dk.c revision 1.33.6.2 1 /* $NetBSD: dk.c,v 1.33.6.2 2008/04/06 09:58:50 mjf Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.33.6.2 2008/04/06 09:58:50 mjf Exp $");
41
42 #include "opt_dkwedge.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/errno.h>
48 #include <sys/pool.h>
49 #include <sys/ioctl.h>
50 #include <sys/disklabel.h>
51 #include <sys/disk.h>
52 #include <sys/fcntl.h>
53 #include <sys/buf.h>
54 #include <sys/bufq.h>
55 #include <sys/vnode.h>
56 #include <sys/stat.h>
57 #include <sys/conf.h>
58 #include <sys/callout.h>
59 #include <sys/kernel.h>
60 #include <sys/malloc.h>
61 #include <sys/device.h>
62 #include <sys/kauth.h>
63
64 #include <miscfs/specfs/specdev.h>
65
66 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
67
68 typedef enum {
69 DKW_STATE_LARVAL = 0,
70 DKW_STATE_RUNNING = 1,
71 DKW_STATE_DYING = 2,
72 DKW_STATE_DEAD = 666
73 } dkwedge_state_t;
74
75 struct dkwedge_softc {
76 struct device *sc_dev; /* pointer to our pseudo-device */
77 struct cfdata sc_cfdata; /* our cfdata structure */
78 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
79
80 dkwedge_state_t sc_state; /* state this wedge is in */
81
82 struct disk *sc_parent; /* parent disk */
83 daddr_t sc_offset; /* LBA offset of wedge in parent */
84 uint64_t sc_size; /* size of wedge in blocks */
85 char sc_ptype[32]; /* partition type */
86 dev_t sc_pdev; /* cached parent's dev_t */
87 /* link on parent's wedge list */
88 LIST_ENTRY(dkwedge_softc) sc_plink;
89
90 struct disk sc_dk; /* our own disk structure */
91 struct bufq_state *sc_bufq; /* buffer queue */
92 struct callout sc_restart_ch; /* callout to restart I/O */
93
94 u_int sc_iopend; /* I/Os pending */
95 int sc_flags; /* flags (splbio) */
96 };
97
98 #define DK_F_WAIT_DRAIN 0x0001 /* waiting for I/O to drain */
99
100 static void dkstart(struct dkwedge_softc *);
101 static void dkiodone(struct buf *);
102 static void dkrestart(void *);
103
104 static dev_type_open(dkopen);
105 static dev_type_close(dkclose);
106 static dev_type_read(dkread);
107 static dev_type_write(dkwrite);
108 static dev_type_ioctl(dkioctl);
109 static dev_type_strategy(dkstrategy);
110 static dev_type_dump(dkdump);
111 static dev_type_size(dksize);
112
113 const struct bdevsw dk_bdevsw = {
114 dkopen, dkclose, dkstrategy, dkioctl, dkdump, dksize, D_DISK
115 };
116
117 const struct cdevsw dk_cdevsw = {
118 dkopen, dkclose, dkread, dkwrite, dkioctl,
119 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
120 };
121
122 static struct dkwedge_softc **dkwedges;
123 static u_int ndkwedges;
124 static krwlock_t dkwedges_lock;
125
126 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
127 static krwlock_t dkwedge_discovery_methods_lock;
128
129 /*
130 * dkwedge_match:
131 *
132 * Autoconfiguration match function for pseudo-device glue.
133 */
134 static int
135 dkwedge_match(struct device *parent, struct cfdata *match,
136 void *aux)
137 {
138
139 /* Pseudo-device; always present. */
140 return (1);
141 }
142
143 /*
144 * dkwedge_attach:
145 *
146 * Autoconfiguration attach function for pseudo-device glue.
147 */
148 static void
149 dkwedge_attach(struct device *parent, struct device *self,
150 void *aux)
151 {
152 int cmaj, bmaj, unit;
153
154 if (!pmf_device_register(self, NULL, NULL))
155 aprint_error_dev(self, "couldn't establish power handler\n");
156
157 bmaj = bdevsw_lookup_major(&dk_bdevsw);
158 cmaj = cdevsw_lookup_major(&dk_cdevsw);
159
160 unit = device_unit(self);
161 device_register_name(makedev(bmaj, unit), self, false,
162 DEV_DISK, "dk%d", unit);
163 device_register_name(makedev(cmaj, unit), self, true,
164 DEV_DISK, "rdk%d", unit);
165 }
166
167 /*
168 * dkwedge_detach:
169 *
170 * Autoconfiguration detach function for pseudo-device glue.
171 */
172 static int
173 dkwedge_detach(struct device *self, int flags)
174 {
175
176 device_deregister_all(self);
177 pmf_device_deregister(self);
178 /* Always succeeds. */
179 return (0);
180 }
181
182 CFDRIVER_DECL(dk, DV_DISK, NULL);
183 CFATTACH_DECL_NEW(dk, 0,
184 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL);
185
186 /*
187 * dkwedge_wait_drain:
188 *
189 * Wait for I/O on the wedge to drain.
