Home | History | Annotate | Line # | Download | only in dkwedge
dk.c revision 1.168
      1 /*	$NetBSD: dk.c,v 1.168 2023/05/22 14:59:50 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.168 2023/05/22 14:59:50 riastradh Exp $");
     34 
     35 #ifdef _KERNEL_OPT
     36 #include "opt_dkwedge.h"
     37 #endif
     38 
     39 #include <sys/param.h>
     40 #include <sys/types.h>
     41 
     42 #include <sys/buf.h>
     43 #include <sys/bufq.h>
     44 #include <sys/callout.h>
     45 #include <sys/conf.h>
     46 #include <sys/device.h>
     47 #include <sys/disk.h>
     48 #include <sys/disklabel.h>
     49 #include <sys/errno.h>
     50 #include <sys/fcntl.h>
     51 #include <sys/ioctl.h>
     52 #include <sys/kauth.h>
     53 #include <sys/kernel.h>
     54 #include <sys/malloc.h>
     55 #include <sys/pool.h>
     56 #include <sys/proc.h>
     57 #include <sys/rwlock.h>
     58 #include <sys/stat.h>
     59 #include <sys/systm.h>
     60 #include <sys/vnode.h>
     61 
     62 #include <miscfs/specfs/specdev.h>
     63 
     64 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
     65 
     66 typedef enum {
     67 	DKW_STATE_LARVAL	= 0,
     68 	DKW_STATE_RUNNING	= 1,
     69 	DKW_STATE_DYING		= 2,
     70 	DKW_STATE_DEAD		= 666
     71 } dkwedge_state_t;
     72 
     73 struct dkwedge_softc {
     74 	device_t	sc_dev;	/* pointer to our pseudo-device */
     75 	struct cfdata	sc_cfdata;	/* our cfdata structure */
     76 	uint8_t		sc_wname[128];	/* wedge name (Unicode, UTF-8) */
     77 
     78 	dkwedge_state_t sc_state;	/* state this wedge is in */
     79 
     80 	struct disk	*sc_parent;	/* parent disk */
     81 	daddr_t		sc_offset;	/* LBA offset of wedge in parent */
     82 	krwlock_t	sc_sizelock;
     83 	uint64_t	sc_size;	/* size of wedge in blocks */
     84 	char		sc_ptype[32];	/* partition type */
     85 	dev_t		sc_pdev;	/* cached parent's dev_t */
     86 					/* link on parent's wedge list */
     87 	LIST_ENTRY(dkwedge_softc) sc_plink;
     88 
     89 	struct disk	sc_dk;		/* our own disk structure */
     90 	struct bufq_state *sc_bufq;	/* buffer queue */
     91 	struct callout	sc_restart_ch;	/* callout to restart I/O */
     92 
     93 	kmutex_t	sc_iolock;
     94 	bool		sc_iostop;	/* don't schedule restart */
     95 	int		sc_mode;	/* parent open mode */
     96 };
     97 
     98 static int	dkwedge_match(device_t, cfdata_t, void *);
     99 static void	dkwedge_attach(device_t, device_t, void *);
    100 static int	dkwedge_detach(device_t, int);
    101 
    102 static void	dk_set_geometry(struct dkwedge_softc *, struct disk *);
    103 
    104 static void	dkstart(struct dkwedge_softc *);
    105 static void	dkiodone(struct buf *);
    106 static void	dkrestart(void *);
    107 static void	dkminphys(struct buf *);
    108 
    109 static int	dkfirstopen(struct dkwedge_softc *, int);
    110 static void	dklastclose(struct dkwedge_softc *);
    111 static int	dkwedge_detach(device_t, int);
    112 static void	dkwedge_delall1(struct disk *, bool);
    113 static int	dkwedge_del1(struct dkwedge_info *, int);
    114 static int	dk_open_parent(dev_t, int, struct vnode **);
    115 static int	dk_close_parent(struct vnode *, int);
    116 
    117 static dev_type_open(dkopen);
    118 static dev_type_close(dkclose);
    119 static dev_type_cancel(dkcancel);
    120 static dev_type_read(dkread);
    121 static dev_type_write(dkwrite);
    122 static dev_type_ioctl(dkioctl);
    123 static dev_type_strategy(dkstrategy);
    124 static dev_type_dump(dkdump);
    125 static dev_type_size(dksize);
    126 static dev_type_discard(dkdiscard);
    127 
    128 CFDRIVER_DECL(dk, DV_DISK, NULL);
    129 CFATTACH_DECL3_NEW(dk, 0,
    130     dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
    131     DVF_DETACH_SHUTDOWN);
    132 
    133 const struct bdevsw dk_bdevsw = {
    134 	.d_open = dkopen,
    135 	.d_close = dkclose,
    136 	.d_cancel = dkcancel,
    137 	.d_strategy = dkstrategy,
    138 	.d_ioctl = dkioctl,
    139 	.d_dump = dkdump,
    140 	.d_psize = dksize,
    141 	.d_discard = dkdiscard,
    142 	.d_cfdriver = &dk_cd,
    143 	.d_devtounit = dev_minor_unit,
    144 	.d_flag = D_DISK | D_MPSAFE
    145 };
    146 
    147 const struct cdevsw dk_cdevsw = {
    148 	.d_open = dkopen,
    149 	.d_close = dkclose,
    150 	.d_cancel = dkcancel,
    151 	.d_read = dkread,
    152 	.d_write = dkwrite,
    153 	.d_ioctl = dkioctl,
    154 	.d_stop = nostop,
    155 	.d_tty = notty,
    156 	.d_poll = nopoll,
    157 	.d_mmap = nommap,
    158 	.d_kqfilter = nokqfilter,
    159 	.d_discard = dkdiscard,
    160 	.d_cfdriver = &dk_cd,
    161 	.d_devtounit = dev_minor_unit,
    162 	.d_flag = D_DISK | D_MPSAFE
    163 };
    164 
    165 static struct dkwedge_softc **dkwedges;
    166 static u_int ndkwedges;
    167 static krwlock_t dkwedges_lock;
    168 
    169 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
    170 static krwlock_t dkwedge_discovery_methods_lock;
    171 
    172 /*
    173  * dkwedge_match:
    174  *
    175  *	Autoconfiguration match function for pseudo-device glue.
    176  */
    177 static int
    178 dkwedge_match(device_t parent, cfdata_t match, void *aux)
    179 {
    180 
    181 	/* Pseudo-device; always present. */
    182 	return 1;
    183 }
    184 
    185 /*
    186  * dkwedge_attach:
    187  *
    188  *	Autoconfiguration attach function for pseudo-device glue.
    189  */
    190 static void
    191 dkwedge_attach(device_t parent, device_t self, void *aux)
    192 {
    193 	struct dkwedge_softc *sc = aux;
    194 	struct disk *pdk = sc->sc_parent;
    195 	int unit = device_unit(self);
    196 
    197 	KASSERTMSG(unit >= 0, "unit=%d", unit);
    198 
    199 	if (!pmf_device_register(self, NULL, NULL))
    200 		aprint_error_dev(self, "couldn't establish power handler\n");
    201 
    202 	mutex_enter(&pdk->dk_openlock);
    203 	rw_enter(&dkwedges_lock, RW_WRITER);
    204 	KASSERTMSG(unit < ndkwedges, "unit=%d ndkwedges=%u", unit, ndkwedges);
    205 	KASSERTMSG(sc == dkwedges[unit], "sc=%p dkwedges[%d]=%p",
    206 	    sc, unit, dkwedges[unit]);
    207 	KASSERTMSG(sc->sc_dev == NULL, "sc=%p sc->sc_dev=%p", sc, sc->sc_dev);
    208 	sc->sc_dev = self;
    209 	rw_exit(&dkwedges_lock);
    210 	mutex_exit(&pdk->dk_openlock);
    211 
    212 	disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
    213 	mutex_enter(&pdk->dk_openlock);
    214 	dk_set_geometry(sc, pdk);
    215 	mutex_exit(&pdk->dk_openlock);
    216 	disk_attach(&sc->sc_dk);
    217 
    218 	/* Disk wedge is ready for use! */
    219 	device_set_private(self, sc);
    220 	sc->sc_state = DKW_STATE_RUNNING;
    221 }
    222 
    223 /*
    224  * dkwedge_compute_pdev:
    225  *
    226  *	Compute the parent disk's dev_t.
