Home | History | Annotate | Line # | Download | only in dkwedge
dk.c revision 1.33.6.2
      1 /*	$NetBSD: dk.c,v 1.33.6.2 2008/04/06 09:58:50 mjf Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.33.6.2 2008/04/06 09:58:50 mjf Exp $");
     41 
     42 #include "opt_dkwedge.h"
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/proc.h>
     47 #include <sys/errno.h>
     48 #include <sys/pool.h>
     49 #include <sys/ioctl.h>
     50 #include <sys/disklabel.h>
     51 #include <sys/disk.h>
     52 #include <sys/fcntl.h>
     53 #include <sys/buf.h>
     54 #include <sys/bufq.h>
     55 #include <sys/vnode.h>
     56 #include <sys/stat.h>
     57 #include <sys/conf.h>
     58 #include <sys/callout.h>
     59 #include <sys/kernel.h>
     60 #include <sys/malloc.h>
     61 #include <sys/device.h>
     62 #include <sys/kauth.h>
     63 
     64 #include <miscfs/specfs/specdev.h>
     65 
     66 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
     67 
     68 typedef enum {
     69 	DKW_STATE_LARVAL	= 0,
     70 	DKW_STATE_RUNNING	= 1,
     71 	DKW_STATE_DYING		= 2,
     72 	DKW_STATE_DEAD		= 666
     73 } dkwedge_state_t;
     74 
     75 struct dkwedge_softc {
     76 	struct device	*sc_dev;	/* pointer to our pseudo-device */
     77 	struct cfdata	sc_cfdata;	/* our cfdata structure */
     78 	uint8_t		sc_wname[128];	/* wedge name (Unicode, UTF-8) */
     79 
     80 	dkwedge_state_t sc_state;	/* state this wedge is in */
     81 
     82 	struct disk	*sc_parent;	/* parent disk */
     83 	daddr_t		sc_offset;	/* LBA offset of wedge in parent */
     84 	uint64_t	sc_size;	/* size of wedge in blocks */
     85 	char		sc_ptype[32];	/* partition type */
     86 	dev_t		sc_pdev;	/* cached parent's dev_t */
     87 					/* link on parent's wedge list */
     88 	LIST_ENTRY(dkwedge_softc) sc_plink;
     89 
     90 	struct disk	sc_dk;		/* our own disk structure */
     91 	struct bufq_state *sc_bufq;	/* buffer queue */
     92 	struct callout	sc_restart_ch;	/* callout to restart I/O */
     93 
     94 	u_int		sc_iopend;	/* I/Os pending */
     95 	int		sc_flags;	/* flags (splbio) */
     96 };
     97 
     98 #define	DK_F_WAIT_DRAIN		0x0001	/* waiting for I/O to drain */
     99 
    100 static void	dkstart(struct dkwedge_softc *);
    101 static void	dkiodone(struct buf *);
    102 static void	dkrestart(void *);
    103 
    104 static dev_type_open(dkopen);
    105 static dev_type_close(dkclose);
    106 static dev_type_read(dkread);
    107 static dev_type_write(dkwrite);
    108 static dev_type_ioctl(dkioctl);
    109 static dev_type_strategy(dkstrategy);
    110 static dev_type_dump(dkdump);
    111 static dev_type_size(dksize);
    112 
    113 const struct bdevsw dk_bdevsw = {
    114 	dkopen, dkclose, dkstrategy, dkioctl, dkdump, dksize, D_DISK
    115 };
    116 
    117 const struct cdevsw dk_cdevsw = {
    118 	dkopen, dkclose, dkread, dkwrite, dkioctl,
    119 	    nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    120 };
    121 
    122 static struct dkwedge_softc **dkwedges;
    123 static u_int ndkwedges;
    124 static krwlock_t dkwedges_lock;
    125 
    126 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
    127 static krwlock_t dkwedge_discovery_methods_lock;
    128 
    129 /*
    130  * dkwedge_match:
    131  *
    132  *	Autoconfiguration match function for pseudo-device glue.
    133  */
    134 static int
    135 dkwedge_match(struct device *parent, struct cfdata *match,
    136     void *aux)
    137 {
    138 
    139 	/* Pseudo-device; always present. */
    140 	return (1);
    141 }
    142 
    143 /*
    144  * dkwedge_attach:
    145  *
    146  *	Autoconfiguration attach function for pseudo-device glue.
    147  */
    148 static void
    149 dkwedge_attach(struct device *parent, struct device *self,
    150     void *aux)
    151 {
    152 	int cmaj, bmaj, unit;
    153 
    154 	if (!pmf_device_register(self, NULL, NULL))
    155 		aprint_error_dev(self, "couldn't establish power handler\n");
    156 
    157 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
    158 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
    159 
    160 	unit = device_unit(self);
    161 	device_register_name(makedev(bmaj, unit), self, false,
    162 	    DEV_DISK, "dk%d", unit);
    163 	device_register_name(makedev(cmaj, unit), self, true,
    164 	    DEV_DISK, "rdk%d", unit);
    165 }
    166 
    167 /*
    168  * dkwedge_detach:
    169  *
    170  *	Autoconfiguration detach function for pseudo-device glue.
    171  */
    172 static int
    173 dkwedge_detach(struct device *self, int flags)
    174 {
    175 
    176 	device_deregister_all(self);
    177 	pmf_device_deregister(self);
    178 	/* Always succeeds. */
    179 	return (0);
    180 }
    181 
    182 CFDRIVER_DECL(dk, DV_DISK, NULL);
    183 CFATTACH_DECL_NEW(dk, 0,
    184 	      dkwedge_match, dkwedge_attach, dkwedge_detach, NULL);
    185 
    186 /*
    187  * dkwedge_wait_drain:
    188  *
    189  *	Wait for I/O on the wedge to drain.
