Home | History | Annotate | Line # | Download | only in dkwedge
dk.c revision 1.172
      1 /*	$NetBSD: dk.c,v 1.172 2025/03/05 20:24:03 jakllsch Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.172 2025/03/05 20:24:03 jakllsch Exp $");
     34 
     35 #ifdef _KERNEL_OPT
     36 #include "opt_dkwedge.h"
     37 #endif
     38 
     39 #include <sys/param.h>
     40 #include <sys/types.h>
     41 
     42 #include <sys/buf.h>
     43 #include <sys/bufq.h>
     44 #include <sys/callout.h>
     45 #include <sys/conf.h>
     46 #include <sys/device.h>
     47 #include <sys/disk.h>
     48 #include <sys/disklabel.h>
     49 #include <sys/errno.h>
     50 #include <sys/fcntl.h>
     51 #include <sys/ioctl.h>
     52 #include <sys/kauth.h>
     53 #include <sys/kernel.h>
     54 #include <sys/malloc.h>
     55 #include <sys/pool.h>
     56 #include <sys/proc.h>
     57 #include <sys/rwlock.h>
     58 #include <sys/stat.h>
     59 #include <sys/systm.h>
     60 #include <sys/vnode.h>
     61 
     62 #include <miscfs/specfs/specdev.h>
     63 
     64 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
     65 
     66 typedef enum {
     67 	DKW_STATE_LARVAL	= 0,
     68 	DKW_STATE_RUNNING	= 1,
     69 	DKW_STATE_DYING		= 2,
     70 	DKW_STATE_DEAD		= 666
     71 } dkwedge_state_t;
     72 
     73 /*
     74  * Lock order:
     75  *
     76  *	sc->sc_dk.dk_openlock
     77  *	=> sc->sc_parent->dk_rawlock
     78  *	=> sc->sc_parent->dk_openlock
     79  *	=> dkwedges_lock
     80  *	=> sc->sc_sizelock
     81  *
     82  * Locking notes:
     83  *
     84  *	W	dkwedges_lock
     85  *	D	device reference
     86  *	O	sc->sc_dk.dk_openlock
     87  *	P	sc->sc_parent->dk_openlock
     88  *	R	sc->sc_parent->dk_rawlock
     89  *	S	sc->sc_sizelock
     90  *	I	sc->sc_iolock
     91  *	$	stable after initialization
     92  *	1	used only by a single thread
     93  *
     94  * x&y means both x and y must be held to write (with a write lock if
     95  * one is rwlock), and either x or y must be held to read.
     96  */
     97 
     98 struct dkwedge_softc {
     99 	device_t	sc_dev;	/* P&W: pointer to our pseudo-device */
    100 		/* sc_dev is also stable while device is referenced */
    101 	struct cfdata	sc_cfdata;	/* 1: our cfdata structure */
    102 	uint8_t		sc_wname[128];	/* $: wedge name (Unicode, UTF-8) */
    103 
    104 	dkwedge_state_t sc_state;	/* state this wedge is in */
    105 		/* stable while device is referenced */
    106 		/* used only in assertions when stable, and in dump in ddb */
    107 
    108 	struct disk	*sc_parent;	/* $: parent disk */
    109 		/* P: sc_parent->dk_openmask */
    110 		/* P: sc_parent->dk_nwedges */
    111 		/* P: sc_parent->dk_wedges */
    112 		/* R: sc_parent->dk_rawopens */
    113 		/* R: sc_parent->dk_rawvp (also stable while wedge is open) */
    114 	daddr_t		sc_offset;	/* $: LBA offset of wedge in parent */
    115 	krwlock_t	sc_sizelock;
    116 	uint64_t	sc_size;	/* S: size of wedge in blocks */
    117 	char		sc_ptype[32];	/* $: partition type */
    118 	dev_t		sc_pdev;	/* $: cached parent's dev_t */
    119 					/* P: link on parent's wedge list */
    120 	LIST_ENTRY(dkwedge_softc) sc_plink;
    121 
    122 	struct disk	sc_dk;		/* our own disk structure */
    123 		/* O&R: sc_dk.dk_bopenmask */
    124 		/* O&R: sc_dk.dk_copenmask */
    125 		/* O&R: sc_dk.dk_openmask */
    126 	struct bufq_state *sc_bufq;	/* $: buffer queue */
    127 	struct callout	sc_restart_ch;	/* I: callout to restart I/O */
    128 
    129 	kmutex_t	sc_iolock;
    130 	bool		sc_iostop;	/* I: don't schedule restart */
    131 	int		sc_mode;	/* O&R: parent open mode */
    132 };
    133 
    134 static int	dkwedge_match(device_t, cfdata_t, void *);
    135 static void	dkwedge_attach(device_t, device_t, void *);
    136 static int	dkwedge_detach(device_t, int);
    137 
    138 static void	dk_set_geometry(struct dkwedge_softc *, struct disk *);
    139 
    140 static void	dkstart(struct dkwedge_softc *);
    141 static void	dkiodone(struct buf *);
    142 static void	dkrestart(void *);
    143 static void	dkminphys(struct buf *);
    144 
    145 static int	dkfirstopen(struct dkwedge_softc *, int);
    146 static void	dklastclose(struct dkwedge_softc *);
    147 static int	dkwedge_detach(device_t, int);
    148 static void	dkwedge_delall1(struct disk *, bool);
    149 static int	dkwedge_del1(struct dkwedge_info *, int);
    150 static int	dk_open_parent(dev_t, int, struct vnode **);
    151 static int	dk_close_parent(struct vnode *, int);
    152 
    153 static dev_type_open(dkopen);
    154 static dev_type_close(dkclose);
    155 static dev_type_cancel(dkcancel);
    156 static dev_type_read(dkread);
    157 static dev_type_write(dkwrite);
    158 static dev_type_ioctl(dkioctl);
    159 static dev_type_strategy(dkstrategy);
    160 static dev_type_dump(dkdump);
    161 static dev_type_size(dksize);
    162 static dev_type_discard(dkdiscard);
    163 
    164 CFDRIVER_DECL(dk, DV_DISK, NULL);
    165 CFATTACH_DECL3_NEW(dk, 0,
    166     dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
    167     DVF_DETACH_SHUTDOWN);
    168 
    169 const struct bdevsw dk_bdevsw = {
    170 	.d_open = dkopen,
    171 	.d_close = dkclose,
    172 	.d_cancel = dkcancel,
    173 	.d_strategy = dkstrategy,
    174 	.d_ioctl = dkioctl,
    175 	.d_dump = dkdump,
    176 	.d_psize = dksize,
    177 	.d_discard = dkdiscard,
    178 	.d_cfdriver = &dk_cd,
    179 	.d_devtounit = dev_minor_unit,
    180 	.d_flag = D_DISK | D_MPSAFE
    181 };
    182 
    183 const struct cdevsw dk_cdevsw = {
    184 	.d_open = dkopen,
    185 	.d_close = dkclose,
    186 	.d_cancel = dkcancel,
    187 	.d_read = dkread,
    188 	.d_write = dkwrite,
    189 	.d_ioctl = dkioctl,
    190 	.d_stop = nostop,
    191 	.d_tty = notty,
    192 	.d_poll = nopoll,
    193 	.d_mmap = nommap,
    194 	.d_kqfilter = nokqfilter,
    195 	.d_discard = dkdiscard,
    196 	.d_cfdriver = &dk_cd,
    197 	.d_devtounit = dev_minor_unit,
    198 	.d_flag = D_DISK | D_MPSAFE
    199 };
    200 
    201 static struct dkwedge_softc **dkwedges;
    202 static u_int ndkwedges;
    203 static krwlock_t dkwedges_lock;
    204 
    205 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
    206 static krwlock_t dkwedge_discovery_methods_lock;
    207 
    208 /*
    209  * dkwedge_match:
    210  *
    211  *	Autoconfiguration match function for pseudo-device glue.
    212  */
    213 static int
    214 dkwedge_match(device_t parent, cfdata_t match, void *aux)
    215 {
    216 
    217 	/* Pseudo-device; always present. */
    218 	return 1;
    219 }
    220 
    221 /*
    222  * dkwedge_attach:
    223  *
    224  *	Autoconfiguration attach function for pseudo-device glue.
