dk.c revision 1.47 1 /* $NetBSD: dk.c,v 1.47 2009/07/21 19:41:00 dyoung Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.47 2009/07/21 19:41:00 dyoung Exp $");
34
35 #include "opt_dkwedge.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/proc.h>
40 #include <sys/errno.h>
41 #include <sys/pool.h>
42 #include <sys/ioctl.h>
43 #include <sys/disklabel.h>
44 #include <sys/disk.h>
45 #include <sys/fcntl.h>
46 #include <sys/buf.h>
47 #include <sys/bufq.h>
48 #include <sys/vnode.h>
49 #include <sys/stat.h>
50 #include <sys/conf.h>
51 #include <sys/callout.h>
52 #include <sys/kernel.h>
53 #include <sys/malloc.h>
54 #include <sys/device.h>
55 #include <sys/kauth.h>
56
57 #include <miscfs/specfs/specdev.h>
58
59 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
60
61 typedef enum {
62 DKW_STATE_LARVAL = 0,
63 DKW_STATE_RUNNING = 1,
64 DKW_STATE_DYING = 2,
65 DKW_STATE_DEAD = 666
66 } dkwedge_state_t;
67
68 struct dkwedge_softc {
69 struct device *sc_dev; /* pointer to our pseudo-device */
70 struct cfdata sc_cfdata; /* our cfdata structure */
71 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
72
73 dkwedge_state_t sc_state; /* state this wedge is in */
74
75 struct disk *sc_parent; /* parent disk */
76 daddr_t sc_offset; /* LBA offset of wedge in parent */
77 uint64_t sc_size; /* size of wedge in blocks */
78 char sc_ptype[32]; /* partition type */
79 dev_t sc_pdev; /* cached parent's dev_t */
80 /* link on parent's wedge list */
81 LIST_ENTRY(dkwedge_softc) sc_plink;
82
83 struct disk sc_dk; /* our own disk structure */
84 struct bufq_state *sc_bufq; /* buffer queue */
85 struct callout sc_restart_ch; /* callout to restart I/O */
86
87 u_int sc_iopend; /* I/Os pending */
88 int sc_flags; /* flags (splbio) */
89 };
90
91 #define DK_F_WAIT_DRAIN 0x0001 /* waiting for I/O to drain */
92
93 static void dkstart(struct dkwedge_softc *);
94 static void dkiodone(struct buf *);
95 static void dkrestart(void *);
96
97 static int dklastclose(struct dkwedge_softc *);
98 static int dkwedge_detach(device_t, int);
99
100 static dev_type_open(dkopen);
101 static dev_type_close(dkclose);
102 static dev_type_read(dkread);
103 static dev_type_write(dkwrite);
104 static dev_type_ioctl(dkioctl);
105 static dev_type_strategy(dkstrategy);
106 static dev_type_dump(dkdump);
107 static dev_type_size(dksize);
108
109 const struct bdevsw dk_bdevsw = {
110 dkopen, dkclose, dkstrategy, dkioctl, dkdump, dksize, D_DISK
111 };
112
113 const struct cdevsw dk_cdevsw = {
114 dkopen, dkclose, dkread, dkwrite, dkioctl,
115 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
116 };
117
118 static struct dkwedge_softc **dkwedges;
119 static u_int ndkwedges;
120 static krwlock_t dkwedges_lock;
121
122 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
123 static krwlock_t dkwedge_discovery_methods_lock;
124
125 /*
126 * dkwedge_match:
127 *
128 * Autoconfiguration match function for pseudo-device glue.
129 */
130 static int
131 dkwedge_match(device_t parent, cfdata_t match,
132 void *aux)
133 {
134
135 /* Pseudo-device; always present. */
136 return (1);
137 }
138
139 /*
140 * dkwedge_attach:
141 *
142 * Autoconfiguration attach function for pseudo-device glue.
143 */
144 static void
145 dkwedge_attach(device_t parent, device_t self,
146 void *aux)
147 {
148
149 if (!pmf_device_register(self, NULL, NULL))
150 aprint_error_dev(self, "couldn't establish power handler\n");
151 }
152
153 CFDRIVER_DECL(dk, DV_DISK, NULL);
154 CFATTACH_DECL3_NEW(dk, 0,
155 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
156 DVF_DETACH_SHUTDOWN);
157
158 /*
159 * dkwedge_wait_drain:
160 *
161 * Wait for I/O on the wedge to drain.
162 * NOTE: Must be called at splbio()!
163 */
164 static void
165 dkwedge_wait_drain(struct dkwedge_softc *sc)
166 {
167
168 while (sc->sc_iopend != 0) {
169 sc->sc_flags |= DK_F_WAIT_DRAIN;
170 (void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
171 }
172 }
173
174 /*
175 * dkwedge_compute_pdev:
176 *
177 * Compute the parent disk's dev_t.
