dk.c revision 1.38 1 /* $NetBSD: dk.c,v 1.38 2008/04/28 20:23:48 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.38 2008/04/28 20:23:48 martin Exp $");
34
35 #include "opt_dkwedge.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/proc.h>
40 #include <sys/errno.h>
41 #include <sys/pool.h>
42 #include <sys/ioctl.h>
43 #include <sys/disklabel.h>
44 #include <sys/disk.h>
45 #include <sys/fcntl.h>
46 #include <sys/buf.h>
47 #include <sys/bufq.h>
48 #include <sys/vnode.h>
49 #include <sys/stat.h>
50 #include <sys/conf.h>
51 #include <sys/callout.h>
52 #include <sys/kernel.h>
53 #include <sys/malloc.h>
54 #include <sys/device.h>
55 #include <sys/kauth.h>
56
57 #include <miscfs/specfs/specdev.h>
58
59 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
60
61 typedef enum {
62 DKW_STATE_LARVAL = 0,
63 DKW_STATE_RUNNING = 1,
64 DKW_STATE_DYING = 2,
65 DKW_STATE_DEAD = 666
66 } dkwedge_state_t;
67
68 struct dkwedge_softc {
69 struct device *sc_dev; /* pointer to our pseudo-device */
70 struct cfdata sc_cfdata; /* our cfdata structure */
71 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
72
73 dkwedge_state_t sc_state; /* state this wedge is in */
74
75 struct disk *sc_parent; /* parent disk */
76 daddr_t sc_offset; /* LBA offset of wedge in parent */
77 uint64_t sc_size; /* size of wedge in blocks */
78 char sc_ptype[32]; /* partition type */
79 dev_t sc_pdev; /* cached parent's dev_t */
80 /* link on parent's wedge list */
81 LIST_ENTRY(dkwedge_softc) sc_plink;
82
83 struct disk sc_dk; /* our own disk structure */
84 struct bufq_state *sc_bufq; /* buffer queue */
85 struct callout sc_restart_ch; /* callout to restart I/O */
86
87 u_int sc_iopend; /* I/Os pending */
88 int sc_flags; /* flags (splbio) */
89 };
90
91 #define DK_F_WAIT_DRAIN 0x0001 /* waiting for I/O to drain */
92
93 static void dkstart(struct dkwedge_softc *);
94 static void dkiodone(struct buf *);
95 static void dkrestart(void *);
96
97 static dev_type_open(dkopen);
98 static dev_type_close(dkclose);
99 static dev_type_read(dkread);
100 static dev_type_write(dkwrite);
101 static dev_type_ioctl(dkioctl);
102 static dev_type_strategy(dkstrategy);
103 static dev_type_dump(dkdump);
104 static dev_type_size(dksize);
105
106 const struct bdevsw dk_bdevsw = {
107 dkopen, dkclose, dkstrategy, dkioctl, dkdump, dksize, D_DISK
108 };
109
110 const struct cdevsw dk_cdevsw = {
111 dkopen, dkclose, dkread, dkwrite, dkioctl,
112 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
113 };
114
115 static struct dkwedge_softc **dkwedges;
116 static u_int ndkwedges;
117 static krwlock_t dkwedges_lock;
118
119 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
120 static krwlock_t dkwedge_discovery_methods_lock;
121
122 /*
123 * dkwedge_match:
124 *
125 * Autoconfiguration match function for pseudo-device glue.
126 */
127 static int
128 dkwedge_match(struct device *parent, struct cfdata *match,
129 void *aux)
130 {
131
132 /* Pseudo-device; always present. */
133 return (1);
134 }
135
136 /*
137 * dkwedge_attach:
138 *
139 * Autoconfiguration attach function for pseudo-device glue.
140 */
141 static void
142 dkwedge_attach(struct device *parent, struct device *self,
143 void *aux)
144 {
145
146 if (!pmf_device_register(self, NULL, NULL))
147 aprint_error_dev(self, "couldn't establish power handler\n");
148 }
149
150 /*
151 * dkwedge_detach:
152 *
153 * Autoconfiguration detach function for pseudo-device glue.
154 */
155 static int
156 dkwedge_detach(struct device *self, int flags)
157 {
158
159 pmf_device_deregister(self);
160 /* Always succeeds. */
161 return (0);
162 }
163
164 CFDRIVER_DECL(dk, DV_DISK, NULL);
165 CFATTACH_DECL_NEW(dk, 0,
166 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL);
167
168 /*
169 * dkwedge_wait_drain:
170 *
171 * Wait for I/O on the wedge to drain.
172 * NOTE: Must be called at splbio()!
173 */
174 static void
175 dkwedge_wait_drain(struct dkwedge_softc *sc)
176 {
177
178 while (sc->sc_iopend != 0) {
179 sc->sc_flags |= DK_F_WAIT_DRAIN;
180 (void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
181 }
182 }
183
184 /*
185 * dkwedge_compute_pdev:
186 *
187 * Compute the parent disk's dev_t.
