Home | History | Annotate | Line # | Download | only in dkwedge
dk.c revision 1.27
      1 /*	$NetBSD: dk.c,v 1.27 2007/07/21 19:51:47 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.27 2007/07/21 19:51:47 ad Exp $");
     41 
     42 #include "opt_dkwedge.h"
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/proc.h>
     47 #include <sys/errno.h>
     48 #include <sys/pool.h>
     49 #include <sys/ioctl.h>
     50 #include <sys/disklabel.h>
     51 #include <sys/disk.h>
     52 #include <sys/fcntl.h>
     53 #include <sys/buf.h>
     54 #include <sys/bufq.h>
     55 #include <sys/vnode.h>
     56 #include <sys/stat.h>
     57 #include <sys/conf.h>
     58 #include <sys/callout.h>
     59 #include <sys/kernel.h>
     60 #include <sys/malloc.h>
     61 #include <sys/device.h>
     62 #include <sys/kauth.h>
     63 
     64 #include <miscfs/specfs/specdev.h>
     65 
     66 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
     67 
     68 typedef enum {
     69 	DKW_STATE_LARVAL	= 0,
     70 	DKW_STATE_RUNNING	= 1,
     71 	DKW_STATE_DYING		= 2,
     72 	DKW_STATE_DEAD		= 666
     73 } dkwedge_state_t;
     74 
     75 struct dkwedge_softc {
     76 	struct device	*sc_dev;	/* pointer to our pseudo-device */
     77 	struct cfdata	sc_cfdata;	/* our cfdata structure */
     78 	uint8_t		sc_wname[128];	/* wedge name (Unicode, UTF-8) */
     79 
     80 	dkwedge_state_t sc_state;	/* state this wedge is in */
     81 
     82 	struct disk	*sc_parent;	/* parent disk */
     83 	daddr_t		sc_offset;	/* LBA offset of wedge in parent */
     84 	uint64_t	sc_size;	/* size of wedge in blocks */
     85 	char		sc_ptype[32];	/* partition type */
     86 	dev_t		sc_pdev;	/* cached parent's dev_t */
     87 					/* link on parent's wedge list */
     88 	LIST_ENTRY(dkwedge_softc) sc_plink;
     89 
     90 	struct disk	sc_dk;		/* our own disk structure */
     91 	struct bufq_state *sc_bufq;	/* buffer queue */
     92 	struct callout	sc_restart_ch;	/* callout to restart I/O */
     93 
     94 	u_int		sc_iopend;	/* I/Os pending */
     95 	int		sc_flags;	/* flags (splbio) */
     96 };
     97 
     98 #define	DK_F_WAIT_DRAIN		0x0001	/* waiting for I/O to drain */
     99 
    100 static void	dkstart(struct dkwedge_softc *);
    101 static void	dkiodone(struct buf *);
    102 static void	dkrestart(void *);
    103 
    104 static dev_type_open(dkopen);
    105 static dev_type_close(dkclose);
    106 static dev_type_read(dkread);
    107 static dev_type_write(dkwrite);
    108 static dev_type_ioctl(dkioctl);
    109 static dev_type_strategy(dkstrategy);
    110 static dev_type_dump(dkdump);
    111 static dev_type_size(dksize);
    112 
    113 const struct bdevsw dk_bdevsw = {
    114 	dkopen, dkclose, dkstrategy, dkioctl, dkdump, dksize, D_DISK
    115 };
    116 
    117 const struct cdevsw dk_cdevsw = {
    118 	dkopen, dkclose, dkread, dkwrite, dkioctl,
    119 	    nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    120 };
    121 
    122 static struct dkwedge_softc **dkwedges;
    123 static u_int ndkwedges;
    124 static krwlock_t dkwedges_lock;
    125 
    126 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
    127 static krwlock_t dkwedge_discovery_methods_lock;
    128 
    129 /*
    130  * dkwedge_match:
    131  *
    132  *	Autoconfiguration match function for pseudo-device glue.
    133  */
    134 static int
    135 dkwedge_match(struct device *parent, struct cfdata *match,
    136     void *aux)
    137 {
    138 
    139 	/* Pseudo-device; always present. */
    140 	return (1);
    141 }
    142 
    143 /*
    144  * dkwedge_attach:
    145  *
    146  *	Autoconfiguration attach function for pseudo-device glue.
    147  */
    148 static void
    149 dkwedge_attach(struct device *parent, struct device *self,
    150     void *aux)
    151 {
    152 
    153 	/* Nothing to do. */
    154 }
    155 
    156 /*
    157  * dkwedge_detach:
    158  *
    159  *	Autoconfiguration detach function for pseudo-device glue.
    160  */
    161 static int
    162 dkwedge_detach(struct device *self, int flags)
    163 {
    164 
    165 	/* Always succeeds. */
    166 	return (0);
    167 }
    168 
    169 CFDRIVER_DECL(dk, DV_DISK, NULL);
    170 CFATTACH_DECL(dk, sizeof(struct device),
    171 	      dkwedge_match, dkwedge_attach, dkwedge_detach, NULL);
    172 
    173 /*
    174  * dkwedge_wait_drain:
    175  *
    176  *	Wait for I/O on the wedge to drain.
    177  *	NOTE: Must be called at splbio()!
    178  */
    179 static void
    180 dkwedge_wait_drain(struct dkwedge_softc *sc)
    181 {
    182 
    183 	while (sc->sc_iopend != 0) {
    184 		sc->sc_flags |= DK_F_WAIT_DRAIN;
    185 		(void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
    186 	}
    187 }
    188 
    189 /*
    190  * dkwedge_compute_pdev:
    191  *
    192  *	Compute the parent disk's dev_t.
