dk.c revision 1.72.2.4 1 /* $NetBSD: dk.c,v 1.72.2.4 2015/09/08 12:02:33 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.72.2.4 2015/09/08 12:02:33 martin Exp $");
34
35 #ifdef _KERNEL_OPT
36 #include "opt_dkwedge.h"
37 #endif
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/errno.h>
43 #include <sys/pool.h>
44 #include <sys/ioctl.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/fcntl.h>
48 #include <sys/buf.h>
49 #include <sys/bufq.h>
50 #include <sys/vnode.h>
51 #include <sys/stat.h>
52 #include <sys/conf.h>
53 #include <sys/callout.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/device.h>
57 #include <sys/kauth.h>
58
59 #include <miscfs/specfs/specdev.h>
60
61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
62
63 typedef enum {
64 DKW_STATE_LARVAL = 0,
65 DKW_STATE_RUNNING = 1,
66 DKW_STATE_DYING = 2,
67 DKW_STATE_DEAD = 666
68 } dkwedge_state_t;
69
70 struct dkwedge_softc {
71 device_t sc_dev; /* pointer to our pseudo-device */
72 struct cfdata sc_cfdata; /* our cfdata structure */
73 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
74
75 dkwedge_state_t sc_state; /* state this wedge is in */
76
77 struct disk *sc_parent; /* parent disk */
78 daddr_t sc_offset; /* LBA offset of wedge in parent */
79 uint64_t sc_size; /* size of wedge in blocks */
80 char sc_ptype[32]; /* partition type */
81 dev_t sc_pdev; /* cached parent's dev_t */
82 /* link on parent's wedge list */
83 LIST_ENTRY(dkwedge_softc) sc_plink;
84
85 struct disk sc_dk; /* our own disk structure */
86 struct bufq_state *sc_bufq; /* buffer queue */
87 struct callout sc_restart_ch; /* callout to restart I/O */
88
89 u_int sc_iopend; /* I/Os pending */
90 int sc_flags; /* flags (splbio) */
91 };
92
93 #define DK_F_WAIT_DRAIN 0x0001 /* waiting for I/O to drain */
94
95 static void dkstart(struct dkwedge_softc *);
96 static void dkiodone(struct buf *);
97 static void dkrestart(void *);
98 static void dkminphys(struct buf *);
99
100 static int dklastclose(struct dkwedge_softc *);
101 static int dkwedge_cleanup_parent(struct dkwedge_softc *, int);
102 static int dkwedge_detach(device_t, int);
103 static void dkwedge_delall1(struct disk *, bool);
104 static int dkwedge_del1(struct dkwedge_info *, int);
105 static struct vnode *dk_open_parent(dev_t, int);
106 static int dk_close_parent(struct vnode *, int);
107
108 static dev_type_open(dkopen);
109 static dev_type_close(dkclose);
110 static dev_type_read(dkread);
111 static dev_type_write(dkwrite);
112 static dev_type_ioctl(dkioctl);
113 static dev_type_strategy(dkstrategy);
114 static dev_type_dump(dkdump);
115 static dev_type_size(dksize);
116 static dev_type_discard(dkdiscard);
117
118 const struct bdevsw dk_bdevsw = {
119 .d_open = dkopen,
120 .d_close = dkclose,
121 .d_strategy = dkstrategy,
122 .d_ioctl = dkioctl,
123 .d_dump = dkdump,
124 .d_psize = dksize,
125 .d_discard = dkdiscard,
126 .d_flag = D_DISK
127 };
128
129 const struct cdevsw dk_cdevsw = {
130 .d_open = dkopen,
131 .d_close = dkclose,
132 .d_read = dkread,
133 .d_write = dkwrite,
134 .d_ioctl = dkioctl,
135 .d_stop = nostop,
136 .d_tty = notty,
137 .d_poll = nopoll,
138 .d_mmap = nommap,
139 .d_kqfilter = nokqfilter,
140 .d_discard = dkdiscard,
141 .d_flag = D_DISK
142 };
143
144 static struct dkwedge_softc **dkwedges;
145 static u_int ndkwedges;
146 static krwlock_t dkwedges_lock;
147
148 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
149 static krwlock_t dkwedge_discovery_methods_lock;
150
151 /*
152 * dkwedge_match:
153 *
154 * Autoconfiguration match function for pseudo-device glue.
155 */
156 static int
157 dkwedge_match(device_t parent, cfdata_t match,
158 void *aux)
159 {
160
161 /* Pseudo-device; always present. */
162 return (1);
163 }
164
165 /*
166 * dkwedge_attach:
167 *
168 * Autoconfiguration attach function for pseudo-device glue.
169 */
170 static void
171 dkwedge_attach(device_t parent, device_t self,
172 void *aux)
173 {
174
175 if (!pmf_device_register(self, NULL, NULL))
176 aprint_error_dev(self, "couldn't establish power handler\n");
177 }
178
179 CFDRIVER_DECL(dk, DV_DISK, NULL);
180 CFATTACH_DECL3_NEW(dk, 0,
181 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
182 DVF_DETACH_SHUTDOWN);
183
184 /*
185 * dkwedge_wait_drain:
186 *
187 * Wait for I/O on the wedge to drain.
188 * NOTE: Must be called at splbio()!
189 */
190 static void
191 dkwedge_wait_drain(struct dkwedge_softc *sc)
192 {
193
194 while (sc->sc_iopend != 0) {
195 sc->sc_flags |= DK_F_WAIT_DRAIN;
196 (void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
197 }
198 }
199
200 /*
201 * dkwedge_compute_pdev:
202 *
203 * Compute the parent disk's dev_t.
