dk.c revision 1.66.2.1 1 /* $NetBSD: dk.c,v 1.66.2.1 2013/08/28 23:59:25 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.66.2.1 2013/08/28 23:59:25 rmind Exp $");
34
35 #ifdef _KERNEL_OPT
36 #include "opt_dkwedge.h"
37 #endif
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/errno.h>
43 #include <sys/pool.h>
44 #include <sys/ioctl.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/fcntl.h>
48 #include <sys/buf.h>
49 #include <sys/bufq.h>
50 #include <sys/vnode.h>
51 #include <sys/stat.h>
52 #include <sys/conf.h>
53 #include <sys/callout.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/device.h>
57 #include <sys/kauth.h>
58
59 #include <miscfs/specfs/specdev.h>
60
61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
62
63 typedef enum {
64 DKW_STATE_LARVAL = 0,
65 DKW_STATE_RUNNING = 1,
66 DKW_STATE_DYING = 2,
67 DKW_STATE_DEAD = 666
68 } dkwedge_state_t;
69
70 struct dkwedge_softc {
71 device_t sc_dev; /* pointer to our pseudo-device */
72 struct cfdata sc_cfdata; /* our cfdata structure */
73 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
74
75 dkwedge_state_t sc_state; /* state this wedge is in */
76
77 struct disk *sc_parent; /* parent disk */
78 daddr_t sc_offset; /* LBA offset of wedge in parent */
79 uint64_t sc_size; /* size of wedge in blocks */
80 char sc_ptype[32]; /* partition type */
81 dev_t sc_pdev; /* cached parent's dev_t */
82 /* link on parent's wedge list */
83 LIST_ENTRY(dkwedge_softc) sc_plink;
84
85 struct disk sc_dk; /* our own disk structure */
86 struct bufq_state *sc_bufq; /* buffer queue */
87 struct callout sc_restart_ch; /* callout to restart I/O */
88
89 u_int sc_iopend; /* I/Os pending */
90 int sc_flags; /* flags (splbio) */
91 };
92
93 #define DK_F_WAIT_DRAIN 0x0001 /* waiting for I/O to drain */
94
95 static void dkstart(struct dkwedge_softc *);
96 static void dkiodone(struct buf *);
97 static void dkrestart(void *);
98 static void dkminphys(struct buf *);
99
100 static int dklastclose(struct dkwedge_softc *);
101 static int dkwedge_detach(device_t, int);
102
103 static dev_type_open(dkopen);
104 static dev_type_close(dkclose);
105 static dev_type_read(dkread);
106 static dev_type_write(dkwrite);
107 static dev_type_ioctl(dkioctl);
108 static dev_type_strategy(dkstrategy);
109 static dev_type_dump(dkdump);
110 static dev_type_size(dksize);
111
112 const struct bdevsw dk_bdevsw = {
113 dkopen, dkclose, dkstrategy, dkioctl, dkdump, dksize, D_DISK
114 };
115
116 const struct cdevsw dk_cdevsw = {
117 dkopen, dkclose, dkread, dkwrite, dkioctl,
118 nostop, notty, nopoll, nommap, nokqfilter, D_DISK
119 };
120
121 static struct dkwedge_softc **dkwedges;
122 static u_int ndkwedges;
123 static krwlock_t dkwedges_lock;
124
125 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
126 static krwlock_t dkwedge_discovery_methods_lock;
127
128 /*
129 * dkwedge_match:
130 *
131 * Autoconfiguration match function for pseudo-device glue.
132 */
133 static int
134 dkwedge_match(device_t parent, cfdata_t match,
135 void *aux)
136 {
137
138 /* Pseudo-device; always present. */
139 return (1);
140 }
141
142 /*
143 * dkwedge_attach:
144 *
145 * Autoconfiguration attach function for pseudo-device glue.
146 */
147 static void
148 dkwedge_attach(device_t parent, device_t self,
149 void *aux)
150 {
151
152 if (!pmf_device_register(self, NULL, NULL))
153 aprint_error_dev(self, "couldn't establish power handler\n");
154 }
155
156 CFDRIVER_DECL(dk, DV_DISK, NULL);
157 CFATTACH_DECL3_NEW(dk, 0,
158 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
159 DVF_DETACH_SHUTDOWN);
160
161 /*
162 * dkwedge_wait_drain:
163 *
164 * Wait for I/O on the wedge to drain.
165 * NOTE: Must be called at splbio()!
166 */
167 static void
168 dkwedge_wait_drain(struct dkwedge_softc *sc)
169 {
170
171 while (sc->sc_iopend != 0) {
172 sc->sc_flags |= DK_F_WAIT_DRAIN;
173 (void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
174 }
175 }
176
177 /*
178 * dkwedge_compute_pdev:
179 *
180 * Compute the parent disk's dev_t.
181 */
182 static int
183 dkwedge_compute_pdev(const char *pname, dev_t *pdevp)
184 {
185 const char *name, *cp;
186 devmajor_t pmaj;
187 int punit;
188 char devname[16];
189
190 name = pname;
191 if ((pmaj = devsw_name2blk(name, devname, sizeof(devname))) == -1)
192 return (ENODEV);
193
194 name += strlen(devname);
195 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
196 punit = (punit * 10) + (*cp - '0');
197 if (cp == name) {
198 /* Invalid parent disk name. */
199 return (ENODEV);
200 }
201
202 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
203
204 return (0);
205 }
206
207 /*
208 * dkwedge_array_expand:
209 *
210 * Expand the dkwedges array.
