Home | History | Annotate | Line # | Download | only in dkwedge
dk.c revision 1.74
      1 /*	$NetBSD: dk.c,v 1.74 2014/11/04 07:50:39 mlelstv Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.74 2014/11/04 07:50:39 mlelstv Exp $");
     34 
     35 #ifdef _KERNEL_OPT
     36 #include "opt_dkwedge.h"
     37 #endif
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/proc.h>
     42 #include <sys/errno.h>
     43 #include <sys/pool.h>
     44 #include <sys/ioctl.h>
     45 #include <sys/disklabel.h>
     46 #include <sys/disk.h>
     47 #include <sys/fcntl.h>
     48 #include <sys/buf.h>
     49 #include <sys/bufq.h>
     50 #include <sys/vnode.h>
     51 #include <sys/stat.h>
     52 #include <sys/conf.h>
     53 #include <sys/callout.h>
     54 #include <sys/kernel.h>
     55 #include <sys/malloc.h>
     56 #include <sys/device.h>
     57 #include <sys/kauth.h>
     58 
     59 #include <miscfs/specfs/specdev.h>
     60 
     61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
     62 
     63 typedef enum {
     64 	DKW_STATE_LARVAL	= 0,
     65 	DKW_STATE_RUNNING	= 1,
     66 	DKW_STATE_DYING		= 2,
     67 	DKW_STATE_DEAD		= 666
     68 } dkwedge_state_t;
     69 
     70 struct dkwedge_softc {
     71 	device_t	sc_dev;	/* pointer to our pseudo-device */
     72 	struct cfdata	sc_cfdata;	/* our cfdata structure */
     73 	uint8_t		sc_wname[128];	/* wedge name (Unicode, UTF-8) */
     74 
     75 	dkwedge_state_t sc_state;	/* state this wedge is in */
     76 
     77 	struct disk	*sc_parent;	/* parent disk */
     78 	daddr_t		sc_offset;	/* LBA offset of wedge in parent */
     79 	uint64_t	sc_size;	/* size of wedge in blocks */
     80 	char		sc_ptype[32];	/* partition type */
     81 	dev_t		sc_pdev;	/* cached parent's dev_t */
     82 					/* link on parent's wedge list */
     83 	LIST_ENTRY(dkwedge_softc) sc_plink;
     84 
     85 	struct disk	sc_dk;		/* our own disk structure */
     86 	struct bufq_state *sc_bufq;	/* buffer queue */
     87 	struct callout	sc_restart_ch;	/* callout to restart I/O */
     88 
     89 	u_int		sc_iopend;	/* I/Os pending */
     90 	int		sc_flags;	/* flags (splbio) */
     91 };
     92 
     93 #define	DK_F_WAIT_DRAIN		0x0001	/* waiting for I/O to drain */
     94 
     95 static void	dkstart(struct dkwedge_softc *);
     96 static void	dkiodone(struct buf *);
     97 static void	dkrestart(void *);
     98 static void	dkminphys(struct buf *);
     99 
    100 static int	dklastclose(struct dkwedge_softc *);
    101 static int	dkwedge_cleanup_parent(struct dkwedge_softc *, int);
    102 static int	dkwedge_detach(device_t, int);
    103 static void	dkwedge_delall1(struct disk *, bool);
    104 static int	dkwedge_del1(struct dkwedge_info *, int);
    105 
    106 static dev_type_open(dkopen);
    107 static dev_type_close(dkclose);
    108 static dev_type_read(dkread);
    109 static dev_type_write(dkwrite);
    110 static dev_type_ioctl(dkioctl);
    111 static dev_type_strategy(dkstrategy);
    112 static dev_type_dump(dkdump);
    113 static dev_type_size(dksize);
    114 static dev_type_discard(dkdiscard);
    115 
    116 const struct bdevsw dk_bdevsw = {
    117 	.d_open = dkopen,
    118 	.d_close = dkclose,
    119 	.d_strategy = dkstrategy,
    120 	.d_ioctl = dkioctl,
    121 	.d_dump = dkdump,
    122 	.d_psize = dksize,
    123 	.d_discard = dkdiscard,
    124 	.d_flag = D_DISK
    125 };
    126 
    127 const struct cdevsw dk_cdevsw = {
    128 	.d_open = dkopen,
    129 	.d_close = dkclose,
    130 	.d_read = dkread,
    131 	.d_write = dkwrite,
    132 	.d_ioctl = dkioctl,
    133 	.d_stop = nostop,
    134 	.d_tty = notty,
    135 	.d_poll = nopoll,
    136 	.d_mmap = nommap,
    137 	.d_kqfilter = nokqfilter,
    138 	.d_discard = dkdiscard,
    139 	.d_flag = D_DISK
    140 };
    141 
    142 static struct dkwedge_softc **dkwedges;
    143 static u_int ndkwedges;
    144 static krwlock_t dkwedges_lock;
    145 
    146 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
    147 static krwlock_t dkwedge_discovery_methods_lock;
    148 
    149 /*
    150  * dkwedge_match:
    151  *
    152  *	Autoconfiguration match function for pseudo-device glue.
