dk.c revision 1.41 1 /* $NetBSD: dk.c,v 1.41 2008/06/03 12:14:08 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.41 2008/06/03 12:14:08 ad Exp $");
34
35 #include "opt_dkwedge.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/proc.h>
40 #include <sys/errno.h>
41 #include <sys/pool.h>
42 #include <sys/ioctl.h>
43 #include <sys/disklabel.h>
44 #include <sys/disk.h>
45 #include <sys/fcntl.h>
46 #include <sys/buf.h>
47 #include <sys/bufq.h>
48 #include <sys/vnode.h>
49 #include <sys/stat.h>
50 #include <sys/conf.h>
51 #include <sys/callout.h>
52 #include <sys/kernel.h>
53 #include <sys/malloc.h>
54 #include <sys/device.h>
55 #include <sys/kauth.h>
56
57 #include <miscfs/specfs/specdev.h>
58
59 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
60
61 typedef enum {
62 DKW_STATE_LARVAL = 0,
63 DKW_STATE_RUNNING = 1,
64 DKW_STATE_DYING = 2,
65 DKW_STATE_DEAD = 666
66 } dkwedge_state_t;
67
68 struct dkwedge_softc {
69 struct device *sc_dev; /* pointer to our pseudo-device */
70 struct cfdata sc_cfdata; /* our cfdata structure */
71 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
72
73 dkwedge_state_t sc_state; /* state this wedge is in */
74
75 struct disk *sc_parent; /* parent disk */
76 daddr_t sc_offset; /* LBA offset of wedge in parent */
77 uint64_t sc_size; /* size of wedge in blocks */
78 char sc_ptype[32]; /* partition type */
79 dev_t sc_pdev; /* cached parent's dev_t */
80 /* link on parent's wedge list */
81 LIST_ENTRY(dkwedge_softc) sc_plink;
82
83 struct disk sc_dk; /* our own disk structure */
84 struct bufq_state *sc_bufq; /* buffer queue */
85 struct callout sc_restart_ch; /* callout to restart I/O */
86
87 u_int sc_iopend; /* I/Os pending */
88 int sc_flags; /* flags (splbio) */
89 };
90
91 #define DK_F_WAIT_DRAIN 0x0001 /* waiting for I/O to drain */
92
93 static void dkstart(struct dkwedge_softc *);
94 static void dkiodone(struct buf *);
95 static void dkrestart(void *);
96
97 static dev_type_open(dkopen);
98 static dev_type_close(dkclose);
99 static dev_type_read(dkread);
100 static dev_type_write(dkwrite);
101 static dev_type_ioctl(dkioctl);
102 static dev_type_strategy(dkstrategy);
103 static dev_type_dump(dkdump);
104 static dev_type_size(dksize);
105
106 const struct bdevsw dk_bdevsw = {
107 dkopen, dkclose, dkstrategy, dkioctl, dkdump, dksize, D_DISK
108 };
109
110 const struct cdevsw dk_cdevsw = {
111 dkopen, dkclose, dkread, dkwrite, dkioctl,
112 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
113 };
114
115 static struct dkwedge_softc **dkwedges;
116 static u_int ndkwedges;
117 static krwlock_t dkwedges_lock;
118
119 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
120 static krwlock_t dkwedge_discovery_methods_lock;
121
122 /*
123 * dkwedge_match:
124 *
125 * Autoconfiguration match function for pseudo-device glue.
126 */
127 static int
128 dkwedge_match(struct device *parent, struct cfdata *match,
129 void *aux)
130 {
131
132 /* Pseudo-device; always present. */
133 return (1);
134 }
135
136 /*
137 * dkwedge_attach:
138 *
139 * Autoconfiguration attach function for pseudo-device glue.
140 */
141 static void
142 dkwedge_attach(struct device *parent, struct device *self,
143 void *aux)
144 {
145
146 if (!pmf_device_register(self, NULL, NULL))
147 aprint_error_dev(self, "couldn't establish power handler\n");
148 }
149
150 /*
151 * dkwedge_detach:
152 *
153 * Autoconfiguration detach function for pseudo-device glue.
154 */
155 static int
156 dkwedge_detach(struct device *self, int flags)
157 {
158
159 pmf_device_deregister(self);
160 /* Always succeeds. */
161 return (0);
162 }
163
164 CFDRIVER_DECL(dk, DV_DISK, NULL);
165 CFATTACH_DECL_NEW(dk, 0,
166 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL);
167
168 /*
169 * dkwedge_wait_drain:
170 *
171 * Wait for I/O on the wedge to drain.
172 * NOTE: Must be called at splbio()!
173 */
174 static void
175 dkwedge_wait_drain(struct dkwedge_softc *sc)
176 {
177
178 while (sc->sc_iopend != 0) {
179 sc->sc_flags |= DK_F_WAIT_DRAIN;
180 (void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
181 }
182 }
183
184 /*
185 * dkwedge_compute_pdev:
186 *
187 * Compute the parent disk's dev_t.
