dk.c revision 1.35 1 /* $NetBSD: dk.c,v 1.35 2008/03/21 21:54:59 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.35 2008/03/21 21:54:59 ad Exp $");
41
42 #include "opt_dkwedge.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/errno.h>
48 #include <sys/pool.h>
49 #include <sys/ioctl.h>
50 #include <sys/disklabel.h>
51 #include <sys/disk.h>
52 #include <sys/fcntl.h>
53 #include <sys/buf.h>
54 #include <sys/bufq.h>
55 #include <sys/vnode.h>
56 #include <sys/stat.h>
57 #include <sys/conf.h>
58 #include <sys/callout.h>
59 #include <sys/kernel.h>
60 #include <sys/malloc.h>
61 #include <sys/device.h>
62 #include <sys/kauth.h>
63
64 #include <miscfs/specfs/specdev.h>
65
66 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
67
68 typedef enum {
69 DKW_STATE_LARVAL = 0,
70 DKW_STATE_RUNNING = 1,
71 DKW_STATE_DYING = 2,
72 DKW_STATE_DEAD = 666
73 } dkwedge_state_t;
74
75 struct dkwedge_softc {
76 struct device *sc_dev; /* pointer to our pseudo-device */
77 struct cfdata sc_cfdata; /* our cfdata structure */
78 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
79
80 dkwedge_state_t sc_state; /* state this wedge is in */
81
82 struct disk *sc_parent; /* parent disk */
83 daddr_t sc_offset; /* LBA offset of wedge in parent */
84 uint64_t sc_size; /* size of wedge in blocks */
85 char sc_ptype[32]; /* partition type */
86 dev_t sc_pdev; /* cached parent's dev_t */
87 /* link on parent's wedge list */
88 LIST_ENTRY(dkwedge_softc) sc_plink;
89
90 struct disk sc_dk; /* our own disk structure */
91 struct bufq_state *sc_bufq; /* buffer queue */
92 struct callout sc_restart_ch; /* callout to restart I/O */
93
94 u_int sc_iopend; /* I/Os pending */
95 int sc_flags; /* flags (splbio) */
96 };
97
98 #define DK_F_WAIT_DRAIN 0x0001 /* waiting for I/O to drain */
99
100 static void dkstart(struct dkwedge_softc *);
101 static void dkiodone(struct buf *);
102 static void dkrestart(void *);
103
104 static dev_type_open(dkopen);
105 static dev_type_close(dkclose);
106 static dev_type_read(dkread);
107 static dev_type_write(dkwrite);
108 static dev_type_ioctl(dkioctl);
109 static dev_type_strategy(dkstrategy);
110 static dev_type_dump(dkdump);
111 static dev_type_size(dksize);
112
113 const struct bdevsw dk_bdevsw = {
114 dkopen, dkclose, dkstrategy, dkioctl, dkdump, dksize, D_DISK
115 };
116
117 const struct cdevsw dk_cdevsw = {
118 dkopen, dkclose, dkread, dkwrite, dkioctl,
119 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
120 };
121
122 static struct dkwedge_softc **dkwedges;
123 static u_int ndkwedges;
124 static krwlock_t dkwedges_lock;
125
126 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
127 static krwlock_t dkwedge_discovery_methods_lock;
128
129 /*
130 * dkwedge_match:
131 *
132 * Autoconfiguration match function for pseudo-device glue.
133 */
134 static int
135 dkwedge_match(struct device *parent, struct cfdata *match,
136 void *aux)
137 {
138
139 /* Pseudo-device; always present. */
140 return (1);
141 }
142
143 /*
144 * dkwedge_attach:
145 *
146 * Autoconfiguration attach function for pseudo-device glue.
147 */
148 static void
149 dkwedge_attach(struct device *parent, struct device *self,
150 void *aux)
151 {
152
153 if (!pmf_device_register(self, NULL, NULL))
154 aprint_error_dev(self, "couldn't establish power handler\n");
155 }
156
157 /*
158 * dkwedge_detach:
159 *
160 * Autoconfiguration detach function for pseudo-device glue.
161 */
162 static int
163 dkwedge_detach(struct device *self, int flags)
164 {
165
166 pmf_device_deregister(self);
167 /* Always succeeds. */
168 return (0);
169 }
170
171 CFDRIVER_DECL(dk, DV_DISK, NULL);
172 CFATTACH_DECL_NEW(dk, 0,
173 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL);
174
175 /*
176 * dkwedge_wait_drain:
177 *
178 * Wait for I/O on the wedge to drain.
179 * NOTE: Must be called at splbio()!
180 */
181 static void
182 dkwedge_wait_drain(struct dkwedge_softc *sc)
183 {
184
185 while (sc->sc_iopend != 0) {
186 sc->sc_flags |= DK_F_WAIT_DRAIN;
187 (void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
188 }
189 }
190
191 /*
192 * dkwedge_compute_pdev:
193 *
194 * Compute the parent disk's dev_t.