178 */
179 static int
180 dkwedge_compute_pdev(const char *pname, dev_t *pdevp)
181 {
182 const char *name, *cp;
183 int punit, pmaj;
184 char devname[16];
185
186 name = pname;
187 if ((pmaj = devsw_name2blk(name, devname, sizeof(devname))) == -1)
188 return (ENODEV);
189
190 name += strlen(devname);
191 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
192 punit = (punit * 10) + (*cp - '0');
193 if (cp == name) {
194 /* Invalid parent disk name. */
195 return (ENODEV);
196 }
197
198 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
199
200 return (0);
201 }
202
203 /*
204 * dkwedge_array_expand:
205 *
206 * Expand the dkwedges array.
207 */
208 static void
209 dkwedge_array_expand(void)
210 {
211 int newcnt = ndkwedges + 16;
212 struct dkwedge_softc **newarray, **oldarray;
213
214 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
215 M_WAITOK|M_ZERO);
216 if ((oldarray = dkwedges) != NULL)
217 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
218 dkwedges = newarray;
219 ndkwedges = newcnt;
220 if (oldarray != NULL)
221 free(oldarray, M_DKWEDGE);
222 }
223
224 /*
225 * dkwedge_add: [exported function]
226 *
227 * Add a disk wedge based on the provided information.
228 *
229 * The incoming dkw_devname[] is ignored, instead being
230 * filled in and returned to the caller.
231 */
232 int
233 dkwedge_add(struct dkwedge_info *dkw)
234 {
235 struct dkwedge_softc *sc, *lsc;
236 struct disk *pdk;
237 u_int unit;
238 int error;
239 dev_t pdev;
240
241 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
242 pdk = disk_find(dkw->dkw_parent);
243 if (pdk == NULL)
244 return (ENODEV);
245
246 error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
247 if (error)
248 return (error);
249
250 if (dkw->dkw_offset < 0)
251 return (EINVAL);
252
253 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
254 sc->sc_state = DKW_STATE_LARVAL;
255 sc->sc_parent = pdk;
256 sc->sc_pdev = pdev;
257 sc->sc_offset = dkw->dkw_offset;
258 sc->sc_size = dkw->dkw_size;
259
260 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
261 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
262
263 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
264 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
265
266 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
267
268 callout_init(&sc->sc_restart_ch, 0);
269 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
270
271 /*
272 * Wedge will be added; increment the wedge count for the parent.
273 * Only allow this to happend if RAW_PART is the only thing open.
274 */
275 mutex_enter(&pdk->dk_openlock);
276 if (pdk->dk_openmask & ~(1 << RAW_PART))
277 error = EBUSY;
278 else {
279 /* Check for wedge overlap. */
280 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
281 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
282 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
283
284 if (sc->sc_offset >= lsc->sc_offset &&
285 sc->sc_offset <= llastblk) {
286 /* Overlaps the tail of the exsiting wedge. */
287 break;
288 }
289 if (lastblk >= lsc->sc_offset &&
290 lastblk <= llastblk) {
291 /* Overlaps the head of the existing wedge. */
292 break;
293 }
294 }
295 if (lsc != NULL)
296 error = EINVAL;
297 else {
298 pdk->dk_nwedges++;
299 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
300 }
301 }
302 mutex_exit(&pdk->dk_openlock);
303 if (error) {
304 bufq_free(sc->sc_bufq);
305 free(sc, M_DKWEDGE);
306 return (error);
307 }
308
309 /* Fill in our cfdata for the pseudo-device glue. */
310 sc->sc_cfdata.cf_name = dk_cd.cd_name;
311 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
312 /* sc->sc_cfdata.cf_unit set below */
313 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
314
315 /* Insert the larval wedge into the array. */
316 rw_enter(&dkwedges_lock, RW_WRITER);
317 for (error = 0;;) {
318 struct dkwedge_softc **scpp;
319
320 /*
321 * Check for a duplicate wname while searching for
322 * a slot.
323 */
324 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
325 if (dkwedges[unit] == NULL) {
326 if (scpp == NULL) {
327 scpp = &dkwedges[unit];
328 sc->sc_cfdata.cf_unit = unit;
329 }
330 } else {
331 /* XXX Unicode. */
332 if (strcmp(dkwedges[unit]->sc_wname,
333 sc->sc_wname) == 0) {
334 error = EEXIST;
335 break;
336 }
337 }
338 }
339 if (error)
340 break;
341 KASSERT(unit == ndkwedges);
342 if (scpp == NULL)
343 dkwedge_array_expand();
344 else {
345 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
346 *scpp = sc;
347 break;
348 }
349 }
350 rw_exit(&dkwedges_lock);
351 if (error) {
352 mutex_enter(&pdk->dk_openlock);
353 pdk->dk_nwedges--;
354 LIST_REMOVE(sc, sc_plink);
355 mutex_exit(&pdk->dk_openlock);
356
357 bufq_free(sc->sc_bufq);
358 free(sc, M_DKWEDGE);
359 return (error);
360 }
361
362 /*
363 * Now that we know the unit #, attach a pseudo-device for
364 * this wedge instance. This will provide us with the
365 * "struct device" necessary for glue to other parts of the
366 * system.
367 *
368 * This should never fail, unless we're almost totally out of
369 * memory.
