dk.c revision 1.22.2.7 1 /* $NetBSD: dk.c,v 1.22.2.7 2007/08/19 19:24:23 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.22.2.7 2007/08/19 19:24:23 ad Exp $");
41
42 #include "opt_dkwedge.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/errno.h>
48 #include <sys/pool.h>
49 #include <sys/ioctl.h>
50 #include <sys/disklabel.h>
51 #include <sys/disk.h>
52 #include <sys/fcntl.h>
53 #include <sys/buf.h>
54 #include <sys/bufq.h>
55 #include <sys/vnode.h>
56 #include <sys/stat.h>
57 #include <sys/conf.h>
58 #include <sys/callout.h>
59 #include <sys/kernel.h>
60 #include <sys/lock.h>
61 #include <sys/malloc.h>
62 #include <sys/device.h>
63 #include <sys/kauth.h>
64
65 #include <miscfs/specfs/specdev.h>
66
67 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
68
69 typedef enum {
70 DKW_STATE_LARVAL = 0,
71 DKW_STATE_RUNNING = 1,
72 DKW_STATE_DYING = 2,
73 DKW_STATE_DEAD = 666
74 } dkwedge_state_t;
75
76 struct dkwedge_softc {
77 struct device *sc_dev; /* pointer to our pseudo-device */
78 struct cfdata sc_cfdata; /* our cfdata structure */
79 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
80
81 dkwedge_state_t sc_state; /* state this wedge is in */
82
83 struct disk *sc_parent; /* parent disk */
84 daddr_t sc_offset; /* LBA offset of wedge in parent */
85 uint64_t sc_size; /* size of wedge in blocks */
86 char sc_ptype[32]; /* partition type */
87 dev_t sc_pdev; /* cached parent's dev_t */
88 /* link on parent's wedge list */
89 LIST_ENTRY(dkwedge_softc) sc_plink;
90
91 struct disk sc_dk; /* our own disk structure */
92 struct bufq_state *sc_bufq; /* buffer queue */
93 struct callout sc_restart_ch; /* callout to restart I/O */
94
95 u_int sc_iopend; /* I/Os pending */
96 int sc_flags; /* flags (splbio) */
97 };
98
99 #define DK_F_WAIT_DRAIN 0x0001 /* waiting for I/O to drain */
100
101 static void dkstart(struct dkwedge_softc *);
102 static void dkiodone(struct buf *);
103 static void dkrestart(void *);
104
105 static dev_type_open(dkopen);
106 static dev_type_close(dkclose);
107 static dev_type_read(dkread);
108 static dev_type_write(dkwrite);
109 static dev_type_ioctl(dkioctl);
110 static dev_type_strategy(dkstrategy);
111 static dev_type_dump(dkdump);
112 static dev_type_size(dksize);
113
114 const struct bdevsw dk_bdevsw = {
115 dkopen, dkclose, dkstrategy, dkioctl, dkdump, dksize, D_DISK
116 };
117
118 const struct cdevsw dk_cdevsw = {
119 dkopen, dkclose, dkread, dkwrite, dkioctl,
120 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
121 };
122
123 static struct dkwedge_softc **dkwedges;
124 static u_int ndkwedges;
125 static krwlock_t dkwedges_lock;
126
127 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
128 static krwlock_t dkwedge_discovery_methods_lock;
129
130 /*
131 * dkwedge_match:
132 *
133 * Autoconfiguration match function for pseudo-device glue.
134 */
135 static int
136 dkwedge_match(struct device *parent, struct cfdata *match,
137 void *aux)
138 {
139
140 /* Pseudo-device; always present. */
141 return (1);
142 }
143
144 /*
145 * dkwedge_attach:
146 *
147 * Autoconfiguration attach function for pseudo-device glue.
148 */
149 static void
150 dkwedge_attach(struct device *parent, struct device *self,
151 void *aux)
152 {
153
154 /* Nothing to do. */
155 }
156
157 /*
158 * dkwedge_detach:
159 *
160 * Autoconfiguration detach function for pseudo-device glue.
161 */
162 static int
163 dkwedge_detach(struct device *self, int flags)
164 {
165
166 /* Always succeeds. */
167 return (0);
168 }
169
170 CFDRIVER_DECL(dk, DV_DISK, NULL);
171 CFATTACH_DECL(dk, sizeof(struct device),
172 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL);
173
174 /*
175 * dkwedge_wait_drain:
176 *
177 * Wait for I/O on the wedge to drain.
178 * NOTE: Must be called at splbio()!
179 */
180 static void
181 dkwedge_wait_drain(struct dkwedge_softc *sc)
182 {
183
184 while (sc->sc_iopend != 0) {
185 sc->sc_flags |= DK_F_WAIT_DRAIN;
186 (void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
187 }
188 }
189
190 /*
191 * dkwedge_compute_pdev:
192 *
193 * Compute the parent disk's dev_t.
