dk.c revision 1.162 1 /* $NetBSD: dk.c,v 1.162 2023/05/22 14:58:59 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.162 2023/05/22 14:58:59 riastradh Exp $");
34
35 #ifdef _KERNEL_OPT
36 #include "opt_dkwedge.h"
37 #endif
38
39 #include <sys/param.h>
40 #include <sys/types.h>
41
42 #include <sys/buf.h>
43 #include <sys/bufq.h>
44 #include <sys/callout.h>
45 #include <sys/conf.h>
46 #include <sys/device.h>
47 #include <sys/disk.h>
48 #include <sys/disklabel.h>
49 #include <sys/errno.h>
50 #include <sys/fcntl.h>
51 #include <sys/ioctl.h>
52 #include <sys/kauth.h>
53 #include <sys/kernel.h>
54 #include <sys/malloc.h>
55 #include <sys/pool.h>
56 #include <sys/proc.h>
57 #include <sys/rwlock.h>
58 #include <sys/stat.h>
59 #include <sys/systm.h>
60 #include <sys/vnode.h>
61
62 #include <miscfs/specfs/specdev.h>
63
64 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
65
66 typedef enum {
67 DKW_STATE_LARVAL = 0,
68 DKW_STATE_RUNNING = 1,
69 DKW_STATE_DYING = 2,
70 DKW_STATE_DEAD = 666
71 } dkwedge_state_t;
72
73 struct dkwedge_softc {
74 device_t sc_dev; /* pointer to our pseudo-device */
75 struct cfdata sc_cfdata; /* our cfdata structure */
76 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
77
78 dkwedge_state_t sc_state; /* state this wedge is in */
79
80 struct disk *sc_parent; /* parent disk */
81 daddr_t sc_offset; /* LBA offset of wedge in parent */
82 krwlock_t sc_sizelock;
83 uint64_t sc_size; /* size of wedge in blocks */
84 char sc_ptype[32]; /* partition type */
85 dev_t sc_pdev; /* cached parent's dev_t */
86 /* link on parent's wedge list */
87 LIST_ENTRY(dkwedge_softc) sc_plink;
88
89 struct disk sc_dk; /* our own disk structure */
90 struct bufq_state *sc_bufq; /* buffer queue */
91 struct callout sc_restart_ch; /* callout to restart I/O */
92
93 kmutex_t sc_iolock;
94 bool sc_iostop; /* don't schedule restart */
95 int sc_mode; /* parent open mode */
96 };
97
98 static int dkwedge_match(device_t, cfdata_t, void *);
99 static void dkwedge_attach(device_t, device_t, void *);
100 static int dkwedge_detach(device_t, int);
101
102 static void dk_set_geometry(struct dkwedge_softc *, struct disk *);
103
104 static void dkstart(struct dkwedge_softc *);
105 static void dkiodone(struct buf *);
106 static void dkrestart(void *);
107 static void dkminphys(struct buf *);
108
109 static int dkfirstopen(struct dkwedge_softc *, int);
110 static void dklastclose(struct dkwedge_softc *);
111 static int dkwedge_detach(device_t, int);
112 static void dkwedge_delall1(struct disk *, bool);
113 static int dkwedge_del1(struct dkwedge_info *, int);
114 static int dk_open_parent(dev_t, int, struct vnode **);
115 static int dk_close_parent(struct vnode *, int);
116
117 static dev_type_open(dkopen);
118 static dev_type_close(dkclose);
119 static dev_type_cancel(dkcancel);
120 static dev_type_read(dkread);
121 static dev_type_write(dkwrite);
122 static dev_type_ioctl(dkioctl);
123 static dev_type_strategy(dkstrategy);
124 static dev_type_dump(dkdump);
125 static dev_type_size(dksize);
126 static dev_type_discard(dkdiscard);
127
128 CFDRIVER_DECL(dk, DV_DISK, NULL);
129 CFATTACH_DECL3_NEW(dk, 0,
130 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
131 DVF_DETACH_SHUTDOWN);
132
133 const struct bdevsw dk_bdevsw = {
134 .d_open = dkopen,
135 .d_close = dkclose,
136 .d_cancel = dkcancel,
137 .d_strategy = dkstrategy,
138 .d_ioctl = dkioctl,
139 .d_dump = dkdump,
140 .d_psize = dksize,
141 .d_discard = dkdiscard,
142 .d_cfdriver = &dk_cd,
143 .d_devtounit = dev_minor_unit,
144 .d_flag = D_DISK | D_MPSAFE
145 };
146
147 const struct cdevsw dk_cdevsw = {
148 .d_open = dkopen,
149 .d_close = dkclose,
150 .d_cancel = dkcancel,
151 .d_read = dkread,
152 .d_write = dkwrite,
153 .d_ioctl = dkioctl,
154 .d_stop = nostop,
155 .d_tty = notty,
156 .d_poll = nopoll,
157 .d_mmap = nommap,
158 .d_kqfilter = nokqfilter,
159 .d_discard = dkdiscard,
160 .d_cfdriver = &dk_cd,
161 .d_devtounit = dev_minor_unit,
162 .d_flag = D_DISK | D_MPSAFE
163 };
164
165 static struct dkwedge_softc **dkwedges;
166 static u_int ndkwedges;
167 static krwlock_t dkwedges_lock;
168
169 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
170 static krwlock_t dkwedge_discovery_methods_lock;
171
172 /*
173 * dkwedge_match:
174 *
175 * Autoconfiguration match function for pseudo-device glue.
176 */
177 static int
178 dkwedge_match(device_t parent, cfdata_t match, void *aux)
179 {
180
181 /* Pseudo-device; always present. */
182 return 1;
183 }
184
185 /*
186 * dkwedge_attach:
187 *
188 * Autoconfiguration attach function for pseudo-device glue.
189 */
190 static void
191 dkwedge_attach(device_t parent, device_t self, void *aux)
192 {
193 struct dkwedge_softc *sc = aux;
194 struct disk *pdk = sc->sc_parent;
195 int unit = device_unit(self);
196
197 KASSERTMSG(unit >= 0, "unit=%d", unit);
198
199 if (!pmf_device_register(self, NULL, NULL))
200 aprint_error_dev(self, "couldn't establish power handler\n");
201
202 mutex_enter(&pdk->dk_openlock);
203 rw_enter(&dkwedges_lock, RW_WRITER);
204 KASSERTMSG(unit < ndkwedges, "unit=%d ndkwedges=%u", unit, ndkwedges);
205 KASSERTMSG(sc == dkwedges[unit], "sc=%p dkwedges[%d]=%p",
206 sc, unit, dkwedges[unit]);
207 KASSERTMSG(sc->sc_dev == NULL, "sc=%p sc->sc_dev=%p", sc, sc->sc_dev);
208 sc->sc_dev = self;
209 rw_exit(&dkwedges_lock);
210 mutex_exit(&pdk->dk_openlock);
211
212 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
213 mutex_enter(&pdk->dk_openlock);
214 dk_set_geometry(sc, pdk);
215 mutex_exit(&pdk->dk_openlock);
216 disk_attach(&sc->sc_dk);
217
218 /* Disk wedge is ready for use! */
219 device_set_private(self, sc);
220 sc->sc_state = DKW_STATE_RUNNING;
221 }
222
223 /*
224 * dkwedge_compute_pdev:
225 *
226 * Compute the parent disk's dev_t.
