Home | History | Annotate | Line # | Download | only in dkwedge
dk.c revision 1.33.6.5
      1 /*	$NetBSD: dk.c,v 1.33.6.5 2008/06/29 09:33:06 mjf Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.33.6.5 2008/06/29 09:33:06 mjf Exp $");
     34 
     35 #include "opt_dkwedge.h"
     36 
     37 #include <sys/param.h>
     38 #include <sys/systm.h>
     39 #include <sys/proc.h>
     40 #include <sys/errno.h>
     41 #include <sys/pool.h>
     42 #include <sys/ioctl.h>
     43 #include <sys/disklabel.h>
     44 #include <sys/disk.h>
     45 #include <sys/fcntl.h>
     46 #include <sys/buf.h>
     47 #include <sys/bufq.h>
     48 #include <sys/vnode.h>
     49 #include <sys/stat.h>
     50 #include <sys/conf.h>
     51 #include <sys/callout.h>
     52 #include <sys/kernel.h>
     53 #include <sys/malloc.h>
     54 #include <sys/device.h>
     55 #include <sys/kauth.h>
     56 
     57 #include <miscfs/specfs/specdev.h>
     58 
     59 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
     60 
     61 typedef enum {
     62 	DKW_STATE_LARVAL	= 0,
     63 	DKW_STATE_RUNNING	= 1,
     64 	DKW_STATE_DYING		= 2,
     65 	DKW_STATE_DEAD		= 666
     66 } dkwedge_state_t;
     67 
     68 struct dkwedge_softc {
     69 	struct device	*sc_dev;	/* pointer to our pseudo-device */
     70 	struct cfdata	sc_cfdata;	/* our cfdata structure */
     71 	uint8_t		sc_wname[128];	/* wedge name (Unicode, UTF-8) */
     72 
     73 	dkwedge_state_t sc_state;	/* state this wedge is in */
     74 
     75 	struct disk	*sc_parent;	/* parent disk */
     76 	daddr_t		sc_offset;	/* LBA offset of wedge in parent */
     77 	uint64_t	sc_size;	/* size of wedge in blocks */
     78 	char		sc_ptype[32];	/* partition type */
     79 	dev_t		sc_pdev;	/* cached parent's dev_t */
     80 					/* link on parent's wedge list */
     81 	LIST_ENTRY(dkwedge_softc) sc_plink;
     82 
     83 	struct disk	sc_dk;		/* our own disk structure */
     84 	struct bufq_state *sc_bufq;	/* buffer queue */
     85 	struct callout	sc_restart_ch;	/* callout to restart I/O */
     86 
     87 	u_int		sc_iopend;	/* I/Os pending */
     88 	int		sc_flags;	/* flags (splbio) */
     89 };
     90 
     91 #define	DK_F_WAIT_DRAIN		0x0001	/* waiting for I/O to drain */
     92 
     93 static void	dkstart(struct dkwedge_softc *);
     94 static void	dkiodone(struct buf *);
     95 static void	dkrestart(void *);
     96 
     97 static dev_type_open(dkopen);
     98 static dev_type_close(dkclose);
     99 static dev_type_read(dkread);
    100 static dev_type_write(dkwrite);
    101 static dev_type_ioctl(dkioctl);
    102 static dev_type_strategy(dkstrategy);
    103 static dev_type_dump(dkdump);
    104 static dev_type_size(dksize);
    105 
    106 const struct bdevsw dk_bdevsw = {
    107 	dkopen, dkclose, dkstrategy, dkioctl, dkdump, dksize, D_DISK
    108 };
    109 
    110 const struct cdevsw dk_cdevsw = {
    111 	dkopen, dkclose, dkread, dkwrite, dkioctl,
    112 	    nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    113 };
    114 
    115 static struct dkwedge_softc **dkwedges;
    116 static u_int ndkwedges;
    117 static krwlock_t dkwedges_lock;
    118 
    119 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
    120 static krwlock_t dkwedge_discovery_methods_lock;
    121 
    122 /*
    123  * dkwedge_match:
    124  *
    125  *	Autoconfiguration match function for pseudo-device glue.
    126  */
    127 static int
    128 dkwedge_match(struct device *parent, struct cfdata *match,
    129     void *aux)
    130 {
    131 
    132 	/* Pseudo-device; always present. */
    133 	return (1);
    134 }
    135 
    136 /*
    137  * dkwedge_attach:
    138  *
    139  *	Autoconfiguration attach function for pseudo-device glue.
    140  */
    141 static void
    142 dkwedge_attach(struct device *parent, struct device *self,
    143     void *aux)
    144 {
    145 	int cmaj, bmaj, unit;
    146 
    147 	if (!pmf_device_register(self, NULL, NULL))
    148 		aprint_error_dev(self, "couldn't establish power handler\n");
    149 
    150 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
    151 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
    152 
    153 	unit = device_unit(self);
    154 	device_register_name(makedev(bmaj, unit), self, false,
    155 	    DEV_DISK, "dk%d", unit);
    156 	device_register_name(makedev(cmaj, unit), self, true,
    157 	    DEV_DISK, "rdk%d", unit);
    158 }
    159 
    160 /*
    161  * dkwedge_detach:
    162  *
    163  *	Autoconfiguration detach function for pseudo-device glue.
    164  */
    165 static int
    166 dkwedge_detach(struct device *self, int flags)
    167 {
    168 
    169 	device_deregister_all(self);
    170 	pmf_device_deregister(self);
    171 	/* Always succeeds. */
    172 	return (0);
    173 }
    174 
    175 CFDRIVER_DECL(dk, DV_DISK, NULL);
    176 CFATTACH_DECL_NEW(dk, 0,
    177 	      dkwedge_match, dkwedge_attach, dkwedge_detach, NULL);
    178 
    179 /*
    180  * dkwedge_wait_drain:
    181  *
    182  *	Wait for I/O on the wedge to drain.