190 * NOTE: Must be called at splbio()!
191 */
192 static void
193 dkwedge_wait_drain(struct dkwedge_softc *sc)
194 {
195
196 while (sc->sc_iopend != 0) {
197 sc->sc_flags |= DK_F_WAIT_DRAIN;
198 (void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
199 }
200 }
201
202 /*
203 * dkwedge_compute_pdev:
204 *
205 * Compute the parent disk's dev_t.
206 */
207 static int
208 dkwedge_compute_pdev(const char *pname, dev_t *pdevp)
209 {
210 const char *name, *cp;
211 int punit, pmaj;
212 char devname[16];
213
214 name = pname;
215 if ((pmaj = devsw_name2blk(name, devname, sizeof(devname))) == -1)
216 return (ENODEV);
217
218 name += strlen(devname);
219 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
220 punit = (punit * 10) + (*cp - '0');
221 if (cp == name) {
222 /* Invalid parent disk name. */
223 return (ENODEV);
224 }
225
226 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
227
228 return (0);
229 }
230
231 /*
232 * dkwedge_array_expand:
233 *
234 * Expand the dkwedges array.
235 */
236 static void
237 dkwedge_array_expand(void)
238 {
239 int newcnt = ndkwedges + 16;
240 struct dkwedge_softc **newarray, **oldarray;
241
242 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
243 M_WAITOK|M_ZERO);
244 if ((oldarray = dkwedges) != NULL)
245 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
246 dkwedges = newarray;
247 ndkwedges = newcnt;
248 if (oldarray != NULL)
249 free(oldarray, M_DKWEDGE);
250 }
251
252 /*
253 * dkwedge_add: [exported function]
254 *
255 * Add a disk wedge based on the provided information.
256 *
257 * The incoming dkw_devname[] is ignored, instead being
258 * filled in and returned to the caller.
259 */
260 int
261 dkwedge_add(struct dkwedge_info *dkw)
262 {
263 struct dkwedge_softc *sc, *lsc;
264 struct disk *pdk;
265 u_int unit;
266 int error;
267 dev_t pdev;
268
269 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
270 pdk = disk_find(dkw->dkw_parent);
271 if (pdk == NULL)
272 return (ENODEV);
273
274 error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
275 if (error)
276 return (error);
277
278 if (dkw->dkw_offset < 0)
279 return (EINVAL);
280
281 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
282 sc->sc_state = DKW_STATE_LARVAL;
283 sc->sc_parent = pdk;
284 sc->sc_pdev = pdev;
285 sc->sc_offset = dkw->dkw_offset;
286 sc->sc_size = dkw->dkw_size;
287
288 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
289 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
290
291 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
292 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
293
294 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
295
296 callout_init(&sc->sc_restart_ch, 0);
297 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
298
299 /*
300 * Wedge will be added; increment the wedge count for the parent.
301 * Only allow this to happend if RAW_PART is the only thing open.
302 */
303 mutex_enter(&pdk->dk_openlock);
304 if (pdk->dk_openmask & ~(1 << RAW_PART))
305 error = EBUSY;
306 else {
307 /* Check for wedge overlap. */
308 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
309 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
310 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
311
312 if (sc->sc_offset >= lsc->sc_offset &&
313 sc->sc_offset <= llastblk) {
314 /* Overlaps the tail of the exsiting wedge. */
315 break;
316 }
317 if (lastblk >= lsc->sc_offset &&
318 lastblk <= llastblk) {
319 /* Overlaps the head of the existing wedge. */
320 break;
321 }
322 }
323 if (lsc != NULL)
324 error = EINVAL;
325 else {
326 pdk->dk_nwedges++;
327 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
328 }
329 }
330 mutex_exit(&pdk->dk_openlock);
331 if (error) {
332 bufq_free(sc->sc_bufq);
333 free(sc, M_DKWEDGE);
334 return (error);
335 }
336
337 /* Fill in our cfdata for the pseudo-device glue. */
338 sc->sc_cfdata.cf_name = dk_cd.cd_name;
339 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
340 /* sc->sc_cfdata.cf_unit set below */
341 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
342
343 /* Insert the larval wedge into the array. */
344 rw_enter(&dkwedges_lock, RW_WRITER);
345 for (error = 0;;) {
346 struct dkwedge_softc **scpp;
347
348 /*
349 * Check for a duplicate wname while searching for
350 * a slot.