188 */
189 static int
190 dkwedge_compute_pdev(const char *pname, dev_t *pdevp)
191 {
192 const char *name, *cp;
193 int punit, pmaj;
194 char devname[16];
195
196 name = pname;
197 if ((pmaj = devsw_name2blk(name, devname, sizeof(devname))) == -1)
198 return (ENODEV);
199
200 name += strlen(devname);
201 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
202 punit = (punit * 10) + (*cp - '0');
203 if (cp == name) {
204 /* Invalid parent disk name. */
205 return (ENODEV);
206 }
207
208 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
209
210 return (0);
211 }
212
213 /*
214 * dkwedge_array_expand:
215 *
216 * Expand the dkwedges array.
217 */
218 static void
219 dkwedge_array_expand(void)
220 {
221 int newcnt = ndkwedges + 16;
222 struct dkwedge_softc **newarray, **oldarray;
223
224 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
225 M_WAITOK|M_ZERO);
226 if ((oldarray = dkwedges) != NULL)
227 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
228 dkwedges = newarray;
229 ndkwedges = newcnt;
230 if (oldarray != NULL)
231 free(oldarray, M_DKWEDGE);
232 }
233
234 /*
235 * dkwedge_add: [exported function]
236 *
237 * Add a disk wedge based on the provided information.
238 *
239 * The incoming dkw_devname[] is ignored, instead being
240 * filled in and returned to the caller.
241 */
242 int
243 dkwedge_add(struct dkwedge_info *dkw)
244 {
245 struct dkwedge_softc *sc, *lsc;
246 struct disk *pdk;
247 u_int unit;
248 int error;
249 dev_t pdev;
250
251 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
252 pdk = disk_find(dkw->dkw_parent);
253 if (pdk == NULL)
254 return (ENODEV);
255
256 error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
257 if (error)
258 return (error);
259
260 if (dkw->dkw_offset < 0)
261 return (EINVAL);
262
263 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
264 sc->sc_state = DKW_STATE_LARVAL;
265 sc->sc_parent = pdk;
266 sc->sc_pdev = pdev;
267 sc->sc_offset = dkw->dkw_offset;
268 sc->sc_size = dkw->dkw_size;
269
270 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
271 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
272
273 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
274 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
275
276 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
277
278 callout_init(&sc->sc_restart_ch, 0);
279 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
280
281 /*
282 * Wedge will be added; increment the wedge count for the parent.
283 * Only allow this to happend if RAW_PART is the only thing open.
284 */
285 mutex_enter(&pdk->dk_openlock);
286 if (pdk->dk_openmask & ~(1 << RAW_PART))
287 error = EBUSY;
288 else {
289 /* Check for wedge overlap. */
290 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
291 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
292 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
293
294 if (sc->sc_offset >= lsc->sc_offset &&
295 sc->sc_offset <= llastblk) {
296 /* Overlaps the tail of the exsiting wedge. */
297 break;
298 }
299 if (lastblk >= lsc->sc_offset &&
300 lastblk <= llastblk) {
301 /* Overlaps the head of the existing wedge. */
302 break;
303 }
304 }
305 if (lsc != NULL)
306 error = EINVAL;
307 else {
308 pdk->dk_nwedges++;
309 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
310 }
311 }
312 mutex_exit(&pdk->dk_openlock);
313 if (error) {
314 bufq_free(sc->sc_bufq);
315 free(sc, M_DKWEDGE);
316 return (error);
317 }
318
319 /* Fill in our cfdata for the pseudo-device glue. */
320 sc->sc_cfdata.cf_name = dk_cd.cd_name;
321 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
322 /* sc->sc_cfdata.cf_unit set below */
323 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
324
325 /* Insert the larval wedge into the array. */
326 rw_enter(&dkwedges_lock, RW_WRITER);
327 for (error = 0;;) {
328 struct dkwedge_softc **scpp;
329
330 /*
331 * Check for a duplicate wname while searching for
332 * a slot.
333 */
334 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
335 if (dkwedges[unit] == NULL) {
336 if (scpp == NULL) {
337 scpp = &dkwedges[unit];
338 sc->sc_cfdata.cf_unit = unit;
339 }
340 } else {
341 /* XXX Unicode. */
342 if (strcmp(dkwedges[unit]->sc_wname,
343 sc->sc_wname) == 0) {
344 error = EEXIST;
345 break;
346 }
347 }
348 }
349 if (error)
350 break;
351 KASSERT(unit == ndkwedges);
352 if (scpp == NULL)
353 dkwedge_array_expand();
354 else {
355 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
356 *scpp = sc;
357 break;
358 }
359 }
360 rw_exit(&dkwedges_lock);
361 if (error) {
362 mutex_enter(&pdk->dk_openlock);
363 pdk->dk_nwedges--;
364 LIST_REMOVE(sc, sc_plink);
365 mutex_exit(&pdk->dk_openlock);
366
367 bufq_free(sc->sc_bufq);
368 free(sc, M_DKWEDGE);
369 return (error);
370 }
371
372 /*
373 * Now that we know the unit #, attach a pseudo-device for
374 * this wedge instance. This will provide us with the
375 * "struct device" necessary for glue to other parts of the
376 * system.