227 */
228 static int
229 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
230 {
231 const char *name, *cp;
232 devmajor_t pmaj;
233 int punit;
234 char devname[16];
235
236 name = pname;
237 switch (type) {
238 case VBLK:
239 pmaj = devsw_name2blk(name, devname, sizeof(devname));
240 break;
241 case VCHR:
242 pmaj = devsw_name2chr(name, devname, sizeof(devname));
243 break;
244 default:
245 pmaj = NODEVMAJOR;
246 break;
247 }
248 if (pmaj == NODEVMAJOR)
249 return ENXIO;
250
251 name += strlen(devname);
252 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
253 punit = (punit * 10) + (*cp - '0');
254 if (cp == name) {
255 /* Invalid parent disk name. */
256 return ENXIO;
257 }
258
259 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
260
261 return 0;
262 }
263
264 /*
265 * dkwedge_array_expand:
266 *
267 * Expand the dkwedges array.
268 *
269 * Releases and reacquires dkwedges_lock as a writer.
270 */
271 static int
272 dkwedge_array_expand(void)
273 {
274
275 const unsigned incr = 16;
276 unsigned newcnt, oldcnt;
277 struct dkwedge_softc **newarray = NULL, **oldarray = NULL;
278
279 KASSERT(rw_write_held(&dkwedges_lock));
280
281 oldcnt = ndkwedges;
282 oldarray = dkwedges;
283
284 if (oldcnt >= INT_MAX - incr)
285 return ENFILE; /* XXX */
286 newcnt = oldcnt + incr;
287
288 rw_exit(&dkwedges_lock);
289 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
290 M_WAITOK|M_ZERO);
291 rw_enter(&dkwedges_lock, RW_WRITER);
292
293 if (ndkwedges != oldcnt || dkwedges != oldarray) {
294 oldarray = NULL; /* already recycled */
295 goto out;
296 }
297
298 if (oldarray != NULL)
299 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
300 dkwedges = newarray;
301 newarray = NULL; /* transferred to dkwedges */
302 ndkwedges = newcnt;
303
304 out: rw_exit(&dkwedges_lock);
305 if (oldarray != NULL)
306 free(oldarray, M_DKWEDGE);
307 if (newarray != NULL)
308 free(newarray, M_DKWEDGE);
309 rw_enter(&dkwedges_lock, RW_WRITER);
310 return 0;
311 }
312
313 static void
314 dkwedge_size_init(struct dkwedge_softc *sc, uint64_t size)
315 {
316
317 rw_init(&sc->sc_sizelock);
318 sc->sc_size = size;
319 }
320
321 static void
322 dkwedge_size_fini(struct dkwedge_softc *sc)
323 {
324
325 rw_destroy(&sc->sc_sizelock);
326 }
327
328 static uint64_t
329 dkwedge_size(struct dkwedge_softc *sc)
330 {
331 uint64_t size;
332
333 rw_enter(&sc->sc_sizelock, RW_READER);
334 size = sc->sc_size;
335 rw_exit(&sc->sc_sizelock);
336
337 return size;
338 }
339
340 static void
341 dkwedge_size_increase(struct dkwedge_softc *sc, uint64_t size)
342 {
343
344 KASSERT(mutex_owned(&sc->sc_parent->dk_openlock));
345
346 rw_enter(&sc->sc_sizelock, RW_WRITER);
347 KASSERTMSG(size >= sc->sc_size,
348 "decreasing dkwedge size from %"PRIu64" to %"PRIu64,
349 sc->sc_size, size);
350 sc->sc_size = size;
351 rw_exit(&sc->sc_sizelock);
352 }
353
354 static void
355 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
356 {
357 struct disk *dk = &sc->sc_dk;
358 struct disk_geom *dg = &dk->dk_geom;
359
360 KASSERT(mutex_owned(&pdk->dk_openlock));
361
362 memset(dg, 0, sizeof(*dg));
363
364 dg->dg_secperunit = dkwedge_size(sc);
365 dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
366
367 /* fake numbers, 1 cylinder is 1 MB with default sector size */
368 dg->dg_nsectors = 32;
369 dg->dg_ntracks = 64;
370 dg->dg_ncylinders =
371 dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
372
373 disk_set_info(sc->sc_dev, dk, NULL);
374 }
375
376 /*
377 * dkwedge_add: [exported function]
378 *
379 * Add a disk wedge based on the provided information.
380 *
381 * The incoming dkw_devname[] is ignored, instead being
382 * filled in and returned to the caller.
383 */
384 int
385 dkwedge_add(struct dkwedge_info *dkw)
386 {
387 struct dkwedge_softc *sc, *lsc;
388 struct disk *pdk;
389 u_int unit;
390 int error;
391 dev_t pdev;
392 device_t dev __diagused;
393
394 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
395 pdk = disk_find(dkw->dkw_parent);
396 if (pdk == NULL)
397 return ENXIO;
398
399 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
400 if (error)
401 return error;
402
403 if (dkw->dkw_offset < 0)
404 return EINVAL;
405
406 /*
407 * Check for an existing wedge at the same disk offset. Allow
408 * updating a wedge if the only change is the size, and the new
409 * size is larger than the old.
410 */
411 sc = NULL;
412 mutex_enter(&pdk->dk_openlock);
413 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
414 if (lsc->sc_offset != dkw->dkw_offset)
415 continue;
416 if (strcmp(lsc->sc_wname, dkw->dkw_wname) != 0)
417 break;
418 if (strcmp(lsc->sc_ptype, dkw->dkw_ptype) != 0)
419 break;
420 if (dkwedge_size(lsc) > dkw->dkw_size)
421 break;
422 if (lsc->sc_dev == NULL)
423 break;
424
425 sc = lsc;
426 device_acquire(sc->sc_dev);
427 dkwedge_size_increase(sc, dkw->dkw_size);
428 dk_set_geometry(sc, pdk);
429
430 break;
431 }
432 mutex_exit(&pdk->dk_openlock);
433
434 if (sc != NULL)
435 goto announce;
436
437 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
438 sc->sc_state = DKW_STATE_LARVAL;
439 sc->sc_parent = pdk;
440 sc->sc_pdev = pdev;
441 sc->sc_offset = dkw->dkw_offset;
442 dkwedge_size_init(sc, dkw->dkw_size);
443
444 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
445 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
446
447 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
448 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
449
450 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
451
452 callout_init(&sc->sc_restart_ch, 0);
453 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
454
455 mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
456
457 /*
458 * Wedge will be added; increment the wedge count for the parent.
459 * Only allow this to happen if RAW_PART is the only thing open.