    183  *	NOTE: Must be called at splbio()!
    184  */
    185 static void
    186 dkwedge_wait_drain(struct dkwedge_softc *sc)
    187 {
    188 
    189 	while (sc->sc_iopend != 0) {
    190 		sc->sc_flags |= DK_F_WAIT_DRAIN;
    191 		(void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
    192 	}
    193 }
    194 
    195 /*
    196  * dkwedge_compute_pdev:
    197  *
    198  *	Compute the parent disk's dev_t.
    199  */
    200 static int
    201 dkwedge_compute_pdev(const char *pname, dev_t *pdevp)
    202 {
    203 	const char *name, *cp;
    204 	int punit, pmaj;
    205 	char devname[16];
    206 
    207 	name = pname;
    208 	if ((pmaj = devsw_name2blk(name, devname, sizeof(devname))) == -1)
    209 		return (ENODEV);
    210 
    211 	name += strlen(devname);
    212 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
    213 		punit = (punit * 10) + (*cp - '0');
    214 	if (cp == name) {
    215 		/* Invalid parent disk name. */
    216 		return (ENODEV);
    217 	}
    218 
    219 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
    220 
    221 	return (0);
    222 }
    223 
    224 /*
    225  * dkwedge_array_expand:
    226  *
    227  *	Expand the dkwedges array.
    228  */
    229 static void
    230 dkwedge_array_expand(void)
    231 {
    232 	int newcnt = ndkwedges + 16;
    233 	struct dkwedge_softc **newarray, **oldarray;
    234 
    235 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
    236 	    M_WAITOK|M_ZERO);
    237 	if ((oldarray = dkwedges) != NULL)
    238 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
    239 	dkwedges = newarray;
    240 	ndkwedges = newcnt;
    241 	if (oldarray != NULL)
    242 		free(oldarray, M_DKWEDGE);
    243 }
    244 
    245 /*
    246  * dkwedge_add:		[exported function]
    247  *
    248  *	Add a disk wedge based on the provided information.
    249  *
    250  *	The incoming dkw_devname[] is ignored, instead being
    251  *	filled in and returned to the caller.
    252  */
    253 int
    254 dkwedge_add(struct dkwedge_info *dkw)
    255 {
    256 	struct dkwedge_softc *sc, *lsc;
    257 	struct disk *pdk;
    258 	u_int unit;
    259 	int error;
    260 	dev_t pdev;
    261 
    262 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
    263 	pdk = disk_find(dkw->dkw_parent);
    264 	if (pdk == NULL)
    265 		return (ENODEV);
    266 
    267 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
    268 	if (error)
    269 		return (error);
    270 
    271 	if (dkw->dkw_offset < 0)
    272 		return (EINVAL);
    273 
    274 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
    275 	sc->sc_state = DKW_STATE_LARVAL;
    276 	sc->sc_parent = pdk;
    277 	sc->sc_pdev = pdev;
    278 	sc->sc_offset = dkw->dkw_offset;
    279 	sc->sc_size = dkw->dkw_size;
    280 
    281 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
    282 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
    283 
    284 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
    285 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
    286 
    287 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
    288 
    289 	callout_init(&sc->sc_restart_ch, 0);
    290 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
    291 
    292 	/*
    293 	 * Wedge will be added; increment the wedge count for the parent.
    294 	 * Only allow this to happend if RAW_PART is the only thing open.
    295 	 */
    296 	mutex_enter(&pdk->dk_openlock);
    297 	if (pdk->dk_openmask & ~(1 << RAW_PART))
    298 		error = EBUSY;
    299 	else {
    300 		/* Check for wedge overlap. */
    301 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    302 			daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
    303 			daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
    304 
    305 			if (sc->sc_offset >= lsc->sc_offset &&
    306 			    sc->sc_offset <= llastblk) {
    307 				/* Overlaps the tail of the exsiting wedge. */
    308 				break;
    309 			}
    310 			if (lastblk >= lsc->sc_offset &&
    311 			    lastblk <= llastblk) {
    312 				/* Overlaps the head of the existing wedge. */
    313 			    	break;
    314 			}
    315 		}
    316 		if (lsc != NULL)
    317 			error = EINVAL;
    318 		else {
    319 			pdk->dk_nwedges++;
    320 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
    321 		}
    322 	}
    323 	mutex_exit(&pdk->dk_openlock);
    324 	if (error) {
    325 		bufq_free(sc->sc_bufq);
    326 		free(sc, M_DKWEDGE);
    327 		return (error);
    328 	}
    329 
    330 	/* Fill in our cfdata for the pseudo-device glue. */
    331 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
    332 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
    333 	/* sc->sc_cfdata.cf_unit set below */
    334 	sc->sc_cfdata.cf_fstate = FSTATE_STAR;
    335 
    336 	/* Insert the larval wedge into the array. */
    337 	rw_enter(&dkwedges_lock, RW_WRITER);
    338 	for (error = 0;;) {
    339 		struct dkwedge_softc **scpp;
    340 
    341 		/*
    342 		 * Check for a duplicate wname while searching for
    343 		 * a slot.