    190  *	NOTE: Must be called at splbio()!
    191  */
    192 static void
    193 dkwedge_wait_drain(struct dkwedge_softc *sc)
    194 {
    195 
    196 	while (sc->sc_iopend != 0) {
    197 		sc->sc_flags |= DK_F_WAIT_DRAIN;
    198 		(void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
    199 	}
    200 }
    201 
    202 /*
    203  * dkwedge_compute_pdev:
    204  *
    205  *	Compute the parent disk's dev_t.
    206  */
    207 static int
    208 dkwedge_compute_pdev(const char *pname, dev_t *pdevp)
    209 {
    210 	const char *name, *cp;
    211 	int punit, pmaj;
    212 	char devname[16];
    213 
    214 	name = pname;
    215 	if ((pmaj = devsw_name2blk(name, devname, sizeof(devname))) == -1)
    216 		return (ENODEV);
    217 
    218 	name += strlen(devname);
    219 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
    220 		punit = (punit * 10) + (*cp - '0');
    221 	if (cp == name) {
    222 		/* Invalid parent disk name. */
    223 		return (ENODEV);
    224 	}
    225 
    226 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
    227 
    228 	return (0);
    229 }
    230 
    231 /*
    232  * dkwedge_array_expand:
    233  *
    234  *	Expand the dkwedges array.
    235  */
    236 static void
    237 dkwedge_array_expand(void)
    238 {
    239 	int newcnt = ndkwedges + 16;
    240 	struct dkwedge_softc **newarray, **oldarray;
    241 
    242 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
    243 	    M_WAITOK|M_ZERO);
    244 	if ((oldarray = dkwedges) != NULL)
    245 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
    246 	dkwedges = newarray;
    247 	ndkwedges = newcnt;
    248 	if (oldarray != NULL)
    249 		free(oldarray, M_DKWEDGE);
    250 }
    251 
    252 /*
    253  * dkwedge_add:		[exported function]
    254  *
    255  *	Add a disk wedge based on the provided information.
    256  *
    257  *	The incoming dkw_devname[] is ignored, instead being
    258  *	filled in and returned to the caller.
    259  */
    260 int
    261 dkwedge_add(struct dkwedge_info *dkw)
    262 {
    263 	struct dkwedge_softc *sc, *lsc;
    264 	struct disk *pdk;
    265 	u_int unit;
    266 	int error;
    267 	dev_t pdev;
    268 
    269 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
    270 	pdk = disk_find(dkw->dkw_parent);
    271 	if (pdk == NULL)
    272 		return (ENODEV);
    273 
    274 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
    275 	if (error)
    276 		return (error);
    277 
    278 	if (dkw->dkw_offset < 0)
    279 		return (EINVAL);
    280 
    281 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
    282 	sc->sc_state = DKW_STATE_LARVAL;
    283 	sc->sc_parent = pdk;
    284 	sc->sc_pdev = pdev;
    285 	sc->sc_offset = dkw->dkw_offset;
    286 	sc->sc_size = dkw->dkw_size;
    287 
    288 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
    289 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
    290 
    291 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
    292 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
    293 
    294 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
    295 
    296 	callout_init(&sc->sc_restart_ch, 0);
    297 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
    298 
    299 	/*
    300 	 * Wedge will be added; increment the wedge count for the parent.
    301 	 * Only allow this to happend if RAW_PART is the only thing open.
    302 	 */
    303 	mutex_enter(&pdk->dk_openlock);
    304 	if (pdk->dk_openmask & ~(1 << RAW_PART))
    305 		error = EBUSY;
    306 	else {
    307 		/* Check for wedge overlap. */
    308 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    309 			daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
    310 			daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
    311 
    312 			if (sc->sc_offset >= lsc->sc_offset &&
    313 			    sc->sc_offset <= llastblk) {
    314 				/* Overlaps the tail of the exsiting wedge. */
    315 				break;
    316 			}
    317 			if (lastblk >= lsc->sc_offset &&
    318 			    lastblk <= llastblk) {
    319 				/* Overlaps the head of the existing wedge. */
    320 			    	break;
    321 			}
    322 		}
    323 		if (lsc != NULL)
    324 			error = EINVAL;
    325 		else {
    326 			pdk->dk_nwedges++;
    327 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
    328 		}
    329 	}
    330 	mutex_exit(&pdk->dk_openlock);
    331 	if (error) {
    332 		bufq_free(sc->sc_bufq);
    333 		free(sc, M_DKWEDGE);
    334 		return (error);
    335 	}
    336 
    337 	/* Fill in our cfdata for the pseudo-device glue. */
    338 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
    339 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
    340 	/* sc->sc_cfdata.cf_unit set below */
    341 	sc->sc_cfdata.cf_fstate = FSTATE_STAR;
    342 
    343 	/* Insert the larval wedge into the array. */
    344 	rw_enter(&dkwedges_lock, RW_WRITER);
    345 	for (error = 0;;) {
    346 		struct dkwedge_softc **scpp;
    347 
    348 		/*
    349 		 * Check for a duplicate wname while searching for
    350 		 * a slot.