188 */
189 static int
190 dkwedge_compute_pdev(const char *pname, dev_t *pdevp)
191 {
192 const char *name, *cp;
193 int punit, pmaj;
194 char devname[16];
195
196 name = pname;
197 if ((pmaj = devsw_name2blk(name, devname, sizeof(devname))) == -1)
198 return (ENODEV);
199
200 name += strlen(devname);
201 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
202 punit = (punit * 10) + (*cp - '0');
203 if (cp == name) {
204 /* Invalid parent disk name. */
205 return (ENODEV);
206 }
207
208 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
209
210 return (0);
211 }
212
213 /*
214 * dkwedge_array_expand:
215 *
216 * Expand the dkwedges array.
217 */
218 static void
219 dkwedge_array_expand(void)
220 {
221 int newcnt = ndkwedges + 16;
222 struct dkwedge_softc **newarray, **oldarray;
223
224 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
225 M_WAITOK|M_ZERO);
226 if ((oldarray = dkwedges) != NULL)
227 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
228 dkwedges = newarray;
229 ndkwedges = newcnt;
230 if (oldarray != NULL)
231 free(oldarray, M_DKWEDGE);
232 }
233
234 /*
235 * dkwedge_add: [exported function]
236 *
237 * Add a disk wedge based on the provided information.
238 *
239 * The incoming dkw_devname[] is ignored, instead being
240 * filled in and returned to the caller.
241 */
242 int
243 dkwedge_add(struct dkwedge_info *dkw)
244 {
245 struct dkwedge_softc *sc, *lsc;
246 struct disk *pdk;
247 u_int unit;
248 int error;
249 dev_t pdev;
250
251 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
252 pdk = disk_find(dkw->dkw_parent);
253 if (pdk == NULL)
254 return (ENODEV);
255
256 error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
257 if (error)
258 return (error);
259
260 if (dkw->dkw_offset < 0)
261 return (EINVAL);
262
263 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
264 sc->sc_state = DKW_STATE_LARVAL;
265 sc->sc_parent = pdk;
266 sc->sc_pdev = pdev;
267 sc->sc_offset = dkw->dkw_offset;
268 sc->sc_size = dkw->dkw_size;
269
270 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
271 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
272
273 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
274 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
275
276 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
277
278 callout_init(&sc->sc_restart_ch, 0);
279 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
280
281 /*
282 * Wedge will be added; increment the wedge count for the parent.
283 * Only allow this to happend if RAW_PART is the only thing open.
284 */
285 mutex_enter(&pdk->dk_openlock);
286 if (pdk->dk_openmask & ~(1 << RAW_PART))
287 error = EBUSY;
288 else {
289 /* Check for wedge overlap. */
290 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
291 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
292 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
293
294 if (sc->sc_offset >= lsc->sc_offset &&
295 sc->sc_offset <= llastblk) {
296 /* Overlaps the tail of the exsiting wedge. */
297 break;
298 }
299 if (lastblk >= lsc->sc_offset &&
300 lastblk <= llastblk) {
301 /* Overlaps the head of the existing wedge. */
302 break;
303 }
304 }
305 if (lsc != NULL)
306 error = EINVAL;
307 else {
308 pdk->dk_nwedges++;
309 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
310 }
311 }
312 mutex_exit(&pdk->dk_openlock);
313 if (error) {
314 bufq_free(sc->sc_bufq);
315 free(sc, M_DKWEDGE);
316 return (error);
317 }
318
319 /* Fill in our cfdata for the pseudo-device glue. */
320 sc->sc_cfdata.cf_name = dk_cd.cd_name;
321 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
322 /* sc->sc_cfdata.cf_unit set below */
323 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
324
325 /* Insert the larval wedge into the array. */
326 rw_enter(&dkwedges_lock, RW_WRITER);
327 for (error = 0;;) {
328 struct dkwedge_softc **scpp;
329
330 /*
331 * Check for a duplicate wname while searching for
332 * a slot.
333 */
334 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
335 if (dkwedges[unit] == NULL) {
336 if (scpp == NULL) {
337 scpp = &dkwedges[unit];
338 sc->sc_cfdata.cf_unit = unit;
339 }
340 } else {
341 /* XXX Unicode. */
342 if (strcmp(dkwedges[unit]->sc_wname,
343 sc->sc_wname) == 0) {
344 error = EEXIST;
345 break;
346 }
347 }
348 }
349 if (error)
350 break;
351 KASSERT(unit == ndkwedges);
352 if (scpp == NULL)
353 dkwedge_array_expand();
354 else {
355 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
356 *scpp = sc;
357 break;
358 }
359 }
360 rw_exit(&dkwedges_lock);
361 if (error) {
362 mutex_enter(&pdk->dk_openlock);
363 pdk->dk_nwedges--;
364 LIST_REMOVE(sc, sc_plink);
365 mutex_exit(&pdk->dk_openlock);
366
367 bufq_free(sc->sc_bufq);
368 free(sc, M_DKWEDGE);
369 return (error);
370 }
371
372 /*
373 * Now that we know the unit #, attach a pseudo-device for
374 * this wedge instance. This will provide us with the
375 * "struct device" necessary for glue to other parts of the
376 * system.