194 */
195 static int
196 dkwedge_compute_pdev(const char *pname, dev_t *pdevp)
197 {
198 const char *name, *cp;
199 int punit, pmaj;
200 char devname[16];
201
202 name = pname;
203 if ((pmaj = devsw_name2blk(name, devname, sizeof(devname))) == -1)
204 return (ENODEV);
205
206 name += strlen(devname);
207 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
208 punit = (punit * 10) + (*cp - '0');
209 if (cp == name) {
210 /* Invalid parent disk name. */
211 return (ENODEV);
212 }
213
214 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
215
216 return (0);
217 }
218
219 /*
220 * dkwedge_array_expand:
221 *
222 * Expand the dkwedges array.
223 */
224 static void
225 dkwedge_array_expand(void)
226 {
227 int newcnt = ndkwedges + 16;
228 struct dkwedge_softc **newarray, **oldarray;
229
230 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
231 M_WAITOK|M_ZERO);
232 if ((oldarray = dkwedges) != NULL)
233 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
234 dkwedges = newarray;
235 ndkwedges = newcnt;
236 if (oldarray != NULL)
237 free(oldarray, M_DKWEDGE);
238 }
239
240 /*
241 * dkwedge_add: [exported function]
242 *
243 * Add a disk wedge based on the provided information.
244 *
245 * The incoming dkw_devname[] is ignored, instead being
246 * filled in and returned to the caller.
247 */
248 int
249 dkwedge_add(struct dkwedge_info *dkw)
250 {
251 struct dkwedge_softc *sc, *lsc;
252 struct disk *pdk;
253 u_int unit;
254 int error;
255 dev_t pdev;
256
257 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
258 pdk = disk_find(dkw->dkw_parent);
259 if (pdk == NULL)
260 return (ENODEV);
261
262 error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
263 if (error)
264 return (error);
265
266 if (dkw->dkw_offset < 0)
267 return (EINVAL);
268
269 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
270 sc->sc_state = DKW_STATE_LARVAL;
271 sc->sc_parent = pdk;
272 sc->sc_pdev = pdev;
273 sc->sc_offset = dkw->dkw_offset;
274 sc->sc_size = dkw->dkw_size;
275
276 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
277 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
278
279 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
280 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
281
282 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
283
284 callout_init(&sc->sc_restart_ch, 0);
285 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
286
287 /*
288 * Wedge will be added; increment the wedge count for the parent.
289 * Only allow this to happend if RAW_PART is the only thing open.
290 */
291 (void) lockmgr(&pdk->dk_openlock, LK_EXCLUSIVE, NULL);
292 if (pdk->dk_openmask & ~(1 << RAW_PART))
293 error = EBUSY;
294 else {
295 /* Check for wedge overlap. */
296 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
297 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
298 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
299
300 if (sc->sc_offset >= lsc->sc_offset &&
301 sc->sc_offset <= llastblk) {
302 /* Overlaps the tail of the exsiting wedge. */
303 break;
304 }
305 if (lastblk >= lsc->sc_offset &&
306 lastblk <= llastblk) {
307 /* Overlaps the head of the existing wedge. */
308 break;
309 }
310 }
311 if (lsc != NULL)
312 error = EINVAL;
313 else {
314 pdk->dk_nwedges++;
315 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
316 }
317 }
318 (void) lockmgr(&pdk->dk_openlock, LK_RELEASE, NULL);
319 if (error) {
320 bufq_free(sc->sc_bufq);
321 free(sc, M_DKWEDGE);
322 return (error);
323 }
324
325 /* Fill in our cfdata for the pseudo-device glue. */
326 sc->sc_cfdata.cf_name = dk_cd.cd_name;
327 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
328 /* sc->sc_cfdata.cf_unit set below */
329 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
330
331 /* Insert the larval wedge into the array. */
332 rw_enter(&dkwedges_lock, RW_WRITER);
333 for (error = 0;;) {
334 struct dkwedge_softc **scpp;
335
336 /*
337 * Check for a duplicate wname while searching for
338 * a slot.
339 */
340 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
341 if (dkwedges[unit] == NULL) {
342 if (scpp == NULL) {
343 scpp = &dkwedges[unit];
344 sc->sc_cfdata.cf_unit = unit;
345 }
346 } else {
347 /* XXX Unicode. */
348 if (strcmp(dkwedges[unit]->sc_wname,
349 sc->sc_wname) == 0) {
350 error = EEXIST;
351 break;
352 }
353 }
354 }
355 if (error)
356 break;
357 KASSERT(unit == ndkwedges);
358 if (scpp == NULL)
359 dkwedge_array_expand();
360 else {
361 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
362 *scpp = sc;
363 break;
364 }
365 }
366 rw_exit(&dkwedges_lock);
367 if (error) {
368 (void) lockmgr(&pdk->dk_openlock, LK_EXCLUSIVE, NULL);
369 pdk->dk_nwedges--;
370 LIST_REMOVE(sc, sc_plink);
371 (void) lockmgr(&pdk->dk_openlock, LK_RELEASE, NULL);
372
373 bufq_free(sc->sc_bufq);
374 free(sc, M_DKWEDGE);
375 return (error);
376 }
377
378 /*
379 * Now that we know the unit #, attach a pseudo-device for
380 * this wedge instance. This will provide us with the
381 * "struct device" necessary for glue to other parts of the
382 * system.