351 */
352 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
353 if (dkwedges[unit] == NULL) {
354 if (scpp == NULL) {
355 scpp = &dkwedges[unit];
356 sc->sc_cfdata.cf_unit = unit;
357 }
358 } else {
359 /* XXX Unicode. */
360 if (strcmp(dkwedges[unit]->sc_wname,
361 sc->sc_wname) == 0) {
362 error = EEXIST;
363 break;
364 }
365 }
366 }
367 if (error)
368 break;
369 KASSERT(unit == ndkwedges);
370 if (scpp == NULL)
371 dkwedge_array_expand();
372 else {
373 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
374 *scpp = sc;
375 break;
376 }
377 }
378 rw_exit(&dkwedges_lock);
379 if (error) {
380 mutex_enter(&pdk->dk_openlock);
381 pdk->dk_nwedges--;
382 LIST_REMOVE(sc, sc_plink);
383 mutex_exit(&pdk->dk_openlock);
384
385 bufq_free(sc->sc_bufq);
386 free(sc, M_DKWEDGE);
387 return (error);
388 }
389
390 /*
391 * Now that we know the unit #, attach a pseudo-device for
392 * this wedge instance. This will provide us with the
393 * "struct device" necessary for glue to other parts of the
394 * system.
395 *
396 * This should never fail, unless we're almost totally out of
397 * memory.
398 */
399 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
400 aprint_error("%s%u: unable to attach pseudo-device\n",
401 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
402
403 rw_enter(&dkwedges_lock, RW_WRITER);
404 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
405 rw_exit(&dkwedges_lock);
406
407 mutex_enter(&pdk->dk_openlock);
408 pdk->dk_nwedges--;
409 LIST_REMOVE(sc, sc_plink);
410 mutex_exit(&pdk->dk_openlock);
411
412 bufq_free(sc->sc_bufq);
413 free(sc, M_DKWEDGE);
414 return (ENOMEM);
415 }
416
417 /* Return the devname to the caller. */
418 strcpy(dkw->dkw_devname, sc->sc_dev->dv_xname);
419
420 /*
421 * XXX Really ought to make the disk_attach() and the changing
422 * of state to RUNNING atomic.
423 */
424
425 disk_init(&sc->sc_dk, sc->sc_dev->dv_xname, NULL);
426 disk_attach(&sc->sc_dk);
427
428 /* Disk wedge is ready for use! */
429 sc->sc_state = DKW_STATE_RUNNING;
430
431 /* Announce our arrival. */
432 aprint_normal("%s at %s: %s\n", sc->sc_dev->dv_xname, pdk->dk_name,
433 sc->sc_wname); /* XXX Unicode */
434 aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
435 sc->sc_dev->dv_xname, sc->sc_size, sc->sc_offset, sc->sc_ptype);
436
437 return (0);
438 }
439
440 /*
441 * dkwedge_del: [exported function]
442 *
443 * Delete a disk wedge based on the provided information.
444 * NOTE: We look up the wedge based on the wedge devname,
445 * not wname.
446 */
447 int
448 dkwedge_del(struct dkwedge_info *dkw)
449 {
450 struct dkwedge_softc *sc = NULL;
451 u_int unit;
452 int bmaj, cmaj, s;
453
454 /* Find our softc. */
455 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
456 rw_enter(&dkwedges_lock, RW_WRITER);
457 for (unit = 0; unit < ndkwedges; unit++) {
458 if ((sc = dkwedges[unit]) != NULL &&
459 strcmp(sc->sc_dev->dv_xname, dkw->dkw_devname) == 0 &&
460 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
461 /* Mark the wedge as dying. */
462 sc->sc_state = DKW_STATE_DYING;
463 break;
464 }
465 }
466 rw_exit(&dkwedges_lock);
467 if (unit == ndkwedges)
468 return (ESRCH);
469
470 KASSERT(sc != NULL);
471
472 /* Locate the wedge major numbers. */
473 bmaj = bdevsw_lookup_major(&dk_bdevsw);
474 cmaj = cdevsw_lookup_major(&dk_cdevsw);
475
476 /* Kill any pending restart. */
477 callout_stop(&sc->sc_restart_ch);
478
479 /*
480 * dkstart() will kill any queued buffers now that the
481 * state of the wedge is not RUNNING. Once we've done
482 * that, wait for any other pending I/O to complete.
