Home | History | Annotate | Line # | Download | only in dkwedge
dk.c revision 1.47
      1 /*	$NetBSD: dk.c,v 1.47 2009/07/21 19:41:00 dyoung Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.47 2009/07/21 19:41:00 dyoung Exp $");
     34 
     35 #include "opt_dkwedge.h"
     36 
     37 #include <sys/param.h>
     38 #include <sys/systm.h>
     39 #include <sys/proc.h>
     40 #include <sys/errno.h>
     41 #include <sys/pool.h>
     42 #include <sys/ioctl.h>
     43 #include <sys/disklabel.h>
     44 #include <sys/disk.h>
     45 #include <sys/fcntl.h>
     46 #include <sys/buf.h>
     47 #include <sys/bufq.h>
     48 #include <sys/vnode.h>
     49 #include <sys/stat.h>
     50 #include <sys/conf.h>
     51 #include <sys/callout.h>
     52 #include <sys/kernel.h>
     53 #include <sys/malloc.h>
     54 #include <sys/device.h>
     55 #include <sys/kauth.h>
     56 
     57 #include <miscfs/specfs/specdev.h>
     58 
     59 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
     60 
     61 typedef enum {
     62 	DKW_STATE_LARVAL	= 0,
     63 	DKW_STATE_RUNNING	= 1,
     64 	DKW_STATE_DYING		= 2,
     65 	DKW_STATE_DEAD		= 666
     66 } dkwedge_state_t;
     67 
     68 struct dkwedge_softc {
     69 	struct device	*sc_dev;	/* pointer to our pseudo-device */
     70 	struct cfdata	sc_cfdata;	/* our cfdata structure */
     71 	uint8_t		sc_wname[128];	/* wedge name (Unicode, UTF-8) */
     72 
     73 	dkwedge_state_t sc_state;	/* state this wedge is in */
     74 
     75 	struct disk	*sc_parent;	/* parent disk */
     76 	daddr_t		sc_offset;	/* LBA offset of wedge in parent */
     77 	uint64_t	sc_size;	/* size of wedge in blocks */
     78 	char		sc_ptype[32];	/* partition type */
     79 	dev_t		sc_pdev;	/* cached parent's dev_t */
     80 					/* link on parent's wedge list */
     81 	LIST_ENTRY(dkwedge_softc) sc_plink;
     82 
     83 	struct disk	sc_dk;		/* our own disk structure */
     84 	struct bufq_state *sc_bufq;	/* buffer queue */
     85 	struct callout	sc_restart_ch;	/* callout to restart I/O */
     86 
     87 	u_int		sc_iopend;	/* I/Os pending */
     88 	int		sc_flags;	/* flags (splbio) */
     89 };
     90 
     91 #define	DK_F_WAIT_DRAIN		0x0001	/* waiting for I/O to drain */
     92 
     93 static void	dkstart(struct dkwedge_softc *);
     94 static void	dkiodone(struct buf *);
     95 static void	dkrestart(void *);
     96 
     97 static int	dklastclose(struct dkwedge_softc *);
     98 static int	dkwedge_detach(device_t, int);
     99 
    100 static dev_type_open(dkopen);
    101 static dev_type_close(dkclose);
    102 static dev_type_read(dkread);
    103 static dev_type_write(dkwrite);
    104 static dev_type_ioctl(dkioctl);
    105 static dev_type_strategy(dkstrategy);
    106 static dev_type_dump(dkdump);
    107 static dev_type_size(dksize);
    108 
    109 const struct bdevsw dk_bdevsw = {
    110 	dkopen, dkclose, dkstrategy, dkioctl, dkdump, dksize, D_DISK
    111 };
    112 
    113 const struct cdevsw dk_cdevsw = {
    114 	dkopen, dkclose, dkread, dkwrite, dkioctl,
    115 	    nostop, notty, nopoll, nommap, nokqfilter, D_DISK
    116 };
    117 
    118 static struct dkwedge_softc **dkwedges;
    119 static u_int ndkwedges;
    120 static krwlock_t dkwedges_lock;
    121 
    122 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
    123 static krwlock_t dkwedge_discovery_methods_lock;
    124 
    125 /*
    126  * dkwedge_match:
    127  *
    128  *	Autoconfiguration match function for pseudo-device glue.
    129  */
    130 static int
    131 dkwedge_match(device_t parent, cfdata_t match,
    132     void *aux)
    133 {
    134 
    135 	/* Pseudo-device; always present. */
    136 	return (1);
    137 }
    138 
    139 /*
    140  * dkwedge_attach:
    141  *
    142  *	Autoconfiguration attach function for pseudo-device glue.
    143  */
    144 static void
    145 dkwedge_attach(device_t parent, device_t self,
    146     void *aux)
    147 {
    148 
    149 	if (!pmf_device_register(self, NULL, NULL))
    150 		aprint_error_dev(self, "couldn't establish power handler\n");
    151 }
    152 
    153 CFDRIVER_DECL(dk, DV_DISK, NULL);
    154 CFATTACH_DECL3_NEW(dk, 0,
    155     dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
    156     DVF_DETACH_SHUTDOWN);
    157 
    158 /*
    159  * dkwedge_wait_drain:
    160  *
    161  *	Wait for I/O on the wedge to drain.
    162  *	NOTE: Must be called at splbio()!
    163  */
    164 static void
    165 dkwedge_wait_drain(struct dkwedge_softc *sc)
    166 {
    167 
    168 	while (sc->sc_iopend != 0) {
    169 		sc->sc_flags |= DK_F_WAIT_DRAIN;
    170 		(void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
    171 	}
    172 }
    173 
    174 /*
    175  * dkwedge_compute_pdev:
    176  *
    177  *	Compute the parent disk's dev_t.
