dk.c revision 1.42.6.2 1 /* $NetBSD: dk.c,v 1.42.6.2 2010/01/30 19:00:46 snj Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.42.6.2 2010/01/30 19:00:46 snj Exp $");
34
35 #include "opt_dkwedge.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/proc.h>
40 #include <sys/errno.h>
41 #include <sys/pool.h>
42 #include <sys/ioctl.h>
43 #include <sys/disklabel.h>
44 #include <sys/disk.h>
45 #include <sys/fcntl.h>
46 #include <sys/buf.h>
47 #include <sys/bufq.h>
48 #include <sys/vnode.h>
49 #include <sys/stat.h>
50 #include <sys/conf.h>
51 #include <sys/callout.h>
52 #include <sys/kernel.h>
53 #include <sys/malloc.h>
54 #include <sys/device.h>
55 #include <sys/kauth.h>
56
57 #include <miscfs/specfs/specdev.h>
58
59 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
60
61 typedef enum {
62 DKW_STATE_LARVAL = 0,
63 DKW_STATE_RUNNING = 1,
64 DKW_STATE_DYING = 2,
65 DKW_STATE_DEAD = 666
66 } dkwedge_state_t;
67
68 struct dkwedge_softc {
69 struct device *sc_dev; /* pointer to our pseudo-device */
70 struct cfdata sc_cfdata; /* our cfdata structure */
71 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
72
73 dkwedge_state_t sc_state; /* state this wedge is in */
74
75 struct disk *sc_parent; /* parent disk */
76 daddr_t sc_offset; /* LBA offset of wedge in parent */
77 uint64_t sc_size; /* size of wedge in blocks */
78 char sc_ptype[32]; /* partition type */
79 dev_t sc_pdev; /* cached parent's dev_t */
80 /* link on parent's wedge list */
81 LIST_ENTRY(dkwedge_softc) sc_plink;
82
83 struct disk sc_dk; /* our own disk structure */
84 struct bufq_state *sc_bufq; /* buffer queue */
85 struct callout sc_restart_ch; /* callout to restart I/O */
86
87 u_int sc_iopend; /* I/Os pending */
88 int sc_flags; /* flags (splbio) */
89 };
90
91 #define DK_F_WAIT_DRAIN 0x0001 /* waiting for I/O to drain */
92
93 static void dkstart(struct dkwedge_softc *);
94 static void dkiodone(struct buf *);
95 static void dkrestart(void *);
96 static void dkminphys(struct buf *);
97
98 static dev_type_open(dkopen);
99 static dev_type_close(dkclose);
100 static dev_type_read(dkread);
101 static dev_type_write(dkwrite);
102 static dev_type_ioctl(dkioctl);
103 static dev_type_strategy(dkstrategy);
104 static dev_type_dump(dkdump);
105 static dev_type_size(dksize);
106
107 const struct bdevsw dk_bdevsw = {
108 dkopen, dkclose, dkstrategy, dkioctl, dkdump, dksize, D_DISK
109 };
110
111 const struct cdevsw dk_cdevsw = {
112 dkopen, dkclose, dkread, dkwrite, dkioctl,
113 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
114 };
115
116 static struct dkwedge_softc **dkwedges;
117 static u_int ndkwedges;
118 static krwlock_t dkwedges_lock;
119
120 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
121 static krwlock_t dkwedge_discovery_methods_lock;
122
123 /*
124 * dkwedge_match:
125 *
126 * Autoconfiguration match function for pseudo-device glue.
127 */
128 static int
129 dkwedge_match(struct device *parent, struct cfdata *match,
130 void *aux)
131 {
132
133 /* Pseudo-device; always present. */
134 return (1);
135 }
136
137 /*
138 * dkwedge_attach:
139 *
140 * Autoconfiguration attach function for pseudo-device glue.
141 */
142 static void
143 dkwedge_attach(struct device *parent, struct device *self,
144 void *aux)
145 {
146
147 if (!pmf_device_register(self, NULL, NULL))
148 aprint_error_dev(self, "couldn't establish power handler\n");
149 }
150
151 /*
152 * dkwedge_detach:
153 *
154 * Autoconfiguration detach function for pseudo-device glue.
155 */
156 static int
157 dkwedge_detach(struct device *self, int flags)
158 {
159
160 pmf_device_deregister(self);
161 /* Always succeeds. */
162 return (0);
163 }
164
165 CFDRIVER_DECL(dk, DV_DISK, NULL);
166 CFATTACH_DECL_NEW(dk, 0,
167 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL);
168
169 /*
170 * dkwedge_wait_drain:
171 *
172 * Wait for I/O on the wedge to drain.
173 * NOTE: Must be called at splbio()!
174 */
175 static void
176 dkwedge_wait_drain(struct dkwedge_softc *sc)
177 {
178
179 while (sc->sc_iopend != 0) {
180 sc->sc_flags |= DK_F_WAIT_DRAIN;
181 (void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
182 }
183 }
184
185 /*
186 * dkwedge_compute_pdev:
187 *
188 * Compute the parent disk's dev_t.