195 */
196 static int
197 dkwedge_compute_pdev(const char *pname, dev_t *pdevp)
198 {
199 const char *name, *cp;
200 int punit, pmaj;
201 char devname[16];
202
203 name = pname;
204 if ((pmaj = devsw_name2blk(name, devname, sizeof(devname))) == -1)
205 return (ENODEV);
206
207 name += strlen(devname);
208 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
209 punit = (punit * 10) + (*cp - '0');
210 if (cp == name) {
211 /* Invalid parent disk name. */
212 return (ENODEV);
213 }
214
215 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
216
217 return (0);
218 }
219
220 /*
221 * dkwedge_array_expand:
222 *
223 * Expand the dkwedges array.
224 */
225 static void
226 dkwedge_array_expand(void)
227 {
228 int newcnt = ndkwedges + 16;
229 struct dkwedge_softc **newarray, **oldarray;
230
231 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
232 M_WAITOK|M_ZERO);
233 if ((oldarray = dkwedges) != NULL)
234 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
235 dkwedges = newarray;
236 ndkwedges = newcnt;
237 if (oldarray != NULL)
238 free(oldarray, M_DKWEDGE);
239 }
240
241 /*
242 * dkwedge_add: [exported function]
243 *
244 * Add a disk wedge based on the provided information.
245 *
246 * The incoming dkw_devname[] is ignored, instead being
247 * filled in and returned to the caller.
248 */
249 int
250 dkwedge_add(struct dkwedge_info *dkw)
251 {
252 struct dkwedge_softc *sc, *lsc;
253 struct disk *pdk;
254 u_int unit;
255 int error;
256 dev_t pdev;
257
258 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
259 pdk = disk_find(dkw->dkw_parent);
260 if (pdk == NULL)
261 return (ENODEV);
262
263 error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
264 if (error)
265 return (error);
266
267 if (dkw->dkw_offset < 0)
268 return (EINVAL);
269
270 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
271 sc->sc_state = DKW_STATE_LARVAL;
272 sc->sc_parent = pdk;
273 sc->sc_pdev = pdev;
274 sc->sc_offset = dkw->dkw_offset;
275 sc->sc_size = dkw->dkw_size;
276
277 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
278 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
279
280 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
281 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
282
283 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
284
285 callout_init(&sc->sc_restart_ch, 0);
286 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
287
288 /*
289 * Wedge will be added; increment the wedge count for the parent.
290 * Only allow this to happend if RAW_PART is the only thing open.
291 */
292 mutex_enter(&pdk->dk_openlock);
293 if (pdk->dk_openmask & ~(1 << RAW_PART))
294 error = EBUSY;
295 else {
296 /* Check for wedge overlap. */
297 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
298 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
299 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
300
301 if (sc->sc_offset >= lsc->sc_offset &&
302 sc->sc_offset <= llastblk) {
303 /* Overlaps the tail of the exsiting wedge. */
304 break;
305 }
306 if (lastblk >= lsc->sc_offset &&
307 lastblk <= llastblk) {
308 /* Overlaps the head of the existing wedge. */
309 break;
310 }
311 }
312 if (lsc != NULL)
313 error = EINVAL;
314 else {
315 pdk->dk_nwedges++;
316 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
317 }
318 }
319 mutex_exit(&pdk->dk_openlock);
320 if (error) {
321 bufq_free(sc->sc_bufq);
322 free(sc, M_DKWEDGE);
323 return (error);
324 }
325
326 /* Fill in our cfdata for the pseudo-device glue. */
327 sc->sc_cfdata.cf_name = dk_cd.cd_name;
328 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
329 /* sc->sc_cfdata.cf_unit set below */
330 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
331
332 /* Insert the larval wedge into the array. */
333 rw_enter(&dkwedges_lock, RW_WRITER);
334 for (error = 0;;) {
335 struct dkwedge_softc **scpp;
336
337 /*
338 * Check for a duplicate wname while searching for
339 * a slot.
340 */
341 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
342 if (dkwedges[unit] == NULL) {
343 if (scpp == NULL) {
344 scpp = &dkwedges[unit];
345 sc->sc_cfdata.cf_unit = unit;
346 }
347 } else {
348 /* XXX Unicode. */
349 if (strcmp(dkwedges[unit]->sc_wname,
350 sc->sc_wname) == 0) {
351 error = EEXIST;
352 break;
353 }
354 }
355 }
356 if (error)
357 break;
358 KASSERT(unit == ndkwedges);
359 if (scpp == NULL)
360 dkwedge_array_expand();
361 else {
362 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
363 *scpp = sc;
364 break;
365 }
366 }
367 rw_exit(&dkwedges_lock);
368 if (error) {
369 mutex_enter(&pdk->dk_openlock);
370 pdk->dk_nwedges--;
371 LIST_REMOVE(sc, sc_plink);
372 mutex_exit(&pdk->dk_openlock);
373
374 bufq_free(sc->sc_bufq);
375 free(sc, M_DKWEDGE);
376 return (error);
377 }
378
379 /*
380 * Now that we know the unit #, attach a pseudo-device for
381 * this wedge instance. This will provide us with the
382 * "struct device" necessary for glue to other parts of the
383 * system.