    153  */
    154 static int
    155 dkwedge_match(device_t parent, cfdata_t match,
    156     void *aux)
    157 {
    158 
    159 	/* Pseudo-device; always present. */
    160 	return (1);
    161 }
    162 
    163 /*
    164  * dkwedge_attach:
    165  *
    166  *	Autoconfiguration attach function for pseudo-device glue.
    167  */
    168 static void
    169 dkwedge_attach(device_t parent, device_t self,
    170     void *aux)
    171 {
    172 
    173 	if (!pmf_device_register(self, NULL, NULL))
    174 		aprint_error_dev(self, "couldn't establish power handler\n");
    175 }
    176 
    177 CFDRIVER_DECL(dk, DV_DISK, NULL);
    178 CFATTACH_DECL3_NEW(dk, 0,
    179     dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
    180     DVF_DETACH_SHUTDOWN);
    181 
    182 /*
    183  * dkwedge_wait_drain:
    184  *
    185  *	Wait for I/O on the wedge to drain.
    186  *	NOTE: Must be called at splbio()!
    187  */
    188 static void
    189 dkwedge_wait_drain(struct dkwedge_softc *sc)
    190 {
    191 
    192 	while (sc->sc_iopend != 0) {
    193 		sc->sc_flags |= DK_F_WAIT_DRAIN;
    194 		(void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
    195 	}
    196 }
    197 
    198 /*
    199  * dkwedge_compute_pdev:
    200  *
    201  *	Compute the parent disk's dev_t.
    202  */
    203 static int
    204 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
    205 {
    206 	const char *name, *cp;
    207 	devmajor_t pmaj;
    208 	int punit;
    209 	char devname[16];
    210 
    211 	name = pname;
    212 	switch (type) {
    213 	case VBLK:
    214 		pmaj = devsw_name2blk(name, devname, sizeof(devname));
    215 		break;
    216 	case VCHR:
    217 		pmaj = devsw_name2chr(name, devname, sizeof(devname));
    218 		break;
    219 	default:
    220 		pmaj = -1;
    221 		break;
    222 	}
    223 	if (pmaj == -1)
    224 		return (ENODEV);
    225 
    226 	name += strlen(devname);
    227 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
    228 		punit = (punit * 10) + (*cp - '0');
    229 	if (cp == name) {
    230 		/* Invalid parent disk name. */
    231 		return (ENODEV);
    232 	}
    233 
    234 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
    235 
    236 	return (0);
    237 }
    238 
    239 /*
    240  * dkwedge_array_expand:
    241  *
    242  *	Expand the dkwedges array.
    243  */
    244 static void
    245 dkwedge_array_expand(void)
    246 {
    247 	int newcnt = ndkwedges + 16;
    248 	struct dkwedge_softc **newarray, **oldarray;
    249 
    250 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
    251 	    M_WAITOK|M_ZERO);
    252 	if ((oldarray = dkwedges) != NULL)
    253 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
    254 	dkwedges = newarray;
    255 	ndkwedges = newcnt;
    256 	if (oldarray != NULL)
    257 		free(oldarray, M_DKWEDGE);
    258 }
    259 
    260 static void
    261 dkgetproperties(struct disk *disk, struct dkwedge_info *dkw)
    262 {
    263 	struct disk_geom *dg = &disk->dk_geom;
    264 
    265 	memset(dg, 0, sizeof(*dg));
    266 
    267 	dg->dg_secperunit = dkw->dkw_size >> disk->dk_blkshift;
    268 	dg->dg_secsize = DEV_BSIZE << disk->dk_blkshift;
    269 	dg->dg_nsectors = 32;
    270 	dg->dg_ntracks = 64;
    271 	/* XXX: why is that dkw->dkw_size instead of secperunit?!?! */
    272 	dg->dg_ncylinders = dkw->dkw_size / (dg->dg_nsectors * dg->dg_ntracks);
    273 
    274 	disk_set_info(NULL, disk, "ESDI");
    275 }
    276 
    277 /*
    278  * dkwedge_add:		[exported function]
    279  *
    280  *	Add a disk wedge based on the provided information.
    281  *
    282  *	The incoming dkw_devname[] is ignored, instead being
    283  *	filled in and returned to the caller.