    193  */
    194 static int
    195 dkwedge_compute_pdev(const char *pname, dev_t *pdevp)
    196 {
    197 	const char *name, *cp;
    198 	int punit, pmaj;
    199 	char devname[16];
    200 
    201 	name = pname;
    202 	if ((pmaj = devsw_name2blk(name, devname, sizeof(devname))) == -1)
    203 		return (ENODEV);
    204 
    205 	name += strlen(devname);
    206 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
    207 		punit = (punit * 10) + (*cp - '0');
    208 	if (cp == name) {
    209 		/* Invalid parent disk name. */
    210 		return (ENODEV);
    211 	}
    212 
    213 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
    214 
    215 	return (0);
    216 }
    217 
    218 /*
    219  * dkwedge_array_expand:
    220  *
    221  *	Expand the dkwedges array.
    222  */
    223 static void
    224 dkwedge_array_expand(void)
    225 {
    226 	int newcnt = ndkwedges + 16;
    227 	struct dkwedge_softc **newarray, **oldarray;
    228 
    229 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
    230 	    M_WAITOK|M_ZERO);
    231 	if ((oldarray = dkwedges) != NULL)
    232 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
    233 	dkwedges = newarray;
    234 	ndkwedges = newcnt;
    235 	if (oldarray != NULL)
    236 		free(oldarray, M_DKWEDGE);
    237 }
    238 
    239 /*
    240  * dkwedge_add:		[exported function]
    241  *
    242  *	Add a disk wedge based on the provided information.
    243  *
    244  *	The incoming dkw_devname[] is ignored, instead being
    245  *	filled in and returned to the caller.
    246  */
    247 int
    248 dkwedge_add(struct dkwedge_info *dkw)
    249 {
    250 	struct dkwedge_softc *sc, *lsc;
    251 	struct disk *pdk;
    252 	u_int unit;
    253 	int error;
    254 	dev_t pdev;
    255 
    256 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
    257 	pdk = disk_find(dkw->dkw_parent);
    258 	if (pdk == NULL)
    259 		return (ENODEV);
    260 
    261 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
    262 	if (error)
    263 		return (error);
    264 
    265 	if (dkw->dkw_offset < 0)
    266 		return (EINVAL);
    267 
    268 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
    269 	sc->sc_state = DKW_STATE_LARVAL;
    270 	sc->sc_parent = pdk;
    271 	sc->sc_pdev = pdev;
    272 	sc->sc_offset = dkw->dkw_offset;
    273 	sc->sc_size = dkw->dkw_size;
    274 
    275 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
    276 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
    277 
    278 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
    279 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
    280 
    281 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
    282 
    283 	callout_init(&sc->sc_restart_ch, 0);
    284 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
    285 
    286 	/*
    287 	 * Wedge will be added; increment the wedge count for the parent.
    288 	 * Only allow this to happend if RAW_PART is the only thing open.
    289 	 */
    290 	mutex_enter(&pdk->dk_openlock);
    291 	if (pdk->dk_openmask & ~(1 << RAW_PART))
    292 		error = EBUSY;
    293 	else {
    294 		/* Check for wedge overlap. */
    295 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    296 			daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
    297 			daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
    298 
    299 			if (sc->sc_offset >= lsc->sc_offset &&
    300 			    sc->sc_offset <= llastblk) {
    301 				/* Overlaps the tail of the exsiting wedge. */
    302 				break;
    303 			}
    304 			if (lastblk >= lsc->sc_offset &&
    305 			    lastblk <= llastblk) {
    306 				/* Overlaps the head of the existing wedge. */
    307 			    	break;
    308 			}
    309 		}
    310 		if (lsc != NULL)
    311 			error = EINVAL;
    312 		else {
    313 			pdk->dk_nwedges++;
    314 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
    315 		}
    316 	}
    317 	mutex_exit(&pdk->dk_openlock);
    318 	if (error) {
    319 		bufq_free(sc->sc_bufq);
    320 		free(sc, M_DKWEDGE);
    321 		return (error);
    322 	}
    323 
    324 	/* Fill in our cfdata for the pseudo-device glue. */
    325 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
    326 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
    327 	/* sc->sc_cfdata.cf_unit set below */
    328 	sc->sc_cfdata.cf_fstate = FSTATE_STAR;
    329 
    330 	/* Insert the larval wedge into the array. */
    331 	rw_enter(&dkwedges_lock, RW_WRITER);
    332 	for (error = 0;;) {
    333 		struct dkwedge_softc **scpp;
    334 
    335 		/*
    336 		 * Check for a duplicate wname while searching for
    337 		 * a slot.
    338 		 */
    339 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
    340 			if (dkwedges[unit] == NULL) {
    341 				if (scpp == NULL) {
    342 					scpp = &dkwedges[unit];
    343 					sc->sc_cfdata.cf_unit = unit;
    344 				}
    345 			} else {
    346 				/* XXX Unicode. */
    347 				if (strcmp(dkwedges[unit]->sc_wname,
    348 					   sc->sc_wname) == 0) {
    349 					error = EEXIST;
    350 					break;
    351 				}
    352 			}
    353 		}
    354 		if (error)
    355 			break;
    356 		KASSERT(unit == ndkwedges);
    357 		if (scpp == NULL)
    358 			dkwedge_array_expand();
    359 		else {
    360 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
    361 			*scpp = sc;
    362 			break;
    363 		}
    364 	}
    365 	rw_exit(&dkwedges_lock);
    366 	if (error) {
    367 		mutex_enter(&pdk->dk_openlock);
    368 		pdk->dk_nwedges--;
    369 		LIST_REMOVE(sc, sc_plink);
    370 		mutex_exit(&pdk->dk_openlock);
    371 
    372 		bufq_free(sc->sc_bufq);
    373 		free(sc, M_DKWEDGE);
    374 		return (error);
    375 	}
    376 
    377 	/*
    378 	 * Now that we know the unit #, attach a pseudo-device for
    379 	 * this wedge instance.  This will provide us with the
    380 	 * "struct device" necessary for glue to other parts of the
    381 	 * system.