    351 		 */
    352 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
    353 			if (dkwedges[unit] == NULL) {
    354 				if (scpp == NULL) {
    355 					scpp = &dkwedges[unit];
    356 					sc->sc_cfdata.cf_unit = unit;
    357 				}
    358 			} else {
    359 				/* XXX Unicode. */
    360 				if (strcmp(dkwedges[unit]->sc_wname,
    361 					   sc->sc_wname) == 0) {
    362 					error = EEXIST;
    363 					break;
    364 				}
    365 			}
    366 		}
    367 		if (error)
    368 			break;
    369 		KASSERT(unit == ndkwedges);
    370 		if (scpp == NULL)
    371 			dkwedge_array_expand();
    372 		else {
    373 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
    374 			*scpp = sc;
    375 			break;
    376 		}
    377 	}
    378 	rw_exit(&dkwedges_lock);
    379 	if (error) {
    380 		mutex_enter(&pdk->dk_openlock);
    381 		pdk->dk_nwedges--;
    382 		LIST_REMOVE(sc, sc_plink);
    383 		mutex_exit(&pdk->dk_openlock);
    384 
    385 		bufq_free(sc->sc_bufq);
    386 		free(sc, M_DKWEDGE);
    387 		return (error);
    388 	}
    389 
    390 	/*
    391 	 * Now that we know the unit #, attach a pseudo-device for
    392 	 * this wedge instance.  This will provide us with the
    393 	 * "struct device" necessary for glue to other parts of the
    394 	 * system.
    395 	 *
    396 	 * This should never fail, unless we're almost totally out of
    397 	 * memory.
    398 	 */
    399 	if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
    400 		aprint_error("%s%u: unable to attach pseudo-device\n",
    401 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
    402 
    403 		rw_enter(&dkwedges_lock, RW_WRITER);
    404 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
    405 		rw_exit(&dkwedges_lock);
    406 
    407 		mutex_enter(&pdk->dk_openlock);
    408 		pdk->dk_nwedges--;
    409 		LIST_REMOVE(sc, sc_plink);
    410 		mutex_exit(&pdk->dk_openlock);
    411 
    412 		bufq_free(sc->sc_bufq);
    413 		free(sc, M_DKWEDGE);
    414 		return (ENOMEM);
    415 	}
    416 
    417 	/* Return the devname to the caller. */
    418 	strcpy(dkw->dkw_devname, sc->sc_dev->dv_xname);
    419 
    420 	/*
    421 	 * XXX Really ought to make the disk_attach() and the changing
    422 	 * of state to RUNNING atomic.
    423 	 */
    424 
    425 	disk_init(&sc->sc_dk, sc->sc_dev->dv_xname, NULL);
    426 	disk_attach(&sc->sc_dk);
    427 
    428 	/* Disk wedge is ready for use! */
    429 	sc->sc_state = DKW_STATE_RUNNING;
    430 
    431 	/* Announce our arrival. */
    432 	aprint_normal("%s at %s: %s\n", sc->sc_dev->dv_xname, pdk->dk_name,
    433 	    sc->sc_wname);	/* XXX Unicode */
    434 	aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
    435 	    sc->sc_dev->dv_xname, sc->sc_size, sc->sc_offset, sc->sc_ptype);
    436 
    437 	return (0);
    438 }
    439 
    440 /*
    441  * dkwedge_del:		[exported function]
    442  *
    443  *	Delete a disk wedge based on the provided information.
    444  *	NOTE: We look up the wedge based on the wedge devname,
    445  *	not wname.
    446  */
    447 int
    448 dkwedge_del(struct dkwedge_info *dkw)
    449 {
    450 	struct dkwedge_softc *sc = NULL;
    451 	u_int unit;
    452 	int bmaj, cmaj, s;
    453 
    454 	/* Find our softc. */
    455 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
    456 	rw_enter(&dkwedges_lock, RW_WRITER);
    457 	for (unit = 0; unit < ndkwedges; unit++) {
    458 		if ((sc = dkwedges[unit]) != NULL &&
    459 		    strcmp(sc->sc_dev->dv_xname, dkw->dkw_devname) == 0 &&
    460 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
    461 			/* Mark the wedge as dying. */
    462 			sc->sc_state = DKW_STATE_DYING;
    463 			break;
    464 		}
    465 	}
    466 	rw_exit(&dkwedges_lock);
    467 	if (unit == ndkwedges)
    468 		return (ESRCH);
    469 
    470 	KASSERT(sc != NULL);
    471 
    472 	/* Locate the wedge major numbers. */
    473 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
    474 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
    475 
    476 	/* Kill any pending restart. */
    477 	callout_stop(&sc->sc_restart_ch);
    478 
    479 	/*
    480 	 * dkstart() will kill any queued buffers now that the
    481 	 * state of the wedge is not RUNNING.  Once we've done
    482 	 * that, wait for any other pending I/O to complete.
