sc->sc_dev, dk, NULL);
    376 }
    377 
    378 /*
    379  * dkwedge_add:		[exported function]
    380  *
    381  *	Add a disk wedge based on the provided information.
    382  *
    383  *	The incoming dkw_devname[] is ignored, instead being
    384  *	filled in and returned to the caller.
    385  */
    386 int
    387 dkwedge_add(struct dkwedge_info *dkw)
    388 {
    389 	struct dkwedge_softc *sc, *lsc;
    390 	struct disk *pdk;
    391 	u_int unit;
    392 	int error;
    393 	dev_t pdev;
    394 	device_t dev __diagused;
    395 
    396 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
    397 	pdk = disk_find(dkw->dkw_parent);
    398 	if (pdk == NULL)
    399 		return ENXIO;
    400 
    401 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
    402 	if (error)
    403 		return error;
    404 
    405 	if (dkw->dkw_offset < 0)
    406 		return EINVAL;
    407 
    408 	/*
    409 	 * Check for an existing wedge at the same disk offset. Allow
    410 	 * updating a wedge if the only change is the size, and the new
    411 	 * size is larger than the old.
    412 	 */
    413 	sc = NULL;
    414 	mutex_enter(&pdk->dk_openlock);
    415 	LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    416 		if (lsc->sc_offset != dkw->dkw_offset)
    417 			continue;
    418 		if (strcmp(lsc->sc_wname, dkw->dkw_wname) != 0)
    419 			break;
    420 		if (strcmp(lsc->sc_ptype, dkw->dkw_ptype) != 0)
    421 			break;
    422 		if (dkwedge_size(lsc) > dkw->dkw_size)
    423 			break;
    424 		if (lsc->sc_dev == NULL)
    425 			break;
    426 
    427 		sc = lsc;
    428 		device_acquire(sc->sc_dev);
    429 		dkwedge_size_increase(sc, dkw->dkw_size);
    430 		dk_set_geometry(sc, pdk);
    431 
    432 		break;
    433 	}
    434 	mutex_exit(&pdk->dk_openlock);
    435 
    436 	if (sc != NULL)
    437 		goto announce;
    438 
    439 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
    440 	sc->sc_state = DKW_STATE_LARVAL;
    441 	sc->sc_parent = pdk;
    442 	sc->sc_pdev = pdev;
    443 	sc->sc_offset = dkw->dkw_offset;
    444 	dkwedge_size_init(sc, dkw->dkw_size);
    445 
    446 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
    447 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
    448 
    449 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
    450 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
    451 
    452 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
    453 
    454 	callout_init(&sc->sc_restart_ch, 0);
    455 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
    456 
    457 	mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
    458 
    459 	/*
    460 	 * Wedge will be added; increment the wedge count for the parent.
    461 	 * Only allow this to happen if RAW_PART is the only thing open.
    462 	 */
    463 	mutex_enter(&pdk->dk_openlock);
    464 	if (pdk->dk_openmask & ~(1 << RAW_PART))
    465 		error = EBUSY;
    466 	else {
    467 		/* Check for wedge overlap. */
    468 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    469 			/* XXX arithmetic overflow */
    470 			uint64_t size = dkwedge_size(sc);
    471 			uint64_t lsize = dkwedge_size(lsc);
    472 			daddr_t lastblk = sc->sc_offset + size - 1;
    473 			daddr_t llastblk = lsc->sc_offset + lsize - 1;
    474 
    475 			if (sc->sc_offset >= lsc->sc_offset &&
    476 			    sc->sc_offset <= llastblk) {
    477 				/* Overlaps the tail of the existing wedge. */
    478 				break;
    479 			}
    480 			if (lastblk >= lsc->sc_offset &&
    481 			    lastblk <= llastblk) {
    482 				/* Overlaps the head of the existing wedge. */
    483 			    	break;
    484 			}
    485 		}
    486 		if (lsc != NULL) {
    487 			if (sc->sc_offset == lsc->sc_offset &&
    488 			    dkwedge_size(sc) == dkwedge_size(lsc) &&
    489 			    strcmp(sc->sc_wname, lsc->sc_wname) == 0)
    490 				error = EEXIST;
    491 			else
    492 				error = EINVAL;
    493 		} else {
    494 			pdk->dk_nwedges++;
    495 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
    496 		}
    497 	}
    498 	mutex_exit(&pdk->dk_openlock);
    499 	if (error) {
    500 		mutex_destroy(&sc->sc_iolock);
    501 		bufq_free(sc->sc_bufq);
    502 		dkwedge_size_fini(sc);
    503 		free(sc, M_DKWEDGE);
    504 		return error;
    505 	}
    506 
    507 	/* Fill in our cfdata for the pseudo-device glue. */
    508 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
    509 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
    510 	/* sc->sc_cfdata.cf_unit set below */
    511 	sc->sc_cfdata.cf_fstate = FSTATE_NOTFOUND; /* use chosen cf_unit */
    512 
    513 	/* Insert the larval wedge into the array. */
    514 	rw_enter(&dkwedges_lock, RW_WRITER);
    515 	for (error = 0;;) {
    516 		struct dkwedge_softc **scpp;
    517 
    518 		/*
    519 		 * Check for a duplicate wname while searching for
    520 		 * a slot.
    521 		 */
    522 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
    523 			if (dkwedges[unit] == NULL) {
    524 				if (scpp == NULL) {
    525 					scpp = &dkwedges[unit];
    526 					sc->sc_cfdata.cf_unit = unit;
    527 				}
    528 			} else {
    529 				/* XXX Unicode. */
    530 				if (strcmp(dkwedges[unit]->sc_wname,
    531 					sc->sc_wname) == 0) {
    532 					error = EEXIST;
    533 					break;
    534 				}
    535 			}
    536 		}
    537 		if (error)
    538 			break;
    539 		KASSERT(unit == ndkwedges);
    540 		if (scpp == NULL) {
    541 			error = dkwedge_array_expand();
    542 			if (error)
    543 				break;
    544 		} else {
    545 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
    546 			*scpp = sc;
    547 			break;
    548 		}
    549 	}
    550 	rw_exit(&dkwedges_lock);
    551 	if (error) {
    552 		mutex_enter(&pdk->dk_openlock);
    553 		pdk->dk_nwedges--;
    554 		LIST_REMOVE(sc, sc_plink);
    555 		mutex_exit(&pdk->dk_openlock);
    556 
    557 		mutex_destroy(&sc->sc_iolock);
    558 		bufq_free(sc->sc_bufq);
    559 		dkwedge_size_fini(sc);
    560 		free(sc, M_DKWEDGE);
    561 		return error;
    562 	}
    563 
    564 	/*
    565 	 * Now that we know the unit #, attach a pseudo-device for
    566 	 * this wedge instance.  This will provide us with the
    567 	 * device_t necessary for glue to other parts of the system.