377 *
378 * This should never fail, unless we're almost totally out of
379 * memory.
380 */
381 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
382 aprint_error("%s%u: unable to attach pseudo-device\n",
383 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
384
385 rw_enter(&dkwedges_lock, RW_WRITER);
386 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
387 rw_exit(&dkwedges_lock);
388
389 mutex_enter(&pdk->dk_openlock);
390 pdk->dk_nwedges--;
391 LIST_REMOVE(sc, sc_plink);
392 mutex_exit(&pdk->dk_openlock);
393
394 bufq_free(sc->sc_bufq);
395 free(sc, M_DKWEDGE);
396 return (ENOMEM);
397 }
398
399 /* Return the devname to the caller. */
400 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
401 sizeof(dkw->dkw_devname));
402
403 /*
404 * XXX Really ought to make the disk_attach() and the changing
405 * of state to RUNNING atomic.
406 */
407
408 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
409 disk_attach(&sc->sc_dk);
410
411 /* Disk wedge is ready for use! */
412 sc->sc_state = DKW_STATE_RUNNING;
413
414 /* Announce our arrival. */
415 aprint_normal("%s at %s: %s\n", device_xname(sc->sc_dev), pdk->dk_name,
416 sc->sc_wname); /* XXX Unicode */
417 aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
418 device_xname(sc->sc_dev), sc->sc_size, sc->sc_offset, sc->sc_ptype);
419
420 return (0);
421 }
422
423 /*
424 * dkwedge_del: [exported function]
425 *
426 * Delete a disk wedge based on the provided information.
427 * NOTE: We look up the wedge based on the wedge devname,
428 * not wname.
429 */
430 int
431 dkwedge_del(struct dkwedge_info *dkw)
432 {
433 struct dkwedge_softc *sc = NULL;
434 u_int unit;
435 int bmaj, cmaj, s;
436
437 /* Find our softc. */
438 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
439 rw_enter(&dkwedges_lock, RW_WRITER);
440 for (unit = 0; unit < ndkwedges; unit++) {
441 if ((sc = dkwedges[unit]) != NULL &&
442 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
443 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
444 /* Mark the wedge as dying. */
445 sc->sc_state = DKW_STATE_DYING;
446 break;
447 }
448 }
449 rw_exit(&dkwedges_lock);
450 if (unit == ndkwedges)
451 return (ESRCH);
452
453 KASSERT(sc != NULL);
454
455 /* Locate the wedge major numbers. */
456 bmaj = bdevsw_lookup_major(&dk_bdevsw);
457 cmaj = cdevsw_lookup_major(&dk_cdevsw);
458
459 /* Kill any pending restart. */
460 callout_stop(&sc->sc_restart_ch);
461
462 /*
463 * dkstart() will kill any queued buffers now that the
464 * state of the wedge is not RUNNING. Once we've done
465 * that, wait for any other pending I/O to complete.
466 */
467 s = splbio();
468 dkstart(sc);
469 dkwedge_wait_drain(sc);
470 splx(s);
471
472 /* Nuke the vnodes for any open instances. */
473 vdevgone(bmaj, unit, unit, VBLK);
474 vdevgone(cmaj, unit, unit, VCHR);
475
476 /* Clean up the parent. */
477 mutex_enter(&sc->sc_dk.dk_openlock);
478 mutex_enter(&sc->sc_parent->dk_rawlock);
479 if (sc->sc_dk.dk_openmask) {
480 if (sc->sc_parent->dk_rawopens-- == 1) {
481 KASSERT(sc->sc_parent->dk_rawvp != NULL);
482 (void) vn_close(sc->sc_parent->dk_rawvp, FREAD | FWRITE,
483 NOCRED);
484 sc->sc_parent->dk_rawvp = NULL;
485 }
486 sc->sc_dk.dk_openmask = 0;
487 }
488 mutex_exit(&sc->sc_parent->dk_rawlock);
489 mutex_exit(&sc->sc_dk.dk_openlock);
490
491 /* Announce our departure. */
492 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
493 sc->sc_parent->dk_name,
494 sc->sc_wname); /* XXX Unicode */
495
496 /* Delete our pseudo-device. */
497 (void) config_detach(sc->sc_dev, DETACH_FORCE | DETACH_QUIET);
498
499 mutex_enter(&sc->sc_parent->dk_openlock);
500 sc->sc_parent->dk_nwedges--;
501 LIST_REMOVE(sc, sc_plink);
502 mutex_exit(&sc->sc_parent->dk_openlock);
503
504 /* Delete our buffer queue. */
505 bufq_free(sc->sc_bufq);
506
507 /* Detach from the disk list. */
508 disk_detach(&sc->sc_dk);
509
510 /* Poof. */
511 rw_enter(&dkwedges_lock, RW_WRITER);
512 dkwedges[unit] = NULL;
513 sc->sc_state = DKW_STATE_DEAD;
514 rw_exit(&dkwedges_lock);
515
516 free(sc, M_DKWEDGE);
517
518 return (0);
519 }
520
521 /*
522 * dkwedge_delall: [exported function]
523 *
524 * Delete all of the wedges on the specified disk. Used when
525 * a disk is being detached.