377 *
378 * This should never fail, unless we're almost totally out of
379 * memory.
380 */
381 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
382 aprint_error("%s%u: unable to attach pseudo-device\n",
383 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
384
385 rw_enter(&dkwedges_lock, RW_WRITER);
386 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
387 rw_exit(&dkwedges_lock);
388
389 mutex_enter(&pdk->dk_openlock);
390 pdk->dk_nwedges--;
391 LIST_REMOVE(sc, sc_plink);
392 mutex_exit(&pdk->dk_openlock);
393
394 bufq_free(sc->sc_bufq);
395 free(sc, M_DKWEDGE);
396 return (ENOMEM);
397 }
398
399 /* Return the devname to the caller. */
400 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
401 sizeof(dkw->dkw_devname));
402
403 /*
404 * XXX Really ought to make the disk_attach() and the changing
405 * of state to RUNNING atomic.
406 */
407
408 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
409 disk_attach(&sc->sc_dk);
410
411 /* Disk wedge is ready for use! */
412 sc->sc_state = DKW_STATE_RUNNING;
413
414 /* Announce our arrival. */
415 aprint_normal("%s at %s: %s\n", device_xname(sc->sc_dev), pdk->dk_name,
416 sc->sc_wname); /* XXX Unicode */
417 aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
418 device_xname(sc->sc_dev), sc->sc_size, sc->sc_offset, sc->sc_ptype);
419
420 return (0);
421 }
422
423 /*
424 * dkwedge_del: [exported function]
425 *
426 * Delete a disk wedge based on the provided information.
427 * NOTE: We look up the wedge based on the wedge devname,
428 * not wname.
429 */
430 int
431 dkwedge_del(struct dkwedge_info *dkw)
432 {
433 struct dkwedge_softc *sc = NULL;
434 u_int unit;
435 int bmaj, cmaj, s;
436
437 /* Find our softc. */
438 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
439 rw_enter(&dkwedges_lock, RW_WRITER);
440 for (unit = 0; unit < ndkwedges; unit++) {
441 if ((sc = dkwedges[unit]) != NULL &&
442 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
443 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
444 /* Mark the wedge as dying. */
445 sc->sc_state = DKW_STATE_DYING;
446 break;
447 }
448 }
449 rw_exit(&dkwedges_lock);
450 if (unit == ndkwedges)
451 return (ESRCH);
452
453 KASSERT(sc != NULL);
454
455 /* Locate the wedge major numbers. */
456 bmaj = bdevsw_lookup_major(&dk_bdevsw);
457 cmaj = cdevsw_lookup_major(&dk_cdevsw);
458
459 /* Kill any pending restart. */
460 callout_stop(&sc->sc_restart_ch);
461
462 /*
463 * dkstart() will kill any queued buffers now that the
464 * state of the wedge is not RUNNING. Once we've done
465 * that, wait for any other pending I/O to complete.
466 */
467 s = splbio();
468 dkstart(sc);
469 dkwedge_wait_drain(sc);
470 splx(s);
471
472 /* Nuke the vnodes for any open instances. */
473 vdevgone(bmaj, unit, unit, VBLK);
474 vdevgone(cmaj, unit, unit, VCHR);
475
476 /* Clean up the parent. */
477 mutex_enter(&sc->sc_dk.dk_openlock);
478 mutex_enter(&sc->sc_parent->dk_rawlock);
479 if (sc->sc_dk.dk_openmask) {
480 if (sc->sc_parent->dk_rawopens-- == 1) {
481 KASSERT(sc->sc_parent->dk_rawvp != NULL);
482 (void) vn_close(sc->sc_parent->dk_rawvp, FREAD | FWRITE,
483 NOCRED);
484 sc->sc_parent->dk_rawvp = NULL;
485 }
486 sc->sc_dk.dk_openmask = 0;
487 }
488 mutex_exit(&sc->sc_parent->dk_rawlock);
489 mutex_exit(&sc->sc_dk.dk_openlock);
490
491 /* Announce our departure. */
492 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
493 sc->sc_parent->dk_name,
494 sc->sc_wname); /* XXX Unicode */
495
496 /* Delete our pseudo-device. */
497 (void) config_detach(sc->sc_dev, DETACH_FORCE | DETACH_QUIET);
498
499 mutex_enter(&sc->sc_parent->dk_openlock);
500 sc->sc_parent->dk_nwedges--;
501 LIST_REMOVE(sc, sc_plink);
502 mutex_exit(&sc->sc_parent->dk_openlock);
503
504 /* Delete our buffer queue. */
505 bufq_free(sc->sc_bufq);
506
507 /* Detach from the disk list. */
508 disk_detach(&sc->sc_dk);
509 disk_destroy(&sc->sc_dk);
510
511 /* Poof. */
512 rw_enter(&dkwedges_lock, RW_WRITER);
513 dkwedges[unit] = NULL;
514 sc->sc_state = DKW_STATE_DEAD;
515 rw_exit(&dkwedges_lock);
516
517 free(sc, M_DKWEDGE);
518
519 return (0);
520 }
521
522 /*
523 * dkwedge_delall: [exported function]
524 *
525 * Delete all of the wedges on the specified disk. Used when
526 * a disk is being detached.