    568 	 *
    569 	 * This should never fail, unless we're almost totally out of
    570 	 * memory.
    571 	 */
    572 	if ((dev = config_attach_pseudo_acquire(&sc->sc_cfdata, sc)) == NULL) {
    573 		aprint_error("%s%u: unable to attach pseudo-device\n",
    574 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
    575 
    576 		rw_enter(&dkwedges_lock, RW_WRITER);
    577 		KASSERT(dkwedges[sc->sc_cfdata.cf_unit] == sc);
    578 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
    579 		rw_exit(&dkwedges_lock);
    580 
    581 		mutex_enter(&pdk->dk_openlock);
    582 		pdk->dk_nwedges--;
    583 		LIST_REMOVE(sc, sc_plink);
    584 		mutex_exit(&pdk->dk_openlock);
    585 
    586 		mutex_destroy(&sc->sc_iolock);
    587 		bufq_free(sc->sc_bufq);
    588 		dkwedge_size_fini(sc);
    589 		free(sc, M_DKWEDGE);
    590 		return ENOMEM;
    591 	}
    592 
    593 	KASSERT(dev == sc->sc_dev);
    594 
    595 announce:
    596 	/* Announce our arrival. */
    597 	aprint_normal(
    598 	    "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
    599 	    device_xname(sc->sc_dev), pdk->dk_name,
    600 	    sc->sc_wname,	/* XXX Unicode */
    601 	    dkwedge_size(sc), sc->sc_offset,
    602 	    sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
    603 
    604 	/* Return the devname to the caller. */
    605 	strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
    606 	    sizeof(dkw->dkw_devname));
    607 
    608 	device_release(sc->sc_dev);
    609 	return 0;
    610 }
    611 
    612 /*
    613  * dkwedge_find_acquire:
    614  *
    615  *	Lookup a disk wedge based on the provided information.
    616  *	NOTE: We look up the wedge based on the wedge devname,
    617  *	not wname.
    618  *
    619  *	Return NULL if the wedge is not found, otherwise return
    620  *	the wedge's softc.  Assign the wedge's unit number to unitp
    621  *	if unitp is not NULL.  The wedge's sc_dev is referenced and
    622  *	must be released by device_release or equivalent.
    623  */
    624 static struct dkwedge_softc *
    625 dkwedge_find_acquire(struct dkwedge_info *dkw, u_int *unitp)
    626 {
    627 	struct dkwedge_softc *sc = NULL;
    628 	u_int unit;
    629 
    630 	/* Find our softc. */
    631 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
    632 	rw_enter(&dkwedges_lock, RW_READER);
    633 	for (unit = 0; unit < ndkwedges; unit++) {
    634 		if ((sc = dkwedges[unit]) != NULL &&
    635 		    sc->sc_dev != NULL &&
    636 		    strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
    637 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
    638 			device_acquire(sc->sc_dev);
    639 			break;
    640 		}
    641 	}
    642 	rw_exit(&dkwedges_lock);
    643 	if (sc == NULL)
    644 		return NULL;
    645 
    646 	if (unitp != NULL)
    647 		*unitp = unit;
    648 
    649 	return sc;
    650 }
    651 
    652 /*
    653  * dkwedge_del:		[exported function]
    654  *
    655  *	Delete a disk wedge based on the provided information.
    656  *	NOTE: We look up the wedge based on the wedge devname,
    657  *	not wname.
    658  */
    659 int
    660 dkwedge_del(struct dkwedge_info *dkw)
    661 {
    662 
    663 	return dkwedge_del1(dkw, 0);
    664 }
    665 
    666 int
    667 dkwedge_del1(struct dkwedge_info *dkw, int flags)
    668 {
    669 	struct dkwedge_softc *sc = NULL;
    670 
    671 	/* Find our softc. */
    672 	if ((sc = dkwedge_find_acquire(dkw, NULL)) == NULL)
    673 		return ESRCH;
    674 
    675 	return config_detach_release(sc->sc_dev, flags);
    676 }
    677 
    678 /*
    679  * dkwedge_detach:
    680  *
    681  *	Autoconfiguration detach function for pseudo-device glue.
    682  */
    683 static int
    684 dkwedge_detach(device_t self, int flags)
    685 {
    686 	struct dkwedge_softc *const sc = device_private(self);
    687 	const u_int unit = device_unit(self);
    688 	int bmaj, cmaj, error;
    689 
    690 	error = disk_begindetach(&sc->sc_dk, /*lastclose*/NULL, self, flags);
    691 	if (error)
    692 		return error;
    693 
    694 	/* Mark the wedge as dying. */
    695 	sc->sc_state = DKW_STATE_DYING;
    696 
    697 	pmf_device_deregister(self);
    698 
    699 	/* Kill any pending restart. */
    700 	mutex_enter(&sc->sc_iolock);
    701 	sc->sc_iostop = true;
    702 	mutex_exit(&sc->sc_iolock);
    703 	callout_halt(&sc->sc_restart_ch, NULL);
    704 
    705 	/* Locate the wedge major numbers. */
    706 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
    707 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
    708 
    709 	/* Nuke the vnodes for any open instances. */
    710 	vdevgone(bmaj, unit, unit, VBLK);
    711 	vdevgone(cmaj, unit, unit, VCHR);
    712 
    713 	/*
    714 	 * At this point, all block device opens have been closed,
    715 	 * synchronously flushing any buffered writes; and all
    716 	 * character device I/O operations have completed
    717 	 * synchronously, and character device opens have been closed.
    718 	 *
    719 	 * So there can be no more opens or queued buffers by now.
    720 	 */
    721 	KASSERT(sc->sc_dk.dk_openmask == 0);
    722 	KASSERT(bufq_peek(sc->sc_bufq) == NULL);
    723 	bufq_drain(sc->sc_bufq);
    724 
    725 	/* Announce our departure. */
    726 	aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
    727 	    sc->sc_parent->dk_name,
    728 	    sc->sc_wname);	/* XXX Unicode */
    729 
    730 	mutex_enter(&sc->sc_parent->dk_openlock);
    731 	sc->sc_parent->dk_nwedges--;
    732 	LIST_REMOVE(sc, sc_plink);
    733 	mutex_exit(&sc->sc_parent->dk_openlock);
    734 
    735 	/* Delete our buffer queue. */
    736 	bufq_free(sc->sc_bufq);
    737 
    738 	/* Detach from the disk list. */
    739 	disk_detach(&sc->sc_dk);
    740 	disk_destroy(&sc->sc_dk);
    741 
    742 	/* Poof. */
    743 	rw_enter(&dkwedges_lock, RW_WRITER);
    744 	KASSERT(dkwedges[unit] == sc);
    745 	dkwedges[unit] = NULL;
    746 	sc->sc_state = DKW_STATE_DEAD;
    747 	rw_exit(&dkwedges_lock);
    748 
    749 	mutex_destroy(&sc->sc_iolock);
    750 	dkwedge_size_fini(sc);
    751 
    752 	free(sc, M_DKWEDGE);
    753 
    754 	return 0;
    755 }
    756 
    757 /*
    758  * dkwedge_delall:	[exported function]
    759  *
    760  *	Forcibly delete all of the wedges on the specified disk.  Used
    761  *	when a disk is being detached.