370 */
371 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
372 aprint_error("%s%u: unable to attach pseudo-device\n",
373 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
374
375 rw_enter(&dkwedges_lock, RW_WRITER);
376 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
377 rw_exit(&dkwedges_lock);
378
379 mutex_enter(&pdk->dk_openlock);
380 pdk->dk_nwedges--;
381 LIST_REMOVE(sc, sc_plink);
382 mutex_exit(&pdk->dk_openlock);
383
384 bufq_free(sc->sc_bufq);
385 free(sc, M_DKWEDGE);
386 return (ENOMEM);
387 }
388
389 /* Return the devname to the caller. */
390 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
391 sizeof(dkw->dkw_devname));
392
393 /*
394 * XXX Really ought to make the disk_attach() and the changing
395 * of state to RUNNING atomic.
396 */
397
398 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
399 disk_attach(&sc->sc_dk);
400
401 /* Disk wedge is ready for use! */
402 sc->sc_state = DKW_STATE_RUNNING;
403
404 /* Announce our arrival. */
405 aprint_normal("%s at %s: %s\n", device_xname(sc->sc_dev), pdk->dk_name,
406 sc->sc_wname); /* XXX Unicode */
407 aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
408 device_xname(sc->sc_dev), sc->sc_size, sc->sc_offset, sc->sc_ptype);
409
410 return (0);
411 }
412
413 /*
414 * dkwedge_find:
415 *
416 * Lookup a disk wedge based on the provided information.
417 * NOTE: We look up the wedge based on the wedge devname,
418 * not wname.
419 *
420 * Return NULL if the wedge is not found, otherwise return
421 * the wedge's softc. Assign the wedge's unit number to unitp
422 * if unitp is not NULL.
423 */
424 static struct dkwedge_softc *
425 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
426 {
427 struct dkwedge_softc *sc = NULL;
428 u_int unit;
429
430 /* Find our softc. */
431 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
432 rw_enter(&dkwedges_lock, RW_READER);
433 for (unit = 0; unit < ndkwedges; unit++) {
434 if ((sc = dkwedges[unit]) != NULL &&
435 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
436 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
437 break;
438 }
439 }
440 rw_exit(&dkwedges_lock);
441 if (unit == ndkwedges)
442 return NULL;
443
444 if (unitp != NULL)
445 *unitp = unit;
446
447 return sc;
448 }
449
450 /*
451 * dkwedge_del: [exported function]
452 *
453 * Delete a disk wedge based on the provided information.
454 * NOTE: We look up the wedge based on the wedge devname,
455 * not wname.
456 */
457 int
458 dkwedge_del(struct dkwedge_info *dkw)
459 {
460 struct dkwedge_softc *sc = NULL;
461
462 /* Find our softc. */
463 if ((sc = dkwedge_find(dkw, NULL)) == NULL)
464 return (ESRCH);
465
466 return config_detach(sc->sc_dev, DETACH_FORCE | DETACH_QUIET);
467 }
468
469 static int
470 dkwedge_begindetach(struct dkwedge_softc *sc, int flags)
471 {
472 struct disk *dk = &sc->sc_dk;
473 int rc;
474
475 rc = 0;
476 mutex_enter(&dk->dk_openlock);
477 mutex_enter(&sc->sc_parent->dk_rawlock);
478 if (dk->dk_openmask == 0)
479 ; /* nothing to do */
480 else if ((flags & DETACH_FORCE) == 0)
481 rc = EBUSY;
482 else
483 rc = dklastclose(sc);
484 mutex_exit(&sc->sc_parent->dk_rawlock);
485 mutex_exit(&dk->dk_openlock);
486
487 return rc;
488 }
489
490 /*
491 * dkwedge_detach:
492 *
493 * Autoconfiguration detach function for pseudo-device glue.
494 */
495 static int
496 dkwedge_detach(device_t self, int flags)
497 {
498 struct dkwedge_softc *sc = NULL;
499 u_int unit;
500 int bmaj, cmaj, rc, s;
501
502 rw_enter(&dkwedges_lock, RW_WRITER);
503 for (unit = 0; unit < ndkwedges; unit++) {
504 if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
505 break;
506 }
507 if (unit == ndkwedges)
508 rc = ENXIO;
509 else if ((rc = dkwedge_begindetach(sc, flags)) == 0) {
510 /* Mark the wedge as dying. */
511 sc->sc_state = DKW_STATE_DYING;
512 }
513 rw_exit(&dkwedges_lock);
514
515 if (rc != 0)
516 return rc;
517
518 pmf_device_deregister(self);
519
520 /* Locate the wedge major numbers. */
521 bmaj = bdevsw_lookup_major(&dk_bdevsw);
522 cmaj = cdevsw_lookup_major(&dk_cdevsw);
523
524 /* Kill any pending restart. */
525 callout_stop(&sc->sc_restart_ch);
526
527 /*
528 * dkstart() will kill any queued buffers now that the
529 * state of the wedge is not RUNNING. Once we've done
530 * that, wait for any other pending I/O to complete.