    225  */
    226 static void
    227 dkwedge_attach(device_t parent, device_t self, void *aux)
    228 {
    229 	struct dkwedge_softc *sc = aux;
    230 	struct disk *pdk = sc->sc_parent;
    231 	int unit = device_unit(self);
    232 
    233 	KASSERTMSG(unit >= 0, "unit=%d", unit);
    234 
    235 	if (!pmf_device_register(self, NULL, NULL))
    236 		aprint_error_dev(self, "couldn't establish power handler\n");
    237 
    238 	mutex_enter(&pdk->dk_openlock);
    239 	rw_enter(&dkwedges_lock, RW_WRITER);
    240 	KASSERTMSG(unit < ndkwedges, "unit=%d ndkwedges=%u", unit, ndkwedges);
    241 	KASSERTMSG(sc == dkwedges[unit], "sc=%p dkwedges[%d]=%p",
    242 	    sc, unit, dkwedges[unit]);
    243 	KASSERTMSG(sc->sc_dev == NULL, "sc=%p sc->sc_dev=%p", sc, sc->sc_dev);
    244 	sc->sc_dev = self;
    245 	rw_exit(&dkwedges_lock);
    246 	mutex_exit(&pdk->dk_openlock);
    247 
    248 	disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
    249 	mutex_enter(&pdk->dk_openlock);
    250 	dk_set_geometry(sc, pdk);
    251 	mutex_exit(&pdk->dk_openlock);
    252 	disk_attach(&sc->sc_dk);
    253 
    254 	/* Disk wedge is ready for use! */
    255 	device_set_private(self, sc);
    256 	sc->sc_state = DKW_STATE_RUNNING;
    257 }
    258 
    259 /*
    260  * dkwedge_compute_pdev:
    261  *
    262  *	Compute the parent disk's dev_t.
    263  */
    264 static int
    265 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
    266 {
    267 	const char *name, *cp;
    268 	devmajor_t pmaj;
    269 	int punit;
    270 	char devname[16];
    271 
    272 	name = pname;
    273 	switch (type) {
    274 	case VBLK:
    275 		pmaj = devsw_name2blk(name, devname, sizeof(devname));
    276 		break;
    277 	case VCHR:
    278 		pmaj = devsw_name2chr(name, devname, sizeof(devname));
    279 		break;
    280 	default:
    281 		pmaj = NODEVMAJOR;
    282 		break;
    283 	}
    284 	if (pmaj == NODEVMAJOR)
    285 		return ENXIO;
    286 
    287 	name += strlen(devname);
    288 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
    289 		punit = (punit * 10) + (*cp - '0');
    290 	if (cp == name) {
    291 		/* Invalid parent disk name. */
    292 		return ENXIO;
    293 	}
    294 
    295 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
    296 
    297 	return 0;
    298 }
    299 
    300 /*
    301  * dkwedge_array_expand:
    302  *
    303  *	Expand the dkwedges array.
    304  *
    305  *	Releases and reacquires dkwedges_lock as a writer.
    306  */
    307 static int
    308 dkwedge_array_expand(void)
    309 {
    310 
    311 	const unsigned incr = 16;
    312 	unsigned newcnt, oldcnt;
    313 	struct dkwedge_softc **newarray = NULL, **oldarray = NULL;
    314 
    315 	KASSERT(rw_write_held(&dkwedges_lock));
    316 
    317 	oldcnt = ndkwedges;
    318 	oldarray = dkwedges;
    319 
    320 	if (oldcnt >= INT_MAX - incr)
    321 		return ENFILE;	/* XXX */
    322 	newcnt = oldcnt + incr;
    323 
    324 	rw_exit(&dkwedges_lock);
    325 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
    326 	    M_WAITOK|M_ZERO);
    327 	rw_enter(&dkwedges_lock, RW_WRITER);
    328 
    329 	if (ndkwedges != oldcnt || dkwedges != oldarray) {
    330 		oldarray = NULL; /* already recycled */
    331 		goto out;
    332 	}
    333 
    334 	if (oldarray != NULL)
    335 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
    336 	dkwedges = newarray;
    337 	newarray = NULL;	/* transferred to dkwedges */
    338 	ndkwedges = newcnt;
    339 
    340 out:	rw_exit(&dkwedges_lock);
    341 	if (oldarray != NULL)
    342 		free(oldarray, M_DKWEDGE);
    343 	if (newarray != NULL)
    344 		free(newarray, M_DKWEDGE);
    345 	rw_enter(&dkwedges_lock, RW_WRITER);
    346 	return 0;
    347 }
    348 
    349 static void
    350 dkwedge_size_init(struct dkwedge_softc *sc, uint64_t size)
    351 {
    352 
    353 	rw_init(&sc->sc_sizelock);
    354 	sc->sc_size = size;
    355 }
    356 
    357 static void
    358 dkwedge_size_fini(struct dkwedge_softc *sc)
    359 {
    360 
    361 	rw_destroy(&sc->sc_sizelock);
    362 }
    363 
    364 static uint64_t
    365 dkwedge_size(struct dkwedge_softc *sc)
    366 {
    367 	uint64_t size;
    368 
    369 	rw_enter(&sc->sc_sizelock, RW_READER);
    370 	size = sc->sc_size;
    371 	rw_exit(&sc->sc_sizelock);
    372 
    373 	return size;
    374 }
    375 
    376 static void
    377 dkwedge_size_increase(struct dkwedge_softc *sc, uint64_t size)
    378 {
    379 
    380 	KASSERT(mutex_owned(&sc->sc_parent->dk_openlock));
    381 
    382 	rw_enter(&sc->sc_sizelock, RW_WRITER);
    383 	KASSERTMSG(size >= sc->sc_size,
    384 	    "decreasing dkwedge size from %"PRIu64" to %"PRIu64,
    385 	    sc->sc_size, size);
    386 	sc->sc_size = size;
    387 	rw_exit(&sc->sc_sizelock);
    388 }
    389 
    390 static void
    391 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
    392 {
    393 	struct disk *dk = &sc->sc_dk;
    394 	struct disk_geom *dg = &dk->dk_geom;
    395 
    396 	KASSERT(mutex_owned(&pdk->dk_openlock));
    397 
    398 	memset(dg, 0, sizeof(*dg));
    399 
    400 	dg->dg_secperunit = dkwedge_size(sc);
    401 	dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
    402 
    403 	/* fake numbers, 1 cylinder is 1 MB with default sector size */
    404 	dg->dg_nsectors = 32;
    405 	dg->dg_ntracks = 64;
    406 	dg->dg_ncylinders =
    407 	    dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
    408 
    409 	disk_set_info(sc->sc_dev, dk, NULL);
    410 }
    411 
    412 /*
    413  * dkwedge_add:		[exported function]
    414  *
    415  *	Add a disk wedge based on the provided information.
    416  *
    417  *	The incoming dkw_devname[] is ignored, instead being
    418  *	filled in and returned to the caller.
    419  */
    420 int
    421 dkwedge_add(struct dkwedge_info *dkw)
    422 {
    423 	struct dkwedge_softc *sc, *lsc;
    424 	struct disk *pdk;
    425 	u_int unit;
    426 	int error;
    427 	dev_t pdev;
    428 	device_t dev __diagused;
    429 
    430 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
    431 	pdk = disk_find(dkw->dkw_parent);
    432 	if (pdk == NULL)
    433 		return ENXIO;
    434 
    435 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
    436 	if (error)
    437 		return error;
    438 
    439 	if (dkw->dkw_offset < 0)
    440 		return EINVAL;
    441 
    442 	/*
    443 	 * Check for an existing wedge at the same disk offset. Allow
    444 	 * updating a wedge if the only change is the size, and the new
    445 	 * size is larger than the old.
    446 	 */
    447 	sc = NULL;
    448 	mutex_enter(&pdk->dk_openlock);
    449 	LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    450 		if (lsc->sc_offset != dkw->dkw_offset)
    451 			continue;
    452 		if (strcmp(lsc->sc_wname, dkw->dkw_wname) != 0)
    453 			break;
    454 		if (strcmp(lsc->sc_ptype, dkw->dkw_ptype) != 0)
    455 			break;
    456 		if (dkwedge_size(lsc) > dkw->dkw_size)
    457 			break;
    458 		if (lsc->sc_dev == NULL)
    459 			break;
    460 
    461 		sc = lsc;
    462 		device_acquire(sc->sc_dev);
    463 		dkwedge_size_increase(sc, dkw->dkw_size);
    464 		dk_set_geometry(sc, pdk);
    465 
    466 		break;
    467 	}
    468 	mutex_exit(&pdk->dk_openlock);
    469 
    470 	if (sc != NULL)
    471 		goto announce;
    472 
    473 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
    474 	sc->sc_state = DKW_STATE_LARVAL;
    475 	sc->sc_parent = pdk;
    476 	sc->sc_pdev = pdev;
    477 	sc->sc_offset = dkw->dkw_offset;
    478 	dkwedge_size_init(sc, dkw->dkw_size);
    479 
    480 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
    481 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
    482 
    483 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
    484 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
    485 
    486 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
    487 
    488 	callout_init(&sc->sc_restart_ch, 0);
    489 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
    490 
    491 	mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
    492 
    493 	/*
    494 	 * Wedge will be added; increment the wedge count for the parent.
    495 	 * Only allow this to happen if RAW_PART is the only thing open.
