dk.c revision 1.33.6.5 1 /* $NetBSD: dk.c,v 1.33.6.5 2008/06/29 09:33:06 mjf Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.33.6.5 2008/06/29 09:33:06 mjf Exp $");
34
35 #include "opt_dkwedge.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/proc.h>
40 #include <sys/errno.h>
41 #include <sys/pool.h>
42 #include <sys/ioctl.h>
43 #include <sys/disklabel.h>
44 #include <sys/disk.h>
45 #include <sys/fcntl.h>
46 #include <sys/buf.h>
47 #include <sys/bufq.h>
48 #include <sys/vnode.h>
49 #include <sys/stat.h>
50 #include <sys/conf.h>
51 #include <sys/callout.h>
52 #include <sys/kernel.h>
53 #include <sys/malloc.h>
54 #include <sys/device.h>
55 #include <sys/kauth.h>
56
57 #include <miscfs/specfs/specdev.h>
58
59 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
60
61 typedef enum {
62 DKW_STATE_LARVAL = 0,
63 DKW_STATE_RUNNING = 1,
64 DKW_STATE_DYING = 2,
65 DKW_STATE_DEAD = 666
66 } dkwedge_state_t;
67
68 struct dkwedge_softc {
69 struct device *sc_dev; /* pointer to our pseudo-device */
70 struct cfdata sc_cfdata; /* our cfdata structure */
71 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
72
73 dkwedge_state_t sc_state; /* state this wedge is in */
74
75 struct disk *sc_parent; /* parent disk */
76 daddr_t sc_offset; /* LBA offset of wedge in parent */
77 uint64_t sc_size; /* size of wedge in blocks */
78 char sc_ptype[32]; /* partition type */
79 dev_t sc_pdev; /* cached parent's dev_t */
80 /* link on parent's wedge list */
81 LIST_ENTRY(dkwedge_softc) sc_plink;
82
83 struct disk sc_dk; /* our own disk structure */
84 struct bufq_state *sc_bufq; /* buffer queue */
85 struct callout sc_restart_ch; /* callout to restart I/O */
86
87 u_int sc_iopend; /* I/Os pending */
88 int sc_flags; /* flags (splbio) */
89 };
90
91 #define DK_F_WAIT_DRAIN 0x0001 /* waiting for I/O to drain */
92
93 static void dkstart(struct dkwedge_softc *);
94 static void dkiodone(struct buf *);
95 static void dkrestart(void *);
96
97 static dev_type_open(dkopen);
98 static dev_type_close(dkclose);
99 static dev_type_read(dkread);
100 static dev_type_write(dkwrite);
101 static dev_type_ioctl(dkioctl);
102 static dev_type_strategy(dkstrategy);
103 static dev_type_dump(dkdump);
104 static dev_type_size(dksize);
105
106 const struct bdevsw dk_bdevsw = {
107 dkopen, dkclose, dkstrategy, dkioctl, dkdump, dksize, D_DISK
108 };
109
110 const struct cdevsw dk_cdevsw = {
111 dkopen, dkclose, dkread, dkwrite, dkioctl,
112 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
113 };
114
115 static struct dkwedge_softc **dkwedges;
116 static u_int ndkwedges;
117 static krwlock_t dkwedges_lock;
118
119 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
120 static krwlock_t dkwedge_discovery_methods_lock;
121
122 /*
123 * dkwedge_match:
124 *
125 * Autoconfiguration match function for pseudo-device glue.
126 */
127 static int
128 dkwedge_match(struct device *parent, struct cfdata *match,
129 void *aux)
130 {
131
132 /* Pseudo-device; always present. */
133 return (1);
134 }
135
136 /*
137 * dkwedge_attach:
138 *
139 * Autoconfiguration attach function for pseudo-device glue.
140 */
141 static void
142 dkwedge_attach(struct device *parent, struct device *self,
143 void *aux)
144 {
145 int cmaj, bmaj, unit;
146
147 if (!pmf_device_register(self, NULL, NULL))
148 aprint_error_dev(self, "couldn't establish power handler\n");
149
150 bmaj = bdevsw_lookup_major(&dk_bdevsw);
151 cmaj = cdevsw_lookup_major(&dk_cdevsw);
152
153 unit = device_unit(self);
154 device_register_name(makedev(bmaj, unit), self, false,
155 DEV_DISK, "dk%d", unit);
156 device_register_name(makedev(cmaj, unit), self, true,
157 DEV_DISK, "rdk%d", unit);
158 }
159
160 /*
161 * dkwedge_detach:
162 *
163 * Autoconfiguration detach function for pseudo-device glue.
164 */
165 static int
166 dkwedge_detach(struct device *self, int flags)
167 {
168
169 device_deregister_all(self);
170 pmf_device_deregister(self);
171 /* Always succeeds. */
172 return (0);
173 }
174
175 CFDRIVER_DECL(dk, DV_DISK, NULL);
176 CFATTACH_DECL_NEW(dk, 0,
177 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL);
178
179 /*
180 * dkwedge_wait_drain:
181 *
182 * Wait for I/O on the wedge to drain.