460 */
461 mutex_enter(&pdk->dk_openlock);
462 if (pdk->dk_openmask & ~(1 << RAW_PART))
463 error = EBUSY;
464 else {
465 /* Check for wedge overlap. */
466 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
467 /* XXX arithmetic overflow */
468 uint64_t size = dkwedge_size(sc);
469 uint64_t lsize = dkwedge_size(lsc);
470 daddr_t lastblk = sc->sc_offset + size - 1;
471 daddr_t llastblk = lsc->sc_offset + lsize - 1;
472
473 if (sc->sc_offset >= lsc->sc_offset &&
474 sc->sc_offset <= llastblk) {
475 /* Overlaps the tail of the existing wedge. */
476 break;
477 }
478 if (lastblk >= lsc->sc_offset &&
479 lastblk <= llastblk) {
480 /* Overlaps the head of the existing wedge. */
481 break;
482 }
483 }
484 if (lsc != NULL) {
485 if (sc->sc_offset == lsc->sc_offset &&
486 dkwedge_size(sc) == dkwedge_size(lsc) &&
487 strcmp(sc->sc_wname, lsc->sc_wname) == 0)
488 error = EEXIST;
489 else
490 error = EINVAL;
491 } else {
492 pdk->dk_nwedges++;
493 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
494 }
495 }
496 mutex_exit(&pdk->dk_openlock);
497 if (error) {
498 mutex_destroy(&sc->sc_iolock);
499 bufq_free(sc->sc_bufq);
500 dkwedge_size_fini(sc);
501 free(sc, M_DKWEDGE);
502 return error;
503 }
504
505 /* Fill in our cfdata for the pseudo-device glue. */
506 sc->sc_cfdata.cf_name = dk_cd.cd_name;
507 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
508 /* sc->sc_cfdata.cf_unit set below */
509 sc->sc_cfdata.cf_fstate = FSTATE_NOTFOUND; /* use chosen cf_unit */
510
511 /* Insert the larval wedge into the array. */
512 rw_enter(&dkwedges_lock, RW_WRITER);
513 for (error = 0;;) {
514 struct dkwedge_softc **scpp;
515
516 /*
517 * Check for a duplicate wname while searching for
518 * a slot.
519 */
520 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
521 if (dkwedges[unit] == NULL) {
522 if (scpp == NULL) {
523 scpp = &dkwedges[unit];
524 sc->sc_cfdata.cf_unit = unit;
525 }
526 } else {
527 /* XXX Unicode. */
528 if (strcmp(dkwedges[unit]->sc_wname,
529 sc->sc_wname) == 0) {
530 error = EEXIST;
531 break;
532 }
533 }
534 }
535 if (error)
536 break;
537 KASSERT(unit == ndkwedges);
538 if (scpp == NULL) {
539 error = dkwedge_array_expand();
540 if (error)
541 break;
542 } else {
543 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
544 *scpp = sc;
545 break;
546 }
547 }
548 rw_exit(&dkwedges_lock);
549 if (error) {
550 mutex_enter(&pdk->dk_openlock);
551 pdk->dk_nwedges--;
552 LIST_REMOVE(sc, sc_plink);
553 mutex_exit(&pdk->dk_openlock);
554
555 mutex_destroy(&sc->sc_iolock);
556 bufq_free(sc->sc_bufq);
557 dkwedge_size_fini(sc);
558 free(sc, M_DKWEDGE);
559 return error;
560 }
561
562 /*
563 * Now that we know the unit #, attach a pseudo-device for
564 * this wedge instance. This will provide us with the
565 * device_t necessary for glue to other parts of the system.
566 *
567 * This should never fail, unless we're almost totally out of
568 * memory.
569 */
570 if ((dev = config_attach_pseudo_acquire(&sc->sc_cfdata, sc)) == NULL) {
571 aprint_error("%s%u: unable to attach pseudo-device\n",
572 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
573
574 rw_enter(&dkwedges_lock, RW_WRITER);
575 KASSERT(dkwedges[sc->sc_cfdata.cf_unit] == sc);
576 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
577 rw_exit(&dkwedges_lock);
578
579 mutex_enter(&pdk->dk_openlock);
580 pdk->dk_nwedges--;
581 LIST_REMOVE(sc, sc_plink);
582 mutex_exit(&pdk->dk_openlock);
583
584 mutex_destroy(&sc->sc_iolock);
585 bufq_free(sc->sc_bufq);
586 dkwedge_size_fini(sc);
587 free(sc, M_DKWEDGE);
588 return ENOMEM;
589 }
590
591 KASSERT(dev == sc->sc_dev);
592
593 announce:
594 /* Announce our arrival. */
595 aprint_normal(
596 "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
597 device_xname(sc->sc_dev), pdk->dk_name,
598 sc->sc_wname, /* XXX Unicode */
599 dkwedge_size(sc), sc->sc_offset,
600 sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
601
602 /* Return the devname to the caller. */
603 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
604 sizeof(dkw->dkw_devname));
605
606 device_release(sc->sc_dev);
607 return 0;
608 }
609
610 /*
611 * dkwedge_find_acquire:
612 *
613 * Lookup a disk wedge based on the provided information.
614 * NOTE: We look up the wedge based on the wedge devname,
615 * not wname.
616 *
617 * Return NULL if the wedge is not found, otherwise return
618 * the wedge's softc. Assign the wedge's unit number to unitp
619 * if unitp is not NULL. The wedge's sc_dev is referenced and
620 * must be released by device_release or equivalent.
621 */
622 static struct dkwedge_softc *
623 dkwedge_find_acquire(struct dkwedge_info *dkw, u_int *unitp)
624 {
625 struct dkwedge_softc *sc = NULL;
626 u_int unit;
627
628 /* Find our softc. */
629 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
630 rw_enter(&dkwedges_lock, RW_READER);
631 for (unit = 0; unit < ndkwedges; unit++) {
632 if ((sc = dkwedges[unit]) != NULL &&
633 sc->sc_dev != NULL &&
634 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
635 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
636 device_acquire(sc->sc_dev);
637 break;
638 }
639 }
640 rw_exit(&dkwedges_lock);
641 if (sc == NULL)
642 return NULL;
643
644 if (unitp != NULL)
645 *unitp = unit;
646
647 return sc;
648 }
649
650 /*
651 * dkwedge_del: [exported function]
652 *
653 * Delete a disk wedge based on the provided information.
654 * NOTE: We look up the wedge based on the wedge devname,
655 * not wname.
656 */
657 int
658 dkwedge_del(struct dkwedge_info *dkw)
659 {
660
661 return dkwedge_del1(dkw, 0);
662 }
663
664 int
665 dkwedge_del1(struct dkwedge_info *dkw, int flags)
666 {
667 struct dkwedge_softc *sc = NULL;
668
669 /* Find our softc. */
670 if ((sc = dkwedge_find_acquire(dkw, NULL)) == NULL)
671 return ESRCH;
672
673 return config_detach_release(sc->sc_dev, flags);
674 }
675
676 /*
677 * dkwedge_detach:
678 *
679 * Autoconfiguration detach function for pseudo-device glue.
680 */
681 static int
682 dkwedge_detach(device_t self, int flags)
683 {
684 struct dkwedge_softc *const sc = device_private(self);
685 const u_int unit = device_unit(self);
686 int bmaj, cmaj, error;
687
688 error = disk_begindetach(&sc->sc_dk, /*lastclose*/NULL, self, flags);
689 if (error)
690 return error;
691
692 /* Mark the wedge as dying. */
693 sc->sc_state = DKW_STATE_DYING;
694
695 pmf_device_deregister(self);
696
697 /* Kill any pending restart. */
698 mutex_enter(&sc->sc_iolock);
699 sc->sc_iostop = true;
700 mutex_exit(&sc->sc_iolock);
701 callout_halt(&sc->sc_restart_ch, NULL);
702
703 /* Locate the wedge major numbers. */
704 bmaj = bdevsw_lookup_major(&dk_bdevsw);
705 cmaj = cdevsw_lookup_major(&dk_cdevsw);
706
707 /* Nuke the vnodes for any open instances. */
708 vdevgone(bmaj, unit, unit, VBLK);
709 vdevgone(cmaj, unit, unit, VCHR);
710
711 /*
712 * At this point, all block device opens have been closed,
713 * synchronously flushing any buffered writes; and all
714 * character device I/O operations have completed
715 * synchronously, and character device opens have been closed.
