dk.c revision 1.62.2.1 1 /* $NetBSD: dk.c,v 1.62.2.1 2012/05/23 10:07:55 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.62.2.1 2012/05/23 10:07:55 yamt Exp $");
34
35 #ifdef _KERNEL_OPT
36 #include "opt_dkwedge.h"
37 #endif
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/errno.h>
43 #include <sys/pool.h>
44 #include <sys/ioctl.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/fcntl.h>
48 #include <sys/buf.h>
49 #include <sys/bufq.h>
50 #include <sys/vnode.h>
51 #include <sys/stat.h>
52 #include <sys/conf.h>
53 #include <sys/callout.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/device.h>
57 #include <sys/kauth.h>
58
59 #include <miscfs/specfs/specdev.h>
60
61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
62
63 typedef enum {
64 DKW_STATE_LARVAL = 0,
65 DKW_STATE_RUNNING = 1,
66 DKW_STATE_DYING = 2,
67 DKW_STATE_DEAD = 666
68 } dkwedge_state_t;
69
70 struct dkwedge_softc {
71 struct device *sc_dev; /* pointer to our pseudo-device */
72 struct cfdata sc_cfdata; /* our cfdata structure */
73 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
74
75 dkwedge_state_t sc_state; /* state this wedge is in */
76
77 struct disk *sc_parent; /* parent disk */
78 daddr_t sc_offset; /* LBA offset of wedge in parent */
79 uint64_t sc_size; /* size of wedge in blocks */
80 char sc_ptype[32]; /* partition type */
81 dev_t sc_pdev; /* cached parent's dev_t */
82 /* link on parent's wedge list */
83 LIST_ENTRY(dkwedge_softc) sc_plink;
84
85 struct disk sc_dk; /* our own disk structure */
86 struct bufq_state *sc_bufq; /* buffer queue */
87 struct callout sc_restart_ch; /* callout to restart I/O */
88
89 u_int sc_iopend; /* I/Os pending */
90 int sc_flags; /* flags (splbio) */
91 };
92
93 #define DK_F_WAIT_DRAIN 0x0001 /* waiting for I/O to drain */
94
95 static void dkstart(struct dkwedge_softc *);
96 static void dkiodone(struct buf *);
97 static void dkrestart(void *);
98 static void dkminphys(struct buf *);
99
100 static int dklastclose(struct dkwedge_softc *);
101 static int dkwedge_detach(device_t, int);
102
103 static dev_type_open(dkopen);
104 static dev_type_close(dkclose);
105 static dev_type_read(dkread);
106 static dev_type_write(dkwrite);
107 static dev_type_ioctl(dkioctl);
108 static dev_type_strategy(dkstrategy);
109 static dev_type_dump(dkdump);
110 static dev_type_size(dksize);
111
112 const struct bdevsw dk_bdevsw = {
113 dkopen, dkclose, dkstrategy, dkioctl, dkdump, dksize, D_DISK
114 };
115
116 const struct cdevsw dk_cdevsw = {
117 dkopen, dkclose, dkread, dkwrite, dkioctl,
118 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
119 };
120
121 static struct dkwedge_softc **dkwedges;
122 static u_int ndkwedges;
123 static krwlock_t dkwedges_lock;
124
125 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
126 static krwlock_t dkwedge_discovery_methods_lock;
127
128 /*
129 * dkwedge_match:
130 *
131 * Autoconfiguration match function for pseudo-device glue.
132 */
133 static int
134 dkwedge_match(device_t parent, cfdata_t match,
135 void *aux)
136 {
137
138 /* Pseudo-device; always present. */
139 return (1);
140 }
141
142 /*
143 * dkwedge_attach:
144 *
145 * Autoconfiguration attach function for pseudo-device glue.
146 */
147 static void
148 dkwedge_attach(device_t parent, device_t self,
149 void *aux)
150 {
151
152 if (!pmf_device_register(self, NULL, NULL))
153 aprint_error_dev(self, "couldn't establish power handler\n");
154 }
155
156 CFDRIVER_DECL(dk, DV_DISK, NULL);
157 CFATTACH_DECL3_NEW(dk, 0,
158 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
159 DVF_DETACH_SHUTDOWN);
160
161 /*
162 * dkwedge_wait_drain:
163 *
164 * Wait for I/O on the wedge to drain.
165 * NOTE: Must be called at splbio()!
166 */
167 static void
168 dkwedge_wait_drain(struct dkwedge_softc *sc)
169 {
170
171 while (sc->sc_iopend != 0) {
172 sc->sc_flags |= DK_F_WAIT_DRAIN;
173 (void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
174 }
175 }
176
177 /*
178 * dkwedge_compute_pdev:
179 *
180 * Compute the parent disk's dev_t.
181 */
182 static int
183 dkwedge_compute_pdev(const char *pname, dev_t *pdevp)
184 {
185 const char *name, *cp;
186 devmajor_t pmaj;
187 int punit;
188 char devname[16];
189
190 name = pname;
191 if ((pmaj = devsw_name2blk(name, devname, sizeof(devname))) == -1)
192 return (ENODEV);
193
194 name += strlen(devname);
195 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
196 punit = (punit * 10) + (*cp - '0');
197 if (cp == name) {
198 /* Invalid parent disk name. */
199 return (ENODEV);
200 }
201
202 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
203
204 return (0);
205 }
206
207 /*
208 * dkwedge_array_expand:
209 *
210 * Expand the dkwedges array.