211 */
212 static void
213 dkwedge_array_expand(void)
214 {
215 int newcnt = ndkwedges + 16;
216 struct dkwedge_softc **newarray, **oldarray;
217
218 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
219 M_WAITOK|M_ZERO);
220 if ((oldarray = dkwedges) != NULL)
221 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
222 dkwedges = newarray;
223 ndkwedges = newcnt;
224 if (oldarray != NULL)
225 free(oldarray, M_DKWEDGE);
226 }
227
228 static void
229 dkgetproperties(struct disk *disk, struct dkwedge_info *dkw)
230 {
231 struct disk_geom *dg = &disk->dk_geom;
232
233 memset(dg, 0, sizeof(*dg));
234
235 dg->dg_secperunit = dkw->dkw_size >> disk->dk_blkshift;
236 dg->dg_secsize = DEV_BSIZE << disk->dk_blkshift;
237 dg->dg_nsectors = 32;
238 dg->dg_ntracks = 64;
239 /* XXX: why is that dkw->dkw_size instead of secperunit?!?! */
240 dg->dg_ncylinders = dkw->dkw_size / (dg->dg_nsectors * dg->dg_ntracks);
241
242 disk_set_info(NULL, disk, "ESDI");
243 }
244
245 /*
246 * dkwedge_add: [exported function]
247 *
248 * Add a disk wedge based on the provided information.
249 *
250 * The incoming dkw_devname[] is ignored, instead being
251 * filled in and returned to the caller.
252 */
253 int
254 dkwedge_add(struct dkwedge_info *dkw)
255 {
256 struct dkwedge_softc *sc, *lsc;
257 struct disk *pdk;
258 u_int unit;
259 int error;
260 dev_t pdev;
261
262 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
263 pdk = disk_find(dkw->dkw_parent);
264 if (pdk == NULL)
265 return (ENODEV);
266
267 error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
268 if (error)
269 return (error);
270
271 if (dkw->dkw_offset < 0)
272 return (EINVAL);
273
274 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
275 sc->sc_state = DKW_STATE_LARVAL;
276 sc->sc_parent = pdk;
277 sc->sc_pdev = pdev;
278 sc->sc_offset = dkw->dkw_offset;
279 sc->sc_size = dkw->dkw_size;
280
281 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
282 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
283
284 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
285 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
286
287 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
288
289 callout_init(&sc->sc_restart_ch, 0);
290 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
291
292 /*
293 * Wedge will be added; increment the wedge count for the parent.
294 * Only allow this to happend if RAW_PART is the only thing open.
295 */
296 mutex_enter(&pdk->dk_openlock);
297 if (pdk->dk_openmask & ~(1 << RAW_PART))
298 error = EBUSY;
299 else {
300 /* Check for wedge overlap. */
301 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
302 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
303 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
304
305 if (sc->sc_offset >= lsc->sc_offset &&
306 sc->sc_offset <= llastblk) {
307 /* Overlaps the tail of the existing wedge. */
308 break;
309 }
310 if (lastblk >= lsc->sc_offset &&
311 lastblk <= llastblk) {
312 /* Overlaps the head of the existing wedge. */
313 break;
314 }
315 }
316 if (lsc != NULL)
317 error = EINVAL;
318 else {
319 pdk->dk_nwedges++;
320 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
321 }
322 }
323 mutex_exit(&pdk->dk_openlock);
324 if (error) {
325 bufq_free(sc->sc_bufq);
326 free(sc, M_DKWEDGE);
327 return (error);
328 }
329
330 /* Fill in our cfdata for the pseudo-device glue. */
331 sc->sc_cfdata.cf_name = dk_cd.cd_name;
332 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
333 /* sc->sc_cfdata.cf_unit set below */
334 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
335
336 /* Insert the larval wedge into the array. */
337 rw_enter(&dkwedges_lock, RW_WRITER);
338 for (error = 0;;) {
339 struct dkwedge_softc **scpp;
340
341 /*
342 * Check for a duplicate wname while searching for
343 * a slot.
344 */
345 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
346 if (dkwedges[unit] == NULL) {
347 if (scpp == NULL) {
348 scpp = &dkwedges[unit];
349 sc->sc_cfdata.cf_unit = unit;
350 }
351 } else {
352 /* XXX Unicode. */
353 if (strcmp(dkwedges[unit]->sc_wname,
354 sc->sc_wname) == 0) {
355 error = EEXIST;
356 break;
357 }
358 }
359 }
360 if (error)
361 break;
362 KASSERT(unit == ndkwedges);
363 if (scpp == NULL)
364 dkwedge_array_expand();
365 else {
366 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
367 *scpp = sc;
368 break;
369 }
370 }
371 rw_exit(&dkwedges_lock);
372 if (error) {
373 mutex_enter(&pdk->dk_openlock);
374 pdk->dk_nwedges--;
375 LIST_REMOVE(sc, sc_plink);
376 mutex_exit(&pdk->dk_openlock);
377
378 bufq_free(sc->sc_bufq);
379 free(sc, M_DKWEDGE);
380 return (error);
381 }
382
383 /*
384 * Now that we know the unit #, attach a pseudo-device for
385 * this wedge instance. This will provide us with the
386 * device_t necessary for glue to other parts of the system.
