dk.c revision 1.46 1 /* $NetBSD: dk.c,v 1.46 2009/07/02 00:56:48 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.46 2009/07/02 00:56:48 dyoung Exp $");
34
35 #include "opt_dkwedge.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/proc.h>
40 #include <sys/errno.h>
41 #include <sys/pool.h>
42 #include <sys/ioctl.h>
43 #include <sys/disklabel.h>
44 #include <sys/disk.h>
45 #include <sys/fcntl.h>
46 #include <sys/buf.h>
47 #include <sys/bufq.h>
48 #include <sys/vnode.h>
49 #include <sys/stat.h>
50 #include <sys/conf.h>
51 #include <sys/callout.h>
52 #include <sys/kernel.h>
53 #include <sys/malloc.h>
54 #include <sys/device.h>
55 #include <sys/kauth.h>
56
57 #include <miscfs/specfs/specdev.h>
58
59 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
60
61 typedef enum {
62 DKW_STATE_LARVAL = 0,
63 DKW_STATE_RUNNING = 1,
64 DKW_STATE_DYING = 2,
65 DKW_STATE_DEAD = 666
66 } dkwedge_state_t;
67
68 struct dkwedge_softc {
69 struct device *sc_dev; /* pointer to our pseudo-device */
70 struct cfdata sc_cfdata; /* our cfdata structure */
71 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
72
73 dkwedge_state_t sc_state; /* state this wedge is in */
74
75 struct disk *sc_parent; /* parent disk */
76 daddr_t sc_offset; /* LBA offset of wedge in parent */
77 uint64_t sc_size; /* size of wedge in blocks */
78 char sc_ptype[32]; /* partition type */
79 dev_t sc_pdev; /* cached parent's dev_t */
80 /* link on parent's wedge list */
81 LIST_ENTRY(dkwedge_softc) sc_plink;
82
83 struct disk sc_dk; /* our own disk structure */
84 struct bufq_state *sc_bufq; /* buffer queue */
85 struct callout sc_restart_ch; /* callout to restart I/O */
86
87 u_int sc_iopend; /* I/Os pending */
88 int sc_flags; /* flags (splbio) */
89 };
90
91 #define DK_F_WAIT_DRAIN 0x0001 /* waiting for I/O to drain */
92
93 static void dkstart(struct dkwedge_softc *);
94 static void dkiodone(struct buf *);
95 static void dkrestart(void *);
96
97 static int dklastclose(struct dkwedge_softc *);
98
99 static dev_type_open(dkopen);
100 static dev_type_close(dkclose);
101 static dev_type_read(dkread);
102 static dev_type_write(dkwrite);
103 static dev_type_ioctl(dkioctl);
104 static dev_type_strategy(dkstrategy);
105 static dev_type_dump(dkdump);
106 static dev_type_size(dksize);
107
108 const struct bdevsw dk_bdevsw = {
109 dkopen, dkclose, dkstrategy, dkioctl, dkdump, dksize, D_DISK
110 };
111
112 const struct cdevsw dk_cdevsw = {
113 dkopen, dkclose, dkread, dkwrite, dkioctl,
114 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
115 };
116
117 static struct dkwedge_softc **dkwedges;
118 static u_int ndkwedges;
119 static krwlock_t dkwedges_lock;
120
121 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
122 static krwlock_t dkwedge_discovery_methods_lock;
123
124 /*
125 * dkwedge_match:
126 *
127 * Autoconfiguration match function for pseudo-device glue.
128 */
129 static int
130 dkwedge_match(device_t parent, cfdata_t match,
131 void *aux)
132 {
133
134 /* Pseudo-device; always present. */
135 return (1);
136 }
137
138 /*
139 * dkwedge_attach:
140 *
141 * Autoconfiguration attach function for pseudo-device glue.
142 */
143 static void
144 dkwedge_attach(device_t parent, device_t self,
145 void *aux)
146 {
147
148 if (!pmf_device_register(self, NULL, NULL))
149 aprint_error_dev(self, "couldn't establish power handler\n");
150 }
151
152 /*
153 * dkwedge_detach:
154 *
155 * Autoconfiguration detach function for pseudo-device glue.
156 */
157 static int
158 dkwedge_detach(device_t self, int flags)
159 {
160
161 pmf_device_deregister(self);
162 /* Always succeeds. */
163 return (0);
164 }
165
166 CFDRIVER_DECL(dk, DV_DISK, NULL);
167 CFATTACH_DECL_NEW(dk, 0,
168 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL);
169
170 /*
171 * dkwedge_wait_drain:
172 *
173 * Wait for I/O on the wedge to drain.
174 * NOTE: Must be called at splbio()!
175 */
176 static void
177 dkwedge_wait_drain(struct dkwedge_softc *sc)
178 {
179
180 while (sc->sc_iopend != 0) {
181 sc->sc_flags |= DK_F_WAIT_DRAIN;
182 (void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
183 }
184 }
185
186 /*
187 * dkwedge_compute_pdev:
188 *
189 * Compute the parent disk's dev_t.