183 * NOTE: Must be called at splbio()!
184 */
185 static void
186 dkwedge_wait_drain(struct dkwedge_softc *sc)
187 {
188
189 while (sc->sc_iopend != 0) {
190 sc->sc_flags |= DK_F_WAIT_DRAIN;
191 (void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
192 }
193 }
194
195 /*
196 * dkwedge_compute_pdev:
197 *
198 * Compute the parent disk's dev_t.
199 */
200 static int
201 dkwedge_compute_pdev(const char *pname, dev_t *pdevp)
202 {
203 const char *name, *cp;
204 int punit, pmaj;
205 char devname[16];
206
207 name = pname;
208 if ((pmaj = devsw_name2blk(name, devname, sizeof(devname))) == -1)
209 return (ENODEV);
210
211 name += strlen(devname);
212 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
213 punit = (punit * 10) + (*cp - '0');
214 if (cp == name) {
215 /* Invalid parent disk name. */
216 return (ENODEV);
217 }
218
219 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
220
221 return (0);
222 }
223
224 /*
225 * dkwedge_array_expand:
226 *
227 * Expand the dkwedges array.
228 */
229 static void
230 dkwedge_array_expand(void)
231 {
232 int newcnt = ndkwedges + 16;
233 struct dkwedge_softc **newarray, **oldarray;
234
235 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
236 M_WAITOK|M_ZERO);
237 if ((oldarray = dkwedges) != NULL)
238 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
239 dkwedges = newarray;
240 ndkwedges = newcnt;
241 if (oldarray != NULL)
242 free(oldarray, M_DKWEDGE);
243 }
244
245 /*
246 * dkwedge_add: [exported function]
247 *
248 * Add a disk wedge based on the provided information.
249 *
250 * The incoming dkw_devname[] is ignored, instead being
251 * filled in and returned to the caller.
252 */
253 int
254 dkwedge_add(struct dkwedge_info *dkw)
255 {
256 struct dkwedge_softc *sc, *lsc;
257 struct disk *pdk;
258 u_int unit;
259 int error;
260 dev_t pdev;
261
262 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
263 pdk = disk_find(dkw->dkw_parent);
264 if (pdk == NULL)
265 return (ENODEV);
266
267 error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
268 if (error)
269 return (error);
270
271 if (dkw->dkw_offset < 0)
272 return (EINVAL);
273
274 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
275 sc->sc_state = DKW_STATE_LARVAL;
276 sc->sc_parent = pdk;
277 sc->sc_pdev = pdev;
278 sc->sc_offset = dkw->dkw_offset;
279 sc->sc_size = dkw->dkw_size;
280
281 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
282 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
283
284 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
285 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
286
287 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
288
289 callout_init(&sc->sc_restart_ch, 0);
290 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
291
292 /*
293 * Wedge will be added; increment the wedge count for the parent.
294 * Only allow this to happend if RAW_PART is the only thing open.
295 */
296 mutex_enter(&pdk->dk_openlock);
297 if (pdk->dk_openmask & ~(1 << RAW_PART))
298 error = EBUSY;
299 else {
300 /* Check for wedge overlap. */
301 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
302 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
303 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
304
305 if (sc->sc_offset >= lsc->sc_offset &&
306 sc->sc_offset <= llastblk) {
307 /* Overlaps the tail of the exsiting wedge. */
308 break;
309 }
310 if (lastblk >= lsc->sc_offset &&
311 lastblk <= llastblk) {
312 /* Overlaps the head of the existing wedge. */
313 break;
314 }
315 }
316 if (lsc != NULL)
317 error = EINVAL;
318 else {
319 pdk->dk_nwedges++;
320 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
321 }
322 }
323 mutex_exit(&pdk->dk_openlock);
324 if (error) {
325 bufq_free(sc->sc_bufq);
326 free(sc, M_DKWEDGE);
327 return (error);
328 }
329
330 /* Fill in our cfdata for the pseudo-device glue. */
331 sc->sc_cfdata.cf_name = dk_cd.cd_name;
332 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
333 /* sc->sc_cfdata.cf_unit set below */
334 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
335
336 /* Insert the larval wedge into the array. */
337 rw_enter(&dkwedges_lock, RW_WRITER);
338 for (error = 0;;) {
339 struct dkwedge_softc **scpp;
340
341 /*
342 * Check for a duplicate wname while searching for
343 * a slot.