211 */
212 static void
213 dkwedge_array_expand(void)
214 {
215 int newcnt = ndkwedges + 16;
216 struct dkwedge_softc **newarray, **oldarray;
217
218 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
219 M_WAITOK|M_ZERO);
220 if ((oldarray = dkwedges) != NULL)
221 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
222 dkwedges = newarray;
223 ndkwedges = newcnt;
224 if (oldarray != NULL)
225 free(oldarray, M_DKWEDGE);
226 }
227
228 static void
229 dkgetproperties(struct disk *disk, struct dkwedge_info *dkw)
230 {
231 prop_dictionary_t disk_info, odisk_info, geom;
232
233 disk_info = prop_dictionary_create();
234
235 prop_dictionary_set_cstring_nocopy(disk_info, "type", "ESDI");
236
237 geom = prop_dictionary_create();
238
239 prop_dictionary_set_uint64(geom, "sectors-per-unit",
240 dkw->dkw_size >> disk->dk_blkshift);
241
242 prop_dictionary_set_uint32(geom, "sector-size",
243 DEV_BSIZE << disk->dk_blkshift);
244
245 prop_dictionary_set_uint32(geom, "sectors-per-track", 32);
246
247 prop_dictionary_set_uint32(geom, "tracks-per-cylinder", 64);
248
249 prop_dictionary_set_uint32(geom, "cylinders-per-unit", dkw->dkw_size / 2048);
250
251 prop_dictionary_set(disk_info, "geometry", geom);
252 prop_object_release(geom);
253
254 odisk_info = disk->dk_info;
255
256 disk->dk_info = disk_info;
257
258 if (odisk_info != NULL)
259 prop_object_release(odisk_info);
260 }
261
262 /*
263 * dkwedge_add: [exported function]
264 *
265 * Add a disk wedge based on the provided information.
266 *
267 * The incoming dkw_devname[] is ignored, instead being
268 * filled in and returned to the caller.
269 */
270 int
271 dkwedge_add(struct dkwedge_info *dkw)
272 {
273 struct dkwedge_softc *sc, *lsc;
274 struct disk *pdk;
275 u_int unit;
276 int error;
277 dev_t pdev;
278
279 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
280 pdk = disk_find(dkw->dkw_parent);
281 if (pdk == NULL)
282 return (ENODEV);
283
284 error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
285 if (error)
286 return (error);
287
288 if (dkw->dkw_offset < 0)
289 return (EINVAL);
290
291 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
292 sc->sc_state = DKW_STATE_LARVAL;
293 sc->sc_parent = pdk;
294 sc->sc_pdev = pdev;
295 sc->sc_offset = dkw->dkw_offset;
296 sc->sc_size = dkw->dkw_size;
297
298 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
299 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
300
301 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
302 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
303
304 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
305
306 callout_init(&sc->sc_restart_ch, 0);
307 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
308
309 /*
310 * Wedge will be added; increment the wedge count for the parent.
311 * Only allow this to happend if RAW_PART is the only thing open.
312 */
313 mutex_enter(&pdk->dk_openlock);
314 if (pdk->dk_openmask & ~(1 << RAW_PART))
315 error = EBUSY;
316 else {
317 /* Check for wedge overlap. */
318 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
319 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
320 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
321
322 if (sc->sc_offset >= lsc->sc_offset &&
323 sc->sc_offset <= llastblk) {
324 /* Overlaps the tail of the existing wedge. */
325 break;
326 }
327 if (lastblk >= lsc->sc_offset &&
328 lastblk <= llastblk) {
329 /* Overlaps the head of the existing wedge. */
330 break;
331 }
332 }
333 if (lsc != NULL)
334 error = EINVAL;
335 else {
336 pdk->dk_nwedges++;
337 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
338 }
339 }
340 mutex_exit(&pdk->dk_openlock);
341 if (error) {
342 bufq_free(sc->sc_bufq);
343 free(sc, M_DKWEDGE);
344 return (error);
345 }
346
347 /* Fill in our cfdata for the pseudo-device glue. */
348 sc->sc_cfdata.cf_name = dk_cd.cd_name;
349 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
350 /* sc->sc_cfdata.cf_unit set below */
351 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
352
353 /* Insert the larval wedge into the array. */
354 rw_enter(&dkwedges_lock, RW_WRITER);
355 for (error = 0;;) {
356 struct dkwedge_softc **scpp;
357
358 /*
359 * Check for a duplicate wname while searching for
360 * a slot.
361 */
362 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
363 if (dkwedges[unit] == NULL) {
364 if (scpp == NULL) {
365 scpp = &dkwedges[unit];
366 sc->sc_cfdata.cf_unit = unit;
367 }
368 } else {
369 /* XXX Unicode. */
370 if (strcmp(dkwedges[unit]->sc_wname,
371 sc->sc_wname) == 0) {
372 error = EEXIST;
373 break;
374 }
375 }
376 }
377 if (error)
378 break;
379 KASSERT(unit == ndkwedges);
380 if (scpp == NULL)
381 dkwedge_array_expand();
382 else {
383 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
384 *scpp = sc;
385 break;
386 }
387 }
388 rw_exit(&dkwedges_lock);
389 if (error) {
390 mutex_enter(&pdk->dk_openlock);
391 pdk->dk_nwedges--;
392 LIST_REMOVE(sc, sc_plink);
393 mutex_exit(&pdk->dk_openlock);
394
395 bufq_free(sc->sc_bufq);
396 free(sc, M_DKWEDGE);
397 return (error);
398 }
399
400 /*
401 * Now that we know the unit #, attach a pseudo-device for
402 * this wedge instance. This will provide us with the
403 * "struct device" necessary for glue to other parts of the
404 * system.
405 *
406 * This should never fail, unless we're almost totally out of
407 * memory.