526 */
527 void
528 dkwedge_delall(struct disk *pdk)
529 {
530 struct dkwedge_info dkw;
531 struct dkwedge_softc *sc;
532
533 for (;;) {
534 mutex_enter(&pdk->dk_openlock);
535 if ((sc = LIST_FIRST(&pdk->dk_wedges)) == NULL) {
536 KASSERT(pdk->dk_nwedges == 0);
537 mutex_exit(&pdk->dk_openlock);
538 return;
539 }
540 strcpy(dkw.dkw_parent, pdk->dk_name);
541 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
542 sizeof(dkw.dkw_devname));
543 mutex_exit(&pdk->dk_openlock);
544 (void) dkwedge_del(&dkw);
545 }
546 }
547
548 /*
549 * dkwedge_list: [exported function]
550 *
551 * List all of the wedges on a particular disk.
552 * If p == NULL, the buffer is in kernel space. Otherwise, it is
553 * in user space of the specified process.
554 */
555 int
556 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
557 {
558 struct uio uio;
559 struct iovec iov;
560 struct dkwedge_softc *sc;
561 struct dkwedge_info dkw;
562 struct vmspace *vm;
563 int error = 0;
564
565 iov.iov_base = dkwl->dkwl_buf;
566 iov.iov_len = dkwl->dkwl_bufsize;
567
568 uio.uio_iov = &iov;
569 uio.uio_iovcnt = 1;
570 uio.uio_offset = 0;
571 uio.uio_resid = dkwl->dkwl_bufsize;
572 uio.uio_rw = UIO_READ;
573 if (l == NULL) {
574 UIO_SETUP_SYSSPACE(&uio);
575 } else {
576 error = proc_vmspace_getref(l->l_proc, &vm);
577 if (error) {
578 return error;
579 }
580 uio.uio_vmspace = vm;
581 }
582
583 dkwl->dkwl_ncopied = 0;
584
585 mutex_enter(&pdk->dk_openlock);
586 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
587 if (uio.uio_resid < sizeof(dkw))
588 break;
589
590 if (sc->sc_state != DKW_STATE_RUNNING)
591 continue;
592
593 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
594 sizeof(dkw.dkw_devname));
595 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
596 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
597 strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
598 dkw.dkw_offset = sc->sc_offset;
599 dkw.dkw_size = sc->sc_size;
600 strcpy(dkw.dkw_ptype, sc->sc_ptype);
601
602 error = uiomove(&dkw, sizeof(dkw), &uio);
603 if (error)
604 break;
605 dkwl->dkwl_ncopied++;
606 }
607 dkwl->dkwl_nwedges = pdk->dk_nwedges;
608 mutex_exit(&pdk->dk_openlock);
609
610 if (l != NULL) {
611 uvmspace_free(vm);
612 }
613
614 return (error);
615 }
616
617 device_t
618 dkwedge_find_by_wname(const char *wname)
619 {
620 device_t dv = NULL;
621 struct dkwedge_softc *sc;
622 int i;
623
624 rw_enter(&dkwedges_lock, RW_WRITER);
625 for (i = 0; i < ndkwedges; i++) {
626 if ((sc = dkwedges[i]) == NULL)
627 continue;
628 if (strcmp(sc->sc_wname, wname) == 0) {
629 if (dv != NULL) {
630 printf(
631 "WARNING: double match for wedge name %s "
632 "(%s, %s)\n", wname, device_xname(dv),
633 device_xname(sc->sc_dev));
634 continue;
635 }
636 dv = sc->sc_dev;
637 }
638 }
639 rw_exit(&dkwedges_lock);
640 return dv;
641 }
642
643 void
644 dkwedge_print_wnames(void)
645 {
646 struct dkwedge_softc *sc;
647 int i;
648
649 rw_enter(&dkwedges_lock, RW_WRITER);
650 for (i = 0; i < ndkwedges; i++) {
651 if ((sc = dkwedges[i]) == NULL)
652 continue;
653 printf(" wedge:%s", sc->sc_wname);
654 }
655 rw_exit(&dkwedges_lock);
656 }
657
658 /*
659 * dkwedge_set_bootwedge
660 *
661 * Set the booted_wedge global based on the specified parent name
662 * and offset/length.