    344 		 */
    345 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
    346 			if (dkwedges[unit] == NULL) {
    347 				if (scpp == NULL) {
    348 					scpp = &dkwedges[unit];
    349 					sc->sc_cfdata.cf_unit = unit;
    350 				}
    351 			} else {
    352 				/* XXX Unicode. */
    353 				if (strcmp(dkwedges[unit]->sc_wname,
    354 					   sc->sc_wname) == 0) {
    355 					error = EEXIST;
    356 					break;
    357 				}
    358 			}
    359 		}
    360 		if (error)
    361 			break;
    362 		KASSERT(unit == ndkwedges);
    363 		if (scpp == NULL)
    364 			dkwedge_array_expand();
    365 		else {
    366 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
    367 			*scpp = sc;
    368 			break;
    369 		}
    370 	}
    371 	rw_exit(&dkwedges_lock);
    372 	if (error) {
    373 		mutex_enter(&pdk->dk_openlock);
    374 		pdk->dk_nwedges--;
    375 		LIST_REMOVE(sc, sc_plink);
    376 		mutex_exit(&pdk->dk_openlock);
    377 
    378 		bufq_free(sc->sc_bufq);
    379 		free(sc, M_DKWEDGE);
    380 		return (error);
    381 	}
    382 
    383 	/*
    384 	 * Now that we know the unit #, attach a pseudo-device for
    385 	 * this wedge instance.  This will provide us with the
    386 	 * "struct device" necessary for glue to other parts of the
    387 	 * system.
    388 	 *
    389 	 * This should never fail, unless we're almost totally out of
    390 	 * memory.
    391 	 */
    392 	if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
    393 		aprint_error("%s%u: unable to attach pseudo-device\n",
    394 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
    395 
    396 		rw_enter(&dkwedges_lock, RW_WRITER);
    397 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
    398 		rw_exit(&dkwedges_lock);
    399 
    400 		mutex_enter(&pdk->dk_openlock);
    401 		pdk->dk_nwedges--;
    402 		LIST_REMOVE(sc, sc_plink);
    403 		mutex_exit(&pdk->dk_openlock);
    404 
    405 		bufq_free(sc->sc_bufq);
    406 		free(sc, M_DKWEDGE);
    407 		return (ENOMEM);
    408 	}
    409 
    410 	/* Return the devname to the caller. */
    411 	strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
    412 		sizeof(dkw->dkw_devname));
    413 
    414 	/*
    415 	 * XXX Really ought to make the disk_attach() and the changing
    416 	 * of state to RUNNING atomic.
    417 	 */
    418 
    419 	disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
    420 	disk_attach(&sc->sc_dk);
    421 
    422 	/* Disk wedge is ready for use! */
    423 	sc->sc_state = DKW_STATE_RUNNING;
    424 
    425 	/* Announce our arrival. */
    426 	aprint_normal("%s at %s: %s\n", device_xname(sc->sc_dev), pdk->dk_name,
    427 	    sc->sc_wname);	/* XXX Unicode */
    428 	aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
    429 	    device_xname(sc->sc_dev), sc->sc_size, sc->sc_offset, sc->sc_ptype);
    430 
    431 	return (0);
    432 }
    433 
    434 /*
    435  * dkwedge_del:		[exported function]
    436  *
    437  *	Delete a disk wedge based on the provided information.
    438  *	NOTE: We look up the wedge based on the wedge devname,
    439  *	not wname.
    440  */
    441 int
    442 dkwedge_del(struct dkwedge_info *dkw)
    443 {
    444 	struct dkwedge_softc *sc = NULL;
    445 	u_int unit;
    446 	int bmaj, cmaj, s;
    447 
    448 	/* Find our softc. */
    449 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
    450 	rw_enter(&dkwedges_lock, RW_WRITER);
    451 	for (unit = 0; unit < ndkwedges; unit++) {
    452 		if ((sc = dkwedges[unit]) != NULL &&
    453 		    strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
    454 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
    455 			/* Mark the wedge as dying. */
    456 			sc->sc_state = DKW_STATE_DYING;
    457 			break;
    458 		}
    459 	}
    460 	rw_exit(&dkwedges_lock);
    461 	if (unit == ndkwedges)
    462 		return (ESRCH);
    463 
    464 	KASSERT(sc != NULL);
    465 
    466 	/* Locate the wedge major numbers. */
    467 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
    468 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
    469 
    470 	/* Kill any pending restart. */
    471 	callout_stop(&sc->sc_restart_ch);
    472 
    473 	/*
    474 	 * dkstart() will kill any queued buffers now that the
    475 	 * state of the wedge is not RUNNING.  Once we've done
    476 	 * that, wait for any other pending I/O to complete.