    178  */
    179 static int
    180 dkwedge_compute_pdev(const char *pname, dev_t *pdevp)
    181 {
    182 	const char *name, *cp;
    183 	int punit, pmaj;
    184 	char devname[16];
    185 
    186 	name = pname;
    187 	if ((pmaj = devsw_name2blk(name, devname, sizeof(devname))) == -1)
    188 		return (ENODEV);
    189 
    190 	name += strlen(devname);
    191 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
    192 		punit = (punit * 10) + (*cp - '0');
    193 	if (cp == name) {
    194 		/* Invalid parent disk name. */
    195 		return (ENODEV);
    196 	}
    197 
    198 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
    199 
    200 	return (0);
    201 }
    202 
    203 /*
    204  * dkwedge_array_expand:
    205  *
    206  *	Expand the dkwedges array.
    207  */
    208 static void
    209 dkwedge_array_expand(void)
    210 {
    211 	int newcnt = ndkwedges + 16;
    212 	struct dkwedge_softc **newarray, **oldarray;
    213 
    214 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
    215 	    M_WAITOK|M_ZERO);
    216 	if ((oldarray = dkwedges) != NULL)
    217 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
    218 	dkwedges = newarray;
    219 	ndkwedges = newcnt;
    220 	if (oldarray != NULL)
    221 		free(oldarray, M_DKWEDGE);
    222 }
    223 
    224 /*
    225  * dkwedge_add:		[exported function]
    226  *
    227  *	Add a disk wedge based on the provided information.
    228  *
    229  *	The incoming dkw_devname[] is ignored, instead being
    230  *	filled in and returned to the caller.
    231  */
    232 int
    233 dkwedge_add(struct dkwedge_info *dkw)
    234 {
    235 	struct dkwedge_softc *sc, *lsc;
    236 	struct disk *pdk;
    237 	u_int unit;
    238 	int error;
    239 	dev_t pdev;
    240 
    241 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
    242 	pdk = disk_find(dkw->dkw_parent);
    243 	if (pdk == NULL)
    244 		return (ENODEV);
    245 
    246 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
    247 	if (error)
    248 		return (error);
    249 
    250 	if (dkw->dkw_offset < 0)
    251 		return (EINVAL);
    252 
    253 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
    254 	sc->sc_state = DKW_STATE_LARVAL;
    255 	sc->sc_parent = pdk;
    256 	sc->sc_pdev = pdev;
    257 	sc->sc_offset = dkw->dkw_offset;
    258 	sc->sc_size = dkw->dkw_size;
    259 
    260 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
    261 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
    262 
    263 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
    264 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
    265 
    266 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
    267 
    268 	callout_init(&sc->sc_restart_ch, 0);
    269 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
    270 
    271 	/*
    272 	 * Wedge will be added; increment the wedge count for the parent.
    273 	 * Only allow this to happend if RAW_PART is the only thing open.
    274 	 */
    275 	mutex_enter(&pdk->dk_openlock);
    276 	if (pdk->dk_openmask & ~(1 << RAW_PART))
    277 		error = EBUSY;
    278 	else {
    279 		/* Check for wedge overlap. */
    280 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    281 			daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
    282 			daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
    283 
    284 			if (sc->sc_offset >= lsc->sc_offset &&
    285 			    sc->sc_offset <= llastblk) {
    286 				/* Overlaps the tail of the exsiting wedge. */
    287 				break;
    288 			}
    289 			if (lastblk >= lsc->sc_offset &&
    290 			    lastblk <= llastblk) {
    291 				/* Overlaps the head of the existing wedge. */
    292 			    	break;
    293 			}
    294 		}
    295 		if (lsc != NULL)
    296 			error = EINVAL;
    297 		else {
    298 			pdk->dk_nwedges++;
    299 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
    300 		}
    301 	}
    302 	mutex_exit(&pdk->dk_openlock);
    303 	if (error) {
    304 		bufq_free(sc->sc_bufq);
    305 		free(sc, M_DKWEDGE);
    306 		return (error);
    307 	}
    308 
    309 	/* Fill in our cfdata for the pseudo-device glue. */
    310 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
    311 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
    312 	/* sc->sc_cfdata.cf_unit set below */
    313 	sc->sc_cfdata.cf_fstate = FSTATE_STAR;
    314 
    315 	/* Insert the larval wedge into the array. */
    316 	rw_enter(&dkwedges_lock, RW_WRITER);
    317 	for (error = 0;;) {
    318 		struct dkwedge_softc **scpp;
    319 
    320 		/*
    321 		 * Check for a duplicate wname while searching for
    322 		 * a slot.
    323 		 */
    324 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
    325 			if (dkwedges[unit] == NULL) {
    326 				if (scpp == NULL) {
    327 					scpp = &dkwedges[unit];
    328 					sc->sc_cfdata.cf_unit = unit;
    329 				}
    330 			} else {
    331 				/* XXX Unicode. */
    332 				if (strcmp(dkwedges[unit]->sc_wname,
    333 					   sc->sc_wname) == 0) {
    334 					error = EEXIST;
    335 					break;
    336 				}
    337 			}
    338 		}
    339 		if (error)
    340 			break;
    341 		KASSERT(unit == ndkwedges);
    342 		if (scpp == NULL)
    343 			dkwedge_array_expand();
    344 		else {
    345 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
    346 			*scpp = sc;
    347 			break;
    348 		}
    349 	}
    350 	rw_exit(&dkwedges_lock);
    351 	if (error) {
    352 		mutex_enter(&pdk->dk_openlock);
    353 		pdk->dk_nwedges--;
    354 		LIST_REMOVE(sc, sc_plink);
    355 		mutex_exit(&pdk->dk_openlock);
    356 
    357 		bufq_free(sc->sc_bufq);
    358 		free(sc, M_DKWEDGE);
    359 		return (error);
    360 	}
    361 
    362 	/*
    363 	 * Now that we know the unit #, attach a pseudo-device for
    364 	 * this wedge instance.  This will provide us with the
    365 	 * "struct device" necessary for glue to other parts of the
    366 	 * system.