204 */
205 static int
206 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
207 {
208 const char *name, *cp;
209 devmajor_t pmaj;
210 int punit;
211 char devname[16];
212
213 name = pname;
214 switch (type) {
215 case VBLK:
216 pmaj = devsw_name2blk(name, devname, sizeof(devname));
217 break;
218 case VCHR:
219 pmaj = devsw_name2chr(name, devname, sizeof(devname));
220 break;
221 default:
222 pmaj = NODEVMAJOR;
223 break;
224 }
225 if (pmaj == NODEVMAJOR)
226 return (ENODEV);
227
228 name += strlen(devname);
229 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
230 punit = (punit * 10) + (*cp - '0');
231 if (cp == name) {
232 /* Invalid parent disk name. */
233 return (ENODEV);
234 }
235
236 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
237
238 return (0);
239 }
240
241 /*
242 * dkwedge_array_expand:
243 *
244 * Expand the dkwedges array.
245 */
246 static void
247 dkwedge_array_expand(void)
248 {
249 int newcnt = ndkwedges + 16;
250 struct dkwedge_softc **newarray, **oldarray;
251
252 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
253 M_WAITOK|M_ZERO);
254 if ((oldarray = dkwedges) != NULL)
255 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
256 dkwedges = newarray;
257 ndkwedges = newcnt;
258 if (oldarray != NULL)
259 free(oldarray, M_DKWEDGE);
260 }
261
262 static void
263 dk_set_geometry(struct dkwedge_softc *sc)
264 {
265 struct disk *disk = &sc->sc_dk;
266 struct disk_geom *dg = &disk->dk_geom;
267
268 memset(dg, 0, sizeof(*dg));
269
270 dg->dg_secperunit = sc->sc_size >> disk->dk_blkshift;
271 dg->dg_secsize = DEV_BSIZE << disk->dk_blkshift;
272
273 /* fake numbers, 1 cylinder is 1 MB with default sector size */
274 dg->dg_nsectors = 32;
275 dg->dg_ntracks = 64;
276 dg->dg_ncylinders = dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
277
278 disk_set_info(sc->sc_dev, disk, NULL);
279 }
280
281 /*
282 * dkwedge_add: [exported function]
283 *
284 * Add a disk wedge based on the provided information.
285 *
286 * The incoming dkw_devname[] is ignored, instead being
287 * filled in and returned to the caller.
288 */
289 int
290 dkwedge_add(struct dkwedge_info *dkw)
291 {
292 struct dkwedge_softc *sc, *lsc;
293 struct disk *pdk;
294 u_int unit;
295 int error;
296 dev_t pdev;
297
298 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
299 pdk = disk_find(dkw->dkw_parent);
300 if (pdk == NULL)
301 return (ENODEV);
302
303 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
304 if (error)
305 return (error);
306
307 if (dkw->dkw_offset < 0)
308 return (EINVAL);
309
310 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
311 sc->sc_state = DKW_STATE_LARVAL;
312 sc->sc_parent = pdk;
313 sc->sc_pdev = pdev;
314 sc->sc_offset = dkw->dkw_offset;
315 sc->sc_size = dkw->dkw_size;
316
317 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
318 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
319
320 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
321 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
322
323 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
324
325 callout_init(&sc->sc_restart_ch, 0);
326 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
327
328 /*
329 * Wedge will be added; increment the wedge count for the parent.
330 * Only allow this to happend if RAW_PART is the only thing open.
331 */
332 mutex_enter(&pdk->dk_openlock);
333 if (pdk->dk_openmask & ~(1 << RAW_PART))
334 error = EBUSY;
335 else {
336 /* Check for wedge overlap. */
337 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
338 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
339 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
340
341 if (sc->sc_offset >= lsc->sc_offset &&
342 sc->sc_offset <= llastblk) {
343 /* Overlaps the tail of the existing wedge. */
344 break;
345 }
346 if (lastblk >= lsc->sc_offset &&
347 lastblk <= llastblk) {
348 /* Overlaps the head of the existing wedge. */
349 break;
350 }
351 }
352 if (lsc != NULL) {
353 if (sc->sc_offset == lsc->sc_offset &&
354 sc->sc_size == lsc->sc_size &&
355 strcmp(sc->sc_wname, lsc->sc_wname) == 0)
356 error = EEXIST;
357 else
358 error = EINVAL;
359 } else {
360 pdk->dk_nwedges++;
361 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
362 }
363 }
364 mutex_exit(&pdk->dk_openlock);
365 if (error) {
366 bufq_free(sc->sc_bufq);
367 free(sc, M_DKWEDGE);
368 return (error);
369 }
370
371 /* Fill in our cfdata for the pseudo-device glue. */
372 sc->sc_cfdata.cf_name = dk_cd.cd_name;
373 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
374 /* sc->sc_cfdata.cf_unit set below */
375 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
376
377 /* Insert the larval wedge into the array. */
378 rw_enter(&dkwedges_lock, RW_WRITER);
379 for (error = 0;;) {
380 struct dkwedge_softc **scpp;
381
382 /*
383 * Check for a duplicate wname while searching for
384 * a slot.
385 */
386 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
387 if (dkwedges[unit] == NULL) {
388 if (scpp == NULL) {
389 scpp = &dkwedges[unit];
390 sc->sc_cfdata.cf_unit = unit;
391 }
392 } else {
393 /* XXX Unicode. */
394 if (strcmp(dkwedges[unit]->sc_wname,
395 sc->sc_wname) == 0) {
396 error = EEXIST;
397 break;
398 }
399 }
400 }
401 if (error)
402 break;
403 KASSERT(unit == ndkwedges);
404 if (scpp == NULL)
405 dkwedge_array_expand();
406 else {
407 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
408 *scpp = sc;
409 break;
410 }
411 }
412 rw_exit(&dkwedges_lock);
413 if (error) {
414 mutex_enter(&pdk->dk_openlock);
415 pdk->dk_nwedges--;
416 LIST_REMOVE(sc, sc_plink);
417 mutex_exit(&pdk->dk_openlock);
418
419 bufq_free(sc->sc_bufq);
420 free(sc, M_DKWEDGE);
421 return (error);
422 }
423
424 /*
425 * Now that we know the unit #, attach a pseudo-device for
426 * this wedge instance. This will provide us with the
427 * device_t necessary for glue to other parts of the system.