    227  */
    228 static int
    229 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
    230 {
    231 	const char *name, *cp;
    232 	devmajor_t pmaj;
    233 	int punit;
    234 	char devname[16];
    235 
    236 	name = pname;
    237 	switch (type) {
    238 	case VBLK:
    239 		pmaj = devsw_name2blk(name, devname, sizeof(devname));
    240 		break;
    241 	case VCHR:
    242 		pmaj = devsw_name2chr(name, devname, sizeof(devname));
    243 		break;
    244 	default:
    245 		pmaj = NODEVMAJOR;
    246 		break;
    247 	}
    248 	if (pmaj == NODEVMAJOR)
    249 		return ENXIO;
    250 
    251 	name += strlen(devname);
    252 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
    253 		punit = (punit * 10) + (*cp - '0');
    254 	if (cp == name) {
    255 		/* Invalid parent disk name. */
    256 		return ENXIO;
    257 	}
    258 
    259 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
    260 
    261 	return 0;
    262 }
    263 
    264 /*
    265  * dkwedge_array_expand:
    266  *
    267  *	Expand the dkwedges array.
    268  *
    269  *	Releases and reacquires dkwedges_lock as a writer.
    270  */
    271 static int
    272 dkwedge_array_expand(void)
    273 {
    274 
    275 	const unsigned incr = 16;
    276 	unsigned newcnt, oldcnt;
    277 	struct dkwedge_softc **newarray = NULL, **oldarray = NULL;
    278 
    279 	KASSERT(rw_write_held(&dkwedges_lock));
    280 
    281 	oldcnt = ndkwedges;
    282 	oldarray = dkwedges;
    283 
    284 	if (oldcnt >= INT_MAX - incr)
    285 		return ENFILE;	/* XXX */
    286 	newcnt = oldcnt + incr;
    287 
    288 	rw_exit(&dkwedges_lock);
    289 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
    290 	    M_WAITOK|M_ZERO);
    291 	rw_enter(&dkwedges_lock, RW_WRITER);
    292 
    293 	if (ndkwedges != oldcnt || dkwedges != oldarray) {
    294 		oldarray = NULL; /* already recycled */
    295 		goto out;
    296 	}
    297 
    298 	if (oldarray != NULL)
    299 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
    300 	dkwedges = newarray;
    301 	newarray = NULL;	/* transferred to dkwedges */
    302 	ndkwedges = newcnt;
    303 
    304 out:	rw_exit(&dkwedges_lock);
    305 	if (oldarray != NULL)
    306 		free(oldarray, M_DKWEDGE);
    307 	if (newarray != NULL)
    308 		free(newarray, M_DKWEDGE);
    309 	rw_enter(&dkwedges_lock, RW_WRITER);
    310 	return 0;
    311 }
    312 
    313 static void
    314 dkwedge_size_init(struct dkwedge_softc *sc, uint64_t size)
    315 {
    316 
    317 	rw_init(&sc->sc_sizelock);
    318 	sc->sc_size = size;
    319 }
    320 
    321 static void
    322 dkwedge_size_fini(struct dkwedge_softc *sc)
    323 {
    324 
    325 	rw_destroy(&sc->sc_sizelock);
    326 }
    327 
    328 static uint64_t
    329 dkwedge_size(struct dkwedge_softc *sc)
    330 {
    331 	uint64_t size;
    332 
    333 	rw_enter(&sc->sc_sizelock, RW_READER);
    334 	size = sc->sc_size;
    335 	rw_exit(&sc->sc_sizelock);
    336 
    337 	return size;
    338 }
    339 
    340 static void
    341 dkwedge_size_increase(struct dkwedge_softc *sc, uint64_t size)
    342 {
    343 
    344 	KASSERT(mutex_owned(&sc->sc_parent->dk_openlock));
    345 
    346 	rw_enter(&sc->sc_sizelock, RW_WRITER);
    347 	KASSERTMSG(size >= sc->sc_size,
    348 	    "decreasing dkwedge size from %"PRIu64" to %"PRIu64,
    349 	    sc->sc_size, size);
    350 	sc->sc_size = size;
    351 	rw_exit(&sc->sc_sizelock);
    352 }
    353 
    354 static void
    355 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
    356 {
    357 	struct disk *dk = &sc->sc_dk;
    358 	struct disk_geom *dg = &dk->dk_geom;
    359 
    360 	KASSERT(mutex_owned(&pdk->dk_openlock));
    361 
    362 	memset(dg, 0, sizeof(*dg));
    363 
    364 	dg->dg_secperunit = dkwedge_size(sc);
    365 	dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
    366 
    367 	/* fake numbers, 1 cylinder is 1 MB with default sector size */
    368 	dg->dg_nsectors = 32;
    369 	dg->dg_ntracks = 64;
    370 	dg->dg_ncylinders =
    371 	    dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
    372 
    373 	disk_set_info(sc->sc_dev, dk, NULL);
    374 }
    375 
    376 /*
    377  * dkwedge_add:		[exported function]
    378  *
    379  *	Add a disk wedge based on the provided information.
    380  *
    381  *	The incoming dkw_devname[] is ignored, instead being
    382  *	filled in and returned to the caller.
    383  */
    384 int
    385 dkwedge_add(struct dkwedge_info *dkw)
    386 {
    387 	struct dkwedge_softc *sc, *lsc;
    388 	struct disk *pdk;
    389 	u_int unit;
    390 	int error;
    391 	dev_t pdev;
    392 	device_t dev __diagused;
    393 
    394 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
    395 	pdk = disk_find(dkw->dkw_parent);
    396 	if (pdk == NULL)
    397 		return ENXIO;
    398 
    399 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
    400 	if (error)
    401 		return error;
    402 
    403 	if (dkw->dkw_offset < 0)
    404 		return EINVAL;
    405 
    406 	/*
    407 	 * Check for an existing wedge at the same disk offset. Allow
    408 	 * updating a wedge if the only change is the size, and the new
    409 	 * size is larger than the old.
    410 	 */
    411 	sc = NULL;
    412 	mutex_enter(&pdk->dk_openlock);
    413 	LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    414 		if (lsc->sc_offset != dkw->dkw_offset)
    415 			continue;
    416 		if (strcmp(lsc->sc_wname, dkw->dkw_wname) != 0)
    417 			break;
    418 		if (strcmp(lsc->sc_ptype, dkw->dkw_ptype) != 0)
    419 			break;
    420 		if (dkwedge_size(lsc) > dkw->dkw_size)
    421 			break;
    422 		if (lsc->sc_dev == NULL)
    423 			break;
    424 
    425 		sc = lsc;
    426 		device_acquire(sc->sc_dev);
    427 		dkwedge_size_increase(sc, dkw->dkw_size);
    428 		dk_set_geometry(sc, pdk);
    429 
    430 		break;
    431 	}
    432 	mutex_exit(&pdk->dk_openlock);
    433 
    434 	if (sc != NULL)
    435 		goto announce;
    436 
    437 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
    438 	sc->sc_state = DKW_STATE_LARVAL;
    439 	sc->sc_parent = pdk;
    440 	sc->sc_pdev = pdev;
    441 	sc->sc_offset = dkw->dkw_offset;
    442 	dkwedge_size_init(sc, dkw->dkw_size);
    443 
    444 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
    445 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
    446 
    447 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
    448 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
    449 
    450 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
    451 
    452 	callout_init(&sc->sc_restart_ch, 0);
    453 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
    454 
    455 	mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
    456 
    457 	/*
    458 	 * Wedge will be added; increment the wedge count for the parent.
    459 	 * Only allow this to happen if RAW_PART is the only thing open.