    496 	 */
    497 	mutex_enter(&pdk->dk_openlock);
    498 	if (pdk->dk_openmask & ~(1 << RAW_PART))
    499 		error = EBUSY;
    500 	else {
    501 		/* Check for wedge overlap. */
    502 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    503 			/* XXX arithmetic overflow */
    504 			uint64_t size = dkwedge_size(sc);
    505 			uint64_t lsize = dkwedge_size(lsc);
    506 			daddr_t lastblk = sc->sc_offset + size - 1;
    507 			daddr_t llastblk = lsc->sc_offset + lsize - 1;
    508 
    509 			if (sc->sc_offset >= lsc->sc_offset &&
    510 			    sc->sc_offset <= llastblk) {
    511 				/* Overlaps the tail of the existing wedge. */
    512 				break;
    513 			}
    514 			if (lastblk >= lsc->sc_offset &&
    515 			    lastblk <= llastblk) {
    516 				/* Overlaps the head of the existing wedge. */
    517 			    	break;
    518 			}
    519 		}
    520 		if (lsc != NULL) {
    521 			if (sc->sc_offset == lsc->sc_offset &&
    522 			    dkwedge_size(sc) == dkwedge_size(lsc) &&
    523 			    strcmp(sc->sc_wname, lsc->sc_wname) == 0)
    524 				error = EEXIST;
    525 			else
    526 				error = EINVAL;
    527 		} else {
    528 			pdk->dk_nwedges++;
    529 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
    530 		}
    531 	}
    532 	mutex_exit(&pdk->dk_openlock);
    533 	if (error) {
    534 		mutex_destroy(&sc->sc_iolock);
    535 		bufq_free(sc->sc_bufq);
    536 		dkwedge_size_fini(sc);
    537 		free(sc, M_DKWEDGE);
    538 		return error;
    539 	}
    540 
    541 	/* Fill in our cfdata for the pseudo-device glue. */
    542 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
    543 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
    544 	/* sc->sc_cfdata.cf_unit set below */
    545 	sc->sc_cfdata.cf_fstate = FSTATE_NOTFOUND; /* use chosen cf_unit */
    546 
    547 	/* Insert the larval wedge into the array. */
    548 	rw_enter(&dkwedges_lock, RW_WRITER);
    549 	for (error = 0;;) {
    550 		struct dkwedge_softc **scpp;
    551 
    552 		/*
    553 		 * Check for a duplicate wname while searching for
    554 		 * a slot.
    555 		 */
    556 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
    557 			if (dkwedges[unit] == NULL) {
    558 				if (scpp == NULL) {
    559 					scpp = &dkwedges[unit];
    560 					sc->sc_cfdata.cf_unit = unit;
    561 				}
    562 			} else {
    563 				/* XXX Unicode. */
    564 				if (strcmp(dkwedges[unit]->sc_wname,
    565 					sc->sc_wname) == 0) {
    566 					error = EEXIST;
    567 					break;
    568 				}
    569 			}
    570 		}
    571 		if (error)
    572 			break;
    573 		KASSERT(unit == ndkwedges);
    574 		if (scpp == NULL) {
    575 			error = dkwedge_array_expand();
    576 			if (error)
    577 				break;
    578 		} else {
    579 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
    580 			*scpp = sc;
    581 			break;
    582 		}
    583 	}
    584 	rw_exit(&dkwedges_lock);
    585 	if (error) {
    586 		mutex_enter(&pdk->dk_openlock);
    587 		pdk->dk_nwedges--;
    588 		LIST_REMOVE(sc, sc_plink);
    589 		mutex_exit(&pdk->dk_openlock);
    590 
    591 		mutex_destroy(&sc->sc_iolock);
    592 		bufq_free(sc->sc_bufq);
    593 		dkwedge_size_fini(sc);
    594 		free(sc, M_DKWEDGE);
    595 		return error;
    596 	}
    597 
    598 	/*
    599 	 * Now that we know the unit #, attach a pseudo-device for
    600 	 * this wedge instance.  This will provide us with the
    601 	 * device_t necessary for glue to other parts of the system.
    602 	 *
    603 	 * This should never fail, unless we're almost totally out of
    604 	 * memory.
    605 	 */
    606 	if ((dev = config_attach_pseudo_acquire(&sc->sc_cfdata, sc)) == NULL) {
    607 		aprint_error("%s%u: unable to attach pseudo-device\n",
    608 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
    609 
    610 		rw_enter(&dkwedges_lock, RW_WRITER);
    611 		KASSERT(dkwedges[sc->sc_cfdata.cf_unit] == sc);
    612 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
    613 		rw_exit(&dkwedges_lock);
    614 
    615 		mutex_enter(&pdk->dk_openlock);
    616 		pdk->dk_nwedges--;
    617 		LIST_REMOVE(sc, sc_plink);
    618 		mutex_exit(&pdk->dk_openlock);
    619 
    620 		mutex_destroy(&sc->sc_iolock);
    621 		bufq_free(sc->sc_bufq);
    622 		dkwedge_size_fini(sc);
    623 		free(sc, M_DKWEDGE);
    624 		return ENOMEM;
    625 	}
    626 
    627 	KASSERT(dev == sc->sc_dev);
    628 
    629 announce:
    630 	/* Announce our arrival. */
    631 	aprint_normal(
    632 	    "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
    633 	    device_xname(sc->sc_dev), pdk->dk_name,
    634 	    sc->sc_wname,	/* XXX Unicode */
    635 	    dkwedge_size(sc), sc->sc_offset,
    636 	    sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
    637 
    638 	/* Return the devname to the caller. */
    639 	strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
    640 	    sizeof(dkw->dkw_devname));
    641 
    642 	device_release(sc->sc_dev);
    643 	return 0;
    644 }
    645 
    646 /*
    647  * dkwedge_find_acquire:
    648  *
    649  *	Lookup a disk wedge based on the provided information.
    650  *	NOTE: We look up the wedge based on the wedge devname,
    651  *	not wname.
    652  *
    653  *	Return NULL if the wedge is not found, otherwise return
    654  *	the wedge's softc.  Assign the wedge's unit number to unitp
    655  *	if unitp is not NULL.  The wedge's sc_dev is referenced and
    656  *	must be released by device_release or equivalent.
    657  */
    658 static struct dkwedge_softc *
    659 dkwedge_find_acquire(struct dkwedge_info *dkw, u_int *unitp)
    660 {
    661 	struct dkwedge_softc *sc = NULL;
    662 	u_int unit;
    663 
    664 	/* Find our softc. */
    665 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
    666 	rw_enter(&dkwedges_lock, RW_READER);
    667 	for (unit = 0; unit < ndkwedges; unit++) {
    668 		if ((sc = dkwedges[unit]) != NULL &&
    669 		    sc->sc_dev != NULL &&
    670 		    strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
    671 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
    672 			device_acquire(sc->sc_dev);
    673 			break;
    674 		}
    675 	}
    676 	rw_exit(&dkwedges_lock);
    677 	if (sc == NULL)
    678 		return NULL;
    679 
    680 	if (unitp != NULL)
    681 		*unitp = unit;
    682 
    683 	return sc;
    684 }
    685 
    686 /*
    687  * dkwedge_del:		[exported function]
    688  *
    689  *	Delete a disk wedge based on the provided information.
    690  *	NOTE: We look up the wedge based on the wedge devname,
    691  *	not wname.
    692  */
    693 int
    694 dkwedge_del(struct dkwedge_info *dkw)
    695 {
    696 
    697 	return dkwedge_del1(dkw, 0);
    698 }
    699 
    700 int
    701 dkwedge_del1(struct dkwedge_info *dkw, int flags)
    702 {
    703 	struct dkwedge_softc *sc = NULL;
    704 
    705 	/* Find our softc. */
    706 	if ((sc = dkwedge_find_acquire(dkw, NULL)) == NULL)
    707 		return ESRCH;
    708 
    709 	return config_detach_release(sc->sc_dev, flags);
    710 }
    711 
    712 /*
    713  * dkwedge_detach:
    714  *
    715  *	Autoconfiguration detach function for pseudo-device glue.
    716  */
    717 static int
    718 dkwedge_detach(device_t self, int flags)
    719 {
    720 	struct dkwedge_softc *const sc = device_private(self);
    721 	const u_int unit = device_unit(self);
    722 	int bmaj, cmaj, error;
    723 
    724 	error = disk_begindetach(&sc->sc_dk, /*lastclose*/NULL, self, flags);
    725 	if (error)
    726 		return error;
    727 
    728 	/* Mark the wedge as dying. */
    729 	sc->sc_state = DKW_STATE_DYING;
    730 
    731 	pmf_device_deregister(self);
    732 
    733 	/* Kill any pending restart. */
    734 	mutex_enter(&sc->sc_iolock);
    735 	sc->sc_iostop = true;
    736 	mutex_exit(&sc->sc_iolock);
    737 	callout_halt(&sc->sc_restart_ch, NULL);
    738 
    739 	/* Locate the wedge major numbers. */
    740 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
    741 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
    742 
    743 	/* Nuke the vnodes for any open instances. */
    744 	vdevgone(bmaj, unit, unit, VBLK);
    745 	vdevgone(cmaj, unit, unit, VCHR);
    746 
    747 	/*
    748 	 * At this point, all block device opens have been closed,
    749 	 * synchronously flushing any buffered writes; and all
    750 	 * character device I/O operations have completed
    751 	 * synchronously, and character device opens have been closed.