    367 	 *
    368 	 * This should never fail, unless we're almost totally out of
    369 	 * memory.
    370 	 */
    371 	if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
    372 		aprint_error("%s%u: unable to attach pseudo-device\n",
    373 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
    374 
    375 		rw_enter(&dkwedges_lock, RW_WRITER);
    376 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
    377 		rw_exit(&dkwedges_lock);
    378 
    379 		mutex_enter(&pdk->dk_openlock);
    380 		pdk->dk_nwedges--;
    381 		LIST_REMOVE(sc, sc_plink);
    382 		mutex_exit(&pdk->dk_openlock);
    383 
    384 		bufq_free(sc->sc_bufq);
    385 		free(sc, M_DKWEDGE);
    386 		return (ENOMEM);
    387 	}
    388 
    389 	/* Return the devname to the caller. */
    390 	strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
    391 		sizeof(dkw->dkw_devname));
    392 
    393 	/*
    394 	 * XXX Really ought to make the disk_attach() and the changing
    395 	 * of state to RUNNING atomic.
    396 	 */
    397 
    398 	disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
    399 	disk_attach(&sc->sc_dk);
    400 
    401 	/* Disk wedge is ready for use! */
    402 	sc->sc_state = DKW_STATE_RUNNING;
    403 
    404 	/* Announce our arrival. */
    405 	aprint_normal("%s at %s: %s\n", device_xname(sc->sc_dev), pdk->dk_name,
    406 	    sc->sc_wname);	/* XXX Unicode */
    407 	aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
    408 	    device_xname(sc->sc_dev), sc->sc_size, sc->sc_offset, sc->sc_ptype);
    409 
    410 	return (0);
    411 }
    412 
    413 /*
    414  * dkwedge_find:
    415  *
    416  *	Lookup a disk wedge based on the provided information.
    417  *	NOTE: We look up the wedge based on the wedge devname,
    418  *	not wname.
    419  *
    420  *	Return NULL if the wedge is not found, otherwise return
    421  *	the wedge's softc.  Assign the wedge's unit number to unitp
    422  *	if unitp is not NULL.
    423  */
    424 static struct dkwedge_softc *
    425 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
    426 {
    427 	struct dkwedge_softc *sc = NULL;
    428 	u_int unit;
    429 
    430 	/* Find our softc. */
    431 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
    432 	rw_enter(&dkwedges_lock, RW_READER);
    433 	for (unit = 0; unit < ndkwedges; unit++) {
    434 		if ((sc = dkwedges[unit]) != NULL &&
    435 		    strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
    436 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
    437 			break;
    438 		}
    439 	}
    440 	rw_exit(&dkwedges_lock);
    441 	if (unit == ndkwedges)
    442 		return NULL;
    443 
    444 	if (unitp != NULL)
    445 		*unitp = unit;
    446 
    447 	return sc;
    448 }
    449 
    450 /*
    451  * dkwedge_del:		[exported function]
    452  *
    453  *	Delete a disk wedge based on the provided information.
    454  *	NOTE: We look up the wedge based on the wedge devname,
    455  *	not wname.
    456  */
    457 int
    458 dkwedge_del(struct dkwedge_info *dkw)
    459 {
    460 	struct dkwedge_softc *sc = NULL;
    461 
    462 	/* Find our softc. */
    463 	if ((sc = dkwedge_find(dkw, NULL)) == NULL)
    464 		return (ESRCH);
    465 
    466 	return config_detach(sc->sc_dev, DETACH_FORCE | DETACH_QUIET);
    467 }
    468 
    469 static int
    470 dkwedge_begindetach(struct dkwedge_softc *sc, int flags)
    471 {
    472 	struct disk *dk = &sc->sc_dk;
    473 	int rc;
    474 
    475 	rc = 0;
    476 	mutex_enter(&dk->dk_openlock);
    477 	mutex_enter(&sc->sc_parent->dk_rawlock);
    478 	if (dk->dk_openmask == 0)
    479 		;	/* nothing to do */
    480 	else if ((flags & DETACH_FORCE) == 0)
    481 		rc = EBUSY;
    482 	else
    483 		rc = dklastclose(sc);
    484 	mutex_exit(&sc->sc_parent->dk_rawlock);
    485 	mutex_exit(&dk->dk_openlock);
    486 
    487 	return rc;
    488 }
    489 
    490 /*
    491  * dkwedge_detach:
    492  *
    493  *	Autoconfiguration detach function for pseudo-device glue.
    494  */
    495 static int
    496 dkwedge_detach(device_t self, int flags)
    497 {
    498 	struct dkwedge_softc *sc = NULL;
    499 	u_int unit;
    500 	int bmaj, cmaj, rc, s;
    501 
    502 	rw_enter(&dkwedges_lock, RW_WRITER);
    503 	for (unit = 0; unit < ndkwedges; unit++) {
    504 		if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
    505 			break;
    506 	}
    507 	if (unit == ndkwedges)
    508 		rc = ENXIO;
    509 	else if ((rc = dkwedge_begindetach(sc, flags)) == 0) {
    510 		/* Mark the wedge as dying. */
    511 		sc->sc_state = DKW_STATE_DYING;
    512 	}
    513 	rw_exit(&dkwedges_lock);
    514 
    515 	if (rc != 0)
    516 		return rc;
    517 
    518 	pmf_device_deregister(self);
    519 
    520 	/* Locate the wedge major numbers. */
    521 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
    522 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
    523 
    524 	/* Kill any pending restart. */
    525 	callout_stop(&sc->sc_restart_ch);
    526 
    527 	/*
    528 	 * dkstart() will kill any queued buffers now that the
    529 	 * state of the wedge is not RUNNING.  Once we've done
    530 	 * that, wait for any other pending I/O to complete.