428 *
429 * This should never fail, unless we're almost totally out of
430 * memory.
431 */
432 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
433 aprint_error("%s%u: unable to attach pseudo-device\n",
434 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
435
436 rw_enter(&dkwedges_lock, RW_WRITER);
437 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
438 rw_exit(&dkwedges_lock);
439
440 mutex_enter(&pdk->dk_openlock);
441 pdk->dk_nwedges--;
442 LIST_REMOVE(sc, sc_plink);
443 mutex_exit(&pdk->dk_openlock);
444
445 bufq_free(sc->sc_bufq);
446 free(sc, M_DKWEDGE);
447 return (ENOMEM);
448 }
449
450 /* Return the devname to the caller. */
451 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
452 sizeof(dkw->dkw_devname));
453
454 /*
455 * XXX Really ought to make the disk_attach() and the changing
456 * of state to RUNNING atomic.
457 */
458
459 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
460 disk_blocksize(&sc->sc_dk, DEV_BSIZE << pdk->dk_blkshift);
461 dk_set_geometry(sc);
462 disk_attach(&sc->sc_dk);
463
464 /* Disk wedge is ready for use! */
465 sc->sc_state = DKW_STATE_RUNNING;
466
467 /* Announce our arrival. */
468 aprint_normal("%s at %s: %s\n", device_xname(sc->sc_dev), pdk->dk_name,
469 sc->sc_wname); /* XXX Unicode */
470 aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
471 device_xname(sc->sc_dev), sc->sc_size, sc->sc_offset, sc->sc_ptype);
472
473 return (0);
474 }
475
476 /*
477 * dkwedge_find:
478 *
479 * Lookup a disk wedge based on the provided information.
480 * NOTE: We look up the wedge based on the wedge devname,
481 * not wname.
482 *
483 * Return NULL if the wedge is not found, otherwise return
484 * the wedge's softc. Assign the wedge's unit number to unitp
485 * if unitp is not NULL.
486 */
487 static struct dkwedge_softc *
488 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
489 {
490 struct dkwedge_softc *sc = NULL;
491 u_int unit;
492
493 /* Find our softc. */
494 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
495 rw_enter(&dkwedges_lock, RW_READER);
496 for (unit = 0; unit < ndkwedges; unit++) {
497 if ((sc = dkwedges[unit]) != NULL &&
498 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
499 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
500 break;
501 }
502 }
503 rw_exit(&dkwedges_lock);
504 if (unit == ndkwedges)
505 return NULL;
506
507 if (unitp != NULL)
508 *unitp = unit;
509
510 return sc;
511 }
512
513 /*
514 * dkwedge_del: [exported function]
515 *
516 * Delete a disk wedge based on the provided information.
517 * NOTE: We look up the wedge based on the wedge devname,
518 * not wname.
519 */
520 int
521 dkwedge_del(struct dkwedge_info *dkw)
522 {
523 return dkwedge_del1(dkw, 0);
524 }
525
526 int
527 dkwedge_del1(struct dkwedge_info *dkw, int flags)
528 {
529 struct dkwedge_softc *sc = NULL;
530
531 /* Find our softc. */
532 if ((sc = dkwedge_find(dkw, NULL)) == NULL)
533 return (ESRCH);
534
535 return config_detach(sc->sc_dev, flags);
536 }
537
538 static int
539 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags)
540 {
541 struct disk *dk = &sc->sc_dk;
542 int rc;
543
544 rc = 0;
545 mutex_enter(&dk->dk_openlock);
546 if (dk->dk_openmask == 0)
547 ; /* nothing to do */
548 else if ((flags & DETACH_FORCE) == 0)
549 rc = EBUSY;
550 else {
551 mutex_enter(&sc->sc_parent->dk_rawlock);
552 rc = dklastclose(sc); /* releases dk_rawlock */
553 }
554 mutex_exit(&dk->dk_openlock);
555
556 return rc;
557 }
558
559 /*
560 * dkwedge_detach:
561 *
562 * Autoconfiguration detach function for pseudo-device glue.
563 */
564 static int
565 dkwedge_detach(device_t self, int flags)
566 {
567 struct dkwedge_softc *sc = NULL;
568 u_int unit;
569 int bmaj, cmaj, rc, s;
570
571 rw_enter(&dkwedges_lock, RW_WRITER);
572 for (unit = 0; unit < ndkwedges; unit++) {
573 if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
574 break;
575 }
576 if (unit == ndkwedges)
577 rc = ENXIO;
578 else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) {
579 /* Mark the wedge as dying. */
580 sc->sc_state = DKW_STATE_DYING;
581 }
582 rw_exit(&dkwedges_lock);
583
584 if (rc != 0)
585 return rc;
586
587 pmf_device_deregister(self);
588
589 /* Locate the wedge major numbers. */
590 bmaj = bdevsw_lookup_major(&dk_bdevsw);
591 cmaj = cdevsw_lookup_major(&dk_cdevsw);
592
593 /* Kill any pending restart. */
594 callout_stop(&sc->sc_restart_ch);
595
596 /*
597 * dkstart() will kill any queued buffers now that the
598 * state of the wedge is not RUNNING. Once we've done
599 * that, wait for any other pending I/O to complete.