344 */
345 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
346 if (dkwedges[unit] == NULL) {
347 if (scpp == NULL) {
348 scpp = &dkwedges[unit];
349 sc->sc_cfdata.cf_unit = unit;
350 }
351 } else {
352 /* XXX Unicode. */
353 if (strcmp(dkwedges[unit]->sc_wname,
354 sc->sc_wname) == 0) {
355 error = EEXIST;
356 break;
357 }
358 }
359 }
360 if (error)
361 break;
362 KASSERT(unit == ndkwedges);
363 if (scpp == NULL)
364 dkwedge_array_expand();
365 else {
366 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
367 *scpp = sc;
368 break;
369 }
370 }
371 rw_exit(&dkwedges_lock);
372 if (error) {
373 mutex_enter(&pdk->dk_openlock);
374 pdk->dk_nwedges--;
375 LIST_REMOVE(sc, sc_plink);
376 mutex_exit(&pdk->dk_openlock);
377
378 bufq_free(sc->sc_bufq);
379 free(sc, M_DKWEDGE);
380 return (error);
381 }
382
383 /*
384 * Now that we know the unit #, attach a pseudo-device for
385 * this wedge instance. This will provide us with the
386 * "struct device" necessary for glue to other parts of the
387 * system.
388 *
389 * This should never fail, unless we're almost totally out of
390 * memory.
391 */
392 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
393 aprint_error("%s%u: unable to attach pseudo-device\n",
394 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
395
396 rw_enter(&dkwedges_lock, RW_WRITER);
397 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
398 rw_exit(&dkwedges_lock);
399
400 mutex_enter(&pdk->dk_openlock);
401 pdk->dk_nwedges--;
402 LIST_REMOVE(sc, sc_plink);
403 mutex_exit(&pdk->dk_openlock);
404
405 bufq_free(sc->sc_bufq);
406 free(sc, M_DKWEDGE);
407 return (ENOMEM);
408 }
409
410 /* Return the devname to the caller. */
411 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
412 sizeof(dkw->dkw_devname));
413
414 /*
415 * XXX Really ought to make the disk_attach() and the changing
416 * of state to RUNNING atomic.
417 */
418
419 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
420 disk_attach(&sc->sc_dk);
421
422 /* Disk wedge is ready for use! */
423 sc->sc_state = DKW_STATE_RUNNING;
424
425 /* Announce our arrival. */
426 aprint_normal("%s at %s: %s\n", device_xname(sc->sc_dev), pdk->dk_name,
427 sc->sc_wname); /* XXX Unicode */
428 aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
429 device_xname(sc->sc_dev), sc->sc_size, sc->sc_offset, sc->sc_ptype);
430
431 return (0);
432 }
433
434 /*
435 * dkwedge_del: [exported function]
436 *
437 * Delete a disk wedge based on the provided information.
438 * NOTE: We look up the wedge based on the wedge devname,
439 * not wname.
440 */
441 int
442 dkwedge_del(struct dkwedge_info *dkw)
443 {
444 struct dkwedge_softc *sc = NULL;
445 u_int unit;
446 int bmaj, cmaj, s;
447
448 /* Find our softc. */
449 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
450 rw_enter(&dkwedges_lock, RW_WRITER);
451 for (unit = 0; unit < ndkwedges; unit++) {
452 if ((sc = dkwedges[unit]) != NULL &&
453 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
454 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
455 /* Mark the wedge as dying. */
456 sc->sc_state = DKW_STATE_DYING;
457 break;
458 }
459 }
460 rw_exit(&dkwedges_lock);
461 if (unit == ndkwedges)
462 return (ESRCH);
463
464 KASSERT(sc != NULL);
465
466 /* Locate the wedge major numbers. */
467 bmaj = bdevsw_lookup_major(&dk_bdevsw);
468 cmaj = cdevsw_lookup_major(&dk_cdevsw);
469
470 /* Kill any pending restart. */
471 callout_stop(&sc->sc_restart_ch);
472
473 /*
474 * dkstart() will kill any queued buffers now that the
475 * state of the wedge is not RUNNING. Once we've done
476 * that, wait for any other pending I/O to complete.