    483 	 */
    484 	s = splbio();
    485 	dkstart(sc);
    486 	dkwedge_wait_drain(sc);
    487 	splx(s);
    488 
    489 	/* Nuke the vnodes for any open instances. */
    490 	vdevgone(bmaj, unit, unit, VBLK);
    491 	vdevgone(cmaj, unit, unit, VCHR);
    492 
    493 	/* Clean up the parent. */
    494 	mutex_enter(&sc->sc_dk.dk_openlock);
    495 	mutex_enter(&sc->sc_parent->dk_rawlock);
    496 	if (sc->sc_dk.dk_openmask) {
    497 		if (sc->sc_parent->dk_rawopens-- == 1) {
    498 			KASSERT(sc->sc_parent->dk_rawvp != NULL);
    499 			(void) vn_close(sc->sc_parent->dk_rawvp, FREAD | FWRITE,
    500 			    NOCRED);
    501 			sc->sc_parent->dk_rawvp = NULL;
    502 		}
    503 		sc->sc_dk.dk_openmask = 0;
    504 	}
    505 	mutex_exit(&sc->sc_parent->dk_rawlock);
    506 	mutex_exit(&sc->sc_dk.dk_openlock);
    507 
    508 	/* Announce our departure. */
    509 	aprint_normal("%s at %s (%s) deleted\n", sc->sc_dev->dv_xname,
    510 	    sc->sc_parent->dk_name,
    511 	    sc->sc_wname);	/* XXX Unicode */
    512 
    513 	/* Delete our pseudo-device. */
    514 	(void) config_detach(sc->sc_dev, DETACH_FORCE | DETACH_QUIET);
    515 
    516 	mutex_enter(&sc->sc_parent->dk_openlock);
    517 	sc->sc_parent->dk_nwedges--;
    518 	LIST_REMOVE(sc, sc_plink);
    519 	mutex_exit(&sc->sc_parent->dk_openlock);
    520 
    521 	/* Delete our buffer queue. */
    522 	bufq_free(sc->sc_bufq);
    523 
    524 	/* Detach from the disk list. */
    525 	disk_detach(&sc->sc_dk);
    526 
    527 	/* Poof. */
    528 	rw_enter(&dkwedges_lock, RW_WRITER);
    529 	dkwedges[unit] = NULL;
    530 	sc->sc_state = DKW_STATE_DEAD;
    531 	rw_exit(&dkwedges_lock);
    532 
    533 	free(sc, M_DKWEDGE);
    534 
    535 	return (0);
    536 }
    537 
    538 /*
    539  * dkwedge_delall:	[exported function]
    540  *
    541  *	Delete all of the wedges on the specified disk.  Used when
    542  *	a disk is being detached.
    543  */
    544 void
    545 dkwedge_delall(struct disk *pdk)
    546 {
    547 	struct dkwedge_info dkw;
    548 	struct dkwedge_softc *sc;
    549 
    550 	for (;;) {
    551 		mutex_enter(&pdk->dk_openlock);
    552 		if ((sc = LIST_FIRST(&pdk->dk_wedges)) == NULL) {
    553 			KASSERT(pdk->dk_nwedges == 0);
    554 			mutex_exit(&pdk->dk_openlock);
    555 			return;
    556 		}
    557 		strcpy(dkw.dkw_parent, pdk->dk_name);
    558 		strcpy(dkw.dkw_devname, sc->sc_dev->dv_xname);
    559 		mutex_exit(&pdk->dk_openlock);
    560 		(void) dkwedge_del(&dkw);
    561 	}
    562 }
    563 
    564 /*
    565  * dkwedge_list:	[exported function]
    566  *
    567  *	List all of the wedges on a particular disk.
    568  *	If p == NULL, the buffer is in kernel space.  Otherwise, it is
    569  *	in user space of the specified process.
    570  */
    571 int
    572 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
    573 {
    574 	struct uio uio;
    575 	struct iovec iov;
    576 	struct dkwedge_softc *sc;
    577 	struct dkwedge_info dkw;
    578 	struct vmspace *vm;
    579 	int error = 0;
    580 
    581 	iov.iov_base = dkwl->dkwl_buf;
    582 	iov.iov_len = dkwl->dkwl_bufsize;
    583 
    584 	uio.uio_iov = &iov;
    585 	uio.uio_iovcnt = 1;
    586 	uio.uio_offset = 0;
    587 	uio.uio_resid = dkwl->dkwl_bufsize;
    588 	uio.uio_rw = UIO_READ;
    589 	if (l == NULL) {
    590 		UIO_SETUP_SYSSPACE(&uio);
    591 	} else {
    592 		error = proc_vmspace_getref(l->l_proc, &vm);
    593 		if (error) {
    594 			return error;
    595 		}
    596 		uio.uio_vmspace = vm;
    597 	}
    598 
    599 	dkwl->dkwl_ncopied = 0;
    600 
    601 	mutex_enter(&pdk->dk_openlock);
    602 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    603 		if (uio.uio_resid < sizeof(dkw))
    604 			break;
    605 
    606 		if (sc->sc_state != DKW_STATE_RUNNING)
    607 			continue;
    608 
    609 		strcpy(dkw.dkw_devname, sc->sc_dev->dv_xname);
    610 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
    611 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
    612 		strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
    613 		dkw.dkw_offset = sc->sc_offset;
    614 		dkw.dkw_size = sc->sc_size;
    615 		strcpy(dkw.dkw_ptype, sc->sc_ptype);
    616 
    617 		error = uiomove(&dkw, sizeof(dkw), &uio);
    618 		if (error)
    619 			break;
    620 		dkwl->dkwl_ncopied++;
    621 	}
    622 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
    623 	mutex_exit(&pdk->dk_openlock);
    624 
    625 	if (l != NULL) {
    626 		uvmspace_free(vm);
    627 	}
    628 
    629 	return (error);
    630 }
    631 
    632 device_t
    633 dkwedge_find_by_wname(const char *wname)
    634 {
    635 	device_t dv = NULL;
    636 	struct dkwedge_softc *sc;
    637 	int i;
    638 
    639 	rw_enter(&dkwedges_lock, RW_WRITER);
    640 	for (i = 0; i < ndkwedges; i++) {
    641 		if ((sc = dkwedges[i]) == NULL)
    642 			continue;
    643 		if (strcmp(sc->sc_wname, wname) == 0) {
    644 			if (dv != NULL) {
    645 				printf(
    646 				    "WARNING: double match for wedge name %s "
    647 				    "(%s, %s)\n", wname, device_xname(dv),
    648 				    device_xname(sc->sc_dev));
    649 				continue;
    650 			}
    651 			dv = sc->sc_dev;
    652 		}
    653 	}
    654 	rw_exit(&dkwedges_lock);
    655 	return dv;
    656 }
    657 
    658 void
    659 dkwedge_print_wnames(void)
    660 {
    661 	struct dkwedge_softc *sc;
    662 	int i;
    663 
    664 	rw_enter(&dkwedges_lock, RW_WRITER);
    665 	for (i = 0; i < ndkwedges; i++) {
    666 		if ((sc = dkwedges[i]) == NULL)
    667 			continue;
    668 		printf(" wedge:%s", sc->sc_wname);
    669 	}
    670 	rw_exit(&dkwedges_lock);
    671 }
    672 
    673 /*
    674  * dkwedge_set_bootwedge
    675  *
    676  *	Set the booted_wedge global based on the specified parent name
    677  *	and offset/length.