    752 	 *
    753 	 * So there can be no more opens or queued buffers by now.
    754 	 */
    755 	KASSERT(sc->sc_dk.dk_openmask == 0);
    756 	KASSERT(bufq_peek(sc->sc_bufq) == NULL);
    757 	bufq_drain(sc->sc_bufq);
    758 
    759 	/* Announce our departure. */
    760 	aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
    761 	    sc->sc_parent->dk_name,
    762 	    sc->sc_wname);	/* XXX Unicode */
    763 
    764 	mutex_enter(&sc->sc_parent->dk_openlock);
    765 	sc->sc_parent->dk_nwedges--;
    766 	LIST_REMOVE(sc, sc_plink);
    767 	mutex_exit(&sc->sc_parent->dk_openlock);
    768 
    769 	/* Delete our buffer queue. */
    770 	bufq_free(sc->sc_bufq);
    771 
    772 	/* Detach from the disk list. */
    773 	disk_detach(&sc->sc_dk);
    774 	disk_destroy(&sc->sc_dk);
    775 
    776 	/* Poof. */
    777 	rw_enter(&dkwedges_lock, RW_WRITER);
    778 	KASSERT(dkwedges[unit] == sc);
    779 	dkwedges[unit] = NULL;
    780 	sc->sc_state = DKW_STATE_DEAD;
    781 	rw_exit(&dkwedges_lock);
    782 
    783 	mutex_destroy(&sc->sc_iolock);
    784 	dkwedge_size_fini(sc);
    785 
    786 	free(sc, M_DKWEDGE);
    787 
    788 	return 0;
    789 }
    790 
    791 /*
    792  * dkwedge_delall:	[exported function]
    793  *
    794  *	Forcibly delete all of the wedges on the specified disk.  Used
    795  *	when a disk is being detached.
    796  */
    797 void
    798 dkwedge_delall(struct disk *pdk)
    799 {
    800 
    801 	dkwedge_delall1(pdk, /*idleonly*/false);
    802 }
    803 
    804 /*
    805  * dkwedge_delidle:	[exported function]
    806  *
    807  *	Delete all of the wedges on the specified disk if idle.  Used
    808  *	by ioctl(DIOCRMWEDGES).
    809  */
    810 void
    811 dkwedge_delidle(struct disk *pdk)
    812 {
    813 
    814 	dkwedge_delall1(pdk, /*idleonly*/true);
    815 }
    816 
    817 static void
    818 dkwedge_delall1(struct disk *pdk, bool idleonly)
    819 {
    820 	struct dkwedge_softc *sc;
    821 	int flags;
    822 
    823 	flags = DETACH_QUIET;
    824 	if (!idleonly)
    825 		flags |= DETACH_FORCE;
    826 
    827 	for (;;) {
    828 		mutex_enter(&pdk->dk_rawlock); /* for sc->sc_dk.dk_openmask */
    829 		mutex_enter(&pdk->dk_openlock);
    830 		LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    831 			/*
    832 			 * Wedge is not yet created.  This is a race --
    833 			 * it may as well have been added just after we
    834 			 * deleted all the wedges, so pretend it's not
    835 			 * here yet.
    836 			 */
    837 			if (sc->sc_dev == NULL)
    838 				continue;
    839 			if (!idleonly || sc->sc_dk.dk_openmask == 0) {
    840 				device_acquire(sc->sc_dev);
    841 				break;
    842 			}
    843 		}
    844 		if (sc == NULL) {
    845 			KASSERT(idleonly || pdk->dk_nwedges == 0);
    846 			mutex_exit(&pdk->dk_openlock);
    847 			mutex_exit(&pdk->dk_rawlock);
    848 			return;
    849 		}
    850 		mutex_exit(&pdk->dk_openlock);
    851 		mutex_exit(&pdk->dk_rawlock);
    852 		(void)config_detach_release(sc->sc_dev, flags);
    853 	}
    854 }
    855 
    856 /*
    857  * dkwedge_list:	[exported function]
    858  *
    859  *	List all of the wedges on a particular disk.
    860  */
    861 int
    862 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
    863 {
    864 	struct uio uio;
    865 	struct iovec iov;
    866 	struct dkwedge_softc *sc;
    867 	struct dkwedge_info dkw;
    868 	int error = 0;
    869 
    870 	iov.iov_base = dkwl->dkwl_buf;
    871 	iov.iov_len = dkwl->dkwl_bufsize;
    872 
    873 	uio.uio_iov = &iov;
    874 	uio.uio_iovcnt = 1;
    875 	uio.uio_offset = 0;
    876 	uio.uio_resid = dkwl->dkwl_bufsize;
    877 	uio.uio_rw = UIO_READ;
    878 	KASSERT(l == curlwp);
    879 	uio.uio_vmspace = l->l_proc->p_vmspace;
    880 
    881 	dkwl->dkwl_ncopied = 0;
    882 
    883 	mutex_enter(&pdk->dk_openlock);
    884 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    885 		if (uio.uio_resid < sizeof(dkw))
    886 			break;
    887 
    888 		if (sc->sc_dev == NULL)
    889 			continue;
    890 
    891 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    892 		    sizeof(dkw.dkw_devname));
    893 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
    894 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
    895 		strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
    896 		    sizeof(dkw.dkw_parent));
    897 		dkw.dkw_offset = sc->sc_offset;
    898 		dkw.dkw_size = dkwedge_size(sc);
    899 		strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
    900 
    901 		/*
    902 		 * Acquire a device reference so this wedge doesn't go
    903 		 * away before our next iteration in LIST_FOREACH, and
    904 		 * then release the lock for uiomove.
    905 		 */
    906 		device_acquire(sc->sc_dev);
    907 		mutex_exit(&pdk->dk_openlock);
    908 		error = uiomove(&dkw, sizeof(dkw), &uio);
    909 		mutex_enter(&pdk->dk_openlock);
    910 		device_release(sc->sc_dev);
    911 		if (error)
    912 			break;
    913 
    914 		dkwl->dkwl_ncopied++;
    915 	}
    916 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
    917 	mutex_exit(&pdk->dk_openlock);
    918 
    919 	return error;
    920 }
    921 
    922 static device_t
    923 dkwedge_find_by_wname_acquire(const char *wname)
    924 {
    925 	device_t dv = NULL;
    926 	struct dkwedge_softc *sc;
    927 	int i;
    928 
    929 	rw_enter(&dkwedges_lock, RW_READER);
    930 	for (i = 0; i < ndkwedges; i++) {
    931 		if ((sc = dkwedges[i]) == NULL || sc->sc_dev == NULL)
    932 			continue;
    933 		if (strcmp(sc->sc_wname, wname) == 0) {
    934 			if (dv != NULL) {
    935 				printf(
    936 				    "WARNING: double match for wedge name %s "
    937 				    "(%s, %s)\n", wname, device_xname(dv),
    938 				    device_xname(sc->sc_dev));
    939 				continue;
    940 			}
    941 			device_acquire(sc->sc_dev);
    942 			dv = sc->sc_dev;
    943 		}
    944 	}
    945 	rw_exit(&dkwedges_lock);
    946 	return dv;
    947 }
    948 
    949 static device_t
    950 dkwedge_find_by_parent_acquire(const char *name, size_t *i)
    951 {
    952 
    953 	rw_enter(&dkwedges_lock, RW_READER);
    954 	for (; *i < (size_t)ndkwedges; (*i)++) {
    955 		struct dkwedge_softc *sc;
    956 		if ((sc = dkwedges[*i]) == NULL || sc->sc_dev == NULL)
    957 			continue;
    958 		if (strcmp(sc->sc_parent->dk_name, name) != 0)
    959 			continue;
    960 		device_acquire(sc->sc_dev);
    961 		rw_exit(&dkwedges_lock);
    962 		return sc->sc_dev;
    963 	}
    964 	rw_exit(&dkwedges_lock);
    965 	return NULL;
    966 }
    967 
    968 /* XXX unsafe */
    969 device_t
    970 dkwedge_find_by_wname(const char *wname)
    971 {
    972 	device_t dv;
    973 
    974 	if ((dv = dkwedge_find_by_wname_acquire(wname)) == NULL)
    975 		return NULL;
    976 	device_release(dv);
    977 	return dv;
    978 }
    979 
    980 /* XXX unsafe */
    981 device_t
    982 dkwedge_find_by_parent(const char *name, size_t *i)
    983 {
    984 	device_t dv;
    985 
    986 	if ((dv = dkwedge_find_by_parent_acquire(name, i)) == NULL)
    987 		return NULL;
    988 	device_release(dv);
    989 	return dv;
    990 }
    991 
    992 void
    993 dkwedge_print_wnames(void)
    994 {
    995 	struct dkwedge_softc *sc;
    996 	int i;
    997 
    998 	rw_enter(&dkwedges_lock, RW_READER);
    999 	for (i = 0; i < ndkwedges; i++) {
   1000 		if ((sc = dkwedges[i]) == NULL || sc->sc_dev == NULL)
   1001 			continue;
   1002 		printf(" wedge:%s", sc->sc_wname);
   1003 	}
   1004 	rw_exit(&dkwedges_lock);
   1005 }
   1006 
   1007 /*
   1008  * We need a dummy object to stuff into the dkwedge discovery method link
   1009  * set to ensure that there is always at least one object in the set.