600 */
601 s = splbio();
602 dkstart(sc);
603 dkwedge_wait_drain(sc);
604 splx(s);
605
606 /* Nuke the vnodes for any open instances. */
607 vdevgone(bmaj, unit, unit, VBLK);
608 vdevgone(cmaj, unit, unit, VCHR);
609
610 /* Clean up the parent. */
611 dkwedge_cleanup_parent(sc, flags | DETACH_FORCE);
612
613 /* Announce our departure. */
614 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
615 sc->sc_parent->dk_name,
616 sc->sc_wname); /* XXX Unicode */
617
618 mutex_enter(&sc->sc_parent->dk_openlock);
619 sc->sc_parent->dk_nwedges--;
620 LIST_REMOVE(sc, sc_plink);
621 mutex_exit(&sc->sc_parent->dk_openlock);
622
623 /* Delete our buffer queue. */
624 bufq_free(sc->sc_bufq);
625
626 /* Detach from the disk list. */
627 disk_detach(&sc->sc_dk);
628 disk_destroy(&sc->sc_dk);
629
630 /* Poof. */
631 rw_enter(&dkwedges_lock, RW_WRITER);
632 dkwedges[unit] = NULL;
633 sc->sc_state = DKW_STATE_DEAD;
634 rw_exit(&dkwedges_lock);
635
636 free(sc, M_DKWEDGE);
637
638 return 0;
639 }
640
641 /*
642 * dkwedge_delall: [exported function]
643 *
644 * Delete all of the wedges on the specified disk. Used when
645 * a disk is being detached.
646 */
647 void
648 dkwedge_delall(struct disk *pdk)
649 {
650 dkwedge_delall1(pdk, false);
651 }
652
653 static void
654 dkwedge_delall1(struct disk *pdk, bool idleonly)
655 {
656 struct dkwedge_info dkw;
657 struct dkwedge_softc *sc;
658 int flags;
659
660 flags = DETACH_QUIET;
661 if (!idleonly) flags |= DETACH_FORCE;
662
663 for (;;) {
664 mutex_enter(&pdk->dk_openlock);
665 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
666 if (!idleonly || sc->sc_dk.dk_openmask == 0)
667 break;
668 }
669 if (sc == NULL) {
670 KASSERT(idleonly || pdk->dk_nwedges == 0);
671 mutex_exit(&pdk->dk_openlock);
672 return;
673 }
674 strcpy(dkw.dkw_parent, pdk->dk_name);
675 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
676 sizeof(dkw.dkw_devname));
677 mutex_exit(&pdk->dk_openlock);
678 (void) dkwedge_del1(&dkw, flags);
679 }
680 }
681
682 /*
683 * dkwedge_list: [exported function]
684 *
685 * List all of the wedges on a particular disk.
686 * If p == NULL, the buffer is in kernel space. Otherwise, it is
687 * in user space of the specified process.
688 */
689 int
690 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
691 {
692 struct uio uio;
693 struct iovec iov;
694 struct dkwedge_softc *sc;
695 struct dkwedge_info dkw;
696 int error = 0;
697
698 iov.iov_base = dkwl->dkwl_buf;
699 iov.iov_len = dkwl->dkwl_bufsize;
700
701 uio.uio_iov = &iov;
702 uio.uio_iovcnt = 1;
703 uio.uio_offset = 0;
704 uio.uio_resid = dkwl->dkwl_bufsize;
705 uio.uio_rw = UIO_READ;
706 KASSERT(l == curlwp);
707 uio.uio_vmspace = l->l_proc->p_vmspace;
708
709 dkwl->dkwl_ncopied = 0;
710
711 mutex_enter(&pdk->dk_openlock);
712 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
713 if (uio.uio_resid < sizeof(dkw))
714 break;
715
716 if (sc->sc_state != DKW_STATE_RUNNING)
717 continue;
718
719 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
720 sizeof(dkw.dkw_devname));
721 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
722 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
723 strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
724 dkw.dkw_offset = sc->sc_offset;
725 dkw.dkw_size = sc->sc_size;
726 strcpy(dkw.dkw_ptype, sc->sc_ptype);
727
728 error = uiomove(&dkw, sizeof(dkw), &uio);
729 if (error)
730 break;
731 dkwl->dkwl_ncopied++;
732 }
733 dkwl->dkwl_nwedges = pdk->dk_nwedges;
734 mutex_exit(&pdk->dk_openlock);
735
736 return (error);
737 }
738
739 device_t
740 dkwedge_find_by_wname(const char *wname)
741 {
742 device_t dv = NULL;
743 struct dkwedge_softc *sc;
744 int i;
745
746 rw_enter(&dkwedges_lock, RW_WRITER);
747 for (i = 0; i < ndkwedges; i++) {
748 if ((sc = dkwedges[i]) == NULL)
749 continue;
750 if (strcmp(sc->sc_wname, wname) == 0) {
751 if (dv != NULL) {
752 printf(
753 "WARNING: double match for wedge name %s "
754 "(%s, %s)\n", wname, device_xname(dv),
755 device_xname(sc->sc_dev));
756 continue;
757 }
758 dv = sc->sc_dev;
759 }
760 }
761 rw_exit(&dkwedges_lock);
762 return dv;
763 }
764
765 void
766 dkwedge_print_wnames(void)
767 {
768 struct dkwedge_softc *sc;
769 int i;
770
771 rw_enter(&dkwedges_lock, RW_WRITER);
772 for (i = 0; i < ndkwedges; i++) {
773 if ((sc = dkwedges[i]) == NULL)
774 continue;
775 printf(" wedge:%s", sc->sc_wname);
776 }
777 rw_exit(&dkwedges_lock);
778 }
779
780 /*
781 * We need a dummy object to stuff into the dkwedge discovery method link
782 * set to ensure that there is always at least one object in the set.
783 */
784 static struct dkwedge_discovery_method dummy_discovery_method;
785 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
786
787 /*
788 * dkwedge_init:
789 *
790 * Initialize the disk wedge subsystem.