384 *
385 * This should never fail, unless we're almost totally out of
386 * memory.
387 */
388 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
389 aprint_error("%s%u: unable to attach pseudo-device\n",
390 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
391
392 rw_enter(&dkwedges_lock, RW_WRITER);
393 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
394 rw_exit(&dkwedges_lock);
395
396 mutex_enter(&pdk->dk_openlock);
397 pdk->dk_nwedges--;
398 LIST_REMOVE(sc, sc_plink);
399 mutex_exit(&pdk->dk_openlock);
400
401 bufq_free(sc->sc_bufq);
402 free(sc, M_DKWEDGE);
403 return (ENOMEM);
404 }
405
406 /* Return the devname to the caller. */
407 strcpy(dkw->dkw_devname, sc->sc_dev->dv_xname);
408
409 /*
410 * XXX Really ought to make the disk_attach() and the changing
411 * of state to RUNNING atomic.
412 */
413
414 disk_init(&sc->sc_dk, sc->sc_dev->dv_xname, NULL);
415 disk_attach(&sc->sc_dk);
416
417 /* Disk wedge is ready for use! */
418 sc->sc_state = DKW_STATE_RUNNING;
419
420 /* Announce our arrival. */
421 aprint_normal("%s at %s: %s\n", sc->sc_dev->dv_xname, pdk->dk_name,
422 sc->sc_wname); /* XXX Unicode */
423 aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
424 sc->sc_dev->dv_xname, sc->sc_size, sc->sc_offset, sc->sc_ptype);
425
426 return (0);
427 }
428
429 /*
430 * dkwedge_del: [exported function]
431 *
432 * Delete a disk wedge based on the provided information.
433 * NOTE: We look up the wedge based on the wedge devname,
434 * not wname.
435 */
436 int
437 dkwedge_del(struct dkwedge_info *dkw)
438 {
439 struct dkwedge_softc *sc = NULL;
440 u_int unit;
441 int bmaj, cmaj, s;
442
443 /* Find our softc. */
444 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
445 rw_enter(&dkwedges_lock, RW_WRITER);
446 for (unit = 0; unit < ndkwedges; unit++) {
447 if ((sc = dkwedges[unit]) != NULL &&
448 strcmp(sc->sc_dev->dv_xname, dkw->dkw_devname) == 0 &&
449 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
450 /* Mark the wedge as dying. */
451 sc->sc_state = DKW_STATE_DYING;
452 break;
453 }
454 }
455 rw_exit(&dkwedges_lock);
456 if (unit == ndkwedges)
457 return (ESRCH);
458
459 KASSERT(sc != NULL);
460
461 /* Locate the wedge major numbers. */
462 bmaj = bdevsw_lookup_major(&dk_bdevsw);
463 cmaj = cdevsw_lookup_major(&dk_cdevsw);
464
465 /* Kill any pending restart. */
466 callout_stop(&sc->sc_restart_ch);
467
468 /*
469 * dkstart() will kill any queued buffers now that the
470 * state of the wedge is not RUNNING. Once we've done
471 * that, wait for any other pending I/O to complete.
472 */
473 s = splbio();
474 dkstart(sc);
475 dkwedge_wait_drain(sc);
476 splx(s);
477
478 /* Nuke the vnodes for any open instances. */
479 vdevgone(bmaj, unit, unit, VBLK);
480 vdevgone(cmaj, unit, unit, VCHR);
481
482 /* Clean up the parent. */
483 mutex_enter(&sc->sc_dk.dk_openlock);
484 mutex_enter(&sc->sc_parent->dk_rawlock);
485 if (sc->sc_dk.dk_openmask) {
486 if (sc->sc_parent->dk_rawopens-- == 1) {
487 KASSERT(sc->sc_parent->dk_rawvp != NULL);
488 (void) vn_close(sc->sc_parent->dk_rawvp, FREAD | FWRITE,
489 NOCRED);
490 sc->sc_parent->dk_rawvp = NULL;
491 }
492 sc->sc_dk.dk_openmask = 0;
493 }
494 mutex_exit(&sc->sc_parent->dk_rawlock);
495 mutex_exit(&sc->sc_dk.dk_openlock);
496
497 /* Announce our departure. */
498 aprint_normal("%s at %s (%s) deleted\n", sc->sc_dev->dv_xname,
499 sc->sc_parent->dk_name,
500 sc->sc_wname); /* XXX Unicode */
501
502 /* Delete our pseudo-device. */
503 (void) config_detach(sc->sc_dev, DETACH_FORCE | DETACH_QUIET);
504
505 mutex_enter(&sc->sc_parent->dk_openlock);
506 sc->sc_parent->dk_nwedges--;
507 LIST_REMOVE(sc, sc_plink);
508 mutex_exit(&sc->sc_parent->dk_openlock);
509
510 /* Delete our buffer queue. */
511 bufq_free(sc->sc_bufq);
512
513 /* Detach from the disk list. */
514 disk_detach(&sc->sc_dk);
515
516 /* Poof. */
517 rw_enter(&dkwedges_lock, RW_WRITER);
518 dkwedges[unit] = NULL;
519 sc->sc_state = DKW_STATE_DEAD;
520 rw_exit(&dkwedges_lock);
521
522 free(sc, M_DKWEDGE);
523
524 return (0);
525 }
526
527 /*
528 * dkwedge_delall: [exported function]
529 *
530 * Delete all of the wedges on the specified disk. Used when
531 * a disk is being detached.