190 */
191 static int
192 dkwedge_compute_pdev(const char *pname, dev_t *pdevp)
193 {
194 const char *name, *cp;
195 int punit, pmaj;
196 char devname[16];
197
198 name = pname;
199 if ((pmaj = devsw_name2blk(name, devname, sizeof(devname))) == -1)
200 return (ENODEV);
201
202 name += strlen(devname);
203 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
204 punit = (punit * 10) + (*cp - '0');
205 if (cp == name) {
206 /* Invalid parent disk name. */
207 return (ENODEV);
208 }
209
210 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
211
212 return (0);
213 }
214
215 /*
216 * dkwedge_array_expand:
217 *
218 * Expand the dkwedges array.
219 */
220 static void
221 dkwedge_array_expand(void)
222 {
223 int newcnt = ndkwedges + 16;
224 struct dkwedge_softc **newarray, **oldarray;
225
226 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
227 M_WAITOK|M_ZERO);
228 if ((oldarray = dkwedges) != NULL)
229 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
230 dkwedges = newarray;
231 ndkwedges = newcnt;
232 if (oldarray != NULL)
233 free(oldarray, M_DKWEDGE);
234 }
235
236 /*
237 * dkwedge_add: [exported function]
238 *
239 * Add a disk wedge based on the provided information.
240 *
241 * The incoming dkw_devname[] is ignored, instead being
242 * filled in and returned to the caller.
243 */
244 int
245 dkwedge_add(struct dkwedge_info *dkw)
246 {
247 struct dkwedge_softc *sc, *lsc;
248 struct disk *pdk;
249 u_int unit;
250 int error;
251 dev_t pdev;
252
253 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
254 pdk = disk_find(dkw->dkw_parent);
255 if (pdk == NULL)
256 return (ENODEV);
257
258 error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
259 if (error)
260 return (error);
261
262 if (dkw->dkw_offset < 0)
263 return (EINVAL);
264
265 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
266 sc->sc_state = DKW_STATE_LARVAL;
267 sc->sc_parent = pdk;
268 sc->sc_pdev = pdev;
269 sc->sc_offset = dkw->dkw_offset;
270 sc->sc_size = dkw->dkw_size;
271
272 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
273 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
274
275 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
276 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
277
278 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
279
280 callout_init(&sc->sc_restart_ch, 0);
281 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
282
283 /*
284 * Wedge will be added; increment the wedge count for the parent.
285 * Only allow this to happend if RAW_PART is the only thing open.
286 */
287 mutex_enter(&pdk->dk_openlock);
288 if (pdk->dk_openmask & ~(1 << RAW_PART))
289 error = EBUSY;
290 else {
291 /* Check for wedge overlap. */
292 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
293 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
294 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
295
296 if (sc->sc_offset >= lsc->sc_offset &&
297 sc->sc_offset <= llastblk) {
298 /* Overlaps the tail of the exsiting wedge. */
299 break;
300 }
301 if (lastblk >= lsc->sc_offset &&
302 lastblk <= llastblk) {
303 /* Overlaps the head of the existing wedge. */
304 break;
305 }
306 }
307 if (lsc != NULL)
308 error = EINVAL;
309 else {
310 pdk->dk_nwedges++;
311 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
312 }
313 }
314 mutex_exit(&pdk->dk_openlock);
315 if (error) {
316 bufq_free(sc->sc_bufq);
317 free(sc, M_DKWEDGE);
318 return (error);
319 }
320
321 /* Fill in our cfdata for the pseudo-device glue. */
322 sc->sc_cfdata.cf_name = dk_cd.cd_name;
323 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
324 /* sc->sc_cfdata.cf_unit set below */
325 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
326
327 /* Insert the larval wedge into the array. */
328 rw_enter(&dkwedges_lock, RW_WRITER);
329 for (error = 0;;) {
330 struct dkwedge_softc **scpp;
331
332 /*
333 * Check for a duplicate wname while searching for
334 * a slot.
335 */
336 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
337 if (dkwedges[unit] == NULL) {
338 if (scpp == NULL) {
339 scpp = &dkwedges[unit];
340 sc->sc_cfdata.cf_unit = unit;
341 }
342 } else {
343 /* XXX Unicode. */
344 if (strcmp(dkwedges[unit]->sc_wname,
345 sc->sc_wname) == 0) {
346 error = EEXIST;
347 break;
348 }
349 }
350 }
351 if (error)
352 break;
353 KASSERT(unit == ndkwedges);
354 if (scpp == NULL)
355 dkwedge_array_expand();
356 else {
357 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
358 *scpp = sc;
359 break;
360 }
361 }
362 rw_exit(&dkwedges_lock);
363 if (error) {
364 mutex_enter(&pdk->dk_openlock);
365 pdk->dk_nwedges--;
366 LIST_REMOVE(sc, sc_plink);
367 mutex_exit(&pdk->dk_openlock);
368
369 bufq_free(sc->sc_bufq);
370 free(sc, M_DKWEDGE);
371 return (error);
372 }
373
374 /*
375 * Now that we know the unit #, attach a pseudo-device for
376 * this wedge instance. This will provide us with the
377 * "struct device" necessary for glue to other parts of the
378 * system.