    382 	 *
    383 	 * This should never fail, unless we're almost totally out of
    384 	 * memory.
    385 	 */
    386 	if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
    387 		aprint_error("%s%u: unable to attach pseudo-device\n",
    388 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
    389 
    390 		rw_enter(&dkwedges_lock, RW_WRITER);
    391 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
    392 		rw_exit(&dkwedges_lock);
    393 
    394 		mutex_enter(&pdk->dk_openlock);
    395 		pdk->dk_nwedges--;
    396 		LIST_REMOVE(sc, sc_plink);
    397 		mutex_exit(&pdk->dk_openlock);
    398 
    399 		bufq_free(sc->sc_bufq);
    400 		free(sc, M_DKWEDGE);
    401 		return (ENOMEM);
    402 	}
    403 	sc->sc_dk.dk_name = sc->sc_dev->dv_xname;
    404 
    405 	/* Return the devname to the caller. */
    406 	strcpy(dkw->dkw_devname, sc->sc_dev->dv_xname);
    407 
    408 	/*
    409 	 * XXX Really ought to make the disk_attach() and the changing
    410 	 * of state to RUNNING atomic.
    411 	 */
    412 
    413 	disk_attach(&sc->sc_dk);
    414 
    415 	/* Disk wedge is ready for use! */
    416 	sc->sc_state = DKW_STATE_RUNNING;
    417 
    418 	/* Announce our arrival. */
    419 	aprint_normal("%s at %s: %s\n", sc->sc_dev->dv_xname, pdk->dk_name,
    420 	    sc->sc_wname);	/* XXX Unicode */
    421 	aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
    422 	    sc->sc_dev->dv_xname, sc->sc_size, sc->sc_offset, sc->sc_ptype);
    423 
    424 	return (0);
    425 }
    426 
    427 /*
    428  * dkwedge_del:		[exported function]
    429  *
    430  *	Delete a disk wedge based on the provided information.
    431  *	NOTE: We look up the wedge based on the wedge devname,
    432  *	not wname.
    433  */
    434 int
    435 dkwedge_del(struct dkwedge_info *dkw)
    436 {
    437 	struct dkwedge_softc *sc = NULL;
    438 	u_int unit;
    439 	int bmaj, cmaj, s;
    440 
    441 	/* Find our softc. */
    442 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
    443 	rw_enter(&dkwedges_lock, RW_WRITER);
    444 	for (unit = 0; unit < ndkwedges; unit++) {
    445 		if ((sc = dkwedges[unit]) != NULL &&
    446 		    strcmp(sc->sc_dev->dv_xname, dkw->dkw_devname) == 0 &&
    447 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
    448 			/* Mark the wedge as dying. */
    449 			sc->sc_state = DKW_STATE_DYING;
    450 			break;
    451 		}
    452 	}
    453 	rw_exit(&dkwedges_lock);
    454 	if (unit == ndkwedges)
    455 		return (ESRCH);
    456 
    457 	KASSERT(sc != NULL);
    458 
    459 	/* Locate the wedge major numbers. */
    460 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
    461 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
    462 
    463 	/* Kill any pending restart. */
    464 	callout_stop(&sc->sc_restart_ch);
    465 
    466 	/*
    467 	 * dkstart() will kill any queued buffers now that the
    468 	 * state of the wedge is not RUNNING.  Once we've done
    469 	 * that, wait for any other pending I/O to complete.
    470 	 */
    471 	s = splbio();
    472 	dkstart(sc);
    473 	dkwedge_wait_drain(sc);
    474 	splx(s);
    475 
    476 	/* Nuke the vnodes for any open instances. */
    477 	vdevgone(bmaj, unit, unit, VBLK);
    478 	vdevgone(cmaj, unit, unit, VCHR);
    479 
    480 	/* Clean up the parent. */
    481 	mutex_enter(&sc->sc_dk.dk_openlock);
    482 	mutex_enter(&sc->sc_parent->dk_rawlock);
    483 	if (sc->sc_dk.dk_openmask) {
    484 		if (sc->sc_parent->dk_rawopens-- == 1) {
    485 			KASSERT(sc->sc_parent->dk_rawvp != NULL);
    486 			(void) vn_close(sc->sc_parent->dk_rawvp, FREAD | FWRITE,
    487 					NOCRED, curlwp);
    488 			sc->sc_parent->dk_rawvp = NULL;
    489 		}
    490 		sc->sc_dk.dk_openmask = 0;
    491 	}
    492 	mutex_exit(&sc->sc_parent->dk_rawlock);
    493 	mutex_exit(&sc->sc_dk.dk_openlock);
    494 
    495 	/* Announce our departure. */
    496 	aprint_normal("%s at %s (%s) deleted\n", sc->sc_dev->dv_xname,
    497 	    sc->sc_parent->dk_name,
    498 	    sc->sc_wname);	/* XXX Unicode */
    499 
    500 	/* Delete our pseudo-device. */
    501 	(void) config_detach(sc->sc_dev, DETACH_FORCE | DETACH_QUIET);
    502 
    503 	mutex_enter(&sc->sc_parent->dk_openlock);
    504 	sc->sc_parent->dk_nwedges--;
    505 	LIST_REMOVE(sc, sc_plink);
    506 	mutex_exit(&sc->sc_parent->dk_openlock);
    507 
    508 	/* Delete our buffer queue. */
    509 	bufq_free(sc->sc_bufq);
    510 
    511 	/* Detach from the disk list. */
    512 	disk_detach(&sc->sc_dk);
    513 
    514 	/* Poof. */
    515 	rw_enter(&dkwedges_lock, RW_WRITER);
    516 	dkwedges[unit] = NULL;
    517 	sc->sc_state = DKW_STATE_DEAD;
    518 	rw_exit(&dkwedges_lock);
    519 
    520 	free(sc, M_DKWEDGE);
    521 
    522 	return (0);
    523 }
    524 
    525 /*
    526  * dkwedge_delall:	[exported function]
    527  *
    528  *	Delete all of the wedges on the specified disk.  Used when
    529  *	a disk is being detached.