    531 	 */
    532 	s = splbio();
    533 	dkstart(sc);
    534 	dkwedge_wait_drain(sc);
    535 	splx(s);
    536 
    537 	/* Nuke the vnodes for any open instances. */
    538 	vdevgone(bmaj, unit, unit, VBLK);
    539 	vdevgone(cmaj, unit, unit, VCHR);
    540 
    541 	/* Clean up the parent. */
    542 	mutex_enter(&sc->sc_dk.dk_openlock);
    543 	mutex_enter(&sc->sc_parent->dk_rawlock);
    544 	if (sc->sc_dk.dk_openmask) {
    545 		if (sc->sc_parent->dk_rawopens-- == 1) {
    546 			KASSERT(sc->sc_parent->dk_rawvp != NULL);
    547 			(void) vn_close(sc->sc_parent->dk_rawvp, FREAD | FWRITE,
    548 			    NOCRED);
    549 			sc->sc_parent->dk_rawvp = NULL;
    550 		}
    551 		sc->sc_dk.dk_openmask = 0;
    552 	}
    553 	mutex_exit(&sc->sc_parent->dk_rawlock);
    554 	mutex_exit(&sc->sc_dk.dk_openlock);
    555 
    556 	/* Announce our departure. */
    557 	aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
    558 	    sc->sc_parent->dk_name,
    559 	    sc->sc_wname);	/* XXX Unicode */
    560 
    561 	mutex_enter(&sc->sc_parent->dk_openlock);
    562 	sc->sc_parent->dk_nwedges--;
    563 	LIST_REMOVE(sc, sc_plink);
    564 	mutex_exit(&sc->sc_parent->dk_openlock);
    565 
    566 	/* Delete our buffer queue. */
    567 	bufq_free(sc->sc_bufq);
    568 
    569 	/* Detach from the disk list. */
    570 	disk_detach(&sc->sc_dk);
    571 	disk_destroy(&sc->sc_dk);
    572 
    573 	/* Poof. */
    574 	rw_enter(&dkwedges_lock, RW_WRITER);
    575 	dkwedges[unit] = NULL;
    576 	sc->sc_state = DKW_STATE_DEAD;
    577 	rw_exit(&dkwedges_lock);
    578 
    579 	free(sc, M_DKWEDGE);
    580 
    581 	return 0;
    582 }
    583 
    584 /*
    585  * dkwedge_delall:	[exported function]
    586  *
    587  *	Delete all of the wedges on the specified disk.  Used when
    588  *	a disk is being detached.
    589  */
    590 void
    591 dkwedge_delall(struct disk *pdk)
    592 {
    593 	struct dkwedge_info dkw;
    594 	struct dkwedge_softc *sc;
    595 
    596 	for (;;) {
    597 		mutex_enter(&pdk->dk_openlock);
    598 		if ((sc = LIST_FIRST(&pdk->dk_wedges)) == NULL) {
    599 			KASSERT(pdk->dk_nwedges == 0);
    600 			mutex_exit(&pdk->dk_openlock);
    601 			return;
    602 		}
    603 		strcpy(dkw.dkw_parent, pdk->dk_name);
    604 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    605 			sizeof(dkw.dkw_devname));
    606 		mutex_exit(&pdk->dk_openlock);
    607 		(void) dkwedge_del(&dkw);
    608 	}
    609 }
    610 
    611 /*
    612  * dkwedge_list:	[exported function]
    613  *
    614  *	List all of the wedges on a particular disk.
    615  *	If p == NULL, the buffer is in kernel space.  Otherwise, it is
    616  *	in user space of the specified process.
    617  */
    618 int
    619 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
    620 {
    621 	struct uio uio;
    622 	struct iovec iov;
    623 	struct dkwedge_softc *sc;
    624 	struct dkwedge_info dkw;
    625 	struct vmspace *vm;
    626 	int error = 0;
    627 
    628 	iov.iov_base = dkwl->dkwl_buf;
    629 	iov.iov_len = dkwl->dkwl_bufsize;
    630 
    631 	uio.uio_iov = &iov;
    632 	uio.uio_iovcnt = 1;
    633 	uio.uio_offset = 0;
    634 	uio.uio_resid = dkwl->dkwl_bufsize;
    635 	uio.uio_rw = UIO_READ;
    636 	if (l == NULL) {
    637 		UIO_SETUP_SYSSPACE(&uio);
    638 	} else {
    639 		error = proc_vmspace_getref(l->l_proc, &vm);
    640 		if (error) {
    641 			return error;
    642 		}
    643 		uio.uio_vmspace = vm;
    644 	}
    645 
    646 	dkwl->dkwl_ncopied = 0;
    647 
    648 	mutex_enter(&pdk->dk_openlock);
    649 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    650 		if (uio.uio_resid < sizeof(dkw))
    651 			break;
    652 
    653 		if (sc->sc_state != DKW_STATE_RUNNING)
    654 			continue;
    655 
    656 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    657 			sizeof(dkw.dkw_devname));
    658 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
    659 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
    660 		strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
    661 		dkw.dkw_offset = sc->sc_offset;
    662 		dkw.dkw_size = sc->sc_size;
    663 		strcpy(dkw.dkw_ptype, sc->sc_ptype);
    664 
    665 		error = uiomove(&dkw, sizeof(dkw), &uio);
    666 		if (error)
    667 			break;
    668 		dkwl->dkwl_ncopied++;
    669 	}
    670 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
    671 	mutex_exit(&pdk->dk_openlock);
    672 
    673 	if (l != NULL) {
    674 		uvmspace_free(vm);
    675 	}
    676 
    677 	return (error);
    678 }
    679 
    680 device_t
    681 dkwedge_find_by_wname(const char *wname)
    682 {
    683 	device_t dv = NULL;
    684 	struct dkwedge_softc *sc;
    685 	int i;
    686 
    687 	rw_enter(&dkwedges_lock, RW_WRITER);
    688 	for (i = 0; i < ndkwedges; i++) {
    689 		if ((sc = dkwedges[i]) == NULL)
    690 			continue;
    691 		if (strcmp(sc->sc_wname, wname) == 0) {
    692 			if (dv != NULL) {
    693 				printf(
    694 				    "WARNING: double match for wedge name %s "
    695 				    "(%s, %s)\n", wname, device_xname(dv),
    696 				    device_xname(sc->sc_dev));
    697 				continue;
    698 			}
    699 			dv = sc->sc_dev;
    700 		}
    701 	}
    702 	rw_exit(&dkwedges_lock);
    703 	return dv;
    704 }
    705 
    706 void
    707 dkwedge_print_wnames(void)
    708 {
    709 	struct dkwedge_softc *sc;
    710 	int i;
    711 
    712 	rw_enter(&dkwedges_lock, RW_WRITER);
    713 	for (i = 0; i < ndkwedges; i++) {
    714 		if ((sc = dkwedges[i]) == NULL)
    715 			continue;
    716 		printf(" wedge:%s", sc->sc_wname);
    717 	}
    718 	rw_exit(&dkwedges_lock);
    719 }
    720 
    721 /*
    722  * dkwedge_set_bootwedge
    723  *
    724  *	Set the booted_wedge global based on the specified parent name
    725  *	and offset/length.