532 */
533 void
534 dkwedge_delall(struct disk *pdk)
535 {
536 struct dkwedge_info dkw;
537 struct dkwedge_softc *sc;
538
539 for (;;) {
540 mutex_enter(&pdk->dk_openlock);
541 if ((sc = LIST_FIRST(&pdk->dk_wedges)) == NULL) {
542 KASSERT(pdk->dk_nwedges == 0);
543 mutex_exit(&pdk->dk_openlock);
544 return;
545 }
546 strcpy(dkw.dkw_parent, pdk->dk_name);
547 strcpy(dkw.dkw_devname, sc->sc_dev->dv_xname);
548 mutex_exit(&pdk->dk_openlock);
549 (void) dkwedge_del(&dkw);
550 }
551 }
552
553 /*
554 * dkwedge_list: [exported function]
555 *
556 * List all of the wedges on a particular disk.
557 * If p == NULL, the buffer is in kernel space. Otherwise, it is
558 * in user space of the specified process.
559 */
560 int
561 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
562 {
563 struct uio uio;
564 struct iovec iov;
565 struct dkwedge_softc *sc;
566 struct dkwedge_info dkw;
567 struct vmspace *vm;
568 int error = 0;
569
570 iov.iov_base = dkwl->dkwl_buf;
571 iov.iov_len = dkwl->dkwl_bufsize;
572
573 uio.uio_iov = &iov;
574 uio.uio_iovcnt = 1;
575 uio.uio_offset = 0;
576 uio.uio_resid = dkwl->dkwl_bufsize;
577 uio.uio_rw = UIO_READ;
578 if (l == NULL) {
579 UIO_SETUP_SYSSPACE(&uio);
580 } else {
581 error = proc_vmspace_getref(l->l_proc, &vm);
582 if (error) {
583 return error;
584 }
585 uio.uio_vmspace = vm;
586 }
587
588 dkwl->dkwl_ncopied = 0;
589
590 mutex_enter(&pdk->dk_openlock);
591 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
592 if (uio.uio_resid < sizeof(dkw))
593 break;
594
595 if (sc->sc_state != DKW_STATE_RUNNING)
596 continue;
597
598 strcpy(dkw.dkw_devname, sc->sc_dev->dv_xname);
599 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
600 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
601 strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
602 dkw.dkw_offset = sc->sc_offset;
603 dkw.dkw_size = sc->sc_size;
604 strcpy(dkw.dkw_ptype, sc->sc_ptype);
605
606 error = uiomove(&dkw, sizeof(dkw), &uio);
607 if (error)
608 break;
609 dkwl->dkwl_ncopied++;
610 }
611 dkwl->dkwl_nwedges = pdk->dk_nwedges;
612 mutex_exit(&pdk->dk_openlock);
613
614 if (l != NULL) {
615 uvmspace_free(vm);
616 }
617
618 return (error);
619 }
620
621 device_t
622 dkwedge_find_by_wname(const char *wname)
623 {
624 device_t dv = NULL;
625 struct dkwedge_softc *sc;
626 int i;
627
628 rw_enter(&dkwedges_lock, RW_WRITER);
629 for (i = 0; i < ndkwedges; i++) {
630 if ((sc = dkwedges[i]) == NULL)
631 continue;
632 if (strcmp(sc->sc_wname, wname) == 0) {
633 if (dv != NULL) {
634 printf(
635 "WARNING: double match for wedge name %s "
636 "(%s, %s)\n", wname, device_xname(dv),
637 device_xname(sc->sc_dev));
638 continue;
639 }
640 dv = sc->sc_dev;
641 }
642 }
643 rw_exit(&dkwedges_lock);
644 return dv;
645 }
646
647 void
648 dkwedge_print_wnames(void)
649 {
650 struct dkwedge_softc *sc;
651 int i;
652
653 rw_enter(&dkwedges_lock, RW_WRITER);
654 for (i = 0; i < ndkwedges; i++) {
655 if ((sc = dkwedges[i]) == NULL)
656 continue;
657 printf(" wedge:%s", sc->sc_wname);
658 }
659 rw_exit(&dkwedges_lock);
660 }
661
662 /*
663 * dkwedge_set_bootwedge
664 *
665 * Set the booted_wedge global based on the specified parent name
666 * and offset/length.
