Home | History | Annotate | Line # | Download | only in dkwedge
dk.c revision 1.42.6.2
      1 /*	$NetBSD: dk.c,v 1.42.6.2 2010/01/30 19:00:46 snj Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.42.6.2 2010/01/30 19:00:46 snj Exp $");
     34 
     35 #include "opt_dkwedge.h"
     36 
     37 #include <sys/param.h>
     38 #include <sys/systm.h>
     39 #include <sys/proc.h>
     40 #include <sys/errno.h>
     41 #include <sys/pool.h>
     42 #include <sys/ioctl.h>
     43 #include <sys/disklabel.h>
     44 #include <sys/disk.h>
     45 #include <sys/fcntl.h>
     46 #include <sys/buf.h>
     47 #include <sys/bufq.h>
     48 #include <sys/vnode.h>
     49 #include <sys/stat.h>
     50 #include <sys/conf.h>
     51 #include <sys/callout.h>
     52 #include <sys/kernel.h>
     53 #include <sys/malloc.h>
     54 #include <sys/device.h>
     55 #include <sys/kauth.h>
     56 
     57 #include <miscfs/specfs/specdev.h>
     58 
     59 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
     60 
     61 typedef enum {
     62 	DKW_STATE_LARVAL	= 0,
     63 	DKW_STATE_RUNNING	= 1,
     64 	DKW_STATE_DYING		= 2,
     65 	DKW_STATE_DEAD		= 666
     66 } dkwedge_state_t;
     67 
     68 struct dkwedge_softc {
     69 	struct device	*sc_dev;	/* pointer to our pseudo-device */
     70 	struct cfdata	sc_cfdata;	/* our cfdata structure */
     71 	uint8_t		sc_wname[128];	/* wedge name (Unicode, UTF-8) */
     72 
     73 	dkwedge_state_t sc_state;	/* state this wedge is in */
     74 
     75 	struct disk	*sc_parent;	/* parent disk */
     76 	daddr_t		sc_offset;	/* LBA offset of wedge in parent */
     77 	uint64_t	sc_size;	/* size of wedge in blocks */
     78 	char		sc_ptype[32];	/* partition type */
     79 	dev_t		sc_pdev;	/* cached parent's dev_t */
     80 					/* link on parent's wedge list */
     81 	LIST_ENTRY(dkwedge_softc) sc_plink;
     82 
     83 	struct disk	sc_dk;		/* our own disk structure */
     84 	struct bufq_state *sc_bufq;	/* buffer queue */
     85 	struct callout	sc_restart_ch;	/* callout to restart I/O */
     86 
     87 	u_int		sc_iopend;	/* I/Os pending */
     88 	int		sc_flags;	/* flags (splbio) */
     89 };
     90 
     91 #define	DK_F_WAIT_DRAIN		0x0001	/* waiting for I/O to drain */
     92 
     93 static void	dkstart(struct dkwedge_softc *);
     94 static void	dkiodone(struct buf *);
     95 static void	dkrestart(void *);
     96 static void	dkminphys(struct buf *);
     97 
     98 static dev_type_open(dkopen);
     99 static dev_type_close(dkclose);
    100 static dev_type_read(dkread);
    101 static dev_type_write(dkwrite);
    102 static dev_type_ioctl(dkioctl);
    103 static dev_type_strategy(dkstrategy);
    104 static dev_type_dump(dkdump);
    105 static dev_type_size(dksize);
    106 
    107 const struct bdevsw dk_bdevsw = {
    108 	dkopen, dkclose, dkstrategy, dkioctl, dkdump, dksize, D_DISK
    109 };
    110 
    111 const struct cdevsw dk_cdevsw = {
    112 	dkopen, dkclose, dkread, dkwrite, dkioctl,
    113 	    nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    114 };
    115 
    116 static struct dkwedge_softc **dkwedges;
    117 static u_int ndkwedges;
    118 static krwlock_t dkwedges_lock;
    119 
    120 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
    121 static krwlock_t dkwedge_discovery_methods_lock;
    122 
    123 /*
    124  * dkwedge_match:
    125  *
    126  *	Autoconfiguration match function for pseudo-device glue.
    127  */
    128 static int
    129 dkwedge_match(struct device *parent, struct cfdata *match,
    130     void *aux)
    131 {
    132 
    133 	/* Pseudo-device; always present. */
    134 	return (1);
    135 }
    136 
    137 /*
    138  * dkwedge_attach:
    139  *
    140  *	Autoconfiguration attach function for pseudo-device glue.
    141  */
    142 static void
    143 dkwedge_attach(struct device *parent, struct device *self,
    144     void *aux)
    145 {
    146 
    147 	if (!pmf_device_register(self, NULL, NULL))
    148 		aprint_error_dev(self, "couldn't establish power handler\n");
    149 }
    150 
    151 /*
    152  * dkwedge_detach:
    153  *
    154  *	Autoconfiguration detach function for pseudo-device glue.
    155  */
    156 static int
    157 dkwedge_detach(struct device *self, int flags)
    158 {
    159 
    160 	pmf_device_deregister(self);
    161 	/* Always succeeds. */
    162 	return (0);
    163 }
    164 
    165 CFDRIVER_DECL(dk, DV_DISK, NULL);
    166 CFATTACH_DECL_NEW(dk, 0,
    167 	      dkwedge_match, dkwedge_attach, dkwedge_detach, NULL);
    168 
    169 /*
    170  * dkwedge_wait_drain:
    171  *
    172  *	Wait for I/O on the wedge to drain.
    173  *	NOTE: Must be called at splbio()!