    726  */
    727 void
    728 dkwedge_set_bootwedge(device_t parent, daddr_t startblk, uint64_t nblks)
    729 {
    730 	struct dkwedge_softc *sc;
    731 	int i;
    732 
    733 	rw_enter(&dkwedges_lock, RW_WRITER);
    734 	for (i = 0; i < ndkwedges; i++) {
    735 		if ((sc = dkwedges[i]) == NULL)
    736 			continue;
    737 		if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
    738 		    sc->sc_offset == startblk &&
    739 		    sc->sc_size == nblks) {
    740 			if (booted_wedge) {
    741 				printf("WARNING: double match for boot wedge "
    742 				    "(%s, %s)\n",
    743 				    device_xname(booted_wedge),
    744 				    device_xname(sc->sc_dev));
    745 				continue;
    746 			}
    747 			booted_device = parent;
    748 			booted_wedge = sc->sc_dev;
    749 			booted_partition = 0;
    750 		}
    751 	}
    752 	/*
    753 	 * XXX What if we don't find one?  Should we create a special
    754 	 * XXX root wedge?
    755 	 */
    756 	rw_exit(&dkwedges_lock);
    757 }
    758 
    759 /*
    760  * We need a dummy object to stuff into the dkwedge discovery method link
    761  * set to ensure that there is always at least one object in the set.
    762  */
    763 static struct dkwedge_discovery_method dummy_discovery_method;
    764 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
    765 
    766 /*
    767  * dkwedge_init:
    768  *
    769  *	Initialize the disk wedge subsystem.
    770  */
    771 void
    772 dkwedge_init(void)
    773 {
    774 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
    775 	struct dkwedge_discovery_method * const *ddmp;
    776 	struct dkwedge_discovery_method *lddm, *ddm;
    777 
    778 	rw_init(&dkwedges_lock);
    779 	rw_init(&dkwedge_discovery_methods_lock);
    780 
    781 	if (config_cfdriver_attach(&dk_cd) != 0)
    782 		panic("dkwedge: unable to attach cfdriver");
    783 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
    784 		panic("dkwedge: unable to attach cfattach");
    785 
    786 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
    787 
    788 	LIST_INIT(&dkwedge_discovery_methods);
    789 
    790 	__link_set_foreach(ddmp, dkwedge_methods) {
    791 		ddm = *ddmp;
    792 		if (ddm == &dummy_discovery_method)
    793 			continue;
    794 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
    795 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
    796 					 ddm, ddm_list);
    797 			continue;
    798 		}
    799 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
    800 			if (ddm->ddm_priority == lddm->ddm_priority) {
    801 				aprint_error("dk-method-%s: method \"%s\" "
    802 				    "already exists at priority %d\n",
    803 				    ddm->ddm_name, lddm->ddm_name,
    804 				    lddm->ddm_priority);
    805 				/* Not inserted. */
    806 				break;
    807 			}
    808 			if (ddm->ddm_priority < lddm->ddm_priority) {
    809 				/* Higher priority; insert before. */
    810 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
    811 				break;
    812 			}
    813 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
    814 				/* Last one; insert after. */
    815 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
    816 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
    817 				break;
    818 			}
    819 		}
    820 	}
    821 
    822 	rw_exit(&dkwedge_discovery_methods_lock);
    823 }
    824 
    825 #ifdef DKWEDGE_AUTODISCOVER
    826 int	dkwedge_autodiscover = 1;
    827 #else
    828 int	dkwedge_autodiscover = 0;
    829 #endif
    830 
    831 /*
    832  * dkwedge_discover:	[exported function]
    833  *
    834  *	Discover the wedges on a newly attached disk.
    835  */
    836 void
    837 dkwedge_discover(struct disk *pdk)
    838 {
    839 	struct dkwedge_discovery_method *ddm;
    840 	struct vnode *vp;
    841 	int error;
    842 	dev_t pdev;
    843 
    844 	/*
    845 	 * Require people playing with wedges to enable this explicitly.