483 */
484 s = splbio();
485 dkstart(sc);
486 dkwedge_wait_drain(sc);
487 splx(s);
488
489 /* Nuke the vnodes for any open instances. */
490 vdevgone(bmaj, unit, unit, VBLK);
491 vdevgone(cmaj, unit, unit, VCHR);
492
493 /* Clean up the parent. */
494 mutex_enter(&sc->sc_dk.dk_openlock);
495 mutex_enter(&sc->sc_parent->dk_rawlock);
496 if (sc->sc_dk.dk_openmask) {
497 if (sc->sc_parent->dk_rawopens-- == 1) {
498 KASSERT(sc->sc_parent->dk_rawvp != NULL);
499 (void) vn_close(sc->sc_parent->dk_rawvp, FREAD | FWRITE,
500 NOCRED);
501 sc->sc_parent->dk_rawvp = NULL;
502 }
503 sc->sc_dk.dk_openmask = 0;
504 }
505 mutex_exit(&sc->sc_parent->dk_rawlock);
506 mutex_exit(&sc->sc_dk.dk_openlock);
507
508 /* Announce our departure. */
509 aprint_normal("%s at %s (%s) deleted\n", sc->sc_dev->dv_xname,
510 sc->sc_parent->dk_name,
511 sc->sc_wname); /* XXX Unicode */
512
513 /* Delete our pseudo-device. */
514 (void) config_detach(sc->sc_dev, DETACH_FORCE | DETACH_QUIET);
515
516 mutex_enter(&sc->sc_parent->dk_openlock);
517 sc->sc_parent->dk_nwedges--;
518 LIST_REMOVE(sc, sc_plink);
519 mutex_exit(&sc->sc_parent->dk_openlock);
520
521 /* Delete our buffer queue. */
522 bufq_free(sc->sc_bufq);
523
524 /* Detach from the disk list. */
525 disk_detach(&sc->sc_dk);
526
527 /* Poof. */
528 rw_enter(&dkwedges_lock, RW_WRITER);
529 dkwedges[unit] = NULL;
530 sc->sc_state = DKW_STATE_DEAD;
531 rw_exit(&dkwedges_lock);
532
533 free(sc, M_DKWEDGE);
534
535 return (0);
536 }
537
538 /*
539 * dkwedge_delall: [exported function]
540 *
541 * Delete all of the wedges on the specified disk. Used when
542 * a disk is being detached.
543 */
544 void
545 dkwedge_delall(struct disk *pdk)
546 {
547 struct dkwedge_info dkw;
548 struct dkwedge_softc *sc;
549
550 for (;;) {
551 mutex_enter(&pdk->dk_openlock);
552 if ((sc = LIST_FIRST(&pdk->dk_wedges)) == NULL) {
553 KASSERT(pdk->dk_nwedges == 0);
554 mutex_exit(&pdk->dk_openlock);
555 return;
556 }
557 strcpy(dkw.dkw_parent, pdk->dk_name);
558 strcpy(dkw.dkw_devname, sc->sc_dev->dv_xname);
559 mutex_exit(&pdk->dk_openlock);
560 (void) dkwedge_del(&dkw);
561 }
562 }
563
564 /*
565 * dkwedge_list: [exported function]
566 *
567 * List all of the wedges on a particular disk.
568 * If p == NULL, the buffer is in kernel space. Otherwise, it is
569 * in user space of the specified process.
570 */
571 int
572 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
573 {
574 struct uio uio;
575 struct iovec iov;
576 struct dkwedge_softc *sc;
577 struct dkwedge_info dkw;
578 struct vmspace *vm;
579 int error = 0;
580
581 iov.iov_base = dkwl->dkwl_buf;
582 iov.iov_len = dkwl->dkwl_bufsize;
583
584 uio.uio_iov = &iov;
585 uio.uio_iovcnt = 1;
586 uio.uio_offset = 0;
587 uio.uio_resid = dkwl->dkwl_bufsize;
588 uio.uio_rw = UIO_READ;
589 if (l == NULL) {
590 UIO_SETUP_SYSSPACE(&uio);
591 } else {
592 error = proc_vmspace_getref(l->l_proc, &vm);
593 if (error) {
594 return error;
595 }
596 uio.uio_vmspace = vm;
597 }
598
599 dkwl->dkwl_ncopied = 0;
600
601 mutex_enter(&pdk->dk_openlock);
602 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
603 if (uio.uio_resid < sizeof(dkw))
604 break;
605
606 if (sc->sc_state != DKW_STATE_RUNNING)
607 continue;
608
609 strcpy(dkw.dkw_devname, sc->sc_dev->dv_xname);
610 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
611 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
612 strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
613 dkw.dkw_offset = sc->sc_offset;
614 dkw.dkw_size = sc->sc_size;
615 strcpy(dkw.dkw_ptype, sc->sc_ptype);
616
617 error = uiomove(&dkw, sizeof(dkw), &uio);
618 if (error)
619 break;
620 dkwl->dkwl_ncopied++;
621 }
622 dkwl->dkwl_nwedges = pdk->dk_nwedges;
623 mutex_exit(&pdk->dk_openlock);
624
625 if (l != NULL) {
626 uvmspace_free(vm);
627 }
628
629 return (error);
630 }
631
632 device_t
633 dkwedge_find_by_wname(const char *wname)
634 {
635 device_t dv = NULL;
636 struct dkwedge_softc *sc;
637 int i;
638
639 rw_enter(&dkwedges_lock, RW_WRITER);
640 for (i = 0; i < ndkwedges; i++) {
641 if ((sc = dkwedges[i]) == NULL)
642 continue;
643 if (strcmp(sc->sc_wname, wname) == 0) {
644 if (dv != NULL) {
645 printf(
646 "WARNING: double match for wedge name %s "
647 "(%s, %s)\n", wname, device_xname(dv),
648 device_xname(sc->sc_dev));
649 continue;
650 }
651 dv = sc->sc_dev;
652 }
653 }
654 rw_exit(&dkwedges_lock);
655 return dv;
656 }
657
658 void
659 dkwedge_print_wnames(void)
660 {
661 struct dkwedge_softc *sc;
662 int i;
663
664 rw_enter(&dkwedges_lock, RW_WRITER);
665 for (i = 0; i < ndkwedges; i++) {
666 if ((sc = dkwedges[i]) == NULL)
667 continue;
668 printf(" wedge:%s", sc->sc_wname);
669 }
670 rw_exit(&dkwedges_lock);
671 }
672
673 /*
674 * dkwedge_set_bootwedge
675 *
676 * Set the booted_wedge global based on the specified parent name
677 * and offset/length.