    530  */
    531 void
    532 dkwedge_delall(struct disk *pdk)
    533 {
    534 	struct dkwedge_info dkw;
    535 	struct dkwedge_softc *sc;
    536 
    537 	for (;;) {
    538 		mutex_enter(&pdk->dk_openlock);
    539 		if ((sc = LIST_FIRST(&pdk->dk_wedges)) == NULL) {
    540 			KASSERT(pdk->dk_nwedges == 0);
    541 			mutex_exit(&pdk->dk_openlock);
    542 			return;
    543 		}
    544 		strcpy(dkw.dkw_parent, pdk->dk_name);
    545 		strcpy(dkw.dkw_devname, sc->sc_dev->dv_xname);
    546 		mutex_exit(&pdk->dk_openlock);
    547 		(void) dkwedge_del(&dkw);
    548 	}
    549 }
    550 
    551 /*
    552  * dkwedge_list:	[exported function]
    553  *
    554  *	List all of the wedges on a particular disk.
    555  *	If p == NULL, the buffer is in kernel space.  Otherwise, it is
    556  *	in user space of the specified process.
    557  */
    558 int
    559 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
    560 {
    561 	struct uio uio;
    562 	struct iovec iov;
    563 	struct dkwedge_softc *sc;
    564 	struct dkwedge_info dkw;
    565 	struct vmspace *vm;
    566 	int error = 0;
    567 
    568 	iov.iov_base = dkwl->dkwl_buf;
    569 	iov.iov_len = dkwl->dkwl_bufsize;
    570 
    571 	uio.uio_iov = &iov;
    572 	uio.uio_iovcnt = 1;
    573 	uio.uio_offset = 0;
    574 	uio.uio_resid = dkwl->dkwl_bufsize;
    575 	uio.uio_rw = UIO_READ;
    576 	if (l == NULL) {
    577 		UIO_SETUP_SYSSPACE(&uio);
    578 	} else {
    579 		error = proc_vmspace_getref(l->l_proc, &vm);
    580 		if (error) {
    581 			return error;
    582 		}
    583 		uio.uio_vmspace = vm;
    584 	}
    585 
    586 	dkwl->dkwl_ncopied = 0;
    587 
    588 	mutex_enter(&pdk->dk_openlock);
    589 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    590 		if (uio.uio_resid < sizeof(dkw))
    591 			break;
    592 
    593 		if (sc->sc_state != DKW_STATE_RUNNING)
    594 			continue;
    595 
    596 		strcpy(dkw.dkw_devname, sc->sc_dev->dv_xname);
    597 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
    598 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
    599 		strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
    600 		dkw.dkw_offset = sc->sc_offset;
    601 		dkw.dkw_size = sc->sc_size;
    602 		strcpy(dkw.dkw_ptype, sc->sc_ptype);
    603 
    604 		error = uiomove(&dkw, sizeof(dkw), &uio);
    605 		if (error)
    606 			break;
    607 		dkwl->dkwl_ncopied++;
    608 	}
    609 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
    610 	mutex_exit(&pdk->dk_openlock);
    611 
    612 	if (l != NULL) {
    613 		uvmspace_free(vm);
    614 	}
    615 
    616 	return (error);
    617 }
    618 
    619 device_t
    620 dkwedge_find_by_wname(const char *wname)
    621 {
    622 	device_t dv = NULL;
    623 	struct dkwedge_softc *sc;
    624 	int i;
    625 
    626 	rw_enter(&dkwedges_lock, RW_WRITER);
    627 	for (i = 0; i < ndkwedges; i++) {
    628 		if ((sc = dkwedges[i]) == NULL)
    629 			continue;
    630 		if (strcmp(sc->sc_wname, wname) == 0) {
    631 			if (dv != NULL) {
    632 				printf(
    633 				    "WARNING: double match for wedge name %s "
    634 				    "(%s, %s)\n", wname, device_xname(dv),
    635 				    device_xname(sc->sc_dev));
    636 				continue;
    637 			}
    638 			dv = sc->sc_dev;
    639 		}
    640 	}
    641 	rw_exit(&dkwedges_lock);
    642 	return dv;
    643 }
    644 
    645 void
    646 dkwedge_print_wnames(void)
    647 {
    648 	struct dkwedge_softc *sc;
    649 	int i;
    650 
    651 	rw_enter(&dkwedges_lock, RW_WRITER);
    652 	for (i = 0; i < ndkwedges; i++) {
    653 		if ((sc = dkwedges[i]) == NULL)
    654 			continue;
    655 		printf(" wedge:%s", sc->sc_wname);
    656 	}
    657 	rw_exit(&dkwedges_lock);
    658 }
    659 
    660 /*
    661  * dkwedge_set_bootwedge
    662  *
    663  *	Set the booted_wedge global based on the specified parent name
    664  *	and offset/length.