189 */
190 static int
191 dkwedge_compute_pdev(const char *pname, dev_t *pdevp)
192 {
193 const char *name, *cp;
194 int punit, pmaj;
195 char devname[16];
196
197 name = pname;
198 if ((pmaj = devsw_name2blk(name, devname, sizeof(devname))) == -1)
199 return (ENODEV);
200
201 name += strlen(devname);
202 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
203 punit = (punit * 10) + (*cp - '0');
204 if (cp == name) {
205 /* Invalid parent disk name. */
206 return (ENODEV);
207 }
208
209 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
210
211 return (0);
212 }
213
214 /*
215 * dkwedge_array_expand:
216 *
217 * Expand the dkwedges array.
218 */
219 static void
220 dkwedge_array_expand(void)
221 {
222 int newcnt = ndkwedges + 16;
223 struct dkwedge_softc **newarray, **oldarray;
224
225 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
226 M_WAITOK|M_ZERO);
227 if ((oldarray = dkwedges) != NULL)
228 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
229 dkwedges = newarray;
230 ndkwedges = newcnt;
231 if (oldarray != NULL)
232 free(oldarray, M_DKWEDGE);
233 }
234
235 /*
236 * dkwedge_add: [exported function]
237 *
238 * Add a disk wedge based on the provided information.
239 *
240 * The incoming dkw_devname[] is ignored, instead being
241 * filled in and returned to the caller.
242 */
243 int
244 dkwedge_add(struct dkwedge_info *dkw)
245 {
246 struct dkwedge_softc *sc, *lsc;
247 struct disk *pdk;
248 u_int unit;
249 int error;
250 dev_t pdev;
251
252 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
253 pdk = disk_find(dkw->dkw_parent);
254 if (pdk == NULL)
255 return (ENODEV);
256
257 error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
258 if (error)
259 return (error);
260
261 if (dkw->dkw_offset < 0)
262 return (EINVAL);
263
264 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
265 sc->sc_state = DKW_STATE_LARVAL;
266 sc->sc_parent = pdk;
267 sc->sc_pdev = pdev;
268 sc->sc_offset = dkw->dkw_offset;
269 sc->sc_size = dkw->dkw_size;
270
271 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
272 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
273
274 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
275 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
276
277 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
278
279 callout_init(&sc->sc_restart_ch, 0);
280 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
281
282 /*
283 * Wedge will be added; increment the wedge count for the parent.
284 * Only allow this to happend if RAW_PART is the only thing open.
285 */
286 mutex_enter(&pdk->dk_openlock);
287 if (pdk->dk_openmask & ~(1 << RAW_PART))
288 error = EBUSY;
289 else {
290 /* Check for wedge overlap. */
291 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
292 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
293 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
294
295 if (sc->sc_offset >= lsc->sc_offset &&
296 sc->sc_offset <= llastblk) {
297 /* Overlaps the tail of the exsiting wedge. */
298 break;
299 }
300 if (lastblk >= lsc->sc_offset &&
301 lastblk <= llastblk) {
302 /* Overlaps the head of the existing wedge. */
303 break;
304 }
305 }
306 if (lsc != NULL)
307 error = EINVAL;
308 else {
309 pdk->dk_nwedges++;
310 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
311 }
312 }
313 mutex_exit(&pdk->dk_openlock);
314 if (error) {
315 bufq_free(sc->sc_bufq);
316 free(sc, M_DKWEDGE);
317 return (error);
318 }
319
320 /* Fill in our cfdata for the pseudo-device glue. */
321 sc->sc_cfdata.cf_name = dk_cd.cd_name;
322 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
323 /* sc->sc_cfdata.cf_unit set below */
324 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
325
326 /* Insert the larval wedge into the array. */
327 rw_enter(&dkwedges_lock, RW_WRITER);
328 for (error = 0;;) {
329 struct dkwedge_softc **scpp;
330
331 /*
332 * Check for a duplicate wname while searching for
333 * a slot.
334 */
335 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
336 if (dkwedges[unit] == NULL) {
337 if (scpp == NULL) {
338 scpp = &dkwedges[unit];
339 sc->sc_cfdata.cf_unit = unit;
340 }
341 } else {
342 /* XXX Unicode. */
343 if (strcmp(dkwedges[unit]->sc_wname,
344 sc->sc_wname) == 0) {
345 error = EEXIST;
346 break;
347 }
348 }
349 }
350 if (error)
351 break;
352 KASSERT(unit == ndkwedges);
353 if (scpp == NULL)
354 dkwedge_array_expand();
355 else {
356 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
357 *scpp = sc;
358 break;
359 }
360 }
361 rw_exit(&dkwedges_lock);
362 if (error) {
363 mutex_enter(&pdk->dk_openlock);
364 pdk->dk_nwedges--;
365 LIST_REMOVE(sc, sc_plink);
366 mutex_exit(&pdk->dk_openlock);
367
368 bufq_free(sc->sc_bufq);
369 free(sc, M_DKWEDGE);
370 return (error);
371 }
372
373 /*
374 * Now that we know the unit #, attach a pseudo-device for
375 * this wedge instance. This will provide us with the
376 * "struct device" necessary for glue to other parts of the
377 * system.