408 */
409 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
410 aprint_error("%s%u: unable to attach pseudo-device\n",
411 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
412
413 rw_enter(&dkwedges_lock, RW_WRITER);
414 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
415 rw_exit(&dkwedges_lock);
416
417 mutex_enter(&pdk->dk_openlock);
418 pdk->dk_nwedges--;
419 LIST_REMOVE(sc, sc_plink);
420 mutex_exit(&pdk->dk_openlock);
421
422 bufq_free(sc->sc_bufq);
423 free(sc, M_DKWEDGE);
424 return (ENOMEM);
425 }
426
427 /* Return the devname to the caller. */
428 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
429 sizeof(dkw->dkw_devname));
430
431 /*
432 * XXX Really ought to make the disk_attach() and the changing
433 * of state to RUNNING atomic.
434 */
435
436 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
437 disk_blocksize(&sc->sc_dk, DEV_BSIZE << pdk->dk_blkshift);
438 dkgetproperties(&sc->sc_dk, dkw);
439 disk_attach(&sc->sc_dk);
440
441 /* Disk wedge is ready for use! */
442 sc->sc_state = DKW_STATE_RUNNING;
443
444 /* Announce our arrival. */
445 aprint_normal("%s at %s: %s\n", device_xname(sc->sc_dev), pdk->dk_name,
446 sc->sc_wname); /* XXX Unicode */
447 aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
448 device_xname(sc->sc_dev), sc->sc_size, sc->sc_offset, sc->sc_ptype);
449
450 return (0);
451 }
452
453 /*
454 * dkwedge_find:
455 *
456 * Lookup a disk wedge based on the provided information.
457 * NOTE: We look up the wedge based on the wedge devname,
458 * not wname.
459 *
460 * Return NULL if the wedge is not found, otherwise return
461 * the wedge's softc. Assign the wedge's unit number to unitp
462 * if unitp is not NULL.
463 */
464 static struct dkwedge_softc *
465 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
466 {
467 struct dkwedge_softc *sc = NULL;
468 u_int unit;
469
470 /* Find our softc. */
471 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
472 rw_enter(&dkwedges_lock, RW_READER);
473 for (unit = 0; unit < ndkwedges; unit++) {
474 if ((sc = dkwedges[unit]) != NULL &&
475 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
476 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
477 break;
478 }
479 }
480 rw_exit(&dkwedges_lock);
481 if (unit == ndkwedges)
482 return NULL;
483
484 if (unitp != NULL)
485 *unitp = unit;
486
487 return sc;
488 }
489
490 /*
491 * dkwedge_del: [exported function]
492 *
493 * Delete a disk wedge based on the provided information.
494 * NOTE: We look up the wedge based on the wedge devname,
495 * not wname.
496 */
497 int
498 dkwedge_del(struct dkwedge_info *dkw)
499 {
500 struct dkwedge_softc *sc = NULL;
501
502 /* Find our softc. */
503 if ((sc = dkwedge_find(dkw, NULL)) == NULL)
504 return (ESRCH);
505
506 return config_detach(sc->sc_dev, DETACH_FORCE | DETACH_QUIET);
507 }
508
509 static int
510 dkwedge_begindetach(struct dkwedge_softc *sc, int flags)
511 {
512 struct disk *dk = &sc->sc_dk;
513 int rc;
514
515 rc = 0;
516 mutex_enter(&dk->dk_openlock);
517 if (dk->dk_openmask == 0)
518 ; /* nothing to do */
519 else if ((flags & DETACH_FORCE) == 0)
520 rc = EBUSY;
521 else {
522 mutex_enter(&sc->sc_parent->dk_rawlock);
523 rc = dklastclose(sc); /* releases dk_rawlock */
524 }
525 mutex_exit(&dk->dk_openlock);
526
527 return rc;
528 }
529
530 /*
531 * dkwedge_detach:
532 *
533 * Autoconfiguration detach function for pseudo-device glue.
534 */
535 static int
536 dkwedge_detach(device_t self, int flags)
537 {
538 struct dkwedge_softc *sc = NULL;
539 u_int unit;
540 int bmaj, cmaj, rc, s;
541
542 rw_enter(&dkwedges_lock, RW_WRITER);
543 for (unit = 0; unit < ndkwedges; unit++) {
544 if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
545 break;
546 }
547 if (unit == ndkwedges)
548 rc = ENXIO;
549 else if ((rc = dkwedge_begindetach(sc, flags)) == 0) {
550 /* Mark the wedge as dying. */
551 sc->sc_state = DKW_STATE_DYING;
552 }
553 rw_exit(&dkwedges_lock);
554
555 if (rc != 0)
556 return rc;
557
558 pmf_device_deregister(self);
559
560 /* Locate the wedge major numbers. */
561 bmaj = bdevsw_lookup_major(&dk_bdevsw);
562 cmaj = cdevsw_lookup_major(&dk_cdevsw);
563
564 /* Kill any pending restart. */
565 callout_stop(&sc->sc_restart_ch);
566
567 /*
568 * dkstart() will kill any queued buffers now that the
569 * state of the wedge is not RUNNING. Once we've done
570 * that, wait for any other pending I/O to complete.