527 */
528 void
529 dkwedge_delall(struct disk *pdk)
530 {
531 struct dkwedge_info dkw;
532 struct dkwedge_softc *sc;
533
534 for (;;) {
535 mutex_enter(&pdk->dk_openlock);
536 if ((sc = LIST_FIRST(&pdk->dk_wedges)) == NULL) {
537 KASSERT(pdk->dk_nwedges == 0);
538 mutex_exit(&pdk->dk_openlock);
539 return;
540 }
541 strcpy(dkw.dkw_parent, pdk->dk_name);
542 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
543 sizeof(dkw.dkw_devname));
544 mutex_exit(&pdk->dk_openlock);
545 (void) dkwedge_del(&dkw);
546 }
547 }
548
549 /*
550 * dkwedge_list: [exported function]
551 *
552 * List all of the wedges on a particular disk.
553 * If p == NULL, the buffer is in kernel space. Otherwise, it is
554 * in user space of the specified process.
555 */
556 int
557 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
558 {
559 struct uio uio;
560 struct iovec iov;
561 struct dkwedge_softc *sc;
562 struct dkwedge_info dkw;
563 struct vmspace *vm;
564 int error = 0;
565
566 iov.iov_base = dkwl->dkwl_buf;
567 iov.iov_len = dkwl->dkwl_bufsize;
568
569 uio.uio_iov = &iov;
570 uio.uio_iovcnt = 1;
571 uio.uio_offset = 0;
572 uio.uio_resid = dkwl->dkwl_bufsize;
573 uio.uio_rw = UIO_READ;
574 if (l == NULL) {
575 UIO_SETUP_SYSSPACE(&uio);
576 } else {
577 error = proc_vmspace_getref(l->l_proc, &vm);
578 if (error) {
579 return error;
580 }
581 uio.uio_vmspace = vm;
582 }
583
584 dkwl->dkwl_ncopied = 0;
585
586 mutex_enter(&pdk->dk_openlock);
587 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
588 if (uio.uio_resid < sizeof(dkw))
589 break;
590
591 if (sc->sc_state != DKW_STATE_RUNNING)
592 continue;
593
594 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
595 sizeof(dkw.dkw_devname));
596 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
597 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
598 strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
599 dkw.dkw_offset = sc->sc_offset;
600 dkw.dkw_size = sc->sc_size;
601 strcpy(dkw.dkw_ptype, sc->sc_ptype);
602
603 error = uiomove(&dkw, sizeof(dkw), &uio);
604 if (error)
605 break;
606 dkwl->dkwl_ncopied++;
607 }
608 dkwl->dkwl_nwedges = pdk->dk_nwedges;
609 mutex_exit(&pdk->dk_openlock);
610
611 if (l != NULL) {
612 uvmspace_free(vm);
613 }
614
615 return (error);
616 }
617
618 device_t
619 dkwedge_find_by_wname(const char *wname)
620 {
621 device_t dv = NULL;
622 struct dkwedge_softc *sc;
623 int i;
624
625 rw_enter(&dkwedges_lock, RW_WRITER);
626 for (i = 0; i < ndkwedges; i++) {
627 if ((sc = dkwedges[i]) == NULL)
628 continue;
629 if (strcmp(sc->sc_wname, wname) == 0) {
630 if (dv != NULL) {
631 printf(
632 "WARNING: double match for wedge name %s "
633 "(%s, %s)\n", wname, device_xname(dv),
634 device_xname(sc->sc_dev));
635 continue;
636 }
637 dv = sc->sc_dev;
638 }
639 }
640 rw_exit(&dkwedges_lock);
641 return dv;
642 }
643
644 void
645 dkwedge_print_wnames(void)
646 {
647 struct dkwedge_softc *sc;
648 int i;
649
650 rw_enter(&dkwedges_lock, RW_WRITER);
651 for (i = 0; i < ndkwedges; i++) {
652 if ((sc = dkwedges[i]) == NULL)
653 continue;
654 printf(" wedge:%s", sc->sc_wname);
655 }
656 rw_exit(&dkwedges_lock);
657 }
658
659 /*
660 * dkwedge_set_bootwedge
661 *
662 * Set the booted_wedge global based on the specified parent name
663 * and offset/length.