791 */
792 void
793 dkwedge_init(void)
794 {
795 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
796 struct dkwedge_discovery_method * const *ddmp;
797 struct dkwedge_discovery_method *lddm, *ddm;
798
799 rw_init(&dkwedges_lock);
800 rw_init(&dkwedge_discovery_methods_lock);
801
802 if (config_cfdriver_attach(&dk_cd) != 0)
803 panic("dkwedge: unable to attach cfdriver");
804 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
805 panic("dkwedge: unable to attach cfattach");
806
807 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
808
809 LIST_INIT(&dkwedge_discovery_methods);
810
811 __link_set_foreach(ddmp, dkwedge_methods) {
812 ddm = *ddmp;
813 if (ddm == &dummy_discovery_method)
814 continue;
815 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
816 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
817 ddm, ddm_list);
818 continue;
819 }
820 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
821 if (ddm->ddm_priority == lddm->ddm_priority) {
822 aprint_error("dk-method-%s: method \"%s\" "
823 "already exists at priority %d\n",
824 ddm->ddm_name, lddm->ddm_name,
825 lddm->ddm_priority);
826 /* Not inserted. */
827 break;
828 }
829 if (ddm->ddm_priority < lddm->ddm_priority) {
830 /* Higher priority; insert before. */
831 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
832 break;
833 }
834 if (LIST_NEXT(lddm, ddm_list) == NULL) {
835 /* Last one; insert after. */
836 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
837 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
838 break;
839 }
840 }
841 }
842
843 rw_exit(&dkwedge_discovery_methods_lock);
844 }
845
846 #ifdef DKWEDGE_AUTODISCOVER
847 int dkwedge_autodiscover = 1;
848 #else
849 int dkwedge_autodiscover = 0;
850 #endif
851
852 /*
853 * dkwedge_discover: [exported function]
854 *
855 * Discover the wedges on a newly attached disk.
856 * Remove all unused wedges on the disk first.
857 */
858 void
859 dkwedge_discover(struct disk *pdk)
860 {
861 struct dkwedge_discovery_method *ddm;
862 struct vnode *vp;
863 int error;
864 dev_t pdev;
865
866 /*
867 * Require people playing with wedges to enable this explicitly.
868 */
869 if (dkwedge_autodiscover == 0)
870 return;
871
872 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
873
874 /*
875 * Use the character device for scanning, the block device
876 * is busy if there are already wedges attached.
877 */
878 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
879 if (error) {
880 aprint_error("%s: unable to compute pdev, error = %d\n",
881 pdk->dk_name, error);
882 goto out;
883 }
884
885 error = cdevvp(pdev, &vp);
886 if (error) {
887 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
888 pdk->dk_name, error);
889 goto out;
890 }
891
892 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
893 if (error) {
894 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
895 pdk->dk_name, error);
896 vrele(vp);
897 goto out;
898 }
899
900 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
901 if (error) {
902 if (error != ENODEV)
903 aprint_error("%s: unable to open device, error = %d\n",
904 pdk->dk_name, error);
905 vput(vp);
906 goto out;
907 }
908 VOP_UNLOCK(vp);
909
910 /*
911 * Remove unused wedges
912 */
913 dkwedge_delall1(pdk, true);
914
915 /*
916 * For each supported partition map type, look to see if
917 * this map type exists. If so, parse it and add the
918 * corresponding wedges.
919 */
920 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
921 error = (*ddm->ddm_discover)(pdk, vp);
922 if (error == 0) {
923 /* Successfully created wedges; we're done. */
924 break;
925 }
926 }
927
928 error = vn_close(vp, FREAD, NOCRED);
929 if (error) {
930 aprint_error("%s: unable to close device, error = %d\n",
931 pdk->dk_name, error);
932 /* We'll just assume the vnode has been cleaned up. */
933 }
934
935 out:
936 rw_exit(&dkwedge_discovery_methods_lock);
937 }
938
939 /*
940 * dkwedge_read:
941 *
942 * Read some data from the specified disk, used for
943 * partition discovery.
944 */
945 int
946 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
947 void *tbuf, size_t len)
948 {
949 buf_t *bp;
950 int error;
951 bool isopen;
952 dev_t bdev;
953 struct vnode *bdevvp;
954
955 /*
956 * The kernel cannot read from a character device vnode
957 * as physio() only handles user memory.
958 *
959 * If the block device has already been opened by a wedge
960 * use that vnode and temporarily bump the open counter.
961 *
962 * Otherwise try to open the block device.
963 */
964
965 bdev = devsw_chr2blk(vp->v_rdev);
966
967 mutex_enter(&pdk->dk_rawlock);
968 if (pdk->dk_rawopens != 0) {
969 KASSERT(pdk->dk_rawvp != NULL);
970 isopen = true;
971 ++pdk->dk_rawopens;
972 bdevvp = pdk->dk_rawvp;
973 } else {
974 isopen = false;
975 bdevvp = dk_open_parent(bdev, FREAD);
976 }
977 mutex_exit(&pdk->dk_rawlock);
978
979 if (bdevvp == NULL)
980 return EBUSY;
981
982 bp = getiobuf(bdevvp, true);
983 bp->b_flags = B_READ;
984 bp->b_cflags = BC_BUSY;
985 bp->b_dev = bdev;
986 bp->b_data = tbuf;
987 bp->b_bufsize = bp->b_bcount = len;
988 bp->b_blkno = blkno;
989 bp->b_cylinder = 0;
990 bp->b_error = 0;
991
992 VOP_STRATEGY(bdevvp, bp);
993 error = biowait(bp);
994 putiobuf(bp);
995
996 mutex_enter(&pdk->dk_rawlock);
997 if (isopen) {
998 --pdk->dk_rawopens;
999 } else {
1000 dk_close_parent(bdevvp, FREAD);
1001 }
1002 mutex_exit(&pdk->dk_rawlock);
1003
1004 return error;
1005 }
1006
1007 /*
1008 * dkwedge_lookup:
1009 *
1010 * Look up a dkwedge_softc based on the provided dev_t.