    174  */
    175 static void
    176 dkwedge_wait_drain(struct dkwedge_softc *sc)
    177 {
    178 
    179 	while (sc->sc_iopend != 0) {
    180 		sc->sc_flags |= DK_F_WAIT_DRAIN;
    181 		(void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
    182 	}
    183 }
    184 
    185 /*
    186  * dkwedge_compute_pdev:
    187  *
    188  *	Compute the parent disk's dev_t.
    189  */
    190 static int
    191 dkwedge_compute_pdev(const char *pname, dev_t *pdevp)
    192 {
    193 	const char *name, *cp;
    194 	int punit, pmaj;
    195 	char devname[16];
    196 
    197 	name = pname;
    198 	if ((pmaj = devsw_name2blk(name, devname, sizeof(devname))) == -1)
    199 		return (ENODEV);
    200 
    201 	name += strlen(devname);
    202 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
    203 		punit = (punit * 10) + (*cp - '0');
    204 	if (cp == name) {
    205 		/* Invalid parent disk name. */
    206 		return (ENODEV);
    207 	}
    208 
    209 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
    210 
    211 	return (0);
    212 }
    213 
    214 /*
    215  * dkwedge_array_expand:
    216  *
    217  *	Expand the dkwedges array.
    218  */
    219 static void
    220 dkwedge_array_expand(void)
    221 {
    222 	int newcnt = ndkwedges + 16;
    223 	struct dkwedge_softc **newarray, **oldarray;
    224 
    225 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
    226 	    M_WAITOK|M_ZERO);
    227 	if ((oldarray = dkwedges) != NULL)
    228 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
    229 	dkwedges = newarray;
    230 	ndkwedges = newcnt;
    231 	if (oldarray != NULL)
    232 		free(oldarray, M_DKWEDGE);
    233 }
    234 
    235 /*
    236  * dkwedge_add:		[exported function]
    237  *
    238  *	Add a disk wedge based on the provided information.
    239  *
    240  *	The incoming dkw_devname[] is ignored, instead being
    241  *	filled in and returned to the caller.
    242  */
    243 int
    244 dkwedge_add(struct dkwedge_info *dkw)
    245 {
    246 	struct dkwedge_softc *sc, *lsc;
    247 	struct disk *pdk;
    248 	u_int unit;
    249 	int error;
    250 	dev_t pdev;
    251 
    252 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
    253 	pdk = disk_find(dkw->dkw_parent);
    254 	if (pdk == NULL)
    255 		return (ENODEV);
    256 
    257 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
    258 	if (error)
    259 		return (error);
    260 
    261 	if (dkw->dkw_offset < 0)
    262 		return (EINVAL);
    263 
    264 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
    265 	sc->sc_state = DKW_STATE_LARVAL;
    266 	sc->sc_parent = pdk;
    267 	sc->sc_pdev = pdev;
    268 	sc->sc_offset = dkw->dkw_offset;
    269 	sc->sc_size = dkw->dkw_size;
    270 
    271 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
    272 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
    273 
    274 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
    275 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
    276 
    277 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
    278 
    279 	callout_init(&sc->sc_restart_ch, 0);
    280 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
    281 
    282 	/*
    283 	 * Wedge will be added; increment the wedge count for the parent.
    284 	 * Only allow this to happend if RAW_PART is the only thing open.
    285 	 */
    286 	mutex_enter(&pdk->dk_openlock);
    287 	if (pdk->dk_openmask & ~(1 << RAW_PART))
    288 		error = EBUSY;
    289 	else {
    290 		/* Check for wedge overlap. */
    291 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    292 			daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
    293 			daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
    294 
    295 			if (sc->sc_offset >= lsc->sc_offset &&
    296 			    sc->sc_offset <= llastblk) {
    297 				/* Overlaps the tail of the exsiting wedge. */
    298 				break;
    299 			}
    300 			if (lastblk >= lsc->sc_offset &&
    301 			    lastblk <= llastblk) {
    302 				/* Overlaps the head of the existing wedge. */
    303 			    	break;
    304 			}
    305 		}
    306 		if (lsc != NULL)
    307 			error = EINVAL;
    308 		else {
    309 			pdk->dk_nwedges++;
    310 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
    311 		}
    312 	}
    313 	mutex_exit(&pdk->dk_openlock);
    314 	if (error) {
    315 		bufq_free(sc->sc_bufq);
    316 		free(sc, M_DKWEDGE);
    317 		return (error);
    318 	}
    319 
    320 	/* Fill in our cfdata for the pseudo-device glue. */
    321 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
    322 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
    323 	/* sc->sc_cfdata.cf_unit set below */
    324 	sc->sc_cfdata.cf_fstate = FSTATE_STAR;
    325 
    326 	/* Insert the larval wedge into the array. */
    327 	rw_enter(&dkwedges_lock, RW_WRITER);
    328 	for (error = 0;;) {
    329 		struct dkwedge_softc **scpp;
    330 
    331 		/*
    332 		 * Check for a duplicate wname while searching for
    333 		 * a slot.