    284  */
    285 int
    286 dkwedge_add(struct dkwedge_info *dkw)
    287 {
    288 	struct dkwedge_softc *sc, *lsc;
    289 	struct disk *pdk;
    290 	u_int unit;
    291 	int error;
    292 	dev_t pdev;
    293 
    294 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
    295 	pdk = disk_find(dkw->dkw_parent);
    296 	if (pdk == NULL)
    297 		return (ENODEV);
    298 
    299 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
    300 	if (error)
    301 		return (error);
    302 
    303 	if (dkw->dkw_offset < 0)
    304 		return (EINVAL);
    305 
    306 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
    307 	sc->sc_state = DKW_STATE_LARVAL;
    308 	sc->sc_parent = pdk;
    309 	sc->sc_pdev = pdev;
    310 	sc->sc_offset = dkw->dkw_offset;
    311 	sc->sc_size = dkw->dkw_size;
    312 
    313 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
    314 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
    315 
    316 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
    317 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
    318 
    319 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
    320 
    321 	callout_init(&sc->sc_restart_ch, 0);
    322 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
    323 
    324 	/*
    325 	 * Wedge will be added; increment the wedge count for the parent.
    326 	 * Only allow this to happend if RAW_PART is the only thing open.
    327 	 */
    328 	mutex_enter(&pdk->dk_openlock);
    329 	if (pdk->dk_openmask & ~(1 << RAW_PART))
    330 		error = EBUSY;
    331 	else {
    332 		/* Check for wedge overlap. */
    333 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    334 			daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
    335 			daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
    336 
    337 			if (sc->sc_offset >= lsc->sc_offset &&
    338 			    sc->sc_offset <= llastblk) {
    339 				/* Overlaps the tail of the existing wedge. */
    340 				break;
    341 			}
    342 			if (lastblk >= lsc->sc_offset &&
    343 			    lastblk <= llastblk) {
    344 				/* Overlaps the head of the existing wedge. */
    345 			    	break;
    346 			}
    347 		}
    348 		if (lsc != NULL) {
    349 			if (sc->sc_offset == lsc->sc_offset &&
    350 			    sc->sc_size == lsc->sc_size &&
    351 			    strcmp(sc->sc_wname, lsc->sc_wname) == 0)
    352 				error = EEXIST;
    353 			else
    354 				error = EINVAL;
    355 		} else {
    356 			pdk->dk_nwedges++;
    357 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
    358 		}
    359 	}
    360 	mutex_exit(&pdk->dk_openlock);
    361 	if (error) {
    362 		bufq_free(sc->sc_bufq);
    363 		free(sc, M_DKWEDGE);
    364 		return (error);
    365 	}
    366 
    367 	/* Fill in our cfdata for the pseudo-device glue. */
    368 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
    369 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
    370 	/* sc->sc_cfdata.cf_unit set below */
    371 	sc->sc_cfdata.cf_fstate = FSTATE_STAR;
    372 
    373 	/* Insert the larval wedge into the array. */
    374 	rw_enter(&dkwedges_lock, RW_WRITER);
    375 	for (error = 0;;) {
    376 		struct dkwedge_softc **scpp;
    377 
    378 		/*
    379 		 * Check for a duplicate wname while searching for
    380 		 * a slot.
    381 		 */
    382 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
    383 			if (dkwedges[unit] == NULL) {
    384 				if (scpp == NULL) {
    385 					scpp = &dkwedges[unit];
    386 					sc->sc_cfdata.cf_unit = unit;
    387 				}
    388 			} else {
    389 				/* XXX Unicode. */
    390 				if (strcmp(dkwedges[unit]->sc_wname,
    391 					   sc->sc_wname) == 0) {
    392 					error = EEXIST;
    393 					break;
    394 				}
    395 			}
    396 		}
    397 		if (error)
    398 			break;
    399 		KASSERT(unit == ndkwedges);
    400 		if (scpp == NULL)
    401 			dkwedge_array_expand();
    402 		else {
    403 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
    404 			*scpp = sc;
    405 			break;
    406 		}
    407 	}
    408 	rw_exit(&dkwedges_lock);
    409 	if (error) {
    410 		mutex_enter(&pdk->dk_openlock);
    411 		pdk->dk_nwedges--;
    412 		LIST_REMOVE(sc, sc_plink);
    413 		mutex_exit(&pdk->dk_openlock);
    414 
    415 		bufq_free(sc->sc_bufq);
    416 		free(sc, M_DKWEDGE);
    417 		return (error);
    418 	}
    419 
    420 	/*
    421 	 * Now that we know the unit #, attach a pseudo-device for
    422 	 * this wedge instance.  This will provide us with the
    423 	 * device_t necessary for glue to other parts of the system.
    424 	 *
    425 	 * This should never fail, unless we're almost totally out of
    426 	 * memory.