387 *
388 * This should never fail, unless we're almost totally out of
389 * memory.
390 */
391 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
392 aprint_error("%s%u: unable to attach pseudo-device\n",
393 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
394
395 rw_enter(&dkwedges_lock, RW_WRITER);
396 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
397 rw_exit(&dkwedges_lock);
398
399 mutex_enter(&pdk->dk_openlock);
400 pdk->dk_nwedges--;
401 LIST_REMOVE(sc, sc_plink);
402 mutex_exit(&pdk->dk_openlock);
403
404 bufq_free(sc->sc_bufq);
405 free(sc, M_DKWEDGE);
406 return (ENOMEM);
407 }
408
409 /* Return the devname to the caller. */
410 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
411 sizeof(dkw->dkw_devname));
412
413 /*
414 * XXX Really ought to make the disk_attach() and the changing
415 * of state to RUNNING atomic.
416 */
417
418 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
419 disk_blocksize(&sc->sc_dk, DEV_BSIZE << pdk->dk_blkshift);
420 dkgetproperties(&sc->sc_dk, dkw);
421 disk_attach(&sc->sc_dk);
422
423 /* Disk wedge is ready for use! */
424 sc->sc_state = DKW_STATE_RUNNING;
425
426 /* Announce our arrival. */
427 aprint_normal("%s at %s: %s\n", device_xname(sc->sc_dev), pdk->dk_name,
428 sc->sc_wname); /* XXX Unicode */
429 aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
430 device_xname(sc->sc_dev), sc->sc_size, sc->sc_offset, sc->sc_ptype);
431
432 return (0);
433 }
434
435 /*
436 * dkwedge_find:
437 *
438 * Lookup a disk wedge based on the provided information.
439 * NOTE: We look up the wedge based on the wedge devname,
440 * not wname.
441 *
442 * Return NULL if the wedge is not found, otherwise return
443 * the wedge's softc. Assign the wedge's unit number to unitp
444 * if unitp is not NULL.
445 */
446 static struct dkwedge_softc *
447 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
448 {
449 struct dkwedge_softc *sc = NULL;
450 u_int unit;
451
452 /* Find our softc. */
453 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
454 rw_enter(&dkwedges_lock, RW_READER);
455 for (unit = 0; unit < ndkwedges; unit++) {
456 if ((sc = dkwedges[unit]) != NULL &&
457 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
458 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
459 break;
460 }
461 }
462 rw_exit(&dkwedges_lock);
463 if (unit == ndkwedges)
464 return NULL;
465
466 if (unitp != NULL)
467 *unitp = unit;
468
469 return sc;
470 }
471
472 /*
473 * dkwedge_del: [exported function]
474 *
475 * Delete a disk wedge based on the provided information.
476 * NOTE: We look up the wedge based on the wedge devname,
477 * not wname.
478 */
479 int
480 dkwedge_del(struct dkwedge_info *dkw)
481 {
482 struct dkwedge_softc *sc = NULL;
483
484 /* Find our softc. */
485 if ((sc = dkwedge_find(dkw, NULL)) == NULL)
486 return (ESRCH);
487
488 return config_detach(sc->sc_dev, DETACH_FORCE | DETACH_QUIET);
489 }
490
491 static int
492 dkwedge_begindetach(struct dkwedge_softc *sc, int flags)
493 {
494 struct disk *dk = &sc->sc_dk;
495 int rc;
496
497 rc = 0;
498 mutex_enter(&dk->dk_openlock);
499 if (dk->dk_openmask == 0)
500 ; /* nothing to do */
501 else if ((flags & DETACH_FORCE) == 0)
502 rc = EBUSY;
503 else {
504 mutex_enter(&sc->sc_parent->dk_rawlock);
505 rc = dklastclose(sc); /* releases dk_rawlock */
506 }
507 mutex_exit(&dk->dk_openlock);
508
509 return rc;
510 }
511
512 /*
513 * dkwedge_detach:
514 *
515 * Autoconfiguration detach function for pseudo-device glue.
516 */
517 static int
518 dkwedge_detach(device_t self, int flags)
519 {
520 struct dkwedge_softc *sc = NULL;
521 u_int unit;
522 int bmaj, cmaj, rc, s;
523
524 rw_enter(&dkwedges_lock, RW_WRITER);
525 for (unit = 0; unit < ndkwedges; unit++) {
526 if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
527 break;
528 }
529 if (unit == ndkwedges)
530 rc = ENXIO;
531 else if ((rc = dkwedge_begindetach(sc, flags)) == 0) {
532 /* Mark the wedge as dying. */
533 sc->sc_state = DKW_STATE_DYING;
534 }
535 rw_exit(&dkwedges_lock);
536
537 if (rc != 0)
538 return rc;
539
540 pmf_device_deregister(self);
541
542 /* Locate the wedge major numbers. */
543 bmaj = bdevsw_lookup_major(&dk_bdevsw);
544 cmaj = cdevsw_lookup_major(&dk_cdevsw);
545
546 /* Kill any pending restart. */
547 callout_stop(&sc->sc_restart_ch);
548
549 /*
550 * dkstart() will kill any queued buffers now that the
551 * state of the wedge is not RUNNING. Once we've done
552 * that, wait for any other pending I/O to complete.