383 *
384 * This should never fail, unless we're almost totally out of
385 * memory.
386 */
387 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
388 aprint_error("%s%u: unable to attach pseudo-device\n",
389 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
390
391 rw_enter(&dkwedges_lock, RW_WRITER);
392 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
393 rw_exit(&dkwedges_lock);
394
395 (void) lockmgr(&pdk->dk_openlock, LK_EXCLUSIVE, NULL);
396 pdk->dk_nwedges--;
397 LIST_REMOVE(sc, sc_plink);
398 (void) lockmgr(&pdk->dk_openlock, LK_RELEASE, NULL);
399
400 bufq_free(sc->sc_bufq);
401 free(sc, M_DKWEDGE);
402 return (ENOMEM);
403 }
404 sc->sc_dk.dk_name = sc->sc_dev->dv_xname;
405
406 /* Return the devname to the caller. */
407 strcpy(dkw->dkw_devname, sc->sc_dev->dv_xname);
408
409 /*
410 * XXX Really ought to make the disk_attach() and the changing
411 * of state to RUNNING atomic.
412 */
413
414 disk_attach(&sc->sc_dk);
415
416 /* Disk wedge is ready for use! */
417 sc->sc_state = DKW_STATE_RUNNING;
418
419 /* Announce our arrival. */
420 aprint_normal("%s at %s: %s\n", sc->sc_dev->dv_xname, pdk->dk_name,
421 sc->sc_wname); /* XXX Unicode */
422 aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
423 sc->sc_dev->dv_xname, sc->sc_size, sc->sc_offset, sc->sc_ptype);
424
425 return (0);
426 }
427
428 /*
429 * dkwedge_del: [exported function]
430 *
431 * Delete a disk wedge based on the provided information.
432 * NOTE: We look up the wedge based on the wedge devname,
433 * not wname.
434 */
435 int
436 dkwedge_del(struct dkwedge_info *dkw)
437 {
438 struct dkwedge_softc *sc = NULL;
439 u_int unit;
440 int bmaj, cmaj, s;
441
442 /* Find our softc. */
443 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
444 rw_enter(&dkwedges_lock, RW_WRITER);
445 for (unit = 0; unit < ndkwedges; unit++) {
446 if ((sc = dkwedges[unit]) != NULL &&
447 strcmp(sc->sc_dev->dv_xname, dkw->dkw_devname) == 0 &&
448 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
449 /* Mark the wedge as dying. */
450 sc->sc_state = DKW_STATE_DYING;
451 break;
452 }
453 }
454 rw_exit(&dkwedges_lock);
455 if (unit == ndkwedges)
456 return (ESRCH);
457
458 KASSERT(sc != NULL);
459
460 /* Locate the wedge major numbers. */
461 bmaj = bdevsw_lookup_major(&dk_bdevsw);
462 cmaj = cdevsw_lookup_major(&dk_cdevsw);
463
464 /* Kill any pending restart. */
465 callout_stop(&sc->sc_restart_ch);
466
467 /*
468 * dkstart() will kill any queued buffers now that the
469 * state of the wedge is not RUNNING. Once we've done
470 * that, wait for any other pending I/O to complete.
471 */
472 s = splbio();
473 dkstart(sc);
474 dkwedge_wait_drain(sc);
475 splx(s);
476
477 /* Nuke the vnodes for any open instances. */
478 vdevgone(bmaj, unit, unit, VBLK);
479 vdevgone(cmaj, unit, unit, VCHR);
480
481 /* Clean up the parent. */
482 (void) lockmgr(&sc->sc_dk.dk_openlock, LK_EXCLUSIVE, NULL);
483 (void) lockmgr(&sc->sc_parent->dk_rawlock, LK_EXCLUSIVE, NULL);
484 if (sc->sc_dk.dk_openmask) {
485 if (sc->sc_parent->dk_rawopens-- == 1) {
486 KASSERT(sc->sc_parent->dk_rawvp != NULL);
487 (void) vn_close(sc->sc_parent->dk_rawvp, FREAD | FWRITE,
488 NOCRED, curlwp);
489 sc->sc_parent->dk_rawvp = NULL;
490 }
491 sc->sc_dk.dk_openmask = 0;
492 }
493 (void) lockmgr(&sc->sc_parent->dk_rawlock, LK_RELEASE, NULL);
494 (void) lockmgr(&sc->sc_dk.dk_openlock, LK_RELEASE, NULL);
495
496 /* Announce our departure. */
497 aprint_normal("%s at %s (%s) deleted\n", sc->sc_dev->dv_xname,
498 sc->sc_parent->dk_name,
499 sc->sc_wname); /* XXX Unicode */
500
501 /* Delete our pseudo-device. */
502 (void) config_detach(sc->sc_dev, DETACH_FORCE | DETACH_QUIET);
503
504 (void) lockmgr(&sc->sc_parent->dk_openlock, LK_EXCLUSIVE, NULL);
505 sc->sc_parent->dk_nwedges--;
506 LIST_REMOVE(sc, sc_plink);
507 (void) lockmgr(&sc->sc_parent->dk_openlock, LK_RELEASE, NULL);
508
509 /* Delete our buffer queue. */
510 bufq_free(sc->sc_bufq);
511
512 /* Detach from the disk list. */
513 disk_detach(&sc->sc_dk);
514
515 /* Poof. */
516 rw_enter(&dkwedges_lock, RW_WRITER);
517 dkwedges[unit] = NULL;
518 sc->sc_state = DKW_STATE_DEAD;
519 rw_exit(&dkwedges_lock);
520
521 free(sc, M_DKWEDGE);
522
523 return (0);
524 }
525
526 /*
527 * dkwedge_delall: [exported function]
528 *
529 * Delete all of the wedges on the specified disk. Used when
530 * a disk is being detached.