    334 		 */
    335 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
    336 			if (dkwedges[unit] == NULL) {
    337 				if (scpp == NULL) {
    338 					scpp = &dkwedges[unit];
    339 					sc->sc_cfdata.cf_unit = unit;
    340 				}
    341 			} else {
    342 				/* XXX Unicode. */
    343 				if (strcmp(dkwedges[unit]->sc_wname,
    344 					   sc->sc_wname) == 0) {
    345 					error = EEXIST;
    346 					break;
    347 				}
    348 			}
    349 		}
    350 		if (error)
    351 			break;
    352 		KASSERT(unit == ndkwedges);
    353 		if (scpp == NULL)
    354 			dkwedge_array_expand();
    355 		else {
    356 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
    357 			*scpp = sc;
    358 			break;
    359 		}
    360 	}
    361 	rw_exit(&dkwedges_lock);
    362 	if (error) {
    363 		mutex_enter(&pdk->dk_openlock);
    364 		pdk->dk_nwedges--;
    365 		LIST_REMOVE(sc, sc_plink);
    366 		mutex_exit(&pdk->dk_openlock);
    367 
    368 		bufq_free(sc->sc_bufq);
    369 		free(sc, M_DKWEDGE);
    370 		return (error);
    371 	}
    372 
    373 	/*
    374 	 * Now that we know the unit #, attach a pseudo-device for
    375 	 * this wedge instance.  This will provide us with the
    376 	 * "struct device" necessary for glue to other parts of the
    377 	 * system.
    378 	 *
    379 	 * This should never fail, unless we're almost totally out of
    380 	 * memory.
    381 	 */
    382 	if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
    383 		aprint_error("%s%u: unable to attach pseudo-device\n",
    384 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
    385 
    386 		rw_enter(&dkwedges_lock, RW_WRITER);
    387 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
    388 		rw_exit(&dkwedges_lock);
    389 
    390 		mutex_enter(&pdk->dk_openlock);
    391 		pdk->dk_nwedges--;
    392 		LIST_REMOVE(sc, sc_plink);
    393 		mutex_exit(&pdk->dk_openlock);
    394 
    395 		bufq_free(sc->sc_bufq);
    396 		free(sc, M_DKWEDGE);
    397 		return (ENOMEM);
    398 	}
    399 
    400 	/* Return the devname to the caller. */
    401 	strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
    402 		sizeof(dkw->dkw_devname));
    403 
    404 	/*
    405 	 * XXX Really ought to make the disk_attach() and the changing
    406 	 * of state to RUNNING atomic.
    407 	 */
    408 
    409 	disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
    410 	disk_attach(&sc->sc_dk);
    411 
    412 	/* Disk wedge is ready for use! */
    413 	sc->sc_state = DKW_STATE_RUNNING;
    414 
    415 	/* Announce our arrival. */
    416 	aprint_normal("%s at %s: %s\n", device_xname(sc->sc_dev), pdk->dk_name,
    417 	    sc->sc_wname);	/* XXX Unicode */
    418 	aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
    419 	    device_xname(sc->sc_dev), sc->sc_size, sc->sc_offset, sc->sc_ptype);
    420 
    421 	return (0);
    422 }
    423 
    424 /*
    425  * dkwedge_del:		[exported function]
    426  *
    427  *	Delete a disk wedge based on the provided information.
    428  *	NOTE: We look up the wedge based on the wedge devname,
    429  *	not wname.
    430  */
    431 int
    432 dkwedge_del(struct dkwedge_info *dkw)
    433 {
    434 	struct dkwedge_softc *sc = NULL;
    435 	u_int unit;
    436 	int bmaj, cmaj, s;
    437 
    438 	/* Find our softc. */
    439 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
    440 	rw_enter(&dkwedges_lock, RW_WRITER);
    441 	for (unit = 0; unit < ndkwedges; unit++) {
    442 		if ((sc = dkwedges[unit]) != NULL &&
    443 		    strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
    444 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
    445 			/* Mark the wedge as dying. */
    446 			sc->sc_state = DKW_STATE_DYING;
    447 			break;
    448 		}
    449 	}
    450 	rw_exit(&dkwedges_lock);
    451 	if (unit == ndkwedges)
    452 		return (ESRCH);
    453 
    454 	KASSERT(sc != NULL);
    455 
    456 	/* Locate the wedge major numbers. */
    457 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
    458 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
    459 
    460 	/* Kill any pending restart. */
    461 	callout_stop(&sc->sc_restart_ch);
    462 
    463 	/*
    464 	 * dkstart() will kill any queued buffers now that the
    465 	 * state of the wedge is not RUNNING.  Once we've done
    466 	 * that, wait for any other pending I/O to complete.
    467 	 */
    468 	s = splbio();
    469 	dkstart(sc);
    470 	dkwedge_wait_drain(sc);
    471 	splx(s);
    472 
    473 	/* Nuke the vnodes for any open instances. */
    474 	vdevgone(bmaj, unit, unit, VBLK);
    475 	vdevgone(cmaj, unit, unit, VCHR);
    476 
    477 	/* Clean up the parent. */
    478 	mutex_enter(&sc->sc_dk.dk_openlock);
    479 	mutex_enter(&sc->sc_parent->dk_rawlock);
    480 	if (sc->sc_dk.dk_openmask) {
    481 		if (sc->sc_parent->dk_rawopens-- == 1) {
    482 			KASSERT(sc->sc_parent->dk_rawvp != NULL);
    483 			(void) vn_close(sc->sc_parent->dk_rawvp, FREAD | FWRITE,
    484 			    NOCRED);
    485 			sc->sc_parent->dk_rawvp = NULL;
    486 		}
    487 		sc->sc_dk.dk_openmask = 0;
    488 	}
    489 	mutex_exit(&sc->sc_parent->dk_rawlock);
    490 	mutex_exit(&sc->sc_dk.dk_openlock);
    491 
    492 	/* Announce our departure. */
    493 	aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
    494 	    sc->sc_parent->dk_name,
    495 	    sc->sc_wname);	/* XXX Unicode */
    496 
    497 	/* Delete our pseudo-device. */
    498 	(void) config_detach(sc->sc_dev, DETACH_FORCE | DETACH_QUIET);
    499 
    500 	mutex_enter(&sc->sc_parent->dk_openlock);
    501 	sc->sc_parent->dk_nwedges--;
    502 	LIST_REMOVE(sc, sc_plink);
    503 	mutex_exit(&sc->sc_parent->dk_openlock);
    504 
    505 	/* Delete our buffer queue. */
    506 	bufq_free(sc->sc_bufq);
    507 
    508 	/* Detach from the disk list. */
    509 	disk_detach(&sc->sc_dk);
    510 	disk_destroy(&sc->sc_dk);
    511 
    512 	/* Poof. */
    513 	rw_enter(&dkwedges_lock, RW_WRITER);
    514 	dkwedges[unit] = NULL;
    515 	sc->sc_state = DKW_STATE_DEAD;
    516 	rw_exit(&dkwedges_lock);
    517 
    518 	free(sc, M_DKWEDGE);
    519 
    520 	return (0);
    521 }
    522 
    523 /*
    524  * dkwedge_delall:	[exported function]
    525  *
    526  *	Delete all of the wedges on the specified disk.  Used when
    527  *	a disk is being detached.