571 */
572 s = splbio();
573 dkstart(sc);
574 dkwedge_wait_drain(sc);
575 splx(s);
576
577 /* Nuke the vnodes for any open instances. */
578 vdevgone(bmaj, unit, unit, VBLK);
579 vdevgone(cmaj, unit, unit, VCHR);
580
581 /* Clean up the parent. */
582 mutex_enter(&sc->sc_dk.dk_openlock);
583 if (sc->sc_dk.dk_openmask) {
584 mutex_enter(&sc->sc_parent->dk_rawlock);
585 if (sc->sc_parent->dk_rawopens-- == 1) {
586 KASSERT(sc->sc_parent->dk_rawvp != NULL);
587 mutex_exit(&sc->sc_parent->dk_rawlock);
588 (void) vn_close(sc->sc_parent->dk_rawvp, FREAD | FWRITE,
589 NOCRED);
590 sc->sc_parent->dk_rawvp = NULL;
591 } else
592 mutex_exit(&sc->sc_parent->dk_rawlock);
593 sc->sc_dk.dk_openmask = 0;
594 }
595 mutex_exit(&sc->sc_dk.dk_openlock);
596
597 /* Announce our departure. */
598 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
599 sc->sc_parent->dk_name,
600 sc->sc_wname); /* XXX Unicode */
601
602 mutex_enter(&sc->sc_parent->dk_openlock);
603 sc->sc_parent->dk_nwedges--;
604 LIST_REMOVE(sc, sc_plink);
605 mutex_exit(&sc->sc_parent->dk_openlock);
606
607 /* Delete our buffer queue. */
608 bufq_free(sc->sc_bufq);
609
610 /* Detach from the disk list. */
611 disk_detach(&sc->sc_dk);
612 disk_destroy(&sc->sc_dk);
613
614 /* Poof. */
615 rw_enter(&dkwedges_lock, RW_WRITER);
616 dkwedges[unit] = NULL;
617 sc->sc_state = DKW_STATE_DEAD;
618 rw_exit(&dkwedges_lock);
619
620 free(sc, M_DKWEDGE);
621
622 return 0;
623 }
624
625 /*
626 * dkwedge_delall: [exported function]
627 *
628 * Delete all of the wedges on the specified disk. Used when
629 * a disk is being detached.
630 */
631 void
632 dkwedge_delall(struct disk *pdk)
633 {
634 struct dkwedge_info dkw;
635 struct dkwedge_softc *sc;
636
637 for (;;) {
638 mutex_enter(&pdk->dk_openlock);
639 if ((sc = LIST_FIRST(&pdk->dk_wedges)) == NULL) {
640 KASSERT(pdk->dk_nwedges == 0);
641 mutex_exit(&pdk->dk_openlock);
642 return;
643 }
644 strcpy(dkw.dkw_parent, pdk->dk_name);
645 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
646 sizeof(dkw.dkw_devname));
647 mutex_exit(&pdk->dk_openlock);
648 (void) dkwedge_del(&dkw);
649 }
650 }
651
652 /*
653 * dkwedge_list: [exported function]
654 *
655 * List all of the wedges on a particular disk.
656 * If p == NULL, the buffer is in kernel space. Otherwise, it is
657 * in user space of the specified process.
658 */
659 int
660 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
661 {
662 struct uio uio;
663 struct iovec iov;
664 struct dkwedge_softc *sc;
665 struct dkwedge_info dkw;
666 int error = 0;
667
668 iov.iov_base = dkwl->dkwl_buf;
669 iov.iov_len = dkwl->dkwl_bufsize;
670
671 uio.uio_iov = &iov;
672 uio.uio_iovcnt = 1;
673 uio.uio_offset = 0;
674 uio.uio_resid = dkwl->dkwl_bufsize;
675 uio.uio_rw = UIO_READ;
676 KASSERT(l == curlwp);
677 uio.uio_vmspace = l->l_proc->p_vmspace;
678
679 dkwl->dkwl_ncopied = 0;
680
681 mutex_enter(&pdk->dk_openlock);
682 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
683 if (uio.uio_resid < sizeof(dkw))
684 break;
685
686 if (sc->sc_state != DKW_STATE_RUNNING)
687 continue;
688
689 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
690 sizeof(dkw.dkw_devname));
691 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
692 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
693 strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
694 dkw.dkw_offset = sc->sc_offset;
695 dkw.dkw_size = sc->sc_size;
696 strcpy(dkw.dkw_ptype, sc->sc_ptype);
697
698 error = uiomove(&dkw, sizeof(dkw), &uio);
699 if (error)
700 break;
701 dkwl->dkwl_ncopied++;
702 }
703 dkwl->dkwl_nwedges = pdk->dk_nwedges;
704 mutex_exit(&pdk->dk_openlock);
705
706 return (error);
707 }
708
709 device_t
710 dkwedge_find_by_wname(const char *wname)
711 {
712 device_t dv = NULL;
713 struct dkwedge_softc *sc;
714 int i;
715
716 rw_enter(&dkwedges_lock, RW_WRITER);
717 for (i = 0; i < ndkwedges; i++) {
718 if ((sc = dkwedges[i]) == NULL)
719 continue;
720 if (strcmp(sc->sc_wname, wname) == 0) {
721 if (dv != NULL) {
722 printf(
723 "WARNING: double match for wedge name %s "
724 "(%s, %s)\n", wname, device_xname(dv),
725 device_xname(sc->sc_dev));
726 continue;
727 }
728 dv = sc->sc_dev;
729 }
730 }
731 rw_exit(&dkwedges_lock);
732 return dv;
733 }
734
735 void
736 dkwedge_print_wnames(void)
737 {
738 struct dkwedge_softc *sc;
739 int i;
740
741 rw_enter(&dkwedges_lock, RW_WRITER);
742 for (i = 0; i < ndkwedges; i++) {
743 if ((sc = dkwedges[i]) == NULL)
744 continue;
745 printf(" wedge:%s", sc->sc_wname);
746 }
747 rw_exit(&dkwedges_lock);
748 }
749
750 /*
751 * dkwedge_set_bootwedge
752 *
753 * Set the booted_wedge global based on the specified parent name
754 * and offset/length.