    477 	 */
    478 	s = splbio();
    479 	dkstart(sc);
    480 	dkwedge_wait_drain(sc);
    481 	splx(s);
    482 
    483 	/* Nuke the vnodes for any open instances. */
    484 	vdevgone(bmaj, unit, unit, VBLK);
    485 	vdevgone(cmaj, unit, unit, VCHR);
    486 
    487 	/* Clean up the parent. */
    488 	mutex_enter(&sc->sc_dk.dk_openlock);
    489 	mutex_enter(&sc->sc_parent->dk_rawlock);
    490 	if (sc->sc_dk.dk_openmask) {
    491 		if (sc->sc_parent->dk_rawopens-- == 1) {
    492 			KASSERT(sc->sc_parent->dk_rawvp != NULL);
    493 			(void) vn_close(sc->sc_parent->dk_rawvp, FREAD | FWRITE,
    494 			    NOCRED);
    495 			sc->sc_parent->dk_rawvp = NULL;
    496 		}
    497 		sc->sc_dk.dk_openmask = 0;
    498 	}
    499 	mutex_exit(&sc->sc_parent->dk_rawlock);
    500 	mutex_exit(&sc->sc_dk.dk_openlock);
    501 
    502 	/* Announce our departure. */
    503 	aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
    504 	    sc->sc_parent->dk_name,
    505 	    sc->sc_wname);	/* XXX Unicode */
    506 
    507 	/* Delete our pseudo-device. */
    508 	(void) config_detach(sc->sc_dev, DETACH_FORCE | DETACH_QUIET);
    509 
    510 	mutex_enter(&sc->sc_parent->dk_openlock);
    511 	sc->sc_parent->dk_nwedges--;
    512 	LIST_REMOVE(sc, sc_plink);
    513 	mutex_exit(&sc->sc_parent->dk_openlock);
    514 
    515 	/* Delete our buffer queue. */
    516 	bufq_free(sc->sc_bufq);
    517 
    518 	/* Detach from the disk list. */
    519 	disk_detach(&sc->sc_dk);
    520 	disk_destroy(&sc->sc_dk);
    521 
    522 	/* Poof. */
    523 	rw_enter(&dkwedges_lock, RW_WRITER);
    524 	dkwedges[unit] = NULL;
    525 	sc->sc_state = DKW_STATE_DEAD;
    526 	rw_exit(&dkwedges_lock);
    527 
    528 	free(sc, M_DKWEDGE);
    529 
    530 	return (0);
    531 }
    532 
    533 /*
    534  * dkwedge_delall:	[exported function]
    535  *
    536  *	Delete all of the wedges on the specified disk.  Used when
    537  *	a disk is being detached.
    538  */
    539 void
    540 dkwedge_delall(struct disk *pdk)
    541 {
    542 	struct dkwedge_info dkw;
    543 	struct dkwedge_softc *sc;
    544 
    545 	for (;;) {
    546 		mutex_enter(&pdk->dk_openlock);
    547 		if ((sc = LIST_FIRST(&pdk->dk_wedges)) == NULL) {
    548 			KASSERT(pdk->dk_nwedges == 0);
    549 			mutex_exit(&pdk->dk_openlock);
    550 			return;
    551 		}
    552 		strcpy(dkw.dkw_parent, pdk->dk_name);
    553 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    554 			sizeof(dkw.dkw_devname));
    555 		mutex_exit(&pdk->dk_openlock);
    556 		(void) dkwedge_del(&dkw);
    557 	}
    558 }
    559 
    560 /*
    561  * dkwedge_list:	[exported function]
    562  *
    563  *	List all of the wedges on a particular disk.
    564  *	If p == NULL, the buffer is in kernel space.  Otherwise, it is
    565  *	in user space of the specified process.
    566  */
    567 int
    568 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
    569 {
    570 	struct uio uio;
    571 	struct iovec iov;
    572 	struct dkwedge_softc *sc;
    573 	struct dkwedge_info dkw;
    574 	struct vmspace *vm;
    575 	int error = 0;
    576 
    577 	iov.iov_base = dkwl->dkwl_buf;
    578 	iov.iov_len = dkwl->dkwl_bufsize;
    579 
    580 	uio.uio_iov = &iov;
    581 	uio.uio_iovcnt = 1;
    582 	uio.uio_offset = 0;
    583 	uio.uio_resid = dkwl->dkwl_bufsize;
    584 	uio.uio_rw = UIO_READ;
    585 	if (l == NULL) {
    586 		UIO_SETUP_SYSSPACE(&uio);
    587 	} else {
    588 		error = proc_vmspace_getref(l->l_proc, &vm);
    589 		if (error) {
    590 			return error;
    591 		}
    592 		uio.uio_vmspace = vm;
    593 	}
    594 
    595 	dkwl->dkwl_ncopied = 0;
    596 
    597 	mutex_enter(&pdk->dk_openlock);
    598 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    599 		if (uio.uio_resid < sizeof(dkw))
    600 			break;
    601 
    602 		if (sc->sc_state != DKW_STATE_RUNNING)
    603 			continue;
    604 
    605 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    606 			sizeof(dkw.dkw_devname));
    607 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
    608 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
    609 		strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
    610 		dkw.dkw_offset = sc->sc_offset;
    611 		dkw.dkw_size = sc->sc_size;
    612 		strcpy(dkw.dkw_ptype, sc->sc_ptype);
    613 
    614 		error = uiomove(&dkw, sizeof(dkw), &uio);
    615 		if (error)
    616 			break;
    617 		dkwl->dkwl_ncopied++;
    618 	}
    619 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
    620 	mutex_exit(&pdk->dk_openlock);
    621 
    622 	if (l != NULL) {
    623 		uvmspace_free(vm);
    624 	}
    625 
    626 	return (error);
    627 }
    628 
    629 device_t
    630 dkwedge_find_by_wname(const char *wname)
    631 {
    632 	device_t dv = NULL;
    633 	struct dkwedge_softc *sc;
    634 	int i;
    635 
    636 	rw_enter(&dkwedges_lock, RW_WRITER);
    637 	for (i = 0; i < ndkwedges; i++) {
    638 		if ((sc = dkwedges[i]) == NULL)
    639 			continue;
    640 		if (strcmp(sc->sc_wname, wname) == 0) {
    641 			if (dv != NULL) {
    642 				printf(
    643 				    "WARNING: double match for wedge name %s "
    644 				    "(%s, %s)\n", wname, device_xname(dv),
    645 				    device_xname(sc->sc_dev));
    646 				continue;
    647 			}
    648 			dv = sc->sc_dev;
    649 		}
    650 	}
    651 	rw_exit(&dkwedges_lock);
    652 	return dv;
    653 }
    654 
    655 void
    656 dkwedge_print_wnames(void)
    657 {
    658 	struct dkwedge_softc *sc;
    659 	int i;
    660 
    661 	rw_enter(&dkwedges_lock, RW_WRITER);
    662 	for (i = 0; i < ndkwedges; i++) {
    663 		if ((sc = dkwedges[i]) == NULL)
    664 			continue;
    665 		printf(" wedge:%s", sc->sc_wname);
    666 	}
    667 	rw_exit(&dkwedges_lock);
    668 }
    669 
    670 /*
    671  * dkwedge_set_bootwedge
    672  *
    673  *	Set the booted_wedge global based on the specified parent name
    674  *	and offset/length.