    846 	 */
    847 	if (dkwedge_autodiscover == 0)
    848 		return;
    849 
    850 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
    851 
    852 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
    853 	if (error) {
    854 		aprint_error("%s: unable to compute pdev, error = %d\n",
    855 		    pdk->dk_name, error);
    856 		goto out;
    857 	}
    858 
    859 	error = bdevvp(pdev, &vp);
    860 	if (error) {
    861 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
    862 		    pdk->dk_name, error);
    863 		goto out;
    864 	}
    865 
    866 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    867 	if (error) {
    868 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
    869 		    pdk->dk_name, error);
    870 		vrele(vp);
    871 		goto out;
    872 	}
    873 
    874 	error = VOP_OPEN(vp, FREAD, NOCRED);
    875 	if (error) {
    876 		aprint_error("%s: unable to open device, error = %d\n",
    877 		    pdk->dk_name, error);
    878 		vput(vp);
    879 		goto out;
    880 	}
    881 	VOP_UNLOCK(vp, 0);
    882 
    883 	/*
    884 	 * For each supported partition map type, look to see if
    885 	 * this map type exists.  If so, parse it and add the
    886 	 * corresponding wedges.
    887 	 */
    888 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
    889 		error = (*ddm->ddm_discover)(pdk, vp);
    890 		if (error == 0) {
    891 			/* Successfully created wedges; we're done. */
    892 			break;
    893 		}
    894 	}
    895 
    896 	error = vn_close(vp, FREAD, NOCRED);
    897 	if (error) {
    898 		aprint_error("%s: unable to close device, error = %d\n",
    899 		    pdk->dk_name, error);
    900 		/* We'll just assume the vnode has been cleaned up. */
    901 	}
    902  out:
    903 	rw_exit(&dkwedge_discovery_methods_lock);
    904 }
    905 
    906 /*
    907  * dkwedge_read:
    908  *
    909  *	Read some data from the specified disk, used for
    910  *	partition discovery.
    911  */
    912 int
    913 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
    914     void *tbuf, size_t len)
    915 {
    916 	struct buf *bp;
    917 	int result;
    918 
    919 	bp = getiobuf(vp, true);
    920 
    921 	bp->b_dev = vp->v_rdev;
    922 	bp->b_blkno = blkno;
    923 	bp->b_bcount = len;
    924 	bp->b_resid = len;
    925 	bp->b_flags = B_READ;
    926 	bp->b_data = tbuf;
    927 	SET(bp->b_cflags, BC_BUSY);	/* mark buffer busy */
    928 
    929 	VOP_STRATEGY(vp, bp);
    930 	result = biowait(bp);
    931 	putiobuf(bp);
    932 
    933 	return result;
    934 }
    935 
    936 /*
    937  * dkwedge_lookup:
    938  *
    939  *	Look up a dkwedge_softc based on the provided dev_t.
    940  */
    941 static struct dkwedge_softc *
    942 dkwedge_lookup(dev_t dev)
    943 {
    944 	int unit = minor(dev);
    945 
    946 	if (unit >= ndkwedges)
    947 		return (NULL);
    948 
    949 	KASSERT(dkwedges != NULL);
    950 
    951 	return (dkwedges[unit]);
    952 }
    953 
    954 /*
    955  * dkopen:		[devsw entry point]
    956  *
    957  *	Open a wedge.
    958  */
    959 static int
    960 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
    961 {
    962 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
    963 	struct vnode *vp;
    964 	int error = 0;
    965 
    966 	if (sc == NULL)
    967 		return (ENODEV);
    968 
    969 	if (sc->sc_state != DKW_STATE_RUNNING)
    970 		return (ENXIO);
    971 
    972 	/*
    973 	 * We go through a complicated little dance to only open the parent
    974 	 * vnode once per wedge, no matter how many times the wedge is
    975 	 * opened.  The reason?  We see one dkopen() per open call, but
    976 	 * only dkclose() on the last close.
    977 	 */
    978 	mutex_enter(&sc->sc_dk.dk_openlock);
    979 	mutex_enter(&sc->sc_parent->dk_rawlock);
    980 	if (sc->sc_dk.dk_openmask == 0) {
    981 		if (sc->sc_parent->dk_rawopens == 0) {
    982 			KASSERT(sc->sc_parent->dk_rawvp == NULL);
    983 			error = bdevvp(sc->sc_pdev, &vp);
    984 			if (error)
    985 				goto popen_fail;
    986 			error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    987 			if (error) {
    988 				vrele(vp);
    989 				goto popen_fail;
    990 			}
    991 			error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED);
    992 			if (error) {
    993 				vput(vp);
    994 				goto popen_fail;
    995 			}
    996 			/* VOP_OPEN() doesn't do this for us. */
    997 			mutex_enter(&vp->v_interlock);
    998 			vp->v_writecount++;
    999 			mutex_exit(&vp->v_interlock);
   1000 			VOP_UNLOCK(vp, 0);
   1001 			sc->sc_parent->dk_rawvp = vp;
   1002 		}
   1003 		sc->sc_parent->dk_rawopens++;
   1004 	}
   1005 	if (fmt == S_IFCHR)
   1006 		sc->sc_dk.dk_copenmask |= 1;
   1007 	else
   1008 		sc->sc_dk.dk_bopenmask |= 1;
   1009 	sc->sc_dk.dk_openmask =
   1010 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1011 
   1012  popen_fail:
   1013 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1014 	mutex_exit(&sc->sc_dk.dk_openlock);
   1015 	return (error);
   1016 }
   1017 
   1018 /*
   1019  * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock.
   1020  */
   1021 static int
   1022 dklastclose(struct dkwedge_softc *sc)
   1023 {
   1024 	int error = 0;
   1025 
   1026 	if (sc->sc_parent->dk_rawopens-- == 1) {
   1027 		KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1028 		error = vn_close(sc->sc_parent->dk_rawvp,
   1029 		    FREAD | FWRITE, NOCRED);
   1030 		sc->sc_parent->dk_rawvp = NULL;
   1031 	}
   1032 	return error;
   1033 }
   1034 
   1035 /*
   1036  * dkclose:		[devsw entry point]
   1037  *
   1038  *	Close a wedge.