    678  */
    679 void
    680 dkwedge_set_bootwedge(struct device *parent, daddr_t startblk, uint64_t nblks)
    681 {
    682 	struct dkwedge_softc *sc;
    683 	int i;
    684 
    685 	rw_enter(&dkwedges_lock, RW_WRITER);
    686 	for (i = 0; i < ndkwedges; i++) {
    687 		if ((sc = dkwedges[i]) == NULL)
    688 			continue;
    689 		if (strcmp(sc->sc_parent->dk_name, parent->dv_xname) == 0 &&
    690 		    sc->sc_offset == startblk &&
    691 		    sc->sc_size == nblks) {
    692 			if (booted_wedge) {
    693 				printf("WARNING: double match for boot wedge "
    694 				    "(%s, %s)\n",
    695 				    booted_wedge->dv_xname,
    696 				    sc->sc_dev->dv_xname);
    697 				continue;
    698 			}
    699 			booted_device = parent;
    700 			booted_wedge = sc->sc_dev;
    701 			booted_partition = 0;
    702 		}
    703 	}
    704 	/*
    705 	 * XXX What if we don't find one?  Should we create a special
    706 	 * XXX root wedge?
    707 	 */
    708 	rw_exit(&dkwedges_lock);
    709 }
    710 
    711 /*
    712  * We need a dummy object to stuff into the dkwedge discovery method link
    713  * set to ensure that there is always at least one object in the set.
    714  */
    715 static struct dkwedge_discovery_method dummy_discovery_method;
    716 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
    717 
    718 /*
    719  * dkwedge_init:
    720  *
    721  *	Initialize the disk wedge subsystem.
    722  */
    723 void
    724 dkwedge_init(void)
    725 {
    726 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
    727 	struct dkwedge_discovery_method * const *ddmp;
    728 	struct dkwedge_discovery_method *lddm, *ddm;
    729 
    730 	rw_init(&dkwedges_lock);
    731 	rw_init(&dkwedge_discovery_methods_lock);
    732 
    733 	if (config_cfdriver_attach(&dk_cd) != 0)
    734 		panic("dkwedge: unable to attach cfdriver");
    735 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
    736 		panic("dkwedge: unable to attach cfattach");
    737 
    738 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
    739 
    740 	LIST_INIT(&dkwedge_discovery_methods);
    741 
    742 	__link_set_foreach(ddmp, dkwedge_methods) {
    743 		ddm = *ddmp;
    744 		if (ddm == &dummy_discovery_method)
    745 			continue;
    746 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
    747 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
    748 					 ddm, ddm_list);
    749 			continue;
    750 		}
    751 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
    752 			if (ddm->ddm_priority == lddm->ddm_priority) {
    753 				aprint_error("dk-method-%s: method \"%s\" "
    754 				    "already exists at priority %d\n",
    755 				    ddm->ddm_name, lddm->ddm_name,
    756 				    lddm->ddm_priority);
    757 				/* Not inserted. */
    758 				break;
    759 			}
    760 			if (ddm->ddm_priority < lddm->ddm_priority) {
    761 				/* Higher priority; insert before. */
    762 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
    763 				break;
    764 			}
    765 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
    766 				/* Last one; insert after. */
    767 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
    768 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
    769 				break;
    770 			}
    771 		}
    772 	}
    773 
    774 	rw_exit(&dkwedge_discovery_methods_lock);
    775 }
    776 
    777 #ifdef DKWEDGE_AUTODISCOVER
    778 int	dkwedge_autodiscover = 1;
    779 #else
    780 int	dkwedge_autodiscover = 0;
    781 #endif
    782 
    783 /*
    784  * dkwedge_discover:	[exported function]
    785  *
    786  *	Discover the wedges on a newly attached disk.
    787  */
    788 void
    789 dkwedge_discover(struct disk *pdk)
    790 {
    791 	struct dkwedge_discovery_method *ddm;
    792 	struct vnode *vp;
    793 	int error;
    794 	dev_t pdev;
    795 
    796 	/*
    797 	 * Require people playing with wedges to enable this explicitly.
    798 	 */
    799 	if (dkwedge_autodiscover == 0)
    800 		return;
    801 
    802 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
    803 
    804 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
    805 	if (error) {
    806 		aprint_error("%s: unable to compute pdev, error = %d\n",
    807 		    pdk->dk_name, error);
    808 		goto out;
    809 	}
    810 
    811 	error = bdevvp(pdev, &vp);
    812 	if (error) {
    813 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
    814 		    pdk->dk_name, error);
    815 		goto out;
    816 	}
    817 
    818 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    819 	if (error) {
    820 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
    821 		    pdk->dk_name, error);
    822 		vrele(vp);
    823 		goto out;
    824 	}
    825 
    826 	error = VOP_OPEN(vp, FREAD, NOCRED);
    827 	if (error) {
    828 		aprint_error("%s: unable to open device, error = %d\n",
    829 		    pdk->dk_name, error);
    830 		vput(vp);
    831 		goto out;
    832 	}
    833 	VOP_UNLOCK(vp, 0);
    834 
    835 	/*
    836 	 * For each supported partition map type, look to see if
    837 	 * this map type exists.  If so, parse it and add the
    838 	 * corresponding wedges.