    528  */
    529 void
    530 dkwedge_delall(struct disk *pdk)
    531 {
    532 	struct dkwedge_info dkw;
    533 	struct dkwedge_softc *sc;
    534 
    535 	for (;;) {
    536 		mutex_enter(&pdk->dk_openlock);
    537 		if ((sc = LIST_FIRST(&pdk->dk_wedges)) == NULL) {
    538 			KASSERT(pdk->dk_nwedges == 0);
    539 			mutex_exit(&pdk->dk_openlock);
    540 			return;
    541 		}
    542 		strcpy(dkw.dkw_parent, pdk->dk_name);
    543 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    544 			sizeof(dkw.dkw_devname));
    545 		mutex_exit(&pdk->dk_openlock);
    546 		(void) dkwedge_del(&dkw);
    547 	}
    548 }
    549 
    550 /*
    551  * dkwedge_list:	[exported function]
    552  *
    553  *	List all of the wedges on a particular disk.
    554  *	If p == NULL, the buffer is in kernel space.  Otherwise, it is
    555  *	in user space of the specified process.
    556  */
    557 int
    558 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
    559 {
    560 	struct uio uio;
    561 	struct iovec iov;
    562 	struct dkwedge_softc *sc;
    563 	struct dkwedge_info dkw;
    564 	struct vmspace *vm;
    565 	int error = 0;
    566 
    567 	iov.iov_base = dkwl->dkwl_buf;
    568 	iov.iov_len = dkwl->dkwl_bufsize;
    569 
    570 	uio.uio_iov = &iov;
    571 	uio.uio_iovcnt = 1;
    572 	uio.uio_offset = 0;
    573 	uio.uio_resid = dkwl->dkwl_bufsize;
    574 	uio.uio_rw = UIO_READ;
    575 	if (l == NULL) {
    576 		UIO_SETUP_SYSSPACE(&uio);
    577 	} else {
    578 		error = proc_vmspace_getref(l->l_proc, &vm);
    579 		if (error) {
    580 			return error;
    581 		}
    582 		uio.uio_vmspace = vm;
    583 	}
    584 
    585 	dkwl->dkwl_ncopied = 0;
    586 
    587 	mutex_enter(&pdk->dk_openlock);
    588 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    589 		if (uio.uio_resid < sizeof(dkw))
    590 			break;
    591 
    592 		if (sc->sc_state != DKW_STATE_RUNNING)
    593 			continue;
    594 
    595 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    596 			sizeof(dkw.dkw_devname));
    597 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
    598 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
    599 		strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
    600 		dkw.dkw_offset = sc->sc_offset;
    601 		dkw.dkw_size = sc->sc_size;
    602 		strcpy(dkw.dkw_ptype, sc->sc_ptype);
    603 
    604 		error = uiomove(&dkw, sizeof(dkw), &uio);
    605 		if (error)
    606 			break;
    607 		dkwl->dkwl_ncopied++;
    608 	}
    609 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
    610 	mutex_exit(&pdk->dk_openlock);
    611 
    612 	if (l != NULL) {
    613 		uvmspace_free(vm);
    614 	}
    615 
    616 	return (error);
    617 }
    618 
    619 device_t
    620 dkwedge_find_by_wname(const char *wname)
    621 {
    622 	device_t dv = NULL;
    623 	struct dkwedge_softc *sc;
    624 	int i;
    625 
    626 	rw_enter(&dkwedges_lock, RW_WRITER);
    627 	for (i = 0; i < ndkwedges; i++) {
    628 		if ((sc = dkwedges[i]) == NULL)
    629 			continue;
    630 		if (strcmp(sc->sc_wname, wname) == 0) {
    631 			if (dv != NULL) {
    632 				printf(
    633 				    "WARNING: double match for wedge name %s "
    634 				    "(%s, %s)\n", wname, device_xname(dv),
    635 				    device_xname(sc->sc_dev));
    636 				continue;
    637 			}
    638 			dv = sc->sc_dev;
    639 		}
    640 	}
    641 	rw_exit(&dkwedges_lock);
    642 	return dv;
    643 }
    644 
    645 void
    646 dkwedge_print_wnames(void)
    647 {
    648 	struct dkwedge_softc *sc;
    649 	int i;
    650 
    651 	rw_enter(&dkwedges_lock, RW_WRITER);
    652 	for (i = 0; i < ndkwedges; i++) {
    653 		if ((sc = dkwedges[i]) == NULL)
    654 			continue;
    655 		printf(" wedge:%s", sc->sc_wname);
    656 	}
    657 	rw_exit(&dkwedges_lock);
    658 }
    659 
    660 /*
    661  * dkwedge_set_bootwedge
    662  *
    663  *	Set the booted_wedge global based on the specified parent name
    664  *	and offset/length.