531 */
532 void
533 dkwedge_delall(struct disk *pdk)
534 {
535 struct dkwedge_info dkw;
536 struct dkwedge_softc *sc;
537
538 for (;;) {
539 (void) lockmgr(&pdk->dk_openlock, LK_EXCLUSIVE, NULL);
540 if ((sc = LIST_FIRST(&pdk->dk_wedges)) == NULL) {
541 KASSERT(pdk->dk_nwedges == 0);
542 (void) lockmgr(&pdk->dk_openlock, LK_RELEASE, NULL);
543 return;
544 }
545 strcpy(dkw.dkw_parent, pdk->dk_name);
546 strcpy(dkw.dkw_devname, sc->sc_dev->dv_xname);
547 (void) lockmgr(&pdk->dk_openlock, LK_RELEASE, NULL);
548 (void) dkwedge_del(&dkw);
549 }
550 }
551
552 /*
553 * dkwedge_list: [exported function]
554 *
555 * List all of the wedges on a particular disk.
556 * If p == NULL, the buffer is in kernel space. Otherwise, it is
557 * in user space of the specified process.
558 */
559 int
560 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
561 {
562 struct uio uio;
563 struct iovec iov;
564 struct dkwedge_softc *sc;
565 struct dkwedge_info dkw;
566 struct vmspace *vm;
567 int error = 0;
568
569 iov.iov_base = dkwl->dkwl_buf;
570 iov.iov_len = dkwl->dkwl_bufsize;
571
572 uio.uio_iov = &iov;
573 uio.uio_iovcnt = 1;
574 uio.uio_offset = 0;
575 uio.uio_resid = dkwl->dkwl_bufsize;
576 uio.uio_rw = UIO_READ;
577 if (l == NULL) {
578 UIO_SETUP_SYSSPACE(&uio);
579 } else {
580 error = proc_vmspace_getref(l->l_proc, &vm);
581 if (error) {
582 return error;
583 }
584 uio.uio_vmspace = vm;
585 }
586
587 dkwl->dkwl_ncopied = 0;
588
589 (void) lockmgr(&pdk->dk_openlock, LK_EXCLUSIVE, NULL);
590 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
591 if (uio.uio_resid < sizeof(dkw))
592 break;
593
594 if (sc->sc_state != DKW_STATE_RUNNING)
595 continue;
596
597 strcpy(dkw.dkw_devname, sc->sc_dev->dv_xname);
598 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
599 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
600 strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
601 dkw.dkw_offset = sc->sc_offset;
602 dkw.dkw_size = sc->sc_size;
603 strcpy(dkw.dkw_ptype, sc->sc_ptype);
604
605 error = uiomove(&dkw, sizeof(dkw), &uio);
606 if (error)
607 break;
608 dkwl->dkwl_ncopied++;
609 }
610 dkwl->dkwl_nwedges = pdk->dk_nwedges;
611 (void) lockmgr(&pdk->dk_openlock, LK_RELEASE, NULL);
612
613 if (l != NULL) {
614 uvmspace_free(vm);
615 }
616
617 return (error);
618 }
619
620 device_t
621 dkwedge_find_by_wname(const char *wname)
622 {
623 device_t dv = NULL;
624 struct dkwedge_softc *sc;
625 int i;
626
627 rw_enter(&dkwedges_lock, RW_WRITER);
628 for (i = 0; i < ndkwedges; i++) {
629 if ((sc = dkwedges[i]) == NULL)
630 continue;
631 if (strcmp(sc->sc_wname, wname) == 0) {
632 if (dv != NULL) {
633 printf(
634 "WARNING: double match for wedge name %s "
635 "(%s, %s)\n", wname, device_xname(dv),
636 device_xname(sc->sc_dev));
637 continue;
638 }
639 dv = sc->sc_dev;
640 }
641 }
642 rw_exit(&dkwedges_lock);
643 return dv;
644 }
645
646 void
647 dkwedge_print_wnames(void)
648 {
649 struct dkwedge_softc *sc;
650 int i;
651
652 rw_enter(&dkwedges_lock, RW_WRITER);
653 for (i = 0; i < ndkwedges; i++) {
654 if ((sc = dkwedges[i]) == NULL)
655 continue;
656 printf(" wedge:%s", sc->sc_wname);
657 }
658 rw_exit(&dkwedges_lock);
659 }
660
661 /*
662 * dkwedge_set_bootwedge
663 *
664 * Set the booted_wedge global based on the specified parent name
665 * and offset/length.