    460 	 */
    461 	mutex_enter(&pdk->dk_openlock);
    462 	if (pdk->dk_openmask & ~(1 << RAW_PART))
    463 		error = EBUSY;
    464 	else {
    465 		/* Check for wedge overlap. */
    466 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    467 			/* XXX arithmetic overflow */
    468 			uint64_t size = dkwedge_size(sc);
    469 			uint64_t lsize = dkwedge_size(lsc);
    470 			daddr_t lastblk = sc->sc_offset + size - 1;
    471 			daddr_t llastblk = lsc->sc_offset + lsize - 1;
    472 
    473 			if (sc->sc_offset >= lsc->sc_offset &&
    474 			    sc->sc_offset <= llastblk) {
    475 				/* Overlaps the tail of the existing wedge. */
    476 				break;
    477 			}
    478 			if (lastblk >= lsc->sc_offset &&
    479 			    lastblk <= llastblk) {
    480 				/* Overlaps the head of the existing wedge. */
    481 			    	break;
    482 			}
    483 		}
    484 		if (lsc != NULL) {
    485 			if (sc->sc_offset == lsc->sc_offset &&
    486 			    dkwedge_size(sc) == dkwedge_size(lsc) &&
    487 			    strcmp(sc->sc_wname, lsc->sc_wname) == 0)
    488 				error = EEXIST;
    489 			else
    490 				error = EINVAL;
    491 		} else {
    492 			pdk->dk_nwedges++;
    493 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
    494 		}
    495 	}
    496 	mutex_exit(&pdk->dk_openlock);
    497 	if (error) {
    498 		mutex_destroy(&sc->sc_iolock);
    499 		bufq_free(sc->sc_bufq);
    500 		dkwedge_size_fini(sc);
    501 		free(sc, M_DKWEDGE);
    502 		return error;
    503 	}
    504 
    505 	/* Fill in our cfdata for the pseudo-device glue. */
    506 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
    507 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
    508 	/* sc->sc_cfdata.cf_unit set below */
    509 	sc->sc_cfdata.cf_fstate = FSTATE_NOTFOUND; /* use chosen cf_unit */
    510 
    511 	/* Insert the larval wedge into the array. */
    512 	rw_enter(&dkwedges_lock, RW_WRITER);
    513 	for (error = 0;;) {
    514 		struct dkwedge_softc **scpp;
    515 
    516 		/*
    517 		 * Check for a duplicate wname while searching for
    518 		 * a slot.
    519 		 */
    520 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
    521 			if (dkwedges[unit] == NULL) {
    522 				if (scpp == NULL) {
    523 					scpp = &dkwedges[unit];
    524 					sc->sc_cfdata.cf_unit = unit;
    525 				}
    526 			} else {
    527 				/* XXX Unicode. */
    528 				if (strcmp(dkwedges[unit]->sc_wname,
    529 					sc->sc_wname) == 0) {
    530 					error = EEXIST;
    531 					break;
    532 				}
    533 			}
    534 		}
    535 		if (error)
    536 			break;
    537 		KASSERT(unit == ndkwedges);
    538 		if (scpp == NULL) {
    539 			error = dkwedge_array_expand();
    540 			if (error)
    541 				break;
    542 		} else {
    543 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
    544 			*scpp = sc;
    545 			break;
    546 		}
    547 	}
    548 	rw_exit(&dkwedges_lock);
    549 	if (error) {
    550 		mutex_enter(&pdk->dk_openlock);
    551 		pdk->dk_nwedges--;
    552 		LIST_REMOVE(sc, sc_plink);
    553 		mutex_exit(&pdk->dk_openlock);
    554 
    555 		mutex_destroy(&sc->sc_iolock);
    556 		bufq_free(sc->sc_bufq);
    557 		dkwedge_size_fini(sc);
    558 		free(sc, M_DKWEDGE);
    559 		return error;
    560 	}
    561 
    562 	/*
    563 	 * Now that we know the unit #, attach a pseudo-device for
    564 	 * this wedge instance.  This will provide us with the
    565 	 * device_t necessary for glue to other parts of the system.
    566 	 *
    567 	 * This should never fail, unless we're almost totally out of
    568 	 * memory.
    569 	 */
    570 	if ((dev = config_attach_pseudo_acquire(&sc->sc_cfdata, sc)) == NULL) {
    571 		aprint_error("%s%u: unable to attach pseudo-device\n",
    572 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
    573 
    574 		rw_enter(&dkwedges_lock, RW_WRITER);
    575 		KASSERT(dkwedges[sc->sc_cfdata.cf_unit] == sc);
    576 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
    577 		rw_exit(&dkwedges_lock);
    578 
    579 		mutex_enter(&pdk->dk_openlock);
    580 		pdk->dk_nwedges--;
    581 		LIST_REMOVE(sc, sc_plink);
    582 		mutex_exit(&pdk->dk_openlock);
    583 
    584 		mutex_destroy(&sc->sc_iolock);
    585 		bufq_free(sc->sc_bufq);
    586 		dkwedge_size_fini(sc);
    587 		free(sc, M_DKWEDGE);
    588 		return ENOMEM;
    589 	}
    590 
    591 	KASSERT(dev == sc->sc_dev);
    592 
    593 announce:
    594 	/* Announce our arrival. */
    595 	aprint_normal(
    596 	    "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
    597 	    device_xname(sc->sc_dev), pdk->dk_name,
    598 	    sc->sc_wname,	/* XXX Unicode */
    599 	    dkwedge_size(sc), sc->sc_offset,
    600 	    sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
    601 
    602 	/* Return the devname to the caller. */
    603 	strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
    604 	    sizeof(dkw->dkw_devname));
    605 
    606 	device_release(sc->sc_dev);
    607 	return 0;
    608 }
    609 
    610 /*
    611  * dkwedge_find_acquire:
    612  *
    613  *	Lookup a disk wedge based on the provided information.
    614  *	NOTE: We look up the wedge based on the wedge devname,
    615  *	not wname.
    616  *
    617  *	Return NULL if the wedge is not found, otherwise return
    618  *	the wedge's softc.  Assign the wedge's unit number to unitp
    619  *	if unitp is not NULL.  The wedge's sc_dev is referenced and
    620  *	must be released by device_release or equivalent.
    621  */
    622 static struct dkwedge_softc *
    623 dkwedge_find_acquire(struct dkwedge_info *dkw, u_int *unitp)
    624 {
    625 	struct dkwedge_softc *sc = NULL;
    626 	u_int unit;
    627 
    628 	/* Find our softc. */
    629 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
    630 	rw_enter(&dkwedges_lock, RW_READER);
    631 	for (unit = 0; unit < ndkwedges; unit++) {
    632 		if ((sc = dkwedges[unit]) != NULL &&
    633 		    sc->sc_dev != NULL &&
    634 		    strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
    635 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
    636 			device_acquire(sc->sc_dev);
    637 			break;
    638 		}
    639 	}
    640 	rw_exit(&dkwedges_lock);
    641 	if (sc == NULL)
    642 		return NULL;
    643 
    644 	if (unitp != NULL)
    645 		*unitp = unit;
    646 
    647 	return sc;
    648 }
    649 
    650 /*
    651  * dkwedge_del:		[exported function]
    652  *
    653  *	Delete a disk wedge based on the provided information.
    654  *	NOTE: We look up the wedge based on the wedge devname,
    655  *	not wname.
    656  */
    657 int
    658 dkwedge_del(struct dkwedge_info *dkw)
    659 {
    660 
    661 	return dkwedge_del1(dkw, 0);
    662 }
    663 
    664 int
    665 dkwedge_del1(struct dkwedge_info *dkw, int flags)
    666 {
    667 	struct dkwedge_softc *sc = NULL;
    668 
    669 	/* Find our softc. */
    670 	if ((sc = dkwedge_find_acquire(dkw, NULL)) == NULL)
    671 		return ESRCH;
    672 
    673 	return config_detach_release(sc->sc_dev, flags);
    674 }
    675 
    676 /*
    677  * dkwedge_detach:
    678  *
    679  *	Autoconfiguration detach function for pseudo-device glue.
    680  */
    681 static int
    682 dkwedge_detach(device_t self, int flags)
    683 {
    684 	struct dkwedge_softc *const sc = device_private(self);
    685 	const u_int unit = device_unit(self);
    686 	int bmaj, cmaj, error;
    687 
    688 	error = disk_begindetach(&sc->sc_dk, /*lastclose*/NULL, self, flags);
    689 	if (error)
    690 		return error;
    691 
    692 	/* Mark the wedge as dying. */
    693 	sc->sc_state = DKW_STATE_DYING;
    694 
    695 	pmf_device_deregister(self);
    696 
    697 	/* Kill any pending restart. */
    698 	mutex_enter(&sc->sc_iolock);
    699 	sc->sc_iostop = true;
    700 	mutex_exit(&sc->sc_iolock);
    701 	callout_halt(&sc->sc_restart_ch, NULL);
    702 
    703 	/* Locate the wedge major numbers. */
    704 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
    705 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
    706 
    707 	/* Nuke the vnodes for any open instances. */
    708 	vdevgone(bmaj, unit, unit, VBLK);
    709 	vdevgone(cmaj, unit, unit, VCHR);
    710 
    711 	/*
    712 	 * At this point, all block device opens have been closed,
    713 	 * synchronously flushing any buffered writes; and all
    714 	 * character device I/O operations have completed
    715 	 * synchronously, and character device opens have been closed.
    716 	 *
    717 	 * So there can be no more opens or queued buffers by now.