531 */
532 s = splbio();
533 dkstart(sc);
534 dkwedge_wait_drain(sc);
535 splx(s);
536
537 /* Nuke the vnodes for any open instances. */
538 vdevgone(bmaj, unit, unit, VBLK);
539 vdevgone(cmaj, unit, unit, VCHR);
540
541 /* Clean up the parent. */
542 mutex_enter(&sc->sc_dk.dk_openlock);
543 mutex_enter(&sc->sc_parent->dk_rawlock);
544 if (sc->sc_dk.dk_openmask) {
545 if (sc->sc_parent->dk_rawopens-- == 1) {
546 KASSERT(sc->sc_parent->dk_rawvp != NULL);
547 (void) vn_close(sc->sc_parent->dk_rawvp, FREAD | FWRITE,
548 NOCRED);
549 sc->sc_parent->dk_rawvp = NULL;
550 }
551 sc->sc_dk.dk_openmask = 0;
552 }
553 mutex_exit(&sc->sc_parent->dk_rawlock);
554 mutex_exit(&sc->sc_dk.dk_openlock);
555
556 /* Announce our departure. */
557 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
558 sc->sc_parent->dk_name,
559 sc->sc_wname); /* XXX Unicode */
560
561 mutex_enter(&sc->sc_parent->dk_openlock);
562 sc->sc_parent->dk_nwedges--;
563 LIST_REMOVE(sc, sc_plink);
564 mutex_exit(&sc->sc_parent->dk_openlock);
565
566 /* Delete our buffer queue. */
567 bufq_free(sc->sc_bufq);
568
569 /* Detach from the disk list. */
570 disk_detach(&sc->sc_dk);
571 disk_destroy(&sc->sc_dk);
572
573 /* Poof. */
574 rw_enter(&dkwedges_lock, RW_WRITER);
575 dkwedges[unit] = NULL;
576 sc->sc_state = DKW_STATE_DEAD;
577 rw_exit(&dkwedges_lock);
578
579 free(sc, M_DKWEDGE);
580
581 return 0;
582 }
583
584 /*
585 * dkwedge_delall: [exported function]
586 *
587 * Delete all of the wedges on the specified disk. Used when
588 * a disk is being detached.
589 */
590 void
591 dkwedge_delall(struct disk *pdk)
592 {
593 struct dkwedge_info dkw;
594 struct dkwedge_softc *sc;
595
596 for (;;) {
597 mutex_enter(&pdk->dk_openlock);
598 if ((sc = LIST_FIRST(&pdk->dk_wedges)) == NULL) {
599 KASSERT(pdk->dk_nwedges == 0);
600 mutex_exit(&pdk->dk_openlock);
601 return;
602 }
603 strcpy(dkw.dkw_parent, pdk->dk_name);
604 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
605 sizeof(dkw.dkw_devname));
606 mutex_exit(&pdk->dk_openlock);
607 (void) dkwedge_del(&dkw);
608 }
609 }
610
611 /*
612 * dkwedge_list: [exported function]
613 *
614 * List all of the wedges on a particular disk.
615 * If p == NULL, the buffer is in kernel space. Otherwise, it is
616 * in user space of the specified process.
617 */
618 int
619 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
620 {
621 struct uio uio;
622 struct iovec iov;
623 struct dkwedge_softc *sc;
624 struct dkwedge_info dkw;
625 struct vmspace *vm;
626 int error = 0;
627
628 iov.iov_base = dkwl->dkwl_buf;
629 iov.iov_len = dkwl->dkwl_bufsize;
630
631 uio.uio_iov = &iov;
632 uio.uio_iovcnt = 1;
633 uio.uio_offset = 0;
634 uio.uio_resid = dkwl->dkwl_bufsize;
635 uio.uio_rw = UIO_READ;
636 if (l == NULL) {
637 UIO_SETUP_SYSSPACE(&uio);
638 } else {
639 error = proc_vmspace_getref(l->l_proc, &vm);
640 if (error) {
641 return error;
642 }
643 uio.uio_vmspace = vm;
644 }
645
646 dkwl->dkwl_ncopied = 0;
647
648 mutex_enter(&pdk->dk_openlock);
649 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
650 if (uio.uio_resid < sizeof(dkw))
651 break;
652
653 if (sc->sc_state != DKW_STATE_RUNNING)
654 continue;
655
656 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
657 sizeof(dkw.dkw_devname));
658 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
659 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
660 strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
661 dkw.dkw_offset = sc->sc_offset;
662 dkw.dkw_size = sc->sc_size;
663 strcpy(dkw.dkw_ptype, sc->sc_ptype);
664
665 error = uiomove(&dkw, sizeof(dkw), &uio);
666 if (error)
667 break;
668 dkwl->dkwl_ncopied++;
669 }
670 dkwl->dkwl_nwedges = pdk->dk_nwedges;
671 mutex_exit(&pdk->dk_openlock);
672
673 if (l != NULL) {
674 uvmspace_free(vm);
675 }
676
677 return (error);
678 }
679
680 device_t
681 dkwedge_find_by_wname(const char *wname)
682 {
683 device_t dv = NULL;
684 struct dkwedge_softc *sc;
685 int i;
686
687 rw_enter(&dkwedges_lock, RW_WRITER);
688 for (i = 0; i < ndkwedges; i++) {
689 if ((sc = dkwedges[i]) == NULL)
690 continue;
691 if (strcmp(sc->sc_wname, wname) == 0) {
692 if (dv != NULL) {
693 printf(
694 "WARNING: double match for wedge name %s "
695 "(%s, %s)\n", wname, device_xname(dv),
696 device_xname(sc->sc_dev));
697 continue;
698 }
699 dv = sc->sc_dev;
700 }
701 }
702 rw_exit(&dkwedges_lock);
703 return dv;
704 }
705
706 void
707 dkwedge_print_wnames(void)
708 {
709 struct dkwedge_softc *sc;
710 int i;
711
712 rw_enter(&dkwedges_lock, RW_WRITER);
713 for (i = 0; i < ndkwedges; i++) {
714 if ((sc = dkwedges[i]) == NULL)
715 continue;
716 printf(" wedge:%s", sc->sc_wname);
717 }
718 rw_exit(&dkwedges_lock);
719 }
720
721 /*
722 * dkwedge_set_bootwedge
723 *
724 * Set the booted_wedge global based on the specified parent name
725 * and offset/length.