    665  */
    666 void
    667 dkwedge_set_bootwedge(struct device *parent, daddr_t startblk, uint64_t nblks)
    668 {
    669 	struct dkwedge_softc *sc;
    670 	int i;
    671 
    672 	rw_enter(&dkwedges_lock, RW_WRITER);
    673 	for (i = 0; i < ndkwedges; i++) {
    674 		if ((sc = dkwedges[i]) == NULL)
    675 			continue;
    676 		if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
    677 		    sc->sc_offset == startblk &&
    678 		    sc->sc_size == nblks) {
    679 			if (booted_wedge) {
    680 				printf("WARNING: double match for boot wedge "
    681 				    "(%s, %s)\n",
    682 				    device_xname(booted_wedge),
    683 				    device_xname(sc->sc_dev));
    684 				continue;
    685 			}
    686 			booted_device = parent;
    687 			booted_wedge = sc->sc_dev;
    688 			booted_partition = 0;
    689 		}
    690 	}
    691 	/*
    692 	 * XXX What if we don't find one?  Should we create a special
    693 	 * XXX root wedge?
    694 	 */
    695 	rw_exit(&dkwedges_lock);
    696 }
    697 
    698 /*
    699  * We need a dummy object to stuff into the dkwedge discovery method link
    700  * set to ensure that there is always at least one object in the set.
    701  */
    702 static struct dkwedge_discovery_method dummy_discovery_method;
    703 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
    704 
    705 /*
    706  * dkwedge_init:
    707  *
    708  *	Initialize the disk wedge subsystem.
    709  */
    710 void
    711 dkwedge_init(void)
    712 {
    713 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
    714 	struct dkwedge_discovery_method * const *ddmp;
    715 	struct dkwedge_discovery_method *lddm, *ddm;
    716 
    717 	rw_init(&dkwedges_lock);
    718 	rw_init(&dkwedge_discovery_methods_lock);
    719 
    720 	if (config_cfdriver_attach(&dk_cd) != 0)
    721 		panic("dkwedge: unable to attach cfdriver");
    722 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
    723 		panic("dkwedge: unable to attach cfattach");
    724 
    725 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
    726 
    727 	LIST_INIT(&dkwedge_discovery_methods);
    728 
    729 	__link_set_foreach(ddmp, dkwedge_methods) {
    730 		ddm = *ddmp;
    731 		if (ddm == &dummy_discovery_method)
    732 			continue;
    733 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
    734 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
    735 					 ddm, ddm_list);
    736 			continue;
    737 		}
    738 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
    739 			if (ddm->ddm_priority == lddm->ddm_priority) {
    740 				aprint_error("dk-method-%s: method \"%s\" "
    741 				    "already exists at priority %d\n",
    742 				    ddm->ddm_name, lddm->ddm_name,
    743 				    lddm->ddm_priority);
    744 				/* Not inserted. */
    745 				break;
    746 			}
    747 			if (ddm->ddm_priority < lddm->ddm_priority) {
    748 				/* Higher priority; insert before. */
    749 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
    750 				break;
    751 			}
    752 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
    753 				/* Last one; insert after. */
    754 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
    755 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
    756 				break;
    757 			}
    758 		}
    759 	}
    760 
    761 	rw_exit(&dkwedge_discovery_methods_lock);
    762 }
    763 
    764 #ifdef DKWEDGE_AUTODISCOVER
    765 int	dkwedge_autodiscover = 1;
    766 #else
    767 int	dkwedge_autodiscover = 0;
    768 #endif
    769 
    770 /*
    771  * dkwedge_discover:	[exported function]
    772  *
    773  *	Discover the wedges on a newly attached disk.
    774  */
    775 void
    776 dkwedge_discover(struct disk *pdk)
    777 {
    778 	struct dkwedge_discovery_method *ddm;
    779 	struct vnode *vp;
    780 	int error;
    781 	dev_t pdev;
    782 
    783 	/*
    784 	 * Require people playing with wedges to enable this explicitly.
    785 	 */
    786 	if (dkwedge_autodiscover == 0)
    787 		return;
    788 
    789 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
    790 
    791 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
    792 	if (error) {
    793 		aprint_error("%s: unable to compute pdev, error = %d\n",
    794 		    pdk->dk_name, error);
    795 		goto out;
    796 	}
    797 
    798 	error = bdevvp(pdev, &vp);
    799 	if (error) {
    800 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
    801 		    pdk->dk_name, error);
    802 		goto out;
    803 	}
    804 
    805 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    806 	if (error) {
    807 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
    808 		    pdk->dk_name, error);
    809 		vrele(vp);
    810 		goto out;
    811 	}
    812 
    813 	error = VOP_OPEN(vp, FREAD, NOCRED);
    814 	if (error) {
    815 		aprint_error("%s: unable to open device, error = %d\n",
    816 		    pdk->dk_name, error);
    817 		vput(vp);
    818 		goto out;
    819 	}
    820 	VOP_UNLOCK(vp, 0);
    821 
    822 	/*
    823 	 * For each supported partition map type, look to see if
    824 	 * this map type exists.  If so, parse it and add the
    825 	 * corresponding wedges.