553 */
554 s = splbio();
555 dkstart(sc);
556 dkwedge_wait_drain(sc);
557 splx(s);
558
559 /* Nuke the vnodes for any open instances. */
560 vdevgone(bmaj, unit, unit, VBLK);
561 vdevgone(cmaj, unit, unit, VCHR);
562
563 /* Clean up the parent. */
564 mutex_enter(&sc->sc_dk.dk_openlock);
565 if (sc->sc_dk.dk_openmask) {
566 mutex_enter(&sc->sc_parent->dk_rawlock);
567 if (sc->sc_parent->dk_rawopens-- == 1) {
568 KASSERT(sc->sc_parent->dk_rawvp != NULL);
569 mutex_exit(&sc->sc_parent->dk_rawlock);
570 (void) vn_close(sc->sc_parent->dk_rawvp, FREAD | FWRITE,
571 NOCRED);
572 sc->sc_parent->dk_rawvp = NULL;
573 } else
574 mutex_exit(&sc->sc_parent->dk_rawlock);
575 sc->sc_dk.dk_openmask = 0;
576 }
577 mutex_exit(&sc->sc_dk.dk_openlock);
578
579 /* Announce our departure. */
580 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
581 sc->sc_parent->dk_name,
582 sc->sc_wname); /* XXX Unicode */
583
584 mutex_enter(&sc->sc_parent->dk_openlock);
585 sc->sc_parent->dk_nwedges--;
586 LIST_REMOVE(sc, sc_plink);
587 mutex_exit(&sc->sc_parent->dk_openlock);
588
589 /* Delete our buffer queue. */
590 bufq_free(sc->sc_bufq);
591
592 /* Detach from the disk list. */
593 disk_detach(&sc->sc_dk);
594 disk_destroy(&sc->sc_dk);
595
596 /* Poof. */
597 rw_enter(&dkwedges_lock, RW_WRITER);
598 dkwedges[unit] = NULL;
599 sc->sc_state = DKW_STATE_DEAD;
600 rw_exit(&dkwedges_lock);
601
602 free(sc, M_DKWEDGE);
603
604 return 0;
605 }
606
607 /*
608 * dkwedge_delall: [exported function]
609 *
610 * Delete all of the wedges on the specified disk. Used when
611 * a disk is being detached.
612 */
613 void
614 dkwedge_delall(struct disk *pdk)
615 {
616 struct dkwedge_info dkw;
617 struct dkwedge_softc *sc;
618
619 for (;;) {
620 mutex_enter(&pdk->dk_openlock);
621 if ((sc = LIST_FIRST(&pdk->dk_wedges)) == NULL) {
622 KASSERT(pdk->dk_nwedges == 0);
623 mutex_exit(&pdk->dk_openlock);
624 return;
625 }
626 strcpy(dkw.dkw_parent, pdk->dk_name);
627 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
628 sizeof(dkw.dkw_devname));
629 mutex_exit(&pdk->dk_openlock);
630 (void) dkwedge_del(&dkw);
631 }
632 }
633
634 /*
635 * dkwedge_list: [exported function]
636 *
637 * List all of the wedges on a particular disk.
638 * If p == NULL, the buffer is in kernel space. Otherwise, it is
639 * in user space of the specified process.
640 */
641 int
642 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
643 {
644 struct uio uio;
645 struct iovec iov;
646 struct dkwedge_softc *sc;
647 struct dkwedge_info dkw;
648 int error = 0;
649
650 iov.iov_base = dkwl->dkwl_buf;
651 iov.iov_len = dkwl->dkwl_bufsize;
652
653 uio.uio_iov = &iov;
654 uio.uio_iovcnt = 1;
655 uio.uio_offset = 0;
656 uio.uio_resid = dkwl->dkwl_bufsize;
657 uio.uio_rw = UIO_READ;
658 KASSERT(l == curlwp);
659 uio.uio_vmspace = l->l_proc->p_vmspace;
660
661 dkwl->dkwl_ncopied = 0;
662
663 mutex_enter(&pdk->dk_openlock);
664 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
665 if (uio.uio_resid < sizeof(dkw))
666 break;
667
668 if (sc->sc_state != DKW_STATE_RUNNING)
669 continue;
670
671 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
672 sizeof(dkw.dkw_devname));
673 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
674 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
675 strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
676 dkw.dkw_offset = sc->sc_offset;
677 dkw.dkw_size = sc->sc_size;
678 strcpy(dkw.dkw_ptype, sc->sc_ptype);
679
680 error = uiomove(&dkw, sizeof(dkw), &uio);
681 if (error)
682 break;
683 dkwl->dkwl_ncopied++;
684 }
685 dkwl->dkwl_nwedges = pdk->dk_nwedges;
686 mutex_exit(&pdk->dk_openlock);
687
688 return (error);
689 }
690
691 device_t
692 dkwedge_find_by_wname(const char *wname)
693 {
694 device_t dv = NULL;
695 struct dkwedge_softc *sc;
696 int i;
697
698 rw_enter(&dkwedges_lock, RW_WRITER);
699 for (i = 0; i < ndkwedges; i++) {
700 if ((sc = dkwedges[i]) == NULL)
701 continue;
702 if (strcmp(sc->sc_wname, wname) == 0) {
703 if (dv != NULL) {
704 printf(
705 "WARNING: double match for wedge name %s "
706 "(%s, %s)\n", wname, device_xname(dv),
707 device_xname(sc->sc_dev));
708 continue;
709 }
710 dv = sc->sc_dev;
711 }
712 }
713 rw_exit(&dkwedges_lock);
714 return dv;
715 }
716
717 void
718 dkwedge_print_wnames(void)
719 {
720 struct dkwedge_softc *sc;
721 int i;
722
723 rw_enter(&dkwedges_lock, RW_WRITER);
724 for (i = 0; i < ndkwedges; i++) {
725 if ((sc = dkwedges[i]) == NULL)
726 continue;
727 printf(" wedge:%s", sc->sc_wname);
728 }
729 rw_exit(&dkwedges_lock);
730 }
731
732 /*
733 * We need a dummy object to stuff into the dkwedge discovery method link
734 * set to ensure that there is always at least one object in the set.