716 *
717 * So there can be no more opens or queued buffers by now.
718 */
719 KASSERT(sc->sc_dk.dk_openmask == 0);
720 KASSERT(bufq_peek(sc->sc_bufq) == NULL);
721 bufq_drain(sc->sc_bufq);
722
723 /* Announce our departure. */
724 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
725 sc->sc_parent->dk_name,
726 sc->sc_wname); /* XXX Unicode */
727
728 mutex_enter(&sc->sc_parent->dk_openlock);
729 sc->sc_parent->dk_nwedges--;
730 LIST_REMOVE(sc, sc_plink);
731 mutex_exit(&sc->sc_parent->dk_openlock);
732
733 /* Delete our buffer queue. */
734 bufq_free(sc->sc_bufq);
735
736 /* Detach from the disk list. */
737 disk_detach(&sc->sc_dk);
738 disk_destroy(&sc->sc_dk);
739
740 /* Poof. */
741 rw_enter(&dkwedges_lock, RW_WRITER);
742 KASSERT(dkwedges[unit] == sc);
743 dkwedges[unit] = NULL;
744 sc->sc_state = DKW_STATE_DEAD;
745 rw_exit(&dkwedges_lock);
746
747 mutex_destroy(&sc->sc_iolock);
748 dkwedge_size_fini(sc);
749
750 free(sc, M_DKWEDGE);
751
752 return 0;
753 }
754
755 /*
756 * dkwedge_delall: [exported function]
757 *
758 * Forcibly delete all of the wedges on the specified disk. Used
759 * when a disk is being detached.
760 */
761 void
762 dkwedge_delall(struct disk *pdk)
763 {
764
765 dkwedge_delall1(pdk, /*idleonly*/false);
766 }
767
768 /*
769 * dkwedge_delidle: [exported function]
770 *
771 * Delete all of the wedges on the specified disk if idle. Used
772 * by ioctl(DIOCRMWEDGES).
773 */
774 void
775 dkwedge_delidle(struct disk *pdk)
776 {
777
778 dkwedge_delall1(pdk, /*idleonly*/true);
779 }
780
781 static void
782 dkwedge_delall1(struct disk *pdk, bool idleonly)
783 {
784 struct dkwedge_softc *sc;
785 int flags;
786
787 flags = DETACH_QUIET;
788 if (!idleonly)
789 flags |= DETACH_FORCE;
790
791 for (;;) {
792 mutex_enter(&pdk->dk_rawlock); /* for sc->sc_dk.dk_openmask */
793 mutex_enter(&pdk->dk_openlock);
794 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
795 /*
796 * Wedge is not yet created. This is a race --
797 * it may as well have been added just after we
798 * deleted all the wedges, so pretend it's not
799 * here yet.
800 */
801 if (sc->sc_dev == NULL)
802 continue;
803 if (!idleonly || sc->sc_dk.dk_openmask == 0) {
804 device_acquire(sc->sc_dev);
805 break;
806 }
807 }
808 if (sc == NULL) {
809 KASSERT(idleonly || pdk->dk_nwedges == 0);
810 mutex_exit(&pdk->dk_openlock);
811 mutex_exit(&pdk->dk_rawlock);
812 return;
813 }
814 mutex_exit(&pdk->dk_openlock);
815 mutex_exit(&pdk->dk_rawlock);
816 (void)config_detach_release(sc->sc_dev, flags);
817 }
818 }
819
820 /*
821 * dkwedge_list: [exported function]
822 *
823 * List all of the wedges on a particular disk.
824 */
825 int
826 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
827 {
828 struct uio uio;
829 struct iovec iov;
830 struct dkwedge_softc *sc;
831 struct dkwedge_info dkw;
832 int error = 0;
833
834 iov.iov_base = dkwl->dkwl_buf;
835 iov.iov_len = dkwl->dkwl_bufsize;
836
837 uio.uio_iov = &iov;
838 uio.uio_iovcnt = 1;
839 uio.uio_offset = 0;
840 uio.uio_resid = dkwl->dkwl_bufsize;
841 uio.uio_rw = UIO_READ;
842 KASSERT(l == curlwp);
843 uio.uio_vmspace = l->l_proc->p_vmspace;
844
845 dkwl->dkwl_ncopied = 0;
846
847 mutex_enter(&pdk->dk_openlock);
848 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
849 if (uio.uio_resid < sizeof(dkw))
850 break;
851
852 if (sc->sc_state != DKW_STATE_RUNNING)
853 continue;
854
855 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
856 sizeof(dkw.dkw_devname));
857 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
858 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
859 strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
860 sizeof(dkw.dkw_parent));
861 dkw.dkw_offset = sc->sc_offset;
862 dkw.dkw_size = dkwedge_size(sc);
863 strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
864
865 error = uiomove(&dkw, sizeof(dkw), &uio);
866 if (error)
867 break;
868 dkwl->dkwl_ncopied++;
869 }
870 dkwl->dkwl_nwedges = pdk->dk_nwedges;
871 mutex_exit(&pdk->dk_openlock);
872
873 return error;
874 }
875
876 device_t
877 dkwedge_find_by_wname(const char *wname)
878 {
879 device_t dv = NULL;
880 struct dkwedge_softc *sc;
881 int i;
882
883 rw_enter(&dkwedges_lock, RW_READER);
884 for (i = 0; i < ndkwedges; i++) {
885 if ((sc = dkwedges[i]) == NULL)
886 continue;
887 if (strcmp(sc->sc_wname, wname) == 0) {
888 if (dv != NULL) {
889 printf(
890 "WARNING: double match for wedge name %s "
891 "(%s, %s)\n", wname, device_xname(dv),
892 device_xname(sc->sc_dev));
893 continue;
894 }
895 dv = sc->sc_dev;
896 }
897 }
898 rw_exit(&dkwedges_lock);
899 return dv;
900 }
901
902 device_t
903 dkwedge_find_by_parent(const char *name, size_t *i)
904 {
905
906 rw_enter(&dkwedges_lock, RW_READER);
907 for (; *i < (size_t)ndkwedges; (*i)++) {
908 struct dkwedge_softc *sc;
909 if ((sc = dkwedges[*i]) == NULL)
910 continue;
911 if (strcmp(sc->sc_parent->dk_name, name) != 0)
912 continue;
913 rw_exit(&dkwedges_lock);
914 return sc->sc_dev;
915 }
916 rw_exit(&dkwedges_lock);
917 return NULL;
918 }
919
920 void
921 dkwedge_print_wnames(void)
922 {
923 struct dkwedge_softc *sc;
924 int i;
925
926 rw_enter(&dkwedges_lock, RW_READER);
927 for (i = 0; i < ndkwedges; i++) {
928 if ((sc = dkwedges[i]) == NULL)
929 continue;
930 printf(" wedge:%s", sc->sc_wname);
931 }
932 rw_exit(&dkwedges_lock);
933 }
934
935 /*
936 * We need a dummy object to stuff into the dkwedge discovery method link
937 * set to ensure that there is always at least one object in the set.