    762  */
    763 void
    764 dkwedge_delall(struct disk *pdk)
    765 {
    766 
    767 	dkwedge_delall1(pdk, /*idleonly*/false);
    768 }
    769 
    770 /*
    771  * dkwedge_delidle:	[exported function]
    772  *
    773  *	Delete all of the wedges on the specified disk if idle.  Used
    774  *	by ioctl(DIOCRMWEDGES).
    775  */
    776 void
    777 dkwedge_delidle(struct disk *pdk)
    778 {
    779 
    780 	dkwedge_delall1(pdk, /*idleonly*/true);
    781 }
    782 
    783 static void
    784 dkwedge_delall1(struct disk *pdk, bool idleonly)
    785 {
    786 	struct dkwedge_info dkw;
    787 	struct dkwedge_softc *sc;
    788 	int flags;
    789 
    790 	flags = DETACH_QUIET;
    791 	if (!idleonly)
    792 		flags |= DETACH_FORCE;
    793 
    794 	for (;;) {
    795 		mutex_enter(&pdk->dk_rawlock); /* for sc->sc_dk.dk_openmask */
    796 		mutex_enter(&pdk->dk_openlock);
    797 		LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    798 			if (!idleonly || sc->sc_dk.dk_openmask == 0)
    799 				break;
    800 		}
    801 		if (sc == NULL) {
    802 			KASSERT(idleonly || pdk->dk_nwedges == 0);
    803 			mutex_exit(&pdk->dk_openlock);
    804 			mutex_exit(&pdk->dk_rawlock);
    805 			return;
    806 		}
    807 		strlcpy(dkw.dkw_parent, pdk->dk_name, sizeof(dkw.dkw_parent));
    808 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    809 		    sizeof(dkw.dkw_devname));
    810 		mutex_exit(&pdk->dk_openlock);
    811 		mutex_exit(&pdk->dk_rawlock);
    812 		(void) dkwedge_del1(&dkw, flags);
    813 	}
    814 }
    815 
    816 /*
    817  * dkwedge_list:	[exported function]
    818  *
    819  *	List all of the wedges on a particular disk.
    820  */
    821 int
    822 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
    823 {
    824 	struct uio uio;
    825 	struct iovec iov;
    826 	struct dkwedge_softc *sc;
    827 	struct dkwedge_info dkw;
    828 	int error = 0;
    829 
    830 	iov.iov_base = dkwl->dkwl_buf;
    831 	iov.iov_len = dkwl->dkwl_bufsize;
    832 
    833 	uio.uio_iov = &iov;
    834 	uio.uio_iovcnt = 1;
    835 	uio.uio_offset = 0;
    836 	uio.uio_resid = dkwl->dkwl_bufsize;
    837 	uio.uio_rw = UIO_READ;
    838 	KASSERT(l == curlwp);
    839 	uio.uio_vmspace = l->l_proc->p_vmspace;
    840 
    841 	dkwl->dkwl_ncopied = 0;
    842 
    843 	mutex_enter(&pdk->dk_openlock);
    844 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    845 		if (uio.uio_resid < sizeof(dkw))
    846 			break;
    847 
    848 		if (sc->sc_state != DKW_STATE_RUNNING)
    849 			continue;
    850 
    851 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    852 		    sizeof(dkw.dkw_devname));
    853 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
    854 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
    855 		strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
    856 		    sizeof(dkw.dkw_parent));
    857 		dkw.dkw_offset = sc->sc_offset;
    858 		dkw.dkw_size = dkwedge_size(sc);
    859 		strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
    860 
    861 		error = uiomove(&dkw, sizeof(dkw), &uio);
    862 		if (error)
    863 			break;
    864 		dkwl->dkwl_ncopied++;
    865 	}
    866 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
    867 	mutex_exit(&pdk->dk_openlock);
    868 
    869 	return error;
    870 }
    871 
    872 device_t
    873 dkwedge_find_by_wname(const char *wname)
    874 {
    875 	device_t dv = NULL;
    876 	struct dkwedge_softc *sc;
    877 	int i;
    878 
    879 	rw_enter(&dkwedges_lock, RW_READER);
    880 	for (i = 0; i < ndkwedges; i++) {
    881 		if ((sc = dkwedges[i]) == NULL)
    882 			continue;
    883 		if (strcmp(sc->sc_wname, wname) == 0) {
    884 			if (dv != NULL) {
    885 				printf(
    886 				    "WARNING: double match for wedge name %s "
    887 				    "(%s, %s)\n", wname, device_xname(dv),
    888 				    device_xname(sc->sc_dev));
    889 				continue;
    890 			}
    891 			dv = sc->sc_dev;
    892 		}
    893 	}
    894 	rw_exit(&dkwedges_lock);
    895 	return dv;
    896 }
    897 
    898 device_t
    899 dkwedge_find_by_parent(const char *name, size_t *i)
    900 {
    901 
    902 	rw_enter(&dkwedges_lock, RW_READER);
    903 	for (; *i < (size_t)ndkwedges; (*i)++) {
    904 		struct dkwedge_softc *sc;
    905 		if ((sc = dkwedges[*i]) == NULL)
    906 			continue;
    907 		if (strcmp(sc->sc_parent->dk_name, name) != 0)
    908 			continue;
    909 		rw_exit(&dkwedges_lock);
    910 		return sc->sc_dev;
    911 	}
    912 	rw_exit(&dkwedges_lock);
    913 	return NULL;
    914 }
    915 
    916 void
    917 dkwedge_print_wnames(void)
    918 {
    919 	struct dkwedge_softc *sc;
    920 	int i;
    921 
    922 	rw_enter(&dkwedges_lock, RW_READER);
    923 	for (i = 0; i < ndkwedges; i++) {
    924 		if ((sc = dkwedges[i]) == NULL)
    925 			continue;
    926 		printf(" wedge:%s", sc->sc_wname);
    927 	}
    928 	rw_exit(&dkwedges_lock);
    929 }
    930 
    931 /*
    932  * We need a dummy object to stuff into the dkwedge discovery method link
    933  * set to ensure that there is always at least one object in the set.
    934  */
    935 static struct dkwedge_discovery_method dummy_discovery_method;
    936 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
    937 
    938 /*
    939  * dkwedge_init:
    940  *
    941  *	Initialize the disk wedge subsystem.