379 *
380 * This should never fail, unless we're almost totally out of
381 * memory.
382 */
383 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
384 aprint_error("%s%u: unable to attach pseudo-device\n",
385 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
386
387 rw_enter(&dkwedges_lock, RW_WRITER);
388 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
389 rw_exit(&dkwedges_lock);
390
391 mutex_enter(&pdk->dk_openlock);
392 pdk->dk_nwedges--;
393 LIST_REMOVE(sc, sc_plink);
394 mutex_exit(&pdk->dk_openlock);
395
396 bufq_free(sc->sc_bufq);
397 free(sc, M_DKWEDGE);
398 return (ENOMEM);
399 }
400
401 /* Return the devname to the caller. */
402 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
403 sizeof(dkw->dkw_devname));
404
405 /*
406 * XXX Really ought to make the disk_attach() and the changing
407 * of state to RUNNING atomic.
408 */
409
410 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
411 disk_attach(&sc->sc_dk);
412
413 /* Disk wedge is ready for use! */
414 sc->sc_state = DKW_STATE_RUNNING;
415
416 /* Announce our arrival. */
417 aprint_normal("%s at %s: %s\n", device_xname(sc->sc_dev), pdk->dk_name,
418 sc->sc_wname); /* XXX Unicode */
419 aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
420 device_xname(sc->sc_dev), sc->sc_size, sc->sc_offset, sc->sc_ptype);
421
422 return (0);
423 }
424
425 /*
426 * dkwedge_del: [exported function]
427 *
428 * Delete a disk wedge based on the provided information.
429 * NOTE: We look up the wedge based on the wedge devname,
430 * not wname.
431 */
432 int
433 dkwedge_del(struct dkwedge_info *dkw)
434 {
435 struct dkwedge_softc *sc = NULL;
436 u_int unit;
437 int bmaj, cmaj, s;
438
439 /* Find our softc. */
440 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
441 rw_enter(&dkwedges_lock, RW_WRITER);
442 for (unit = 0; unit < ndkwedges; unit++) {
443 if ((sc = dkwedges[unit]) != NULL &&
444 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
445 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
446 /* Mark the wedge as dying. */
447 sc->sc_state = DKW_STATE_DYING;
448 break;
449 }
450 }
451 rw_exit(&dkwedges_lock);
452 if (unit == ndkwedges)
453 return (ESRCH);
454
455 KASSERT(sc != NULL);
456
457 /* Locate the wedge major numbers. */
458 bmaj = bdevsw_lookup_major(&dk_bdevsw);
459 cmaj = cdevsw_lookup_major(&dk_cdevsw);
460
461 /* Kill any pending restart. */
462 callout_stop(&sc->sc_restart_ch);
463
464 /*
465 * dkstart() will kill any queued buffers now that the
466 * state of the wedge is not RUNNING. Once we've done
467 * that, wait for any other pending I/O to complete.
468 */
469 s = splbio();
470 dkstart(sc);
471 dkwedge_wait_drain(sc);
472 splx(s);
473
474 /* Nuke the vnodes for any open instances. */
475 vdevgone(bmaj, unit, unit, VBLK);
476 vdevgone(cmaj, unit, unit, VCHR);
477
478 /* Clean up the parent. */
479 mutex_enter(&sc->sc_dk.dk_openlock);
480 mutex_enter(&sc->sc_parent->dk_rawlock);
481 if (sc->sc_dk.dk_openmask) {
482 if (sc->sc_parent->dk_rawopens-- == 1) {
483 KASSERT(sc->sc_parent->dk_rawvp != NULL);
484 (void) vn_close(sc->sc_parent->dk_rawvp, FREAD | FWRITE,
485 NOCRED);
486 sc->sc_parent->dk_rawvp = NULL;
487 }
488 sc->sc_dk.dk_openmask = 0;
489 }
490 mutex_exit(&sc->sc_parent->dk_rawlock);
491 mutex_exit(&sc->sc_dk.dk_openlock);
492
493 /* Announce our departure. */
494 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
495 sc->sc_parent->dk_name,
496 sc->sc_wname); /* XXX Unicode */
497
498 /* Delete our pseudo-device. */
499 (void) config_detach(sc->sc_dev, DETACH_FORCE | DETACH_QUIET);
500
501 mutex_enter(&sc->sc_parent->dk_openlock);
502 sc->sc_parent->dk_nwedges--;
503 LIST_REMOVE(sc, sc_plink);
504 mutex_exit(&sc->sc_parent->dk_openlock);
505
506 /* Delete our buffer queue. */
507 bufq_free(sc->sc_bufq);
508
509 /* Detach from the disk list. */
510 disk_detach(&sc->sc_dk);
511 disk_destroy(&sc->sc_dk);
512
513 /* Poof. */
514 rw_enter(&dkwedges_lock, RW_WRITER);
515 dkwedges[unit] = NULL;
516 sc->sc_state = DKW_STATE_DEAD;
517 rw_exit(&dkwedges_lock);
518
519 free(sc, M_DKWEDGE);
520
521 return (0);
522 }
523
524 /*
525 * dkwedge_delall: [exported function]
526 *
527 * Delete all of the wedges on the specified disk. Used when
528 * a disk is being detached.