726 */
727 void
728 dkwedge_set_bootwedge(device_t parent, daddr_t startblk, uint64_t nblks)
729 {
730 struct dkwedge_softc *sc;
731 int i;
732
733 rw_enter(&dkwedges_lock, RW_WRITER);
734 for (i = 0; i < ndkwedges; i++) {
735 if ((sc = dkwedges[i]) == NULL)
736 continue;
737 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
738 sc->sc_offset == startblk &&
739 sc->sc_size == nblks) {
740 if (booted_wedge) {
741 printf("WARNING: double match for boot wedge "
742 "(%s, %s)\n",
743 device_xname(booted_wedge),
744 device_xname(sc->sc_dev));
745 continue;
746 }
747 booted_device = parent;
748 booted_wedge = sc->sc_dev;
749 booted_partition = 0;
750 }
751 }
752 /*
753 * XXX What if we don't find one? Should we create a special
754 * XXX root wedge?
755 */
756 rw_exit(&dkwedges_lock);
757 }
758
759 /*
760 * We need a dummy object to stuff into the dkwedge discovery method link
761 * set to ensure that there is always at least one object in the set.
762 */
763 static struct dkwedge_discovery_method dummy_discovery_method;
764 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
765
766 /*
767 * dkwedge_init:
768 *
769 * Initialize the disk wedge subsystem.
770 */
771 void
772 dkwedge_init(void)
773 {
774 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
775 struct dkwedge_discovery_method * const *ddmp;
776 struct dkwedge_discovery_method *lddm, *ddm;
777
778 rw_init(&dkwedges_lock);
779 rw_init(&dkwedge_discovery_methods_lock);
780
781 if (config_cfdriver_attach(&dk_cd) != 0)
782 panic("dkwedge: unable to attach cfdriver");
783 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
784 panic("dkwedge: unable to attach cfattach");
785
786 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
787
788 LIST_INIT(&dkwedge_discovery_methods);
789
790 __link_set_foreach(ddmp, dkwedge_methods) {
791 ddm = *ddmp;
792 if (ddm == &dummy_discovery_method)
793 continue;
794 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
795 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
796 ddm, ddm_list);
797 continue;
798 }
799 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
800 if (ddm->ddm_priority == lddm->ddm_priority) {
801 aprint_error("dk-method-%s: method \"%s\" "
802 "already exists at priority %d\n",
803 ddm->ddm_name, lddm->ddm_name,
804 lddm->ddm_priority);
805 /* Not inserted. */
806 break;
807 }
808 if (ddm->ddm_priority < lddm->ddm_priority) {
809 /* Higher priority; insert before. */
810 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
811 break;
812 }
813 if (LIST_NEXT(lddm, ddm_list) == NULL) {
814 /* Last one; insert after. */
815 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
816 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
817 break;
818 }
819 }
820 }
821
822 rw_exit(&dkwedge_discovery_methods_lock);
823 }
824
825 #ifdef DKWEDGE_AUTODISCOVER
826 int dkwedge_autodiscover = 1;
827 #else
828 int dkwedge_autodiscover = 0;
829 #endif
830
831 /*
832 * dkwedge_discover: [exported function]
833 *
834 * Discover the wedges on a newly attached disk.
835 */
836 void
837 dkwedge_discover(struct disk *pdk)
838 {
839 struct dkwedge_discovery_method *ddm;
840 struct vnode *vp;
841 int error;
842 dev_t pdev;
843
844 /*
845 * Require people playing with wedges to enable this explicitly.