    675  */
    676 void
    677 dkwedge_set_bootwedge(struct device *parent, daddr_t startblk, uint64_t nblks)
    678 {
    679 	struct dkwedge_softc *sc;
    680 	int i;
    681 
    682 	rw_enter(&dkwedges_lock, RW_WRITER);
    683 	for (i = 0; i < ndkwedges; i++) {
    684 		if ((sc = dkwedges[i]) == NULL)
    685 			continue;
    686 		if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
    687 		    sc->sc_offset == startblk &&
    688 		    sc->sc_size == nblks) {
    689 			if (booted_wedge) {
    690 				printf("WARNING: double match for boot wedge "
    691 				    "(%s, %s)\n",
    692 				    device_xname(booted_wedge),
    693 				    device_xname(sc->sc_dev));
    694 				continue;
    695 			}
    696 			booted_device = parent;
    697 			booted_wedge = sc->sc_dev;
    698 			booted_partition = 0;
    699 		}
    700 	}
    701 	/*
    702 	 * XXX What if we don't find one?  Should we create a special
    703 	 * XXX root wedge?
    704 	 */
    705 	rw_exit(&dkwedges_lock);
    706 }
    707 
    708 /*
    709  * We need a dummy object to stuff into the dkwedge discovery method link
    710  * set to ensure that there is always at least one object in the set.
    711  */
    712 static struct dkwedge_discovery_method dummy_discovery_method;
    713 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
    714 
    715 /*
    716  * dkwedge_init:
    717  *
    718  *	Initialize the disk wedge subsystem.
    719  */
    720 void
    721 dkwedge_init(void)
    722 {
    723 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
    724 	struct dkwedge_discovery_method * const *ddmp;
    725 	struct dkwedge_discovery_method *lddm, *ddm;
    726 
    727 	rw_init(&dkwedges_lock);
    728 	rw_init(&dkwedge_discovery_methods_lock);
    729 
    730 	if (config_cfdriver_attach(&dk_cd) != 0)
    731 		panic("dkwedge: unable to attach cfdriver");
    732 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
    733 		panic("dkwedge: unable to attach cfattach");
    734 
    735 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
    736 
    737 	LIST_INIT(&dkwedge_discovery_methods);
    738 
    739 	__link_set_foreach(ddmp, dkwedge_methods) {
    740 		ddm = *ddmp;
    741 		if (ddm == &dummy_discovery_method)
    742 			continue;
    743 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
    744 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
    745 					 ddm, ddm_list);
    746 			continue;
    747 		}
    748 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
    749 			if (ddm->ddm_priority == lddm->ddm_priority) {
    750 				aprint_error("dk-method-%s: method \"%s\" "
    751 				    "already exists at priority %d\n",
    752 				    ddm->ddm_name, lddm->ddm_name,
    753 				    lddm->ddm_priority);
    754 				/* Not inserted. */
    755 				break;
    756 			}
    757 			if (ddm->ddm_priority < lddm->ddm_priority) {
    758 				/* Higher priority; insert before. */
    759 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
    760 				break;
    761 			}
    762 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
    763 				/* Last one; insert after. */
    764 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
    765 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
    766 				break;
    767 			}
    768 		}
    769 	}
    770 
    771 	rw_exit(&dkwedge_discovery_methods_lock);
    772 }
    773 
    774 #ifdef DKWEDGE_AUTODISCOVER
    775 int	dkwedge_autodiscover = 1;
    776 #else
    777 int	dkwedge_autodiscover = 0;
    778 #endif
    779 
    780 /*
    781  * dkwedge_discover:	[exported function]
    782  *
    783  *	Discover the wedges on a newly attached disk.
    784  */
    785 void
    786 dkwedge_discover(struct disk *pdk)
    787 {
    788 	struct dkwedge_discovery_method *ddm;
    789 	struct vnode *vp;
    790 	int error;
    791 	dev_t pdev;
    792 
    793 	/*
    794 	 * Require people playing with wedges to enable this explicitly.
    795 	 */
    796 	if (dkwedge_autodiscover == 0)
    797 		return;
    798 
    799 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
    800 
    801 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
    802 	if (error) {
    803 		aprint_error("%s: unable to compute pdev, error = %d\n",
    804 		    pdk->dk_name, error);
    805 		goto out;
    806 	}
    807 
    808 	error = bdevvp(pdev, &vp);
    809 	if (error) {
    810 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
    811 		    pdk->dk_name, error);
    812 		goto out;
    813 	}
    814 
    815 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    816 	if (error) {
    817 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
    818 		    pdk->dk_name, error);
    819 		vrele(vp);
    820 		goto out;
    821 	}
    822 
    823 	error = VOP_OPEN(vp, FREAD, NOCRED);
    824 	if (error) {
    825 		aprint_error("%s: unable to open device, error = %d\n",
    826 		    pdk->dk_name, error);
    827 		vput(vp);
    828 		goto out;
    829 	}
    830 	VOP_UNLOCK(vp, 0);
    831 
    832 	/*
    833 	 * For each supported partition map type, look to see if
    834 	 * this map type exists.  If so, parse it and add the
    835 	 * corresponding wedges.