735 */
736 static struct dkwedge_discovery_method dummy_discovery_method;
737 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
738
739 /*
740 * dkwedge_init:
741 *
742 * Initialize the disk wedge subsystem.
743 */
744 void
745 dkwedge_init(void)
746 {
747 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
748 struct dkwedge_discovery_method * const *ddmp;
749 struct dkwedge_discovery_method *lddm, *ddm;
750
751 rw_init(&dkwedges_lock);
752 rw_init(&dkwedge_discovery_methods_lock);
753
754 if (config_cfdriver_attach(&dk_cd) != 0)
755 panic("dkwedge: unable to attach cfdriver");
756 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
757 panic("dkwedge: unable to attach cfattach");
758
759 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
760
761 LIST_INIT(&dkwedge_discovery_methods);
762
763 __link_set_foreach(ddmp, dkwedge_methods) {
764 ddm = *ddmp;
765 if (ddm == &dummy_discovery_method)
766 continue;
767 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
768 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
769 ddm, ddm_list);
770 continue;
771 }
772 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
773 if (ddm->ddm_priority == lddm->ddm_priority) {
774 aprint_error("dk-method-%s: method \"%s\" "
775 "already exists at priority %d\n",
776 ddm->ddm_name, lddm->ddm_name,
777 lddm->ddm_priority);
778 /* Not inserted. */
779 break;
780 }
781 if (ddm->ddm_priority < lddm->ddm_priority) {
782 /* Higher priority; insert before. */
783 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
784 break;
785 }
786 if (LIST_NEXT(lddm, ddm_list) == NULL) {
787 /* Last one; insert after. */
788 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
789 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
790 break;
791 }
792 }
793 }
794
795 rw_exit(&dkwedge_discovery_methods_lock);
796 }
797
798 #ifdef DKWEDGE_AUTODISCOVER
799 int dkwedge_autodiscover = 1;
800 #else
801 int dkwedge_autodiscover = 0;
802 #endif
803
804 /*
805 * dkwedge_discover: [exported function]
806 *
807 * Discover the wedges on a newly attached disk.
808 */
809 void
810 dkwedge_discover(struct disk *pdk)
811 {
812 struct dkwedge_discovery_method *ddm;
813 struct vnode *vp;
814 int error;
815 dev_t pdev;
816
817 /*
818 * Require people playing with wedges to enable this explicitly.
819 */
820 if (dkwedge_autodiscover == 0)
821 return;
822
823 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
824
825 error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
826 if (error) {
827 aprint_error("%s: unable to compute pdev, error = %d\n",
828 pdk->dk_name, error);
829 goto out;
830 }
831
832 error = bdevvp(pdev, &vp);
833 if (error) {
834 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
835 pdk->dk_name, error);
836 goto out;
837 }
838
839 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
840 if (error) {
841 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
842 pdk->dk_name, error);
843 vrele(vp);
844 goto out;
845 }
846
847 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
848 if (error) {
849 if (error != ENODEV)
850 aprint_error("%s: unable to open device, error = %d\n",
851 pdk->dk_name, error);
852 vput(vp);
853 goto out;
854 }
855 VOP_UNLOCK(vp);
856
857 /*
858 * For each supported partition map type, look to see if
859 * this map type exists. If so, parse it and add the
860 * corresponding wedges.
861 */
862 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
863 error = (*ddm->ddm_discover)(pdk, vp);
864 if (error == 0) {
865 /* Successfully created wedges; we're done. */
866 break;
867 }
868 }
869
870 error = vn_close(vp, FREAD, NOCRED);
871 if (error) {
872 aprint_error("%s: unable to close device, error = %d\n",
873 pdk->dk_name, error);
874 /* We'll just assume the vnode has been cleaned up. */
875 }
876 out:
877 rw_exit(&dkwedge_discovery_methods_lock);
878 }
879
880 /*
881 * dkwedge_read:
882 *
883 * Read some data from the specified disk, used for
884 * partition discovery.
885 */
886 int
887 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
888 void *tbuf, size_t len)
889 {
890 struct buf *bp;
891 int result;
892
893 bp = getiobuf(vp, true);
894
895 bp->b_dev = vp->v_rdev;
896 bp->b_blkno = blkno;
897 bp->b_bcount = len;
898 bp->b_resid = len;
899 bp->b_flags = B_READ;
900 bp->b_data = tbuf;
901 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */
902
903 VOP_STRATEGY(vp, bp);
904 result = biowait(bp);
905 putiobuf(bp);
906
907 return result;
908 }
909
910 /*
911 * dkwedge_lookup:
912 *
913 * Look up a dkwedge_softc based on the provided dev_t.