529 */
530 void
531 dkwedge_delall(struct disk *pdk)
532 {
533 struct dkwedge_info dkw;
534 struct dkwedge_softc *sc;
535
536 for (;;) {
537 mutex_enter(&pdk->dk_openlock);
538 if ((sc = LIST_FIRST(&pdk->dk_wedges)) == NULL) {
539 KASSERT(pdk->dk_nwedges == 0);
540 mutex_exit(&pdk->dk_openlock);
541 return;
542 }
543 strcpy(dkw.dkw_parent, pdk->dk_name);
544 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
545 sizeof(dkw.dkw_devname));
546 mutex_exit(&pdk->dk_openlock);
547 (void) dkwedge_del(&dkw);
548 }
549 }
550
551 /*
552 * dkwedge_list: [exported function]
553 *
554 * List all of the wedges on a particular disk.
555 * If p == NULL, the buffer is in kernel space. Otherwise, it is
556 * in user space of the specified process.
557 */
558 int
559 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
560 {
561 struct uio uio;
562 struct iovec iov;
563 struct dkwedge_softc *sc;
564 struct dkwedge_info dkw;
565 struct vmspace *vm;
566 int error = 0;
567
568 iov.iov_base = dkwl->dkwl_buf;
569 iov.iov_len = dkwl->dkwl_bufsize;
570
571 uio.uio_iov = &iov;
572 uio.uio_iovcnt = 1;
573 uio.uio_offset = 0;
574 uio.uio_resid = dkwl->dkwl_bufsize;
575 uio.uio_rw = UIO_READ;
576 if (l == NULL) {
577 UIO_SETUP_SYSSPACE(&uio);
578 } else {
579 error = proc_vmspace_getref(l->l_proc, &vm);
580 if (error) {
581 return error;
582 }
583 uio.uio_vmspace = vm;
584 }
585
586 dkwl->dkwl_ncopied = 0;
587
588 mutex_enter(&pdk->dk_openlock);
589 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
590 if (uio.uio_resid < sizeof(dkw))
591 break;
592
593 if (sc->sc_state != DKW_STATE_RUNNING)
594 continue;
595
596 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
597 sizeof(dkw.dkw_devname));
598 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
599 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
600 strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
601 dkw.dkw_offset = sc->sc_offset;
602 dkw.dkw_size = sc->sc_size;
603 strcpy(dkw.dkw_ptype, sc->sc_ptype);
604
605 error = uiomove(&dkw, sizeof(dkw), &uio);
606 if (error)
607 break;
608 dkwl->dkwl_ncopied++;
609 }
610 dkwl->dkwl_nwedges = pdk->dk_nwedges;
611 mutex_exit(&pdk->dk_openlock);
612
613 if (l != NULL) {
614 uvmspace_free(vm);
615 }
616
617 return (error);
618 }
619
620 device_t
621 dkwedge_find_by_wname(const char *wname)
622 {
623 device_t dv = NULL;
624 struct dkwedge_softc *sc;
625 int i;
626
627 rw_enter(&dkwedges_lock, RW_WRITER);
628 for (i = 0; i < ndkwedges; i++) {
629 if ((sc = dkwedges[i]) == NULL)
630 continue;
631 if (strcmp(sc->sc_wname, wname) == 0) {
632 if (dv != NULL) {
633 printf(
634 "WARNING: double match for wedge name %s "
635 "(%s, %s)\n", wname, device_xname(dv),
636 device_xname(sc->sc_dev));
637 continue;
638 }
639 dv = sc->sc_dev;
640 }
641 }
642 rw_exit(&dkwedges_lock);
643 return dv;
644 }
645
646 void
647 dkwedge_print_wnames(void)
648 {
649 struct dkwedge_softc *sc;
650 int i;
651
652 rw_enter(&dkwedges_lock, RW_WRITER);
653 for (i = 0; i < ndkwedges; i++) {
654 if ((sc = dkwedges[i]) == NULL)
655 continue;
656 printf(" wedge:%s", sc->sc_wname);
657 }
658 rw_exit(&dkwedges_lock);
659 }
660
661 /*
662 * dkwedge_set_bootwedge
663 *
664 * Set the booted_wedge global based on the specified parent name
665 * and offset/length.