    665  */
    666 void
    667 dkwedge_set_bootwedge(struct device *parent, daddr_t startblk, uint64_t nblks)
    668 {
    669 	struct dkwedge_softc *sc;
    670 	int i;
    671 
    672 	rw_enter(&dkwedges_lock, RW_WRITER);
    673 	for (i = 0; i < ndkwedges; i++) {
    674 		if ((sc = dkwedges[i]) == NULL)
    675 			continue;
    676 		if (strcmp(sc->sc_parent->dk_name, parent->dv_xname) == 0 &&
    677 		    sc->sc_offset == startblk &&
    678 		    sc->sc_size == nblks) {
    679 			if (booted_wedge) {
    680 				printf("WARNING: double match for boot wedge "
    681 				    "(%s, %s)\n",
    682 				    booted_wedge->dv_xname,
    683 				    sc->sc_dev->dv_xname);
    684 				continue;
    685 			}
    686 			booted_device = parent;
    687 			booted_wedge = sc->sc_dev;
    688 			booted_partition = 0;
    689 		}
    690 	}
    691 	/*
    692 	 * XXX What if we don't find one?  Should we create a special
    693 	 * XXX root wedge?
    694 	 */
    695 	rw_exit(&dkwedges_lock);
    696 }
    697 
    698 /*
    699  * We need a dummy object to stuff into the dkwedge discovery method link
    700  * set to ensure that there is always at least one object in the set.
    701  */
    702 static struct dkwedge_discovery_method dummy_discovery_method;
    703 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
    704 
    705 /*
    706  * dkwedge_init:
    707  *
    708  *	Initialize the disk wedge subsystem.
    709  */
    710 void
    711 dkwedge_init(void)
    712 {
    713 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
    714 	struct dkwedge_discovery_method * const *ddmp;
    715 	struct dkwedge_discovery_method *lddm, *ddm;
    716 
    717 	rw_init(&dkwedges_lock);
    718 	rw_init(&dkwedge_discovery_methods_lock);
    719 
    720 	if (config_cfdriver_attach(&dk_cd) != 0)
    721 		panic("dkwedge: unable to attach cfdriver");
    722 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
    723 		panic("dkwedge: unable to attach cfattach");
    724 
    725 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
    726 
    727 	LIST_INIT(&dkwedge_discovery_methods);
    728 
    729 	__link_set_foreach(ddmp, dkwedge_methods) {
    730 		ddm = *ddmp;
    731 		if (ddm == &dummy_discovery_method)
    732 			continue;
    733 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
    734 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
    735 					 ddm, ddm_list);
    736 			continue;
    737 		}
    738 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
    739 			if (ddm->ddm_priority == lddm->ddm_priority) {
    740 				aprint_error("dk-method-%s: method \"%s\" "
    741 				    "already exists at priority %d\n",
    742 				    ddm->ddm_name, lddm->ddm_name,
    743 				    lddm->ddm_priority);
    744 				/* Not inserted. */
    745 				break;
    746 			}
    747 			if (ddm->ddm_priority < lddm->ddm_priority) {
    748 				/* Higher priority; insert before. */
    749 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
    750 				break;
    751 			}
    752 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
    753 				/* Last one; insert after. */
    754 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
    755 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
    756 				break;
    757 			}
    758 		}
    759 	}
    760 
    761 	rw_exit(&dkwedge_discovery_methods_lock);
    762 }
    763 
    764 #ifdef DKWEDGE_AUTODISCOVER
    765 int	dkwedge_autodiscover = 1;
    766 #else
    767 int	dkwedge_autodiscover = 0;
    768 #endif
    769 
    770 /*
    771  * dkwedge_discover:	[exported function]
    772  *
    773  *	Discover the wedges on a newly attached disk.
    774  */
    775 void
    776 dkwedge_discover(struct disk *pdk)
    777 {
    778 	struct dkwedge_discovery_method *ddm;
    779 	struct vnode *vp;
    780 	int error;
    781 	dev_t pdev;
    782 
    783 	/*
    784 	 * Require people playing with wedges to enable this explicitly.
    785 	 */
    786 	if (dkwedge_autodiscover == 0)
    787 		return;
    788 
    789 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
    790 
    791 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
    792 	if (error) {
    793 		aprint_error("%s: unable to compute pdev, error = %d\n",
    794 		    pdk->dk_name, error);
    795 		goto out;
    796 	}
    797 
    798 	error = bdevvp(pdev, &vp);
    799 	if (error) {
    800 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
    801 		    pdk->dk_name, error);
    802 		goto out;
    803 	}
    804 
    805 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    806 	if (error) {
    807 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
    808 		    pdk->dk_name, error);
    809 		vrele(vp);
    810 		goto out;
    811 	}
    812 
    813 	error = VOP_OPEN(vp, FREAD, NOCRED, 0);
    814 	if (error) {
    815 		aprint_error("%s: unable to open device, error = %d\n",
    816 		    pdk->dk_name, error);
    817 		vput(vp);
    818 		goto out;
    819 	}
    820 	VOP_UNLOCK(vp, 0);
    821 
    822 	/*
    823 	 * For each supported partition map type, look to see if
    824 	 * this map type exists.  If so, parse it and add the
    825 	 * corresponding wedges.