   1010  */
   1011 static struct dkwedge_discovery_method dummy_discovery_method;
   1012 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
   1013 
   1014 /*
   1015  * dkwedge_init:
   1016  *
   1017  *	Initialize the disk wedge subsystem.
   1018  */
   1019 void
   1020 dkwedge_init(void)
   1021 {
   1022 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
   1023 	struct dkwedge_discovery_method * const *ddmp;
   1024 	struct dkwedge_discovery_method *lddm, *ddm;
   1025 
   1026 	rw_init(&dkwedges_lock);
   1027 	rw_init(&dkwedge_discovery_methods_lock);
   1028 
   1029 	if (config_cfdriver_attach(&dk_cd) != 0)
   1030 		panic("dkwedge: unable to attach cfdriver");
   1031 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
   1032 		panic("dkwedge: unable to attach cfattach");
   1033 
   1034 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
   1035 
   1036 	LIST_INIT(&dkwedge_discovery_methods);
   1037 
   1038 	__link_set_foreach(ddmp, dkwedge_methods) {
   1039 		ddm = *ddmp;
   1040 		if (ddm == &dummy_discovery_method)
   1041 			continue;
   1042 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
   1043 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
   1044 			    ddm, ddm_list);
   1045 			continue;
   1046 		}
   1047 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
   1048 			if (ddm->ddm_priority == lddm->ddm_priority) {
   1049 				aprint_error("dk-method-%s: method \"%s\" "
   1050 				    "already exists at priority %d\n",
   1051 				    ddm->ddm_name, lddm->ddm_name,
   1052 				    lddm->ddm_priority);
   1053 				/* Not inserted. */
   1054 				break;
   1055 			}
   1056 			if (ddm->ddm_priority < lddm->ddm_priority) {
   1057 				/* Higher priority; insert before. */
   1058 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
   1059 				break;
   1060 			}
   1061 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
   1062 				/* Last one; insert after. */
   1063 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
   1064 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
   1065 				break;
   1066 			}
   1067 		}
   1068 	}
   1069 
   1070 	rw_exit(&dkwedge_discovery_methods_lock);
   1071 }
   1072 
   1073 #ifdef DKWEDGE_AUTODISCOVER
   1074 int	dkwedge_autodiscover = 1;
   1075 #else
   1076 int	dkwedge_autodiscover = 0;
   1077 #endif
   1078 
   1079 /*
   1080  * dkwedge_discover:	[exported function]
   1081  *
   1082  *	Discover the wedges on a newly attached disk.
   1083  *	Remove all unused wedges on the disk first.
   1084  */
   1085 void
   1086 dkwedge_discover(struct disk *pdk)
   1087 {
   1088 	struct dkwedge_discovery_method *ddm;
   1089 	struct vnode *vp;
   1090 	int error;
   1091 	dev_t pdev;
   1092 
   1093 	/*
   1094 	 * Require people playing with wedges to enable this explicitly.
   1095 	 */
   1096 	if (dkwedge_autodiscover == 0)
   1097 		return;
   1098 
   1099 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
   1100 
   1101 	/*
   1102 	 * Use the character device for scanning, the block device
   1103 	 * is busy if there are already wedges attached.
   1104 	 */
   1105 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
   1106 	if (error) {
   1107 		aprint_error("%s: unable to compute pdev, error = %d\n",
   1108 		    pdk->dk_name, error);
   1109 		goto out;
   1110 	}
   1111 
   1112 	error = cdevvp(pdev, &vp);
   1113 	if (error) {
   1114 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
   1115 		    pdk->dk_name, error);
   1116 		goto out;
   1117 	}
   1118 
   1119 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1120 	if (error) {
   1121 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
   1122 		    pdk->dk_name, error);
   1123 		vrele(vp);
   1124 		goto out;
   1125 	}
   1126 
   1127 	error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
   1128 	if (error) {
   1129 		if (error != ENXIO)
   1130 			aprint_error("%s: unable to open device, error = %d\n",
   1131 			    pdk->dk_name, error);
   1132 		vput(vp);
   1133 		goto out;
   1134 	}
   1135 	VOP_UNLOCK(vp);
   1136 
   1137 	/*
   1138 	 * Remove unused wedges
   1139 	 */
   1140 	dkwedge_delidle(pdk);
   1141 
   1142 	/*
   1143 	 * For each supported partition map type, look to see if
   1144 	 * this map type exists.  If so, parse it and add the
   1145 	 * corresponding wedges.
   1146 	 */
   1147 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
   1148 		error = (*ddm->ddm_discover)(pdk, vp);
   1149 		if (error == 0) {
   1150 			/* Successfully created wedges; we're done. */
   1151 			break;
   1152 		}
   1153 	}
   1154 
   1155 	error = vn_close(vp, FREAD, NOCRED);
   1156 	if (error) {
   1157 		aprint_error("%s: unable to close device, error = %d\n",
   1158 		    pdk->dk_name, error);
   1159 		/* We'll just assume the vnode has been cleaned up. */
   1160 	}
   1161 
   1162 out:
   1163 	rw_exit(&dkwedge_discovery_methods_lock);
   1164 }
   1165 
   1166 /*
   1167  * dkwedge_read:
   1168  *
   1169  *	Read some data from the specified disk, used for
   1170  *	partition discovery.
   1171  */
   1172 int
   1173 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
   1174     void *tbuf, size_t len)
   1175 {
   1176 	buf_t *bp;
   1177 	int error;
   1178 	bool isopen;
   1179 	dev_t bdev;
   1180 	struct vnode *bdvp;
   1181 
   1182 	/*
   1183 	 * The kernel cannot read from a character device vnode
   1184 	 * as physio() only handles user memory.
   1185 	 *
   1186 	 * If the block device has already been opened by a wedge
   1187 	 * use that vnode and temporarily bump the open counter.
   1188 	 *
   1189 	 * Otherwise try to open the block device.
   1190 	 */
   1191 
   1192 	bdev = devsw_chr2blk(vp->v_rdev);
   1193 
   1194 	mutex_enter(&pdk->dk_rawlock);
   1195 	if (pdk->dk_rawopens != 0) {
   1196 		KASSERT(pdk->dk_rawvp != NULL);
   1197 		isopen = true;
   1198 		++pdk->dk_rawopens;
   1199 		bdvp = pdk->dk_rawvp;
   1200 		error = 0;
   1201 	} else {
   1202 		isopen = false;
   1203 		error = dk_open_parent(bdev, FREAD, &bdvp);
   1204 	}
   1205 	mutex_exit(&pdk->dk_rawlock);
   1206 
   1207 	if (error)
   1208 		return error;
   1209 
   1210 	bp = getiobuf(bdvp, true);
   1211 	bp->b_flags = B_READ;
   1212 	bp->b_cflags = BC_BUSY;
   1213 	bp->b_dev = bdev;
   1214 	bp->b_data = tbuf;
   1215 	bp->b_bufsize = bp->b_bcount = len;
   1216 	bp->b_blkno = blkno;
   1217 	bp->b_cylinder = 0;
   1218 	bp->b_error = 0;
   1219 
   1220 	VOP_STRATEGY(bdvp, bp);
   1221 	error = biowait(bp);
   1222 	putiobuf(bp);
   1223 
   1224 	mutex_enter(&pdk->dk_rawlock);
   1225 	if (isopen) {
   1226 		--pdk->dk_rawopens;
   1227 	} else {
   1228 		dk_close_parent(bdvp, FREAD);
   1229 	}
   1230 	mutex_exit(&pdk->dk_rawlock);
   1231 
   1232 	return error;
   1233 }
   1234 
   1235 /*
   1236  * dkwedge_lookup:
   1237  *
   1238  *	Look up a dkwedge_softc based on the provided dev_t.
   1239  *
   1240  *	Caller must guarantee the wedge is referenced.