678 */
679 void
680 dkwedge_set_bootwedge(struct device *parent, daddr_t startblk, uint64_t nblks)
681 {
682 struct dkwedge_softc *sc;
683 int i;
684
685 rw_enter(&dkwedges_lock, RW_WRITER);
686 for (i = 0; i < ndkwedges; i++) {
687 if ((sc = dkwedges[i]) == NULL)
688 continue;
689 if (strcmp(sc->sc_parent->dk_name, parent->dv_xname) == 0 &&
690 sc->sc_offset == startblk &&
691 sc->sc_size == nblks) {
692 if (booted_wedge) {
693 printf("WARNING: double match for boot wedge "
694 "(%s, %s)\n",
695 booted_wedge->dv_xname,
696 sc->sc_dev->dv_xname);
697 continue;
698 }
699 booted_device = parent;
700 booted_wedge = sc->sc_dev;
701 booted_partition = 0;
702 }
703 }
704 /*
705 * XXX What if we don't find one? Should we create a special
706 * XXX root wedge?
707 */
708 rw_exit(&dkwedges_lock);
709 }
710
711 /*
712 * We need a dummy object to stuff into the dkwedge discovery method link
713 * set to ensure that there is always at least one object in the set.
714 */
715 static struct dkwedge_discovery_method dummy_discovery_method;
716 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
717
718 /*
719 * dkwedge_init:
720 *
721 * Initialize the disk wedge subsystem.
722 */
723 void
724 dkwedge_init(void)
725 {
726 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
727 struct dkwedge_discovery_method * const *ddmp;
728 struct dkwedge_discovery_method *lddm, *ddm;
729
730 rw_init(&dkwedges_lock);
731 rw_init(&dkwedge_discovery_methods_lock);
732
733 if (config_cfdriver_attach(&dk_cd) != 0)
734 panic("dkwedge: unable to attach cfdriver");
735 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
736 panic("dkwedge: unable to attach cfattach");
737
738 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
739
740 LIST_INIT(&dkwedge_discovery_methods);
741
742 __link_set_foreach(ddmp, dkwedge_methods) {
743 ddm = *ddmp;
744 if (ddm == &dummy_discovery_method)
745 continue;
746 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
747 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
748 ddm, ddm_list);
749 continue;
750 }
751 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
752 if (ddm->ddm_priority == lddm->ddm_priority) {
753 aprint_error("dk-method-%s: method \"%s\" "
754 "already exists at priority %d\n",
755 ddm->ddm_name, lddm->ddm_name,
756 lddm->ddm_priority);
757 /* Not inserted. */
758 break;
759 }
760 if (ddm->ddm_priority < lddm->ddm_priority) {
761 /* Higher priority; insert before. */
762 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
763 break;
764 }
765 if (LIST_NEXT(lddm, ddm_list) == NULL) {
766 /* Last one; insert after. */
767 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
768 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
769 break;
770 }
771 }
772 }
773
774 rw_exit(&dkwedge_discovery_methods_lock);
775 }
776
777 #ifdef DKWEDGE_AUTODISCOVER
778 int dkwedge_autodiscover = 1;
779 #else
780 int dkwedge_autodiscover = 0;
781 #endif
782
783 /*
784 * dkwedge_discover: [exported function]
785 *
786 * Discover the wedges on a newly attached disk.
787 */
788 void
789 dkwedge_discover(struct disk *pdk)
790 {
791 struct dkwedge_discovery_method *ddm;
792 struct vnode *vp;
793 int error;
794 dev_t pdev;
795
796 /*
797 * Require people playing with wedges to enable this explicitly.
798 */
799 if (dkwedge_autodiscover == 0)
800 return;
801
802 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
803
804 error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
805 if (error) {
806 aprint_error("%s: unable to compute pdev, error = %d\n",
807 pdk->dk_name, error);
808 goto out;
809 }
810
811 error = bdevvp(pdev, &vp);
812 if (error) {
813 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
814 pdk->dk_name, error);
815 goto out;
816 }
817
818 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
819 if (error) {
820 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
821 pdk->dk_name, error);
822 vrele(vp);
823 goto out;
824 }
825
826 error = VOP_OPEN(vp, FREAD, NOCRED);
827 if (error) {
828 aprint_error("%s: unable to open device, error = %d\n",
829 pdk->dk_name, error);
830 vput(vp);
831 goto out;
832 }
833 VOP_UNLOCK(vp, 0);
834
835 /*
836 * For each supported partition map type, look to see if
837 * this map type exists. If so, parse it and add the
838 * corresponding wedges.