755 */
756 void
757 dkwedge_set_bootwedge(device_t parent, daddr_t startblk, uint64_t nblks)
758 {
759 struct dkwedge_softc *sc;
760 int i;
761
762 rw_enter(&dkwedges_lock, RW_WRITER);
763 for (i = 0; i < ndkwedges; i++) {
764 if ((sc = dkwedges[i]) == NULL)
765 continue;
766 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
767 sc->sc_offset == startblk &&
768 sc->sc_size == nblks) {
769 if (booted_wedge) {
770 printf("WARNING: double match for boot wedge "
771 "(%s, %s)\n",
772 device_xname(booted_wedge),
773 device_xname(sc->sc_dev));
774 continue;
775 }
776 booted_device = parent;
777 booted_wedge = sc->sc_dev;
778 booted_partition = 0;
779 }
780 }
781 /*
782 * XXX What if we don't find one? Should we create a special
783 * XXX root wedge?
784 */
785 rw_exit(&dkwedges_lock);
786 }
787
788 /*
789 * We need a dummy object to stuff into the dkwedge discovery method link
790 * set to ensure that there is always at least one object in the set.
791 */
792 static struct dkwedge_discovery_method dummy_discovery_method;
793 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
794
795 /*
796 * dkwedge_init:
797 *
798 * Initialize the disk wedge subsystem.
799 */
800 void
801 dkwedge_init(void)
802 {
803 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
804 struct dkwedge_discovery_method * const *ddmp;
805 struct dkwedge_discovery_method *lddm, *ddm;
806
807 rw_init(&dkwedges_lock);
808 rw_init(&dkwedge_discovery_methods_lock);
809
810 if (config_cfdriver_attach(&dk_cd) != 0)
811 panic("dkwedge: unable to attach cfdriver");
812 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
813 panic("dkwedge: unable to attach cfattach");
814
815 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
816
817 LIST_INIT(&dkwedge_discovery_methods);
818
819 __link_set_foreach(ddmp, dkwedge_methods) {
820 ddm = *ddmp;
821 if (ddm == &dummy_discovery_method)
822 continue;
823 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
824 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
825 ddm, ddm_list);
826 continue;
827 }
828 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
829 if (ddm->ddm_priority == lddm->ddm_priority) {
830 aprint_error("dk-method-%s: method \"%s\" "
831 "already exists at priority %d\n",
832 ddm->ddm_name, lddm->ddm_name,
833 lddm->ddm_priority);
834 /* Not inserted. */
835 break;
836 }
837 if (ddm->ddm_priority < lddm->ddm_priority) {
838 /* Higher priority; insert before. */
839 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
840 break;
841 }
842 if (LIST_NEXT(lddm, ddm_list) == NULL) {
843 /* Last one; insert after. */
844 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
845 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
846 break;
847 }
848 }
849 }
850
851 rw_exit(&dkwedge_discovery_methods_lock);
852 }
853
854 #ifdef DKWEDGE_AUTODISCOVER
855 int dkwedge_autodiscover = 1;
856 #else
857 int dkwedge_autodiscover = 0;
858 #endif
859
860 /*
861 * dkwedge_discover: [exported function]
862 *
863 * Discover the wedges on a newly attached disk.
864 */
865 void
866 dkwedge_discover(struct disk *pdk)
867 {
868 struct dkwedge_discovery_method *ddm;
869 struct vnode *vp;
870 int error;
871 dev_t pdev;
872
873 /*
874 * Require people playing with wedges to enable this explicitly.
875 */
876 if (dkwedge_autodiscover == 0)
877 return;
878
879 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
880
881 error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
882 if (error) {
883 aprint_error("%s: unable to compute pdev, error = %d\n",
884 pdk->dk_name, error);
885 goto out;
886 }
887
888 error = bdevvp(pdev, &vp);
889 if (error) {
890 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
891 pdk->dk_name, error);
892 goto out;
893 }
894
895 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
896 if (error) {
897 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
898 pdk->dk_name, error);
899 vrele(vp);
900 goto out;
901 }
902
903 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
904 if (error) {
905 aprint_error("%s: unable to open device, error = %d\n",
906 pdk->dk_name, error);
907 vput(vp);
908 goto out;
909 }
910 VOP_UNLOCK(vp);
911
912 /*
913 * For each supported partition map type, look to see if
914 * this map type exists. If so, parse it and add the
915 * corresponding wedges.
916 */
917 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
918 error = (*ddm->ddm_discover)(pdk, vp);
919 if (error == 0) {
920 /* Successfully created wedges; we're done. */
921 break;
922 }
923 }
924
925 error = vn_close(vp, FREAD, NOCRED);
926 if (error) {
927 aprint_error("%s: unable to close device, error = %d\n",
928 pdk->dk_name, error);
929 /* We'll just assume the vnode has been cleaned up. */
930 }
931 out:
932 rw_exit(&dkwedge_discovery_methods_lock);
933 }
934
935 /*
936 * dkwedge_read:
937 *
938 * Read some data from the specified disk, used for
939 * partition discovery.
940 */
941 int
942 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
943 void *tbuf, size_t len)
944 {
945 struct buf *bp;
946 int result;
947
948 bp = getiobuf(vp, true);
949
950 bp->b_dev = vp->v_rdev;
951 bp->b_blkno = blkno;
952 bp->b_bcount = len;
953 bp->b_resid = len;
954 bp->b_flags = B_READ;
955 bp->b_data = tbuf;
956 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */
957
958 VOP_STRATEGY(vp, bp);
959 result = biowait(bp);
960 putiobuf(bp);
961
962 return result;
963 }
964
965 /*
966 * dkwedge_lookup:
967 *
968 * Look up a dkwedge_softc based on the provided dev_t.