666 */
667 void
668 dkwedge_set_bootwedge(device_t parent, daddr_t startblk, uint64_t nblks)
669 {
670 struct dkwedge_softc *sc;
671 int i;
672
673 rw_enter(&dkwedges_lock, RW_WRITER);
674 for (i = 0; i < ndkwedges; i++) {
675 if ((sc = dkwedges[i]) == NULL)
676 continue;
677 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
678 sc->sc_offset == startblk &&
679 sc->sc_size == nblks) {
680 if (booted_wedge) {
681 printf("WARNING: double match for boot wedge "
682 "(%s, %s)\n",
683 device_xname(booted_wedge),
684 device_xname(sc->sc_dev));
685 continue;
686 }
687 booted_device = parent;
688 booted_wedge = sc->sc_dev;
689 booted_partition = 0;
690 }
691 }
692 /*
693 * XXX What if we don't find one? Should we create a special
694 * XXX root wedge?
695 */
696 rw_exit(&dkwedges_lock);
697 }
698
699 /*
700 * We need a dummy object to stuff into the dkwedge discovery method link
701 * set to ensure that there is always at least one object in the set.
702 */
703 static struct dkwedge_discovery_method dummy_discovery_method;
704 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
705
706 /*
707 * dkwedge_init:
708 *
709 * Initialize the disk wedge subsystem.
710 */
711 void
712 dkwedge_init(void)
713 {
714 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
715 struct dkwedge_discovery_method * const *ddmp;
716 struct dkwedge_discovery_method *lddm, *ddm;
717
718 rw_init(&dkwedges_lock);
719 rw_init(&dkwedge_discovery_methods_lock);
720
721 if (config_cfdriver_attach(&dk_cd) != 0)
722 panic("dkwedge: unable to attach cfdriver");
723 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
724 panic("dkwedge: unable to attach cfattach");
725
726 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
727
728 LIST_INIT(&dkwedge_discovery_methods);
729
730 __link_set_foreach(ddmp, dkwedge_methods) {
731 ddm = *ddmp;
732 if (ddm == &dummy_discovery_method)
733 continue;
734 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
735 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
736 ddm, ddm_list);
737 continue;
738 }
739 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
740 if (ddm->ddm_priority == lddm->ddm_priority) {
741 aprint_error("dk-method-%s: method \"%s\" "
742 "already exists at priority %d\n",
743 ddm->ddm_name, lddm->ddm_name,
744 lddm->ddm_priority);
745 /* Not inserted. */
746 break;
747 }
748 if (ddm->ddm_priority < lddm->ddm_priority) {
749 /* Higher priority; insert before. */
750 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
751 break;
752 }
753 if (LIST_NEXT(lddm, ddm_list) == NULL) {
754 /* Last one; insert after. */
755 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
756 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
757 break;
758 }
759 }
760 }
761
762 rw_exit(&dkwedge_discovery_methods_lock);
763 }
764
765 #ifdef DKWEDGE_AUTODISCOVER
766 int dkwedge_autodiscover = 1;
767 #else
768 int dkwedge_autodiscover = 0;
769 #endif
770
771 /*
772 * dkwedge_discover: [exported function]
773 *
774 * Discover the wedges on a newly attached disk.
775 */
776 void
777 dkwedge_discover(struct disk *pdk)
778 {
779 struct dkwedge_discovery_method *ddm;
780 struct vnode *vp;
781 int error;
782 dev_t pdev;
783
784 /*
785 * Require people playing with wedges to enable this explicitly.
786 */
787 if (dkwedge_autodiscover == 0)
788 return;
789
790 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
791
792 error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
793 if (error) {
794 aprint_error("%s: unable to compute pdev, error = %d\n",
795 pdk->dk_name, error);
796 goto out;
797 }
798
799 error = bdevvp(pdev, &vp);
800 if (error) {
801 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
802 pdk->dk_name, error);
803 goto out;
804 }
805
806 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
807 if (error) {
808 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
809 pdk->dk_name, error);
810 vrele(vp);
811 goto out;
812 }
813
814 error = VOP_OPEN(vp, FREAD, NOCRED);
815 if (error) {
816 aprint_error("%s: unable to open device, error = %d\n",
817 pdk->dk_name, error);
818 vput(vp);
819 goto out;
820 }
821 VOP_UNLOCK(vp, 0);
822
823 /*
824 * For each supported partition map type, look to see if
825 * this map type exists. If so, parse it and add the
826 * corresponding wedges.