938 */
939 static struct dkwedge_discovery_method dummy_discovery_method;
940 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
941
942 /*
943 * dkwedge_init:
944 *
945 * Initialize the disk wedge subsystem.
946 */
947 void
948 dkwedge_init(void)
949 {
950 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
951 struct dkwedge_discovery_method * const *ddmp;
952 struct dkwedge_discovery_method *lddm, *ddm;
953
954 rw_init(&dkwedges_lock);
955 rw_init(&dkwedge_discovery_methods_lock);
956
957 if (config_cfdriver_attach(&dk_cd) != 0)
958 panic("dkwedge: unable to attach cfdriver");
959 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
960 panic("dkwedge: unable to attach cfattach");
961
962 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
963
964 LIST_INIT(&dkwedge_discovery_methods);
965
966 __link_set_foreach(ddmp, dkwedge_methods) {
967 ddm = *ddmp;
968 if (ddm == &dummy_discovery_method)
969 continue;
970 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
971 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
972 ddm, ddm_list);
973 continue;
974 }
975 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
976 if (ddm->ddm_priority == lddm->ddm_priority) {
977 aprint_error("dk-method-%s: method \"%s\" "
978 "already exists at priority %d\n",
979 ddm->ddm_name, lddm->ddm_name,
980 lddm->ddm_priority);
981 /* Not inserted. */
982 break;
983 }
984 if (ddm->ddm_priority < lddm->ddm_priority) {
985 /* Higher priority; insert before. */
986 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
987 break;
988 }
989 if (LIST_NEXT(lddm, ddm_list) == NULL) {
990 /* Last one; insert after. */
991 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
992 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
993 break;
994 }
995 }
996 }
997
998 rw_exit(&dkwedge_discovery_methods_lock);
999 }
1000
1001 #ifdef DKWEDGE_AUTODISCOVER
1002 int dkwedge_autodiscover = 1;
1003 #else
1004 int dkwedge_autodiscover = 0;
1005 #endif
1006
1007 /*
1008 * dkwedge_discover: [exported function]
1009 *
1010 * Discover the wedges on a newly attached disk.
1011 * Remove all unused wedges on the disk first.
1012 */
1013 void
1014 dkwedge_discover(struct disk *pdk)
1015 {
1016 struct dkwedge_discovery_method *ddm;
1017 struct vnode *vp;
1018 int error;
1019 dev_t pdev;
1020
1021 /*
1022 * Require people playing with wedges to enable this explicitly.
1023 */
1024 if (dkwedge_autodiscover == 0)
1025 return;
1026
1027 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
1028
1029 /*
1030 * Use the character device for scanning, the block device
1031 * is busy if there are already wedges attached.
1032 */
1033 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
1034 if (error) {
1035 aprint_error("%s: unable to compute pdev, error = %d\n",
1036 pdk->dk_name, error);
1037 goto out;
1038 }
1039
1040 error = cdevvp(pdev, &vp);
1041 if (error) {
1042 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
1043 pdk->dk_name, error);
1044 goto out;
1045 }
1046
1047 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1048 if (error) {
1049 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
1050 pdk->dk_name, error);
1051 vrele(vp);
1052 goto out;
1053 }
1054
1055 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
1056 if (error) {
1057 if (error != ENXIO)
1058 aprint_error("%s: unable to open device, error = %d\n",
1059 pdk->dk_name, error);
1060 vput(vp);
1061 goto out;
1062 }
1063 VOP_UNLOCK(vp);
1064
1065 /*
1066 * Remove unused wedges
1067 */
1068 dkwedge_delidle(pdk);
1069
1070 /*
1071 * For each supported partition map type, look to see if
1072 * this map type exists. If so, parse it and add the
1073 * corresponding wedges.
1074 */
1075 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
1076 error = (*ddm->ddm_discover)(pdk, vp);
1077 if (error == 0) {
1078 /* Successfully created wedges; we're done. */
1079 break;
1080 }
1081 }
1082
1083 error = vn_close(vp, FREAD, NOCRED);
1084 if (error) {
1085 aprint_error("%s: unable to close device, error = %d\n",
1086 pdk->dk_name, error);
1087 /* We'll just assume the vnode has been cleaned up. */
1088 }
1089
1090 out:
1091 rw_exit(&dkwedge_discovery_methods_lock);
1092 }
1093
1094 /*
1095 * dkwedge_read:
1096 *
1097 * Read some data from the specified disk, used for
1098 * partition discovery.
1099 */
1100 int
1101 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
1102 void *tbuf, size_t len)
1103 {
1104 buf_t *bp;
1105 int error;
1106 bool isopen;
1107 dev_t bdev;
1108 struct vnode *bdvp;
1109
1110 /*
1111 * The kernel cannot read from a character device vnode
1112 * as physio() only handles user memory.
1113 *
1114 * If the block device has already been opened by a wedge
1115 * use that vnode and temporarily bump the open counter.
1116 *
1117 * Otherwise try to open the block device.
1118 */
1119
1120 bdev = devsw_chr2blk(vp->v_rdev);
1121
1122 mutex_enter(&pdk->dk_rawlock);
1123 if (pdk->dk_rawopens != 0) {
1124 KASSERT(pdk->dk_rawvp != NULL);
1125 isopen = true;
1126 ++pdk->dk_rawopens;
1127 bdvp = pdk->dk_rawvp;
1128 error = 0;
1129 } else {
1130 isopen = false;
1131 error = dk_open_parent(bdev, FREAD, &bdvp);
1132 }
1133 mutex_exit(&pdk->dk_rawlock);
1134
1135 if (error)
1136 return error;
1137
1138 bp = getiobuf(bdvp, true);
1139 bp->b_flags = B_READ;
1140 bp->b_cflags = BC_BUSY;
1141 bp->b_dev = bdev;
1142 bp->b_data = tbuf;
1143 bp->b_bufsize = bp->b_bcount = len;
1144 bp->b_blkno = blkno;
1145 bp->b_cylinder = 0;
1146 bp->b_error = 0;
1147
1148 VOP_STRATEGY(bdvp, bp);
1149 error = biowait(bp);
1150 putiobuf(bp);
1151
1152 mutex_enter(&pdk->dk_rawlock);
1153 if (isopen) {
1154 --pdk->dk_rawopens;
1155 } else {
1156 dk_close_parent(bdvp, FREAD);
1157 }
1158 mutex_exit(&pdk->dk_rawlock);
1159
1160 return error;
1161 }
1162
1163 /*
1164 * dkwedge_lookup:
1165 *
1166 * Look up a dkwedge_softc based on the provided dev_t.
1167 *
1168 * Caller must guarantee the wedge is referenced.