378 *
379 * This should never fail, unless we're almost totally out of
380 * memory.
381 */
382 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
383 aprint_error("%s%u: unable to attach pseudo-device\n",
384 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
385
386 rw_enter(&dkwedges_lock, RW_WRITER);
387 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
388 rw_exit(&dkwedges_lock);
389
390 mutex_enter(&pdk->dk_openlock);
391 pdk->dk_nwedges--;
392 LIST_REMOVE(sc, sc_plink);
393 mutex_exit(&pdk->dk_openlock);
394
395 bufq_free(sc->sc_bufq);
396 free(sc, M_DKWEDGE);
397 return (ENOMEM);
398 }
399
400 /* Return the devname to the caller. */
401 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
402 sizeof(dkw->dkw_devname));
403
404 /*
405 * XXX Really ought to make the disk_attach() and the changing
406 * of state to RUNNING atomic.
407 */
408
409 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
410 disk_attach(&sc->sc_dk);
411
412 /* Disk wedge is ready for use! */
413 sc->sc_state = DKW_STATE_RUNNING;
414
415 /* Announce our arrival. */
416 aprint_normal("%s at %s: %s\n", device_xname(sc->sc_dev), pdk->dk_name,
417 sc->sc_wname); /* XXX Unicode */
418 aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
419 device_xname(sc->sc_dev), sc->sc_size, sc->sc_offset, sc->sc_ptype);
420
421 return (0);
422 }
423
424 /*
425 * dkwedge_del: [exported function]
426 *
427 * Delete a disk wedge based on the provided information.
428 * NOTE: We look up the wedge based on the wedge devname,
429 * not wname.
430 */
431 int
432 dkwedge_del(struct dkwedge_info *dkw)
433 {
434 struct dkwedge_softc *sc = NULL;
435 u_int unit;
436 int bmaj, cmaj, s;
437
438 /* Find our softc. */
439 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
440 rw_enter(&dkwedges_lock, RW_WRITER);
441 for (unit = 0; unit < ndkwedges; unit++) {
442 if ((sc = dkwedges[unit]) != NULL &&
443 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
444 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
445 /* Mark the wedge as dying. */
446 sc->sc_state = DKW_STATE_DYING;
447 break;
448 }
449 }
450 rw_exit(&dkwedges_lock);
451 if (unit == ndkwedges)
452 return (ESRCH);
453
454 KASSERT(sc != NULL);
455
456 /* Locate the wedge major numbers. */
457 bmaj = bdevsw_lookup_major(&dk_bdevsw);
458 cmaj = cdevsw_lookup_major(&dk_cdevsw);
459
460 /* Kill any pending restart. */
461 callout_stop(&sc->sc_restart_ch);
462
463 /*
464 * dkstart() will kill any queued buffers now that the
465 * state of the wedge is not RUNNING. Once we've done
466 * that, wait for any other pending I/O to complete.
467 */
468 s = splbio();
469 dkstart(sc);
470 dkwedge_wait_drain(sc);
471 splx(s);
472
473 /* Nuke the vnodes for any open instances. */
474 vdevgone(bmaj, unit, unit, VBLK);
475 vdevgone(cmaj, unit, unit, VCHR);
476
477 /* Clean up the parent. */
478 mutex_enter(&sc->sc_dk.dk_openlock);
479 mutex_enter(&sc->sc_parent->dk_rawlock);
480 if (sc->sc_dk.dk_openmask) {
481 if (sc->sc_parent->dk_rawopens-- == 1) {
482 KASSERT(sc->sc_parent->dk_rawvp != NULL);
483 (void) vn_close(sc->sc_parent->dk_rawvp, FREAD | FWRITE,
484 NOCRED);
485 sc->sc_parent->dk_rawvp = NULL;
486 }
487 sc->sc_dk.dk_openmask = 0;
488 }
489 mutex_exit(&sc->sc_parent->dk_rawlock);
490 mutex_exit(&sc->sc_dk.dk_openlock);
491
492 /* Announce our departure. */
493 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
494 sc->sc_parent->dk_name,
495 sc->sc_wname); /* XXX Unicode */
496
497 /* Delete our pseudo-device. */
498 (void) config_detach(sc->sc_dev, DETACH_FORCE | DETACH_QUIET);
499
500 mutex_enter(&sc->sc_parent->dk_openlock);
501 sc->sc_parent->dk_nwedges--;
502 LIST_REMOVE(sc, sc_plink);
503 mutex_exit(&sc->sc_parent->dk_openlock);
504
505 /* Delete our buffer queue. */
506 bufq_free(sc->sc_bufq);
507
508 /* Detach from the disk list. */
509 disk_detach(&sc->sc_dk);
510 disk_destroy(&sc->sc_dk);
511
512 /* Poof. */
513 rw_enter(&dkwedges_lock, RW_WRITER);
514 dkwedges[unit] = NULL;
515 sc->sc_state = DKW_STATE_DEAD;
516 rw_exit(&dkwedges_lock);
517
518 free(sc, M_DKWEDGE);
519
520 return (0);
521 }
522
523 /*
524 * dkwedge_delall: [exported function]
525 *
526 * Delete all of the wedges on the specified disk. Used when
527 * a disk is being detached.