846 */
847 if (dkwedge_autodiscover == 0)
848 return;
849
850 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
851
852 error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
853 if (error) {
854 aprint_error("%s: unable to compute pdev, error = %d\n",
855 pdk->dk_name, error);
856 goto out;
857 }
858
859 error = bdevvp(pdev, &vp);
860 if (error) {
861 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
862 pdk->dk_name, error);
863 goto out;
864 }
865
866 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
867 if (error) {
868 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
869 pdk->dk_name, error);
870 vrele(vp);
871 goto out;
872 }
873
874 error = VOP_OPEN(vp, FREAD, NOCRED);
875 if (error) {
876 aprint_error("%s: unable to open device, error = %d\n",
877 pdk->dk_name, error);
878 vput(vp);
879 goto out;
880 }
881 VOP_UNLOCK(vp, 0);
882
883 /*
884 * For each supported partition map type, look to see if
885 * this map type exists. If so, parse it and add the
886 * corresponding wedges.
887 */
888 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
889 error = (*ddm->ddm_discover)(pdk, vp);
890 if (error == 0) {
891 /* Successfully created wedges; we're done. */
892 break;
893 }
894 }
895
896 error = vn_close(vp, FREAD, NOCRED);
897 if (error) {
898 aprint_error("%s: unable to close device, error = %d\n",
899 pdk->dk_name, error);
900 /* We'll just assume the vnode has been cleaned up. */
901 }
902 out:
903 rw_exit(&dkwedge_discovery_methods_lock);
904 }
905
906 /*
907 * dkwedge_read:
908 *
909 * Read some data from the specified disk, used for
910 * partition discovery.
911 */
912 int
913 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
914 void *tbuf, size_t len)
915 {
916 struct buf *bp;
917 int result;
918
919 bp = getiobuf(vp, true);
920
921 bp->b_dev = vp->v_rdev;
922 bp->b_blkno = blkno;
923 bp->b_bcount = len;
924 bp->b_resid = len;
925 bp->b_flags = B_READ;
926 bp->b_data = tbuf;
927 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */
928
929 VOP_STRATEGY(vp, bp);
930 result = biowait(bp);
931 putiobuf(bp);
932
933 return result;
934 }
935
936 /*
937 * dkwedge_lookup:
938 *
939 * Look up a dkwedge_softc based on the provided dev_t.
940 */
941 static struct dkwedge_softc *
942 dkwedge_lookup(dev_t dev)
943 {
944 int unit = minor(dev);
945
946 if (unit >= ndkwedges)
947 return (NULL);
948
949 KASSERT(dkwedges != NULL);
950
951 return (dkwedges[unit]);
952 }
953
954 /*
955 * dkopen: [devsw entry point]
956 *
957 * Open a wedge.
958 */
959 static int
960 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
961 {
962 struct dkwedge_softc *sc = dkwedge_lookup(dev);
963 struct vnode *vp;
964 int error = 0;
965
966 if (sc == NULL)
967 return (ENODEV);
968
969 if (sc->sc_state != DKW_STATE_RUNNING)
970 return (ENXIO);
971
972 /*
973 * We go through a complicated little dance to only open the parent
974 * vnode once per wedge, no matter how many times the wedge is
975 * opened. The reason? We see one dkopen() per open call, but
976 * only dkclose() on the last close.
977 */
978 mutex_enter(&sc->sc_dk.dk_openlock);
979 mutex_enter(&sc->sc_parent->dk_rawlock);
980 if (sc->sc_dk.dk_openmask == 0) {
981 if (sc->sc_parent->dk_rawopens == 0) {
982 KASSERT(sc->sc_parent->dk_rawvp == NULL);
983 error = bdevvp(sc->sc_pdev, &vp);
984 if (error)
985 goto popen_fail;
986 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
987 if (error) {
988 vrele(vp);
989 goto popen_fail;
990 }
991 error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED);
992 if (error) {
993 vput(vp);
994 goto popen_fail;
995 }
996 /* VOP_OPEN() doesn't do this for us. */
997 mutex_enter(&vp->v_interlock);
998 vp->v_writecount++;
999 mutex_exit(&vp->v_interlock);
1000 VOP_UNLOCK(vp, 0);
1001 sc->sc_parent->dk_rawvp = vp;
1002 }
1003 sc->sc_parent->dk_rawopens++;
1004 }
1005 if (fmt == S_IFCHR)
1006 sc->sc_dk.dk_copenmask |= 1;
1007 else
1008 sc->sc_dk.dk_bopenmask |= 1;
1009 sc->sc_dk.dk_openmask =
1010 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1011
1012 popen_fail:
1013 mutex_exit(&sc->sc_parent->dk_rawlock);
1014 mutex_exit(&sc->sc_dk.dk_openlock);
1015 return (error);
1016 }
1017
1018 /*
1019 * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock.
1020 */
1021 static int
1022 dklastclose(struct dkwedge_softc *sc)
1023 {
1024 int error = 0;
1025
1026 if (sc->sc_parent->dk_rawopens-- == 1) {
1027 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1028 error = vn_close(sc->sc_parent->dk_rawvp,
1029 FREAD | FWRITE, NOCRED);
1030 sc->sc_parent->dk_rawvp = NULL;
1031 }
1032 return error;
1033 }
1034
1035 /*
1036 * dkclose: [devsw entry point]
1037 *
1038 * Close a wedge.