    718 	 */
    719 	KASSERT(sc->sc_dk.dk_openmask == 0);
    720 	KASSERT(bufq_peek(sc->sc_bufq) == NULL);
    721 	bufq_drain(sc->sc_bufq);
    722 
    723 	/* Announce our departure. */
    724 	aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
    725 	    sc->sc_parent->dk_name,
    726 	    sc->sc_wname);	/* XXX Unicode */
    727 
    728 	mutex_enter(&sc->sc_parent->dk_openlock);
    729 	sc->sc_parent->dk_nwedges--;
    730 	LIST_REMOVE(sc, sc_plink);
    731 	mutex_exit(&sc->sc_parent->dk_openlock);
    732 
    733 	/* Delete our buffer queue. */
    734 	bufq_free(sc->sc_bufq);
    735 
    736 	/* Detach from the disk list. */
    737 	disk_detach(&sc->sc_dk);
    738 	disk_destroy(&sc->sc_dk);
    739 
    740 	/* Poof. */
    741 	rw_enter(&dkwedges_lock, RW_WRITER);
    742 	KASSERT(dkwedges[unit] == sc);
    743 	dkwedges[unit] = NULL;
    744 	sc->sc_state = DKW_STATE_DEAD;
    745 	rw_exit(&dkwedges_lock);
    746 
    747 	mutex_destroy(&sc->sc_iolock);
    748 	dkwedge_size_fini(sc);
    749 
    750 	free(sc, M_DKWEDGE);
    751 
    752 	return 0;
    753 }
    754 
    755 /*
    756  * dkwedge_delall:	[exported function]
    757  *
    758  *	Forcibly delete all of the wedges on the specified disk.  Used
    759  *	when a disk is being detached.
    760  */
    761 void
    762 dkwedge_delall(struct disk *pdk)
    763 {
    764 
    765 	dkwedge_delall1(pdk, /*idleonly*/false);
    766 }
    767 
    768 /*
    769  * dkwedge_delidle:	[exported function]
    770  *
    771  *	Delete all of the wedges on the specified disk if idle.  Used
    772  *	by ioctl(DIOCRMWEDGES).
    773  */
    774 void
    775 dkwedge_delidle(struct disk *pdk)
    776 {
    777 
    778 	dkwedge_delall1(pdk, /*idleonly*/true);
    779 }
    780 
    781 static void
    782 dkwedge_delall1(struct disk *pdk, bool idleonly)
    783 {
    784 	struct dkwedge_softc *sc;
    785 	int flags;
    786 
    787 	flags = DETACH_QUIET;
    788 	if (!idleonly)
    789 		flags |= DETACH_FORCE;
    790 
    791 	for (;;) {
    792 		mutex_enter(&pdk->dk_rawlock); /* for sc->sc_dk.dk_openmask */
    793 		mutex_enter(&pdk->dk_openlock);
    794 		LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    795 			/*
    796 			 * Wedge is not yet created.  This is a race --
    797 			 * it may as well have been added just after we
    798 			 * deleted all the wedges, so pretend it's not
    799 			 * here yet.
    800 			 */
    801 			if (sc->sc_dev == NULL)
    802 				continue;
    803 			if (!idleonly || sc->sc_dk.dk_openmask == 0) {
    804 				device_acquire(sc->sc_dev);
    805 				break;
    806 			}
    807 		}
    808 		if (sc == NULL) {
    809 			KASSERT(idleonly || pdk->dk_nwedges == 0);
    810 			mutex_exit(&pdk->dk_openlock);
    811 			mutex_exit(&pdk->dk_rawlock);
    812 			return;
    813 		}
    814 		mutex_exit(&pdk->dk_openlock);
    815 		mutex_exit(&pdk->dk_rawlock);
    816 		(void)config_detach_release(sc->sc_dev, flags);
    817 	}
    818 }
    819 
    820 /*
    821  * dkwedge_list:	[exported function]
    822  *
    823  *	List all of the wedges on a particular disk.
    824  */
    825 int
    826 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
    827 {
    828 	struct uio uio;
    829 	struct iovec iov;
    830 	struct dkwedge_softc *sc;
    831 	struct dkwedge_info dkw;
    832 	int error = 0;
    833 
    834 	iov.iov_base = dkwl->dkwl_buf;
    835 	iov.iov_len = dkwl->dkwl_bufsize;
    836 
    837 	uio.uio_iov = &iov;
    838 	uio.uio_iovcnt = 1;
    839 	uio.uio_offset = 0;
    840 	uio.uio_resid = dkwl->dkwl_bufsize;
    841 	uio.uio_rw = UIO_READ;
    842 	KASSERT(l == curlwp);
    843 	uio.uio_vmspace = l->l_proc->p_vmspace;
    844 
    845 	dkwl->dkwl_ncopied = 0;
    846 
    847 	mutex_enter(&pdk->dk_openlock);
    848 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    849 		if (uio.uio_resid < sizeof(dkw))
    850 			break;
    851 
    852 		if (sc->sc_dev == NULL)
    853 			continue;
    854 
    855 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    856 		    sizeof(dkw.dkw_devname));
    857 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
    858 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
    859 		strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
    860 		    sizeof(dkw.dkw_parent));
    861 		dkw.dkw_offset = sc->sc_offset;
    862 		dkw.dkw_size = dkwedge_size(sc);
    863 		strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
    864 
    865 		/*
    866 		 * Acquire a device reference so this wedge doesn't go
    867 		 * away before our next iteration in LIST_FOREACH, and
    868 		 * then release the lock for uiomove.
    869 		 */
    870 		device_acquire(sc->sc_dev);
    871 		mutex_exit(&pdk->dk_openlock);
    872 		error = uiomove(&dkw, sizeof(dkw), &uio);
    873 		mutex_enter(&pdk->dk_openlock);
    874 		device_release(sc->sc_dev);
    875 		if (error)
    876 			break;
    877 
    878 		dkwl->dkwl_ncopied++;
    879 	}
    880 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
    881 	mutex_exit(&pdk->dk_openlock);
    882 
    883 	return error;
    884 }
    885 
    886 static device_t
    887 dkwedge_find_by_wname_acquire(const char *wname)
    888 {
    889 	device_t dv = NULL;
    890 	struct dkwedge_softc *sc;
    891 	int i;
    892 
    893 	rw_enter(&dkwedges_lock, RW_READER);
    894 	for (i = 0; i < ndkwedges; i++) {
    895 		if ((sc = dkwedges[i]) == NULL || sc->sc_dev == NULL)
    896 			continue;
    897 		if (strcmp(sc->sc_wname, wname) == 0) {
    898 			if (dv != NULL) {
    899 				printf(
    900 				    "WARNING: double match for wedge name %s "
    901 				    "(%s, %s)\n", wname, device_xname(dv),
    902 				    device_xname(sc->sc_dev));
    903 				continue;
    904 			}
    905 			device_acquire(sc->sc_dev);
    906 			dv = sc->sc_dev;
    907 		}
    908 	}
    909 	rw_exit(&dkwedges_lock);
    910 	return dv;
    911 }
    912 
    913 static device_t
    914 dkwedge_find_by_parent_acquire(const char *name, size_t *i)
    915 {
    916 
    917 	rw_enter(&dkwedges_lock, RW_READER);
    918 	for (; *i < (size_t)ndkwedges; (*i)++) {
    919 		struct dkwedge_softc *sc;
    920 		if ((sc = dkwedges[*i]) == NULL || sc->sc_dev == NULL)
    921 			continue;
    922 		if (strcmp(sc->sc_parent->dk_name, name) != 0)
    923 			continue;
    924 		device_acquire(sc->sc_dev);
    925 		rw_exit(&dkwedges_lock);
    926 		return sc->sc_dev;
    927 	}
    928 	rw_exit(&dkwedges_lock);
    929 	return NULL;
    930 }
    931 
    932 /* XXX unsafe */
    933 device_t
    934 dkwedge_find_by_wname(const char *wname)
    935 {
    936 	device_t dv;
    937 
    938 	if ((dv = dkwedge_find_by_wname_acquire(wname)) == NULL)
    939 		return NULL;
    940 	device_release(dv);
    941 	return dv;
    942 }
    943 
    944 /* XXX unsafe */
    945 device_t
    946 dkwedge_find_by_parent(const char *name, size_t *i)
    947 {
    948 	device_t dv;
    949 
    950 	if ((dv = dkwedge_find_by_parent_acquire(name, i)) == NULL)
    951 		return NULL;
    952 	device_release(dv);
    953 	return dv;
    954 }
    955 
    956 void
    957 dkwedge_print_wnames(void)
    958 {
    959 	struct dkwedge_softc *sc;
    960 	int i;
    961 
    962 	rw_enter(&dkwedges_lock, RW_READER);
    963 	for (i = 0; i < ndkwedges; i++) {
    964 		if ((sc = dkwedges[i]) == NULL || sc->sc_dev == NULL)
    965 			continue;
    966 		printf(" wedge:%s", sc->sc_wname);
    967 	}
    968 	rw_exit(&dkwedges_lock);
    969 }
    970 
    971 /*
    972  * We need a dummy object to stuff into the dkwedge discovery method link
    973  * set to ensure that there is always at least one object in the set.