   1241  */
   1242 static struct dkwedge_softc *
   1243 dkwedge_lookup(dev_t dev)
   1244 {
   1245 
   1246 	return device_lookup_private(&dk_cd, minor(dev));
   1247 }
   1248 
   1249 static struct dkwedge_softc *
   1250 dkwedge_lookup_acquire(dev_t dev)
   1251 {
   1252 	device_t dv = device_lookup_acquire(&dk_cd, minor(dev));
   1253 
   1254 	if (dv == NULL)
   1255 		return NULL;
   1256 	return device_private(dv);
   1257 }
   1258 
   1259 static int
   1260 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
   1261 {
   1262 	struct vnode *vp;
   1263 	int error;
   1264 
   1265 	error = bdevvp(dev, &vp);
   1266 	if (error)
   1267 		return error;
   1268 
   1269 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1270 	if (error) {
   1271 		vrele(vp);
   1272 		return error;
   1273 	}
   1274 	error = VOP_OPEN(vp, mode, NOCRED);
   1275 	if (error) {
   1276 		vput(vp);
   1277 		return error;
   1278 	}
   1279 
   1280 	/* VOP_OPEN() doesn't do this for us. */
   1281 	if (mode & FWRITE) {
   1282 		mutex_enter(vp->v_interlock);
   1283 		vp->v_writecount++;
   1284 		mutex_exit(vp->v_interlock);
   1285 	}
   1286 
   1287 	VOP_UNLOCK(vp);
   1288 
   1289 	*vpp = vp;
   1290 
   1291 	return 0;
   1292 }
   1293 
   1294 static int
   1295 dk_close_parent(struct vnode *vp, int mode)
   1296 {
   1297 	int error;
   1298 
   1299 	error = vn_close(vp, mode, NOCRED);
   1300 	return error;
   1301 }
   1302 
   1303 /*
   1304  * dkopen:		[devsw entry point]
   1305  *
   1306  *	Open a wedge.
   1307  */
   1308 static int
   1309 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
   1310 {
   1311 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1312 	int error = 0;
   1313 
   1314 	if (sc == NULL)
   1315 		return ENXIO;
   1316 	KASSERT(sc->sc_dev != NULL);
   1317 	KASSERT(sc->sc_state == DKW_STATE_RUNNING);
   1318 
   1319 	/*
   1320 	 * We go through a complicated little dance to only open the parent
   1321 	 * vnode once per wedge, no matter how many times the wedge is
   1322 	 * opened.  The reason?  We see one dkopen() per open call, but
   1323 	 * only dkclose() on the last close.
   1324 	 */
   1325 	mutex_enter(&sc->sc_dk.dk_openlock);
   1326 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1327 	if (sc->sc_dk.dk_openmask == 0) {
   1328 		error = dkfirstopen(sc, flags);
   1329 		if (error)
   1330 			goto out;
   1331 	} else if (flags & ~sc->sc_mode & FWRITE) {
   1332 		/*
   1333 		 * The parent is already open, but the previous attempt
   1334 		 * to open it read/write failed and fell back to
   1335 		 * read-only.  In that case, we assume the medium is
   1336 		 * read-only and fail to open the wedge read/write.
   1337 		 */
   1338 		error = EROFS;
   1339 		goto out;
   1340 	}
   1341 	KASSERT(sc->sc_mode != 0);
   1342 	KASSERTMSG(sc->sc_mode & FREAD, "%s: sc_mode=%x",
   1343 	    device_xname(sc->sc_dev), sc->sc_mode);
   1344 	KASSERTMSG((flags & FWRITE) ? (sc->sc_mode & FWRITE) : 1,
   1345 	    "%s: flags=%x sc_mode=%x",
   1346 	    device_xname(sc->sc_dev), flags, sc->sc_mode);
   1347 	if (fmt == S_IFCHR)
   1348 		sc->sc_dk.dk_copenmask |= 1;
   1349 	else
   1350 		sc->sc_dk.dk_bopenmask |= 1;
   1351 	sc->sc_dk.dk_openmask =
   1352 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1353 
   1354 out:	mutex_exit(&sc->sc_parent->dk_rawlock);
   1355 	mutex_exit(&sc->sc_dk.dk_openlock);
   1356 	return error;
   1357 }
   1358 
   1359 static int
   1360 dkfirstopen(struct dkwedge_softc *sc, int flags)
   1361 {
   1362 	struct dkwedge_softc *nsc;
   1363 	struct vnode *vp;
   1364 	int mode;
   1365 	int error;
   1366 
   1367 	KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
   1368 	KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
   1369 
   1370 	if (sc->sc_parent->dk_rawopens == 0) {
   1371 		KASSERT(sc->sc_parent->dk_rawvp == NULL);
   1372 		/*
   1373 		 * Try open read-write. If this fails for EROFS
   1374 		 * and wedge is read-only, retry to open read-only.
   1375 		 */
   1376 		mode = FREAD | FWRITE;
   1377 		error = dk_open_parent(sc->sc_pdev, mode, &vp);
   1378 		if (error == EROFS && (flags & FWRITE) == 0) {
   1379 			mode &= ~FWRITE;
   1380 			error = dk_open_parent(sc->sc_pdev, mode, &vp);
   1381 		}
   1382 		if (error)
   1383 			return error;
   1384 		KASSERT(vp != NULL);
   1385 		sc->sc_parent->dk_rawvp = vp;
   1386 	} else {
   1387 		/*
   1388 		 * Retrieve mode from an already opened wedge.
   1389 		 *
   1390 		 * At this point, dk_rawopens is bounded by the number
   1391 		 * of dkwedge devices in the system, which is limited
   1392 		 * by autoconf device numbering to INT_MAX.  Since
   1393 		 * dk_rawopens is unsigned, this can't overflow.
   1394 		 */
   1395 		KASSERT(sc->sc_parent->dk_rawopens < UINT_MAX);
   1396 		KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1397 		mode = 0;
   1398 		mutex_enter(&sc->sc_parent->dk_openlock);
   1399 		LIST_FOREACH(nsc, &sc->sc_parent->dk_wedges, sc_plink) {
   1400 			if (nsc == sc || nsc->sc_dk.dk_openmask == 0)
   1401 				continue;
   1402 			mode = nsc->sc_mode;
   1403 			break;
   1404 		}
   1405 		mutex_exit(&sc->sc_parent->dk_openlock);
   1406 	}
   1407 	sc->sc_mode = mode;
   1408 	sc->sc_parent->dk_rawopens++;
   1409 
   1410 	return 0;
   1411 }
   1412 
   1413 static void
   1414 dklastclose(struct dkwedge_softc *sc)
   1415 {
   1416 
   1417 	KASSERT(mutex_owned(&sc->sc_dk.dk_openlock));
   1418 	KASSERT(mutex_owned(&sc->sc_parent->dk_rawlock));
   1419 	KASSERT(sc->sc_parent->dk_rawopens > 0);
   1420 	KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1421 
   1422 	if (--sc->sc_parent->dk_rawopens == 0) {
   1423 		struct vnode *const vp = sc->sc_parent->dk_rawvp;
   1424 		const int mode = sc->sc_mode;
   1425 
   1426 		sc->sc_parent->dk_rawvp = NULL;
   1427 		sc->sc_mode = 0;
   1428 
   1429 		dk_close_parent(vp, mode);
   1430 	}
   1431 }
   1432 
   1433 /*
   1434  * dkclose:		[devsw entry point]
   1435  *
   1436  *	Close a wedge.
   1437  */
   1438 static int
   1439 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
   1440 {
   1441 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1442 
   1443 	/*
   1444 	 * dkclose can be called even if dkopen didn't succeed, so we
   1445 	 * have to handle the same possibility that the wedge may not
   1446 	 * exist.
   1447 	 */
   1448 	if (sc == NULL)
   1449 		return ENXIO;
   1450 	KASSERT(sc->sc_dev != NULL);
   1451 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1452 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1453 
   1454 	mutex_enter(&sc->sc_dk.dk_openlock);
   1455 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1456 
   1457 	KASSERT(sc->sc_dk.dk_openmask != 0);
   1458 
   1459 	if (fmt == S_IFCHR)
   1460 		sc->sc_dk.dk_copenmask &= ~1;
   1461 	else
   1462 		sc->sc_dk.dk_bopenmask &= ~1;
   1463 	sc->sc_dk.dk_openmask =
   1464 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1465 
   1466 	if (sc->sc_dk.dk_openmask == 0) {
   1467 		dklastclose(sc);
   1468 	}
   1469 
   1470 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1471 	mutex_exit(&sc->sc_dk.dk_openlock);
   1472 
   1473 	return 0;
   1474 }
   1475 
   1476 /*
   1477  * dkcancel:		[devsw entry point]
   1478  *
   1479  *	Cancel any pending I/O operations waiting on a wedge.
   1480  */
   1481 static int
   1482 dkcancel(dev_t dev, int flags, int fmt, struct lwp *l)
   1483 {
   1484 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1485 
   1486 	KASSERT(sc != NULL);
   1487 	KASSERT(sc->sc_dev != NULL);
   1488 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1489 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1490 
   1491 	/*
   1492 	 * Disk I/O is expected to complete or fail within a reasonable
   1493 	 * timeframe -- it's storage, not communication.  Further, the
   1494 	 * character and block device interface guarantees that prior
   1495 	 * reads and writes have completed or failed by the time close
   1496 	 * returns -- we are not to cancel them here.  If the parent
   1497 	 * device's hardware is gone, the parent driver can make them
   1498 	 * fail.  Nothing for dk(4) itself to do.