    826 	 */
    827 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
    828 		error = (*ddm->ddm_discover)(pdk, vp);
    829 		if (error == 0) {
    830 			/* Successfully created wedges; we're done. */
    831 			break;
    832 		}
    833 	}
    834 
    835 	error = vn_close(vp, FREAD, NOCRED);
    836 	if (error) {
    837 		aprint_error("%s: unable to close device, error = %d\n",
    838 		    pdk->dk_name, error);
    839 		/* We'll just assume the vnode has been cleaned up. */
    840 	}
    841  out:
    842 	rw_exit(&dkwedge_discovery_methods_lock);
    843 }
    844 
    845 /*
    846  * dkwedge_read:
    847  *
    848  *	Read some data from the specified disk, used for
    849  *	partition discovery.
    850  */
    851 int
    852 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
    853     void *tbuf, size_t len)
    854 {
    855 	struct buf *bp;
    856 	int result;
    857 
    858 	bp = getiobuf(vp, true);
    859 
    860 	bp->b_dev = vp->v_rdev;
    861 	bp->b_blkno = blkno;
    862 	bp->b_bcount = len;
    863 	bp->b_resid = len;
    864 	bp->b_flags = B_READ;
    865 	bp->b_data = tbuf;
    866 	SET(bp->b_cflags, BC_BUSY);	/* mark buffer busy */
    867 
    868 	VOP_STRATEGY(vp, bp);
    869 	result = biowait(bp);
    870 	putiobuf(bp);
    871 
    872 	return result;
    873 }
    874 
    875 /*
    876  * dkwedge_lookup:
    877  *
    878  *	Look up a dkwedge_softc based on the provided dev_t.
    879  */
    880 static struct dkwedge_softc *
    881 dkwedge_lookup(dev_t dev)
    882 {
    883 	int unit = minor(dev);
    884 
    885 	if (unit >= ndkwedges)
    886 		return (NULL);
    887 
    888 	KASSERT(dkwedges != NULL);
    889 
    890 	return (dkwedges[unit]);
    891 }
    892 
    893 /*
    894  * dkopen:		[devsw entry point]
    895  *
    896  *	Open a wedge.
    897  */
    898 static int
    899 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
    900 {
    901 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
    902 	struct vnode *vp;
    903 	int error = 0;
    904 
    905 	if (sc == NULL)
    906 		return (ENODEV);
    907 
    908 	if (sc->sc_state != DKW_STATE_RUNNING)
    909 		return (ENXIO);
    910 
    911 	/*
    912 	 * We go through a complicated little dance to only open the parent
    913 	 * vnode once per wedge, no matter how many times the wedge is
    914 	 * opened.  The reason?  We see one dkopen() per open call, but
    915 	 * only dkclose() on the last close.
    916 	 */
    917 	mutex_enter(&sc->sc_dk.dk_openlock);
    918 	mutex_enter(&sc->sc_parent->dk_rawlock);
    919 	if (sc->sc_dk.dk_openmask == 0) {
    920 		if (sc->sc_parent->dk_rawopens == 0) {
    921 			KASSERT(sc->sc_parent->dk_rawvp == NULL);
    922 			error = bdevvp(sc->sc_pdev, &vp);
    923 			if (error)
    924 				goto popen_fail;
    925 			error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    926 			if (error) {
    927 				vrele(vp);
    928 				goto popen_fail;
    929 			}
    930 			error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED);
    931 			if (error) {
    932 				vput(vp);
    933 				goto popen_fail;
    934 			}
    935 			/* VOP_OPEN() doesn't do this for us. */
    936 			mutex_enter(&vp->v_interlock);
    937 			vp->v_writecount++;
    938 			mutex_exit(&vp->v_interlock);
    939 			VOP_UNLOCK(vp, 0);
    940 			sc->sc_parent->dk_rawvp = vp;
    941 		}
    942 		sc->sc_parent->dk_rawopens++;
    943 	}
    944 	if (fmt == S_IFCHR)
    945 		sc->sc_dk.dk_copenmask |= 1;
    946 	else
    947 		sc->sc_dk.dk_bopenmask |= 1;
    948 	sc->sc_dk.dk_openmask =
    949 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
    950 
    951  popen_fail:
    952 	mutex_exit(&sc->sc_parent->dk_rawlock);
    953 	mutex_exit(&sc->sc_dk.dk_openlock);
    954 	return (error);
    955 }
    956 
    957 /*
    958  * dkclose:		[devsw entry point]
    959  *
    960  *	Close a wedge.
    961  */
    962 static int
    963 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
    964 {
    965 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
    966 	int error = 0;
    967 
    968 	KASSERT(sc->sc_dk.dk_openmask != 0);
    969 
    970 	mutex_enter(&sc->sc_dk.dk_openlock);
    971 	mutex_enter(&sc->sc_parent->dk_rawlock);
    972 
    973 	if (fmt == S_IFCHR)
    974 		sc->sc_dk.dk_copenmask &= ~1;
    975 	else
    976 		sc->sc_dk.dk_bopenmask &= ~1;
    977 	sc->sc_dk.dk_openmask =
    978 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
    979 
    980 	if (sc->sc_dk.dk_openmask == 0) {
    981 		if (sc->sc_parent->dk_rawopens-- == 1) {
    982 			KASSERT(sc->sc_parent->dk_rawvp != NULL);
    983 			error = vn_close(sc->sc_parent->dk_rawvp,
    984 			    FREAD | FWRITE, NOCRED);
    985 			sc->sc_parent->dk_rawvp = NULL;
    986 		}
    987 	}
    988 
    989 	mutex_exit(&sc->sc_parent->dk_rawlock);
    990 	mutex_exit(&sc->sc_dk.dk_openlock);
    991 
    992 	return (error);
    993 }
    994 
    995 /*
    996  * dkstragegy:		[devsw entry point]
    997  *
    998  *	Perform I/O based on the wedge I/O strategy.