    839 	 */
    840 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
    841 		error = (*ddm->ddm_discover)(pdk, vp);
    842 		if (error == 0) {
    843 			/* Successfully created wedges; we're done. */
    844 			break;
    845 		}
    846 	}
    847 
    848 	error = vn_close(vp, FREAD, NOCRED);
    849 	if (error) {
    850 		aprint_error("%s: unable to close device, error = %d\n",
    851 		    pdk->dk_name, error);
    852 		/* We'll just assume the vnode has been cleaned up. */
    853 	}
    854  out:
    855 	rw_exit(&dkwedge_discovery_methods_lock);
    856 }
    857 
    858 /*
    859  * dkwedge_read:
    860  *
    861  *	Read the some data from the specified disk, used for
    862  *	partition discovery.
    863  */
    864 int
    865 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
    866     void *tbuf, size_t len)
    867 {
    868 	struct buf b;
    869 
    870 	buf_init(&b);
    871 
    872 	b.b_vp = vp;
    873 	b.b_dev = vp->v_rdev;
    874 	b.b_blkno = blkno;
    875 	b.b_bcount = b.b_resid = len;
    876 	b.b_flags = B_READ;
    877 	b.b_proc = curproc;
    878 	b.b_data = tbuf;
    879 
    880 	VOP_STRATEGY(vp, &b);
    881 	return (biowait(&b));
    882 }
    883 
    884 /*
    885  * dkwedge_lookup:
    886  *
    887  *	Look up a dkwedge_softc based on the provided dev_t.
    888  */
    889 static struct dkwedge_softc *
    890 dkwedge_lookup(dev_t dev)
    891 {
    892 	int unit = minor(dev);
    893 
    894 	if (unit >= ndkwedges)
    895 		return (NULL);
    896 
    897 	KASSERT(dkwedges != NULL);
    898 
    899 	return (dkwedges[unit]);
    900 }
    901 
    902 /*
    903  * dkopen:		[devsw entry point]
    904  *
    905  *	Open a wedge.
    906  */
    907 static int
    908 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
    909 {
    910 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
    911 	struct vnode *vp;
    912 	int error = 0;
    913 
    914 	if (sc == NULL)
    915 		return (ENODEV);
    916 
    917 	if (sc->sc_state != DKW_STATE_RUNNING)
    918 		return (ENXIO);
    919 
    920 	/*
    921 	 * We go through a complicated little dance to only open the parent
    922 	 * vnode once per wedge, no matter how many times the wedge is
    923 	 * opened.  The reason?  We see one dkopen() per open call, but
    924 	 * only dkclose() on the last close.
    925 	 */
    926 	mutex_enter(&sc->sc_dk.dk_openlock);
    927 	mutex_enter(&sc->sc_parent->dk_rawlock);
    928 	if (sc->sc_dk.dk_openmask == 0) {
    929 		if (sc->sc_parent->dk_rawopens == 0) {
    930 			KASSERT(sc->sc_parent->dk_rawvp == NULL);
    931 			error = bdevvp(sc->sc_pdev, &vp);
    932 			if (error)
    933 				goto popen_fail;
    934 			error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    935 			if (error) {
    936 				vrele(vp);
    937 				goto popen_fail;
    938 			}
    939 			error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED);
    940 			if (error) {
    941 				vput(vp);
    942 				goto popen_fail;
    943 			}
    944 			/* VOP_OPEN() doesn't do this for us. */
    945 			mutex_enter(&vp->v_interlock);
    946 			vp->v_writecount++;
    947 			mutex_exit(&vp->v_interlock);
    948 			VOP_UNLOCK(vp, 0);
    949 			sc->sc_parent->dk_rawvp = vp;
    950 		}
    951 		sc->sc_parent->dk_rawopens++;
    952 	}
    953 	if (fmt == S_IFCHR)
    954 		sc->sc_dk.dk_copenmask |= 1;
    955 	else
    956 		sc->sc_dk.dk_bopenmask |= 1;
    957 	sc->sc_dk.dk_openmask =
    958 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
    959 
    960  popen_fail:
    961 	mutex_exit(&sc->sc_parent->dk_rawlock);
    962 	mutex_exit(&sc->sc_dk.dk_openlock);
    963 	return (error);
    964 }
    965 
    966 /*
    967  * dkclose:		[devsw entry point]
    968  *
    969  *	Close a wedge.
    970  */
    971 static int
    972 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
    973 {
    974 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
    975 	int error = 0;
    976 
    977 	KASSERT(sc->sc_dk.dk_openmask != 0);
    978 
    979 	mutex_enter(&sc->sc_dk.dk_openlock);
    980 	mutex_enter(&sc->sc_parent->dk_rawlock);
    981 
    982 	if (fmt == S_IFCHR)
    983 		sc->sc_dk.dk_copenmask &= ~1;
    984 	else
    985 		sc->sc_dk.dk_bopenmask &= ~1;
    986 	sc->sc_dk.dk_openmask =
    987 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
    988 
    989 	if (sc->sc_dk.dk_openmask == 0) {
    990 		if (sc->sc_parent->dk_rawopens-- == 1) {
    991 			KASSERT(sc->sc_parent->dk_rawvp != NULL);
    992 			error = vn_close(sc->sc_parent->dk_rawvp,
    993 			    FREAD | FWRITE, NOCRED);
    994 			sc->sc_parent->dk_rawvp = NULL;
    995 		}
    996 	}
    997 
    998 	mutex_exit(&sc->sc_parent->dk_rawlock);
    999 	mutex_exit(&sc->sc_dk.dk_openlock);
   1000 
   1001 	return (error);
   1002 }
   1003 
   1004 /*
   1005  * dkstragegy:		[devsw entry point]
   1006  *
   1007  *	Perform I/O based on the wedge I/O strategy.