664 */
665 void
666 dkwedge_set_bootwedge(struct device *parent, daddr_t startblk, uint64_t nblks)
667 {
668 struct dkwedge_softc *sc;
669 int i;
670
671 rw_enter(&dkwedges_lock, RW_WRITER);
672 for (i = 0; i < ndkwedges; i++) {
673 if ((sc = dkwedges[i]) == NULL)
674 continue;
675 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
676 sc->sc_offset == startblk &&
677 sc->sc_size == nblks) {
678 if (booted_wedge) {
679 printf("WARNING: double match for boot wedge "
680 "(%s, %s)\n",
681 device_xname(booted_wedge),
682 device_xname(sc->sc_dev));
683 continue;
684 }
685 booted_device = parent;
686 booted_wedge = sc->sc_dev;
687 booted_partition = 0;
688 }
689 }
690 /*
691 * XXX What if we don't find one? Should we create a special
692 * XXX root wedge?
693 */
694 rw_exit(&dkwedges_lock);
695 }
696
697 /*
698 * We need a dummy object to stuff into the dkwedge discovery method link
699 * set to ensure that there is always at least one object in the set.
700 */
701 static struct dkwedge_discovery_method dummy_discovery_method;
702 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
703
704 /*
705 * dkwedge_init:
706 *
707 * Initialize the disk wedge subsystem.
708 */
709 void
710 dkwedge_init(void)
711 {
712 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
713 struct dkwedge_discovery_method * const *ddmp;
714 struct dkwedge_discovery_method *lddm, *ddm;
715
716 rw_init(&dkwedges_lock);
717 rw_init(&dkwedge_discovery_methods_lock);
718
719 if (config_cfdriver_attach(&dk_cd) != 0)
720 panic("dkwedge: unable to attach cfdriver");
721 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
722 panic("dkwedge: unable to attach cfattach");
723
724 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
725
726 LIST_INIT(&dkwedge_discovery_methods);
727
728 __link_set_foreach(ddmp, dkwedge_methods) {
729 ddm = *ddmp;
730 if (ddm == &dummy_discovery_method)
731 continue;
732 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
733 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
734 ddm, ddm_list);
735 continue;
736 }
737 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
738 if (ddm->ddm_priority == lddm->ddm_priority) {
739 aprint_error("dk-method-%s: method \"%s\" "
740 "already exists at priority %d\n",
741 ddm->ddm_name, lddm->ddm_name,
742 lddm->ddm_priority);
743 /* Not inserted. */
744 break;
745 }
746 if (ddm->ddm_priority < lddm->ddm_priority) {
747 /* Higher priority; insert before. */
748 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
749 break;
750 }
751 if (LIST_NEXT(lddm, ddm_list) == NULL) {
752 /* Last one; insert after. */
753 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
754 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
755 break;
756 }
757 }
758 }
759
760 rw_exit(&dkwedge_discovery_methods_lock);
761 }
762
763 #ifdef DKWEDGE_AUTODISCOVER
764 int dkwedge_autodiscover = 1;
765 #else
766 int dkwedge_autodiscover = 0;
767 #endif
768
769 /*
770 * dkwedge_discover: [exported function]
771 *
772 * Discover the wedges on a newly attached disk.
773 */
774 void
775 dkwedge_discover(struct disk *pdk)
776 {
777 struct dkwedge_discovery_method *ddm;
778 struct vnode *vp;
779 int error;
780 dev_t pdev;
781
782 /*
783 * Require people playing with wedges to enable this explicitly.
784 */
785 if (dkwedge_autodiscover == 0)
786 return;
787
788 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
789
790 error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
791 if (error) {
792 aprint_error("%s: unable to compute pdev, error = %d\n",
793 pdk->dk_name, error);
794 goto out;
795 }
796
797 error = bdevvp(pdev, &vp);
798 if (error) {
799 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
800 pdk->dk_name, error);
801 goto out;
802 }
803
804 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
805 if (error) {
806 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
807 pdk->dk_name, error);
808 vrele(vp);
809 goto out;
810 }
811
812 error = VOP_OPEN(vp, FREAD, NOCRED);
813 if (error) {
814 aprint_error("%s: unable to open device, error = %d\n",
815 pdk->dk_name, error);
816 vput(vp);
817 goto out;
818 }
819 VOP_UNLOCK(vp, 0);
820
821 /*
822 * For each supported partition map type, look to see if
823 * this map type exists. If so, parse it and add the
824 * corresponding wedges.