   1039  */
   1040 static int
   1041 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
   1042 {
   1043 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1044 	int error = 0;
   1045 
   1046 	KASSERT(sc->sc_dk.dk_openmask != 0);
   1047 
   1048 	mutex_enter(&sc->sc_dk.dk_openlock);
   1049 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1050 
   1051 	if (fmt == S_IFCHR)
   1052 		sc->sc_dk.dk_copenmask &= ~1;
   1053 	else
   1054 		sc->sc_dk.dk_bopenmask &= ~1;
   1055 	sc->sc_dk.dk_openmask =
   1056 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1057 
   1058 	if (sc->sc_dk.dk_openmask == 0)
   1059 		error = dklastclose(sc);
   1060 
   1061 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1062 	mutex_exit(&sc->sc_dk.dk_openlock);
   1063 
   1064 	return (error);
   1065 }
   1066 
   1067 /*
   1068  * dkstragegy:		[devsw entry point]
   1069  *
   1070  *	Perform I/O based on the wedge I/O strategy.
   1071  */
   1072 static void
   1073 dkstrategy(struct buf *bp)
   1074 {
   1075 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1076 	int s;
   1077 
   1078 	if (sc->sc_state != DKW_STATE_RUNNING) {
   1079 		bp->b_error = ENXIO;
   1080 		goto done;
   1081 	}
   1082 
   1083 	/* If it's an empty transfer, wake up the top half now. */
   1084 	if (bp->b_bcount == 0)
   1085 		goto done;
   1086 
   1087 	/* Make sure it's in-range. */
   1088 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, sc->sc_size) <= 0)
   1089 		goto done;
   1090 
   1091 	/* Translate it to the parent's raw LBA. */
   1092 	bp->b_rawblkno = bp->b_blkno + sc->sc_offset;
   1093 
   1094 	/* Place it in the queue and start I/O on the unit. */
   1095 	s = splbio();
   1096 	sc->sc_iopend++;
   1097 	bufq_put(sc->sc_bufq, bp);
   1098 	dkstart(sc);
   1099 	splx(s);
   1100 	return;
   1101 
   1102  done:
   1103 	bp->b_resid = bp->b_bcount;
   1104 	biodone(bp);
   1105 }
   1106 
   1107 /*
   1108  * dkstart:
   1109  *
   1110  *	Start I/O that has been enqueued on the wedge.
   1111  *	NOTE: Must be called at splbio()!
   1112  */
   1113 static void
   1114 dkstart(struct dkwedge_softc *sc)
   1115 {
   1116 	struct vnode *vp;
   1117 	struct buf *bp, *nbp;
   1118 
   1119 	/* Do as much work as has been enqueued. */
   1120 	while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
   1121 		if (sc->sc_state != DKW_STATE_RUNNING) {
   1122 			(void) bufq_get(sc->sc_bufq);
   1123 			if (sc->sc_iopend-- == 1 &&
   1124 			    (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
   1125 				sc->sc_flags &= ~DK_F_WAIT_DRAIN;
   1126 				wakeup(&sc->sc_iopend);
   1127 			}
   1128 			bp->b_error = ENXIO;
   1129 			bp->b_resid = bp->b_bcount;
   1130 			biodone(bp);
   1131 		}
   1132 
   1133 		/* Instrumentation. */
   1134 		disk_busy(&sc->sc_dk);
   1135 
   1136 		nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
   1137 		if (nbp == NULL) {
   1138 			/*
   1139 			 * No resources to run this request; leave the
   1140 			 * buffer queued up, and schedule a timer to
   1141 			 * restart the queue in 1/2 a second.
   1142 			 */
   1143 			disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
   1144 			callout_schedule(&sc->sc_restart_ch, hz / 2);
   1145 			return;
   1146 		}
   1147 
   1148 		(void) bufq_get(sc->sc_bufq);
   1149 
   1150 		nbp->b_data = bp->b_data;
   1151 		nbp->b_flags = bp->b_flags;
   1152 		nbp->b_oflags = bp->b_oflags;
   1153 		nbp->b_cflags = bp->b_cflags;
   1154 		nbp->b_iodone = dkiodone;
   1155 		nbp->b_proc = bp->b_proc;
   1156 		nbp->b_blkno = bp->b_rawblkno;
   1157 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
   1158 		nbp->b_bcount = bp->b_bcount;
   1159 		nbp->b_private = bp;
   1160 		BIO_COPYPRIO(nbp, bp);
   1161 
   1162 		vp = nbp->b_vp;
   1163 		if ((nbp->b_flags & B_READ) == 0) {
   1164 			mutex_enter(&vp->v_interlock);
   1165 			vp->v_numoutput++;
   1166 			mutex_exit(&vp->v_interlock);
   1167 		}
   1168 		VOP_STRATEGY(vp, nbp);
   1169 	}
   1170 }
   1171 
   1172 /*
   1173  * dkiodone:
   1174  *
   1175  *	I/O to a wedge has completed; alert the top half.
   1176  *	NOTE: Must be called at splbio()!
   1177  */
   1178 static void
   1179 dkiodone(struct buf *bp)
   1180 {
   1181 	struct buf *obp = bp->b_private;
   1182 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
   1183 
   1184 	if (bp->b_error != 0)
   1185 		obp->b_error = bp->b_error;
   1186 	obp->b_resid = bp->b_resid;
   1187 	putiobuf(bp);
   1188 
   1189 	if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
   1190 		sc->sc_flags &= ~DK_F_WAIT_DRAIN;
   1191 		wakeup(&sc->sc_iopend);
   1192 	}
   1193 
   1194 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
   1195 	    obp->b_flags & B_READ);
   1196 
   1197 	biodone(obp);
   1198 
   1199 	/* Kick the queue in case there is more work we can do. */
   1200 	dkstart(sc);
   1201 }
   1202 
   1203 /*
   1204  * dkrestart:
   1205  *
   1206  *	Restart the work queue after it was stalled due to
   1207  *	a resource shortage.  Invoked via a callout.