914 */
915 static struct dkwedge_softc *
916 dkwedge_lookup(dev_t dev)
917 {
918 int unit = minor(dev);
919
920 if (unit >= ndkwedges)
921 return (NULL);
922
923 KASSERT(dkwedges != NULL);
924
925 return (dkwedges[unit]);
926 }
927
928 /*
929 * dkopen: [devsw entry point]
930 *
931 * Open a wedge.
932 */
933 static int
934 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
935 {
936 struct dkwedge_softc *sc = dkwedge_lookup(dev);
937 struct vnode *vp;
938 int error = 0;
939
940 if (sc == NULL)
941 return (ENODEV);
942 if (sc->sc_state != DKW_STATE_RUNNING)
943 return (ENXIO);
944
945 /*
946 * We go through a complicated little dance to only open the parent
947 * vnode once per wedge, no matter how many times the wedge is
948 * opened. The reason? We see one dkopen() per open call, but
949 * only dkclose() on the last close.
950 */
951 mutex_enter(&sc->sc_dk.dk_openlock);
952 mutex_enter(&sc->sc_parent->dk_rawlock);
953 if (sc->sc_dk.dk_openmask == 0) {
954 if (sc->sc_parent->dk_rawopens == 0) {
955 KASSERT(sc->sc_parent->dk_rawvp == NULL);
956 error = bdevvp(sc->sc_pdev, &vp);
957 if (error)
958 goto popen_fail;
959 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
960 if (error) {
961 vrele(vp);
962 goto popen_fail;
963 }
964 error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED);
965 if (error) {
966 vput(vp);
967 goto popen_fail;
968 }
969 /* VOP_OPEN() doesn't do this for us. */
970 mutex_enter(vp->v_interlock);
971 vp->v_writecount++;
972 mutex_exit(vp->v_interlock);
973 VOP_UNLOCK(vp);
974 sc->sc_parent->dk_rawvp = vp;
975 }
976 sc->sc_parent->dk_rawopens++;
977 }
978 if (fmt == S_IFCHR)
979 sc->sc_dk.dk_copenmask |= 1;
980 else
981 sc->sc_dk.dk_bopenmask |= 1;
982 sc->sc_dk.dk_openmask =
983 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
984
985 popen_fail:
986 mutex_exit(&sc->sc_parent->dk_rawlock);
987 mutex_exit(&sc->sc_dk.dk_openlock);
988 return (error);
989 }
990
991 /*
992 * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock.
993 */
994 static int
995 dklastclose(struct dkwedge_softc *sc)
996 {
997 int error = 0;
998
999 if (sc->sc_parent->dk_rawopens-- == 1) {
1000 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1001 mutex_exit(&sc->sc_parent->dk_rawlock);
1002 error = vn_close(sc->sc_parent->dk_rawvp,
1003 FREAD | FWRITE, NOCRED);
1004 sc->sc_parent->dk_rawvp = NULL;
1005 } else
1006 mutex_exit(&sc->sc_parent->dk_rawlock);
1007 return error;
1008 }
1009
1010 /*
1011 * dkclose: [devsw entry point]
1012 *
1013 * Close a wedge.
1014 */
1015 static int
1016 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1017 {
1018 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1019 int error = 0;
1020
1021 if (sc == NULL)
1022 return (ENODEV);
1023 if (sc->sc_state != DKW_STATE_RUNNING)
1024 return (ENXIO);
1025
1026 KASSERT(sc->sc_dk.dk_openmask != 0);
1027
1028 mutex_enter(&sc->sc_dk.dk_openlock);
1029 mutex_enter(&sc->sc_parent->dk_rawlock);
1030
1031 if (fmt == S_IFCHR)
1032 sc->sc_dk.dk_copenmask &= ~1;
1033 else
1034 sc->sc_dk.dk_bopenmask &= ~1;
1035 sc->sc_dk.dk_openmask =
1036 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1037
1038 if (sc->sc_dk.dk_openmask == 0)
1039 error = dklastclose(sc); /* releases dk_rawlock */
1040 else
1041 mutex_exit(&sc->sc_parent->dk_rawlock);
1042
1043 mutex_exit(&sc->sc_dk.dk_openlock);
1044
1045 return (error);
1046 }
1047
1048 /*
1049 * dkstragegy: [devsw entry point]
1050 *
1051 * Perform I/O based on the wedge I/O strategy.