528 */
529 void
530 dkwedge_delall(struct disk *pdk)
531 {
532 struct dkwedge_info dkw;
533 struct dkwedge_softc *sc;
534
535 for (;;) {
536 mutex_enter(&pdk->dk_openlock);
537 if ((sc = LIST_FIRST(&pdk->dk_wedges)) == NULL) {
538 KASSERT(pdk->dk_nwedges == 0);
539 mutex_exit(&pdk->dk_openlock);
540 return;
541 }
542 strcpy(dkw.dkw_parent, pdk->dk_name);
543 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
544 sizeof(dkw.dkw_devname));
545 mutex_exit(&pdk->dk_openlock);
546 (void) dkwedge_del(&dkw);
547 }
548 }
549
550 /*
551 * dkwedge_list: [exported function]
552 *
553 * List all of the wedges on a particular disk.
554 * If p == NULL, the buffer is in kernel space. Otherwise, it is
555 * in user space of the specified process.
556 */
557 int
558 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
559 {
560 struct uio uio;
561 struct iovec iov;
562 struct dkwedge_softc *sc;
563 struct dkwedge_info dkw;
564 struct vmspace *vm;
565 int error = 0;
566
567 iov.iov_base = dkwl->dkwl_buf;
568 iov.iov_len = dkwl->dkwl_bufsize;
569
570 uio.uio_iov = &iov;
571 uio.uio_iovcnt = 1;
572 uio.uio_offset = 0;
573 uio.uio_resid = dkwl->dkwl_bufsize;
574 uio.uio_rw = UIO_READ;
575 if (l == NULL) {
576 UIO_SETUP_SYSSPACE(&uio);
577 } else {
578 error = proc_vmspace_getref(l->l_proc, &vm);
579 if (error) {
580 return error;
581 }
582 uio.uio_vmspace = vm;
583 }
584
585 dkwl->dkwl_ncopied = 0;
586
587 mutex_enter(&pdk->dk_openlock);
588 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
589 if (uio.uio_resid < sizeof(dkw))
590 break;
591
592 if (sc->sc_state != DKW_STATE_RUNNING)
593 continue;
594
595 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
596 sizeof(dkw.dkw_devname));
597 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
598 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
599 strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
600 dkw.dkw_offset = sc->sc_offset;
601 dkw.dkw_size = sc->sc_size;
602 strcpy(dkw.dkw_ptype, sc->sc_ptype);
603
604 error = uiomove(&dkw, sizeof(dkw), &uio);
605 if (error)
606 break;
607 dkwl->dkwl_ncopied++;
608 }
609 dkwl->dkwl_nwedges = pdk->dk_nwedges;
610 mutex_exit(&pdk->dk_openlock);
611
612 if (l != NULL) {
613 uvmspace_free(vm);
614 }
615
616 return (error);
617 }
618
619 device_t
620 dkwedge_find_by_wname(const char *wname)
621 {
622 device_t dv = NULL;
623 struct dkwedge_softc *sc;
624 int i;
625
626 rw_enter(&dkwedges_lock, RW_WRITER);
627 for (i = 0; i < ndkwedges; i++) {
628 if ((sc = dkwedges[i]) == NULL)
629 continue;
630 if (strcmp(sc->sc_wname, wname) == 0) {
631 if (dv != NULL) {
632 printf(
633 "WARNING: double match for wedge name %s "
634 "(%s, %s)\n", wname, device_xname(dv),
635 device_xname(sc->sc_dev));
636 continue;
637 }
638 dv = sc->sc_dev;
639 }
640 }
641 rw_exit(&dkwedges_lock);
642 return dv;
643 }
644
645 void
646 dkwedge_print_wnames(void)
647 {
648 struct dkwedge_softc *sc;
649 int i;
650
651 rw_enter(&dkwedges_lock, RW_WRITER);
652 for (i = 0; i < ndkwedges; i++) {
653 if ((sc = dkwedges[i]) == NULL)
654 continue;
655 printf(" wedge:%s", sc->sc_wname);
656 }
657 rw_exit(&dkwedges_lock);
658 }
659
660 /*
661 * dkwedge_set_bootwedge
662 *
663 * Set the booted_wedge global based on the specified parent name
664 * and offset/length.