969 */
970 static struct dkwedge_softc *
971 dkwedge_lookup(dev_t dev)
972 {
973 int unit = minor(dev);
974
975 if (unit >= ndkwedges)
976 return (NULL);
977
978 KASSERT(dkwedges != NULL);
979
980 return (dkwedges[unit]);
981 }
982
983 /*
984 * dkopen: [devsw entry point]
985 *
986 * Open a wedge.
987 */
988 static int
989 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
990 {
991 struct dkwedge_softc *sc = dkwedge_lookup(dev);
992 struct vnode *vp;
993 int error = 0;
994
995 if (sc == NULL)
996 return (ENODEV);
997 if (sc->sc_state != DKW_STATE_RUNNING)
998 return (ENXIO);
999
1000 /*
1001 * We go through a complicated little dance to only open the parent
1002 * vnode once per wedge, no matter how many times the wedge is
1003 * opened. The reason? We see one dkopen() per open call, but
1004 * only dkclose() on the last close.
1005 */
1006 mutex_enter(&sc->sc_dk.dk_openlock);
1007 mutex_enter(&sc->sc_parent->dk_rawlock);
1008 if (sc->sc_dk.dk_openmask == 0) {
1009 if (sc->sc_parent->dk_rawopens == 0) {
1010 KASSERT(sc->sc_parent->dk_rawvp == NULL);
1011 error = bdevvp(sc->sc_pdev, &vp);
1012 if (error)
1013 goto popen_fail;
1014 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1015 if (error) {
1016 vrele(vp);
1017 goto popen_fail;
1018 }
1019 error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED);
1020 if (error) {
1021 vput(vp);
1022 goto popen_fail;
1023 }
1024 /* VOP_OPEN() doesn't do this for us. */
1025 mutex_enter(vp->v_interlock);
1026 vp->v_writecount++;
1027 mutex_exit(vp->v_interlock);
1028 VOP_UNLOCK(vp);
1029 sc->sc_parent->dk_rawvp = vp;
1030 }
1031 sc->sc_parent->dk_rawopens++;
1032 }
1033 if (fmt == S_IFCHR)
1034 sc->sc_dk.dk_copenmask |= 1;
1035 else
1036 sc->sc_dk.dk_bopenmask |= 1;
1037 sc->sc_dk.dk_openmask =
1038 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1039
1040 popen_fail:
1041 mutex_exit(&sc->sc_parent->dk_rawlock);
1042 mutex_exit(&sc->sc_dk.dk_openlock);
1043 return (error);
1044 }
1045
1046 /*
1047 * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock.
1048 */
1049 static int
1050 dklastclose(struct dkwedge_softc *sc)
1051 {
1052 int error = 0;
1053
1054 if (sc->sc_parent->dk_rawopens-- == 1) {
1055 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1056 mutex_exit(&sc->sc_parent->dk_rawlock);
1057 error = vn_close(sc->sc_parent->dk_rawvp,
1058 FREAD | FWRITE, NOCRED);
1059 sc->sc_parent->dk_rawvp = NULL;
1060 } else
1061 mutex_exit(&sc->sc_parent->dk_rawlock);
1062 return error;
1063 }
1064
1065 /*
1066 * dkclose: [devsw entry point]
1067 *
1068 * Close a wedge.
1069 */
1070 static int
1071 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1072 {
1073 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1074 int error = 0;
1075
1076 if (sc == NULL)
1077 return (ENODEV);
1078 if (sc->sc_state != DKW_STATE_RUNNING)
1079 return (ENXIO);
1080
1081 KASSERT(sc->sc_dk.dk_openmask != 0);
1082
1083 mutex_enter(&sc->sc_dk.dk_openlock);
1084 mutex_enter(&sc->sc_parent->dk_rawlock);
1085
1086 if (fmt == S_IFCHR)
1087 sc->sc_dk.dk_copenmask &= ~1;
1088 else
1089 sc->sc_dk.dk_bopenmask &= ~1;
1090 sc->sc_dk.dk_openmask =
1091 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1092
1093 if (sc->sc_dk.dk_openmask == 0)
1094 error = dklastclose(sc); /* releases dk_rawlock */
1095 else
1096 mutex_exit(&sc->sc_parent->dk_rawlock);
1097
1098 mutex_exit(&sc->sc_dk.dk_openlock);
1099
1100 return (error);
1101 }
1102
1103 /*
1104 * dkstragegy: [devsw entry point]
1105 *
1106 * Perform I/O based on the wedge I/O strategy.
1107 */
1108 static void
1109 dkstrategy(struct buf *bp)
1110 {
1111 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1112 uint64_t p_size, p_offset;
1113 int s;
1114
1115 if (sc == NULL) {
1116 bp->b_error = ENODEV;
1117 goto done;
1118 }
1119
1120 if (sc->sc_state != DKW_STATE_RUNNING ||
1121 sc->sc_parent->dk_rawvp == NULL) {
1122 bp->b_error = ENXIO;
1123 goto done;
1124 }
1125
1126 /* If it's an empty transfer, wake up the top half now. */
1127 if (bp->b_bcount == 0)
1128 goto done;
1129
1130 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1131 p_size = sc->sc_size << sc->sc_parent->dk_blkshift;
1132
1133 /* Make sure it's in-range. */
1134 if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1135 goto done;
1136
1137 /* Translate it to the parent's raw LBA. */
1138 bp->b_rawblkno = bp->b_blkno + p_offset;
1139
1140 /* Place it in the queue and start I/O on the unit. */
1141 s = splbio();
1142 sc->sc_iopend++;
1143 bufq_put(sc->sc_bufq, bp);
1144 dkstart(sc);
1145 splx(s);
1146 return;
1147
1148 done:
1149 bp->b_resid = bp->b_bcount;
1150 biodone(bp);
1151 }
1152
1153 /*
1154 * dkstart:
1155 *
1156 * Start I/O that has been enqueued on the wedge.