477 */
478 s = splbio();
479 dkstart(sc);
480 dkwedge_wait_drain(sc);
481 splx(s);
482
483 /* Nuke the vnodes for any open instances. */
484 vdevgone(bmaj, unit, unit, VBLK);
485 vdevgone(cmaj, unit, unit, VCHR);
486
487 /* Clean up the parent. */
488 mutex_enter(&sc->sc_dk.dk_openlock);
489 mutex_enter(&sc->sc_parent->dk_rawlock);
490 if (sc->sc_dk.dk_openmask) {
491 if (sc->sc_parent->dk_rawopens-- == 1) {
492 KASSERT(sc->sc_parent->dk_rawvp != NULL);
493 (void) vn_close(sc->sc_parent->dk_rawvp, FREAD | FWRITE,
494 NOCRED);
495 sc->sc_parent->dk_rawvp = NULL;
496 }
497 sc->sc_dk.dk_openmask = 0;
498 }
499 mutex_exit(&sc->sc_parent->dk_rawlock);
500 mutex_exit(&sc->sc_dk.dk_openlock);
501
502 /* Announce our departure. */
503 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
504 sc->sc_parent->dk_name,
505 sc->sc_wname); /* XXX Unicode */
506
507 /* Delete our pseudo-device. */
508 (void) config_detach(sc->sc_dev, DETACH_FORCE | DETACH_QUIET);
509
510 mutex_enter(&sc->sc_parent->dk_openlock);
511 sc->sc_parent->dk_nwedges--;
512 LIST_REMOVE(sc, sc_plink);
513 mutex_exit(&sc->sc_parent->dk_openlock);
514
515 /* Delete our buffer queue. */
516 bufq_free(sc->sc_bufq);
517
518 /* Detach from the disk list. */
519 disk_detach(&sc->sc_dk);
520 disk_destroy(&sc->sc_dk);
521
522 /* Poof. */
523 rw_enter(&dkwedges_lock, RW_WRITER);
524 dkwedges[unit] = NULL;
525 sc->sc_state = DKW_STATE_DEAD;
526 rw_exit(&dkwedges_lock);
527
528 free(sc, M_DKWEDGE);
529
530 return (0);
531 }
532
533 /*
534 * dkwedge_delall: [exported function]
535 *
536 * Delete all of the wedges on the specified disk. Used when
537 * a disk is being detached.
538 */
539 void
540 dkwedge_delall(struct disk *pdk)
541 {
542 struct dkwedge_info dkw;
543 struct dkwedge_softc *sc;
544
545 for (;;) {
546 mutex_enter(&pdk->dk_openlock);
547 if ((sc = LIST_FIRST(&pdk->dk_wedges)) == NULL) {
548 KASSERT(pdk->dk_nwedges == 0);
549 mutex_exit(&pdk->dk_openlock);
550 return;
551 }
552 strcpy(dkw.dkw_parent, pdk->dk_name);
553 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
554 sizeof(dkw.dkw_devname));
555 mutex_exit(&pdk->dk_openlock);
556 (void) dkwedge_del(&dkw);
557 }
558 }
559
560 /*
561 * dkwedge_list: [exported function]
562 *
563 * List all of the wedges on a particular disk.
564 * If p == NULL, the buffer is in kernel space. Otherwise, it is
565 * in user space of the specified process.
566 */
567 int
568 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
569 {
570 struct uio uio;
571 struct iovec iov;
572 struct dkwedge_softc *sc;
573 struct dkwedge_info dkw;
574 struct vmspace *vm;
575 int error = 0;
576
577 iov.iov_base = dkwl->dkwl_buf;
578 iov.iov_len = dkwl->dkwl_bufsize;
579
580 uio.uio_iov = &iov;
581 uio.uio_iovcnt = 1;
582 uio.uio_offset = 0;
583 uio.uio_resid = dkwl->dkwl_bufsize;
584 uio.uio_rw = UIO_READ;
585 if (l == NULL) {
586 UIO_SETUP_SYSSPACE(&uio);
587 } else {
588 error = proc_vmspace_getref(l->l_proc, &vm);
589 if (error) {
590 return error;
591 }
592 uio.uio_vmspace = vm;
593 }
594
595 dkwl->dkwl_ncopied = 0;
596
597 mutex_enter(&pdk->dk_openlock);
598 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
599 if (uio.uio_resid < sizeof(dkw))
600 break;
601
602 if (sc->sc_state != DKW_STATE_RUNNING)
603 continue;
604
605 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
606 sizeof(dkw.dkw_devname));
607 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
608 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
609 strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
610 dkw.dkw_offset = sc->sc_offset;
611 dkw.dkw_size = sc->sc_size;
612 strcpy(dkw.dkw_ptype, sc->sc_ptype);
613
614 error = uiomove(&dkw, sizeof(dkw), &uio);
615 if (error)
616 break;
617 dkwl->dkwl_ncopied++;
618 }
619 dkwl->dkwl_nwedges = pdk->dk_nwedges;
620 mutex_exit(&pdk->dk_openlock);
621
622 if (l != NULL) {
623 uvmspace_free(vm);
624 }
625
626 return (error);
627 }
628
629 device_t
630 dkwedge_find_by_wname(const char *wname)
631 {
632 device_t dv = NULL;
633 struct dkwedge_softc *sc;
634 int i;
635
636 rw_enter(&dkwedges_lock, RW_WRITER);
637 for (i = 0; i < ndkwedges; i++) {
638 if ((sc = dkwedges[i]) == NULL)
639 continue;
640 if (strcmp(sc->sc_wname, wname) == 0) {
641 if (dv != NULL) {
642 printf(
643 "WARNING: double match for wedge name %s "
644 "(%s, %s)\n", wname, device_xname(dv),
645 device_xname(sc->sc_dev));
646 continue;
647 }
648 dv = sc->sc_dev;
649 }
650 }
651 rw_exit(&dkwedges_lock);
652 return dv;
653 }
654
655 void
656 dkwedge_print_wnames(void)
657 {
658 struct dkwedge_softc *sc;
659 int i;
660
661 rw_enter(&dkwedges_lock, RW_WRITER);
662 for (i = 0; i < ndkwedges; i++) {
663 if ((sc = dkwedges[i]) == NULL)
664 continue;
665 printf(" wedge:%s", sc->sc_wname);
666 }
667 rw_exit(&dkwedges_lock);
668 }
669
670 /*
671 * dkwedge_set_bootwedge
672 *
673 * Set the booted_wedge global based on the specified parent name
674 * and offset/length.