    974  */
    975 static struct dkwedge_discovery_method dummy_discovery_method;
    976 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
    977 
    978 /*
    979  * dkwedge_init:
    980  *
    981  *	Initialize the disk wedge subsystem.
    982  */
    983 void
    984 dkwedge_init(void)
    985 {
    986 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
    987 	struct dkwedge_discovery_method * const *ddmp;
    988 	struct dkwedge_discovery_method *lddm, *ddm;
    989 
    990 	rw_init(&dkwedges_lock);
    991 	rw_init(&dkwedge_discovery_methods_lock);
    992 
    993 	if (config_cfdriver_attach(&dk_cd) != 0)
    994 		panic("dkwedge: unable to attach cfdriver");
    995 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
    996 		panic("dkwedge: unable to attach cfattach");
    997 
    998 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
    999 
   1000 	LIST_INIT(&dkwedge_discovery_methods);
   1001 
   1002 	__link_set_foreach(ddmp, dkwedge_methods) {
   1003 		ddm = *ddmp;
   1004 		if (ddm == &dummy_discovery_method)
   1005 			continue;
   1006 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
   1007 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
   1008 			    ddm, ddm_list);
   1009 			continue;
   1010 		}
   1011 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
   1012 			if (ddm->ddm_priority == lddm->ddm_priority) {
   1013 				aprint_error("dk-method-%s: method \"%s\" "
   1014 				    "already exists at priority %d\n",
   1015 				    ddm->ddm_name, lddm->ddm_name,
   1016 				    lddm->ddm_priority);
   1017 				/* Not inserted. */
   1018 				break;
   1019 			}
   1020 			if (ddm->ddm_priority < lddm->ddm_priority) {
   1021 				/* Higher priority; insert before. */
   1022 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
   1023 				break;
   1024 			}
   1025 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
   1026 				/* Last one; insert after. */
   1027 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
   1028 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
   1029 				break;
   1030 			}
   1031 		}
   1032 	}
   1033 
   1034 	rw_exit(&dkwedge_discovery_methods_lock);
   1035 }
   1036 
   1037 #ifdef DKWEDGE_AUTODISCOVER
   1038 int	dkwedge_autodiscover = 1;
   1039 #else
   1040 int	dkwedge_autodiscover = 0;
   1041 #endif
   1042 
   1043 /*
   1044  * dkwedge_discover:	[exported function]
   1045  *
   1046  *	Discover the wedges on a newly attached disk.
   1047  *	Remove all unused wedges on the disk first.
   1048  */
   1049 void
   1050 dkwedge_discover(struct disk *pdk)
   1051 {
   1052 	struct dkwedge_discovery_method *ddm;
   1053 	struct vnode *vp;
   1054 	int error;
   1055 	dev_t pdev;
   1056 
   1057 	/*
   1058 	 * Require people playing with wedges to enable this explicitly.
   1059 	 */
   1060 	if (dkwedge_autodiscover == 0)
   1061 		return;
   1062 
   1063 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
   1064 
   1065 	/*
   1066 	 * Use the character device for scanning, the block device
   1067 	 * is busy if there are already wedges attached.
   1068 	 */
   1069 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
   1070 	if (error) {
   1071 		aprint_error("%s: unable to compute pdev, error = %d\n",
   1072 		    pdk->dk_name, error);
   1073 		goto out;
   1074 	}
   1075 
   1076 	error = cdevvp(pdev, &vp);
   1077 	if (error) {
   1078 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
   1079 		    pdk->dk_name, error);
   1080 		goto out;
   1081 	}
   1082 
   1083 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1084 	if (error) {
   1085 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
   1086 		    pdk->dk_name, error);
   1087 		vrele(vp);
   1088 		goto out;
   1089 	}
   1090 
   1091 	error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
   1092 	if (error) {
   1093 		if (error != ENXIO)
   1094 			aprint_error("%s: unable to open device, error = %d\n",
   1095 			    pdk->dk_name, error);
   1096 		vput(vp);
   1097 		goto out;
   1098 	}
   1099 	VOP_UNLOCK(vp);
   1100 
   1101 	/*
   1102 	 * Remove unused wedges
   1103 	 */
   1104 	dkwedge_delidle(pdk);
   1105 
   1106 	/*
   1107 	 * For each supported partition map type, look to see if
   1108 	 * this map type exists.  If so, parse it and add the
   1109 	 * corresponding wedges.
   1110 	 */
   1111 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
   1112 		error = (*ddm->ddm_discover)(pdk, vp);
   1113 		if (error == 0) {
   1114 			/* Successfully created wedges; we're done. */
   1115 			break;
   1116 		}
   1117 	}
   1118 
   1119 	error = vn_close(vp, FREAD, NOCRED);
   1120 	if (error) {
   1121 		aprint_error("%s: unable to close device, error = %d\n",
   1122 		    pdk->dk_name, error);
   1123 		/* We'll just assume the vnode has been cleaned up. */
   1124 	}
   1125 
   1126 out:
   1127 	rw_exit(&dkwedge_discovery_methods_lock);
   1128 }
   1129 
   1130 /*
   1131  * dkwedge_read:
   1132  *
   1133  *	Read some data from the specified disk, used for
   1134  *	partition discovery.
   1135  */
   1136 int
   1137 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
   1138     void *tbuf, size_t len)
   1139 {
   1140 	buf_t *bp;
   1141 	int error;
   1142 	bool isopen;
   1143 	dev_t bdev;
   1144 	struct vnode *bdvp;
   1145 
   1146 	/*
   1147 	 * The kernel cannot read from a character device vnode
   1148 	 * as physio() only handles user memory.
   1149 	 *
   1150 	 * If the block device has already been opened by a wedge
   1151 	 * use that vnode and temporarily bump the open counter.
   1152 	 *
   1153 	 * Otherwise try to open the block device.
   1154 	 */
   1155 
   1156 	bdev = devsw_chr2blk(vp->v_rdev);
   1157 
   1158 	mutex_enter(&pdk->dk_rawlock);
   1159 	if (pdk->dk_rawopens != 0) {
   1160 		KASSERT(pdk->dk_rawvp != NULL);
   1161 		isopen = true;
   1162 		++pdk->dk_rawopens;
   1163 		bdvp = pdk->dk_rawvp;
   1164 		error = 0;
   1165 	} else {
   1166 		isopen = false;
   1167 		error = dk_open_parent(bdev, FREAD, &bdvp);
   1168 	}
   1169 	mutex_exit(&pdk->dk_rawlock);
   1170 
   1171 	if (error)
   1172 		return error;
   1173 
   1174 	bp = getiobuf(bdvp, true);
   1175 	bp->b_flags = B_READ;
   1176 	bp->b_cflags = BC_BUSY;
   1177 	bp->b_dev = bdev;
   1178 	bp->b_data = tbuf;
   1179 	bp->b_bufsize = bp->b_bcount = len;
   1180 	bp->b_blkno = blkno;
   1181 	bp->b_cylinder = 0;
   1182 	bp->b_error = 0;
   1183 
   1184 	VOP_STRATEGY(bdvp, bp);
   1185 	error = biowait(bp);
   1186 	putiobuf(bp);
   1187 
   1188 	mutex_enter(&pdk->dk_rawlock);
   1189 	if (isopen) {
   1190 		--pdk->dk_rawopens;
   1191 	} else {
   1192 		dk_close_parent(bdvp, FREAD);
   1193 	}
   1194 	mutex_exit(&pdk->dk_rawlock);
   1195 
   1196 	return error;
   1197 }
   1198 
   1199 /*
   1200  * dkwedge_lookup:
   1201  *
   1202  *	Look up a dkwedge_softc based on the provided dev_t.
   1203  *
   1204  *	Caller must guarantee the wedge is referenced.