    826 	 */
    827 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
    828 		error = (*ddm->ddm_discover)(pdk, vp);
    829 		if (error == 0) {
    830 			/* Successfully created wedges; we're done. */
    831 			break;
    832 		}
    833 	}
    834 
    835 	error = vn_close(vp, FREAD, NOCRED, curlwp);
    836 	if (error) {
    837 		aprint_error("%s: unable to close device, error = %d\n",
    838 		    pdk->dk_name, error);
    839 		/* We'll just assume the vnode has been cleaned up. */
    840 	}
    841  out:
    842 	rw_exit(&dkwedge_discovery_methods_lock);
    843 }
    844 
    845 /*
    846  * dkwedge_read:
    847  *
    848  *	Read the some data from the specified disk, used for
    849  *	partition discovery.
    850  */
    851 int
    852 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
    853     void *tbuf, size_t len)
    854 {
    855 	struct buf b;
    856 
    857 	BUF_INIT(&b);
    858 
    859 	b.b_vp = vp;
    860 	b.b_dev = vp->v_rdev;
    861 	b.b_blkno = blkno;
    862 	b.b_bcount = b.b_resid = len;
    863 	b.b_flags = B_READ;
    864 	b.b_proc = curproc;
    865 	b.b_data = tbuf;
    866 
    867 	VOP_STRATEGY(vp, &b);
    868 	return (biowait(&b));
    869 }
    870 
    871 /*
    872  * dkwedge_lookup:
    873  *
    874  *	Look up a dkwedge_softc based on the provided dev_t.
    875  */
    876 static struct dkwedge_softc *
    877 dkwedge_lookup(dev_t dev)
    878 {
    879 	int unit = minor(dev);
    880 
    881 	if (unit >= ndkwedges)
    882 		return (NULL);
    883 
    884 	KASSERT(dkwedges != NULL);
    885 
    886 	return (dkwedges[unit]);
    887 }
    888 
    889 /*
    890  * dkopen:		[devsw entry point]
    891  *
    892  *	Open a wedge.
    893  */
    894 static int
    895 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
    896 {
    897 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
    898 	struct vnode *vp;
    899 	int error = 0;
    900 
    901 	if (sc == NULL)
    902 		return (ENODEV);
    903 
    904 	if (sc->sc_state != DKW_STATE_RUNNING)
    905 		return (ENXIO);
    906 
    907 	/*
    908 	 * We go through a complicated little dance to only open the parent
    909 	 * vnode once per wedge, no matter how many times the wedge is
    910 	 * opened.  The reason?  We see one dkopen() per open call, but
    911 	 * only dkclose() on the last close.
    912 	 */
    913 	mutex_enter(&sc->sc_dk.dk_openlock);
    914 	mutex_enter(&sc->sc_parent->dk_rawlock);
    915 	if (sc->sc_dk.dk_openmask == 0) {
    916 		if (sc->sc_parent->dk_rawopens == 0) {
    917 			KASSERT(sc->sc_parent->dk_rawvp == NULL);
    918 			error = bdevvp(sc->sc_pdev, &vp);
    919 			if (error)
    920 				goto popen_fail;
    921 			error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    922 			if (error) {
    923 				vrele(vp);
    924 				goto popen_fail;
    925 			}
    926 			error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED, 0);
    927 			if (error) {
    928 				vput(vp);
    929 				goto popen_fail;
    930 			}
    931 			/* VOP_OPEN() doesn't do this for us. */
    932 			vp->v_writecount++;
    933 			VOP_UNLOCK(vp, 0);
    934 			sc->sc_parent->dk_rawvp = vp;
    935 		}
    936 		sc->sc_parent->dk_rawopens++;
    937 	}
    938 	if (fmt == S_IFCHR)
    939 		sc->sc_dk.dk_copenmask |= 1;
    940 	else
    941 		sc->sc_dk.dk_bopenmask |= 1;
    942 	sc->sc_dk.dk_openmask =
    943 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
    944 
    945  popen_fail:
    946 	mutex_exit(&sc->sc_parent->dk_rawlock);
    947 	mutex_exit(&sc->sc_dk.dk_openlock);
    948 	return (error);
    949 }
    950 
    951 /*
    952  * dkclose:		[devsw entry point]
    953  *
    954  *	Close a wedge.
    955  */
    956 static int
    957 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
    958 {
    959 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
    960 	int error = 0;
    961 
    962 	KASSERT(sc->sc_dk.dk_openmask != 0);
    963 
    964 	mutex_enter(&sc->sc_dk.dk_openlock);
    965 	mutex_enter(&sc->sc_parent->dk_rawlock);
    966 
    967 	if (fmt == S_IFCHR)
    968 		sc->sc_dk.dk_copenmask &= ~1;
    969 	else
    970 		sc->sc_dk.dk_bopenmask &= ~1;
    971 	sc->sc_dk.dk_openmask =
    972 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
    973 
    974 	if (sc->sc_dk.dk_openmask == 0) {
    975 		if (sc->sc_parent->dk_rawopens-- == 1) {
    976 			KASSERT(sc->sc_parent->dk_rawvp != NULL);
    977 			error = vn_close(sc->sc_parent->dk_rawvp,
    978 					 FREAD | FWRITE, NOCRED, l);
    979 			sc->sc_parent->dk_rawvp = NULL;
    980 		}
    981 	}
    982 
    983 	mutex_exit(&sc->sc_parent->dk_rawlock);
    984 	mutex_exit(&sc->sc_dk.dk_openlock);
    985 
    986 	return (error);
    987 }
    988 
    989 /*
    990  * dkstragegy:		[devsw entry point]
    991  *
    992  *	Perform I/O based on the wedge I/O strategy.