1169 */
1170 static struct dkwedge_softc *
1171 dkwedge_lookup(dev_t dev)
1172 {
1173
1174 return device_lookup_private(&dk_cd, minor(dev));
1175 }
1176
1177 static int
1178 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
1179 {
1180 struct vnode *vp;
1181 int error;
1182
1183 error = bdevvp(dev, &vp);
1184 if (error)
1185 return error;
1186
1187 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1188 if (error) {
1189 vrele(vp);
1190 return error;
1191 }
1192 error = VOP_OPEN(vp, mode, NOCRED);
1193 if (error) {
1194 vput(vp);
1195 return error;
1196 }
1197
1198 /* VOP_OPEN() doesn't do this for us. */
1199 if (mode & FWRITE) {
1200 mutex_enter(vp->v_interlock);
1201 vp->v_writecount++;
1202 mutex_exit(vp->v_interlock);
1203 }
1204
1205 VOP_UNLOCK(vp);
1206
1207 *vpp = vp;
1208
1209 return 0;
1210 }
1211
1212 static int
1213 dk_close_parent(struct vnode *vp, int mode)
1214 {
1215 int error;
1216
1217 error = vn_close(vp, mode, NOCRED);
1218 return error;
1219 }
1220
1221 /*
1222 * dkopen: [devsw entry point]
1223 *
1224 * Open a wedge.
1225 */
1226 static int
1227 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
1228 {
1229 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1230 int error = 0;
1231
1232 if (sc == NULL)
1233 return ENXIO;
1234 if (sc->sc_state != DKW_STATE_RUNNING)
1235 return ENXIO;
1236
1237 /*
1238 * We go through a complicated little dance to only open the parent
1239 * vnode once per wedge, no matter how many times the wedge is
1240 * opened. The reason? We see one dkopen() per open call, but
1241 * only dkclose() on the last close.
1242 */
1243 mutex_enter(&sc->sc_dk.dk_openlock);
1244 mutex_enter(&sc->sc_parent->dk_rawlock);
1245 if (sc->sc_dk.dk_openmask == 0) {
1246 error = dkfirstopen(sc, flags);
1247 if (error)
1248 goto out;
1249 } else if (flags & ~sc->sc_mode & FWRITE) {
1250 /*
1251 * The parent is already open, but the previous attempt
1252 * to open it read/write failed and fell back to
1253 * read-only. In that case, we assume the medium is
1254 * read-only and fail to open the wedge read/write.
1255 */
1256 error = EROFS;
1257 goto out;
1258 }
1259 KASSERT(sc->sc_mode != 0);
1260 KASSERTMSG(sc->sc_mode & FREAD, "%s: sc_mode=%x",
1261 device_xname(sc->sc_dev), sc->sc_mode);
1262 KASSERTMSG((flags & FWRITE) ? (sc->sc_mode & FWRITE) : 1,
1263 "%s: flags=%x sc_mode=%x",
1264 device_xname(sc->sc_dev), flags, sc->sc_mode);
1265 if (fmt == S_IFCHR)
1266 sc->sc_dk.dk_copenmask |= 1;
1267 else
1268 sc->sc_dk.dk_bopenmask |= 1;
1269 sc->sc_dk.dk_openmask =
1270 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1271
1272 out: mutex_exit(&sc->sc_parent->dk_rawlock);
1273 mutex_exit(&sc->sc_dk.dk_openlock);
1274 return error;
1275 }
1276
1277 static int
1278 dkfirstopen(struct dkwedge_softc *sc, int flags)
1279 {
1280 struct dkwedge_softc *nsc;
1281 struct vnode *vp;
1282 int mode;
1283 int error;
1284
1285 KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
1286 KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
1287
1288 if (sc->sc_parent->dk_rawopens == 0) {
1289 KASSERT(sc->sc_parent->dk_rawvp == NULL);
1290 /*
1291 * Try open read-write. If this fails for EROFS
1292 * and wedge is read-only, retry to open read-only.
1293 */
1294 mode = FREAD | FWRITE;
1295 error = dk_open_parent(sc->sc_pdev, mode, &vp);
1296 if (error == EROFS && (flags & FWRITE) == 0) {
1297 mode &= ~FWRITE;
1298 error = dk_open_parent(sc->sc_pdev, mode, &vp);
1299 }
1300 if (error)
1301 return error;
1302 KASSERT(vp != NULL);
1303 sc->sc_parent->dk_rawvp = vp;
1304 } else {
1305 /*
1306 * Retrieve mode from an already opened wedge.
1307 *
1308 * At this point, dk_rawopens is bounded by the number
1309 * of dkwedge devices in the system, which is limited
1310 * by autoconf device numbering to INT_MAX. Since
1311 * dk_rawopens is unsigned, this can't overflow.
1312 */
1313 KASSERT(sc->sc_parent->dk_rawopens < UINT_MAX);
1314 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1315 mode = 0;
1316 mutex_enter(&sc->sc_parent->dk_openlock);
1317 LIST_FOREACH(nsc, &sc->sc_parent->dk_wedges, sc_plink) {
1318 if (nsc == sc || nsc->sc_dk.dk_openmask == 0)
1319 continue;
1320 mode = nsc->sc_mode;
1321 break;
1322 }
1323 mutex_exit(&sc->sc_parent->dk_openlock);
1324 }
1325 sc->sc_mode = mode;
1326 sc->sc_parent->dk_rawopens++;
1327
1328 return 0;
1329 }
1330
1331 static void
1332 dklastclose(struct dkwedge_softc *sc)
1333 {
1334
1335 KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
1336 KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
1337 KASSERT(sc->sc_parent->dk_rawopens > 0);
1338 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1339
1340 if (--sc->sc_parent->dk_rawopens == 0) {
1341 struct vnode *const vp = sc->sc_parent->dk_rawvp;
1342 const int mode = sc->sc_mode;
1343
1344 sc->sc_parent->dk_rawvp = NULL;
1345 sc->sc_mode = 0;
1346
1347 dk_close_parent(vp, mode);
1348 }
1349 }
1350
1351 /*
1352 * dkclose: [devsw entry point]
1353 *
1354 * Close a wedge.
1355 */
1356 static int
1357 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1358 {
1359 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1360
1361 if (sc == NULL)
1362 return ENXIO;
1363 if (sc->sc_state != DKW_STATE_RUNNING &&
1364 sc->sc_state != DKW_STATE_DYING)
1365 return ENXIO;
1366
1367 mutex_enter(&sc->sc_dk.dk_openlock);
1368 mutex_enter(&sc->sc_parent->dk_rawlock);
1369
1370 KASSERT(sc->sc_dk.dk_openmask != 0);
1371
1372 if (fmt == S_IFCHR)
1373 sc->sc_dk.dk_copenmask &= ~1;
1374 else
1375 sc->sc_dk.dk_bopenmask &= ~1;
1376 sc->sc_dk.dk_openmask =
1377 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1378
1379 if (sc->sc_dk.dk_openmask == 0) {
1380 dklastclose(sc);
1381 }
1382
1383 mutex_exit(&sc->sc_parent->dk_rawlock);
1384 mutex_exit(&sc->sc_dk.dk_openlock);
1385
1386 return 0;
1387 }
1388
1389 /*
1390 * dkcancel: [devsw entry point]
1391 *
1392 * Cancel any pending I/O operations waiting on a wedge.