   1205  */
   1206 static struct dkwedge_softc *
   1207 dkwedge_lookup(dev_t dev)
   1208 {
   1209 
   1210 	return device_lookup_private(&dk_cd, minor(dev));
   1211 }
   1212 
   1213 static struct dkwedge_softc *
   1214 dkwedge_lookup_acquire(dev_t dev)
   1215 {
   1216 	device_t dv = device_lookup_acquire(&dk_cd, minor(dev));
   1217 
   1218 	if (dv == NULL)
   1219 		return NULL;
   1220 	return device_private(dv);
   1221 }
   1222 
   1223 static int
   1224 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
   1225 {
   1226 	struct vnode *vp;
   1227 	int error;
   1228 
   1229 	error = bdevvp(dev, &vp);
   1230 	if (error)
   1231 		return error;
   1232 
   1233 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1234 	if (error) {
   1235 		vrele(vp);
   1236 		return error;
   1237 	}
   1238 	error = VOP_OPEN(vp, mode, NOCRED);
   1239 	if (error) {
   1240 		vput(vp);
   1241 		return error;
   1242 	}
   1243 
   1244 	/* VOP_OPEN() doesn't do this for us. */
   1245 	if (mode & FWRITE) {
   1246 		mutex_enter(vp->v_interlock);
   1247 		vp->v_writecount++;
   1248 		mutex_exit(vp->v_interlock);
   1249 	}
   1250 
   1251 	VOP_UNLOCK(vp);
   1252 
   1253 	*vpp = vp;
   1254 
   1255 	return 0;
   1256 }
   1257 
   1258 static int
   1259 dk_close_parent(struct vnode *vp, int mode)
   1260 {
   1261 	int error;
   1262 
   1263 	error = vn_close(vp, mode, NOCRED);
   1264 	return error;
   1265 }
   1266 
   1267 /*
   1268  * dkopen:		[devsw entry point]
   1269  *
   1270  *	Open a wedge.
   1271  */
   1272 static int
   1273 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
   1274 {
   1275 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1276 	int error = 0;
   1277 
   1278 	if (sc == NULL)
   1279 		return ENXIO;
   1280 	KASSERT(sc->sc_dev != NULL);
   1281 	KASSERT(sc->sc_state == DKW_STATE_RUNNING);
   1282 
   1283 	/*
   1284 	 * We go through a complicated little dance to only open the parent
   1285 	 * vnode once per wedge, no matter how many times the wedge is
   1286 	 * opened.  The reason?  We see one dkopen() per open call, but
   1287 	 * only dkclose() on the last close.
   1288 	 */
   1289 	mutex_enter(&sc->sc_dk.dk_openlock);
   1290 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1291 	if (sc->sc_dk.dk_openmask == 0) {
   1292 		error = dkfirstopen(sc, flags);
   1293 		if (error)
   1294 			goto out;
   1295 	} else if (flags & ~sc->sc_mode & FWRITE) {
   1296 		/*
   1297 		 * The parent is already open, but the previous attempt
   1298 		 * to open it read/write failed and fell back to
   1299 		 * read-only.  In that case, we assume the medium is
   1300 		 * read-only and fail to open the wedge read/write.
   1301 		 */
   1302 		error = EROFS;
   1303 		goto out;
   1304 	}
   1305 	KASSERT(sc->sc_mode != 0);
   1306 	KASSERTMSG(sc->sc_mode & FREAD, "%s: sc_mode=%x",
   1307 	    device_xname(sc->sc_dev), sc->sc_mode);
   1308 	KASSERTMSG((flags & FWRITE) ? (sc->sc_mode & FWRITE) : 1,
   1309 	    "%s: flags=%x sc_mode=%x",
   1310 	    device_xname(sc->sc_dev), flags, sc->sc_mode);
   1311 	if (fmt == S_IFCHR)
   1312 		sc->sc_dk.dk_copenmask |= 1;
   1313 	else
   1314 		sc->sc_dk.dk_bopenmask |= 1;
   1315 	sc->sc_dk.dk_openmask =
   1316 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1317 
   1318 out:	mutex_exit(&sc->sc_parent->dk_rawlock);
   1319 	mutex_exit(&sc->sc_dk.dk_openlock);
   1320 	return error;
   1321 }
   1322 
   1323 static int
   1324 dkfirstopen(struct dkwedge_softc *sc, int flags)
   1325 {
   1326 	struct dkwedge_softc *nsc;
   1327 	struct vnode *vp;
   1328 	int mode;
   1329 	int error;
   1330 
   1331 	KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
   1332 	KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
   1333 
   1334 	if (sc->sc_parent->dk_rawopens == 0) {
   1335 		KASSERT(sc->sc_parent->dk_rawvp == NULL);
   1336 		/*
   1337 		 * Try open read-write. If this fails for EROFS
   1338 		 * and wedge is read-only, retry to open read-only.
   1339 		 */
   1340 		mode = FREAD | FWRITE;
   1341 		error = dk_open_parent(sc->sc_pdev, mode, &vp);
   1342 		if (error == EROFS && (flags & FWRITE) == 0) {
   1343 			mode &= ~FWRITE;
   1344 			error = dk_open_parent(sc->sc_pdev, mode, &vp);
   1345 		}
   1346 		if (error)
   1347 			return error;
   1348 		KASSERT(vp != NULL);
   1349 		sc->sc_parent->dk_rawvp = vp;
   1350 	} else {
   1351 		/*
   1352 		 * Retrieve mode from an already opened wedge.
   1353 		 *
   1354 		 * At this point, dk_rawopens is bounded by the number
   1355 		 * of dkwedge devices in the system, which is limited
   1356 		 * by autoconf device numbering to INT_MAX.  Since
   1357 		 * dk_rawopens is unsigned, this can't overflow.
   1358 		 */
   1359 		KASSERT(sc->sc_parent->dk_rawopens < UINT_MAX);
   1360 		KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1361 		mode = 0;
   1362 		mutex_enter(&sc->sc_parent->dk_openlock);
   1363 		LIST_FOREACH(nsc, &sc->sc_parent->dk_wedges, sc_plink) {
   1364 			if (nsc == sc || nsc->sc_dk.dk_openmask == 0)
   1365 				continue;
   1366 			mode = nsc->sc_mode;
   1367 			break;
   1368 		}
   1369 		mutex_exit(&sc->sc_parent->dk_openlock);
   1370 	}
   1371 	sc->sc_mode = mode;
   1372 	sc->sc_parent->dk_rawopens++;
   1373 
   1374 	return 0;
   1375 }
   1376 
   1377 static void
   1378 dklastclose(struct dkwedge_softc *sc)
   1379 {
   1380 
   1381 	KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
   1382 	KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
   1383 	KASSERT(sc->sc_parent->dk_rawopens > 0);
   1384 	KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1385 
   1386 	if (--sc->sc_parent->dk_rawopens == 0) {
   1387 		struct vnode *const vp = sc->sc_parent->dk_rawvp;
   1388 		const int mode = sc->sc_mode;
   1389 
   1390 		sc->sc_parent->dk_rawvp = NULL;
   1391 		sc->sc_mode = 0;
   1392 
   1393 		dk_close_parent(vp, mode);
   1394 	}
   1395 }
   1396 
   1397 /*
   1398  * dkclose:		[devsw entry point]
   1399  *
   1400  *	Close a wedge.
   1401  */
   1402 static int
   1403 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
   1404 {
   1405 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1406 
   1407 	/*
   1408 	 * dkclose can be called even if dkopen didn't succeed, so we
   1409 	 * have to handle the same possibility that the wedge may not
   1410 	 * exist.
   1411 	 */
   1412 	if (sc == NULL)
   1413 		return ENXIO;
   1414 	KASSERT(sc->sc_dev != NULL);
   1415 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1416 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1417 
   1418 	mutex_enter(&sc->sc_dk.dk_openlock);
   1419 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1420 
   1421 	KASSERT(sc->sc_dk.dk_openmask != 0);
   1422 
   1423 	if (fmt == S_IFCHR)
   1424 		sc->sc_dk.dk_copenmask &= ~1;
   1425 	else
   1426 		sc->sc_dk.dk_bopenmask &= ~1;
   1427 	sc->sc_dk.dk_openmask =
   1428 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1429 
   1430 	if (sc->sc_dk.dk_openmask == 0) {
   1431 		dklastclose(sc);
   1432 	}
   1433 
   1434 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1435 	mutex_exit(&sc->sc_dk.dk_openlock);
   1436 
   1437 	return 0;
   1438 }
   1439 
   1440 /*
   1441  * dkcancel:		[devsw entry point]
   1442  *
   1443  *	Cancel any pending I/O operations waiting on a wedge.