    993  */
    994 static void
    995 dkstrategy(struct buf *bp)
    996 {
    997 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
    998 	int s;
    999 
   1000 	if (sc->sc_state != DKW_STATE_RUNNING) {
   1001 		bp->b_error = ENXIO;
   1002 		bp->b_flags |= B_ERROR;
   1003 		goto done;
   1004 	}
   1005 
   1006 	/* If it's an empty transfer, wake up the top half now. */
   1007 	if (bp->b_bcount == 0)
   1008 		goto done;
   1009 
   1010 	/* Make sure it's in-range. */
   1011 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, sc->sc_size) <= 0)
   1012 		goto done;
   1013 
   1014 	/* Translate it to the parent's raw LBA. */
   1015 	bp->b_rawblkno = bp->b_blkno + sc->sc_offset;
   1016 
   1017 	/* Place it in the queue and start I/O on the unit. */
   1018 	s = splbio();
   1019 	sc->sc_iopend++;
   1020 	BUFQ_PUT(sc->sc_bufq, bp);
   1021 	dkstart(sc);
   1022 	splx(s);
   1023 	return;
   1024 
   1025  done:
   1026 	bp->b_resid = bp->b_bcount;
   1027 	biodone(bp);
   1028 }
   1029 
   1030 /*
   1031  * dkstart:
   1032  *
   1033  *	Start I/O that has been enqueued on the wedge.
   1034  *	NOTE: Must be called at splbio()!
   1035  */
   1036 static void
   1037 dkstart(struct dkwedge_softc *sc)
   1038 {
   1039 	struct buf *bp, *nbp;
   1040 
   1041 	/* Do as much work as has been enqueued. */
   1042 	while ((bp = BUFQ_PEEK(sc->sc_bufq)) != NULL) {
   1043 		if (sc->sc_state != DKW_STATE_RUNNING) {
   1044 			(void) BUFQ_GET(sc->sc_bufq);
   1045 			if (sc->sc_iopend-- == 1 &&
   1046 			    (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
   1047 				sc->sc_flags &= ~DK_F_WAIT_DRAIN;
   1048 				wakeup(&sc->sc_iopend);
   1049 			}
   1050 			bp->b_error = ENXIO;
   1051 			bp->b_flags |= B_ERROR;
   1052 			bp->b_resid = bp->b_bcount;
   1053 			biodone(bp);
   1054 		}
   1055 
   1056 		/* Instrumentation. */
   1057 		disk_busy(&sc->sc_dk);
   1058 
   1059 		nbp = getiobuf_nowait();
   1060 		if (nbp == NULL) {
   1061 			/*
   1062 			 * No resources to run this request; leave the
   1063 			 * buffer queued up, and schedule a timer to
   1064 			 * restart the queue in 1/2 a second.
   1065 			 */
   1066 			disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
   1067 			callout_schedule(&sc->sc_restart_ch, hz / 2);
   1068 			return;
   1069 		}
   1070 
   1071 		(void) BUFQ_GET(sc->sc_bufq);
   1072 
   1073 		BUF_INIT(nbp);
   1074 		nbp->b_data = bp->b_data;
   1075 		nbp->b_flags = bp->b_flags | B_CALL;
   1076 		nbp->b_iodone = dkiodone;
   1077 		nbp->b_proc = bp->b_proc;
   1078 		nbp->b_blkno = bp->b_rawblkno;
   1079 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
   1080 		nbp->b_vp = sc->sc_parent->dk_rawvp;
   1081 		nbp->b_bcount = bp->b_bcount;
   1082 		nbp->b_private = bp;
   1083 		BIO_COPYPRIO(nbp, bp);
   1084 
   1085 		if ((nbp->b_flags & B_READ) == 0)
   1086 			V_INCR_NUMOUTPUT(nbp->b_vp);
   1087 		VOP_STRATEGY(nbp->b_vp, nbp);
   1088 	}
   1089 }
   1090 
   1091 /*
   1092  * dkiodone:
   1093  *
   1094  *	I/O to a wedge has completed; alert the top half.
   1095  *	NOTE: Must be called at splbio()!
   1096  */
   1097 static void
   1098 dkiodone(struct buf *bp)
   1099 {
   1100 	struct buf *obp = bp->b_private;
   1101 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
   1102 
   1103 	if (bp->b_flags & B_ERROR) {
   1104 		obp->b_flags |= B_ERROR;
   1105 		obp->b_error = bp->b_error;
   1106 	}
   1107 	obp->b_resid = bp->b_resid;
   1108 	putiobuf(bp);
   1109 
   1110 	if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
   1111 		sc->sc_flags &= ~DK_F_WAIT_DRAIN;
   1112 		wakeup(&sc->sc_iopend);
   1113 	}
   1114 
   1115 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
   1116 	    obp->b_flags & B_READ);
   1117 
   1118 	biodone(obp);
   1119 
   1120 	/* Kick the queue in case there is more work we can do. */
   1121 	dkstart(sc);
   1122 }
   1123 
   1124 /*
   1125  * dkrestart:
   1126  *
   1127  *	Restart the work queue after it was stalled due to
   1128  *	a resource shortage.  Invoked via a callout.