665 */
666 void
667 dkwedge_set_bootwedge(struct device *parent, daddr_t startblk, uint64_t nblks)
668 {
669 struct dkwedge_softc *sc;
670 int i;
671
672 rw_enter(&dkwedges_lock, RW_WRITER);
673 for (i = 0; i < ndkwedges; i++) {
674 if ((sc = dkwedges[i]) == NULL)
675 continue;
676 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
677 sc->sc_offset == startblk &&
678 sc->sc_size == nblks) {
679 if (booted_wedge) {
680 printf("WARNING: double match for boot wedge "
681 "(%s, %s)\n",
682 device_xname(booted_wedge),
683 device_xname(sc->sc_dev));
684 continue;
685 }
686 booted_device = parent;
687 booted_wedge = sc->sc_dev;
688 booted_partition = 0;
689 }
690 }
691 /*
692 * XXX What if we don't find one? Should we create a special
693 * XXX root wedge?
694 */
695 rw_exit(&dkwedges_lock);
696 }
697
698 /*
699 * We need a dummy object to stuff into the dkwedge discovery method link
700 * set to ensure that there is always at least one object in the set.
701 */
702 static struct dkwedge_discovery_method dummy_discovery_method;
703 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
704
705 /*
706 * dkwedge_init:
707 *
708 * Initialize the disk wedge subsystem.
709 */
710 void
711 dkwedge_init(void)
712 {
713 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
714 struct dkwedge_discovery_method * const *ddmp;
715 struct dkwedge_discovery_method *lddm, *ddm;
716
717 rw_init(&dkwedges_lock);
718 rw_init(&dkwedge_discovery_methods_lock);
719
720 if (config_cfdriver_attach(&dk_cd) != 0)
721 panic("dkwedge: unable to attach cfdriver");
722 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
723 panic("dkwedge: unable to attach cfattach");
724
725 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
726
727 LIST_INIT(&dkwedge_discovery_methods);
728
729 __link_set_foreach(ddmp, dkwedge_methods) {
730 ddm = *ddmp;
731 if (ddm == &dummy_discovery_method)
732 continue;
733 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
734 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
735 ddm, ddm_list);
736 continue;
737 }
738 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
739 if (ddm->ddm_priority == lddm->ddm_priority) {
740 aprint_error("dk-method-%s: method \"%s\" "
741 "already exists at priority %d\n",
742 ddm->ddm_name, lddm->ddm_name,
743 lddm->ddm_priority);
744 /* Not inserted. */
745 break;
746 }
747 if (ddm->ddm_priority < lddm->ddm_priority) {
748 /* Higher priority; insert before. */
749 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
750 break;
751 }
752 if (LIST_NEXT(lddm, ddm_list) == NULL) {
753 /* Last one; insert after. */
754 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
755 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
756 break;
757 }
758 }
759 }
760
761 rw_exit(&dkwedge_discovery_methods_lock);
762 }
763
764 #ifdef DKWEDGE_AUTODISCOVER
765 int dkwedge_autodiscover = 1;
766 #else
767 int dkwedge_autodiscover = 0;
768 #endif
769
770 /*
771 * dkwedge_discover: [exported function]
772 *
773 * Discover the wedges on a newly attached disk.
774 */
775 void
776 dkwedge_discover(struct disk *pdk)
777 {
778 struct dkwedge_discovery_method *ddm;
779 struct vnode *vp;
780 int error;
781 dev_t pdev;
782
783 /*
784 * Require people playing with wedges to enable this explicitly.
785 */
786 if (dkwedge_autodiscover == 0)
787 return;
788
789 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
790
791 error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
792 if (error) {
793 aprint_error("%s: unable to compute pdev, error = %d\n",
794 pdk->dk_name, error);
795 goto out;
796 }
797
798 error = bdevvp(pdev, &vp);
799 if (error) {
800 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
801 pdk->dk_name, error);
802 goto out;
803 }
804
805 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
806 if (error) {
807 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
808 pdk->dk_name, error);
809 vrele(vp);
810 goto out;
811 }
812
813 error = VOP_OPEN(vp, FREAD, NOCRED);
814 if (error) {
815 aprint_error("%s: unable to open device, error = %d\n",
816 pdk->dk_name, error);
817 vput(vp);
818 goto out;
819 }
820 VOP_UNLOCK(vp, 0);
821
822 /*
823 * For each supported partition map type, look to see if
824 * this map type exists. If so, parse it and add the
825 * corresponding wedges.