    942  */
    943 void
    944 dkwedge_init(void)
    945 {
    946 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
    947 	struct dkwedge_discovery_method * const *ddmp;
    948 	struct dkwedge_discovery_method *lddm, *ddm;
    949 
    950 	rw_init(&dkwedges_lock);
    951 	rw_init(&dkwedge_discovery_methods_lock);
    952 
    953 	if (config_cfdriver_attach(&dk_cd) != 0)
    954 		panic("dkwedge: unable to attach cfdriver");
    955 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
    956 		panic("dkwedge: unable to attach cfattach");
    957 
    958 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
    959 
    960 	LIST_INIT(&dkwedge_discovery_methods);
    961 
    962 	__link_set_foreach(ddmp, dkwedge_methods) {
    963 		ddm = *ddmp;
    964 		if (ddm == &dummy_discovery_method)
    965 			continue;
    966 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
    967 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
    968 			    ddm, ddm_list);
    969 			continue;
    970 		}
    971 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
    972 			if (ddm->ddm_priority == lddm->ddm_priority) {
    973 				aprint_error("dk-method-%s: method \"%s\" "
    974 				    "already exists at priority %d\n",
    975 				    ddm->ddm_name, lddm->ddm_name,
    976 				    lddm->ddm_priority);
    977 				/* Not inserted. */
    978 				break;
    979 			}
    980 			if (ddm->ddm_priority < lddm->ddm_priority) {
    981 				/* Higher priority; insert before. */
    982 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
    983 				break;
    984 			}
    985 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
    986 				/* Last one; insert after. */
    987 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
    988 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
    989 				break;
    990 			}
    991 		}
    992 	}
    993 
    994 	rw_exit(&dkwedge_discovery_methods_lock);
    995 }
    996 
    997 #ifdef DKWEDGE_AUTODISCOVER
    998 int	dkwedge_autodiscover = 1;
    999 #else
   1000 int	dkwedge_autodiscover = 0;
   1001 #endif
   1002 
   1003 /*
   1004  * dkwedge_discover:	[exported function]
   1005  *
   1006  *	Discover the wedges on a newly attached disk.
   1007  *	Remove all unused wedges on the disk first.
   1008  */
   1009 void
   1010 dkwedge_discover(struct disk *pdk)
   1011 {
   1012 	struct dkwedge_discovery_method *ddm;
   1013 	struct vnode *vp;
   1014 	int error;
   1015 	dev_t pdev;
   1016 
   1017 	/*
   1018 	 * Require people playing with wedges to enable this explicitly.
   1019 	 */
   1020 	if (dkwedge_autodiscover == 0)
   1021 		return;
   1022 
   1023 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
   1024 
   1025 	/*
   1026 	 * Use the character device for scanning, the block device
   1027 	 * is busy if there are already wedges attached.
   1028 	 */
   1029 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
   1030 	if (error) {
   1031 		aprint_error("%s: unable to compute pdev, error = %d\n",
   1032 		    pdk->dk_name, error);
   1033 		goto out;
   1034 	}
   1035 
   1036 	error = cdevvp(pdev, &vp);
   1037 	if (error) {
   1038 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
   1039 		    pdk->dk_name, error);
   1040 		goto out;
   1041 	}
   1042 
   1043 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1044 	if (error) {
   1045 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
   1046 		    pdk->dk_name, error);
   1047 		vrele(vp);
   1048 		goto out;
   1049 	}
   1050 
   1051 	error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
   1052 	if (error) {
   1053 		if (error != ENXIO)
   1054 			aprint_error("%s: unable to open device, error = %d\n",
   1055 			    pdk->dk_name, error);
   1056 		vput(vp);
   1057 		goto out;
   1058 	}
   1059 	VOP_UNLOCK(vp);
   1060 
   1061 	/*
   1062 	 * Remove unused wedges
   1063 	 */
   1064 	dkwedge_delidle(pdk);
   1065 
   1066 	/*
   1067 	 * For each supported partition map type, look to see if
   1068 	 * this map type exists.  If so, parse it and add the
   1069 	 * corresponding wedges.
   1070 	 */
   1071 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
   1072 		error = (*ddm->ddm_discover)(pdk, vp);
   1073 		if (error == 0) {
   1074 			/* Successfully created wedges; we're done. */
   1075 			break;
   1076 		}
   1077 	}
   1078 
   1079 	error = vn_close(vp, FREAD, NOCRED);
   1080 	if (error) {
   1081 		aprint_error("%s: unable to close device, error = %d\n",
   1082 		    pdk->dk_name, error);
   1083 		/* We'll just assume the vnode has been cleaned up. */
   1084 	}
   1085 
   1086 out:
   1087 	rw_exit(&dkwedge_discovery_methods_lock);
   1088 }
   1089 
   1090 /*
   1091  * dkwedge_read:
   1092  *
   1093  *	Read some data from the specified disk, used for
   1094  *	partition discovery.
   1095  */
   1096 int
   1097 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
   1098     void *tbuf, size_t len)
   1099 {
   1100 	buf_t *bp;
   1101 	int error;
   1102 	bool isopen;
   1103 	dev_t bdev;
   1104 	struct vnode *bdvp;
   1105 
   1106 	/*
   1107 	 * The kernel cannot read from a character device vnode
   1108 	 * as physio() only handles user memory.
   1109 	 *
   1110 	 * If the block device has already been opened by a wedge
   1111 	 * use that vnode and temporarily bump the open counter.
   1112 	 *
   1113 	 * Otherwise try to open the block device.
   1114 	 */
   1115 
   1116 	bdev = devsw_chr2blk(vp->v_rdev);
   1117 
   1118 	mutex_enter(&pdk->dk_rawlock);
   1119 	if (pdk->dk_rawopens != 0) {
   1120 		KASSERT(pdk->dk_rawvp != NULL);
   1121 		isopen = true;
   1122 		++pdk->dk_rawopens;
   1123 		bdvp = pdk->dk_rawvp;
   1124 		error = 0;
   1125 	} else {
   1126 		isopen = false;
   1127 		error = dk_open_parent(bdev, FREAD, &bdvp);
   1128 	}
   1129 	mutex_exit(&pdk->dk_rawlock);
   1130 
   1131 	if (error)
   1132 		return error;
   1133 
   1134 	bp = getiobuf(bdvp, true);
   1135 	bp->b_flags = B_READ;
   1136 	bp->b_cflags = BC_BUSY;
   1137 	bp->b_dev = bdev;
   1138 	bp->b_data = tbuf;
   1139 	bp->b_bufsize = bp->b_bcount = len;
   1140 	bp->b_blkno = blkno;
   1141 	bp->b_cylinder = 0;
   1142 	bp->b_error = 0;
   1143 
   1144 	VOP_STRATEGY(bdvp, bp);
   1145 	error = biowait(bp);
   1146 	putiobuf(bp);
   1147 
   1148 	mutex_enter(&pdk->dk_rawlock);
   1149 	if (isopen) {
   1150 		--pdk->dk_rawopens;
   1151 	} else {
   1152 		dk_close_parent(bdvp, FREAD);
   1153 	}
   1154 	mutex_exit(&pdk->dk_rawlock);
   1155 
   1156 	return error;
   1157 }
   1158 
   1159 /*
   1160  * dkwedge_lookup:
   1161  *
   1162  *	Look up a dkwedge_softc based on the provided dev_t.