663 */
664 void
665 dkwedge_set_bootwedge(struct device *parent, daddr_t startblk, uint64_t nblks)
666 {
667 struct dkwedge_softc *sc;
668 int i;
669
670 rw_enter(&dkwedges_lock, RW_WRITER);
671 for (i = 0; i < ndkwedges; i++) {
672 if ((sc = dkwedges[i]) == NULL)
673 continue;
674 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
675 sc->sc_offset == startblk &&
676 sc->sc_size == nblks) {
677 if (booted_wedge) {
678 printf("WARNING: double match for boot wedge "
679 "(%s, %s)\n",
680 device_xname(booted_wedge),
681 device_xname(sc->sc_dev));
682 continue;
683 }
684 booted_device = parent;
685 booted_wedge = sc->sc_dev;
686 booted_partition = 0;
687 }
688 }
689 /*
690 * XXX What if we don't find one? Should we create a special
691 * XXX root wedge?
692 */
693 rw_exit(&dkwedges_lock);
694 }
695
696 /*
697 * We need a dummy object to stuff into the dkwedge discovery method link
698 * set to ensure that there is always at least one object in the set.
699 */
700 static struct dkwedge_discovery_method dummy_discovery_method;
701 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
702
703 /*
704 * dkwedge_init:
705 *
706 * Initialize the disk wedge subsystem.
707 */
708 void
709 dkwedge_init(void)
710 {
711 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
712 struct dkwedge_discovery_method * const *ddmp;
713 struct dkwedge_discovery_method *lddm, *ddm;
714
715 rw_init(&dkwedges_lock);
716 rw_init(&dkwedge_discovery_methods_lock);
717
718 if (config_cfdriver_attach(&dk_cd) != 0)
719 panic("dkwedge: unable to attach cfdriver");
720 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
721 panic("dkwedge: unable to attach cfattach");
722
723 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
724
725 LIST_INIT(&dkwedge_discovery_methods);
726
727 __link_set_foreach(ddmp, dkwedge_methods) {
728 ddm = *ddmp;
729 if (ddm == &dummy_discovery_method)
730 continue;
731 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
732 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
733 ddm, ddm_list);
734 continue;
735 }
736 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
737 if (ddm->ddm_priority == lddm->ddm_priority) {
738 aprint_error("dk-method-%s: method \"%s\" "
739 "already exists at priority %d\n",
740 ddm->ddm_name, lddm->ddm_name,
741 lddm->ddm_priority);
742 /* Not inserted. */
743 break;
744 }
745 if (ddm->ddm_priority < lddm->ddm_priority) {
746 /* Higher priority; insert before. */
747 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
748 break;
749 }
750 if (LIST_NEXT(lddm, ddm_list) == NULL) {
751 /* Last one; insert after. */
752 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
753 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
754 break;
755 }
756 }
757 }
758
759 rw_exit(&dkwedge_discovery_methods_lock);
760 }
761
762 #ifdef DKWEDGE_AUTODISCOVER
763 int dkwedge_autodiscover = 1;
764 #else
765 int dkwedge_autodiscover = 0;
766 #endif
767
768 /*
769 * dkwedge_discover: [exported function]
770 *
771 * Discover the wedges on a newly attached disk.
772 */
773 void
774 dkwedge_discover(struct disk *pdk)
775 {
776 struct dkwedge_discovery_method *ddm;
777 struct vnode *vp;
778 int error;
779 dev_t pdev;
780
781 /*
782 * Require people playing with wedges to enable this explicitly.
783 */
784 if (dkwedge_autodiscover == 0)
785 return;
786
787 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
788
789 error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
790 if (error) {
791 aprint_error("%s: unable to compute pdev, error = %d\n",
792 pdk->dk_name, error);
793 goto out;
794 }
795
796 error = bdevvp(pdev, &vp);
797 if (error) {
798 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
799 pdk->dk_name, error);
800 goto out;
801 }
802
803 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
804 if (error) {
805 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
806 pdk->dk_name, error);
807 vrele(vp);
808 goto out;
809 }
810
811 error = VOP_OPEN(vp, FREAD, NOCRED);
812 if (error) {
813 aprint_error("%s: unable to open device, error = %d\n",
814 pdk->dk_name, error);
815 vput(vp);
816 goto out;
817 }
818 VOP_UNLOCK(vp, 0);
819
820 /*
821 * For each supported partition map type, look to see if
822 * this map type exists. If so, parse it and add the
823 * corresponding wedges.