666 */
667 void
668 dkwedge_set_bootwedge(struct device *parent, daddr_t startblk, uint64_t nblks)
669 {
670 struct dkwedge_softc *sc;
671 int i;
672
673 rw_enter(&dkwedges_lock, RW_WRITER);
674 for (i = 0; i < ndkwedges; i++) {
675 if ((sc = dkwedges[i]) == NULL)
676 continue;
677 if (strcmp(sc->sc_parent->dk_name, parent->dv_xname) == 0 &&
678 sc->sc_offset == startblk &&
679 sc->sc_size == nblks) {
680 if (booted_wedge) {
681 printf("WARNING: double match for boot wedge "
682 "(%s, %s)\n",
683 booted_wedge->dv_xname,
684 sc->sc_dev->dv_xname);
685 continue;
686 }
687 booted_device = parent;
688 booted_wedge = sc->sc_dev;
689 booted_partition = 0;
690 }
691 }
692 /*
693 * XXX What if we don't find one? Should we create a special
694 * XXX root wedge?
695 */
696 rw_exit(&dkwedges_lock);
697 }
698
699 /*
700 * We need a dummy object to stuff into the dkwedge discovery method link
701 * set to ensure that there is always at least one object in the set.
702 */
703 static struct dkwedge_discovery_method dummy_discovery_method;
704 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
705
706 /*
707 * dkwedge_init:
708 *
709 * Initialize the disk wedge subsystem.
710 */
711 void
712 dkwedge_init(void)
713 {
714 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
715 struct dkwedge_discovery_method * const *ddmp;
716 struct dkwedge_discovery_method *lddm, *ddm;
717
718 rw_init(&dkwedges_lock);
719 rw_init(&dkwedge_discovery_methods_lock);
720
721 if (config_cfdriver_attach(&dk_cd) != 0)
722 panic("dkwedge: unable to attach cfdriver");
723 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
724 panic("dkwedge: unable to attach cfattach");
725
726 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
727
728 LIST_INIT(&dkwedge_discovery_methods);
729
730 __link_set_foreach(ddmp, dkwedge_methods) {
731 ddm = *ddmp;
732 if (ddm == &dummy_discovery_method)
733 continue;
734 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
735 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
736 ddm, ddm_list);
737 continue;
738 }
739 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
740 if (ddm->ddm_priority == lddm->ddm_priority) {
741 aprint_error("dk-method-%s: method \"%s\" "
742 "already exists at priority %d\n",
743 ddm->ddm_name, lddm->ddm_name,
744 lddm->ddm_priority);
745 /* Not inserted. */
746 break;
747 }
748 if (ddm->ddm_priority < lddm->ddm_priority) {
749 /* Higher priority; insert before. */
750 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
751 break;
752 }
753 if (LIST_NEXT(lddm, ddm_list) == NULL) {
754 /* Last one; insert after. */
755 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
756 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
757 break;
758 }
759 }
760 }
761
762 rw_exit(&dkwedge_discovery_methods_lock);
763 }
764
765 #ifdef DKWEDGE_AUTODISCOVER
766 int dkwedge_autodiscover = 1;
767 #else
768 int dkwedge_autodiscover = 0;
769 #endif
770
771 /*
772 * dkwedge_discover: [exported function]
773 *
774 * Discover the wedges on a newly attached disk.
775 */
776 void
777 dkwedge_discover(struct disk *pdk)
778 {
779 struct dkwedge_discovery_method *ddm;
780 struct vnode *vp;
781 int error;
782 dev_t pdev;
783
784 /*
785 * Require people playing with wedges to enable this explicitly.
786 */
787 if (dkwedge_autodiscover == 0)
788 return;
789
790 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
791
792 error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
793 if (error) {
794 aprint_error("%s: unable to compute pdev, error = %d\n",
795 pdk->dk_name, error);
796 goto out;
797 }
798
799 error = bdevvp(pdev, &vp);
800 if (error) {
801 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
802 pdk->dk_name, error);
803 goto out;
804 }
805
806 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
807 if (error) {
808 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
809 pdk->dk_name, error);
810 vrele(vp);
811 goto out;
812 }
813
814 error = VOP_OPEN(vp, FREAD, NOCRED, 0);
815 if (error) {
816 aprint_error("%s: unable to open device, error = %d\n",
817 pdk->dk_name, error);
818 vput(vp);
819 goto out;
820 }
821 VOP_UNLOCK(vp, 0);
822
823 /*
824 * For each supported partition map type, look to see if
825 * this map type exists. If so, parse it and add the
826 * corresponding wedges.