667 */
668 void
669 dkwedge_set_bootwedge(struct device *parent, daddr_t startblk, uint64_t nblks)
670 {
671 struct dkwedge_softc *sc;
672 int i;
673
674 rw_enter(&dkwedges_lock, RW_WRITER);
675 for (i = 0; i < ndkwedges; i++) {
676 if ((sc = dkwedges[i]) == NULL)
677 continue;
678 if (strcmp(sc->sc_parent->dk_name, parent->dv_xname) == 0 &&
679 sc->sc_offset == startblk &&
680 sc->sc_size == nblks) {
681 if (booted_wedge) {
682 printf("WARNING: double match for boot wedge "
683 "(%s, %s)\n",
684 booted_wedge->dv_xname,
685 sc->sc_dev->dv_xname);
686 continue;
687 }
688 booted_device = parent;
689 booted_wedge = sc->sc_dev;
690 booted_partition = 0;
691 }
692 }
693 /*
694 * XXX What if we don't find one? Should we create a special
695 * XXX root wedge?
696 */
697 rw_exit(&dkwedges_lock);
698 }
699
700 /*
701 * We need a dummy object to stuff into the dkwedge discovery method link
702 * set to ensure that there is always at least one object in the set.
703 */
704 static struct dkwedge_discovery_method dummy_discovery_method;
705 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
706
707 /*
708 * dkwedge_init:
709 *
710 * Initialize the disk wedge subsystem.
711 */
712 void
713 dkwedge_init(void)
714 {
715 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
716 struct dkwedge_discovery_method * const *ddmp;
717 struct dkwedge_discovery_method *lddm, *ddm;
718
719 rw_init(&dkwedges_lock);
720 rw_init(&dkwedge_discovery_methods_lock);
721
722 if (config_cfdriver_attach(&dk_cd) != 0)
723 panic("dkwedge: unable to attach cfdriver");
724 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
725 panic("dkwedge: unable to attach cfattach");
726
727 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
728
729 LIST_INIT(&dkwedge_discovery_methods);
730
731 __link_set_foreach(ddmp, dkwedge_methods) {
732 ddm = *ddmp;
733 if (ddm == &dummy_discovery_method)
734 continue;
735 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
736 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
737 ddm, ddm_list);
738 continue;
739 }
740 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
741 if (ddm->ddm_priority == lddm->ddm_priority) {
742 aprint_error("dk-method-%s: method \"%s\" "
743 "already exists at priority %d\n",
744 ddm->ddm_name, lddm->ddm_name,
745 lddm->ddm_priority);
746 /* Not inserted. */
747 break;
748 }
749 if (ddm->ddm_priority < lddm->ddm_priority) {
750 /* Higher priority; insert before. */
751 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
752 break;
753 }
754 if (LIST_NEXT(lddm, ddm_list) == NULL) {
755 /* Last one; insert after. */
756 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
757 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
758 break;
759 }
760 }
761 }
762
763 rw_exit(&dkwedge_discovery_methods_lock);
764 }
765
766 #ifdef DKWEDGE_AUTODISCOVER
767 int dkwedge_autodiscover = 1;
768 #else
769 int dkwedge_autodiscover = 0;
770 #endif
771
772 /*
773 * dkwedge_discover: [exported function]
774 *
775 * Discover the wedges on a newly attached disk.
776 */
777 void
778 dkwedge_discover(struct disk *pdk)
779 {
780 struct dkwedge_discovery_method *ddm;
781 struct vnode *vp;
782 int error;
783 dev_t pdev;
784
785 /*
786 * Require people playing with wedges to enable this explicitly.
787 */
788 if (dkwedge_autodiscover == 0)
789 return;
790
791 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
792
793 error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
794 if (error) {
795 aprint_error("%s: unable to compute pdev, error = %d\n",
796 pdk->dk_name, error);
797 goto out;
798 }
799
800 error = bdevvp(pdev, &vp);
801 if (error) {
802 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
803 pdk->dk_name, error);
804 goto out;
805 }
806
807 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
808 if (error) {
809 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
810 pdk->dk_name, error);
811 vrele(vp);
812 goto out;
813 }
814
815 error = VOP_OPEN(vp, FREAD, NOCRED);
816 if (error) {
817 aprint_error("%s: unable to open device, error = %d\n",
818 pdk->dk_name, error);
819 vput(vp);
820 goto out;
821 }
822 VOP_UNLOCK(vp, 0);
823
824 /*
825 * For each supported partition map type, look to see if
826 * this map type exists. If so, parse it and add the
827 * corresponding wedges.