   1163  *
   1164  *	Caller must guarantee the wedge is referenced.
   1165  */
   1166 static struct dkwedge_softc *
   1167 dkwedge_lookup(dev_t dev)
   1168 {
   1169 	const int unit = minor(dev);
   1170 	struct dkwedge_softc *sc;
   1171 
   1172 	rw_enter(&dkwedges_lock, RW_READER);
   1173 	if (unit < 0 || unit >= ndkwedges)
   1174 		sc = NULL;
   1175 	else
   1176 		sc = dkwedges[unit];
   1177 	rw_exit(&dkwedges_lock);
   1178 
   1179 	return sc;
   1180 }
   1181 
   1182 static int
   1183 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
   1184 {
   1185 	struct vnode *vp;
   1186 	int error;
   1187 
   1188 	error = bdevvp(dev, &vp);
   1189 	if (error)
   1190 		return error;
   1191 
   1192 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1193 	if (error) {
   1194 		vrele(vp);
   1195 		return error;
   1196 	}
   1197 	error = VOP_OPEN(vp, mode, NOCRED);
   1198 	if (error) {
   1199 		vput(vp);
   1200 		return error;
   1201 	}
   1202 
   1203 	/* VOP_OPEN() doesn't do this for us. */
   1204 	if (mode & FWRITE) {
   1205 		mutex_enter(vp->v_interlock);
   1206 		vp->v_writecount++;
   1207 		mutex_exit(vp->v_interlock);
   1208 	}
   1209 
   1210 	VOP_UNLOCK(vp);
   1211 
   1212 	*vpp = vp;
   1213 
   1214 	return 0;
   1215 }
   1216 
   1217 static int
   1218 dk_close_parent(struct vnode *vp, int mode)
   1219 {
   1220 	int error;
   1221 
   1222 	error = vn_close(vp, mode, NOCRED);
   1223 	return error;
   1224 }
   1225 
   1226 /*
   1227  * dkunit:		[devsw entry point]
   1228  *
   1229  *	Return the autoconf device_t unit number of a wedge by its
   1230  *	devsw dev_t number, or -1 if there is none.
   1231  *
   1232  *	XXX This is a temporary hack until dkwedge numbering is made to
   1233  *	correspond 1:1 to autoconf device numbering.
   1234  */
   1235 static int
   1236 dkunit(dev_t dev)
   1237 {
   1238 	int mn = minor(dev);
   1239 	struct dkwedge_softc *sc;
   1240 	device_t dv;
   1241 	int unit = -1;
   1242 
   1243 	if (mn < 0)
   1244 		return -1;
   1245 
   1246 	rw_enter(&dkwedges_lock, RW_READER);
   1247 	if (mn < ndkwedges &&
   1248 	    (sc = dkwedges[minor(dev)]) != NULL &&
   1249 	    (dv = sc->sc_dev) != NULL)
   1250 		unit = device_unit(dv);
   1251 	rw_exit(&dkwedges_lock);
   1252 
   1253 	return unit;
   1254 }
   1255 
   1256 /*
   1257  * dkopen:		[devsw entry point]
   1258  *
   1259  *	Open a wedge.
   1260  */
   1261 static int
   1262 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
   1263 {
   1264 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1265 	int error = 0;
   1266 
   1267 	if (sc == NULL)
   1268 		return ENXIO;
   1269 	if (sc->sc_state != DKW_STATE_RUNNING)
   1270 		return ENXIO;
   1271 
   1272 	/*
   1273 	 * We go through a complicated little dance to only open the parent
   1274 	 * vnode once per wedge, no matter how many times the wedge is
   1275 	 * opened.  The reason?  We see one dkopen() per open call, but
   1276 	 * only dkclose() on the last close.
   1277 	 */
   1278 	mutex_enter(&sc->sc_dk.dk_openlock);
   1279 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1280 	if (sc->sc_dk.dk_openmask == 0) {
   1281 		error = dkfirstopen(sc, flags);
   1282 		if (error)
   1283 			goto out;
   1284 	} else if (flags & ~sc->sc_mode & FWRITE) {
   1285 		/*
   1286 		 * The parent is already open, but the previous attempt
   1287 		 * to open it read/write failed and fell back to
   1288 		 * read-only.  In that case, we assume the medium is
   1289 		 * read-only and fail to open the wedge read/write.
   1290 		 */
   1291 		error = EROFS;
   1292 		goto out;
   1293 	}
   1294 	KASSERT(sc->sc_mode != 0);
   1295 	KASSERTMSG(sc->sc_mode & FREAD, "%s: sc_mode=%x",
   1296 	    device_xname(sc->sc_dev), sc->sc_mode);
   1297 	KASSERTMSG((flags & FWRITE) ? (sc->sc_mode & FWRITE) : 1,
   1298 	    "%s: flags=%x sc_mode=%x",
   1299 	    device_xname(sc->sc_dev), flags, sc->sc_mode);
   1300 	if (fmt == S_IFCHR)
   1301 		sc->sc_dk.dk_copenmask |= 1;
   1302 	else
   1303 		sc->sc_dk.dk_bopenmask |= 1;
   1304 	sc->sc_dk.dk_openmask =
   1305 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1306 
   1307 out:	mutex_exit(&sc->sc_parent->dk_rawlock);
   1308 	mutex_exit(&sc->sc_dk.dk_openlock);
   1309 	return error;
   1310 }
   1311 
   1312 static int
   1313 dkfirstopen(struct dkwedge_softc *sc, int flags)
   1314 {
   1315 	struct dkwedge_softc *nsc;
   1316 	struct vnode *vp;
   1317 	int mode;
   1318 	int error;
   1319 
   1320 	KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
   1321 	KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
   1322 
   1323 	if (sc->sc_parent->dk_rawopens == 0) {
   1324 		KASSERT(sc->sc_parent->dk_rawvp == NULL);
   1325 		/*
   1326 		 * Try open read-write. If this fails for EROFS
   1327 		 * and wedge is read-only, retry to open read-only.