1157 * NOTE: Must be called at splbio()!
1158 */
1159 static void
1160 dkstart(struct dkwedge_softc *sc)
1161 {
1162 struct vnode *vp;
1163 struct buf *bp, *nbp;
1164
1165 /* Do as much work as has been enqueued. */
1166 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1167 if (sc->sc_state != DKW_STATE_RUNNING) {
1168 (void) bufq_get(sc->sc_bufq);
1169 if (sc->sc_iopend-- == 1 &&
1170 (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1171 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1172 wakeup(&sc->sc_iopend);
1173 }
1174 bp->b_error = ENXIO;
1175 bp->b_resid = bp->b_bcount;
1176 biodone(bp);
1177 }
1178
1179 /* Instrumentation. */
1180 disk_busy(&sc->sc_dk);
1181
1182 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1183 if (nbp == NULL) {
1184 /*
1185 * No resources to run this request; leave the
1186 * buffer queued up, and schedule a timer to
1187 * restart the queue in 1/2 a second.
1188 */
1189 disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
1190 callout_schedule(&sc->sc_restart_ch, hz / 2);
1191 return;
1192 }
1193
1194 (void) bufq_get(sc->sc_bufq);
1195
1196 nbp->b_data = bp->b_data;
1197 nbp->b_flags = bp->b_flags;
1198 nbp->b_oflags = bp->b_oflags;
1199 nbp->b_cflags = bp->b_cflags;
1200 nbp->b_iodone = dkiodone;
1201 nbp->b_proc = bp->b_proc;
1202 nbp->b_blkno = bp->b_rawblkno;
1203 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1204 nbp->b_bcount = bp->b_bcount;
1205 nbp->b_private = bp;
1206 BIO_COPYPRIO(nbp, bp);
1207
1208 vp = nbp->b_vp;
1209 if ((nbp->b_flags & B_READ) == 0) {
1210 mutex_enter(vp->v_interlock);
1211 vp->v_numoutput++;
1212 mutex_exit(vp->v_interlock);
1213 }
1214 VOP_STRATEGY(vp, nbp);
1215 }
1216 }
1217
1218 /*
1219 * dkiodone:
1220 *
1221 * I/O to a wedge has completed; alert the top half.
1222 */
1223 static void
1224 dkiodone(struct buf *bp)
1225 {
1226 struct buf *obp = bp->b_private;
1227 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1228
1229 int s = splbio();
1230
1231 if (bp->b_error != 0)
1232 obp->b_error = bp->b_error;
1233 obp->b_resid = bp->b_resid;
1234 putiobuf(bp);
1235
1236 if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1237 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1238 wakeup(&sc->sc_iopend);
1239 }
1240
1241 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1242 obp->b_flags & B_READ);
1243
1244 biodone(obp);
1245
1246 /* Kick the queue in case there is more work we can do. */
1247 dkstart(sc);
1248 splx(s);
1249 }
1250
1251 /*
1252 * dkrestart:
1253 *
1254 * Restart the work queue after it was stalled due to
1255 * a resource shortage. Invoked via a callout.
1256 */
1257 static void
1258 dkrestart(void *v)
1259 {
1260 struct dkwedge_softc *sc = v;
1261 int s;
1262
1263 s = splbio();
1264 dkstart(sc);
1265 splx(s);
1266 }
1267
1268 /*
1269 * dkminphys:
1270 *
1271 * Call parent's minphys function.
1272 */
1273 static void
1274 dkminphys(struct buf *bp)
1275 {
1276 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1277 dev_t dev;
1278
1279 dev = bp->b_dev;
1280 bp->b_dev = sc->sc_pdev;
1281 (*sc->sc_parent->dk_driver->d_minphys)(bp);
1282 bp->b_dev = dev;
1283 }
1284
1285 /*
1286 * dkread: [devsw entry point]
1287 *
1288 * Read from a wedge.
1289 */
1290 static int
1291 dkread(dev_t dev, struct uio *uio, int flags)
1292 {
1293 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1294
1295 if (sc == NULL)
1296 return (ENODEV);
1297 if (sc->sc_state != DKW_STATE_RUNNING)
1298 return (ENXIO);
1299
1300 return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio));
1301 }
1302
1303 /*
1304 * dkwrite: [devsw entry point]
1305 *
1306 * Write to a wedge.
1307 */
1308 static int
1309 dkwrite(dev_t dev, struct uio *uio, int flags)
1310 {
1311 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1312
1313 if (sc == NULL)
1314 return (ENODEV);
1315 if (sc->sc_state != DKW_STATE_RUNNING)
1316 return (ENXIO);
1317
1318 return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio));
1319 }
1320
1321 /*
1322 * dkioctl: [devsw entry point]
1323 *
1324 * Perform an ioctl request on a wedge.
1325 */
1326 static int
1327 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1328 {
1329 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1330 int error = 0;
1331
1332 if (sc == NULL)
1333 return (ENODEV);
1334 if (sc->sc_state != DKW_STATE_RUNNING)
1335 return (ENXIO);
1336 if (sc->sc_parent->dk_rawvp == NULL)
1337 return (ENXIO);
1338
1339 error = disk_ioctl(&sc->sc_dk, cmd, data, flag, l);
1340 if (error != EPASSTHROUGH)
1341 return (error);
1342
1343 error = 0;
1344
1345 switch (cmd) {
1346 case DIOCCACHESYNC:
1347 /*
1348 * XXX Do we really need to care about having a writable
1349 * file descriptor here?