1011 */
1012 static struct dkwedge_softc *
1013 dkwedge_lookup(dev_t dev)
1014 {
1015 int unit = minor(dev);
1016
1017 if (unit >= ndkwedges)
1018 return (NULL);
1019
1020 KASSERT(dkwedges != NULL);
1021
1022 return (dkwedges[unit]);
1023 }
1024
1025 static struct vnode *
1026 dk_open_parent(dev_t dev, int mode)
1027 {
1028 struct vnode *vp;
1029 int error;
1030
1031 error = bdevvp(dev, &vp);
1032 if (error)
1033 return NULL;
1034
1035 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1036 if (error) {
1037 vrele(vp);
1038 return NULL;
1039 }
1040 error = VOP_OPEN(vp, mode, NOCRED);
1041 if (error) {
1042 vput(vp);
1043 return NULL;
1044 }
1045
1046 /* VOP_OPEN() doesn't do this for us. */
1047 if (mode & FWRITE) {
1048 mutex_enter(vp->v_interlock);
1049 vp->v_writecount++;
1050 mutex_exit(vp->v_interlock);
1051 }
1052
1053 VOP_UNLOCK(vp);
1054
1055 return vp;
1056 }
1057
1058 static int
1059 dk_close_parent(struct vnode *vp, int mode)
1060 {
1061 int error;
1062
1063 error = vn_close(vp, mode, NOCRED);
1064 return error;
1065 }
1066
1067 /*
1068 * dkopen: [devsw entry point]
1069 *
1070 * Open a wedge.
1071 */
1072 static int
1073 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
1074 {
1075 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1076 struct vnode *vp;
1077 int error = 0;
1078
1079 if (sc == NULL)
1080 return (ENODEV);
1081 if (sc->sc_state != DKW_STATE_RUNNING)
1082 return (ENXIO);
1083
1084 /*
1085 * We go through a complicated little dance to only open the parent
1086 * vnode once per wedge, no matter how many times the wedge is
1087 * opened. The reason? We see one dkopen() per open call, but
1088 * only dkclose() on the last close.
1089 */
1090 mutex_enter(&sc->sc_dk.dk_openlock);
1091 mutex_enter(&sc->sc_parent->dk_rawlock);
1092 if (sc->sc_dk.dk_openmask == 0) {
1093 if (sc->sc_parent->dk_rawopens == 0) {
1094 KASSERT(sc->sc_parent->dk_rawvp == NULL);
1095 vp = dk_open_parent(sc->sc_pdev, FREAD | FWRITE);
1096 if (vp == NULL)
1097 goto popen_fail;
1098 sc->sc_parent->dk_rawvp = vp;
1099 }
1100 sc->sc_parent->dk_rawopens++;
1101 }
1102 if (fmt == S_IFCHR)
1103 sc->sc_dk.dk_copenmask |= 1;
1104 else
1105 sc->sc_dk.dk_bopenmask |= 1;
1106 sc->sc_dk.dk_openmask =
1107 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1108
1109 popen_fail:
1110 mutex_exit(&sc->sc_parent->dk_rawlock);
1111 mutex_exit(&sc->sc_dk.dk_openlock);
1112 return (error);
1113 }
1114
1115 /*
1116 * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock.
1117 */
1118 static int
1119 dklastclose(struct dkwedge_softc *sc)
1120 {
1121 int error = 0, doclose;
1122
1123 doclose = 0;
1124 if (sc->sc_parent->dk_rawopens > 0) {
1125 if (--sc->sc_parent->dk_rawopens == 0)
1126 doclose = 1;
1127 }
1128
1129 mutex_exit(&sc->sc_parent->dk_rawlock);
1130
1131 if (doclose) {
1132 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1133 dk_close_parent(sc->sc_parent->dk_rawvp, FREAD | FWRITE);
1134 sc->sc_parent->dk_rawvp = NULL;
1135 }
1136
1137 return error;
1138 }
1139
1140 /*
1141 * dkclose: [devsw entry point]
1142 *
1143 * Close a wedge.
1144 */
1145 static int
1146 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1147 {
1148 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1149 int error = 0;
1150
1151 if (sc == NULL)
1152 return (ENODEV);
1153 if (sc->sc_state != DKW_STATE_RUNNING)
1154 return (ENXIO);
1155
1156 KASSERT(sc->sc_dk.dk_openmask != 0);
1157
1158 mutex_enter(&sc->sc_dk.dk_openlock);
1159 mutex_enter(&sc->sc_parent->dk_rawlock);
1160
1161 if (fmt == S_IFCHR)
1162 sc->sc_dk.dk_copenmask &= ~1;
1163 else
1164 sc->sc_dk.dk_bopenmask &= ~1;
1165 sc->sc_dk.dk_openmask =
1166 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1167
1168 if (sc->sc_dk.dk_openmask == 0)
1169 error = dklastclose(sc); /* releases dk_rawlock */
1170 else
1171 mutex_exit(&sc->sc_parent->dk_rawlock);
1172
1173 mutex_exit(&sc->sc_dk.dk_openlock);
1174
1175 return (error);
1176 }
1177
1178 /*
1179 * dkstragegy: [devsw entry point]
1180 *
1181 * Perform I/O based on the wedge I/O strategy.
1182 */
1183 static void
1184 dkstrategy(struct buf *bp)
1185 {
1186 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1187 uint64_t p_size, p_offset;
1188 int s;
1189
1190 if (sc == NULL) {
1191 bp->b_error = ENODEV;
1192 goto done;
1193 }
1194
1195 if (sc->sc_state != DKW_STATE_RUNNING ||
1196 sc->sc_parent->dk_rawvp == NULL) {
1197 bp->b_error = ENXIO;
1198 goto done;
1199 }
1200
1201 /* If it's an empty transfer, wake up the top half now. */
1202 if (bp->b_bcount == 0)
1203 goto done;
1204
1205 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1206 p_size = sc->sc_size << sc->sc_parent->dk_blkshift;
1207
1208 /* Make sure it's in-range. */
1209 if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1210 goto done;
1211
1212 /* Translate it to the parent's raw LBA. */
1213 bp->b_rawblkno = bp->b_blkno + p_offset;
1214
1215 /* Place it in the queue and start I/O on the unit. */
1216 s = splbio();
1217 sc->sc_iopend++;
1218 bufq_put(sc->sc_bufq, bp);
1219 dkstart(sc);
1220 splx(s);
1221 return;
1222
1223 done:
1224 bp->b_resid = bp->b_bcount;
1225 biodone(bp);
1226 }
1227
1228 /*
1229 * dkstart:
1230 *
1231 * Start I/O that has been enqueued on the wedge.