1039 */
1040 static int
1041 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1042 {
1043 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1044 int error = 0;
1045
1046 KASSERT(sc->sc_dk.dk_openmask != 0);
1047
1048 mutex_enter(&sc->sc_dk.dk_openlock);
1049 mutex_enter(&sc->sc_parent->dk_rawlock);
1050
1051 if (fmt == S_IFCHR)
1052 sc->sc_dk.dk_copenmask &= ~1;
1053 else
1054 sc->sc_dk.dk_bopenmask &= ~1;
1055 sc->sc_dk.dk_openmask =
1056 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1057
1058 if (sc->sc_dk.dk_openmask == 0)
1059 error = dklastclose(sc);
1060
1061 mutex_exit(&sc->sc_parent->dk_rawlock);
1062 mutex_exit(&sc->sc_dk.dk_openlock);
1063
1064 return (error);
1065 }
1066
1067 /*
1068 * dkstragegy: [devsw entry point]
1069 *
1070 * Perform I/O based on the wedge I/O strategy.
1071 */
1072 static void
1073 dkstrategy(struct buf *bp)
1074 {
1075 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1076 int s;
1077
1078 if (sc->sc_state != DKW_STATE_RUNNING) {
1079 bp->b_error = ENXIO;
1080 goto done;
1081 }
1082
1083 /* If it's an empty transfer, wake up the top half now. */
1084 if (bp->b_bcount == 0)
1085 goto done;
1086
1087 /* Make sure it's in-range. */
1088 if (bounds_check_with_mediasize(bp, DEV_BSIZE, sc->sc_size) <= 0)
1089 goto done;
1090
1091 /* Translate it to the parent's raw LBA. */
1092 bp->b_rawblkno = bp->b_blkno + sc->sc_offset;
1093
1094 /* Place it in the queue and start I/O on the unit. */
1095 s = splbio();
1096 sc->sc_iopend++;
1097 bufq_put(sc->sc_bufq, bp);
1098 dkstart(sc);
1099 splx(s);
1100 return;
1101
1102 done:
1103 bp->b_resid = bp->b_bcount;
1104 biodone(bp);
1105 }
1106
1107 /*
1108 * dkstart:
1109 *
1110 * Start I/O that has been enqueued on the wedge.
1111 * NOTE: Must be called at splbio()!
1112 */
1113 static void
1114 dkstart(struct dkwedge_softc *sc)
1115 {
1116 struct vnode *vp;
1117 struct buf *bp, *nbp;
1118
1119 /* Do as much work as has been enqueued. */
1120 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1121 if (sc->sc_state != DKW_STATE_RUNNING) {
1122 (void) bufq_get(sc->sc_bufq);
1123 if (sc->sc_iopend-- == 1 &&
1124 (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1125 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1126 wakeup(&sc->sc_iopend);
1127 }
1128 bp->b_error = ENXIO;
1129 bp->b_resid = bp->b_bcount;
1130 biodone(bp);
1131 }
1132
1133 /* Instrumentation. */
1134 disk_busy(&sc->sc_dk);
1135
1136 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1137 if (nbp == NULL) {
1138 /*
1139 * No resources to run this request; leave the
1140 * buffer queued up, and schedule a timer to
1141 * restart the queue in 1/2 a second.
1142 */
1143 disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
1144 callout_schedule(&sc->sc_restart_ch, hz / 2);
1145 return;
1146 }
1147
1148 (void) bufq_get(sc->sc_bufq);
1149
1150 nbp->b_data = bp->b_data;
1151 nbp->b_flags = bp->b_flags;
1152 nbp->b_oflags = bp->b_oflags;
1153 nbp->b_cflags = bp->b_cflags;
1154 nbp->b_iodone = dkiodone;
1155 nbp->b_proc = bp->b_proc;
1156 nbp->b_blkno = bp->b_rawblkno;
1157 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1158 nbp->b_bcount = bp->b_bcount;
1159 nbp->b_private = bp;
1160 BIO_COPYPRIO(nbp, bp);
1161
1162 vp = nbp->b_vp;
1163 if ((nbp->b_flags & B_READ) == 0) {
1164 mutex_enter(&vp->v_interlock);
1165 vp->v_numoutput++;
1166 mutex_exit(&vp->v_interlock);
1167 }
1168 VOP_STRATEGY(vp, nbp);
1169 }
1170 }
1171
1172 /*
1173 * dkiodone:
1174 *
1175 * I/O to a wedge has completed; alert the top half.
1176 * NOTE: Must be called at splbio()!
1177 */
1178 static void
1179 dkiodone(struct buf *bp)
1180 {
1181 struct buf *obp = bp->b_private;
1182 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1183
1184 if (bp->b_error != 0)
1185 obp->b_error = bp->b_error;
1186 obp->b_resid = bp->b_resid;
1187 putiobuf(bp);
1188
1189 if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1190 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1191 wakeup(&sc->sc_iopend);
1192 }
1193
1194 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1195 obp->b_flags & B_READ);
1196
1197 biodone(obp);
1198
1199 /* Kick the queue in case there is more work we can do. */
1200 dkstart(sc);
1201 }
1202
1203 /*
1204 * dkrestart:
1205 *
1206 * Restart the work queue after it was stalled due to
1207 * a resource shortage. Invoked via a callout.