827 */
828 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
829 error = (*ddm->ddm_discover)(pdk, vp);
830 if (error == 0) {
831 /* Successfully created wedges; we're done. */
832 break;
833 }
834 }
835
836 error = vn_close(vp, FREAD, NOCRED, curlwp);
837 if (error) {
838 aprint_error("%s: unable to close device, error = %d\n",
839 pdk->dk_name, error);
840 /* We'll just assume the vnode has been cleaned up. */
841 }
842 out:
843 rw_exit(&dkwedge_discovery_methods_lock);
844 }
845
846 /*
847 * dkwedge_read:
848 *
849 * Read the some data from the specified disk, used for
850 * partition discovery.
851 */
852 int
853 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
854 void *tbuf, size_t len)
855 {
856 struct buf b;
857
858 buf_init(&b);
859
860 b.b_vp = vp;
861 b.b_dev = vp->v_rdev;
862 b.b_blkno = blkno;
863 b.b_bcount = b.b_resid = len;
864 b.b_flags = B_READ;
865 b.b_proc = curproc;
866 b.b_data = tbuf;
867
868 VOP_STRATEGY(vp, &b);
869 return (biowait(&b));
870 }
871
872 /*
873 * dkwedge_lookup:
874 *
875 * Look up a dkwedge_softc based on the provided dev_t.
876 */
877 static struct dkwedge_softc *
878 dkwedge_lookup(dev_t dev)
879 {
880 int unit = minor(dev);
881
882 if (unit >= ndkwedges)
883 return (NULL);
884
885 KASSERT(dkwedges != NULL);
886
887 return (dkwedges[unit]);
888 }
889
890 /*
891 * dkopen: [devsw entry point]
892 *
893 * Open a wedge.
894 */
895 static int
896 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
897 {
898 struct dkwedge_softc *sc = dkwedge_lookup(dev);
899 struct vnode *vp;
900 int error = 0;
901
902 if (sc == NULL)
903 return (ENODEV);
904
905 if (sc->sc_state != DKW_STATE_RUNNING)
906 return (ENXIO);
907
908 /*
909 * We go through a complicated little dance to only open the parent
910 * vnode once per wedge, no matter how many times the wedge is
911 * opened. The reason? We see one dkopen() per open call, but
912 * only dkclose() on the last close.
913 */
914 (void) lockmgr(&sc->sc_dk.dk_openlock, LK_EXCLUSIVE, NULL);
915 (void) lockmgr(&sc->sc_parent->dk_rawlock, LK_EXCLUSIVE, NULL);
916 if (sc->sc_dk.dk_openmask == 0) {
917 if (sc->sc_parent->dk_rawopens == 0) {
918 KASSERT(sc->sc_parent->dk_rawvp == NULL);
919 error = bdevvp(sc->sc_pdev, &vp);
920 if (error)
921 goto popen_fail;
922 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
923 if (error) {
924 vrele(vp);
925 goto popen_fail;
926 }
927 error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED, 0);
928 if (error) {
929 vput(vp);
930 goto popen_fail;
931 }
932 /* VOP_OPEN() doesn't do this for us. */
933 vp->v_writecount++;
934 VOP_UNLOCK(vp, 0);
935 sc->sc_parent->dk_rawvp = vp;
936 }
937 sc->sc_parent->dk_rawopens++;
938 }
939 if (fmt == S_IFCHR)
940 sc->sc_dk.dk_copenmask |= 1;
941 else
942 sc->sc_dk.dk_bopenmask |= 1;
943 sc->sc_dk.dk_openmask =
944 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
945
946 popen_fail:
947 (void) lockmgr(&sc->sc_parent->dk_rawlock, LK_RELEASE, NULL);
948 (void) lockmgr(&sc->sc_dk.dk_openlock, LK_RELEASE, NULL);
949 return (error);
950 }
951
952 /*
953 * dkclose: [devsw entry point]
954 *
955 * Close a wedge.
956 */
957 static int
958 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
959 {
960 struct dkwedge_softc *sc = dkwedge_lookup(dev);
961 int error = 0;
962
963 KASSERT(sc->sc_dk.dk_openmask != 0);
964
965 (void) lockmgr(&sc->sc_dk.dk_openlock, LK_EXCLUSIVE, NULL);
966 (void) lockmgr(&sc->sc_parent->dk_rawlock, LK_EXCLUSIVE, NULL);
967
968 if (fmt == S_IFCHR)
969 sc->sc_dk.dk_copenmask &= ~1;
970 else
971 sc->sc_dk.dk_bopenmask &= ~1;
972 sc->sc_dk.dk_openmask =
973 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
974
975 if (sc->sc_dk.dk_openmask == 0) {
976 if (sc->sc_parent->dk_rawopens-- == 1) {
977 KASSERT(sc->sc_parent->dk_rawvp != NULL);
978 error = vn_close(sc->sc_parent->dk_rawvp,
979 FREAD | FWRITE, NOCRED, l);
980 sc->sc_parent->dk_rawvp = NULL;
981 }
982 }
983
984 (void) lockmgr(&sc->sc_parent->dk_rawlock, LK_RELEASE, NULL);
985 (void) lockmgr(&sc->sc_dk.dk_openlock, LK_RELEASE, NULL);
986
987 return (error);
988 }
989
990 /*
991 * dkstragegy: [devsw entry point]
992 *
993 * Perform I/O based on the wedge I/O strategy.