824 */
825 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
826 error = (*ddm->ddm_discover)(pdk, vp);
827 if (error == 0) {
828 /* Successfully created wedges; we're done. */
829 break;
830 }
831 }
832
833 error = vn_close(vp, FREAD, NOCRED);
834 if (error) {
835 aprint_error("%s: unable to close device, error = %d\n",
836 pdk->dk_name, error);
837 /* We'll just assume the vnode has been cleaned up. */
838 }
839 out:
840 rw_exit(&dkwedge_discovery_methods_lock);
841 }
842
843 /*
844 * dkwedge_read:
845 *
846 * Read some data from the specified disk, used for
847 * partition discovery.
848 */
849 int
850 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
851 void *tbuf, size_t len)
852 {
853 struct buf b;
854
855 buf_init(&b);
856
857 b.b_vp = vp;
858 b.b_dev = vp->v_rdev;
859 b.b_blkno = blkno;
860 b.b_bcount = b.b_resid = len;
861 b.b_flags = B_READ;
862 b.b_proc = curproc;
863 b.b_data = tbuf;
864
865 VOP_STRATEGY(vp, &b);
866 return (biowait(&b));
867 }
868
869 /*
870 * dkwedge_lookup:
871 *
872 * Look up a dkwedge_softc based on the provided dev_t.
873 */
874 static struct dkwedge_softc *
875 dkwedge_lookup(dev_t dev)
876 {
877 int unit = minor(dev);
878
879 if (unit >= ndkwedges)
880 return (NULL);
881
882 KASSERT(dkwedges != NULL);
883
884 return (dkwedges[unit]);
885 }
886
887 /*
888 * dkopen: [devsw entry point]
889 *
890 * Open a wedge.
891 */
892 static int
893 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
894 {
895 struct dkwedge_softc *sc = dkwedge_lookup(dev);
896 struct vnode *vp;
897 int error = 0;
898
899 if (sc == NULL)
900 return (ENODEV);
901
902 if (sc->sc_state != DKW_STATE_RUNNING)
903 return (ENXIO);
904
905 /*
906 * We go through a complicated little dance to only open the parent
907 * vnode once per wedge, no matter how many times the wedge is
908 * opened. The reason? We see one dkopen() per open call, but
909 * only dkclose() on the last close.
910 */
911 mutex_enter(&sc->sc_dk.dk_openlock);
912 mutex_enter(&sc->sc_parent->dk_rawlock);
913 if (sc->sc_dk.dk_openmask == 0) {
914 if (sc->sc_parent->dk_rawopens == 0) {
915 KASSERT(sc->sc_parent->dk_rawvp == NULL);
916 error = bdevvp(sc->sc_pdev, &vp);
917 if (error)
918 goto popen_fail;
919 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
920 if (error) {
921 vrele(vp);
922 goto popen_fail;
923 }
924 error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED);
925 if (error) {
926 vput(vp);
927 goto popen_fail;
928 }
929 /* VOP_OPEN() doesn't do this for us. */
930 mutex_enter(&vp->v_interlock);
931 vp->v_writecount++;
932 mutex_exit(&vp->v_interlock);
933 VOP_UNLOCK(vp, 0);
934 sc->sc_parent->dk_rawvp = vp;
935 }
936 sc->sc_parent->dk_rawopens++;
937 }
938 if (fmt == S_IFCHR)
939 sc->sc_dk.dk_copenmask |= 1;
940 else
941 sc->sc_dk.dk_bopenmask |= 1;
942 sc->sc_dk.dk_openmask =
943 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
944
945 popen_fail:
946 mutex_exit(&sc->sc_parent->dk_rawlock);
947 mutex_exit(&sc->sc_dk.dk_openlock);
948 return (error);
949 }
950
951 /*
952 * dkclose: [devsw entry point]
953 *
954 * Close a wedge.
955 */
956 static int
957 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
958 {
959 struct dkwedge_softc *sc = dkwedge_lookup(dev);
960 int error = 0;
961
962 KASSERT(sc->sc_dk.dk_openmask != 0);
963
964 mutex_enter(&sc->sc_dk.dk_openlock);
965 mutex_enter(&sc->sc_parent->dk_rawlock);
966
967 if (fmt == S_IFCHR)
968 sc->sc_dk.dk_copenmask &= ~1;
969 else
970 sc->sc_dk.dk_bopenmask &= ~1;
971 sc->sc_dk.dk_openmask =
972 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
973
974 if (sc->sc_dk.dk_openmask == 0) {
975 if (sc->sc_parent->dk_rawopens-- == 1) {
976 KASSERT(sc->sc_parent->dk_rawvp != NULL);
977 error = vn_close(sc->sc_parent->dk_rawvp,
978 FREAD | FWRITE, NOCRED);
979 sc->sc_parent->dk_rawvp = NULL;
980 }
981 }
982
983 mutex_exit(&sc->sc_parent->dk_rawlock);
984 mutex_exit(&sc->sc_dk.dk_openlock);
985
986 return (error);
987 }
988
989 /*
990 * dkstragegy: [devsw entry point]
991 *
992 * Perform I/O based on the wedge I/O strategy.