   1208  */
   1209 static void
   1210 dkrestart(void *v)
   1211 {
   1212 	struct dkwedge_softc *sc = v;
   1213 	int s;
   1214 
   1215 	s = splbio();
   1216 	dkstart(sc);
   1217 	splx(s);
   1218 }
   1219 
   1220 /*
   1221  * dkread:		[devsw entry point]
   1222  *
   1223  *	Read from a wedge.
   1224  */
   1225 static int
   1226 dkread(dev_t dev, struct uio *uio, int flags)
   1227 {
   1228 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1229 
   1230 	if (sc->sc_state != DKW_STATE_RUNNING)
   1231 		return (ENXIO);
   1232 
   1233 	return (physio(dkstrategy, NULL, dev, B_READ,
   1234 		       sc->sc_parent->dk_driver->d_minphys, uio));
   1235 }
   1236 
   1237 /*
   1238  * dkwrite:		[devsw entry point]
   1239  *
   1240  *	Write to a wedge.
   1241  */
   1242 static int
   1243 dkwrite(dev_t dev, struct uio *uio, int flags)
   1244 {
   1245 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1246 
   1247 	if (sc->sc_state != DKW_STATE_RUNNING)
   1248 		return (ENXIO);
   1249 
   1250 	return (physio(dkstrategy, NULL, dev, B_WRITE,
   1251 		       sc->sc_parent->dk_driver->d_minphys, uio));
   1252 }
   1253 
   1254 /*
   1255  * dkioctl:		[devsw entry point]
   1256  *
   1257  *	Perform an ioctl request on a wedge.
   1258  */
   1259 static int
   1260 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1261 {
   1262 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1263 	int error = 0;
   1264 
   1265 	if (sc->sc_state != DKW_STATE_RUNNING)
   1266 		return (ENXIO);
   1267 
   1268 	switch (cmd) {
   1269 	case DIOCCACHESYNC:
   1270 		/*
   1271 		 * XXX Do we really need to care about having a writable
   1272 		 * file descriptor here?
   1273 		 */
   1274 		if ((flag & FWRITE) == 0)
   1275 			error = EBADF;
   1276 		else
   1277 			error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
   1278 					  cmd, data, flag,
   1279 					  l != NULL ? l->l_cred : NOCRED);
   1280 		break;
   1281 	case DIOCGWEDGEINFO:
   1282 	    {
   1283 	    	struct dkwedge_info *dkw = (void *) data;
   1284 
   1285 		strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
   1286 			sizeof(dkw->dkw_devname));
   1287 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
   1288 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
   1289 		strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
   1290 		dkw->dkw_offset = sc->sc_offset;
   1291 		dkw->dkw_size = sc->sc_size;
   1292 		strcpy(dkw->dkw_ptype, sc->sc_ptype);
   1293 
   1294 		break;
   1295 	    }
   1296 
   1297 	default:
   1298 		error = ENOTTY;
   1299 	}
   1300 
   1301 	return (error);
   1302 }
   1303 
   1304 /*
   1305  * dksize:		[devsw entry point]
   1306  *
   1307  *	Query the size of a wedge for the purpose of performing a dump
   1308  *	or for swapping to.
   1309  */
   1310 static int
   1311 dksize(dev_t dev)
   1312 {
   1313 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1314 	int rv = -1;
   1315 
   1316 	if (sc == NULL)
   1317 		return (-1);
   1318 
   1319 	if (sc->sc_state != DKW_STATE_RUNNING)
   1320 		return (ENXIO);
   1321 
   1322 	mutex_enter(&sc->sc_dk.dk_openlock);
   1323 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1324 
   1325 	/* Our content type is static, no need to open the device. */
   1326 
   1327 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
   1328 		/* Saturate if we are larger than INT_MAX. */
   1329 		if (sc->sc_size > INT_MAX)
   1330 			rv = INT_MAX;
   1331 		else
   1332 			rv = (int) sc->sc_size;
   1333 	}
   1334 
   1335 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1336 	mutex_exit(&sc->sc_dk.dk_openlock);
   1337 
   1338 	return (rv);
   1339 }
   1340 
   1341 /*
   1342  * dkdump:		[devsw entry point]
   1343  *
   1344  *	Perform a crash dump to a wedge.
   1345  */
   1346 static int
   1347 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
   1348 {
   1349 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1350 	const struct bdevsw *bdev;
   1351 	int rv = 0;
   1352 
   1353 	if (sc == NULL)
   1354 		return (-1);
   1355 
   1356 	if (sc->sc_state != DKW_STATE_RUNNING)
   1357 		return (ENXIO);
   1358 
   1359 	mutex_enter(&sc->sc_dk.dk_openlock);
   1360 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1361 
   1362 	/* Our content type is static, no need to open the device. */
   1363 
   1364 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
   1365 		rv = ENXIO;
   1366 		goto out;
   1367 	}
   1368 	if (size % DEV_BSIZE != 0) {
   1369 		rv = EINVAL;
   1370 		goto out;
   1371 	}
   1372 	if (blkno + size / DEV_BSIZE > sc->sc_size) {
   1373 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
   1374 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
   1375 		    size / DEV_BSIZE, sc->sc_size);
   1376 		rv = EINVAL;
   1377 		goto out;
   1378 	}
   1379 
   1380 	bdev = bdevsw_lookup(sc->sc_pdev);
   1381 	rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
   1382 
   1383 out:
   1384 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1385 	mutex_exit(&sc->sc_dk.dk_openlock);
   1386 
   1387 	return rv;
   1388 }
   1389