1232 * NOTE: Must be called at splbio()!
1233 */
1234 static void
1235 dkstart(struct dkwedge_softc *sc)
1236 {
1237 struct vnode *vp;
1238 struct buf *bp, *nbp;
1239
1240 /* Do as much work as has been enqueued. */
1241 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1242 if (sc->sc_state != DKW_STATE_RUNNING) {
1243 (void) bufq_get(sc->sc_bufq);
1244 if (sc->sc_iopend-- == 1 &&
1245 (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1246 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1247 wakeup(&sc->sc_iopend);
1248 }
1249 bp->b_error = ENXIO;
1250 bp->b_resid = bp->b_bcount;
1251 biodone(bp);
1252 }
1253
1254 /* Instrumentation. */
1255 disk_busy(&sc->sc_dk);
1256
1257 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1258 if (nbp == NULL) {
1259 /*
1260 * No resources to run this request; leave the
1261 * buffer queued up, and schedule a timer to
1262 * restart the queue in 1/2 a second.
1263 */
1264 disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
1265 callout_schedule(&sc->sc_restart_ch, hz / 2);
1266 return;
1267 }
1268
1269 (void) bufq_get(sc->sc_bufq);
1270
1271 nbp->b_data = bp->b_data;
1272 nbp->b_flags = bp->b_flags;
1273 nbp->b_oflags = bp->b_oflags;
1274 nbp->b_cflags = bp->b_cflags;
1275 nbp->b_iodone = dkiodone;
1276 nbp->b_proc = bp->b_proc;
1277 nbp->b_blkno = bp->b_rawblkno;
1278 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1279 nbp->b_bcount = bp->b_bcount;
1280 nbp->b_private = bp;
1281 BIO_COPYPRIO(nbp, bp);
1282
1283 vp = nbp->b_vp;
1284 if ((nbp->b_flags & B_READ) == 0) {
1285 mutex_enter(vp->v_interlock);
1286 vp->v_numoutput++;
1287 mutex_exit(vp->v_interlock);
1288 }
1289 VOP_STRATEGY(vp, nbp);
1290 }
1291 }
1292
1293 /*
1294 * dkiodone:
1295 *
1296 * I/O to a wedge has completed; alert the top half.
1297 */
1298 static void
1299 dkiodone(struct buf *bp)
1300 {
1301 struct buf *obp = bp->b_private;
1302 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1303
1304 int s = splbio();
1305
1306 if (bp->b_error != 0)
1307 obp->b_error = bp->b_error;
1308 obp->b_resid = bp->b_resid;
1309 putiobuf(bp);
1310
1311 if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1312 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1313 wakeup(&sc->sc_iopend);
1314 }
1315
1316 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1317 obp->b_flags & B_READ);
1318
1319 biodone(obp);
1320
1321 /* Kick the queue in case there is more work we can do. */
1322 dkstart(sc);
1323 splx(s);
1324 }
1325
1326 /*
1327 * dkrestart:
1328 *
1329 * Restart the work queue after it was stalled due to
1330 * a resource shortage. Invoked via a callout.
1331 */
1332 static void
1333 dkrestart(void *v)
1334 {
1335 struct dkwedge_softc *sc = v;
1336 int s;
1337
1338 s = splbio();
1339 dkstart(sc);
1340 splx(s);
1341 }
1342
1343 /*
1344 * dkminphys:
1345 *
1346 * Call parent's minphys function.
1347 */
1348 static void
1349 dkminphys(struct buf *bp)
1350 {
1351 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1352 dev_t dev;
1353
1354 dev = bp->b_dev;
1355 bp->b_dev = sc->sc_pdev;
1356 (*sc->sc_parent->dk_driver->d_minphys)(bp);
1357 bp->b_dev = dev;
1358 }
1359
1360 /*
1361 * dkread: [devsw entry point]
1362 *
1363 * Read from a wedge.
1364 */
1365 static int
1366 dkread(dev_t dev, struct uio *uio, int flags)
1367 {
1368 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1369
1370 if (sc == NULL)
1371 return (ENODEV);
1372 if (sc->sc_state != DKW_STATE_RUNNING)
1373 return (ENXIO);
1374
1375 return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio));
1376 }
1377
1378 /*
1379 * dkwrite: [devsw entry point]
1380 *
1381 * Write to a wedge.
1382 */
1383 static int
1384 dkwrite(dev_t dev, struct uio *uio, int flags)
1385 {
1386 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1387
1388 if (sc == NULL)
1389 return (ENODEV);
1390 if (sc->sc_state != DKW_STATE_RUNNING)
1391 return (ENXIO);
1392
1393 return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio));
1394 }
1395
1396 /*
1397 * dkioctl: [devsw entry point]
1398 *
1399 * Perform an ioctl request on a wedge.
1400 */
1401 static int
1402 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1403 {
1404 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1405 int error = 0;
1406
1407 if (sc == NULL)
1408 return (ENODEV);
1409 if (sc->sc_state != DKW_STATE_RUNNING)
1410 return (ENXIO);
1411 if (sc->sc_parent->dk_rawvp == NULL)
1412 return (ENXIO);
1413
1414 error = disk_ioctl(&sc->sc_dk, cmd, data, flag, l);
1415 if (error != EPASSTHROUGH)
1416 return (error);
1417
1418 error = 0;
1419
1420 switch (cmd) {
1421 case DIOCCACHESYNC:
1422 /*
1423 * XXX Do we really need to care about having a writable
1424 * file descriptor here?