   1499 	 */
   1500 
   1501 	return 0;
   1502 }
   1503 
   1504 /*
   1505  * dkstrategy:		[devsw entry point]
   1506  *
   1507  *	Perform I/O based on the wedge I/O strategy.
   1508  */
   1509 static void
   1510 dkstrategy(struct buf *bp)
   1511 {
   1512 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1513 	uint64_t p_size, p_offset;
   1514 
   1515 	KASSERT(sc != NULL);
   1516 	KASSERT(sc->sc_dev != NULL);
   1517 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1518 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1519 	KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1520 
   1521 	/* If it's an empty transfer, wake up the top half now. */
   1522 	if (bp->b_bcount == 0)
   1523 		goto done;
   1524 
   1525 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
   1526 	p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
   1527 
   1528 	/* Make sure it's in-range. */
   1529 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
   1530 		goto done;
   1531 
   1532 	/* Translate it to the parent's raw LBA. */
   1533 	bp->b_rawblkno = bp->b_blkno + p_offset;
   1534 
   1535 	/* Place it in the queue and start I/O on the unit. */
   1536 	mutex_enter(&sc->sc_iolock);
   1537 	disk_wait(&sc->sc_dk);
   1538 	bufq_put(sc->sc_bufq, bp);
   1539 	mutex_exit(&sc->sc_iolock);
   1540 
   1541 	dkstart(sc);
   1542 	return;
   1543 
   1544 done:
   1545 	bp->b_resid = bp->b_bcount;
   1546 	biodone(bp);
   1547 }
   1548 
   1549 /*
   1550  * dkstart:
   1551  *
   1552  *	Start I/O that has been enqueued on the wedge.
   1553  */
   1554 static void
   1555 dkstart(struct dkwedge_softc *sc)
   1556 {
   1557 	struct vnode *vp;
   1558 	struct buf *bp, *nbp;
   1559 
   1560 	mutex_enter(&sc->sc_iolock);
   1561 
   1562 	/* Do as much work as has been enqueued. */
   1563 	while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
   1564 		if (sc->sc_iostop) {
   1565 			(void) bufq_get(sc->sc_bufq);
   1566 			mutex_exit(&sc->sc_iolock);
   1567 			bp->b_error = ENXIO;
   1568 			bp->b_resid = bp->b_bcount;
   1569 			biodone(bp);
   1570 			mutex_enter(&sc->sc_iolock);
   1571 			continue;
   1572 		}
   1573 
   1574 		/* fetch an I/O buf with sc_iolock dropped */
   1575 		mutex_exit(&sc->sc_iolock);
   1576 		nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
   1577 		mutex_enter(&sc->sc_iolock);
   1578 		if (nbp == NULL) {
   1579 			/*
   1580 			 * No resources to run this request; leave the
   1581 			 * buffer queued up, and schedule a timer to
   1582 			 * restart the queue in 1/2 a second.
   1583 			 */
   1584 			if (!sc->sc_iostop)
   1585 				callout_schedule(&sc->sc_restart_ch, hz/2);
   1586 			break;
   1587 		}
   1588 
   1589 		/*
   1590 		 * fetch buf, this can fail if another thread
   1591 		 * has already processed the queue, it can also
   1592 		 * return a completely different buf.
   1593 		 */
   1594 		bp = bufq_get(sc->sc_bufq);
   1595 		if (bp == NULL) {
   1596 			mutex_exit(&sc->sc_iolock);
   1597 			putiobuf(nbp);
   1598 			mutex_enter(&sc->sc_iolock);
   1599 			continue;
   1600 		}
   1601 
   1602 		/* Instrumentation. */
   1603 		disk_busy(&sc->sc_dk);
   1604 
   1605 		/* release lock for VOP_STRATEGY */
   1606 		mutex_exit(&sc->sc_iolock);
   1607 
   1608 		nbp->b_data = bp->b_data;
   1609 		nbp->b_flags = bp->b_flags;
   1610 		nbp->b_oflags = bp->b_oflags;
   1611 		nbp->b_cflags = bp->b_cflags;
   1612 		nbp->b_iodone = dkiodone;
   1613 		nbp->b_proc = bp->b_proc;
   1614 		nbp->b_blkno = bp->b_rawblkno;
   1615 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
   1616 		nbp->b_bcount = bp->b_bcount;
   1617 		nbp->b_private = bp;
   1618 		BIO_COPYPRIO(nbp, bp);
   1619 
   1620 		vp = nbp->b_vp;
   1621 		if ((nbp->b_flags & B_READ) == 0) {
   1622 			mutex_enter(vp->v_interlock);
   1623 			vp->v_numoutput++;
   1624 			mutex_exit(vp->v_interlock);
   1625 		}
   1626 		VOP_STRATEGY(vp, nbp);
   1627 
   1628 		mutex_enter(&sc->sc_iolock);
   1629 	}
   1630 
   1631 	mutex_exit(&sc->sc_iolock);
   1632 }
   1633 
   1634 /*
   1635  * dkiodone:
   1636  *
   1637  *	I/O to a wedge has completed; alert the top half.
   1638  */
   1639 static void
   1640 dkiodone(struct buf *bp)
   1641 {
   1642 	struct buf *obp = bp->b_private;
   1643 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
   1644 
   1645 	KASSERT(sc != NULL);
   1646 	KASSERT(sc->sc_dev != NULL);
   1647 
   1648 	if (bp->b_error != 0)
   1649 		obp->b_error = bp->b_error;
   1650 	obp->b_resid = bp->b_resid;
   1651 	putiobuf(bp);
   1652 
   1653 	mutex_enter(&sc->sc_iolock);
   1654 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
   1655 	    obp->b_flags & B_READ);
   1656 	mutex_exit(&sc->sc_iolock);
   1657 
   1658 	biodone(obp);
   1659 
   1660 	/* Kick the queue in case there is more work we can do. */
   1661 	dkstart(sc);
   1662 }
   1663 
   1664 /*
   1665  * dkrestart:
   1666  *
   1667  *	Restart the work queue after it was stalled due to
   1668  *	a resource shortage.  Invoked via a callout.
   1669  */
   1670 static void
   1671 dkrestart(void *v)
   1672 {
   1673 	struct dkwedge_softc *sc = v;
   1674 
   1675 	dkstart(sc);
   1676 }
   1677 
   1678 /*
   1679  * dkminphys:
   1680  *
   1681  *	Call parent's minphys function.
   1682  */
   1683 static void
   1684 dkminphys(struct buf *bp)
   1685 {
   1686 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1687 	dev_t dev;
   1688 
   1689 	KASSERT(sc != NULL);
   1690 	KASSERT(sc->sc_dev != NULL);
   1691 
   1692 	dev = bp->b_dev;
   1693 	bp->b_dev = sc->sc_pdev;
   1694 	if (sc->sc_parent->dk_driver && sc->sc_parent->dk_driver->d_minphys)
   1695 		(*sc->sc_parent->dk_driver->d_minphys)(bp);
   1696 	else
   1697 		minphys(bp);
   1698 	bp->b_dev = dev;
   1699 }
   1700 
   1701 /*
   1702  * dkread:		[devsw entry point]
   1703  *
   1704  *	Read from a wedge.
   1705  */
   1706 static int
   1707 dkread(dev_t dev, struct uio *uio, int flags)
   1708 {
   1709 	struct dkwedge_softc *sc __diagused = dkwedge_lookup(dev);
   1710 
   1711 	KASSERT(sc != NULL);
   1712 	KASSERT(sc->sc_dev != NULL);
   1713 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1714 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1715 
   1716 	return physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio);
   1717 }
   1718 
   1719 /*
   1720  * dkwrite:		[devsw entry point]
   1721  *
   1722  *	Write to a wedge.
   1723  */
   1724 static int
   1725 dkwrite(dev_t dev, struct uio *uio, int flags)
   1726 {
   1727 	struct dkwedge_softc *sc __diagused = dkwedge_lookup(dev);
   1728 
   1729 	KASSERT(sc != NULL);
   1730 	KASSERT(sc->sc_dev != NULL);
   1731 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1732 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1733 
   1734 	return physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio);
   1735 }
   1736 
   1737 /*
   1738  * dkioctl:		[devsw entry point]
   1739  *
   1740  *	Perform an ioctl request on a wedge.