   1328 		 */
   1329 		mode = FREAD | FWRITE;
   1330 		error = dk_open_parent(sc->sc_pdev, mode, &vp);
   1331 		if (error == EROFS && (flags & FWRITE) == 0) {
   1332 			mode &= ~FWRITE;
   1333 			error = dk_open_parent(sc->sc_pdev, mode, &vp);
   1334 		}
   1335 		if (error)
   1336 			return error;
   1337 		KASSERT(vp != NULL);
   1338 		sc->sc_parent->dk_rawvp = vp;
   1339 	} else {
   1340 		/*
   1341 		 * Retrieve mode from an already opened wedge.
   1342 		 *
   1343 		 * At this point, dk_rawopens is bounded by the number
   1344 		 * of dkwedge devices in the system, which is limited
   1345 		 * by autoconf device numbering to INT_MAX.  Since
   1346 		 * dk_rawopens is unsigned, this can't overflow.
   1347 		 */
   1348 		KASSERT(sc->sc_parent->dk_rawopens < UINT_MAX);
   1349 		KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1350 		mode = 0;
   1351 		mutex_enter(&sc->sc_parent->dk_openlock);
   1352 		LIST_FOREACH(nsc, &sc->sc_parent->dk_wedges, sc_plink) {
   1353 			if (nsc == sc || nsc->sc_dk.dk_openmask == 0)
   1354 				continue;
   1355 			mode = nsc->sc_mode;
   1356 			break;
   1357 		}
   1358 		mutex_exit(&sc->sc_parent->dk_openlock);
   1359 	}
   1360 	sc->sc_mode = mode;
   1361 	sc->sc_parent->dk_rawopens++;
   1362 
   1363 	return 0;
   1364 }
   1365 
   1366 static void
   1367 dklastclose(struct dkwedge_softc *sc)
   1368 {
   1369 
   1370 	KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
   1371 	KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
   1372 	KASSERT(sc->sc_parent->dk_rawopens > 0);
   1373 	KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1374 
   1375 	if (--sc->sc_parent->dk_rawopens == 0) {
   1376 		struct vnode *const vp = sc->sc_parent->dk_rawvp;
   1377 		const int mode = sc->sc_mode;
   1378 
   1379 		sc->sc_parent->dk_rawvp = NULL;
   1380 		sc->sc_mode = 0;
   1381 
   1382 		dk_close_parent(vp, mode);
   1383 	}
   1384 }
   1385 
   1386 /*
   1387  * dkclose:		[devsw entry point]
   1388  *
   1389  *	Close a wedge.
   1390  */
   1391 static int
   1392 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
   1393 {
   1394 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1395 
   1396 	if (sc == NULL)
   1397 		return ENXIO;
   1398 	if (sc->sc_state != DKW_STATE_RUNNING &&
   1399 	    sc->sc_state != DKW_STATE_DYING)
   1400 		return ENXIO;
   1401 
   1402 	mutex_enter(&sc->sc_dk.dk_openlock);
   1403 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1404 
   1405 	KASSERT(sc->sc_dk.dk_openmask != 0);
   1406 
   1407 	if (fmt == S_IFCHR)
   1408 		sc->sc_dk.dk_copenmask &= ~1;
   1409 	else
   1410 		sc->sc_dk.dk_bopenmask &= ~1;
   1411 	sc->sc_dk.dk_openmask =
   1412 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1413 
   1414 	if (sc->sc_dk.dk_openmask == 0) {
   1415 		dklastclose(sc);
   1416 	}
   1417 
   1418 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1419 	mutex_exit(&sc->sc_dk.dk_openlock);
   1420 
   1421 	return 0;
   1422 }
   1423 
   1424 /*
   1425  * dkcancel:		[devsw entry point]
   1426  *
   1427  *	Cancel any pending I/O operations waiting on a wedge.
   1428  */
   1429 static int
   1430 dkcancel(dev_t dev, int flags, int fmt, struct lwp *l)
   1431 {
   1432 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1433 
   1434 	KASSERT(sc != NULL);
   1435 	KASSERT(sc->sc_dev != NULL);
   1436 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1437 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1438 
   1439 	/*
   1440 	 * Disk I/O is expected to complete or fail within a reasonable
   1441 	 * timeframe -- it's storage, not communication.  Further, the
   1442 	 * character and block device interface guarantees that prior
   1443 	 * reads and writes have completed or failed by the time close
   1444 	 * returns -- we are not to cancel them here.  If the parent
   1445 	 * device's hardware is gone, the parent driver can make them
   1446 	 * fail.  Nothing for dk(4) itself to do.
   1447 	 */
   1448 
   1449 	return 0;
   1450 }
   1451 
   1452 /*
   1453  * dkstrategy:		[devsw entry point]
   1454  *
   1455  *	Perform I/O based on the wedge I/O strategy.
   1456  */
   1457 static void
   1458 dkstrategy(struct buf *bp)
   1459 {
   1460 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1461 	uint64_t p_size, p_offset;
   1462 
   1463 	KASSERT(sc != NULL);
   1464 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1465 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1466 	KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1467 
   1468 	/* If it's an empty transfer, wake up the top half now. */
   1469 	if (bp->b_bcount == 0)
   1470 		goto done;
   1471 
   1472 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
   1473 	p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
   1474 
   1475 	/* Make sure it's in-range. */
   1476 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
   1477 		goto done;
   1478 
   1479 	/* Translate it to the parent's raw LBA. */
   1480 	bp->b_rawblkno = bp->b_blkno + p_offset;
   1481 
   1482 	/* Place it in the queue and start I/O on the unit. */
   1483 	mutex_enter(&sc->sc_iolock);
   1484 	disk_wait(&sc->sc_dk);
   1485 	bufq_put(sc->sc_bufq, bp);
   1486 	mutex_exit(&sc->sc_iolock);
   1487 
   1488 	dkstart(sc);
   1489 	return;
   1490 
   1491 done:
   1492 	bp->b_resid = bp->b_bcount;
   1493 	biodone(bp);
   1494 }
   1495 
   1496 /*
   1497  * dkstart:
   1498  *
   1499  *	Start I/O that has been enqueued on the wedge.
   1500  */
   1501 static void
   1502 dkstart(struct dkwedge_softc *sc)
   1503 {
   1504 	struct vnode *vp;
   1505 	struct buf *bp, *nbp;
   1506 
   1507 	mutex_enter(&sc->sc_iolock);
   1508 
   1509 	/* Do as much work as has been enqueued. */
   1510 	while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
   1511 		if (sc->sc_iostop) {
   1512 			(void) bufq_get(sc->sc_bufq);
   1513 			mutex_exit(&sc->sc_iolock);
   1514 			bp->b_error = ENXIO;
   1515 			bp->b_resid = bp->b_bcount;
   1516 			biodone(bp);
   1517 			mutex_enter(&sc->sc_iolock);
   1518 			continue;
   1519 		}
   1520 
   1521 		/* fetch an I/O buf with sc_iolock dropped */
   1522 		mutex_exit(&sc->sc_iolock);
   1523 		nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
   1524 		mutex_enter(&sc->sc_iolock);
   1525 		if (nbp == NULL) {
   1526 			/*
   1527 			 * No resources to run this request; leave the
   1528 			 * buffer queued up, and schedule a timer to
   1529 			 * restart the queue in 1/2 a second.