839 */
840 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
841 error = (*ddm->ddm_discover)(pdk, vp);
842 if (error == 0) {
843 /* Successfully created wedges; we're done. */
844 break;
845 }
846 }
847
848 error = vn_close(vp, FREAD, NOCRED);
849 if (error) {
850 aprint_error("%s: unable to close device, error = %d\n",
851 pdk->dk_name, error);
852 /* We'll just assume the vnode has been cleaned up. */
853 }
854 out:
855 rw_exit(&dkwedge_discovery_methods_lock);
856 }
857
858 /*
859 * dkwedge_read:
860 *
861 * Read the some data from the specified disk, used for
862 * partition discovery.
863 */
864 int
865 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
866 void *tbuf, size_t len)
867 {
868 struct buf b;
869
870 buf_init(&b);
871
872 b.b_vp = vp;
873 b.b_dev = vp->v_rdev;
874 b.b_blkno = blkno;
875 b.b_bcount = b.b_resid = len;
876 b.b_flags = B_READ;
877 b.b_proc = curproc;
878 b.b_data = tbuf;
879
880 VOP_STRATEGY(vp, &b);
881 return (biowait(&b));
882 }
883
884 /*
885 * dkwedge_lookup:
886 *
887 * Look up a dkwedge_softc based on the provided dev_t.
888 */
889 static struct dkwedge_softc *
890 dkwedge_lookup(dev_t dev)
891 {
892 int unit = minor(dev);
893
894 if (unit >= ndkwedges)
895 return (NULL);
896
897 KASSERT(dkwedges != NULL);
898
899 return (dkwedges[unit]);
900 }
901
902 /*
903 * dkopen: [devsw entry point]
904 *
905 * Open a wedge.
906 */
907 static int
908 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
909 {
910 struct dkwedge_softc *sc = dkwedge_lookup(dev);
911 struct vnode *vp;
912 int error = 0;
913
914 if (sc == NULL)
915 return (ENODEV);
916
917 if (sc->sc_state != DKW_STATE_RUNNING)
918 return (ENXIO);
919
920 /*
921 * We go through a complicated little dance to only open the parent
922 * vnode once per wedge, no matter how many times the wedge is
923 * opened. The reason? We see one dkopen() per open call, but
924 * only dkclose() on the last close.
925 */
926 mutex_enter(&sc->sc_dk.dk_openlock);
927 mutex_enter(&sc->sc_parent->dk_rawlock);
928 if (sc->sc_dk.dk_openmask == 0) {
929 if (sc->sc_parent->dk_rawopens == 0) {
930 KASSERT(sc->sc_parent->dk_rawvp == NULL);
931 error = bdevvp(sc->sc_pdev, &vp);
932 if (error)
933 goto popen_fail;
934 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
935 if (error) {
936 vrele(vp);
937 goto popen_fail;
938 }
939 error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED);
940 if (error) {
941 vput(vp);
942 goto popen_fail;
943 }
944 /* VOP_OPEN() doesn't do this for us. */
945 mutex_enter(&vp->v_interlock);
946 vp->v_writecount++;
947 mutex_exit(&vp->v_interlock);
948 VOP_UNLOCK(vp, 0);
949 sc->sc_parent->dk_rawvp = vp;
950 }
951 sc->sc_parent->dk_rawopens++;
952 }
953 if (fmt == S_IFCHR)
954 sc->sc_dk.dk_copenmask |= 1;
955 else
956 sc->sc_dk.dk_bopenmask |= 1;
957 sc->sc_dk.dk_openmask =
958 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
959
960 popen_fail:
961 mutex_exit(&sc->sc_parent->dk_rawlock);
962 mutex_exit(&sc->sc_dk.dk_openlock);
963 return (error);
964 }
965
966 /*
967 * dkclose: [devsw entry point]
968 *
969 * Close a wedge.
970 */
971 static int
972 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
973 {
974 struct dkwedge_softc *sc = dkwedge_lookup(dev);
975 int error = 0;
976
977 KASSERT(sc->sc_dk.dk_openmask != 0);
978
979 mutex_enter(&sc->sc_dk.dk_openlock);
980 mutex_enter(&sc->sc_parent->dk_rawlock);
981
982 if (fmt == S_IFCHR)
983 sc->sc_dk.dk_copenmask &= ~1;
984 else
985 sc->sc_dk.dk_bopenmask &= ~1;
986 sc->sc_dk.dk_openmask =
987 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
988
989 if (sc->sc_dk.dk_openmask == 0) {
990 if (sc->sc_parent->dk_rawopens-- == 1) {
991 KASSERT(sc->sc_parent->dk_rawvp != NULL);
992 error = vn_close(sc->sc_parent->dk_rawvp,
993 FREAD | FWRITE, NOCRED);
994 sc->sc_parent->dk_rawvp = NULL;
995 }
996 }
997
998 mutex_exit(&sc->sc_parent->dk_rawlock);
999 mutex_exit(&sc->sc_dk.dk_openlock);
1000
1001 return (error);
1002 }
1003
1004 /*
1005 * dkstragegy: [devsw entry point]
1006 *
1007 * Perform I/O based on the wedge I/O strategy.