   1129  */
   1130 static void
   1131 dkrestart(void *v)
   1132 {
   1133 	struct dkwedge_softc *sc = v;
   1134 	int s;
   1135 
   1136 	s = splbio();
   1137 	dkstart(sc);
   1138 	splx(s);
   1139 }
   1140 
   1141 /*
   1142  * dkread:		[devsw entry point]
   1143  *
   1144  *	Read from a wedge.
   1145  */
   1146 static int
   1147 dkread(dev_t dev, struct uio *uio, int flags)
   1148 {
   1149 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1150 
   1151 	if (sc->sc_state != DKW_STATE_RUNNING)
   1152 		return (ENXIO);
   1153 
   1154 	return (physio(dkstrategy, NULL, dev, B_READ,
   1155 		       sc->sc_parent->dk_driver->d_minphys, uio));
   1156 }
   1157 
   1158 /*
   1159  * dkwrite:		[devsw entry point]
   1160  *
   1161  *	Write to a wedge.
   1162  */
   1163 static int
   1164 dkwrite(dev_t dev, struct uio *uio, int flags)
   1165 {
   1166 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1167 
   1168 	if (sc->sc_state != DKW_STATE_RUNNING)
   1169 		return (ENXIO);
   1170 
   1171 	return (physio(dkstrategy, NULL, dev, B_WRITE,
   1172 		       sc->sc_parent->dk_driver->d_minphys, uio));
   1173 }
   1174 
   1175 /*
   1176  * dkioctl:		[devsw entry point]
   1177  *
   1178  *	Perform an ioctl request on a wedge.
   1179  */
   1180 static int
   1181 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1182 {
   1183 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1184 	int error = 0;
   1185 
   1186 	if (sc->sc_state != DKW_STATE_RUNNING)
   1187 		return (ENXIO);
   1188 
   1189 	switch (cmd) {
   1190 	case DIOCCACHESYNC:
   1191 		/*
   1192 		 * XXX Do we really need to care about having a writable
   1193 		 * file descriptor here?
   1194 		 */
   1195 		if ((flag & FWRITE) == 0)
   1196 			error = EBADF;
   1197 		else
   1198 			error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
   1199 					  cmd, data, flag,
   1200 					  l != NULL ? l->l_cred : NOCRED, l);
   1201 		break;
   1202 	case DIOCGWEDGEINFO:
   1203 	    {
   1204 	    	struct dkwedge_info *dkw = (void *) data;
   1205 
   1206 		strcpy(dkw->dkw_devname, sc->sc_dev->dv_xname);
   1207 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
   1208 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
   1209 		strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
   1210 		dkw->dkw_offset = sc->sc_offset;
   1211 		dkw->dkw_size = sc->sc_size;
   1212 		strcpy(dkw->dkw_ptype, sc->sc_ptype);
   1213 
   1214 		break;
   1215 	    }
   1216 
   1217 	default:
   1218 		error = ENOTTY;
   1219 	}
   1220 
   1221 	return (error);
   1222 }
   1223 
   1224 /*
   1225  * dksize:		[devsw entry point]
   1226  *
   1227  *	Query the size of a wedge for the purpose of performing a dump
   1228  *	or for swapping to.
   1229  */
   1230 static int
   1231 dksize(dev_t dev)
   1232 {
   1233 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1234 	int rv = -1;
   1235 
   1236 	if (sc == NULL)
   1237 		return (-1);
   1238 
   1239 	if (sc->sc_state != DKW_STATE_RUNNING)
   1240 		return (ENXIO);
   1241 
   1242 	mutex_enter(&sc->sc_dk.dk_openlock);
   1243 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1244 
   1245 	/* Our content type is static, no need to open the device. */
   1246 
   1247 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
   1248 		/* Saturate if we are larger than INT_MAX. */
   1249 		if (sc->sc_size > INT_MAX)
   1250 			rv = INT_MAX;
   1251 		else
   1252 			rv = (int) sc->sc_size;
   1253 	}
   1254 
   1255 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1256 	mutex_exit(&sc->sc_dk.dk_openlock);
   1257 
   1258 	return (rv);
   1259 }
   1260 
   1261 /*
   1262  * dkdump:		[devsw entry point]
   1263  *
   1264  *	Perform a crash dump to a wedge.
   1265  */
   1266 static int
   1267 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
   1268 {
   1269 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1270 	const struct bdevsw *bdev;
   1271 	int rv = 0;
   1272 
   1273 	if (sc == NULL)
   1274 		return (-1);
   1275 
   1276 	if (sc->sc_state != DKW_STATE_RUNNING)
   1277 		return (ENXIO);
   1278 
   1279 	mutex_enter(&sc->sc_dk.dk_openlock);
   1280 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1281 
   1282 	/* Our content type is static, no need to open the device. */
   1283 
   1284 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
   1285 		rv = ENXIO;
   1286 		goto out;
   1287 	}
   1288 	if (size % DEV_BSIZE != 0) {
   1289 		rv = EINVAL;
   1290 		goto out;
   1291 	}
   1292 	if (blkno + size / DEV_BSIZE > sc->sc_size) {
   1293 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
   1294 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
   1295 		    size / DEV_BSIZE, sc->sc_size);
   1296 		rv = EINVAL;
   1297 		goto out;
   1298 	}
   1299 
   1300 	bdev = bdevsw_lookup(sc->sc_pdev);
   1301 	rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
   1302 
   1303 out:
   1304 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1305 	mutex_exit(&sc->sc_dk.dk_openlock);
   1306 
   1307 	return rv;
   1308 }
   1309