   1530 			 */
   1531 			if (!sc->sc_iostop)
   1532 				callout_schedule(&sc->sc_restart_ch, hz/2);
   1533 			break;
   1534 		}
   1535 
   1536 		/*
   1537 		 * fetch buf, this can fail if another thread
   1538 		 * has already processed the queue, it can also
   1539 		 * return a completely different buf.
   1540 		 */
   1541 		bp = bufq_get(sc->sc_bufq);
   1542 		if (bp == NULL) {
   1543 			mutex_exit(&sc->sc_iolock);
   1544 			putiobuf(nbp);
   1545 			mutex_enter(&sc->sc_iolock);
   1546 			continue;
   1547 		}
   1548 
   1549 		/* Instrumentation. */
   1550 		disk_busy(&sc->sc_dk);
   1551 
   1552 		/* release lock for VOP_STRATEGY */
   1553 		mutex_exit(&sc->sc_iolock);
   1554 
   1555 		nbp->b_data = bp->b_data;
   1556 		nbp->b_flags = bp->b_flags;
   1557 		nbp->b_oflags = bp->b_oflags;
   1558 		nbp->b_cflags = bp->b_cflags;
   1559 		nbp->b_iodone = dkiodone;
   1560 		nbp->b_proc = bp->b_proc;
   1561 		nbp->b_blkno = bp->b_rawblkno;
   1562 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
   1563 		nbp->b_bcount = bp->b_bcount;
   1564 		nbp->b_private = bp;
   1565 		BIO_COPYPRIO(nbp, bp);
   1566 
   1567 		vp = nbp->b_vp;
   1568 		if ((nbp->b_flags & B_READ) == 0) {
   1569 			mutex_enter(vp->v_interlock);
   1570 			vp->v_numoutput++;
   1571 			mutex_exit(vp->v_interlock);
   1572 		}
   1573 		VOP_STRATEGY(vp, nbp);
   1574 
   1575 		mutex_enter(&sc->sc_iolock);
   1576 	}
   1577 
   1578 	mutex_exit(&sc->sc_iolock);
   1579 }
   1580 
   1581 /*
   1582  * dkiodone:
   1583  *
   1584  *	I/O to a wedge has completed; alert the top half.
   1585  */
   1586 static void
   1587 dkiodone(struct buf *bp)
   1588 {
   1589 	struct buf *obp = bp->b_private;
   1590 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
   1591 
   1592 	if (bp->b_error != 0)
   1593 		obp->b_error = bp->b_error;
   1594 	obp->b_resid = bp->b_resid;
   1595 	putiobuf(bp);
   1596 
   1597 	mutex_enter(&sc->sc_iolock);
   1598 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
   1599 	    obp->b_flags & B_READ);
   1600 	mutex_exit(&sc->sc_iolock);
   1601 
   1602 	biodone(obp);
   1603 
   1604 	/* Kick the queue in case there is more work we can do. */
   1605 	dkstart(sc);
   1606 }
   1607 
   1608 /*
   1609  * dkrestart:
   1610  *
   1611  *	Restart the work queue after it was stalled due to
   1612  *	a resource shortage.  Invoked via a callout.
   1613  */
   1614 static void
   1615 dkrestart(void *v)
   1616 {
   1617 	struct dkwedge_softc *sc = v;
   1618 
   1619 	dkstart(sc);
   1620 }
   1621 
   1622 /*
   1623  * dkminphys:
   1624  *
   1625  *	Call parent's minphys function.
   1626  */
   1627 static void
   1628 dkminphys(struct buf *bp)
   1629 {
   1630 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1631 	dev_t dev;
   1632 
   1633 	dev = bp->b_dev;
   1634 	bp->b_dev = sc->sc_pdev;
   1635 	if (sc->sc_parent->dk_driver && sc->sc_parent->dk_driver->d_minphys)
   1636 		(*sc->sc_parent->dk_driver->d_minphys)(bp);
   1637 	else
   1638 		minphys(bp);
   1639 	bp->b_dev = dev;
   1640 }
   1641 
   1642 /*
   1643  * dkread:		[devsw entry point]
   1644  *
   1645  *	Read from a wedge.
   1646  */
   1647 static int
   1648 dkread(dev_t dev, struct uio *uio, int flags)
   1649 {
   1650 	struct dkwedge_softc *sc __diagused = dkwedge_lookup(dev);
   1651 
   1652 	KASSERT(sc != NULL);
   1653 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1654 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1655 
   1656 	return physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio);
   1657 }
   1658 
   1659 /*
   1660  * dkwrite:		[devsw entry point]
   1661  *
   1662  *	Write to a wedge.
   1663  */
   1664 static int
   1665 dkwrite(dev_t dev, struct uio *uio, int flags)
   1666 {
   1667 	struct dkwedge_softc *sc __diagused = dkwedge_lookup(dev);
   1668 
   1669 	KASSERT(sc != NULL);
   1670 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1671 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1672 
   1673 	return physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio);
   1674 }
   1675 
   1676 /*
   1677  * dkioctl:		[devsw entry point]
   1678  *
   1679  *	Perform an ioctl request on a wedge.
   1680  */
   1681 static int
   1682 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1683 {
   1684 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1685 	int error = 0;
   1686 
   1687 	KASSERT(sc != NULL);
   1688 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1689 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1690 	KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1691 
   1692 	/*
   1693 	 * We pass NODEV instead of our device to indicate we don't
   1694 	 * want to handle disklabel ioctls
   1695 	 */
   1696 	error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
   1697 	if (error != EPASSTHROUGH)
   1698 		return error;
   1699 
   1700 	error = 0;
   1701 
   1702 	switch (cmd) {
   1703 	case DIOCGSTRATEGY:
   1704 	case DIOCGCACHE:
   1705 	case DIOCCACHESYNC:
   1706 		error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, data, flag,
   1707 		    l != NULL ? l->l_cred : NOCRED);
   1708 		break;
   1709 	case DIOCGWEDGEINFO: {
   1710 		struct dkwedge_info *dkw = data;
   1711 
   1712 		strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
   1713 		    sizeof(dkw->dkw_devname));
   1714 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
   1715 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
   1716 		strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
   1717 		    sizeof(dkw->dkw_parent));
   1718 		dkw->dkw_offset = sc->sc_offset;
   1719 		dkw->dkw_size = dkwedge_size(sc);
   1720 		strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
   1721 
   1722 		break;
   1723 	}
   1724 	case DIOCGSECTORALIGN: {
   1725 		struct disk_sectoralign *dsa = data;
   1726 		uint32_t r;
   1727 
   1728 		error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, dsa, flag,
   1729 		    l != NULL ? l->l_cred : NOCRED);
   1730 		if (error)
   1731 			break;
   1732 
   1733 		r = sc->sc_offset % dsa->dsa_alignment;
   1734 		if (r < dsa->dsa_firstaligned)
   1735 			dsa->dsa_firstaligned = dsa->dsa_firstaligned - r;
   1736 		else
   1737 			dsa->dsa_firstaligned = (dsa->dsa_firstaligned +
   1738 			    dsa->dsa_alignment) - r;
   1739 		break;
   1740 	}
   1741 	default:
   1742 		error = ENOTTY;
   1743 	}
   1744 
   1745 	return error;
   1746 }
   1747 
   1748 /*
   1749  * dkdiscard:		[devsw entry point]
   1750  *
   1751  *	Perform a discard-range request on a wedge.