994 */
995 static void
996 dkstrategy(struct buf *bp)
997 {
998 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
999 int s;
1000
1001 if (sc->sc_state != DKW_STATE_RUNNING) {
1002 bp->b_error = ENXIO;
1003 goto done;
1004 }
1005
1006 /* If it's an empty transfer, wake up the top half now. */
1007 if (bp->b_bcount == 0)
1008 goto done;
1009
1010 /* Make sure it's in-range. */
1011 if (bounds_check_with_mediasize(bp, DEV_BSIZE, sc->sc_size) <= 0)
1012 goto done;
1013
1014 /* Translate it to the parent's raw LBA. */
1015 bp->b_rawblkno = bp->b_blkno + sc->sc_offset;
1016
1017 /* Place it in the queue and start I/O on the unit. */
1018 s = splbio();
1019 sc->sc_iopend++;
1020 BUFQ_PUT(sc->sc_bufq, bp);
1021 dkstart(sc);
1022 splx(s);
1023 return;
1024
1025 done:
1026 bp->b_resid = bp->b_bcount;
1027 biodone(bp);
1028 }
1029
1030 /*
1031 * dkstart:
1032 *
1033 * Start I/O that has been enqueued on the wedge.
1034 * NOTE: Must be called at splbio()!
1035 */
1036 static void
1037 dkstart(struct dkwedge_softc *sc)
1038 {
1039 struct vnode *vp;
1040 struct buf *bp, *nbp;
1041
1042 /* Do as much work as has been enqueued. */
1043 while ((bp = BUFQ_PEEK(sc->sc_bufq)) != NULL) {
1044 if (sc->sc_state != DKW_STATE_RUNNING) {
1045 (void) BUFQ_GET(sc->sc_bufq);
1046 if (sc->sc_iopend-- == 1 &&
1047 (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1048 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1049 wakeup(&sc->sc_iopend);
1050 }
1051 bp->b_error = ENXIO;
1052 bp->b_resid = bp->b_bcount;
1053 biodone(bp);
1054 }
1055
1056 /* Instrumentation. */
1057 disk_busy(&sc->sc_dk);
1058
1059 nbp = getiobuf_nowait();
1060 if (nbp == NULL) {
1061 /*
1062 * No resources to run this request; leave the
1063 * buffer queued up, and schedule a timer to
1064 * restart the queue in 1/2 a second.
1065 */
1066 disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
1067 callout_schedule(&sc->sc_restart_ch, hz / 2);
1068 return;
1069 }
1070
1071 (void) BUFQ_GET(sc->sc_bufq);
1072
1073 nbp->b_data = bp->b_data;
1074 nbp->b_flags = bp->b_flags | B_CALL;
1075 nbp->b_iodone = dkiodone;
1076 nbp->b_proc = bp->b_proc;
1077 nbp->b_blkno = bp->b_rawblkno;
1078 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1079 nbp->b_vp = sc->sc_parent->dk_rawvp;
1080 nbp->b_bcount = bp->b_bcount;
1081 nbp->b_private = bp;
1082 BIO_COPYPRIO(nbp, bp);
1083
1084 vp = nbp->b_vp;
1085 if ((nbp->b_flags & B_READ) == 0) {
1086 mutex_enter(&vp->v_interlock);
1087 vp->v_numoutput++;
1088 mutex_exit(&vp->v_interlock);
1089 }
1090 VOP_STRATEGY(vp, nbp);
1091 }
1092 }
1093
1094 /*
1095 * dkiodone:
1096 *
1097 * I/O to a wedge has completed; alert the top half.
1098 * NOTE: Must be called at splbio()!
1099 */
1100 static void
1101 dkiodone(struct buf *bp)
1102 {
1103 struct buf *obp = bp->b_private;
1104 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1105
1106 obp->b_error = bp->b_error;
1107 obp->b_resid = bp->b_resid;
1108 putiobuf(bp);
1109
1110 if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1111 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1112 wakeup(&sc->sc_iopend);
1113 }
1114
1115 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1116 obp->b_flags & B_READ);
1117
1118 biodone(obp);
1119
1120 /* Kick the queue in case there is more work we can do. */
1121 dkstart(sc);
1122 }
1123
1124 /*
1125 * dkrestart:
1126 *
1127 * Restart the work queue after it was stalled due to
1128 * a resource shortage. Invoked via a callout.
1129 */
1130 static void
1131 dkrestart(void *v)
1132 {
1133 struct dkwedge_softc *sc = v;
1134 int s;
1135
1136 s = splbio();
1137 dkstart(sc);
1138 splx(s);
1139 }
1140
1141 /*
1142 * dkread: [devsw entry point]
1143 *
1144 * Read from a wedge.