675 */
676 void
677 dkwedge_set_bootwedge(struct device *parent, daddr_t startblk, uint64_t nblks)
678 {
679 struct dkwedge_softc *sc;
680 int i;
681
682 rw_enter(&dkwedges_lock, RW_WRITER);
683 for (i = 0; i < ndkwedges; i++) {
684 if ((sc = dkwedges[i]) == NULL)
685 continue;
686 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
687 sc->sc_offset == startblk &&
688 sc->sc_size == nblks) {
689 if (booted_wedge) {
690 printf("WARNING: double match for boot wedge "
691 "(%s, %s)\n",
692 device_xname(booted_wedge),
693 device_xname(sc->sc_dev));
694 continue;
695 }
696 booted_device = parent;
697 booted_wedge = sc->sc_dev;
698 booted_partition = 0;
699 }
700 }
701 /*
702 * XXX What if we don't find one? Should we create a special
703 * XXX root wedge?
704 */
705 rw_exit(&dkwedges_lock);
706 }
707
708 /*
709 * We need a dummy object to stuff into the dkwedge discovery method link
710 * set to ensure that there is always at least one object in the set.
711 */
712 static struct dkwedge_discovery_method dummy_discovery_method;
713 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
714
715 /*
716 * dkwedge_init:
717 *
718 * Initialize the disk wedge subsystem.
719 */
720 void
721 dkwedge_init(void)
722 {
723 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
724 struct dkwedge_discovery_method * const *ddmp;
725 struct dkwedge_discovery_method *lddm, *ddm;
726
727 rw_init(&dkwedges_lock);
728 rw_init(&dkwedge_discovery_methods_lock);
729
730 if (config_cfdriver_attach(&dk_cd) != 0)
731 panic("dkwedge: unable to attach cfdriver");
732 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
733 panic("dkwedge: unable to attach cfattach");
734
735 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
736
737 LIST_INIT(&dkwedge_discovery_methods);
738
739 __link_set_foreach(ddmp, dkwedge_methods) {
740 ddm = *ddmp;
741 if (ddm == &dummy_discovery_method)
742 continue;
743 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
744 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
745 ddm, ddm_list);
746 continue;
747 }
748 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
749 if (ddm->ddm_priority == lddm->ddm_priority) {
750 aprint_error("dk-method-%s: method \"%s\" "
751 "already exists at priority %d\n",
752 ddm->ddm_name, lddm->ddm_name,
753 lddm->ddm_priority);
754 /* Not inserted. */
755 break;
756 }
757 if (ddm->ddm_priority < lddm->ddm_priority) {
758 /* Higher priority; insert before. */
759 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
760 break;
761 }
762 if (LIST_NEXT(lddm, ddm_list) == NULL) {
763 /* Last one; insert after. */
764 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
765 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
766 break;
767 }
768 }
769 }
770
771 rw_exit(&dkwedge_discovery_methods_lock);
772 }
773
774 #ifdef DKWEDGE_AUTODISCOVER
775 int dkwedge_autodiscover = 1;
776 #else
777 int dkwedge_autodiscover = 0;
778 #endif
779
780 /*
781 * dkwedge_discover: [exported function]
782 *
783 * Discover the wedges on a newly attached disk.
784 */
785 void
786 dkwedge_discover(struct disk *pdk)
787 {
788 struct dkwedge_discovery_method *ddm;
789 struct vnode *vp;
790 int error;
791 dev_t pdev;
792
793 /*
794 * Require people playing with wedges to enable this explicitly.
795 */
796 if (dkwedge_autodiscover == 0)
797 return;
798
799 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
800
801 error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
802 if (error) {
803 aprint_error("%s: unable to compute pdev, error = %d\n",
804 pdk->dk_name, error);
805 goto out;
806 }
807
808 error = bdevvp(pdev, &vp);
809 if (error) {
810 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
811 pdk->dk_name, error);
812 goto out;
813 }
814
815 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
816 if (error) {
817 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
818 pdk->dk_name, error);
819 vrele(vp);
820 goto out;
821 }
822
823 error = VOP_OPEN(vp, FREAD, NOCRED);
824 if (error) {
825 aprint_error("%s: unable to open device, error = %d\n",
826 pdk->dk_name, error);
827 vput(vp);
828 goto out;
829 }
830 VOP_UNLOCK(vp, 0);
831
832 /*
833 * For each supported partition map type, look to see if
834 * this map type exists. If so, parse it and add the
835 * corresponding wedges.