825 */
826 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
827 error = (*ddm->ddm_discover)(pdk, vp);
828 if (error == 0) {
829 /* Successfully created wedges; we're done. */
830 break;
831 }
832 }
833
834 error = vn_close(vp, FREAD, NOCRED);
835 if (error) {
836 aprint_error("%s: unable to close device, error = %d\n",
837 pdk->dk_name, error);
838 /* We'll just assume the vnode has been cleaned up. */
839 }
840 out:
841 rw_exit(&dkwedge_discovery_methods_lock);
842 }
843
844 /*
845 * dkwedge_read:
846 *
847 * Read some data from the specified disk, used for
848 * partition discovery.
849 */
850 int
851 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
852 void *tbuf, size_t len)
853 {
854 struct buf *bp;
855 int result;
856
857 bp = getiobuf(vp, true);
858
859 bp->b_dev = vp->v_rdev;
860 bp->b_blkno = blkno;
861 bp->b_bcount = len;
862 bp->b_resid = len;
863 bp->b_flags = B_READ;
864 bp->b_data = tbuf;
865
866 VOP_STRATEGY(vp, bp);
867 result = biowait(bp);
868 putiobuf(bp);
869
870 return result;
871 }
872
873 /*
874 * dkwedge_lookup:
875 *
876 * Look up a dkwedge_softc based on the provided dev_t.
877 */
878 static struct dkwedge_softc *
879 dkwedge_lookup(dev_t dev)
880 {
881 int unit = minor(dev);
882
883 if (unit >= ndkwedges)
884 return (NULL);
885
886 KASSERT(dkwedges != NULL);
887
888 return (dkwedges[unit]);
889 }
890
891 /*
892 * dkopen: [devsw entry point]
893 *
894 * Open a wedge.
895 */
896 static int
897 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
898 {
899 struct dkwedge_softc *sc = dkwedge_lookup(dev);
900 struct vnode *vp;
901 int error = 0;
902
903 if (sc == NULL)
904 return (ENODEV);
905
906 if (sc->sc_state != DKW_STATE_RUNNING)
907 return (ENXIO);
908
909 /*
910 * We go through a complicated little dance to only open the parent
911 * vnode once per wedge, no matter how many times the wedge is
912 * opened. The reason? We see one dkopen() per open call, but
913 * only dkclose() on the last close.
914 */
915 mutex_enter(&sc->sc_dk.dk_openlock);
916 mutex_enter(&sc->sc_parent->dk_rawlock);
917 if (sc->sc_dk.dk_openmask == 0) {
918 if (sc->sc_parent->dk_rawopens == 0) {
919 KASSERT(sc->sc_parent->dk_rawvp == NULL);
920 error = bdevvp(sc->sc_pdev, &vp);
921 if (error)
922 goto popen_fail;
923 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
924 if (error) {
925 vrele(vp);
926 goto popen_fail;
927 }
928 error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED);
929 if (error) {
930 vput(vp);
931 goto popen_fail;
932 }
933 /* VOP_OPEN() doesn't do this for us. */
934 mutex_enter(&vp->v_interlock);
935 vp->v_writecount++;
936 mutex_exit(&vp->v_interlock);
937 VOP_UNLOCK(vp, 0);
938 sc->sc_parent->dk_rawvp = vp;
939 }
940 sc->sc_parent->dk_rawopens++;
941 }
942 if (fmt == S_IFCHR)
943 sc->sc_dk.dk_copenmask |= 1;
944 else
945 sc->sc_dk.dk_bopenmask |= 1;
946 sc->sc_dk.dk_openmask =
947 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
948
949 popen_fail:
950 mutex_exit(&sc->sc_parent->dk_rawlock);
951 mutex_exit(&sc->sc_dk.dk_openlock);
952 return (error);
953 }
954
955 /*
956 * dkclose: [devsw entry point]
957 *
958 * Close a wedge.
959 */
960 static int
961 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
962 {
963 struct dkwedge_softc *sc = dkwedge_lookup(dev);
964 int error = 0;
965
966 KASSERT(sc->sc_dk.dk_openmask != 0);
967
968 mutex_enter(&sc->sc_dk.dk_openlock);
969 mutex_enter(&sc->sc_parent->dk_rawlock);
970
971 if (fmt == S_IFCHR)
972 sc->sc_dk.dk_copenmask &= ~1;
973 else
974 sc->sc_dk.dk_bopenmask &= ~1;
975 sc->sc_dk.dk_openmask =
976 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
977
978 if (sc->sc_dk.dk_openmask == 0) {
979 if (sc->sc_parent->dk_rawopens-- == 1) {
980 KASSERT(sc->sc_parent->dk_rawvp != NULL);
981 error = vn_close(sc->sc_parent->dk_rawvp,
982 FREAD | FWRITE, NOCRED);
983 sc->sc_parent->dk_rawvp = NULL;
984 }
985 }
986
987 mutex_exit(&sc->sc_parent->dk_rawlock);
988 mutex_exit(&sc->sc_dk.dk_openlock);
989
990 return (error);
991 }
992
993 /*
994 * dkstragegy: [devsw entry point]
995 *
996 * Perform I/O based on the wedge I/O strategy.