826 */
827 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
828 error = (*ddm->ddm_discover)(pdk, vp);
829 if (error == 0) {
830 /* Successfully created wedges; we're done. */
831 break;
832 }
833 }
834
835 error = vn_close(vp, FREAD, NOCRED);
836 if (error) {
837 aprint_error("%s: unable to close device, error = %d\n",
838 pdk->dk_name, error);
839 /* We'll just assume the vnode has been cleaned up. */
840 }
841 out:
842 rw_exit(&dkwedge_discovery_methods_lock);
843 }
844
845 /*
846 * dkwedge_read:
847 *
848 * Read some data from the specified disk, used for
849 * partition discovery.
850 */
851 int
852 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
853 void *tbuf, size_t len)
854 {
855 struct buf *bp;
856 int result;
857
858 bp = getiobuf(vp, true);
859
860 bp->b_dev = vp->v_rdev;
861 bp->b_blkno = blkno;
862 bp->b_bcount = len;
863 bp->b_resid = len;
864 bp->b_flags = B_READ;
865 bp->b_data = tbuf;
866 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */
867
868 VOP_STRATEGY(vp, bp);
869 result = biowait(bp);
870 putiobuf(bp);
871
872 return result;
873 }
874
875 /*
876 * dkwedge_lookup:
877 *
878 * Look up a dkwedge_softc based on the provided dev_t.
879 */
880 static struct dkwedge_softc *
881 dkwedge_lookup(dev_t dev)
882 {
883 int unit = minor(dev);
884
885 if (unit >= ndkwedges)
886 return (NULL);
887
888 KASSERT(dkwedges != NULL);
889
890 return (dkwedges[unit]);
891 }
892
893 /*
894 * dkopen: [devsw entry point]
895 *
896 * Open a wedge.
897 */
898 static int
899 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
900 {
901 struct dkwedge_softc *sc = dkwedge_lookup(dev);
902 struct vnode *vp;
903 int error = 0;
904
905 if (sc == NULL)
906 return (ENODEV);
907
908 if (sc->sc_state != DKW_STATE_RUNNING)
909 return (ENXIO);
910
911 /*
912 * We go through a complicated little dance to only open the parent
913 * vnode once per wedge, no matter how many times the wedge is
914 * opened. The reason? We see one dkopen() per open call, but
915 * only dkclose() on the last close.
916 */
917 mutex_enter(&sc->sc_dk.dk_openlock);
918 mutex_enter(&sc->sc_parent->dk_rawlock);
919 if (sc->sc_dk.dk_openmask == 0) {
920 if (sc->sc_parent->dk_rawopens == 0) {
921 KASSERT(sc->sc_parent->dk_rawvp == NULL);
922 error = bdevvp(sc->sc_pdev, &vp);
923 if (error)
924 goto popen_fail;
925 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
926 if (error) {
927 vrele(vp);
928 goto popen_fail;
929 }
930 error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED);
931 if (error) {
932 vput(vp);
933 goto popen_fail;
934 }
935 /* VOP_OPEN() doesn't do this for us. */
936 mutex_enter(&vp->v_interlock);
937 vp->v_writecount++;
938 mutex_exit(&vp->v_interlock);
939 VOP_UNLOCK(vp, 0);
940 sc->sc_parent->dk_rawvp = vp;
941 }
942 sc->sc_parent->dk_rawopens++;
943 }
944 if (fmt == S_IFCHR)
945 sc->sc_dk.dk_copenmask |= 1;
946 else
947 sc->sc_dk.dk_bopenmask |= 1;
948 sc->sc_dk.dk_openmask =
949 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
950
951 popen_fail:
952 mutex_exit(&sc->sc_parent->dk_rawlock);
953 mutex_exit(&sc->sc_dk.dk_openlock);
954 return (error);
955 }
956
957 /*
958 * dkclose: [devsw entry point]
959 *
960 * Close a wedge.
961 */
962 static int
963 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
964 {
965 struct dkwedge_softc *sc = dkwedge_lookup(dev);
966 int error = 0;
967
968 KASSERT(sc->sc_dk.dk_openmask != 0);
969
970 mutex_enter(&sc->sc_dk.dk_openlock);
971 mutex_enter(&sc->sc_parent->dk_rawlock);
972
973 if (fmt == S_IFCHR)
974 sc->sc_dk.dk_copenmask &= ~1;
975 else
976 sc->sc_dk.dk_bopenmask &= ~1;
977 sc->sc_dk.dk_openmask =
978 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
979
980 if (sc->sc_dk.dk_openmask == 0) {
981 if (sc->sc_parent->dk_rawopens-- == 1) {
982 KASSERT(sc->sc_parent->dk_rawvp != NULL);
983 error = vn_close(sc->sc_parent->dk_rawvp,
984 FREAD | FWRITE, NOCRED);
985 sc->sc_parent->dk_rawvp = NULL;
986 }
987 }
988
989 mutex_exit(&sc->sc_parent->dk_rawlock);
990 mutex_exit(&sc->sc_dk.dk_openlock);
991
992 return (error);
993 }
994
995 /*
996 * dkstragegy: [devsw entry point]
997 *
998 * Perform I/O based on the wedge I/O strategy.