828 */
829 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
830 error = (*ddm->ddm_discover)(pdk, vp);
831 if (error == 0) {
832 /* Successfully created wedges; we're done. */
833 break;
834 }
835 }
836
837 error = vn_close(vp, FREAD, NOCRED);
838 if (error) {
839 aprint_error("%s: unable to close device, error = %d\n",
840 pdk->dk_name, error);
841 /* We'll just assume the vnode has been cleaned up. */
842 }
843 out:
844 rw_exit(&dkwedge_discovery_methods_lock);
845 }
846
847 /*
848 * dkwedge_read:
849 *
850 * Read the some data from the specified disk, used for
851 * partition discovery.
852 */
853 int
854 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
855 void *tbuf, size_t len)
856 {
857 struct buf b;
858
859 buf_init(&b);
860
861 b.b_vp = vp;
862 b.b_dev = vp->v_rdev;
863 b.b_blkno = blkno;
864 b.b_bcount = b.b_resid = len;
865 b.b_flags = B_READ;
866 b.b_proc = curproc;
867 b.b_data = tbuf;
868
869 VOP_STRATEGY(vp, &b);
870 return (biowait(&b));
871 }
872
873 /*
874 * dkwedge_lookup:
875 *
876 * Look up a dkwedge_softc based on the provided dev_t.
877 */
878 static struct dkwedge_softc *
879 dkwedge_lookup(dev_t dev)
880 {
881 int unit = minor(dev);
882
883 if (unit >= ndkwedges)
884 return (NULL);
885
886 KASSERT(dkwedges != NULL);
887
888 return (dkwedges[unit]);
889 }
890
891 /*
892 * dkopen: [devsw entry point]
893 *
894 * Open a wedge.
895 */
896 static int
897 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
898 {
899 struct dkwedge_softc *sc = dkwedge_lookup(dev);
900 struct vnode *vp;
901 int error = 0;
902
903 if (sc == NULL)
904 return (ENODEV);
905
906 if (sc->sc_state != DKW_STATE_RUNNING)
907 return (ENXIO);
908
909 /*
910 * We go through a complicated little dance to only open the parent
911 * vnode once per wedge, no matter how many times the wedge is
912 * opened. The reason? We see one dkopen() per open call, but
913 * only dkclose() on the last close.
914 */
915 mutex_enter(&sc->sc_dk.dk_openlock);
916 mutex_enter(&sc->sc_parent->dk_rawlock);
917 if (sc->sc_dk.dk_openmask == 0) {
918 if (sc->sc_parent->dk_rawopens == 0) {
919 KASSERT(sc->sc_parent->dk_rawvp == NULL);
920 error = bdevvp(sc->sc_pdev, &vp);
921 if (error)
922 goto popen_fail;
923 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
924 if (error) {
925 vrele(vp);
926 goto popen_fail;
927 }
928 error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED);
929 if (error) {
930 vput(vp);
931 goto popen_fail;
932 }
933 /* VOP_OPEN() doesn't do this for us. */
934 mutex_enter(&vp->v_interlock);
935 vp->v_writecount++;
936 mutex_exit(&vp->v_interlock);
937 VOP_UNLOCK(vp, 0);
938 sc->sc_parent->dk_rawvp = vp;
939 }
940 sc->sc_parent->dk_rawopens++;
941 }
942 if (fmt == S_IFCHR)
943 sc->sc_dk.dk_copenmask |= 1;
944 else
945 sc->sc_dk.dk_bopenmask |= 1;
946 sc->sc_dk.dk_openmask =
947 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
948
949 popen_fail:
950 mutex_exit(&sc->sc_parent->dk_rawlock);
951 mutex_exit(&sc->sc_dk.dk_openlock);
952 return (error);
953 }
954
955 /*
956 * dkclose: [devsw entry point]
957 *
958 * Close a wedge.
959 */
960 static int
961 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
962 {
963 struct dkwedge_softc *sc = dkwedge_lookup(dev);
964 int error = 0;
965
966 KASSERT(sc->sc_dk.dk_openmask != 0);
967
968 mutex_enter(&sc->sc_dk.dk_openlock);
969 mutex_enter(&sc->sc_parent->dk_rawlock);
970
971 if (fmt == S_IFCHR)
972 sc->sc_dk.dk_copenmask &= ~1;
973 else
974 sc->sc_dk.dk_bopenmask &= ~1;
975 sc->sc_dk.dk_openmask =
976 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
977
978 if (sc->sc_dk.dk_openmask == 0) {
979 if (sc->sc_parent->dk_rawopens-- == 1) {
980 KASSERT(sc->sc_parent->dk_rawvp != NULL);
981 error = vn_close(sc->sc_parent->dk_rawvp,
982 FREAD | FWRITE, NOCRED);
983 sc->sc_parent->dk_rawvp = NULL;
984 }
985 }
986
987 mutex_exit(&sc->sc_parent->dk_rawlock);
988 mutex_exit(&sc->sc_dk.dk_openlock);
989
990 return (error);
991 }
992
993 /*
994 * dkstragegy: [devsw entry point]
995 *
996 * Perform I/O based on the wedge I/O strategy.