    836 	 */
    837 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
    838 		error = (*ddm->ddm_discover)(pdk, vp);
    839 		if (error == 0) {
    840 			/* Successfully created wedges; we're done. */
    841 			break;
    842 		}
    843 	}
    844 
    845 	error = vn_close(vp, FREAD, NOCRED);
    846 	if (error) {
    847 		aprint_error("%s: unable to close device, error = %d\n",
    848 		    pdk->dk_name, error);
    849 		/* We'll just assume the vnode has been cleaned up. */
    850 	}
    851  out:
    852 	rw_exit(&dkwedge_discovery_methods_lock);
    853 }
    854 
    855 /*
    856  * dkwedge_read:
    857  *
    858  *	Read some data from the specified disk, used for
    859  *	partition discovery.
    860  */
    861 int
    862 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
    863     void *tbuf, size_t len)
    864 {
    865 	struct buf *bp;
    866 	int result;
    867 
    868 	bp = getiobuf(vp, true);
    869 
    870 	bp->b_dev = vp->v_rdev;
    871 	bp->b_blkno = blkno;
    872 	bp->b_bcount = len;
    873 	bp->b_resid = len;
    874 	bp->b_flags = B_READ;
    875 	bp->b_data = tbuf;
    876 	SET(bp->b_cflags, BC_BUSY);	/* mark buffer busy */
    877 
    878 	VOP_STRATEGY(vp, bp);
    879 	result = biowait(bp);
    880 	putiobuf(bp);
    881 
    882 	return result;
    883 }
    884 
    885 /*
    886  * dkwedge_lookup:
    887  *
    888  *	Look up a dkwedge_softc based on the provided dev_t.
    889  */
    890 static struct dkwedge_softc *
    891 dkwedge_lookup(dev_t dev)
    892 {
    893 	int unit = minor(dev);
    894 
    895 	if (unit >= ndkwedges)
    896 		return (NULL);
    897 
    898 	KASSERT(dkwedges != NULL);
    899 
    900 	return (dkwedges[unit]);
    901 }
    902 
    903 /*
    904  * dkopen:		[devsw entry point]
    905  *
    906  *	Open a wedge.
    907  */
    908 static int
    909 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
    910 {
    911 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
    912 	struct vnode *vp;
    913 	int error = 0;
    914 
    915 	if (sc == NULL)
    916 		return (ENODEV);
    917 
    918 	if (sc->sc_state != DKW_STATE_RUNNING)
    919 		return (ENXIO);
    920 
    921 	/*
    922 	 * We go through a complicated little dance to only open the parent
    923 	 * vnode once per wedge, no matter how many times the wedge is
    924 	 * opened.  The reason?  We see one dkopen() per open call, but
    925 	 * only dkclose() on the last close.
    926 	 */
    927 	mutex_enter(&sc->sc_dk.dk_openlock);
    928 	mutex_enter(&sc->sc_parent->dk_rawlock);
    929 	if (sc->sc_dk.dk_openmask == 0) {
    930 		if (sc->sc_parent->dk_rawopens == 0) {
    931 			KASSERT(sc->sc_parent->dk_rawvp == NULL);
    932 			error = bdevvp(sc->sc_pdev, &vp);
    933 			if (error)
    934 				goto popen_fail;
    935 			error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    936 			if (error) {
    937 				vrele(vp);
    938 				goto popen_fail;
    939 			}
    940 			error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED);
    941 			if (error) {
    942 				vput(vp);
    943 				goto popen_fail;
    944 			}
    945 			/* VOP_OPEN() doesn't do this for us. */
    946 			mutex_enter(&vp->v_interlock);
    947 			vp->v_writecount++;
    948 			mutex_exit(&vp->v_interlock);
    949 			VOP_UNLOCK(vp, 0);
    950 			sc->sc_parent->dk_rawvp = vp;
    951 		}
    952 		sc->sc_parent->dk_rawopens++;
    953 	}
    954 	if (fmt == S_IFCHR)
    955 		sc->sc_dk.dk_copenmask |= 1;
    956 	else
    957 		sc->sc_dk.dk_bopenmask |= 1;
    958 	sc->sc_dk.dk_openmask =
    959 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
    960 
    961  popen_fail:
    962 	mutex_exit(&sc->sc_parent->dk_rawlock);
    963 	mutex_exit(&sc->sc_dk.dk_openlock);
    964 	return (error);
    965 }
    966 
    967 /*
    968  * dkclose:		[devsw entry point]
    969  *
    970  *	Close a wedge.
    971  */
    972 static int
    973 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
    974 {
    975 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
    976 	int error = 0;
    977 
    978 	KASSERT(sc->sc_dk.dk_openmask != 0);
    979 
    980 	mutex_enter(&sc->sc_dk.dk_openlock);
    981 	mutex_enter(&sc->sc_parent->dk_rawlock);
    982 
    983 	if (fmt == S_IFCHR)
    984 		sc->sc_dk.dk_copenmask &= ~1;
    985 	else
    986 		sc->sc_dk.dk_bopenmask &= ~1;
    987 	sc->sc_dk.dk_openmask =
    988 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
    989 
    990 	if (sc->sc_dk.dk_openmask == 0) {
    991 		if (sc->sc_parent->dk_rawopens-- == 1) {
    992 			KASSERT(sc->sc_parent->dk_rawvp != NULL);
    993 			error = vn_close(sc->sc_parent->dk_rawvp,
    994 			    FREAD | FWRITE, NOCRED);
    995 			sc->sc_parent->dk_rawvp = NULL;
    996 		}
    997 	}
    998 
    999 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1000 	mutex_exit(&sc->sc_dk.dk_openlock);
   1001 
   1002 	return (error);
   1003 }
   1004 
   1005 /*
   1006  * dkstragegy:		[devsw entry point]
   1007  *
   1008  *	Perform I/O based on the wedge I/O strategy.