1052 */
1053 static void
1054 dkstrategy(struct buf *bp)
1055 {
1056 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1057 uint64_t p_size, p_offset;
1058 int s;
1059
1060 if (sc == NULL) {
1061 bp->b_error = ENODEV;
1062 goto done;
1063 }
1064
1065 if (sc->sc_state != DKW_STATE_RUNNING ||
1066 sc->sc_parent->dk_rawvp == NULL) {
1067 bp->b_error = ENXIO;
1068 goto done;
1069 }
1070
1071 /* If it's an empty transfer, wake up the top half now. */
1072 if (bp->b_bcount == 0)
1073 goto done;
1074
1075 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1076 p_size = sc->sc_size << sc->sc_parent->dk_blkshift;
1077
1078 /* Make sure it's in-range. */
1079 if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1080 goto done;
1081
1082 /* Translate it to the parent's raw LBA. */
1083 bp->b_rawblkno = bp->b_blkno + p_offset;
1084
1085 /* Place it in the queue and start I/O on the unit. */
1086 s = splbio();
1087 sc->sc_iopend++;
1088 bufq_put(sc->sc_bufq, bp);
1089 dkstart(sc);
1090 splx(s);
1091 return;
1092
1093 done:
1094 bp->b_resid = bp->b_bcount;
1095 biodone(bp);
1096 }
1097
1098 /*
1099 * dkstart:
1100 *
1101 * Start I/O that has been enqueued on the wedge.
1102 * NOTE: Must be called at splbio()!
1103 */
1104 static void
1105 dkstart(struct dkwedge_softc *sc)
1106 {
1107 struct vnode *vp;
1108 struct buf *bp, *nbp;
1109
1110 /* Do as much work as has been enqueued. */
1111 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1112 if (sc->sc_state != DKW_STATE_RUNNING) {
1113 (void) bufq_get(sc->sc_bufq);
1114 if (sc->sc_iopend-- == 1 &&
1115 (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1116 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1117 wakeup(&sc->sc_iopend);
1118 }
1119 bp->b_error = ENXIO;
1120 bp->b_resid = bp->b_bcount;
1121 biodone(bp);
1122 }
1123
1124 /* Instrumentation. */
1125 disk_busy(&sc->sc_dk);
1126
1127 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1128 if (nbp == NULL) {
1129 /*
1130 * No resources to run this request; leave the
1131 * buffer queued up, and schedule a timer to
1132 * restart the queue in 1/2 a second.
1133 */
1134 disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
1135 callout_schedule(&sc->sc_restart_ch, hz / 2);
1136 return;
1137 }
1138
1139 (void) bufq_get(sc->sc_bufq);
1140
1141 nbp->b_data = bp->b_data;
1142 nbp->b_flags = bp->b_flags;
1143 nbp->b_oflags = bp->b_oflags;
1144 nbp->b_cflags = bp->b_cflags;
1145 nbp->b_iodone = dkiodone;
1146 nbp->b_proc = bp->b_proc;
1147 nbp->b_blkno = bp->b_rawblkno;
1148 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1149 nbp->b_bcount = bp->b_bcount;
1150 nbp->b_private = bp;
1151 BIO_COPYPRIO(nbp, bp);
1152
1153 vp = nbp->b_vp;
1154 if ((nbp->b_flags & B_READ) == 0) {
1155 mutex_enter(vp->v_interlock);
1156 vp->v_numoutput++;
1157 mutex_exit(vp->v_interlock);
1158 }
1159 VOP_STRATEGY(vp, nbp);
1160 }
1161 }
1162
1163 /*
1164 * dkiodone:
1165 *
1166 * I/O to a wedge has completed; alert the top half.
1167 */
1168 static void
1169 dkiodone(struct buf *bp)
1170 {
1171 struct buf *obp = bp->b_private;
1172 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1173
1174 int s = splbio();
1175
1176 if (bp->b_error != 0)
1177 obp->b_error = bp->b_error;
1178 obp->b_resid = bp->b_resid;
1179 putiobuf(bp);
1180
1181 if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1182 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1183 wakeup(&sc->sc_iopend);
1184 }
1185
1186 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1187 obp->b_flags & B_READ);
1188
1189 biodone(obp);
1190
1191 /* Kick the queue in case there is more work we can do. */
1192 dkstart(sc);
1193 splx(s);
1194 }
1195
1196 /*
1197 * dkrestart:
1198 *
1199 * Restart the work queue after it was stalled due to
1200 * a resource shortage. Invoked via a callout.
1201 */
1202 static void
1203 dkrestart(void *v)
1204 {
1205 struct dkwedge_softc *sc = v;
1206 int s;
1207
1208 s = splbio();
1209 dkstart(sc);
1210 splx(s);
1211 }
1212
1213 /*
1214 * dkminphys:
1215 *
1216 * Call parent's minphys function.
1217 */
1218 static void
1219 dkminphys(struct buf *bp)
1220 {
1221 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1222 dev_t dev;
1223
1224 dev = bp->b_dev;
1225 bp->b_dev = sc->sc_pdev;
1226 (*sc->sc_parent->dk_driver->d_minphys)(bp);
1227 bp->b_dev = dev;
1228 }
1229
1230 /*
1231 * dkread: [devsw entry point]
1232 *
1233 * Read from a wedge.
1234 */
1235 static int
1236 dkread(dev_t dev, struct uio *uio, int flags)
1237 {
1238 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1239
1240 if (sc == NULL)
1241 return (ENODEV);
1242 if (sc->sc_state != DKW_STATE_RUNNING)
1243 return (ENXIO);
1244
1245 return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio));
1246 }
1247
1248 /*
1249 * dkwrite: [devsw entry point]
1250 *
1251 * Write to a wedge.