    999  */
   1000 static void
   1001 dkstrategy(struct buf *bp)
   1002 {
   1003 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1004 	int s;
   1005 
   1006 	if (sc->sc_state != DKW_STATE_RUNNING) {
   1007 		bp->b_error = ENXIO;
   1008 		goto done;
   1009 	}
   1010 
   1011 	/* If it's an empty transfer, wake up the top half now. */
   1012 	if (bp->b_bcount == 0)
   1013 		goto done;
   1014 
   1015 	/* Make sure it's in-range. */
   1016 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, sc->sc_size) <= 0)
   1017 		goto done;
   1018 
   1019 	/* Translate it to the parent's raw LBA. */
   1020 	bp->b_rawblkno = bp->b_blkno + sc->sc_offset;
   1021 
   1022 	/* Place it in the queue and start I/O on the unit. */
   1023 	s = splbio();
   1024 	sc->sc_iopend++;
   1025 	BUFQ_PUT(sc->sc_bufq, bp);
   1026 	dkstart(sc);
   1027 	splx(s);
   1028 	return;
   1029 
   1030  done:
   1031 	bp->b_resid = bp->b_bcount;
   1032 	biodone(bp);
   1033 }
   1034 
   1035 /*
   1036  * dkstart:
   1037  *
   1038  *	Start I/O that has been enqueued on the wedge.
   1039  *	NOTE: Must be called at splbio()!
   1040  */
   1041 static void
   1042 dkstart(struct dkwedge_softc *sc)
   1043 {
   1044 	struct vnode *vp;
   1045 	struct buf *bp, *nbp;
   1046 
   1047 	/* Do as much work as has been enqueued. */
   1048 	while ((bp = BUFQ_PEEK(sc->sc_bufq)) != NULL) {
   1049 		if (sc->sc_state != DKW_STATE_RUNNING) {
   1050 			(void) BUFQ_GET(sc->sc_bufq);
   1051 			if (sc->sc_iopend-- == 1 &&
   1052 			    (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
   1053 				sc->sc_flags &= ~DK_F_WAIT_DRAIN;
   1054 				wakeup(&sc->sc_iopend);
   1055 			}
   1056 			bp->b_error = ENXIO;
   1057 			bp->b_resid = bp->b_bcount;
   1058 			biodone(bp);
   1059 		}
   1060 
   1061 		/* Instrumentation. */
   1062 		disk_busy(&sc->sc_dk);
   1063 
   1064 		nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
   1065 		if (nbp == NULL) {
   1066 			/*
   1067 			 * No resources to run this request; leave the
   1068 			 * buffer queued up, and schedule a timer to
   1069 			 * restart the queue in 1/2 a second.
   1070 			 */
   1071 			disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
   1072 			callout_schedule(&sc->sc_restart_ch, hz / 2);
   1073 			return;
   1074 		}
   1075 
   1076 		(void) BUFQ_GET(sc->sc_bufq);
   1077 
   1078 		nbp->b_data = bp->b_data;
   1079 		nbp->b_flags = bp->b_flags;
   1080 		nbp->b_oflags = bp->b_oflags;
   1081 		nbp->b_cflags = bp->b_cflags;
   1082 		nbp->b_iodone = dkiodone;
   1083 		nbp->b_proc = bp->b_proc;
   1084 		nbp->b_blkno = bp->b_rawblkno;
   1085 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
   1086 		nbp->b_bcount = bp->b_bcount;
   1087 		nbp->b_private = bp;
   1088 		BIO_COPYPRIO(nbp, bp);
   1089 
   1090 		vp = nbp->b_vp;
   1091 		if ((nbp->b_flags & B_READ) == 0) {
   1092 			mutex_enter(&vp->v_interlock);
   1093 			vp->v_numoutput++;
   1094 			mutex_exit(&vp->v_interlock);
   1095 		}
   1096 		VOP_STRATEGY(vp, nbp);
   1097 	}
   1098 }
   1099 
   1100 /*
   1101  * dkiodone:
   1102  *
   1103  *	I/O to a wedge has completed; alert the top half.
   1104  */
   1105 static void
   1106 dkiodone(struct buf *bp)
   1107 {
   1108 	struct buf *obp = bp->b_private;
   1109 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
   1110 
   1111 	int s = splbio();
   1112 
   1113 	if (bp->b_error != 0)
   1114 		obp->b_error = bp->b_error;
   1115 	obp->b_resid = bp->b_resid;
   1116 	putiobuf(bp);
   1117 
   1118 	if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
   1119 		sc->sc_flags &= ~DK_F_WAIT_DRAIN;
   1120 		wakeup(&sc->sc_iopend);
   1121 	}
   1122 
   1123 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
   1124 	    obp->b_flags & B_READ);
   1125 
   1126 	biodone(obp);
   1127 
   1128 	/* Kick the queue in case there is more work we can do. */
   1129 	dkstart(sc);
   1130 	splx(s);
   1131 }
   1132 
   1133 /*
   1134  * dkrestart:
   1135  *
   1136  *	Restart the work queue after it was stalled due to
   1137  *	a resource shortage.  Invoked via a callout.
   1138  */
   1139 static void
   1140 dkrestart(void *v)
   1141 {
   1142 	struct dkwedge_softc *sc = v;
   1143 	int s;
   1144 
   1145 	s = splbio();
   1146 	dkstart(sc);
   1147 	splx(s);
   1148 }
   1149 
   1150 /*
   1151  * dkminphys:
   1152  *
   1153  *	Call parent's minphys function.