997 */
998 static void
999 dkstrategy(struct buf *bp)
1000 {
1001 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1002 int s;
1003
1004 if (sc->sc_state != DKW_STATE_RUNNING) {
1005 bp->b_error = ENXIO;
1006 goto done;
1007 }
1008
1009 /* If it's an empty transfer, wake up the top half now. */
1010 if (bp->b_bcount == 0)
1011 goto done;
1012
1013 /* Make sure it's in-range. */
1014 if (bounds_check_with_mediasize(bp, DEV_BSIZE, sc->sc_size) <= 0)
1015 goto done;
1016
1017 /* Translate it to the parent's raw LBA. */
1018 bp->b_rawblkno = bp->b_blkno + sc->sc_offset;
1019
1020 /* Place it in the queue and start I/O on the unit. */
1021 s = splbio();
1022 sc->sc_iopend++;
1023 BUFQ_PUT(sc->sc_bufq, bp);
1024 dkstart(sc);
1025 splx(s);
1026 return;
1027
1028 done:
1029 bp->b_resid = bp->b_bcount;
1030 biodone(bp);
1031 }
1032
1033 /*
1034 * dkstart:
1035 *
1036 * Start I/O that has been enqueued on the wedge.
1037 * NOTE: Must be called at splbio()!
1038 */
1039 static void
1040 dkstart(struct dkwedge_softc *sc)
1041 {
1042 struct vnode *vp;
1043 struct buf *bp, *nbp;
1044
1045 /* Do as much work as has been enqueued. */
1046 while ((bp = BUFQ_PEEK(sc->sc_bufq)) != NULL) {
1047 if (sc->sc_state != DKW_STATE_RUNNING) {
1048 (void) BUFQ_GET(sc->sc_bufq);
1049 if (sc->sc_iopend-- == 1 &&
1050 (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1051 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1052 wakeup(&sc->sc_iopend);
1053 }
1054 bp->b_error = ENXIO;
1055 bp->b_resid = bp->b_bcount;
1056 biodone(bp);
1057 }
1058
1059 /* Instrumentation. */
1060 disk_busy(&sc->sc_dk);
1061
1062 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1063 if (nbp == NULL) {
1064 /*
1065 * No resources to run this request; leave the
1066 * buffer queued up, and schedule a timer to
1067 * restart the queue in 1/2 a second.
1068 */
1069 disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
1070 callout_schedule(&sc->sc_restart_ch, hz / 2);
1071 return;
1072 }
1073
1074 (void) BUFQ_GET(sc->sc_bufq);
1075
1076 nbp->b_data = bp->b_data;
1077 nbp->b_flags = bp->b_flags;
1078 nbp->b_oflags = bp->b_oflags;
1079 nbp->b_cflags = bp->b_cflags;
1080 nbp->b_iodone = dkiodone;
1081 nbp->b_proc = bp->b_proc;
1082 nbp->b_blkno = bp->b_rawblkno;
1083 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1084 nbp->b_bcount = bp->b_bcount;
1085 nbp->b_private = bp;
1086 BIO_COPYPRIO(nbp, bp);
1087
1088 vp = nbp->b_vp;
1089 if ((nbp->b_flags & B_READ) == 0) {
1090 mutex_enter(&vp->v_interlock);
1091 vp->v_numoutput++;
1092 mutex_exit(&vp->v_interlock);
1093 }
1094 VOP_STRATEGY(vp, nbp);
1095 }
1096 }
1097
1098 /*
1099 * dkiodone:
1100 *
1101 * I/O to a wedge has completed; alert the top half.
1102 * NOTE: Must be called at splbio()!
1103 */
1104 static void
1105 dkiodone(struct buf *bp)
1106 {
1107 struct buf *obp = bp->b_private;
1108 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1109
1110 if (bp->b_error != 0)
1111 obp->b_error = bp->b_error;
1112 obp->b_resid = bp->b_resid;
1113 putiobuf(bp);
1114
1115 if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1116 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1117 wakeup(&sc->sc_iopend);
1118 }
1119
1120 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1121 obp->b_flags & B_READ);
1122
1123 biodone(obp);
1124
1125 /* Kick the queue in case there is more work we can do. */
1126 dkstart(sc);
1127 }
1128
1129 /*
1130 * dkrestart:
1131 *
1132 * Restart the work queue after it was stalled due to
1133 * a resource shortage. Invoked via a callout.