   1741  */
   1742 static int
   1743 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1744 {
   1745 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1746 	int error = 0;
   1747 
   1748 	KASSERT(sc != NULL);
   1749 	KASSERT(sc->sc_dev != NULL);
   1750 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1751 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1752 	KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1753 
   1754 	/*
   1755 	 * We pass NODEV instead of our device to indicate we don't
   1756 	 * want to handle disklabel ioctls
   1757 	 */
   1758 	error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
   1759 	if (error != EPASSTHROUGH)
   1760 		return error;
   1761 
   1762 	error = 0;
   1763 
   1764 	switch (cmd) {
   1765 	case DIOCGSTRATEGY:
   1766 	case DIOCGCACHE:
   1767 	case DIOCCACHESYNC:
   1768 		error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, data, flag,
   1769 		    l != NULL ? l->l_cred : NOCRED);
   1770 		break;
   1771 	case DIOCGWEDGEINFO: {
   1772 		struct dkwedge_info *dkw = data;
   1773 
   1774 		strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
   1775 		    sizeof(dkw->dkw_devname));
   1776 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
   1777 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
   1778 		strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
   1779 		    sizeof(dkw->dkw_parent));
   1780 		dkw->dkw_offset = sc->sc_offset;
   1781 		dkw->dkw_size = dkwedge_size(sc);
   1782 		strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
   1783 
   1784 		break;
   1785 	}
   1786 	case DIOCGSECTORALIGN: {
   1787 		struct disk_sectoralign *dsa = data;
   1788 		uint32_t r;
   1789 
   1790 		error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, dsa, flag,
   1791 		    l != NULL ? l->l_cred : NOCRED);
   1792 		if (error)
   1793 			break;
   1794 
   1795 		r = sc->sc_offset % dsa->dsa_alignment;
   1796 		if (r < dsa->dsa_firstaligned)
   1797 			dsa->dsa_firstaligned = dsa->dsa_firstaligned - r;
   1798 		else
   1799 			dsa->dsa_firstaligned = (dsa->dsa_firstaligned +
   1800 			    dsa->dsa_alignment) - r;
   1801 		dsa->dsa_firstaligned %= dsa->dsa_alignment;
   1802 		break;
   1803 	}
   1804 	default:
   1805 		error = ENOTTY;
   1806 	}
   1807 
   1808 	return error;
   1809 }
   1810 
   1811 /*
   1812  * dkdiscard:		[devsw entry point]
   1813  *
   1814  *	Perform a discard-range request on a wedge.
   1815  */
   1816 static int
   1817 dkdiscard(dev_t dev, off_t pos, off_t len)
   1818 {
   1819 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1820 	uint64_t size = dkwedge_size(sc);
   1821 	unsigned shift;
   1822 	off_t offset, maxlen;
   1823 	int error;
   1824 
   1825 	KASSERT(sc != NULL);
   1826 	KASSERT(sc->sc_dev != NULL);
   1827 	KASSERT(sc->sc_state != DKW_STATE_LARVAL);
   1828 	KASSERT(sc->sc_state != DKW_STATE_DEAD);
   1829 	KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1830 
   1831 	/* XXX check bounds on size/offset up front */
   1832 	shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
   1833 	KASSERT(__type_fit(off_t, size));
   1834 	KASSERT(__type_fit(off_t, sc->sc_offset));
   1835 	KASSERT(0 <= sc->sc_offset);
   1836 	KASSERT(size <= (__type_max(off_t) >> shift));
   1837 	KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - size));
   1838 	offset = ((off_t)sc->sc_offset << shift);
   1839 	maxlen = ((off_t)size << shift);
   1840 
   1841 	if (len > maxlen)
   1842 		return EINVAL;
   1843 	if (pos > (maxlen - len))
   1844 		return EINVAL;
   1845 
   1846 	pos += offset;
   1847 
   1848 	vn_lock(sc->sc_parent->dk_rawvp, LK_EXCLUSIVE | LK_RETRY);
   1849 	error = VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
   1850 	VOP_UNLOCK(sc->sc_parent->dk_rawvp);
   1851 
   1852 	return error;
   1853 }
   1854 
   1855 /*
   1856  * dksize:		[devsw entry point]
   1857  *
   1858  *	Query the size of a wedge for the purpose of performing a dump
   1859  *	or for swapping to.
   1860  */
   1861 static int
   1862 dksize(dev_t dev)
   1863 {
   1864 	/*
   1865 	 * Don't bother taking a reference because this is only used
   1866 	 * either (a) while the device is open (for swap), or (b) while
   1867 	 * any multiprocessing is quiescent (for crash dumps).
   1868 	 */
   1869 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1870 	uint64_t p_size;
   1871 	int rv = -1;
   1872 
   1873 	if (sc == NULL)
   1874 		return -1;
   1875 	if (sc->sc_state != DKW_STATE_RUNNING)
   1876 		return -1;
   1877 
   1878 	/* Our content type is static, no need to open the device. */
   1879 
   1880 	p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
   1881 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
   1882 		/* Saturate if we are larger than INT_MAX. */
   1883 		if (p_size > INT_MAX)
   1884 			rv = INT_MAX;
   1885 		else
   1886 			rv = (int)p_size;
   1887 	}
   1888 
   1889 	return rv;
   1890 }
   1891 
   1892 /*
   1893  * dkdump:		[devsw entry point]
   1894  *
   1895  *	Perform a crash dump to a wedge.
   1896  */
   1897 static int
   1898 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
   1899 {
   1900 	/*
   1901 	 * Don't bother taking a reference because this is only used
   1902 	 * while any multiprocessing is quiescent.
   1903 	 */
   1904 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1905 	const struct bdevsw *bdev;
   1906 	uint64_t p_size, p_offset;
   1907 
   1908 	if (sc == NULL)
   1909 		return ENXIO;
   1910 	if (sc->sc_state != DKW_STATE_RUNNING)
   1911 		return ENXIO;
   1912 
   1913 	/* Our content type is static, no need to open the device. */
   1914 
   1915 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
   1916 	    strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0 &&
   1917 	    strcmp(sc->sc_ptype, DKW_PTYPE_CGD) != 0)
   1918 		return ENXIO;
   1919 	if (size % DEV_BSIZE != 0)
   1920 		return EINVAL;
   1921 
   1922 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
   1923 	p_size = dkwedge_size(sc) << sc->sc_parent->dk_blkshift;
   1924 
   1925 	if (blkno < 0 || blkno + size/DEV_BSIZE > p_size) {
   1926 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
   1927 		    "p_size (%" PRIu64 ")\n", __func__, blkno,
   1928 		    size/DEV_BSIZE, p_size);
   1929 		return EINVAL;
   1930 	}
   1931 
   1932 	bdev = bdevsw_lookup(sc->sc_pdev);
   1933 	return (*bdev->d_dump)(sc->sc_pdev, blkno + p_offset, va, size);
   1934 }
   1935 
   1936 /*
   1937  * config glue
   1938  */
   1939 
   1940 /*
   1941  * dkwedge_find_partition
   1942  *
   1943  *	Find wedge corresponding to the specified parent name
   1944  *	and offset/length.
   1945  */
   1946 static device_t
   1947 dkwedge_find_partition_acquire(device_t parent, daddr_t startblk,
   1948     uint64_t nblks)
   1949 {
   1950 	struct dkwedge_softc *sc;
   1951 	int i;
   1952 	device_t wedge = NULL;
   1953 
   1954 	rw_enter(&dkwedges_lock, RW_READER);
   1955 	for (i = 0; i < ndkwedges; i++) {
   1956 		if ((sc = dkwedges[i]) == NULL || sc->sc_dev == NULL)
   1957 			continue;
   1958 		if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
   1959 		    sc->sc_offset == startblk &&
   1960 		    dkwedge_size(sc) == nblks) {
   1961 			if (wedge) {
   1962 				printf("WARNING: double match for boot wedge "
   1963 				    "(%s, %s)\n",
   1964 				    device_xname(wedge),
   1965 				    device_xname(sc->sc_dev));
   1966 				continue;
   1967 			}
   1968 			wedge = sc->sc_dev;
   1969 			device_acquire(wedge);
   1970 		}
   1971 	}
   1972 	rw_exit(&dkwedges_lock);
   1973 
   1974 	return wedge;
   1975 }
   1976 
   1977 /* XXX unsafe */
   1978 device_t
   1979 dkwedge_find_partition(device_t parent, daddr_t startblk,
   1980     uint64_t nblks)
   1981 {
   1982 	device_t dv;
   1983 
   1984 	if ((dv = dkwedge_find_partition_acquire(parent, startblk, nblks))
   1985 	    == NULL)
   1986 		return NULL;
   1987 	device_release(dv);
   1988 	return dv;
   1989 }
   1990 
   1991 const char *
   1992 dkwedge_get_parent_name(dev_t dev)
   1993 {
   1994 	/* XXX: perhaps do this in lookup? */
   1995 	int bmaj = bdevsw_lookup_major(&dk_bdevsw);
   1996 	int cmaj = cdevsw_lookup_major(&dk_cdevsw);
   1997 
   1998 	if (major(dev) != bmaj && major(dev) != cmaj)
   1999 		return NULL;
   2000 
   2001 	struct dkwedge_softc *const sc = dkwedge_lookup_acquire(dev);
   2002 	if (sc == NULL)
   2003 		return NULL;
   2004 	const char *const name = sc->sc_parent->dk_name;
   2005 	device_release(sc->sc_dev);
   2006 	return name;
   2007 }
   2008