   1008  */
   1009 static void
   1010 dkstrategy(struct buf *bp)
   1011 {
   1012 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1013 	int s;
   1014 
   1015 	if (sc->sc_state != DKW_STATE_RUNNING) {
   1016 		bp->b_error = ENXIO;
   1017 		goto done;
   1018 	}
   1019 
   1020 	/* If it's an empty transfer, wake up the top half now. */
   1021 	if (bp->b_bcount == 0)
   1022 		goto done;
   1023 
   1024 	/* Make sure it's in-range. */
   1025 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, sc->sc_size) <= 0)
   1026 		goto done;
   1027 
   1028 	/* Translate it to the parent's raw LBA. */
   1029 	bp->b_rawblkno = bp->b_blkno + sc->sc_offset;
   1030 
   1031 	/* Place it in the queue and start I/O on the unit. */
   1032 	s = splbio();
   1033 	sc->sc_iopend++;
   1034 	BUFQ_PUT(sc->sc_bufq, bp);
   1035 	dkstart(sc);
   1036 	splx(s);
   1037 	return;
   1038 
   1039  done:
   1040 	bp->b_resid = bp->b_bcount;
   1041 	biodone(bp);
   1042 }
   1043 
   1044 /*
   1045  * dkstart:
   1046  *
   1047  *	Start I/O that has been enqueued on the wedge.
   1048  *	NOTE: Must be called at splbio()!
   1049  */
   1050 static void
   1051 dkstart(struct dkwedge_softc *sc)
   1052 {
   1053 	struct vnode *vp;
   1054 	struct buf *bp, *nbp;
   1055 
   1056 	/* Do as much work as has been enqueued. */
   1057 	while ((bp = BUFQ_PEEK(sc->sc_bufq)) != NULL) {
   1058 		if (sc->sc_state != DKW_STATE_RUNNING) {
   1059 			(void) BUFQ_GET(sc->sc_bufq);
   1060 			if (sc->sc_iopend-- == 1 &&
   1061 			    (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
   1062 				sc->sc_flags &= ~DK_F_WAIT_DRAIN;
   1063 				wakeup(&sc->sc_iopend);
   1064 			}
   1065 			bp->b_error = ENXIO;
   1066 			bp->b_resid = bp->b_bcount;
   1067 			biodone(bp);
   1068 		}
   1069 
   1070 		/* Instrumentation. */
   1071 		disk_busy(&sc->sc_dk);
   1072 
   1073 		nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
   1074 		if (nbp == NULL) {
   1075 			/*
   1076 			 * No resources to run this request; leave the
   1077 			 * buffer queued up, and schedule a timer to
   1078 			 * restart the queue in 1/2 a second.
   1079 			 */
   1080 			disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
   1081 			callout_schedule(&sc->sc_restart_ch, hz / 2);
   1082 			return;
   1083 		}
   1084 
   1085 		(void) BUFQ_GET(sc->sc_bufq);
   1086 
   1087 		nbp->b_data = bp->b_data;
   1088 		nbp->b_flags = bp->b_flags;
   1089 		nbp->b_oflags = bp->b_oflags;
   1090 		nbp->b_cflags = bp->b_cflags;
   1091 		nbp->b_iodone = dkiodone;
   1092 		nbp->b_proc = bp->b_proc;
   1093 		nbp->b_blkno = bp->b_rawblkno;
   1094 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
   1095 		nbp->b_bcount = bp->b_bcount;
   1096 		nbp->b_private = bp;
   1097 		BIO_COPYPRIO(nbp, bp);
   1098 
   1099 		vp = nbp->b_vp;
   1100 		if ((nbp->b_flags & B_READ) == 0) {
   1101 			mutex_enter(&vp->v_interlock);
   1102 			vp->v_numoutput++;
   1103 			mutex_exit(&vp->v_interlock);
   1104 		}
   1105 		VOP_STRATEGY(vp, nbp);
   1106 	}
   1107 }
   1108 
   1109 /*
   1110  * dkiodone:
   1111  *
   1112  *	I/O to a wedge has completed; alert the top half.
   1113  *	NOTE: Must be called at splbio()!
   1114  */
   1115 static void
   1116 dkiodone(struct buf *bp)
   1117 {
   1118 	struct buf *obp = bp->b_private;
   1119 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
   1120 
   1121 	if (bp->b_error != 0)
   1122 		obp->b_error = bp->b_error;
   1123 	obp->b_resid = bp->b_resid;
   1124 	putiobuf(bp);
   1125 
   1126 	if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
   1127 		sc->sc_flags &= ~DK_F_WAIT_DRAIN;
   1128 		wakeup(&sc->sc_iopend);
   1129 	}
   1130 
   1131 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
   1132 	    obp->b_flags & B_READ);
   1133 
   1134 	biodone(obp);
   1135 
   1136 	/* Kick the queue in case there is more work we can do. */
   1137 	dkstart(sc);
   1138 }
   1139 
   1140 /*
   1141  * dkrestart:
   1142  *
   1143  *	Restart the work queue after it was stalled due to
   1144  *	a resource shortage.  Invoked via a callout.