1134 */
1135 static void
1136 dkrestart(void *v)
1137 {
1138 struct dkwedge_softc *sc = v;
1139 int s;
1140
1141 s = splbio();
1142 dkstart(sc);
1143 splx(s);
1144 }
1145
1146 /*
1147 * dkread: [devsw entry point]
1148 *
1149 * Read from a wedge.
1150 */
1151 static int
1152 dkread(dev_t dev, struct uio *uio, int flags)
1153 {
1154 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1155
1156 if (sc->sc_state != DKW_STATE_RUNNING)
1157 return (ENXIO);
1158
1159 return (physio(dkstrategy, NULL, dev, B_READ,
1160 sc->sc_parent->dk_driver->d_minphys, uio));
1161 }
1162
1163 /*
1164 * dkwrite: [devsw entry point]
1165 *
1166 * Write to a wedge.
1167 */
1168 static int
1169 dkwrite(dev_t dev, struct uio *uio, int flags)
1170 {
1171 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1172
1173 if (sc->sc_state != DKW_STATE_RUNNING)
1174 return (ENXIO);
1175
1176 return (physio(dkstrategy, NULL, dev, B_WRITE,
1177 sc->sc_parent->dk_driver->d_minphys, uio));
1178 }
1179
1180 /*
1181 * dkioctl: [devsw entry point]
1182 *
1183 * Perform an ioctl request on a wedge.
1184 */
1185 static int
1186 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1187 {
1188 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1189 int error = 0;
1190
1191 if (sc->sc_state != DKW_STATE_RUNNING)
1192 return (ENXIO);
1193
1194 switch (cmd) {
1195 case DIOCCACHESYNC:
1196 /*
1197 * XXX Do we really need to care about having a writable
1198 * file descriptor here?
1199 */
1200 if ((flag & FWRITE) == 0)
1201 error = EBADF;
1202 else
1203 error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
1204 cmd, data, flag,
1205 l != NULL ? l->l_cred : NOCRED);
1206 break;
1207 case DIOCGWEDGEINFO:
1208 {
1209 struct dkwedge_info *dkw = (void *) data;
1210
1211 strcpy(dkw->dkw_devname, sc->sc_dev->dv_xname);
1212 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1213 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1214 strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
1215 dkw->dkw_offset = sc->sc_offset;
1216 dkw->dkw_size = sc->sc_size;
1217 strcpy(dkw->dkw_ptype, sc->sc_ptype);
1218
1219 break;
1220 }
1221
1222 default:
1223 error = ENOTTY;
1224 }
1225
1226 return (error);
1227 }
1228
1229 /*
1230 * dksize: [devsw entry point]
1231 *
1232 * Query the size of a wedge for the purpose of performing a dump
1233 * or for swapping to.
1234 */
1235 static int
1236 dksize(dev_t dev)
1237 {
1238 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1239 int rv = -1;
1240
1241 if (sc == NULL)
1242 return (-1);
1243
1244 if (sc->sc_state != DKW_STATE_RUNNING)
1245 return (ENXIO);
1246
1247 mutex_enter(&sc->sc_dk.dk_openlock);
1248 mutex_enter(&sc->sc_parent->dk_rawlock);
1249
1250 /* Our content type is static, no need to open the device. */
1251
1252 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1253 /* Saturate if we are larger than INT_MAX. */
1254 if (sc->sc_size > INT_MAX)
1255 rv = INT_MAX;
1256 else
1257 rv = (int) sc->sc_size;
1258 }
1259
1260 mutex_exit(&sc->sc_parent->dk_rawlock);
1261 mutex_exit(&sc->sc_dk.dk_openlock);
1262
1263 return (rv);
1264 }
1265
1266 /*
1267 * dkdump: [devsw entry point]
1268 *
1269 * Perform a crash dump to a wedge.
1270 */
1271 static int
1272 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1273 {
1274 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1275 const struct bdevsw *bdev;
1276 int rv = 0;
1277
1278 if (sc == NULL)
1279 return (-1);
1280
1281 if (sc->sc_state != DKW_STATE_RUNNING)
1282 return (ENXIO);
1283
1284 mutex_enter(&sc->sc_dk.dk_openlock);
1285 mutex_enter(&sc->sc_parent->dk_rawlock);
1286
1287 /* Our content type is static, no need to open the device. */
1288
1289 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
1290 rv = ENXIO;
1291 goto out;
1292 }
1293 if (size % DEV_BSIZE != 0) {
1294 rv = EINVAL;
1295 goto out;
1296 }
1297 if (blkno + size / DEV_BSIZE > sc->sc_size) {
1298 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1299 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
1300 size / DEV_BSIZE, sc->sc_size);
1301 rv = EINVAL;
1302 goto out;
1303 }
1304
1305 bdev = bdevsw_lookup(sc->sc_pdev);
1306 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
1307
1308 out:
1309 mutex_exit(&sc->sc_parent->dk_rawlock);
1310 mutex_exit(&sc->sc_dk.dk_openlock);
1311
1312 return rv;
1313 }
1314