1208 */
1209 static void
1210 dkrestart(void *v)
1211 {
1212 struct dkwedge_softc *sc = v;
1213 int s;
1214
1215 s = splbio();
1216 dkstart(sc);
1217 splx(s);
1218 }
1219
1220 /*
1221 * dkread: [devsw entry point]
1222 *
1223 * Read from a wedge.
1224 */
1225 static int
1226 dkread(dev_t dev, struct uio *uio, int flags)
1227 {
1228 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1229
1230 if (sc->sc_state != DKW_STATE_RUNNING)
1231 return (ENXIO);
1232
1233 return (physio(dkstrategy, NULL, dev, B_READ,
1234 sc->sc_parent->dk_driver->d_minphys, uio));
1235 }
1236
1237 /*
1238 * dkwrite: [devsw entry point]
1239 *
1240 * Write to a wedge.
1241 */
1242 static int
1243 dkwrite(dev_t dev, struct uio *uio, int flags)
1244 {
1245 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1246
1247 if (sc->sc_state != DKW_STATE_RUNNING)
1248 return (ENXIO);
1249
1250 return (physio(dkstrategy, NULL, dev, B_WRITE,
1251 sc->sc_parent->dk_driver->d_minphys, uio));
1252 }
1253
1254 /*
1255 * dkioctl: [devsw entry point]
1256 *
1257 * Perform an ioctl request on a wedge.
1258 */
1259 static int
1260 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1261 {
1262 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1263 int error = 0;
1264
1265 if (sc->sc_state != DKW_STATE_RUNNING)
1266 return (ENXIO);
1267
1268 switch (cmd) {
1269 case DIOCCACHESYNC:
1270 /*
1271 * XXX Do we really need to care about having a writable
1272 * file descriptor here?
1273 */
1274 if ((flag & FWRITE) == 0)
1275 error = EBADF;
1276 else
1277 error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
1278 cmd, data, flag,
1279 l != NULL ? l->l_cred : NOCRED);
1280 break;
1281 case DIOCGWEDGEINFO:
1282 {
1283 struct dkwedge_info *dkw = (void *) data;
1284
1285 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1286 sizeof(dkw->dkw_devname));
1287 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1288 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1289 strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
1290 dkw->dkw_offset = sc->sc_offset;
1291 dkw->dkw_size = sc->sc_size;
1292 strcpy(dkw->dkw_ptype, sc->sc_ptype);
1293
1294 break;
1295 }
1296
1297 default:
1298 error = ENOTTY;
1299 }
1300
1301 return (error);
1302 }
1303
1304 /*
1305 * dksize: [devsw entry point]
1306 *
1307 * Query the size of a wedge for the purpose of performing a dump
1308 * or for swapping to.
1309 */
1310 static int
1311 dksize(dev_t dev)
1312 {
1313 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1314 int rv = -1;
1315
1316 if (sc == NULL)
1317 return (-1);
1318
1319 if (sc->sc_state != DKW_STATE_RUNNING)
1320 return (ENXIO);
1321
1322 mutex_enter(&sc->sc_dk.dk_openlock);
1323 mutex_enter(&sc->sc_parent->dk_rawlock);
1324
1325 /* Our content type is static, no need to open the device. */
1326
1327 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1328 /* Saturate if we are larger than INT_MAX. */
1329 if (sc->sc_size > INT_MAX)
1330 rv = INT_MAX;
1331 else
1332 rv = (int) sc->sc_size;
1333 }
1334
1335 mutex_exit(&sc->sc_parent->dk_rawlock);
1336 mutex_exit(&sc->sc_dk.dk_openlock);
1337
1338 return (rv);
1339 }
1340
1341 /*
1342 * dkdump: [devsw entry point]
1343 *
1344 * Perform a crash dump to a wedge.
1345 */
1346 static int
1347 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1348 {
1349 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1350 const struct bdevsw *bdev;
1351 int rv = 0;
1352
1353 if (sc == NULL)
1354 return (-1);
1355
1356 if (sc->sc_state != DKW_STATE_RUNNING)
1357 return (ENXIO);
1358
1359 mutex_enter(&sc->sc_dk.dk_openlock);
1360 mutex_enter(&sc->sc_parent->dk_rawlock);
1361
1362 /* Our content type is static, no need to open the device. */
1363
1364 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
1365 rv = ENXIO;
1366 goto out;
1367 }
1368 if (size % DEV_BSIZE != 0) {
1369 rv = EINVAL;
1370 goto out;
1371 }
1372 if (blkno + size / DEV_BSIZE > sc->sc_size) {
1373 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1374 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
1375 size / DEV_BSIZE, sc->sc_size);
1376 rv = EINVAL;
1377 goto out;
1378 }
1379
1380 bdev = bdevsw_lookup(sc->sc_pdev);
1381 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
1382
1383 out:
1384 mutex_exit(&sc->sc_parent->dk_rawlock);
1385 mutex_exit(&sc->sc_dk.dk_openlock);
1386
1387 return rv;
1388 }
1389