827 */
828 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
829 error = (*ddm->ddm_discover)(pdk, vp);
830 if (error == 0) {
831 /* Successfully created wedges; we're done. */
832 break;
833 }
834 }
835
836 error = vn_close(vp, FREAD, NOCRED);
837 if (error) {
838 aprint_error("%s: unable to close device, error = %d\n",
839 pdk->dk_name, error);
840 /* We'll just assume the vnode has been cleaned up. */
841 }
842 out:
843 rw_exit(&dkwedge_discovery_methods_lock);
844 }
845
846 /*
847 * dkwedge_read:
848 *
849 * Read some data from the specified disk, used for
850 * partition discovery.
851 */
852 int
853 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
854 void *tbuf, size_t len)
855 {
856 struct buf *bp;
857 int result;
858
859 bp = getiobuf(vp, true);
860
861 bp->b_dev = vp->v_rdev;
862 bp->b_blkno = blkno;
863 bp->b_bcount = len;
864 bp->b_resid = len;
865 bp->b_flags = B_READ;
866 bp->b_data = tbuf;
867 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */
868
869 VOP_STRATEGY(vp, bp);
870 result = biowait(bp);
871 putiobuf(bp);
872
873 return result;
874 }
875
876 /*
877 * dkwedge_lookup:
878 *
879 * Look up a dkwedge_softc based on the provided dev_t.
880 */
881 static struct dkwedge_softc *
882 dkwedge_lookup(dev_t dev)
883 {
884 int unit = minor(dev);
885
886 if (unit >= ndkwedges)
887 return (NULL);
888
889 KASSERT(dkwedges != NULL);
890
891 return (dkwedges[unit]);
892 }
893
894 /*
895 * dkopen: [devsw entry point]
896 *
897 * Open a wedge.
898 */
899 static int
900 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
901 {
902 struct dkwedge_softc *sc = dkwedge_lookup(dev);
903 struct vnode *vp;
904 int error = 0;
905
906 if (sc == NULL)
907 return (ENODEV);
908
909 if (sc->sc_state != DKW_STATE_RUNNING)
910 return (ENXIO);
911
912 /*
913 * We go through a complicated little dance to only open the parent
914 * vnode once per wedge, no matter how many times the wedge is
915 * opened. The reason? We see one dkopen() per open call, but
916 * only dkclose() on the last close.
917 */
918 mutex_enter(&sc->sc_dk.dk_openlock);
919 mutex_enter(&sc->sc_parent->dk_rawlock);
920 if (sc->sc_dk.dk_openmask == 0) {
921 if (sc->sc_parent->dk_rawopens == 0) {
922 KASSERT(sc->sc_parent->dk_rawvp == NULL);
923 error = bdevvp(sc->sc_pdev, &vp);
924 if (error)
925 goto popen_fail;
926 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
927 if (error) {
928 vrele(vp);
929 goto popen_fail;
930 }
931 error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED);
932 if (error) {
933 vput(vp);
934 goto popen_fail;
935 }
936 /* VOP_OPEN() doesn't do this for us. */
937 mutex_enter(&vp->v_interlock);
938 vp->v_writecount++;
939 mutex_exit(&vp->v_interlock);
940 VOP_UNLOCK(vp, 0);
941 sc->sc_parent->dk_rawvp = vp;
942 }
943 sc->sc_parent->dk_rawopens++;
944 }
945 if (fmt == S_IFCHR)
946 sc->sc_dk.dk_copenmask |= 1;
947 else
948 sc->sc_dk.dk_bopenmask |= 1;
949 sc->sc_dk.dk_openmask =
950 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
951
952 popen_fail:
953 mutex_exit(&sc->sc_parent->dk_rawlock);
954 mutex_exit(&sc->sc_dk.dk_openlock);
955 return (error);
956 }
957
958 /*
959 * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock.
960 */
961 static int
962 dklastclose(struct dkwedge_softc *sc)
963 {
964 int error = 0;
965
966 if (sc->sc_parent->dk_rawopens-- == 1) {
967 KASSERT(sc->sc_parent->dk_rawvp != NULL);
968 error = vn_close(sc->sc_parent->dk_rawvp,
969 FREAD | FWRITE, NOCRED);
970 sc->sc_parent->dk_rawvp = NULL;
971 }
972 return error;
973 }
974
975 /*
976 * dkclose: [devsw entry point]
977 *
978 * Close a wedge.
979 */
980 static int
981 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
982 {
983 struct dkwedge_softc *sc = dkwedge_lookup(dev);
984 int error = 0;
985
986 KASSERT(sc->sc_dk.dk_openmask != 0);
987
988 mutex_enter(&sc->sc_dk.dk_openlock);
989 mutex_enter(&sc->sc_parent->dk_rawlock);
990
991 if (fmt == S_IFCHR)
992 sc->sc_dk.dk_copenmask &= ~1;
993 else
994 sc->sc_dk.dk_bopenmask &= ~1;
995 sc->sc_dk.dk_openmask =
996 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
997
998 if (sc->sc_dk.dk_openmask == 0)
999 error = dklastclose(sc);
1000
1001 mutex_exit(&sc->sc_parent->dk_rawlock);
1002 mutex_exit(&sc->sc_dk.dk_openlock);
1003
1004 return (error);
1005 }
1006
1007 /*
1008 * dkstragegy: [devsw entry point]
1009 *
1010 * Perform I/O based on the wedge I/O strategy.