1425 */
1426 if ((flag & FWRITE) == 0)
1427 error = EBADF;
1428 else
1429 error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
1430 cmd, data, flag,
1431 l != NULL ? l->l_cred : NOCRED);
1432 break;
1433 case DIOCGWEDGEINFO:
1434 {
1435 struct dkwedge_info *dkw = (void *) data;
1436
1437 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1438 sizeof(dkw->dkw_devname));
1439 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1440 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1441 strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
1442 dkw->dkw_offset = sc->sc_offset;
1443 dkw->dkw_size = sc->sc_size;
1444 strcpy(dkw->dkw_ptype, sc->sc_ptype);
1445
1446 break;
1447 }
1448
1449 default:
1450 error = ENOTTY;
1451 }
1452
1453 return (error);
1454 }
1455
1456 /*
1457 * dkdiscard: [devsw entry point]
1458 *
1459 * Perform a discard-range request on a wedge.
1460 */
1461 static int
1462 dkdiscard(dev_t dev, off_t pos, off_t len)
1463 {
1464 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1465 unsigned shift;
1466 off_t offset, maxlen;
1467
1468 if (sc == NULL)
1469 return (ENODEV);
1470 if (sc->sc_state != DKW_STATE_RUNNING)
1471 return (ENXIO);
1472 if (sc->sc_parent->dk_rawvp == NULL)
1473 return (ENXIO);
1474
1475 shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
1476 KASSERT(__type_fit(off_t, sc->sc_size));
1477 KASSERT(__type_fit(off_t, sc->sc_offset));
1478 KASSERT(0 <= sc->sc_offset);
1479 KASSERT(sc->sc_size <= (__type_max(off_t) >> shift));
1480 KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - sc->sc_size));
1481 offset = ((off_t)sc->sc_offset << shift);
1482 maxlen = ((off_t)sc->sc_size << shift);
1483
1484 if (len > maxlen)
1485 return (EINVAL);
1486 if (pos > (maxlen - len))
1487 return (EINVAL);
1488
1489 pos += offset;
1490 return VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
1491 }
1492
1493 /*
1494 * dksize: [devsw entry point]
1495 *
1496 * Query the size of a wedge for the purpose of performing a dump
1497 * or for swapping to.
1498 */
1499 static int
1500 dksize(dev_t dev)
1501 {
1502 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1503 int rv = -1;
1504
1505 if (sc == NULL)
1506 return (-1);
1507 if (sc->sc_state != DKW_STATE_RUNNING)
1508 return (-1);
1509
1510 mutex_enter(&sc->sc_dk.dk_openlock);
1511 mutex_enter(&sc->sc_parent->dk_rawlock);
1512
1513 /* Our content type is static, no need to open the device. */
1514
1515 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1516 /* Saturate if we are larger than INT_MAX. */
1517 if (sc->sc_size > INT_MAX)
1518 rv = INT_MAX;
1519 else
1520 rv = (int) sc->sc_size;
1521 }
1522
1523 mutex_exit(&sc->sc_parent->dk_rawlock);
1524 mutex_exit(&sc->sc_dk.dk_openlock);
1525
1526 return (rv);
1527 }
1528
1529 /*
1530 * dkdump: [devsw entry point]
1531 *
1532 * Perform a crash dump to a wedge.
1533 */
1534 static int
1535 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1536 {
1537 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1538 const struct bdevsw *bdev;
1539 int rv = 0;
1540
1541 if (sc == NULL)
1542 return (ENODEV);
1543 if (sc->sc_state != DKW_STATE_RUNNING)
1544 return (ENXIO);
1545
1546 mutex_enter(&sc->sc_dk.dk_openlock);
1547 mutex_enter(&sc->sc_parent->dk_rawlock);
1548
1549 /* Our content type is static, no need to open the device. */
1550
1551 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
1552 rv = ENXIO;
1553 goto out;
1554 }
1555 if (size % DEV_BSIZE != 0) {
1556 rv = EINVAL;
1557 goto out;
1558 }
1559 if (blkno + size / DEV_BSIZE > sc->sc_size) {
1560 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1561 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
1562 size / DEV_BSIZE, sc->sc_size);
1563 rv = EINVAL;
1564 goto out;
1565 }
1566
1567 bdev = bdevsw_lookup(sc->sc_pdev);
1568 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
1569
1570 out:
1571 mutex_exit(&sc->sc_parent->dk_rawlock);
1572 mutex_exit(&sc->sc_dk.dk_openlock);
1573
1574 return rv;
1575 }
1576
1577 /*
1578 * config glue
1579 */
1580
1581 /*
1582 * dkwedge_find_partition
1583 *
1584 * Find wedge corresponding to the specified parent name
1585 * and offset/length.
1586 */
1587 device_t
1588 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
1589 {
1590 struct dkwedge_softc *sc;
1591 int i;
1592 device_t wedge = NULL;
1593
1594 rw_enter(&dkwedges_lock, RW_READER);
1595 for (i = 0; i < ndkwedges; i++) {
1596 if ((sc = dkwedges[i]) == NULL)
1597 continue;
1598 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
1599 sc->sc_offset == startblk &&
1600 sc->sc_size == nblks) {
1601 if (wedge) {
1602 printf("WARNING: double match for boot wedge "
1603 "(%s, %s)\n",
1604 device_xname(wedge),
1605 device_xname(sc->sc_dev));
1606 continue;
1607 }
1608 wedge = sc->sc_dev;
1609 }
1610 }
1611 rw_exit(&dkwedges_lock);
1612
1613 return wedge;
1614 }
1615
1616 const char *
1617 dkwedge_get_parent_name(dev_t dev)
1618 {
1619 /* XXX: perhaps do this in lookup? */
1620 int bmaj = bdevsw_lookup_major(&dk_bdevsw);
1621 int cmaj = cdevsw_lookup_major(&dk_cdevsw);
1622 if (major(dev) != bmaj && major(dev) != cmaj)
1623 return NULL;
1624 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1625 if (sc == NULL)
1626 return NULL;
1627 return sc->sc_parent->dk_name;
1628 }
1629
1630