1393 */
1394 static int
1395 dkcancel(dev_t dev, int flags, int fmt, struct lwp *l)
1396 {
1397 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1398
1399 KASSERT(sc != NULL);
1400 KASSERT(sc->sc_dev != NULL);
1401 KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1402 KASSERT(sc->sc_state != DKW_STATE_DEAD);
1403
1404 /*
1405 * Disk I/O is expected to complete or fail within a reasonable
1406 * timeframe -- it's storage, not communication. Further, the
1407 * character and block device interface guarantees that prior
1408 * reads and writes have completed or failed by the time close
1409 * returns -- we are not to cancel them here. If the parent
1410 * device's hardware is gone, the parent driver can make them
1411 * fail. Nothing for dk(4) itself to do.
1412 */
1413
1414 return 0;
1415 }
1416
1417 /*
1418 * dkstrategy: [devsw entry point]
1419 *
1420 * Perform I/O based on the wedge I/O strategy.
1421 */
1422 static void
1423 dkstrategy(struct buf *bp)
1424 {
1425 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1426 uint64_t p_size, p_offset;
1427
1428 KASSERT(sc != NULL);
1429 KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1430 KASSERT(sc->sc_state != DKW_STATE_DEAD);
1431 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1432
1433 /* If it's an empty transfer, wake up the top half now. */
1434 if (bp->b_bcount == 0)
1435 goto done;
1436
1437 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1438 p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1439
1440 /* Make sure it's in-range. */
1441 if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1442 goto done;
1443
1444 /* Translate it to the parent's raw LBA. */
1445 bp->b_rawblkno = bp->b_blkno + p_offset;
1446
1447 /* Place it in the queue and start I/O on the unit. */
1448 mutex_enter(&sc->sc_iolock);
1449 disk_wait(&sc->sc_dk);
1450 bufq_put(sc->sc_bufq, bp);
1451 mutex_exit(&sc->sc_iolock);
1452
1453 dkstart(sc);
1454 return;
1455
1456 done:
1457 bp->b_resid = bp->b_bcount;
1458 biodone(bp);
1459 }
1460
1461 /*
1462 * dkstart:
1463 *
1464 * Start I/O that has been enqueued on the wedge.
1465 */
1466 static void
1467 dkstart(struct dkwedge_softc *sc)
1468 {
1469 struct vnode *vp;
1470 struct buf *bp, *nbp;
1471
1472 mutex_enter(&sc->sc_iolock);
1473
1474 /* Do as much work as has been enqueued. */
1475 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1476 if (sc->sc_iostop) {
1477 (void) bufq_get(sc->sc_bufq);
1478 mutex_exit(&sc->sc_iolock);
1479 bp->b_error = ENXIO;
1480 bp->b_resid = bp->b_bcount;
1481 biodone(bp);
1482 mutex_enter(&sc->sc_iolock);
1483 continue;
1484 }
1485
1486 /* fetch an I/O buf with sc_iolock dropped */
1487 mutex_exit(&sc->sc_iolock);
1488 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1489 mutex_enter(&sc->sc_iolock);
1490 if (nbp == NULL) {
1491 /*
1492 * No resources to run this request; leave the
1493 * buffer queued up, and schedule a timer to
1494 * restart the queue in 1/2 a second.
1495 */
1496 if (!sc->sc_iostop)
1497 callout_schedule(&sc->sc_restart_ch, hz/2);
1498 break;
1499 }
1500
1501 /*
1502 * fetch buf, this can fail if another thread
1503 * has already processed the queue, it can also
1504 * return a completely different buf.
1505 */
1506 bp = bufq_get(sc->sc_bufq);
1507 if (bp == NULL) {
1508 mutex_exit(&sc->sc_iolock);
1509 putiobuf(nbp);
1510 mutex_enter(&sc->sc_iolock);
1511 continue;
1512 }
1513
1514 /* Instrumentation. */
1515 disk_busy(&sc->sc_dk);
1516
1517 /* release lock for VOP_STRATEGY */
1518 mutex_exit(&sc->sc_iolock);
1519
1520 nbp->b_data = bp->b_data;
1521 nbp->b_flags = bp->b_flags;
1522 nbp->b_oflags = bp->b_oflags;
1523 nbp->b_cflags = bp->b_cflags;
1524 nbp->b_iodone = dkiodone;
1525 nbp->b_proc = bp->b_proc;
1526 nbp->b_blkno = bp->b_rawblkno;
1527 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1528 nbp->b_bcount = bp->b_bcount;
1529 nbp->b_private = bp;
1530 BIO_COPYPRIO(nbp, bp);
1531
1532 vp = nbp->b_vp;
1533 if ((nbp->b_flags & B_READ) == 0) {
1534 mutex_enter(vp->v_interlock);
1535 vp->v_numoutput++;
1536 mutex_exit(vp->v_interlock);
1537 }
1538 VOP_STRATEGY(vp, nbp);
1539
1540 mutex_enter(&sc->sc_iolock);
1541 }
1542
1543 mutex_exit(&sc->sc_iolock);
1544 }
1545
1546 /*
1547 * dkiodone:
1548 *
1549 * I/O to a wedge has completed; alert the top half.
1550 */
1551 static void
1552 dkiodone(struct buf *bp)
1553 {
1554 struct buf *obp = bp->b_private;
1555 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1556
1557 if (bp->b_error != 0)
1558 obp->b_error = bp->b_error;
1559 obp->b_resid = bp->b_resid;
1560 putiobuf(bp);
1561
1562 mutex_enter(&sc->sc_iolock);
1563 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1564 obp->b_flags & B_READ);
1565 mutex_exit(&sc->sc_iolock);
1566
1567 biodone(obp);
1568
1569 /* Kick the queue in case there is more work we can do. */
1570 dkstart(sc);
1571 }
1572
1573 /*
1574 * dkrestart:
1575 *
1576 * Restart the work queue after it was stalled due to
1577 * a resource shortage. Invoked via a callout.
1578 */
1579 static void
1580 dkrestart(void *v)
1581 {
1582 struct dkwedge_softc *sc = v;
1583
1584 dkstart(sc);
1585 }
1586
1587 /*
1588 * dkminphys:
1589 *
1590 * Call parent's minphys function.
1591 */
1592 static void
1593 dkminphys(struct buf *bp)
1594 {
1595 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1596 dev_t dev;
1597
1598 dev = bp->b_dev;
1599 bp->b_dev = sc->sc_pdev;
1600 if (sc->sc_parent->dk_driver && sc->sc_parent->dk_driver->d_minphys)
1601 (*sc->sc_parent->dk_driver->d_minphys)(bp);
1602 else
1603 minphys(bp);
1604 bp->b_dev = dev;
1605 }
1606
1607 /*
1608 * dkread: [devsw entry point]
1609 *
1610 * Read from a wedge.
1611 */
1612 static int
1613 dkread(dev_t dev, struct uio *uio, int flags)
1614 {
1615 struct dkwedge_softc *sc __diagused = dkwedge_lookup(dev);
1616
1617 KASSERT(sc != NULL);
1618 KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1619 KASSERT(sc->sc_state != DKW_STATE_DEAD);
1620
1621 return physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio);
1622 }
1623
1624 /*
1625 * dkwrite: [devsw entry point]
1626 *
1627 * Write to a wedge.
1628 */
1629 static int
1630 dkwrite(dev_t dev, struct uio *uio, int flags)
1631 {
1632 struct dkwedge_softc *sc __diagused = dkwedge_lookup(dev);
1633
1634 KASSERT(sc != NULL);
1635 KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1636 KASSERT(sc->sc_state != DKW_STATE_DEAD);
1637
1638 return physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio);
1639 }
1640
1641 /*
1642 * dkioctl: [devsw entry point]
1643 *
1644 * Perform an ioctl request on a wedge.