1011 */
1012 static void
1013 dkstrategy(struct buf *bp)
1014 {
1015 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1016 int s;
1017
1018 if (sc->sc_state != DKW_STATE_RUNNING) {
1019 bp->b_error = ENXIO;
1020 goto done;
1021 }
1022
1023 /* If it's an empty transfer, wake up the top half now. */
1024 if (bp->b_bcount == 0)
1025 goto done;
1026
1027 /* Make sure it's in-range. */
1028 if (bounds_check_with_mediasize(bp, DEV_BSIZE, sc->sc_size) <= 0)
1029 goto done;
1030
1031 /* Translate it to the parent's raw LBA. */
1032 bp->b_rawblkno = bp->b_blkno + sc->sc_offset;
1033
1034 /* Place it in the queue and start I/O on the unit. */
1035 s = splbio();
1036 sc->sc_iopend++;
1037 bufq_put(sc->sc_bufq, bp);
1038 dkstart(sc);
1039 splx(s);
1040 return;
1041
1042 done:
1043 bp->b_resid = bp->b_bcount;
1044 biodone(bp);
1045 }
1046
1047 /*
1048 * dkstart:
1049 *
1050 * Start I/O that has been enqueued on the wedge.
1051 * NOTE: Must be called at splbio()!
1052 */
1053 static void
1054 dkstart(struct dkwedge_softc *sc)
1055 {
1056 struct vnode *vp;
1057 struct buf *bp, *nbp;
1058
1059 /* Do as much work as has been enqueued. */
1060 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1061 if (sc->sc_state != DKW_STATE_RUNNING) {
1062 (void) bufq_get(sc->sc_bufq);
1063 if (sc->sc_iopend-- == 1 &&
1064 (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1065 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1066 wakeup(&sc->sc_iopend);
1067 }
1068 bp->b_error = ENXIO;
1069 bp->b_resid = bp->b_bcount;
1070 biodone(bp);
1071 }
1072
1073 /* Instrumentation. */
1074 disk_busy(&sc->sc_dk);
1075
1076 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1077 if (nbp == NULL) {
1078 /*
1079 * No resources to run this request; leave the
1080 * buffer queued up, and schedule a timer to
1081 * restart the queue in 1/2 a second.
1082 */
1083 disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
1084 callout_schedule(&sc->sc_restart_ch, hz / 2);
1085 return;
1086 }
1087
1088 (void) bufq_get(sc->sc_bufq);
1089
1090 nbp->b_data = bp->b_data;
1091 nbp->b_flags = bp->b_flags;
1092 nbp->b_oflags = bp->b_oflags;
1093 nbp->b_cflags = bp->b_cflags;
1094 nbp->b_iodone = dkiodone;
1095 nbp->b_proc = bp->b_proc;
1096 nbp->b_blkno = bp->b_rawblkno;
1097 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1098 nbp->b_bcount = bp->b_bcount;
1099 nbp->b_private = bp;
1100 BIO_COPYPRIO(nbp, bp);
1101
1102 vp = nbp->b_vp;
1103 if ((nbp->b_flags & B_READ) == 0) {
1104 mutex_enter(&vp->v_interlock);
1105 vp->v_numoutput++;
1106 mutex_exit(&vp->v_interlock);
1107 }
1108 VOP_STRATEGY(vp, nbp);
1109 }
1110 }
1111
1112 /*
1113 * dkiodone:
1114 *
1115 * I/O to a wedge has completed; alert the top half.
1116 * NOTE: Must be called at splbio()!
1117 */
1118 static void
1119 dkiodone(struct buf *bp)
1120 {
1121 struct buf *obp = bp->b_private;
1122 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1123
1124 if (bp->b_error != 0)
1125 obp->b_error = bp->b_error;
1126 obp->b_resid = bp->b_resid;
1127 putiobuf(bp);
1128
1129 if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1130 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1131 wakeup(&sc->sc_iopend);
1132 }
1133
1134 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1135 obp->b_flags & B_READ);
1136
1137 biodone(obp);
1138
1139 /* Kick the queue in case there is more work we can do. */
1140 dkstart(sc);
1141 }
1142
1143 /*
1144 * dkrestart:
1145 *
1146 * Restart the work queue after it was stalled due to
1147 * a resource shortage. Invoked via a callout.