1008 */
1009 static void
1010 dkstrategy(struct buf *bp)
1011 {
1012 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1013 int s;
1014
1015 if (sc->sc_state != DKW_STATE_RUNNING) {
1016 bp->b_error = ENXIO;
1017 goto done;
1018 }
1019
1020 /* If it's an empty transfer, wake up the top half now. */
1021 if (bp->b_bcount == 0)
1022 goto done;
1023
1024 /* Make sure it's in-range. */
1025 if (bounds_check_with_mediasize(bp, DEV_BSIZE, sc->sc_size) <= 0)
1026 goto done;
1027
1028 /* Translate it to the parent's raw LBA. */
1029 bp->b_rawblkno = bp->b_blkno + sc->sc_offset;
1030
1031 /* Place it in the queue and start I/O on the unit. */
1032 s = splbio();
1033 sc->sc_iopend++;
1034 BUFQ_PUT(sc->sc_bufq, bp);
1035 dkstart(sc);
1036 splx(s);
1037 return;
1038
1039 done:
1040 bp->b_resid = bp->b_bcount;
1041 biodone(bp);
1042 }
1043
1044 /*
1045 * dkstart:
1046 *
1047 * Start I/O that has been enqueued on the wedge.
1048 * NOTE: Must be called at splbio()!
1049 */
1050 static void
1051 dkstart(struct dkwedge_softc *sc)
1052 {
1053 struct vnode *vp;
1054 struct buf *bp, *nbp;
1055
1056 /* Do as much work as has been enqueued. */
1057 while ((bp = BUFQ_PEEK(sc->sc_bufq)) != NULL) {
1058 if (sc->sc_state != DKW_STATE_RUNNING) {
1059 (void) BUFQ_GET(sc->sc_bufq);
1060 if (sc->sc_iopend-- == 1 &&
1061 (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1062 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1063 wakeup(&sc->sc_iopend);
1064 }
1065 bp->b_error = ENXIO;
1066 bp->b_resid = bp->b_bcount;
1067 biodone(bp);
1068 }
1069
1070 /* Instrumentation. */
1071 disk_busy(&sc->sc_dk);
1072
1073 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1074 if (nbp == NULL) {
1075 /*
1076 * No resources to run this request; leave the
1077 * buffer queued up, and schedule a timer to
1078 * restart the queue in 1/2 a second.
1079 */
1080 disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
1081 callout_schedule(&sc->sc_restart_ch, hz / 2);
1082 return;
1083 }
1084
1085 (void) BUFQ_GET(sc->sc_bufq);
1086
1087 nbp->b_data = bp->b_data;
1088 nbp->b_flags = bp->b_flags;
1089 nbp->b_oflags = bp->b_oflags;
1090 nbp->b_cflags = bp->b_cflags;
1091 nbp->b_iodone = dkiodone;
1092 nbp->b_proc = bp->b_proc;
1093 nbp->b_blkno = bp->b_rawblkno;
1094 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1095 nbp->b_bcount = bp->b_bcount;
1096 nbp->b_private = bp;
1097 BIO_COPYPRIO(nbp, bp);
1098
1099 vp = nbp->b_vp;
1100 if ((nbp->b_flags & B_READ) == 0) {
1101 mutex_enter(&vp->v_interlock);
1102 vp->v_numoutput++;
1103 mutex_exit(&vp->v_interlock);
1104 }
1105 VOP_STRATEGY(vp, nbp);
1106 }
1107 }
1108
1109 /*
1110 * dkiodone:
1111 *
1112 * I/O to a wedge has completed; alert the top half.
1113 * NOTE: Must be called at splbio()!
1114 */
1115 static void
1116 dkiodone(struct buf *bp)
1117 {
1118 struct buf *obp = bp->b_private;
1119 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1120
1121 if (bp->b_error != 0)
1122 obp->b_error = bp->b_error;
1123 obp->b_resid = bp->b_resid;
1124 putiobuf(bp);
1125
1126 if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1127 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1128 wakeup(&sc->sc_iopend);
1129 }
1130
1131 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1132 obp->b_flags & B_READ);
1133
1134 biodone(obp);
1135
1136 /* Kick the queue in case there is more work we can do. */
1137 dkstart(sc);
1138 }
1139
1140 /*
1141 * dkrestart:
1142 *
1143 * Restart the work queue after it was stalled due to
1144 * a resource shortage. Invoked via a callout.