   1154  */
   1155 static void
   1156 dkminphys(struct buf *bp)
   1157 {
   1158 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1159 	dev_t dev;
   1160 
   1161 	dev = bp->b_dev;
   1162 	bp->b_dev = sc->sc_pdev;
   1163 	(*sc->sc_parent->dk_driver->d_minphys)(bp);
   1164 	bp->b_dev = dev;
   1165 }
   1166 
   1167 /*
   1168  * dkread:		[devsw entry point]
   1169  *
   1170  *	Read from a wedge.
   1171  */
   1172 static int
   1173 dkread(dev_t dev, struct uio *uio, int flags)
   1174 {
   1175 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1176 
   1177 	if (sc->sc_state != DKW_STATE_RUNNING)
   1178 		return (ENXIO);
   1179 
   1180 	return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio));
   1181 }
   1182 
   1183 /*
   1184  * dkwrite:		[devsw entry point]
   1185  *
   1186  *	Write to a wedge.
   1187  */
   1188 static int
   1189 dkwrite(dev_t dev, struct uio *uio, int flags)
   1190 {
   1191 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1192 
   1193 	if (sc->sc_state != DKW_STATE_RUNNING)
   1194 		return (ENXIO);
   1195 
   1196 	return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio));
   1197 }
   1198 
   1199 /*
   1200  * dkioctl:		[devsw entry point]
   1201  *
   1202  *	Perform an ioctl request on a wedge.
   1203  */
   1204 static int
   1205 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1206 {
   1207 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1208 	int error = 0;
   1209 
   1210 	if (sc->sc_state != DKW_STATE_RUNNING)
   1211 		return (ENXIO);
   1212 
   1213 	switch (cmd) {
   1214 	case DIOCCACHESYNC:
   1215 		/*
   1216 		 * XXX Do we really need to care about having a writable
   1217 		 * file descriptor here?
   1218 		 */
   1219 		if ((flag & FWRITE) == 0)
   1220 			error = EBADF;
   1221 		else
   1222 			error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
   1223 					  cmd, data, flag,
   1224 					  l != NULL ? l->l_cred : NOCRED);
   1225 		break;
   1226 	case DIOCGWEDGEINFO:
   1227 	    {
   1228 	    	struct dkwedge_info *dkw = (void *) data;
   1229 
   1230 		strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
   1231 			sizeof(dkw->dkw_devname));
   1232 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
   1233 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
   1234 		strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
   1235 		dkw->dkw_offset = sc->sc_offset;
   1236 		dkw->dkw_size = sc->sc_size;
   1237 		strcpy(dkw->dkw_ptype, sc->sc_ptype);
   1238 
   1239 		break;
   1240 	    }
   1241 
   1242 	default:
   1243 		error = ENOTTY;
   1244 	}
   1245 
   1246 	return (error);
   1247 }
   1248 
   1249 /*
   1250  * dksize:		[devsw entry point]
   1251  *
   1252  *	Query the size of a wedge for the purpose of performing a dump
   1253  *	or for swapping to.
   1254  */
   1255 static int
   1256 dksize(dev_t dev)
   1257 {
   1258 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1259 	int rv = -1;
   1260 
   1261 	if (sc == NULL)
   1262 		return (-1);
   1263 
   1264 	if (sc->sc_state != DKW_STATE_RUNNING)
   1265 		return (ENXIO);
   1266 
   1267 	mutex_enter(&sc->sc_dk.dk_openlock);
   1268 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1269 
   1270 	/* Our content type is static, no need to open the device. */
   1271 
   1272 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
   1273 		/* Saturate if we are larger than INT_MAX. */
   1274 		if (sc->sc_size > INT_MAX)
   1275 			rv = INT_MAX;
   1276 		else
   1277 			rv = (int) sc->sc_size;
   1278 	}
   1279 
   1280 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1281 	mutex_exit(&sc->sc_dk.dk_openlock);
   1282 
   1283 	return (rv);
   1284 }
   1285 
   1286 /*
   1287  * dkdump:		[devsw entry point]
   1288  *
   1289  *	Perform a crash dump to a wedge.
   1290  */
   1291 static int
   1292 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
   1293 {
   1294 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1295 	const struct bdevsw *bdev;
   1296 	int rv = 0;
   1297 
   1298 	if (sc == NULL)
   1299 		return (-1);
   1300 
   1301 	if (sc->sc_state != DKW_STATE_RUNNING)
   1302 		return (ENXIO);
   1303 
   1304 	mutex_enter(&sc->sc_dk.dk_openlock);
   1305 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1306 
   1307 	/* Our content type is static, no need to open the device. */
   1308 
   1309 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
   1310 		rv = ENXIO;
   1311 		goto out;
   1312 	}
   1313 	if (size % DEV_BSIZE != 0) {
   1314 		rv = EINVAL;
   1315 		goto out;
   1316 	}
   1317 	if (blkno + size / DEV_BSIZE > sc->sc_size) {
   1318 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
   1319 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
   1320 		    size / DEV_BSIZE, sc->sc_size);
   1321 		rv = EINVAL;
   1322 		goto out;
   1323 	}
   1324 
   1325 	bdev = bdevsw_lookup(sc->sc_pdev);
   1326 	rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
   1327 
   1328 out:
   1329 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1330 	mutex_exit(&sc->sc_dk.dk_openlock);
   1331 
   1332 	return rv;
   1333 }
   1334