1252 */
1253 static int
1254 dkwrite(dev_t dev, struct uio *uio, int flags)
1255 {
1256 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1257
1258 if (sc == NULL)
1259 return (ENODEV);
1260 if (sc->sc_state != DKW_STATE_RUNNING)
1261 return (ENXIO);
1262
1263 return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio));
1264 }
1265
1266 /*
1267 * dkioctl: [devsw entry point]
1268 *
1269 * Perform an ioctl request on a wedge.
1270 */
1271 static int
1272 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1273 {
1274 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1275 int error = 0;
1276
1277 if (sc == NULL)
1278 return (ENODEV);
1279 if (sc->sc_state != DKW_STATE_RUNNING)
1280 return (ENXIO);
1281 if (sc->sc_parent->dk_rawvp == NULL)
1282 return (ENXIO);
1283
1284 error = disk_ioctl(&sc->sc_dk, cmd, data, flag, l);
1285 if (error != EPASSTHROUGH)
1286 return (error);
1287
1288 error = 0;
1289
1290 switch (cmd) {
1291 case DIOCCACHESYNC:
1292 /*
1293 * XXX Do we really need to care about having a writable
1294 * file descriptor here?
1295 */
1296 if ((flag & FWRITE) == 0)
1297 error = EBADF;
1298 else
1299 error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
1300 cmd, data, flag,
1301 l != NULL ? l->l_cred : NOCRED);
1302 break;
1303 case DIOCGWEDGEINFO:
1304 {
1305 struct dkwedge_info *dkw = (void *) data;
1306
1307 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1308 sizeof(dkw->dkw_devname));
1309 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1310 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1311 strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
1312 dkw->dkw_offset = sc->sc_offset;
1313 dkw->dkw_size = sc->sc_size;
1314 strcpy(dkw->dkw_ptype, sc->sc_ptype);
1315
1316 break;
1317 }
1318
1319 default:
1320 error = ENOTTY;
1321 }
1322
1323 return (error);
1324 }
1325
1326 /*
1327 * dksize: [devsw entry point]
1328 *
1329 * Query the size of a wedge for the purpose of performing a dump
1330 * or for swapping to.
1331 */
1332 static int
1333 dksize(dev_t dev)
1334 {
1335 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1336 int rv = -1;
1337
1338 if (sc == NULL)
1339 return (-1);
1340 if (sc->sc_state != DKW_STATE_RUNNING)
1341 return (-1);
1342
1343 mutex_enter(&sc->sc_dk.dk_openlock);
1344 mutex_enter(&sc->sc_parent->dk_rawlock);
1345
1346 /* Our content type is static, no need to open the device. */
1347
1348 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1349 /* Saturate if we are larger than INT_MAX. */
1350 if (sc->sc_size > INT_MAX)
1351 rv = INT_MAX;
1352 else
1353 rv = (int) sc->sc_size;
1354 }
1355
1356 mutex_exit(&sc->sc_parent->dk_rawlock);
1357 mutex_exit(&sc->sc_dk.dk_openlock);
1358
1359 return (rv);
1360 }
1361
1362 /*
1363 * dkdump: [devsw entry point]
1364 *
1365 * Perform a crash dump to a wedge.
1366 */
1367 static int
1368 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1369 {
1370 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1371 const struct bdevsw *bdev;
1372 int rv = 0;
1373
1374 if (sc == NULL)
1375 return (ENODEV);
1376 if (sc->sc_state != DKW_STATE_RUNNING)
1377 return (ENXIO);
1378
1379 mutex_enter(&sc->sc_dk.dk_openlock);
1380 mutex_enter(&sc->sc_parent->dk_rawlock);
1381
1382 /* Our content type is static, no need to open the device. */
1383
1384 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
1385 rv = ENXIO;
1386 goto out;
1387 }
1388 if (size % DEV_BSIZE != 0) {
1389 rv = EINVAL;
1390 goto out;
1391 }
1392 if (blkno + size / DEV_BSIZE > sc->sc_size) {
1393 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1394 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
1395 size / DEV_BSIZE, sc->sc_size);
1396 rv = EINVAL;
1397 goto out;
1398 }
1399
1400 bdev = bdevsw_lookup(sc->sc_pdev);
1401 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
1402
1403 out:
1404 mutex_exit(&sc->sc_parent->dk_rawlock);
1405 mutex_exit(&sc->sc_dk.dk_openlock);
1406
1407 return rv;
1408 }
1409
1410 /*
1411 * config glue
1412 */
1413
1414 /*
1415 * dkwedge_find_partition
1416 *
1417 * Find wedge corresponding to the specified parent name
1418 * and offset/length.
1419 */
1420 device_t
1421 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
1422 {
1423 struct dkwedge_softc *sc;
1424 int i;
1425 device_t wedge = NULL;
1426
1427 rw_enter(&dkwedges_lock, RW_READER);
1428 for (i = 0; i < ndkwedges; i++) {
1429 if ((sc = dkwedges[i]) == NULL)
1430 continue;
1431 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
1432 sc->sc_offset == startblk &&
1433 sc->sc_size == nblks) {
1434 if (wedge) {
1435 printf("WARNING: double match for boot wedge "
1436 "(%s, %s)\n",
1437 device_xname(wedge),
1438 device_xname(sc->sc_dev));
1439 continue;
1440 }
1441 wedge = sc->sc_dev;
1442 }
1443 }
1444 rw_exit(&dkwedges_lock);
1445
1446 return wedge;
1447 }
1448
1449