1145 */
1146 static int
1147 dkread(dev_t dev, struct uio *uio, int flags)
1148 {
1149 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1150
1151 if (sc->sc_state != DKW_STATE_RUNNING)
1152 return (ENXIO);
1153
1154 return (physio(dkstrategy, NULL, dev, B_READ,
1155 sc->sc_parent->dk_driver->d_minphys, uio));
1156 }
1157
1158 /*
1159 * dkwrite: [devsw entry point]
1160 *
1161 * Write to a wedge.
1162 */
1163 static int
1164 dkwrite(dev_t dev, struct uio *uio, int flags)
1165 {
1166 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1167
1168 if (sc->sc_state != DKW_STATE_RUNNING)
1169 return (ENXIO);
1170
1171 return (physio(dkstrategy, NULL, dev, B_WRITE,
1172 sc->sc_parent->dk_driver->d_minphys, uio));
1173 }
1174
1175 /*
1176 * dkioctl: [devsw entry point]
1177 *
1178 * Perform an ioctl request on a wedge.
1179 */
1180 static int
1181 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1182 {
1183 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1184 int error = 0;
1185
1186 if (sc->sc_state != DKW_STATE_RUNNING)
1187 return (ENXIO);
1188
1189 switch (cmd) {
1190 case DIOCCACHESYNC:
1191 /*
1192 * XXX Do we really need to care about having a writable
1193 * file descriptor here?
1194 */
1195 if ((flag & FWRITE) == 0)
1196 error = EBADF;
1197 else
1198 error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
1199 cmd, data, flag,
1200 l != NULL ? l->l_cred : NOCRED, l);
1201 break;
1202 case DIOCGWEDGEINFO:
1203 {
1204 struct dkwedge_info *dkw = (void *) data;
1205
1206 strcpy(dkw->dkw_devname, sc->sc_dev->dv_xname);
1207 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1208 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1209 strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
1210 dkw->dkw_offset = sc->sc_offset;
1211 dkw->dkw_size = sc->sc_size;
1212 strcpy(dkw->dkw_ptype, sc->sc_ptype);
1213
1214 break;
1215 }
1216
1217 default:
1218 error = ENOTTY;
1219 }
1220
1221 return (error);
1222 }
1223
1224 /*
1225 * dksize: [devsw entry point]
1226 *
1227 * Query the size of a wedge for the purpose of performing a dump
1228 * or for swapping to.
1229 */
1230 static int
1231 dksize(dev_t dev)
1232 {
1233 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1234 int rv = -1;
1235
1236 if (sc == NULL)
1237 return (-1);
1238
1239 if (sc->sc_state != DKW_STATE_RUNNING)
1240 return (ENXIO);
1241
1242 (void) lockmgr(&sc->sc_dk.dk_openlock, LK_EXCLUSIVE, NULL);
1243 (void) lockmgr(&sc->sc_parent->dk_rawlock, LK_EXCLUSIVE, NULL);
1244
1245 /* Our content type is static, no need to open the device. */
1246
1247 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1248 /* Saturate if we are larger than INT_MAX. */
1249 if (sc->sc_size > INT_MAX)
1250 rv = INT_MAX;
1251 else
1252 rv = (int) sc->sc_size;
1253 }
1254
1255 (void) lockmgr(&sc->sc_parent->dk_rawlock, LK_RELEASE, NULL);
1256 (void) lockmgr(&sc->sc_dk.dk_openlock, LK_RELEASE, NULL);
1257
1258 return (rv);
1259 }
1260
1261 /*
1262 * dkdump: [devsw entry point]
1263 *
1264 * Perform a crash dump to a wedge.
1265 */
1266 static int
1267 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1268 {
1269 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1270 const struct bdevsw *bdev;
1271 int rv = 0;
1272
1273 if (sc == NULL)
1274 return (-1);
1275
1276 if (sc->sc_state != DKW_STATE_RUNNING)
1277 return (ENXIO);
1278
1279 (void) lockmgr(&sc->sc_dk.dk_openlock, LK_EXCLUSIVE, NULL);
1280 (void) lockmgr(&sc->sc_parent->dk_rawlock, LK_EXCLUSIVE, NULL);
1281
1282 /* Our content type is static, no need to open the device. */
1283
1284 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
1285 rv = ENXIO;
1286 goto out;
1287 }
1288 if (size % DEV_BSIZE != 0) {
1289 rv = EINVAL;
1290 goto out;
1291 }
1292 if (blkno + size / DEV_BSIZE > sc->sc_size) {
1293 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1294 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
1295 size / DEV_BSIZE, sc->sc_size);
1296 rv = EINVAL;
1297 goto out;
1298 }
1299
1300 bdev = bdevsw_lookup(sc->sc_pdev);
1301 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
1302
1303 out:
1304 (void) lockmgr(&sc->sc_parent->dk_rawlock, LK_RELEASE, NULL);
1305 (void) lockmgr(&sc->sc_dk.dk_openlock, LK_RELEASE, NULL);
1306
1307 return rv;
1308 }
1309