   1752  */
   1753 static int
   1754 dkdiscard(dev_t dev, off_t pos, off_t len)
   1755 {
   1756 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1757 	uint64_t size = dkwedge_size(sc);
   1758 	unsigned shift;
   1759 	off_t offset, maxlen;
   1760 	int error;
   1761 
   1762 	KASSERT(sc != NULL);
   1763 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1764 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1765 	KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1766 
   1767 	/* XXX check bounds on size/offset up front */
   1768 	shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
   1769 	KASSERT(__type_fit(off_t, size));
   1770 	KASSERT(__type_fit(off_t, sc->sc_offset));
   1771 	KASSERT(0 <= sc->sc_offset);
   1772 	KASSERT(size <= (__type_max(off_t) >> shift));
   1773 	KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - size));
   1774 	offset = ((off_t)sc->sc_offset << shift);
   1775 	maxlen = ((off_t)size << shift);
   1776 
   1777 	if (len > maxlen)
   1778 		return EINVAL;
   1779 	if (pos > (maxlen - len))
   1780 		return EINVAL;
   1781 
   1782 	pos += offset;
   1783 
   1784 	vn_lock(sc->sc_parent->dk_rawvp, LK_EXCLUSIVE | LK_RETRY);
   1785 	error = VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
   1786 	VOP_UNLOCK(sc->sc_parent->dk_rawvp);
   1787 
   1788 	return error;
   1789 }
   1790 
   1791 /*
   1792  * dksize:		[devsw entry point]
   1793  *
   1794  *	Query the size of a wedge for the purpose of performing a dump
   1795  *	or for swapping to.
   1796  */
   1797 static int
   1798 dksize(dev_t dev)
   1799 {
   1800 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1801 	uint64_t p_size;
   1802 	int rv = -1;
   1803 
   1804 	if (sc == NULL)
   1805 		return -1;
   1806 	if (sc->sc_state != DKW_STATE_RUNNING)
   1807 		return -1;
   1808 
   1809 	/* Our content type is static, no need to open the device. */
   1810 
   1811 	p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
   1812 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
   1813 		/* Saturate if we are larger than INT_MAX. */
   1814 		if (p_size > INT_MAX)
   1815 			rv = INT_MAX;
   1816 		else
   1817 			rv = (int)p_size;
   1818 	}
   1819 
   1820 	return rv;
   1821 }
   1822 
   1823 /*
   1824  * dkdump:		[devsw entry point]
   1825  *
   1826  *	Perform a crash dump to a wedge.
   1827  */
   1828 static int
   1829 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
   1830 {
   1831 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1832 	const struct bdevsw *bdev;
   1833 	uint64_t p_size, p_offset;
   1834 
   1835 	if (sc == NULL)
   1836 		return ENXIO;
   1837 	if (sc->sc_state != DKW_STATE_RUNNING)
   1838 		return ENXIO;
   1839 
   1840 	/* Our content type is static, no need to open the device. */
   1841 
   1842 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
   1843 	    strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0 &&
   1844 	    strcmp(sc->sc_ptype, DKW_PTYPE_CGD) != 0)
   1845 		return ENXIO;
   1846 	if (size % DEV_BSIZE != 0)
   1847 		return EINVAL;
   1848 
   1849 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
   1850 	p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
   1851 
   1852 	if (blkno < 0 || blkno + size/DEV_BSIZE > p_size) {
   1853 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
   1854 		    "p_size (%" PRIu64 ")\n", __func__, blkno,
   1855 		    size/DEV_BSIZE, p_size);
   1856 		return EINVAL;
   1857 	}
   1858 
   1859 	bdev = bdevsw_lookup(sc->sc_pdev);
   1860 	return (*bdev->d_dump)(sc->sc_pdev, blkno + p_offset, va, size);
   1861 }
   1862 
   1863 /*
   1864  * config glue
   1865  */
   1866 
   1867 /*
   1868  * dkwedge_find_partition
   1869  *
   1870  *	Find wedge corresponding to the specified parent name
   1871  *	and offset/length.
   1872  */
   1873 device_t
   1874 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
   1875 {
   1876 	struct dkwedge_softc *sc;
   1877 	int i;
   1878 	device_t wedge = NULL;
   1879 
   1880 	rw_enter(&dkwedges_lock, RW_READER);
   1881 	for (i = 0; i < ndkwedges; i++) {
   1882 		if ((sc = dkwedges[i]) == NULL)
   1883 			continue;
   1884 		if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
   1885 		    sc->sc_offset == startblk &&
   1886 		    dkwedge_size(sc) == nblks) {
   1887 			if (wedge) {
   1888 				printf("WARNING: double match for boot wedge "
   1889 				    "(%s, %s)\n",
   1890 				    device_xname(wedge),
   1891 				    device_xname(sc->sc_dev));
   1892 				continue;
   1893 			}
   1894 			wedge = sc->sc_dev;
   1895 		}
   1896 	}
   1897 	rw_exit(&dkwedges_lock);
   1898 
   1899 	return wedge;
   1900 }
   1901 
   1902 const char *
   1903 dkwedge_get_parent_name(dev_t dev)
   1904 {
   1905 	/* XXX: perhaps do this in lookup? */
   1906 	int bmaj = bdevsw_lookup_major(&dk_bdevsw);
   1907 	int cmaj = cdevsw_lookup_major(&dk_cdevsw);
   1908 
   1909 	if (major(dev) != bmaj && major(dev) != cmaj)
   1910 		return NULL;
   1911 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1912 	if (sc == NULL)
   1913 		return NULL;
   1914 	return sc->sc_parent->dk_name;
   1915 }
   1916