836 */
837 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
838 error = (*ddm->ddm_discover)(pdk, vp);
839 if (error == 0) {
840 /* Successfully created wedges; we're done. */
841 break;
842 }
843 }
844
845 error = vn_close(vp, FREAD, NOCRED);
846 if (error) {
847 aprint_error("%s: unable to close device, error = %d\n",
848 pdk->dk_name, error);
849 /* We'll just assume the vnode has been cleaned up. */
850 }
851 out:
852 rw_exit(&dkwedge_discovery_methods_lock);
853 }
854
855 /*
856 * dkwedge_read:
857 *
858 * Read some data from the specified disk, used for
859 * partition discovery.
860 */
861 int
862 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
863 void *tbuf, size_t len)
864 {
865 struct buf *bp;
866 int result;
867
868 bp = getiobuf(vp, true);
869
870 bp->b_dev = vp->v_rdev;
871 bp->b_blkno = blkno;
872 bp->b_bcount = len;
873 bp->b_resid = len;
874 bp->b_flags = B_READ;
875 bp->b_data = tbuf;
876 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */
877
878 VOP_STRATEGY(vp, bp);
879 result = biowait(bp);
880 putiobuf(bp);
881
882 return result;
883 }
884
885 /*
886 * dkwedge_lookup:
887 *
888 * Look up a dkwedge_softc based on the provided dev_t.
889 */
890 static struct dkwedge_softc *
891 dkwedge_lookup(dev_t dev)
892 {
893 int unit = minor(dev);
894
895 if (unit >= ndkwedges)
896 return (NULL);
897
898 KASSERT(dkwedges != NULL);
899
900 return (dkwedges[unit]);
901 }
902
903 /*
904 * dkopen: [devsw entry point]
905 *
906 * Open a wedge.
907 */
908 static int
909 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
910 {
911 struct dkwedge_softc *sc = dkwedge_lookup(dev);
912 struct vnode *vp;
913 int error = 0;
914
915 if (sc == NULL)
916 return (ENODEV);
917
918 if (sc->sc_state != DKW_STATE_RUNNING)
919 return (ENXIO);
920
921 /*
922 * We go through a complicated little dance to only open the parent
923 * vnode once per wedge, no matter how many times the wedge is
924 * opened. The reason? We see one dkopen() per open call, but
925 * only dkclose() on the last close.
926 */
927 mutex_enter(&sc->sc_dk.dk_openlock);
928 mutex_enter(&sc->sc_parent->dk_rawlock);
929 if (sc->sc_dk.dk_openmask == 0) {
930 if (sc->sc_parent->dk_rawopens == 0) {
931 KASSERT(sc->sc_parent->dk_rawvp == NULL);
932 error = bdevvp(sc->sc_pdev, &vp);
933 if (error)
934 goto popen_fail;
935 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
936 if (error) {
937 vrele(vp);
938 goto popen_fail;
939 }
940 error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED);
941 if (error) {
942 vput(vp);
943 goto popen_fail;
944 }
945 /* VOP_OPEN() doesn't do this for us. */
946 mutex_enter(&vp->v_interlock);
947 vp->v_writecount++;
948 mutex_exit(&vp->v_interlock);
949 VOP_UNLOCK(vp, 0);
950 sc->sc_parent->dk_rawvp = vp;
951 }
952 sc->sc_parent->dk_rawopens++;
953 }
954 if (fmt == S_IFCHR)
955 sc->sc_dk.dk_copenmask |= 1;
956 else
957 sc->sc_dk.dk_bopenmask |= 1;
958 sc->sc_dk.dk_openmask =
959 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
960
961 popen_fail:
962 mutex_exit(&sc->sc_parent->dk_rawlock);
963 mutex_exit(&sc->sc_dk.dk_openlock);
964 return (error);
965 }
966
967 /*
968 * dkclose: [devsw entry point]
969 *
970 * Close a wedge.
971 */
972 static int
973 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
974 {
975 struct dkwedge_softc *sc = dkwedge_lookup(dev);
976 int error = 0;
977
978 KASSERT(sc->sc_dk.dk_openmask != 0);
979
980 mutex_enter(&sc->sc_dk.dk_openlock);
981 mutex_enter(&sc->sc_parent->dk_rawlock);
982
983 if (fmt == S_IFCHR)
984 sc->sc_dk.dk_copenmask &= ~1;
985 else
986 sc->sc_dk.dk_bopenmask &= ~1;
987 sc->sc_dk.dk_openmask =
988 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
989
990 if (sc->sc_dk.dk_openmask == 0) {
991 if (sc->sc_parent->dk_rawopens-- == 1) {
992 KASSERT(sc->sc_parent->dk_rawvp != NULL);
993 error = vn_close(sc->sc_parent->dk_rawvp,
994 FREAD | FWRITE, NOCRED);
995 sc->sc_parent->dk_rawvp = NULL;
996 }
997 }
998
999 mutex_exit(&sc->sc_parent->dk_rawlock);
1000 mutex_exit(&sc->sc_dk.dk_openlock);
1001
1002 return (error);
1003 }
1004
1005 /*
1006 * dkstragegy: [devsw entry point]
1007 *
1008 * Perform I/O based on the wedge I/O strategy.