999 */
1000 static void
1001 dkstrategy(struct buf *bp)
1002 {
1003 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1004 int s;
1005
1006 if (sc->sc_state != DKW_STATE_RUNNING) {
1007 bp->b_error = ENXIO;
1008 goto done;
1009 }
1010
1011 /* If it's an empty transfer, wake up the top half now. */
1012 if (bp->b_bcount == 0)
1013 goto done;
1014
1015 /* Make sure it's in-range. */
1016 if (bounds_check_with_mediasize(bp, DEV_BSIZE, sc->sc_size) <= 0)
1017 goto done;
1018
1019 /* Translate it to the parent's raw LBA. */
1020 bp->b_rawblkno = bp->b_blkno + sc->sc_offset;
1021
1022 /* Place it in the queue and start I/O on the unit. */
1023 s = splbio();
1024 sc->sc_iopend++;
1025 BUFQ_PUT(sc->sc_bufq, bp);
1026 dkstart(sc);
1027 splx(s);
1028 return;
1029
1030 done:
1031 bp->b_resid = bp->b_bcount;
1032 biodone(bp);
1033 }
1034
1035 /*
1036 * dkstart:
1037 *
1038 * Start I/O that has been enqueued on the wedge.
1039 * NOTE: Must be called at splbio()!
1040 */
1041 static void
1042 dkstart(struct dkwedge_softc *sc)
1043 {
1044 struct vnode *vp;
1045 struct buf *bp, *nbp;
1046
1047 /* Do as much work as has been enqueued. */
1048 while ((bp = BUFQ_PEEK(sc->sc_bufq)) != NULL) {
1049 if (sc->sc_state != DKW_STATE_RUNNING) {
1050 (void) BUFQ_GET(sc->sc_bufq);
1051 if (sc->sc_iopend-- == 1 &&
1052 (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1053 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1054 wakeup(&sc->sc_iopend);
1055 }
1056 bp->b_error = ENXIO;
1057 bp->b_resid = bp->b_bcount;
1058 biodone(bp);
1059 }
1060
1061 /* Instrumentation. */
1062 disk_busy(&sc->sc_dk);
1063
1064 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1065 if (nbp == NULL) {
1066 /*
1067 * No resources to run this request; leave the
1068 * buffer queued up, and schedule a timer to
1069 * restart the queue in 1/2 a second.
1070 */
1071 disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
1072 callout_schedule(&sc->sc_restart_ch, hz / 2);
1073 return;
1074 }
1075
1076 (void) BUFQ_GET(sc->sc_bufq);
1077
1078 nbp->b_data = bp->b_data;
1079 nbp->b_flags = bp->b_flags;
1080 nbp->b_oflags = bp->b_oflags;
1081 nbp->b_cflags = bp->b_cflags;
1082 nbp->b_iodone = dkiodone;
1083 nbp->b_proc = bp->b_proc;
1084 nbp->b_blkno = bp->b_rawblkno;
1085 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1086 nbp->b_bcount = bp->b_bcount;
1087 nbp->b_private = bp;
1088 BIO_COPYPRIO(nbp, bp);
1089
1090 vp = nbp->b_vp;
1091 if ((nbp->b_flags & B_READ) == 0) {
1092 mutex_enter(&vp->v_interlock);
1093 vp->v_numoutput++;
1094 mutex_exit(&vp->v_interlock);
1095 }
1096 VOP_STRATEGY(vp, nbp);
1097 }
1098 }
1099
1100 /*
1101 * dkiodone:
1102 *
1103 * I/O to a wedge has completed; alert the top half.
1104 */
1105 static void
1106 dkiodone(struct buf *bp)
1107 {
1108 struct buf *obp = bp->b_private;
1109 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1110
1111 int s = splbio();
1112
1113 if (bp->b_error != 0)
1114 obp->b_error = bp->b_error;
1115 obp->b_resid = bp->b_resid;
1116 putiobuf(bp);
1117
1118 if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1119 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1120 wakeup(&sc->sc_iopend);
1121 }
1122
1123 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1124 obp->b_flags & B_READ);
1125
1126 biodone(obp);
1127
1128 /* Kick the queue in case there is more work we can do. */
1129 dkstart(sc);
1130 splx(s);
1131 }
1132
1133 /*
1134 * dkrestart:
1135 *
1136 * Restart the work queue after it was stalled due to
1137 * a resource shortage. Invoked via a callout.
1138 */
1139 static void
1140 dkrestart(void *v)
1141 {
1142 struct dkwedge_softc *sc = v;
1143 int s;
1144
1145 s = splbio();
1146 dkstart(sc);
1147 splx(s);
1148 }
1149
1150 /*
1151 * dkminphys:
1152 *
1153 * Call parent's minphys function.