1145 */
1146 static void
1147 dkrestart(void *v)
1148 {
1149 struct dkwedge_softc *sc = v;
1150 int s;
1151
1152 s = splbio();
1153 dkstart(sc);
1154 splx(s);
1155 }
1156
1157 /*
1158 * dkread: [devsw entry point]
1159 *
1160 * Read from a wedge.
1161 */
1162 static int
1163 dkread(dev_t dev, struct uio *uio, int flags)
1164 {
1165 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1166
1167 if (sc->sc_state != DKW_STATE_RUNNING)
1168 return (ENXIO);
1169
1170 return (physio(dkstrategy, NULL, dev, B_READ,
1171 sc->sc_parent->dk_driver->d_minphys, uio));
1172 }
1173
1174 /*
1175 * dkwrite: [devsw entry point]
1176 *
1177 * Write to a wedge.
1178 */
1179 static int
1180 dkwrite(dev_t dev, struct uio *uio, int flags)
1181 {
1182 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1183
1184 if (sc->sc_state != DKW_STATE_RUNNING)
1185 return (ENXIO);
1186
1187 return (physio(dkstrategy, NULL, dev, B_WRITE,
1188 sc->sc_parent->dk_driver->d_minphys, uio));
1189 }
1190
1191 /*
1192 * dkioctl: [devsw entry point]
1193 *
1194 * Perform an ioctl request on a wedge.
1195 */
1196 static int
1197 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1198 {
1199 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1200 int error = 0;
1201
1202 if (sc->sc_state != DKW_STATE_RUNNING)
1203 return (ENXIO);
1204
1205 switch (cmd) {
1206 case DIOCCACHESYNC:
1207 /*
1208 * XXX Do we really need to care about having a writable
1209 * file descriptor here?
1210 */
1211 if ((flag & FWRITE) == 0)
1212 error = EBADF;
1213 else
1214 error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
1215 cmd, data, flag,
1216 l != NULL ? l->l_cred : NOCRED);
1217 break;
1218 case DIOCGWEDGEINFO:
1219 {
1220 struct dkwedge_info *dkw = (void *) data;
1221
1222 strcpy(dkw->dkw_devname, sc->sc_dev->dv_xname);
1223 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1224 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1225 strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
1226 dkw->dkw_offset = sc->sc_offset;
1227 dkw->dkw_size = sc->sc_size;
1228 strcpy(dkw->dkw_ptype, sc->sc_ptype);
1229
1230 break;
1231 }
1232
1233 default:
1234 error = ENOTTY;
1235 }
1236
1237 return (error);
1238 }
1239
1240 /*
1241 * dksize: [devsw entry point]
1242 *
1243 * Query the size of a wedge for the purpose of performing a dump
1244 * or for swapping to.
1245 */
1246 static int
1247 dksize(dev_t dev)
1248 {
1249 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1250 int rv = -1;
1251
1252 if (sc == NULL)
1253 return (-1);
1254
1255 if (sc->sc_state != DKW_STATE_RUNNING)
1256 return (ENXIO);
1257
1258 mutex_enter(&sc->sc_dk.dk_openlock);
1259 mutex_enter(&sc->sc_parent->dk_rawlock);
1260
1261 /* Our content type is static, no need to open the device. */
1262
1263 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1264 /* Saturate if we are larger than INT_MAX. */
1265 if (sc->sc_size > INT_MAX)
1266 rv = INT_MAX;
1267 else
1268 rv = (int) sc->sc_size;
1269 }
1270
1271 mutex_exit(&sc->sc_parent->dk_rawlock);
1272 mutex_exit(&sc->sc_dk.dk_openlock);
1273
1274 return (rv);
1275 }
1276
1277 /*
1278 * dkdump: [devsw entry point]
1279 *
1280 * Perform a crash dump to a wedge.
1281 */
1282 static int
1283 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1284 {
1285 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1286 const struct bdevsw *bdev;
1287 int rv = 0;
1288
1289 if (sc == NULL)
1290 return (-1);
1291
1292 if (sc->sc_state != DKW_STATE_RUNNING)
1293 return (ENXIO);
1294
1295 mutex_enter(&sc->sc_dk.dk_openlock);
1296 mutex_enter(&sc->sc_parent->dk_rawlock);
1297
1298 /* Our content type is static, no need to open the device. */
1299
1300 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
1301 rv = ENXIO;
1302 goto out;
1303 }
1304 if (size % DEV_BSIZE != 0) {
1305 rv = EINVAL;
1306 goto out;
1307 }
1308 if (blkno + size / DEV_BSIZE > sc->sc_size) {
1309 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1310 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
1311 size / DEV_BSIZE, sc->sc_size);
1312 rv = EINVAL;
1313 goto out;
1314 }
1315
1316 bdev = bdevsw_lookup(sc->sc_pdev);
1317 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
1318
1319 out:
1320 mutex_exit(&sc->sc_parent->dk_rawlock);
1321 mutex_exit(&sc->sc_dk.dk_openlock);
1322
1323 return rv;
1324 }
1325