   1009  */
   1010 static void
   1011 dkstrategy(struct buf *bp)
   1012 {
   1013 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1014 	int s;
   1015 
   1016 	if (sc->sc_state != DKW_STATE_RUNNING) {
   1017 		bp->b_error = ENXIO;
   1018 		goto done;
   1019 	}
   1020 
   1021 	/* If it's an empty transfer, wake up the top half now. */
   1022 	if (bp->b_bcount == 0)
   1023 		goto done;
   1024 
   1025 	/* Make sure it's in-range. */
   1026 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, sc->sc_size) <= 0)
   1027 		goto done;
   1028 
   1029 	/* Translate it to the parent's raw LBA. */
   1030 	bp->b_rawblkno = bp->b_blkno + sc->sc_offset;
   1031 
   1032 	/* Place it in the queue and start I/O on the unit. */
   1033 	s = splbio();
   1034 	sc->sc_iopend++;
   1035 	BUFQ_PUT(sc->sc_bufq, bp);
   1036 	dkstart(sc);
   1037 	splx(s);
   1038 	return;
   1039 
   1040  done:
   1041 	bp->b_resid = bp->b_bcount;
   1042 	biodone(bp);
   1043 }
   1044 
   1045 /*
   1046  * dkstart:
   1047  *
   1048  *	Start I/O that has been enqueued on the wedge.
   1049  *	NOTE: Must be called at splbio()!
   1050  */
   1051 static void
   1052 dkstart(struct dkwedge_softc *sc)
   1053 {
   1054 	struct vnode *vp;
   1055 	struct buf *bp, *nbp;
   1056 
   1057 	/* Do as much work as has been enqueued. */
   1058 	while ((bp = BUFQ_PEEK(sc->sc_bufq)) != NULL) {
   1059 		if (sc->sc_state != DKW_STATE_RUNNING) {
   1060 			(void) BUFQ_GET(sc->sc_bufq);
   1061 			if (sc->sc_iopend-- == 1 &&
   1062 			    (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
   1063 				sc->sc_flags &= ~DK_F_WAIT_DRAIN;
   1064 				wakeup(&sc->sc_iopend);
   1065 			}
   1066 			bp->b_error = ENXIO;
   1067 			bp->b_resid = bp->b_bcount;
   1068 			biodone(bp);
   1069 		}
   1070 
   1071 		/* Instrumentation. */
   1072 		disk_busy(&sc->sc_dk);
   1073 
   1074 		nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
   1075 		if (nbp == NULL) {
   1076 			/*
   1077 			 * No resources to run this request; leave the
   1078 			 * buffer queued up, and schedule a timer to
   1079 			 * restart the queue in 1/2 a second.
   1080 			 */
   1081 			disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
   1082 			callout_schedule(&sc->sc_restart_ch, hz / 2);
   1083 			return;
   1084 		}
   1085 
   1086 		(void) BUFQ_GET(sc->sc_bufq);
   1087 
   1088 		nbp->b_data = bp->b_data;
   1089 		nbp->b_flags = bp->b_flags;
   1090 		nbp->b_oflags = bp->b_oflags;
   1091 		nbp->b_cflags = bp->b_cflags;
   1092 		nbp->b_iodone = dkiodone;
   1093 		nbp->b_proc = bp->b_proc;
   1094 		nbp->b_blkno = bp->b_rawblkno;
   1095 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
   1096 		nbp->b_bcount = bp->b_bcount;
   1097 		nbp->b_private = bp;
   1098 		BIO_COPYPRIO(nbp, bp);
   1099 
   1100 		vp = nbp->b_vp;
   1101 		if ((nbp->b_flags & B_READ) == 0) {
   1102 			mutex_enter(&vp->v_interlock);
   1103 			vp->v_numoutput++;
   1104 			mutex_exit(&vp->v_interlock);
   1105 		}
   1106 		VOP_STRATEGY(vp, nbp);
   1107 	}
   1108 }
   1109 
   1110 /*
   1111  * dkiodone:
   1112  *
   1113  *	I/O to a wedge has completed; alert the top half.
   1114  *	NOTE: Must be called at splbio()!
   1115  */
   1116 static void
   1117 dkiodone(struct buf *bp)
   1118 {
   1119 	struct buf *obp = bp->b_private;
   1120 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
   1121 
   1122 	if (bp->b_error != 0)
   1123 		obp->b_error = bp->b_error;
   1124 	obp->b_resid = bp->b_resid;
   1125 	putiobuf(bp);
   1126 
   1127 	if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
   1128 		sc->sc_flags &= ~DK_F_WAIT_DRAIN;
   1129 		wakeup(&sc->sc_iopend);
   1130 	}
   1131 
   1132 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
   1133 	    obp->b_flags & B_READ);
   1134 
   1135 	biodone(obp);
   1136 
   1137 	/* Kick the queue in case there is more work we can do. */
   1138 	dkstart(sc);
   1139 }
   1140 
   1141 /*
   1142  * dkrestart:
   1143  *
   1144  *	Restart the work queue after it was stalled due to
   1145  *	a resource shortage.  Invoked via a callout.