993 */
994 static void
995 dkstrategy(struct buf *bp)
996 {
997 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
998 int s;
999
1000 if (sc->sc_state != DKW_STATE_RUNNING) {
1001 bp->b_error = ENXIO;
1002 goto done;
1003 }
1004
1005 /* If it's an empty transfer, wake up the top half now. */
1006 if (bp->b_bcount == 0)
1007 goto done;
1008
1009 /* Make sure it's in-range. */
1010 if (bounds_check_with_mediasize(bp, DEV_BSIZE, sc->sc_size) <= 0)
1011 goto done;
1012
1013 /* Translate it to the parent's raw LBA. */
1014 bp->b_rawblkno = bp->b_blkno + sc->sc_offset;
1015
1016 /* Place it in the queue and start I/O on the unit. */
1017 s = splbio();
1018 sc->sc_iopend++;
1019 BUFQ_PUT(sc->sc_bufq, bp);
1020 dkstart(sc);
1021 splx(s);
1022 return;
1023
1024 done:
1025 bp->b_resid = bp->b_bcount;
1026 biodone(bp);
1027 }
1028
1029 /*
1030 * dkstart:
1031 *
1032 * Start I/O that has been enqueued on the wedge.
1033 * NOTE: Must be called at splbio()!
1034 */
1035 static void
1036 dkstart(struct dkwedge_softc *sc)
1037 {
1038 struct vnode *vp;
1039 struct buf *bp, *nbp;
1040
1041 /* Do as much work as has been enqueued. */
1042 while ((bp = BUFQ_PEEK(sc->sc_bufq)) != NULL) {
1043 if (sc->sc_state != DKW_STATE_RUNNING) {
1044 (void) BUFQ_GET(sc->sc_bufq);
1045 if (sc->sc_iopend-- == 1 &&
1046 (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1047 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1048 wakeup(&sc->sc_iopend);
1049 }
1050 bp->b_error = ENXIO;
1051 bp->b_resid = bp->b_bcount;
1052 biodone(bp);
1053 }
1054
1055 /* Instrumentation. */
1056 disk_busy(&sc->sc_dk);
1057
1058 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1059 if (nbp == NULL) {
1060 /*
1061 * No resources to run this request; leave the
1062 * buffer queued up, and schedule a timer to
1063 * restart the queue in 1/2 a second.
1064 */
1065 disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
1066 callout_schedule(&sc->sc_restart_ch, hz / 2);
1067 return;
1068 }
1069
1070 (void) BUFQ_GET(sc->sc_bufq);
1071
1072 nbp->b_data = bp->b_data;
1073 nbp->b_flags = bp->b_flags;
1074 nbp->b_oflags = bp->b_oflags;
1075 nbp->b_cflags = bp->b_cflags;
1076 nbp->b_iodone = dkiodone;
1077 nbp->b_proc = bp->b_proc;
1078 nbp->b_blkno = bp->b_rawblkno;
1079 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1080 nbp->b_bcount = bp->b_bcount;
1081 nbp->b_private = bp;
1082 BIO_COPYPRIO(nbp, bp);
1083
1084 vp = nbp->b_vp;
1085 if ((nbp->b_flags & B_READ) == 0) {
1086 mutex_enter(&vp->v_interlock);
1087 vp->v_numoutput++;
1088 mutex_exit(&vp->v_interlock);
1089 }
1090 VOP_STRATEGY(vp, nbp);
1091 }
1092 }
1093
1094 /*
1095 * dkiodone:
1096 *
1097 * I/O to a wedge has completed; alert the top half.
1098 * NOTE: Must be called at splbio()!
1099 */
1100 static void
1101 dkiodone(struct buf *bp)
1102 {
1103 struct buf *obp = bp->b_private;
1104 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1105
1106 if (bp->b_error != 0)
1107 obp->b_error = bp->b_error;
1108 obp->b_resid = bp->b_resid;
1109 putiobuf(bp);
1110
1111 if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1112 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1113 wakeup(&sc->sc_iopend);
1114 }
1115
1116 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1117 obp->b_flags & B_READ);
1118
1119 biodone(obp);
1120
1121 /* Kick the queue in case there is more work we can do. */
1122 dkstart(sc);
1123 }
1124
1125 /*
1126 * dkrestart:
1127 *
1128 * Restart the work queue after it was stalled due to
1129 * a resource shortage. Invoked via a callout.
1130 */
1131 static void
1132 dkrestart(void *v)
1133 {
1134 struct dkwedge_softc *sc = v;
1135 int s;
1136
1137 s = splbio();
1138 dkstart(sc);
1139 splx(s);
1140 }
1141
1142 /*
1143 * dkread: [devsw entry point]
1144 *
1145 * Read from a wedge.