1009 */
1010 static void
1011 dkstrategy(struct buf *bp)
1012 {
1013 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1014 int s;
1015
1016 if (sc->sc_state != DKW_STATE_RUNNING) {
1017 bp->b_error = ENXIO;
1018 goto done;
1019 }
1020
1021 /* If it's an empty transfer, wake up the top half now. */
1022 if (bp->b_bcount == 0)
1023 goto done;
1024
1025 /* Make sure it's in-range. */
1026 if (bounds_check_with_mediasize(bp, DEV_BSIZE, sc->sc_size) <= 0)
1027 goto done;
1028
1029 /* Translate it to the parent's raw LBA. */
1030 bp->b_rawblkno = bp->b_blkno + sc->sc_offset;
1031
1032 /* Place it in the queue and start I/O on the unit. */
1033 s = splbio();
1034 sc->sc_iopend++;
1035 BUFQ_PUT(sc->sc_bufq, bp);
1036 dkstart(sc);
1037 splx(s);
1038 return;
1039
1040 done:
1041 bp->b_resid = bp->b_bcount;
1042 biodone(bp);
1043 }
1044
1045 /*
1046 * dkstart:
1047 *
1048 * Start I/O that has been enqueued on the wedge.
1049 * NOTE: Must be called at splbio()!
1050 */
1051 static void
1052 dkstart(struct dkwedge_softc *sc)
1053 {
1054 struct vnode *vp;
1055 struct buf *bp, *nbp;
1056
1057 /* Do as much work as has been enqueued. */
1058 while ((bp = BUFQ_PEEK(sc->sc_bufq)) != NULL) {
1059 if (sc->sc_state != DKW_STATE_RUNNING) {
1060 (void) BUFQ_GET(sc->sc_bufq);
1061 if (sc->sc_iopend-- == 1 &&
1062 (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1063 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1064 wakeup(&sc->sc_iopend);
1065 }
1066 bp->b_error = ENXIO;
1067 bp->b_resid = bp->b_bcount;
1068 biodone(bp);
1069 }
1070
1071 /* Instrumentation. */
1072 disk_busy(&sc->sc_dk);
1073
1074 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1075 if (nbp == NULL) {
1076 /*
1077 * No resources to run this request; leave the
1078 * buffer queued up, and schedule a timer to
1079 * restart the queue in 1/2 a second.
1080 */
1081 disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
1082 callout_schedule(&sc->sc_restart_ch, hz / 2);
1083 return;
1084 }
1085
1086 (void) BUFQ_GET(sc->sc_bufq);
1087
1088 nbp->b_data = bp->b_data;
1089 nbp->b_flags = bp->b_flags;
1090 nbp->b_oflags = bp->b_oflags;
1091 nbp->b_cflags = bp->b_cflags;
1092 nbp->b_iodone = dkiodone;
1093 nbp->b_proc = bp->b_proc;
1094 nbp->b_blkno = bp->b_rawblkno;
1095 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1096 nbp->b_bcount = bp->b_bcount;
1097 nbp->b_private = bp;
1098 BIO_COPYPRIO(nbp, bp);
1099
1100 vp = nbp->b_vp;
1101 if ((nbp->b_flags & B_READ) == 0) {
1102 mutex_enter(&vp->v_interlock);
1103 vp->v_numoutput++;
1104 mutex_exit(&vp->v_interlock);
1105 }
1106 VOP_STRATEGY(vp, nbp);
1107 }
1108 }
1109
1110 /*
1111 * dkiodone:
1112 *
1113 * I/O to a wedge has completed; alert the top half.
1114 * NOTE: Must be called at splbio()!
1115 */
1116 static void
1117 dkiodone(struct buf *bp)
1118 {
1119 struct buf *obp = bp->b_private;
1120 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1121
1122 if (bp->b_error != 0)
1123 obp->b_error = bp->b_error;
1124 obp->b_resid = bp->b_resid;
1125 putiobuf(bp);
1126
1127 if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1128 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1129 wakeup(&sc->sc_iopend);
1130 }
1131
1132 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1133 obp->b_flags & B_READ);
1134
1135 biodone(obp);
1136
1137 /* Kick the queue in case there is more work we can do. */
1138 dkstart(sc);
1139 }
1140
1141 /*
1142 * dkrestart:
1143 *
1144 * Restart the work queue after it was stalled due to
1145 * a resource shortage. Invoked via a callout.