   1146  */
   1147 static void
   1148 dkrestart(void *v)
   1149 {
   1150 	struct dkwedge_softc *sc = v;
   1151 	int s;
   1152 
   1153 	s = splbio();
   1154 	dkstart(sc);
   1155 	splx(s);
   1156 }
   1157 
   1158 /*
   1159  * dkread:		[devsw entry point]
   1160  *
   1161  *	Read from a wedge.
   1162  */
   1163 static int
   1164 dkread(dev_t dev, struct uio *uio, int flags)
   1165 {
   1166 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1167 
   1168 	if (sc->sc_state != DKW_STATE_RUNNING)
   1169 		return (ENXIO);
   1170 
   1171 	return (physio(dkstrategy, NULL, dev, B_READ,
   1172 		       sc->sc_parent->dk_driver->d_minphys, uio));
   1173 }
   1174 
   1175 /*
   1176  * dkwrite:		[devsw entry point]
   1177  *
   1178  *	Write to a wedge.
   1179  */
   1180 static int
   1181 dkwrite(dev_t dev, struct uio *uio, int flags)
   1182 {
   1183 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1184 
   1185 	if (sc->sc_state != DKW_STATE_RUNNING)
   1186 		return (ENXIO);
   1187 
   1188 	return (physio(dkstrategy, NULL, dev, B_WRITE,
   1189 		       sc->sc_parent->dk_driver->d_minphys, uio));
   1190 }
   1191 
   1192 /*
   1193  * dkioctl:		[devsw entry point]
   1194  *
   1195  *	Perform an ioctl request on a wedge.
   1196  */
   1197 static int
   1198 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1199 {
   1200 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1201 	int error = 0;
   1202 
   1203 	if (sc->sc_state != DKW_STATE_RUNNING)
   1204 		return (ENXIO);
   1205 
   1206 	switch (cmd) {
   1207 	case DIOCCACHESYNC:
   1208 		/*
   1209 		 * XXX Do we really need to care about having a writable
   1210 		 * file descriptor here?
   1211 		 */
   1212 		if ((flag & FWRITE) == 0)
   1213 			error = EBADF;
   1214 		else
   1215 			error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
   1216 					  cmd, data, flag,
   1217 					  l != NULL ? l->l_cred : NOCRED);
   1218 		break;
   1219 	case DIOCGWEDGEINFO:
   1220 	    {
   1221 	    	struct dkwedge_info *dkw = (void *) data;
   1222 
   1223 		strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
   1224 			sizeof(dkw->dkw_devname));
   1225 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
   1226 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
   1227 		strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
   1228 		dkw->dkw_offset = sc->sc_offset;
   1229 		dkw->dkw_size = sc->sc_size;
   1230 		strcpy(dkw->dkw_ptype, sc->sc_ptype);
   1231 
   1232 		break;
   1233 	    }
   1234 
   1235 	default:
   1236 		error = ENOTTY;
   1237 	}
   1238 
   1239 	return (error);
   1240 }
   1241 
   1242 /*
   1243  * dksize:		[devsw entry point]
   1244  *
   1245  *	Query the size of a wedge for the purpose of performing a dump
   1246  *	or for swapping to.
   1247  */
   1248 static int
   1249 dksize(dev_t dev)
   1250 {
   1251 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1252 	int rv = -1;
   1253 
   1254 	if (sc == NULL)
   1255 		return (-1);
   1256 
   1257 	if (sc->sc_state != DKW_STATE_RUNNING)
   1258 		return (ENXIO);
   1259 
   1260 	mutex_enter(&sc->sc_dk.dk_openlock);
   1261 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1262 
   1263 	/* Our content type is static, no need to open the device. */
   1264 
   1265 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
   1266 		/* Saturate if we are larger than INT_MAX. */
   1267 		if (sc->sc_size > INT_MAX)
   1268 			rv = INT_MAX;
   1269 		else
   1270 			rv = (int) sc->sc_size;
   1271 	}
   1272 
   1273 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1274 	mutex_exit(&sc->sc_dk.dk_openlock);
   1275 
   1276 	return (rv);
   1277 }
   1278 
   1279 /*
   1280  * dkdump:		[devsw entry point]
   1281  *
   1282  *	Perform a crash dump to a wedge.
   1283  */
   1284 static int
   1285 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
   1286 {
   1287 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1288 	const struct bdevsw *bdev;
   1289 	int rv = 0;
   1290 
   1291 	if (sc == NULL)
   1292 		return (-1);
   1293 
   1294 	if (sc->sc_state != DKW_STATE_RUNNING)
   1295 		return (ENXIO);
   1296 
   1297 	mutex_enter(&sc->sc_dk.dk_openlock);
   1298 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1299 
   1300 	/* Our content type is static, no need to open the device. */
   1301 
   1302 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
   1303 		rv = ENXIO;
   1304 		goto out;
   1305 	}
   1306 	if (size % DEV_BSIZE != 0) {
   1307 		rv = EINVAL;
   1308 		goto out;
   1309 	}
   1310 	if (blkno + size / DEV_BSIZE > sc->sc_size) {
   1311 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
   1312 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
   1313 		    size / DEV_BSIZE, sc->sc_size);
   1314 		rv = EINVAL;
   1315 		goto out;
   1316 	}
   1317 
   1318 	bdev = bdevsw_lookup(sc->sc_pdev);
   1319 	rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
   1320 
   1321 out:
   1322 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1323 	mutex_exit(&sc->sc_dk.dk_openlock);
   1324 
   1325 	return rv;
   1326 }
   1327