997 */
998 static void
999 dkstrategy(struct buf *bp)
1000 {
1001 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1002 int s;
1003
1004 if (sc->sc_state != DKW_STATE_RUNNING) {
1005 bp->b_error = ENXIO;
1006 goto done;
1007 }
1008
1009 /* If it's an empty transfer, wake up the top half now. */
1010 if (bp->b_bcount == 0)
1011 goto done;
1012
1013 /* Make sure it's in-range. */
1014 if (bounds_check_with_mediasize(bp, DEV_BSIZE, sc->sc_size) <= 0)
1015 goto done;
1016
1017 /* Translate it to the parent's raw LBA. */
1018 bp->b_rawblkno = bp->b_blkno + sc->sc_offset;
1019
1020 /* Place it in the queue and start I/O on the unit. */
1021 s = splbio();
1022 sc->sc_iopend++;
1023 BUFQ_PUT(sc->sc_bufq, bp);
1024 dkstart(sc);
1025 splx(s);
1026 return;
1027
1028 done:
1029 bp->b_resid = bp->b_bcount;
1030 biodone(bp);
1031 }
1032
1033 /*
1034 * dkstart:
1035 *
1036 * Start I/O that has been enqueued on the wedge.
1037 * NOTE: Must be called at splbio()!
1038 */
1039 static void
1040 dkstart(struct dkwedge_softc *sc)
1041 {
1042 struct vnode *vp;
1043 struct buf *bp, *nbp;
1044
1045 /* Do as much work as has been enqueued. */
1046 while ((bp = BUFQ_PEEK(sc->sc_bufq)) != NULL) {
1047 if (sc->sc_state != DKW_STATE_RUNNING) {
1048 (void) BUFQ_GET(sc->sc_bufq);
1049 if (sc->sc_iopend-- == 1 &&
1050 (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1051 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1052 wakeup(&sc->sc_iopend);
1053 }
1054 bp->b_error = ENXIO;
1055 bp->b_resid = bp->b_bcount;
1056 biodone(bp);
1057 }
1058
1059 /* Instrumentation. */
1060 disk_busy(&sc->sc_dk);
1061
1062 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1063 if (nbp == NULL) {
1064 /*
1065 * No resources to run this request; leave the
1066 * buffer queued up, and schedule a timer to
1067 * restart the queue in 1/2 a second.
1068 */
1069 disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
1070 callout_schedule(&sc->sc_restart_ch, hz / 2);
1071 return;
1072 }
1073
1074 (void) BUFQ_GET(sc->sc_bufq);
1075
1076 nbp->b_data = bp->b_data;
1077 nbp->b_flags = bp->b_flags;
1078 nbp->b_oflags = bp->b_oflags;
1079 nbp->b_cflags = bp->b_cflags;
1080 nbp->b_iodone = dkiodone;
1081 nbp->b_proc = bp->b_proc;
1082 nbp->b_blkno = bp->b_rawblkno;
1083 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1084 nbp->b_bcount = bp->b_bcount;
1085 nbp->b_private = bp;
1086 BIO_COPYPRIO(nbp, bp);
1087
1088 vp = nbp->b_vp;
1089 if ((nbp->b_flags & B_READ) == 0) {
1090 mutex_enter(&vp->v_interlock);
1091 vp->v_numoutput++;
1092 mutex_exit(&vp->v_interlock);
1093 }
1094 VOP_STRATEGY(vp, nbp);
1095 }
1096 }
1097
1098 /*
1099 * dkiodone:
1100 *
1101 * I/O to a wedge has completed; alert the top half.
1102 * NOTE: Must be called at splbio()!
1103 */
1104 static void
1105 dkiodone(struct buf *bp)
1106 {
1107 struct buf *obp = bp->b_private;
1108 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1109
1110 if (bp->b_error != 0)
1111 obp->b_error = bp->b_error;
1112 obp->b_resid = bp->b_resid;
1113 putiobuf(bp);
1114
1115 if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1116 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1117 wakeup(&sc->sc_iopend);
1118 }
1119
1120 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1121 obp->b_flags & B_READ);
1122
1123 biodone(obp);
1124
1125 /* Kick the queue in case there is more work we can do. */
1126 dkstart(sc);
1127 }
1128
1129 /*
1130 * dkrestart:
1131 *
1132 * Restart the work queue after it was stalled due to
1133 * a resource shortage. Invoked via a callout.
1134 */
1135 static void
1136 dkrestart(void *v)
1137 {
1138 struct dkwedge_softc *sc = v;
1139 int s;
1140
1141 s = splbio();
1142 dkstart(sc);
1143 splx(s);
1144 }
1145
1146 /*
1147 * dkread: [devsw entry point]
1148 *
1149 * Read from a wedge.