1146 */
1147 static void
1148 dkrestart(void *v)
1149 {
1150 struct dkwedge_softc *sc = v;
1151 int s;
1152
1153 s = splbio();
1154 dkstart(sc);
1155 splx(s);
1156 }
1157
1158 /*
1159 * dkread: [devsw entry point]
1160 *
1161 * Read from a wedge.
1162 */
1163 static int
1164 dkread(dev_t dev, struct uio *uio, int flags)
1165 {
1166 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1167
1168 if (sc->sc_state != DKW_STATE_RUNNING)
1169 return (ENXIO);
1170
1171 return (physio(dkstrategy, NULL, dev, B_READ,
1172 sc->sc_parent->dk_driver->d_minphys, uio));
1173 }
1174
1175 /*
1176 * dkwrite: [devsw entry point]
1177 *
1178 * Write to a wedge.
1179 */
1180 static int
1181 dkwrite(dev_t dev, struct uio *uio, int flags)
1182 {
1183 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1184
1185 if (sc->sc_state != DKW_STATE_RUNNING)
1186 return (ENXIO);
1187
1188 return (physio(dkstrategy, NULL, dev, B_WRITE,
1189 sc->sc_parent->dk_driver->d_minphys, uio));
1190 }
1191
1192 /*
1193 * dkioctl: [devsw entry point]
1194 *
1195 * Perform an ioctl request on a wedge.
1196 */
1197 static int
1198 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1199 {
1200 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1201 int error = 0;
1202
1203 if (sc->sc_state != DKW_STATE_RUNNING)
1204 return (ENXIO);
1205
1206 switch (cmd) {
1207 case DIOCCACHESYNC:
1208 /*
1209 * XXX Do we really need to care about having a writable
1210 * file descriptor here?
1211 */
1212 if ((flag & FWRITE) == 0)
1213 error = EBADF;
1214 else
1215 error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
1216 cmd, data, flag,
1217 l != NULL ? l->l_cred : NOCRED);
1218 break;
1219 case DIOCGWEDGEINFO:
1220 {
1221 struct dkwedge_info *dkw = (void *) data;
1222
1223 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1224 sizeof(dkw->dkw_devname));
1225 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1226 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1227 strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
1228 dkw->dkw_offset = sc->sc_offset;
1229 dkw->dkw_size = sc->sc_size;
1230 strcpy(dkw->dkw_ptype, sc->sc_ptype);
1231
1232 break;
1233 }
1234
1235 default:
1236 error = ENOTTY;
1237 }
1238
1239 return (error);
1240 }
1241
1242 /*
1243 * dksize: [devsw entry point]
1244 *
1245 * Query the size of a wedge for the purpose of performing a dump
1246 * or for swapping to.
1247 */
1248 static int
1249 dksize(dev_t dev)
1250 {
1251 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1252 int rv = -1;
1253
1254 if (sc == NULL)
1255 return (-1);
1256
1257 if (sc->sc_state != DKW_STATE_RUNNING)
1258 return (ENXIO);
1259
1260 mutex_enter(&sc->sc_dk.dk_openlock);
1261 mutex_enter(&sc->sc_parent->dk_rawlock);
1262
1263 /* Our content type is static, no need to open the device. */
1264
1265 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1266 /* Saturate if we are larger than INT_MAX. */
1267 if (sc->sc_size > INT_MAX)
1268 rv = INT_MAX;
1269 else
1270 rv = (int) sc->sc_size;
1271 }
1272
1273 mutex_exit(&sc->sc_parent->dk_rawlock);
1274 mutex_exit(&sc->sc_dk.dk_openlock);
1275
1276 return (rv);
1277 }
1278
1279 /*
1280 * dkdump: [devsw entry point]
1281 *
1282 * Perform a crash dump to a wedge.
1283 */
1284 static int
1285 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1286 {
1287 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1288 const struct bdevsw *bdev;
1289 int rv = 0;
1290
1291 if (sc == NULL)
1292 return (-1);
1293
1294 if (sc->sc_state != DKW_STATE_RUNNING)
1295 return (ENXIO);
1296
1297 mutex_enter(&sc->sc_dk.dk_openlock);
1298 mutex_enter(&sc->sc_parent->dk_rawlock);
1299
1300 /* Our content type is static, no need to open the device. */
1301
1302 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
1303 rv = ENXIO;
1304 goto out;
1305 }
1306 if (size % DEV_BSIZE != 0) {
1307 rv = EINVAL;
1308 goto out;
1309 }
1310 if (blkno + size / DEV_BSIZE > sc->sc_size) {
1311 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1312 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
1313 size / DEV_BSIZE, sc->sc_size);
1314 rv = EINVAL;
1315 goto out;
1316 }
1317
1318 bdev = bdevsw_lookup(sc->sc_pdev);
1319 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
1320
1321 out:
1322 mutex_exit(&sc->sc_parent->dk_rawlock);
1323 mutex_exit(&sc->sc_dk.dk_openlock);
1324
1325 return rv;
1326 }
1327