   1145  */
   1146 static void
   1147 dkrestart(void *v)
   1148 {
   1149 	struct dkwedge_softc *sc = v;
   1150 	int s;
   1151 
   1152 	s = splbio();
   1153 	dkstart(sc);
   1154 	splx(s);
   1155 }
   1156 
   1157 /*
   1158  * dkread:		[devsw entry point]
   1159  *
   1160  *	Read from a wedge.
   1161  */
   1162 static int
   1163 dkread(dev_t dev, struct uio *uio, int flags)
   1164 {
   1165 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1166 
   1167 	if (sc->sc_state != DKW_STATE_RUNNING)
   1168 		return (ENXIO);
   1169 
   1170 	return (physio(dkstrategy, NULL, dev, B_READ,
   1171 		       sc->sc_parent->dk_driver->d_minphys, uio));
   1172 }
   1173 
   1174 /*
   1175  * dkwrite:		[devsw entry point]
   1176  *
   1177  *	Write to a wedge.
   1178  */
   1179 static int
   1180 dkwrite(dev_t dev, struct uio *uio, int flags)
   1181 {
   1182 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1183 
   1184 	if (sc->sc_state != DKW_STATE_RUNNING)
   1185 		return (ENXIO);
   1186 
   1187 	return (physio(dkstrategy, NULL, dev, B_WRITE,
   1188 		       sc->sc_parent->dk_driver->d_minphys, uio));
   1189 }
   1190 
   1191 /*
   1192  * dkioctl:		[devsw entry point]
   1193  *
   1194  *	Perform an ioctl request on a wedge.
   1195  */
   1196 static int
   1197 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1198 {
   1199 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1200 	int error = 0;
   1201 
   1202 	if (sc->sc_state != DKW_STATE_RUNNING)
   1203 		return (ENXIO);
   1204 
   1205 	switch (cmd) {
   1206 	case DIOCCACHESYNC:
   1207 		/*
   1208 		 * XXX Do we really need to care about having a writable
   1209 		 * file descriptor here?
   1210 		 */
   1211 		if ((flag & FWRITE) == 0)
   1212 			error = EBADF;
   1213 		else
   1214 			error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
   1215 					  cmd, data, flag,
   1216 					  l != NULL ? l->l_cred : NOCRED);
   1217 		break;
   1218 	case DIOCGWEDGEINFO:
   1219 	    {
   1220 	    	struct dkwedge_info *dkw = (void *) data;
   1221 
   1222 		strcpy(dkw->dkw_devname, sc->sc_dev->dv_xname);
   1223 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
   1224 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
   1225 		strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
   1226 		dkw->dkw_offset = sc->sc_offset;
   1227 		dkw->dkw_size = sc->sc_size;
   1228 		strcpy(dkw->dkw_ptype, sc->sc_ptype);
   1229 
   1230 		break;
   1231 	    }
   1232 
   1233 	default:
   1234 		error = ENOTTY;
   1235 	}
   1236 
   1237 	return (error);
   1238 }
   1239 
   1240 /*
   1241  * dksize:		[devsw entry point]
   1242  *
   1243  *	Query the size of a wedge for the purpose of performing a dump
   1244  *	or for swapping to.
   1245  */
   1246 static int
   1247 dksize(dev_t dev)
   1248 {
   1249 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1250 	int rv = -1;
   1251 
   1252 	if (sc == NULL)
   1253 		return (-1);
   1254 
   1255 	if (sc->sc_state != DKW_STATE_RUNNING)
   1256 		return (ENXIO);
   1257 
   1258 	mutex_enter(&sc->sc_dk.dk_openlock);
   1259 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1260 
   1261 	/* Our content type is static, no need to open the device. */
   1262 
   1263 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
   1264 		/* Saturate if we are larger than INT_MAX. */
   1265 		if (sc->sc_size > INT_MAX)
   1266 			rv = INT_MAX;
   1267 		else
   1268 			rv = (int) sc->sc_size;
   1269 	}
   1270 
   1271 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1272 	mutex_exit(&sc->sc_dk.dk_openlock);
   1273 
   1274 	return (rv);
   1275 }
   1276 
   1277 /*
   1278  * dkdump:		[devsw entry point]
   1279  *
   1280  *	Perform a crash dump to a wedge.
   1281  */
   1282 static int
   1283 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
   1284 {
   1285 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1286 	const struct bdevsw *bdev;
   1287 	int rv = 0;
   1288 
   1289 	if (sc == NULL)
   1290 		return (-1);
   1291 
   1292 	if (sc->sc_state != DKW_STATE_RUNNING)
   1293 		return (ENXIO);
   1294 
   1295 	mutex_enter(&sc->sc_dk.dk_openlock);
   1296 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1297 
   1298 	/* Our content type is static, no need to open the device. */
   1299 
   1300 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
   1301 		rv = ENXIO;
   1302 		goto out;
   1303 	}
   1304 	if (size % DEV_BSIZE != 0) {
   1305 		rv = EINVAL;
   1306 		goto out;
   1307 	}
   1308 	if (blkno + size / DEV_BSIZE > sc->sc_size) {
   1309 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
   1310 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
   1311 		    size / DEV_BSIZE, sc->sc_size);
   1312 		rv = EINVAL;
   1313 		goto out;
   1314 	}
   1315 
   1316 	bdev = bdevsw_lookup(sc->sc_pdev);
   1317 	rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
   1318 
   1319 out:
   1320 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1321 	mutex_exit(&sc->sc_dk.dk_openlock);
   1322 
   1323 	return rv;
   1324 }
   1325