1150 */
1151 static int
1152 dkread(dev_t dev, struct uio *uio, int flags)
1153 {
1154 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1155
1156 if (sc->sc_state != DKW_STATE_RUNNING)
1157 return (ENXIO);
1158
1159 return (physio(dkstrategy, NULL, dev, B_READ,
1160 sc->sc_parent->dk_driver->d_minphys, uio));
1161 }
1162
1163 /*
1164 * dkwrite: [devsw entry point]
1165 *
1166 * Write to a wedge.
1167 */
1168 static int
1169 dkwrite(dev_t dev, struct uio *uio, int flags)
1170 {
1171 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1172
1173 if (sc->sc_state != DKW_STATE_RUNNING)
1174 return (ENXIO);
1175
1176 return (physio(dkstrategy, NULL, dev, B_WRITE,
1177 sc->sc_parent->dk_driver->d_minphys, uio));
1178 }
1179
1180 /*
1181 * dkioctl: [devsw entry point]
1182 *
1183 * Perform an ioctl request on a wedge.
1184 */
1185 static int
1186 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1187 {
1188 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1189 int error = 0;
1190
1191 if (sc->sc_state != DKW_STATE_RUNNING)
1192 return (ENXIO);
1193
1194 switch (cmd) {
1195 case DIOCCACHESYNC:
1196 /*
1197 * XXX Do we really need to care about having a writable
1198 * file descriptor here?
1199 */
1200 if ((flag & FWRITE) == 0)
1201 error = EBADF;
1202 else
1203 error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
1204 cmd, data, flag,
1205 l != NULL ? l->l_cred : NOCRED);
1206 break;
1207 case DIOCGWEDGEINFO:
1208 {
1209 struct dkwedge_info *dkw = (void *) data;
1210
1211 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1212 sizeof(dkw->dkw_devname));
1213 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1214 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1215 strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
1216 dkw->dkw_offset = sc->sc_offset;
1217 dkw->dkw_size = sc->sc_size;
1218 strcpy(dkw->dkw_ptype, sc->sc_ptype);
1219
1220 break;
1221 }
1222
1223 default:
1224 error = ENOTTY;
1225 }
1226
1227 return (error);
1228 }
1229
1230 /*
1231 * dksize: [devsw entry point]
1232 *
1233 * Query the size of a wedge for the purpose of performing a dump
1234 * or for swapping to.
1235 */
1236 static int
1237 dksize(dev_t dev)
1238 {
1239 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1240 int rv = -1;
1241
1242 if (sc == NULL)
1243 return (-1);
1244
1245 if (sc->sc_state != DKW_STATE_RUNNING)
1246 return (ENXIO);
1247
1248 mutex_enter(&sc->sc_dk.dk_openlock);
1249 mutex_enter(&sc->sc_parent->dk_rawlock);
1250
1251 /* Our content type is static, no need to open the device. */
1252
1253 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1254 /* Saturate if we are larger than INT_MAX. */
1255 if (sc->sc_size > INT_MAX)
1256 rv = INT_MAX;
1257 else
1258 rv = (int) sc->sc_size;
1259 }
1260
1261 mutex_exit(&sc->sc_parent->dk_rawlock);
1262 mutex_exit(&sc->sc_dk.dk_openlock);
1263
1264 return (rv);
1265 }
1266
1267 /*
1268 * dkdump: [devsw entry point]
1269 *
1270 * Perform a crash dump to a wedge.
1271 */
1272 static int
1273 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1274 {
1275 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1276 const struct bdevsw *bdev;
1277 int rv = 0;
1278
1279 if (sc == NULL)
1280 return (-1);
1281
1282 if (sc->sc_state != DKW_STATE_RUNNING)
1283 return (ENXIO);
1284
1285 mutex_enter(&sc->sc_dk.dk_openlock);
1286 mutex_enter(&sc->sc_parent->dk_rawlock);
1287
1288 /* Our content type is static, no need to open the device. */
1289
1290 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
1291 rv = ENXIO;
1292 goto out;
1293 }
1294 if (size % DEV_BSIZE != 0) {
1295 rv = EINVAL;
1296 goto out;
1297 }
1298 if (blkno + size / DEV_BSIZE > sc->sc_size) {
1299 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1300 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
1301 size / DEV_BSIZE, sc->sc_size);
1302 rv = EINVAL;
1303 goto out;
1304 }
1305
1306 bdev = bdevsw_lookup(sc->sc_pdev);
1307 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
1308
1309 out:
1310 mutex_exit(&sc->sc_parent->dk_rawlock);
1311 mutex_exit(&sc->sc_dk.dk_openlock);
1312
1313 return rv;
1314 }
1315