   1444  */
   1445 static int
   1446 dkcancel(dev_t dev, int flags, int fmt, struct lwp *l)
   1447 {
   1448 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1449 
   1450 	KASSERT(sc != NULL);
   1451 	KASSERT(sc->sc_dev != NULL);
   1452 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1453 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1454 
   1455 	/*
   1456 	 * Disk I/O is expected to complete or fail within a reasonable
   1457 	 * timeframe -- it's storage, not communication.  Further, the
   1458 	 * character and block device interface guarantees that prior
   1459 	 * reads and writes have completed or failed by the time close
   1460 	 * returns -- we are not to cancel them here.  If the parent
   1461 	 * device's hardware is gone, the parent driver can make them
   1462 	 * fail.  Nothing for dk(4) itself to do.
   1463 	 */
   1464 
   1465 	return 0;
   1466 }
   1467 
   1468 /*
   1469  * dkstrategy:		[devsw entry point]
   1470  *
   1471  *	Perform I/O based on the wedge I/O strategy.
   1472  */
   1473 static void
   1474 dkstrategy(struct buf *bp)
   1475 {
   1476 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1477 	uint64_t p_size, p_offset;
   1478 
   1479 	KASSERT(sc != NULL);
   1480 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1481 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1482 	KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1483 
   1484 	/* If it's an empty transfer, wake up the top half now. */
   1485 	if (bp->b_bcount == 0)
   1486 		goto done;
   1487 
   1488 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
   1489 	p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
   1490 
   1491 	/* Make sure it's in-range. */
   1492 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
   1493 		goto done;
   1494 
   1495 	/* Translate it to the parent's raw LBA. */
   1496 	bp->b_rawblkno = bp->b_blkno + p_offset;
   1497 
   1498 	/* Place it in the queue and start I/O on the unit. */
   1499 	mutex_enter(&sc->sc_iolock);
   1500 	disk_wait(&sc->sc_dk);
   1501 	bufq_put(sc->sc_bufq, bp);
   1502 	mutex_exit(&sc->sc_iolock);
   1503 
   1504 	dkstart(sc);
   1505 	return;
   1506 
   1507 done:
   1508 	bp->b_resid = bp->b_bcount;
   1509 	biodone(bp);
   1510 }
   1511 
   1512 /*
   1513  * dkstart:
   1514  *
   1515  *	Start I/O that has been enqueued on the wedge.
   1516  */
   1517 static void
   1518 dkstart(struct dkwedge_softc *sc)
   1519 {
   1520 	struct vnode *vp;
   1521 	struct buf *bp, *nbp;
   1522 
   1523 	mutex_enter(&sc->sc_iolock);
   1524 
   1525 	/* Do as much work as has been enqueued. */
   1526 	while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
   1527 		if (sc->sc_iostop) {
   1528 			(void) bufq_get(sc->sc_bufq);
   1529 			mutex_exit(&sc->sc_iolock);
   1530 			bp->b_error = ENXIO;
   1531 			bp->b_resid = bp->b_bcount;
   1532 			biodone(bp);
   1533 			mutex_enter(&sc->sc_iolock);
   1534 			continue;
   1535 		}
   1536 
   1537 		/* fetch an I/O buf with sc_iolock dropped */
   1538 		mutex_exit(&sc->sc_iolock);
   1539 		nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
   1540 		mutex_enter(&sc->sc_iolock);
   1541 		if (nbp == NULL) {
   1542 			/*
   1543 			 * No resources to run this request; leave the
   1544 			 * buffer queued up, and schedule a timer to
   1545 			 * restart the queue in 1/2 a second.
   1546 			 */
   1547 			if (!sc->sc_iostop)
   1548 				callout_schedule(&sc->sc_restart_ch, hz/2);
   1549 			break;
   1550 		}
   1551 
   1552 		/*
   1553 		 * fetch buf, this can fail if another thread
   1554 		 * has already processed the queue, it can also
   1555 		 * return a completely different buf.
   1556 		 */
   1557 		bp = bufq_get(sc->sc_bufq);
   1558 		if (bp == NULL) {
   1559 			mutex_exit(&sc->sc_iolock);
   1560 			putiobuf(nbp);
   1561 			mutex_enter(&sc->sc_iolock);
   1562 			continue;
   1563 		}
   1564 
   1565 		/* Instrumentation. */
   1566 		disk_busy(&sc->sc_dk);
   1567 
   1568 		/* release lock for VOP_STRATEGY */
   1569 		mutex_exit(&sc->sc_iolock);
   1570 
   1571 		nbp->b_data = bp->b_data;
   1572 		nbp->b_flags = bp->b_flags;
   1573 		nbp->b_oflags = bp->b_oflags;
   1574 		nbp->b_cflags = bp->b_cflags;
   1575 		nbp->b_iodone = dkiodone;
   1576 		nbp->b_proc = bp->b_proc;
   1577 		nbp->b_blkno = bp->b_rawblkno;
   1578 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
   1579 		nbp->b_bcount = bp->b_bcount;
   1580 		nbp->b_private = bp;
   1581 		BIO_COPYPRIO(nbp, bp);
   1582 
   1583 		vp = nbp->b_vp;
   1584 		if ((nbp->b_flags & B_READ) == 0) {
   1585 			mutex_enter(vp->v_interlock);
   1586 			vp->v_numoutput++;
   1587 			mutex_exit(vp->v_interlock);
   1588 		}
   1589 		VOP_STRATEGY(vp, nbp);
   1590 
   1591 		mutex_enter(&sc->sc_iolock);
   1592 	}
   1593 
   1594 	mutex_exit(&sc->sc_iolock);
   1595 }
   1596 
   1597 /*
   1598  * dkiodone:
   1599  *
   1600  *	I/O to a wedge has completed; alert the top half.
   1601  */
   1602 static void
   1603 dkiodone(struct buf *bp)
   1604 {
   1605 	struct buf *obp = bp->b_private;
   1606 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
   1607 
   1608 	if (bp->b_error != 0)
   1609 		obp->b_error = bp->b_error;
   1610 	obp->b_resid = bp->b_resid;
   1611 	putiobuf(bp);
   1612 
   1613 	mutex_enter(&sc->sc_iolock);
   1614 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
   1615 	    obp->b_flags & B_READ);
   1616 	mutex_exit(&sc->sc_iolock);
   1617 
   1618 	biodone(obp);
   1619 
   1620 	/* Kick the queue in case there is more work we can do. */
   1621 	dkstart(sc);
   1622 }
   1623 
   1624 /*
   1625  * dkrestart:
   1626  *
   1627  *	Restart the work queue after it was stalled due to
   1628  *	a resource shortage.  Invoked via a callout.
   1629  */
   1630 static void
   1631 dkrestart(void *v)
   1632 {
   1633 	struct dkwedge_softc *sc = v;
   1634 
   1635 	dkstart(sc);
   1636 }
   1637 
   1638 /*
   1639  * dkminphys:
   1640  *
   1641  *	Call parent's minphys function.
   1642  */
   1643 static void
   1644 dkminphys(struct buf *bp)
   1645 {
   1646 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1647 	dev_t dev;
   1648 
   1649 	dev = bp->b_dev;
   1650 	bp->b_dev = sc->sc_pdev;
   1651 	if (sc->sc_parent->dk_driver && sc->sc_parent->dk_driver->d_minphys)
   1652 		(*sc->sc_parent->dk_driver->d_minphys)(bp);
   1653 	else
   1654 		minphys(bp);
   1655 	bp->b_dev = dev;
   1656 }
   1657 
   1658 /*
   1659  * dkread:		[devsw entry point]
   1660  *
   1661  *	Read from a wedge.
   1662  */
   1663 static int
   1664 dkread(dev_t dev, struct uio *uio, int flags)
   1665 {
   1666 	struct dkwedge_softc *sc __diagused = dkwedge_lookup(dev);
   1667 
   1668 	KASSERT(sc != NULL);
   1669 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1670 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1671 
   1672 	return physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio);
   1673 }
   1674 
   1675 /*
   1676  * dkwrite:		[devsw entry point]
   1677  *
   1678  *	Write to a wedge.
   1679  */
   1680 static int
   1681 dkwrite(dev_t dev, struct uio *uio, int flags)
   1682 {
   1683 	struct dkwedge_softc *sc __diagused = dkwedge_lookup(dev);
   1684 
   1685 	KASSERT(sc != NULL);
   1686 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1687 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1688 
   1689 	return physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio);
   1690 }
   1691 
   1692 /*
   1693  * dkioctl:		[devsw entry point]
   1694  *
   1695  *	Perform an ioctl request on a wedge.