1645 */
1646 static int
1647 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1648 {
1649 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1650 int error = 0;
1651
1652 KASSERT(sc != NULL);
1653 KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1654 KASSERT(sc->sc_state != DKW_STATE_DEAD);
1655 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1656
1657 /*
1658 * We pass NODEV instead of our device to indicate we don't
1659 * want to handle disklabel ioctls
1660 */
1661 error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
1662 if (error != EPASSTHROUGH)
1663 return error;
1664
1665 error = 0;
1666
1667 switch (cmd) {
1668 case DIOCGSTRATEGY:
1669 case DIOCGCACHE:
1670 case DIOCCACHESYNC:
1671 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, data, flag,
1672 l != NULL ? l->l_cred : NOCRED);
1673 break;
1674 case DIOCGWEDGEINFO: {
1675 struct dkwedge_info *dkw = data;
1676
1677 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1678 sizeof(dkw->dkw_devname));
1679 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1680 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1681 strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
1682 sizeof(dkw->dkw_parent));
1683 dkw->dkw_offset = sc->sc_offset;
1684 dkw->dkw_size = dkwedge_size(sc);
1685 strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
1686
1687 break;
1688 }
1689 case DIOCGSECTORALIGN: {
1690 struct disk_sectoralign *dsa = data;
1691 uint32_t r;
1692
1693 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, dsa, flag,
1694 l != NULL ? l->l_cred : NOCRED);
1695 if (error)
1696 break;
1697
1698 r = sc->sc_offset % dsa->dsa_alignment;
1699 if (r < dsa->dsa_firstaligned)
1700 dsa->dsa_firstaligned = dsa->dsa_firstaligned - r;
1701 else
1702 dsa->dsa_firstaligned = (dsa->dsa_firstaligned +
1703 dsa->dsa_alignment) - r;
1704 break;
1705 }
1706 default:
1707 error = ENOTTY;
1708 }
1709
1710 return error;
1711 }
1712
1713 /*
1714 * dkdiscard: [devsw entry point]
1715 *
1716 * Perform a discard-range request on a wedge.
1717 */
1718 static int
1719 dkdiscard(dev_t dev, off_t pos, off_t len)
1720 {
1721 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1722 uint64_t size = dkwedge_size(sc);
1723 unsigned shift;
1724 off_t offset, maxlen;
1725 int error;
1726
1727 KASSERT(sc != NULL);
1728 KASSERT(sc->sc_state != DKW_STATE_LARVAL);
1729 KASSERT(sc->sc_state != DKW_STATE_DEAD);
1730 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1731
1732 /* XXX check bounds on size/offset up front */
1733 shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
1734 KASSERT(__type_fit(off_t, size));
1735 KASSERT(__type_fit(off_t, sc->sc_offset));
1736 KASSERT(0 <= sc->sc_offset);
1737 KASSERT(size <= (__type_max(off_t) >> shift));
1738 KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - size));
1739 offset = ((off_t)sc->sc_offset << shift);
1740 maxlen = ((off_t)size << shift);
1741
1742 if (len > maxlen)
1743 return EINVAL;
1744 if (pos > (maxlen - len))
1745 return EINVAL;
1746
1747 pos += offset;
1748
1749 vn_lock(sc->sc_parent->dk_rawvp, LK_EXCLUSIVE | LK_RETRY);
1750 error = VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
1751 VOP_UNLOCK(sc->sc_parent->dk_rawvp);
1752
1753 return error;
1754 }
1755
1756 /*
1757 * dksize: [devsw entry point]
1758 *
1759 * Query the size of a wedge for the purpose of performing a dump
1760 * or for swapping to.
1761 */
1762 static int
1763 dksize(dev_t dev)
1764 {
1765 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1766 uint64_t p_size;
1767 int rv = -1;
1768
1769 if (sc == NULL)
1770 return -1;
1771 if (sc->sc_state != DKW_STATE_RUNNING)
1772 return -1;
1773
1774 /* Our content type is static, no need to open the device. */
1775
1776 p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1777 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1778 /* Saturate if we are larger than INT_MAX. */
1779 if (p_size > INT_MAX)
1780 rv = INT_MAX;
1781 else
1782 rv = (int)p_size;
1783 }
1784
1785 return rv;
1786 }
1787
1788 /*
1789 * dkdump: [devsw entry point]
1790 *
1791 * Perform a crash dump to a wedge.
1792 */
1793 static int
1794 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1795 {
1796 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1797 const struct bdevsw *bdev;
1798 uint64_t p_size, p_offset;
1799
1800 if (sc == NULL)
1801 return ENXIO;
1802 if (sc->sc_state != DKW_STATE_RUNNING)
1803 return ENXIO;
1804
1805 /* Our content type is static, no need to open the device. */
1806
1807 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
1808 strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0 &&
1809 strcmp(sc->sc_ptype, DKW_PTYPE_CGD) != 0)
1810 return ENXIO;
1811 if (size % DEV_BSIZE != 0)
1812 return EINVAL;
1813
1814 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1815 p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
1816
1817 if (blkno < 0 || blkno + size/DEV_BSIZE > p_size) {
1818 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1819 "p_size (%" PRIu64 ")\n", __func__, blkno,
1820 size/DEV_BSIZE, p_size);
1821 return EINVAL;
1822 }
1823
1824 bdev = bdevsw_lookup(sc->sc_pdev);
1825 return (*bdev->d_dump)(sc->sc_pdev, blkno + p_offset, va, size);
1826 }
1827
1828 /*
1829 * config glue
1830 */
1831
1832 /*
1833 * dkwedge_find_partition
1834 *
1835 * Find wedge corresponding to the specified parent name
1836 * and offset/length.
1837 */
1838 device_t
1839 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
1840 {
1841 struct dkwedge_softc *sc;
1842 int i;
1843 device_t wedge = NULL;
1844
1845 rw_enter(&dkwedges_lock, RW_READER);
1846 for (i = 0; i < ndkwedges; i++) {
1847 if ((sc = dkwedges[i]) == NULL)
1848 continue;
1849 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
1850 sc->sc_offset == startblk &&
1851 dkwedge_size(sc) == nblks) {
1852 if (wedge) {
1853 printf("WARNING: double match for boot wedge "
1854 "(%s, %s)\n",
1855 device_xname(wedge),
1856 device_xname(sc->sc_dev));
1857 continue;
1858 }
1859 wedge = sc->sc_dev;
1860 }
1861 }
1862 rw_exit(&dkwedges_lock);
1863
1864 return wedge;
1865 }
1866
1867 const char *
1868 dkwedge_get_parent_name(dev_t dev)
1869 {
1870 /* XXX: perhaps do this in lookup? */
1871 int bmaj = bdevsw_lookup_major(&dk_bdevsw);
1872 int cmaj = cdevsw_lookup_major(&dk_cdevsw);
1873
1874 if (major(dev) != bmaj && major(dev) != cmaj)
1875 return NULL;
1876 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1877 if (sc == NULL)
1878 return NULL;
1879 return sc->sc_parent->dk_name;
1880 }
1881