1154 */
1155 static void
1156 dkminphys(struct buf *bp)
1157 {
1158 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1159 dev_t dev;
1160
1161 dev = bp->b_dev;
1162 bp->b_dev = sc->sc_pdev;
1163 (*sc->sc_parent->dk_driver->d_minphys)(bp);
1164 bp->b_dev = dev;
1165 }
1166
1167 /*
1168 * dkread: [devsw entry point]
1169 *
1170 * Read from a wedge.
1171 */
1172 static int
1173 dkread(dev_t dev, struct uio *uio, int flags)
1174 {
1175 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1176
1177 if (sc->sc_state != DKW_STATE_RUNNING)
1178 return (ENXIO);
1179
1180 return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio));
1181 }
1182
1183 /*
1184 * dkwrite: [devsw entry point]
1185 *
1186 * Write to a wedge.
1187 */
1188 static int
1189 dkwrite(dev_t dev, struct uio *uio, int flags)
1190 {
1191 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1192
1193 if (sc->sc_state != DKW_STATE_RUNNING)
1194 return (ENXIO);
1195
1196 return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio));
1197 }
1198
1199 /*
1200 * dkioctl: [devsw entry point]
1201 *
1202 * Perform an ioctl request on a wedge.
1203 */
1204 static int
1205 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1206 {
1207 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1208 int error = 0;
1209
1210 if (sc->sc_state != DKW_STATE_RUNNING)
1211 return (ENXIO);
1212
1213 switch (cmd) {
1214 case DIOCCACHESYNC:
1215 /*
1216 * XXX Do we really need to care about having a writable
1217 * file descriptor here?
1218 */
1219 if ((flag & FWRITE) == 0)
1220 error = EBADF;
1221 else
1222 error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
1223 cmd, data, flag,
1224 l != NULL ? l->l_cred : NOCRED);
1225 break;
1226 case DIOCGWEDGEINFO:
1227 {
1228 struct dkwedge_info *dkw = (void *) data;
1229
1230 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1231 sizeof(dkw->dkw_devname));
1232 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1233 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1234 strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
1235 dkw->dkw_offset = sc->sc_offset;
1236 dkw->dkw_size = sc->sc_size;
1237 strcpy(dkw->dkw_ptype, sc->sc_ptype);
1238
1239 break;
1240 }
1241
1242 default:
1243 error = ENOTTY;
1244 }
1245
1246 return (error);
1247 }
1248
1249 /*
1250 * dksize: [devsw entry point]
1251 *
1252 * Query the size of a wedge for the purpose of performing a dump
1253 * or for swapping to.
1254 */
1255 static int
1256 dksize(dev_t dev)
1257 {
1258 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1259 int rv = -1;
1260
1261 if (sc == NULL)
1262 return (-1);
1263
1264 if (sc->sc_state != DKW_STATE_RUNNING)
1265 return (ENXIO);
1266
1267 mutex_enter(&sc->sc_dk.dk_openlock);
1268 mutex_enter(&sc->sc_parent->dk_rawlock);
1269
1270 /* Our content type is static, no need to open the device. */
1271
1272 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1273 /* Saturate if we are larger than INT_MAX. */
1274 if (sc->sc_size > INT_MAX)
1275 rv = INT_MAX;
1276 else
1277 rv = (int) sc->sc_size;
1278 }
1279
1280 mutex_exit(&sc->sc_parent->dk_rawlock);
1281 mutex_exit(&sc->sc_dk.dk_openlock);
1282
1283 return (rv);
1284 }
1285
1286 /*
1287 * dkdump: [devsw entry point]
1288 *
1289 * Perform a crash dump to a wedge.
1290 */
1291 static int
1292 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1293 {
1294 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1295 const struct bdevsw *bdev;
1296 int rv = 0;
1297
1298 if (sc == NULL)
1299 return (-1);
1300
1301 if (sc->sc_state != DKW_STATE_RUNNING)
1302 return (ENXIO);
1303
1304 mutex_enter(&sc->sc_dk.dk_openlock);
1305 mutex_enter(&sc->sc_parent->dk_rawlock);
1306
1307 /* Our content type is static, no need to open the device. */
1308
1309 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
1310 rv = ENXIO;
1311 goto out;
1312 }
1313 if (size % DEV_BSIZE != 0) {
1314 rv = EINVAL;
1315 goto out;
1316 }
1317 if (blkno + size / DEV_BSIZE > sc->sc_size) {
1318 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1319 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
1320 size / DEV_BSIZE, sc->sc_size);
1321 rv = EINVAL;
1322 goto out;
1323 }
1324
1325 bdev = bdevsw_lookup(sc->sc_pdev);
1326 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
1327
1328 out:
1329 mutex_exit(&sc->sc_parent->dk_rawlock);
1330 mutex_exit(&sc->sc_dk.dk_openlock);
1331
1332 return rv;
1333 }
1334