1350 */
1351 if ((flag & FWRITE) == 0)
1352 error = EBADF;
1353 else
1354 error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
1355 cmd, data, flag,
1356 l != NULL ? l->l_cred : NOCRED);
1357 break;
1358 case DIOCGWEDGEINFO:
1359 {
1360 struct dkwedge_info *dkw = (void *) data;
1361
1362 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1363 sizeof(dkw->dkw_devname));
1364 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1365 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1366 strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
1367 dkw->dkw_offset = sc->sc_offset;
1368 dkw->dkw_size = sc->sc_size;
1369 strcpy(dkw->dkw_ptype, sc->sc_ptype);
1370
1371 break;
1372 }
1373
1374 default:
1375 error = ENOTTY;
1376 }
1377
1378 return (error);
1379 }
1380
1381 /*
1382 * dksize: [devsw entry point]
1383 *
1384 * Query the size of a wedge for the purpose of performing a dump
1385 * or for swapping to.
1386 */
1387 static int
1388 dksize(dev_t dev)
1389 {
1390 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1391 int rv = -1;
1392
1393 if (sc == NULL)
1394 return (-1);
1395 if (sc->sc_state != DKW_STATE_RUNNING)
1396 return (-1);
1397
1398 mutex_enter(&sc->sc_dk.dk_openlock);
1399 mutex_enter(&sc->sc_parent->dk_rawlock);
1400
1401 /* Our content type is static, no need to open the device. */
1402
1403 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1404 /* Saturate if we are larger than INT_MAX. */
1405 if (sc->sc_size > INT_MAX)
1406 rv = INT_MAX;
1407 else
1408 rv = (int) sc->sc_size;
1409 }
1410
1411 mutex_exit(&sc->sc_parent->dk_rawlock);
1412 mutex_exit(&sc->sc_dk.dk_openlock);
1413
1414 return (rv);
1415 }
1416
1417 /*
1418 * dkdump: [devsw entry point]
1419 *
1420 * Perform a crash dump to a wedge.
1421 */
1422 static int
1423 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1424 {
1425 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1426 const struct bdevsw *bdev;
1427 int rv = 0;
1428
1429 if (sc == NULL)
1430 return (ENODEV);
1431 if (sc->sc_state != DKW_STATE_RUNNING)
1432 return (ENXIO);
1433
1434 mutex_enter(&sc->sc_dk.dk_openlock);
1435 mutex_enter(&sc->sc_parent->dk_rawlock);
1436
1437 /* Our content type is static, no need to open the device. */
1438
1439 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
1440 rv = ENXIO;
1441 goto out;
1442 }
1443 if (size % DEV_BSIZE != 0) {
1444 rv = EINVAL;
1445 goto out;
1446 }
1447 if (blkno + size / DEV_BSIZE > sc->sc_size) {
1448 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1449 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
1450 size / DEV_BSIZE, sc->sc_size);
1451 rv = EINVAL;
1452 goto out;
1453 }
1454
1455 bdev = bdevsw_lookup(sc->sc_pdev);
1456 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
1457
1458 out:
1459 mutex_exit(&sc->sc_parent->dk_rawlock);
1460 mutex_exit(&sc->sc_dk.dk_openlock);
1461
1462 return rv;
1463 }
1464
1465 /*
1466 * config glue
1467 */
1468
1469 int
1470 config_handle_wedges(struct device *dv, int par)
1471 {
1472 struct dkwedge_list wl;
1473 struct dkwedge_info *wi;
1474 struct vnode *vn;
1475 char diskname[16];
1476 int i, error;
1477
1478 if ((vn = opendisk(dv)) == NULL)
1479 return -1;
1480
1481 wl.dkwl_bufsize = sizeof(*wi) * 16;
1482 wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
1483
1484 error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
1485 VOP_CLOSE(vn, FREAD, NOCRED);
1486 vput(vn);
1487 if (error) {
1488 #ifdef DEBUG_WEDGE
1489 printf("%s: List wedges returned %d\n",
1490 device_xname(dv), error);
1491 #endif
1492 free(wi, M_TEMP);
1493 return -1;
1494 }
1495
1496 #ifdef DEBUG_WEDGE
1497 printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
1498 wl.dkwl_nwedges, wl.dkwl_ncopied);
1499 #endif
1500 snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
1501 par + 'a');
1502
1503 for (i = 0; i < wl.dkwl_ncopied; i++) {
1504 #ifdef DEBUG_WEDGE
1505 printf("%s: Looking for %s in %s\n",
1506 device_xname(dv), diskname, wi[i].dkw_wname);
1507 #endif
1508 if (strcmp(wi[i].dkw_wname, diskname) == 0)
1509 break;
1510 }
1511
1512 if (i == wl.dkwl_ncopied) {
1513 #ifdef DEBUG_WEDGE
1514 printf("%s: Cannot find wedge with parent %s\n",
1515 device_xname(dv), diskname);
1516 #endif
1517 free(wi, M_TEMP);
1518 return -1;
1519 }
1520
1521 #ifdef DEBUG_WEDGE
1522 printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
1523 device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
1524 (unsigned long long)wi[i].dkw_offset,
1525 (unsigned long long)wi[i].dkw_size);
1526 #endif
1527 dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
1528 free(wi, M_TEMP);
1529 return 0;
1530 }
1531