   1696  */
   1697 static int
   1698 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1699 {
   1700 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1701 	int error = 0;
   1702 
   1703 	KASSERT(sc != NULL);
   1704 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1705 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1706 	KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1707 
   1708 	/*
   1709 	 * We pass NODEV instead of our device to indicate we don't
   1710 	 * want to handle disklabel ioctls
   1711 	 */
   1712 	error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
   1713 	if (error != EPASSTHROUGH)
   1714 		return error;
   1715 
   1716 	error = 0;
   1717 
   1718 	switch (cmd) {
   1719 	case DIOCGSTRATEGY:
   1720 	case DIOCGCACHE:
   1721 	case DIOCCACHESYNC:
   1722 		error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, data, flag,
   1723 		    l != NULL ? l->l_cred : NOCRED);
   1724 		break;
   1725 	case DIOCGWEDGEINFO: {
   1726 		struct dkwedge_info *dkw = data;
   1727 
   1728 		strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
   1729 		    sizeof(dkw->dkw_devname));
   1730 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
   1731 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
   1732 		strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
   1733 		    sizeof(dkw->dkw_parent));
   1734 		dkw->dkw_offset = sc->sc_offset;
   1735 		dkw->dkw_size = dkwedge_size(sc);
   1736 		strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
   1737 
   1738 		break;
   1739 	}
   1740 	case DIOCGSECTORALIGN: {
   1741 		struct disk_sectoralign *dsa = data;
   1742 		uint32_t r;
   1743 
   1744 		error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, dsa, flag,
   1745 		    l != NULL ? l->l_cred : NOCRED);
   1746 		if (error)
   1747 			break;
   1748 
   1749 		r = sc->sc_offset % dsa->dsa_alignment;
   1750 		if (r < dsa->dsa_firstaligned)
   1751 			dsa->dsa_firstaligned = dsa->dsa_firstaligned - r;
   1752 		else
   1753 			dsa->dsa_firstaligned = (dsa->dsa_firstaligned +
   1754 			    dsa->dsa_alignment) - r;
   1755 		break;
   1756 	}
   1757 	default:
   1758 		error = ENOTTY;
   1759 	}
   1760 
   1761 	return error;
   1762 }
   1763 
   1764 /*
   1765  * dkdiscard:		[devsw entry point]
   1766  *
   1767  *	Perform a discard-range request on a wedge.
   1768  */
   1769 static int
   1770 dkdiscard(dev_t dev, off_t pos, off_t len)
   1771 {
   1772 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1773 	uint64_t size = dkwedge_size(sc);
   1774 	unsigned shift;
   1775 	off_t offset, maxlen;
   1776 	int error;
   1777 
   1778 	KASSERT(sc != NULL);
   1779 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1780 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1781 	KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1782 
   1783 	/* XXX check bounds on size/offset up front */
   1784 	shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
   1785 	KASSERT(__type_fit(off_t, size));
   1786 	KASSERT(__type_fit(off_t, sc->sc_offset));
   1787 	KASSERT(0 <= sc->sc_offset);
   1788 	KASSERT(size <= (__type_max(off_t) >> shift));
   1789 	KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - size));
   1790 	offset = ((off_t)sc->sc_offset << shift);
   1791 	maxlen = ((off_t)size << shift);
   1792 
   1793 	if (len > maxlen)
   1794 		return EINVAL;
   1795 	if (pos > (maxlen - len))
   1796 		return EINVAL;
   1797 
   1798 	pos += offset;
   1799 
   1800 	vn_lock(sc->sc_parent->dk_rawvp, LK_EXCLUSIVE | LK_RETRY);
   1801 	error = VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
   1802 	VOP_UNLOCK(sc->sc_parent->dk_rawvp);
   1803 
   1804 	return error;
   1805 }
   1806 
   1807 /*
   1808  * dksize:		[devsw entry point]
   1809  *
   1810  *	Query the size of a wedge for the purpose of performing a dump
   1811  *	or for swapping to.
   1812  */
   1813 static int
   1814 dksize(dev_t dev)
   1815 {
   1816 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1817 	uint64_t p_size;
   1818 	int rv = -1;
   1819 
   1820 	if (sc == NULL)
   1821 		return -1;
   1822 	if (sc->sc_state != DKW_STATE_RUNNING)
   1823 		return -1;
   1824 
   1825 	/* Our content type is static, no need to open the device. */
   1826 
   1827 	p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
   1828 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
   1829 		/* Saturate if we are larger than INT_MAX. */
   1830 		if (p_size > INT_MAX)
   1831 			rv = INT_MAX;
   1832 		else
   1833 			rv = (int)p_size;
   1834 	}
   1835 
   1836 	return rv;
   1837 }
   1838 
   1839 /*
   1840  * dkdump:		[devsw entry point]
   1841  *
   1842  *	Perform a crash dump to a wedge.
   1843  */
   1844 static int
   1845 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
   1846 {
   1847 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1848 	const struct bdevsw *bdev;
   1849 	uint64_t p_size, p_offset;
   1850 
   1851 	if (sc == NULL)
   1852 		return ENXIO;
   1853 	if (sc->sc_state != DKW_STATE_RUNNING)
   1854 		return ENXIO;
   1855 
   1856 	/* Our content type is static, no need to open the device. */
   1857 
   1858 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
   1859 	    strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0 &&
   1860 	    strcmp(sc->sc_ptype, DKW_PTYPE_CGD) != 0)
   1861 		return ENXIO;
   1862 	if (size % DEV_BSIZE != 0)
   1863 		return EINVAL;
   1864 
   1865 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
   1866 	p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
   1867 
   1868 	if (blkno < 0 || blkno + size/DEV_BSIZE > p_size) {
   1869 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
   1870 		    "p_size (%" PRIu64 ")\n", __func__, blkno,
   1871 		    size/DEV_BSIZE, p_size);
   1872 		return EINVAL;
   1873 	}
   1874 
   1875 	bdev = bdevsw_lookup(sc->sc_pdev);
   1876 	return (*bdev->d_dump)(sc->sc_pdev, blkno + p_offset, va, size);
   1877 }
   1878 
   1879 /*
   1880  * config glue
   1881  */
   1882 
   1883 /*
   1884  * dkwedge_find_partition
   1885  *
   1886  *	Find wedge corresponding to the specified parent name
   1887  *	and offset/length.
   1888  */
   1889 static device_t
   1890 dkwedge_find_partition_acquire(device_t parent, daddr_t startblk,
   1891     uint64_t nblks)
   1892 {
   1893 	struct dkwedge_softc *sc;
   1894 	int i;
   1895 	device_t wedge = NULL;
   1896 
   1897 	rw_enter(&dkwedges_lock, RW_READER);
   1898 	for (i = 0; i < ndkwedges; i++) {
   1899 		if ((sc = dkwedges[i]) == NULL || sc->sc_dev == NULL)
   1900 			continue;
   1901 		if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
   1902 		    sc->sc_offset == startblk &&
   1903 		    dkwedge_size(sc) == nblks) {
   1904 			if (wedge) {
   1905 				printf("WARNING: double match for boot wedge "
   1906 				    "(%s, %s)\n",
   1907 				    device_xname(wedge),
   1908 				    device_xname(sc->sc_dev));
   1909 				continue;
   1910 			}
   1911 			wedge = sc->sc_dev;
   1912 			device_acquire(wedge);
   1913 		}
   1914 	}
   1915 	rw_exit(&dkwedges_lock);
   1916 
   1917 	return wedge;
   1918 }
   1919 
   1920 /* XXX unsafe */
   1921 device_t
   1922 dkwedge_find_partition(device_t parent, daddr_t startblk,
   1923     uint64_t nblks)
   1924 {
   1925 	device_t dv;
   1926 
   1927 	if ((dv = dkwedge_find_partition_acquire(parent, startblk, nblks))
   1928 	    == NULL)
   1929 		return NULL;
   1930 	device_release(dv);
   1931 	return dv;
   1932 }
   1933 
   1934 const char *
   1935 dkwedge_get_parent_name(dev_t dev)
   1936 {
   1937 	/* XXX: perhaps do this in lookup? */
   1938 	int bmaj = bdevsw_lookup_major(&dk_bdevsw);
   1939 	int cmaj = cdevsw_lookup_major(&dk_cdevsw);
   1940 
   1941 	if (major(dev) != bmaj && major(dev) != cmaj)
   1942 		return NULL;
   1943 
   1944 	struct dkwedge_softc *const sc = dkwedge_lookup_acquire(dev);
   1945 	if (sc == NULL)
   1946 		return NULL;
   1947 	const char *const name = sc->sc_parent->dk_name;
   1948 	device_release(sc->sc_dev);
   1949 	return name;
   1950 }
   1951