1146 */
1147 static int
1148 dkread(dev_t dev, struct uio *uio, int flags)
1149 {
1150 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1151
1152 if (sc->sc_state != DKW_STATE_RUNNING)
1153 return (ENXIO);
1154
1155 return (physio(dkstrategy, NULL, dev, B_READ,
1156 sc->sc_parent->dk_driver->d_minphys, uio));
1157 }
1158
1159 /*
1160 * dkwrite: [devsw entry point]
1161 *
1162 * Write to a wedge.
1163 */
1164 static int
1165 dkwrite(dev_t dev, struct uio *uio, int flags)
1166 {
1167 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1168
1169 if (sc->sc_state != DKW_STATE_RUNNING)
1170 return (ENXIO);
1171
1172 return (physio(dkstrategy, NULL, dev, B_WRITE,
1173 sc->sc_parent->dk_driver->d_minphys, uio));
1174 }
1175
1176 /*
1177 * dkioctl: [devsw entry point]
1178 *
1179 * Perform an ioctl request on a wedge.
1180 */
1181 static int
1182 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1183 {
1184 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1185 int error = 0;
1186
1187 if (sc->sc_state != DKW_STATE_RUNNING)
1188 return (ENXIO);
1189
1190 switch (cmd) {
1191 case DIOCCACHESYNC:
1192 /*
1193 * XXX Do we really need to care about having a writable
1194 * file descriptor here?
1195 */
1196 if ((flag & FWRITE) == 0)
1197 error = EBADF;
1198 else
1199 error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
1200 cmd, data, flag,
1201 l != NULL ? l->l_cred : NOCRED);
1202 break;
1203 case DIOCGWEDGEINFO:
1204 {
1205 struct dkwedge_info *dkw = (void *) data;
1206
1207 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1208 sizeof(dkw->dkw_devname));
1209 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1210 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1211 strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
1212 dkw->dkw_offset = sc->sc_offset;
1213 dkw->dkw_size = sc->sc_size;
1214 strcpy(dkw->dkw_ptype, sc->sc_ptype);
1215
1216 break;
1217 }
1218
1219 default:
1220 error = ENOTTY;
1221 }
1222
1223 return (error);
1224 }
1225
1226 /*
1227 * dksize: [devsw entry point]
1228 *
1229 * Query the size of a wedge for the purpose of performing a dump
1230 * or for swapping to.
1231 */
1232 static int
1233 dksize(dev_t dev)
1234 {
1235 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1236 int rv = -1;
1237
1238 if (sc == NULL)
1239 return (-1);
1240
1241 if (sc->sc_state != DKW_STATE_RUNNING)
1242 return (ENXIO);
1243
1244 mutex_enter(&sc->sc_dk.dk_openlock);
1245 mutex_enter(&sc->sc_parent->dk_rawlock);
1246
1247 /* Our content type is static, no need to open the device. */
1248
1249 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1250 /* Saturate if we are larger than INT_MAX. */
1251 if (sc->sc_size > INT_MAX)
1252 rv = INT_MAX;
1253 else
1254 rv = (int) sc->sc_size;
1255 }
1256
1257 mutex_exit(&sc->sc_parent->dk_rawlock);
1258 mutex_exit(&sc->sc_dk.dk_openlock);
1259
1260 return (rv);
1261 }
1262
1263 /*
1264 * dkdump: [devsw entry point]
1265 *
1266 * Perform a crash dump to a wedge.
1267 */
1268 static int
1269 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1270 {
1271 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1272 const struct bdevsw *bdev;
1273 int rv = 0;
1274
1275 if (sc == NULL)
1276 return (-1);
1277
1278 if (sc->sc_state != DKW_STATE_RUNNING)
1279 return (ENXIO);
1280
1281 mutex_enter(&sc->sc_dk.dk_openlock);
1282 mutex_enter(&sc->sc_parent->dk_rawlock);
1283
1284 /* Our content type is static, no need to open the device. */
1285
1286 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
1287 rv = ENXIO;
1288 goto out;
1289 }
1290 if (size % DEV_BSIZE != 0) {
1291 rv = EINVAL;
1292 goto out;
1293 }
1294 if (blkno + size / DEV_BSIZE > sc->sc_size) {
1295 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1296 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
1297 size / DEV_BSIZE, sc->sc_size);
1298 rv = EINVAL;
1299 goto out;
1300 }
1301
1302 bdev = bdevsw_lookup(sc->sc_pdev);
1303 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
1304
1305 out:
1306 mutex_exit(&sc->sc_parent->dk_rawlock);
1307 mutex_exit(&sc->sc_dk.dk_openlock);
1308
1309 return rv;
1310 }
1311