1148 */
1149 static void
1150 dkrestart(void *v)
1151 {
1152 struct dkwedge_softc *sc = v;
1153 int s;
1154
1155 s = splbio();
1156 dkstart(sc);
1157 splx(s);
1158 }
1159
1160 /*
1161 * dkread: [devsw entry point]
1162 *
1163 * Read from a wedge.
1164 */
1165 static int
1166 dkread(dev_t dev, struct uio *uio, int flags)
1167 {
1168 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1169
1170 if (sc->sc_state != DKW_STATE_RUNNING)
1171 return (ENXIO);
1172
1173 return (physio(dkstrategy, NULL, dev, B_READ,
1174 sc->sc_parent->dk_driver->d_minphys, uio));
1175 }
1176
1177 /*
1178 * dkwrite: [devsw entry point]
1179 *
1180 * Write to a wedge.
1181 */
1182 static int
1183 dkwrite(dev_t dev, struct uio *uio, int flags)
1184 {
1185 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1186
1187 if (sc->sc_state != DKW_STATE_RUNNING)
1188 return (ENXIO);
1189
1190 return (physio(dkstrategy, NULL, dev, B_WRITE,
1191 sc->sc_parent->dk_driver->d_minphys, uio));
1192 }
1193
1194 /*
1195 * dkioctl: [devsw entry point]
1196 *
1197 * Perform an ioctl request on a wedge.
1198 */
1199 static int
1200 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1201 {
1202 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1203 int error = 0;
1204
1205 if (sc->sc_state != DKW_STATE_RUNNING)
1206 return (ENXIO);
1207
1208 switch (cmd) {
1209 case DIOCCACHESYNC:
1210 /*
1211 * XXX Do we really need to care about having a writable
1212 * file descriptor here?
1213 */
1214 if ((flag & FWRITE) == 0)
1215 error = EBADF;
1216 else
1217 error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
1218 cmd, data, flag,
1219 l != NULL ? l->l_cred : NOCRED);
1220 break;
1221 case DIOCGWEDGEINFO:
1222 {
1223 struct dkwedge_info *dkw = (void *) data;
1224
1225 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1226 sizeof(dkw->dkw_devname));
1227 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1228 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1229 strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
1230 dkw->dkw_offset = sc->sc_offset;
1231 dkw->dkw_size = sc->sc_size;
1232 strcpy(dkw->dkw_ptype, sc->sc_ptype);
1233
1234 break;
1235 }
1236
1237 default:
1238 error = ENOTTY;
1239 }
1240
1241 return (error);
1242 }
1243
1244 /*
1245 * dksize: [devsw entry point]
1246 *
1247 * Query the size of a wedge for the purpose of performing a dump
1248 * or for swapping to.
1249 */
1250 static int
1251 dksize(dev_t dev)
1252 {
1253 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1254 int rv = -1;
1255
1256 if (sc == NULL)
1257 return (-1);
1258
1259 if (sc->sc_state != DKW_STATE_RUNNING)
1260 return (ENXIO);
1261
1262 mutex_enter(&sc->sc_dk.dk_openlock);
1263 mutex_enter(&sc->sc_parent->dk_rawlock);
1264
1265 /* Our content type is static, no need to open the device. */
1266
1267 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1268 /* Saturate if we are larger than INT_MAX. */
1269 if (sc->sc_size > INT_MAX)
1270 rv = INT_MAX;
1271 else
1272 rv = (int) sc->sc_size;
1273 }
1274
1275 mutex_exit(&sc->sc_parent->dk_rawlock);
1276 mutex_exit(&sc->sc_dk.dk_openlock);
1277
1278 return (rv);
1279 }
1280
1281 /*
1282 * dkdump: [devsw entry point]
1283 *
1284 * Perform a crash dump to a wedge.
1285 */
1286 static int
1287 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1288 {
1289 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1290 const struct bdevsw *bdev;
1291 int rv = 0;
1292
1293 if (sc == NULL)
1294 return (-1);
1295
1296 if (sc->sc_state != DKW_STATE_RUNNING)
1297 return (ENXIO);
1298
1299 mutex_enter(&sc->sc_dk.dk_openlock);
1300 mutex_enter(&sc->sc_parent->dk_rawlock);
1301
1302 /* Our content type is static, no need to open the device. */
1303
1304 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
1305 rv = ENXIO;
1306 goto out;
1307 }
1308 if (size % DEV_BSIZE != 0) {
1309 rv = EINVAL;
1310 goto out;
1311 }
1312 if (blkno + size / DEV_BSIZE > sc->sc_size) {
1313 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1314 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
1315 size / DEV_BSIZE, sc->sc_size);
1316 rv = EINVAL;
1317 goto out;
1318 }
1319
1320 bdev = bdevsw_lookup(sc->sc_pdev);
1321 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
1322
1323 out:
1324 mutex_exit(&sc->sc_parent->dk_rawlock);
1325 mutex_exit(&sc->sc_dk.dk_openlock);
1326
1327 return rv;
1328 }
1329