    427 	 */
    428 	if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
    429 		aprint_error("%s%u: unable to attach pseudo-device\n",
    430 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
    431 
    432 		rw_enter(&dkwedges_lock, RW_WRITER);
    433 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
    434 		rw_exit(&dkwedges_lock);
    435 
    436 		mutex_enter(&pdk->dk_openlock);
    437 		pdk->dk_nwedges--;
    438 		LIST_REMOVE(sc, sc_plink);
    439 		mutex_exit(&pdk->dk_openlock);
    440 
    441 		bufq_free(sc->sc_bufq);
    442 		free(sc, M_DKWEDGE);
    443 		return (ENOMEM);
    444 	}
    445 
    446 	/* Return the devname to the caller. */
    447 	strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
    448 		sizeof(dkw->dkw_devname));
    449 
    450 	/*
    451 	 * XXX Really ought to make the disk_attach() and the changing
    452 	 * of state to RUNNING atomic.
    453 	 */
    454 
    455 	disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
    456 	disk_blocksize(&sc->sc_dk, DEV_BSIZE << pdk->dk_blkshift);
    457 	dkgetproperties(&sc->sc_dk, dkw);
    458 	disk_attach(&sc->sc_dk);
    459 
    460 	/* Disk wedge is ready for use! */
    461 	sc->sc_state = DKW_STATE_RUNNING;
    462 
    463 	/* Announce our arrival. */
    464 	aprint_normal("%s at %s: %s\n", device_xname(sc->sc_dev), pdk->dk_name,
    465 	    sc->sc_wname);	/* XXX Unicode */
    466 	aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
    467 	    device_xname(sc->sc_dev), sc->sc_size, sc->sc_offset, sc->sc_ptype);
    468 
    469 	return (0);
    470 }
    471 
    472 /*
    473  * dkwedge_find:
    474  *
    475  *	Lookup a disk wedge based on the provided information.
    476  *	NOTE: We look up the wedge based on the wedge devname,
    477  *	not wname.
    478  *
    479  *	Return NULL if the wedge is not found, otherwise return
    480  *	the wedge's softc.  Assign the wedge's unit number to unitp
    481  *	if unitp is not NULL.
    482  */
    483 static struct dkwedge_softc *
    484 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
    485 {
    486 	struct dkwedge_softc *sc = NULL;
    487 	u_int unit;
    488 
    489 	/* Find our softc. */
    490 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
    491 	rw_enter(&dkwedges_lock, RW_READER);
    492 	for (unit = 0; unit < ndkwedges; unit++) {
    493 		if ((sc = dkwedges[unit]) != NULL &&
    494 		    strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
    495 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
    496 			break;
    497 		}
    498 	}
    499 	rw_exit(&dkwedges_lock);
    500 	if (unit == ndkwedges)
    501 		return NULL;
    502 
    503 	if (unitp != NULL)
    504 		*unitp = unit;
    505 
    506 	return sc;
    507 }
    508 
    509 /*
    510  * dkwedge_del:		[exported function]
    511  *
    512  *	Delete a disk wedge based on the provided information.
    513  *	NOTE: We look up the wedge based on the wedge devname,
    514  *	not wname.
    515  */
    516 int
    517 dkwedge_del(struct dkwedge_info *dkw)
    518 {
    519 	return dkwedge_del1(dkw, 0);
    520 }
    521 
    522 int
    523 dkwedge_del1(struct dkwedge_info *dkw, int flags)
    524 {
    525 	struct dkwedge_softc *sc = NULL;
    526 
    527 	/* Find our softc. */
    528 	if ((sc = dkwedge_find(dkw, NULL)) == NULL)
    529 		return (ESRCH);
    530 
    531 	return config_detach(sc->sc_dev, flags);
    532 }
    533 
    534 static int
    535 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags)
    536 {
    537 	struct disk *dk = &sc->sc_dk;
    538 	int rc;
    539 
    540 	rc = 0;
    541 	mutex_enter(&dk->dk_openlock);
    542 	if (dk->dk_openmask == 0)
    543 		;	/* nothing to do */
    544 	else if ((flags & DETACH_FORCE) == 0)
    545 		rc = EBUSY;
    546 	else {
    547 		mutex_enter(&sc->sc_parent->dk_rawlock);
    548 		rc = dklastclose(sc); /* releases dk_rawlock */
    549 	}
    550 	mutex_exit(&dk->dk_openlock);
    551 
    552 	return rc;
    553 }
    554 
    555 /*
    556  * dkwedge_detach:
    557  *
    558  *	Autoconfiguration detach function for pseudo-device glue.
    559  */
    560 static int
    561 dkwedge_detach(device_t self, int flags)
    562 {
    563 	struct dkwedge_softc *sc = NULL;
    564 	u_int unit;
    565 	int bmaj, cmaj, rc, s;
    566 
    567 	rw_enter(&dkwedges_lock, RW_WRITER);
    568 	for (unit = 0; unit < ndkwedges; unit++) {
    569 		if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
    570 			break;
    571 	}
    572 	if (unit == ndkwedges)
    573 		rc = ENXIO;
    574 	else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) {
    575 		/* Mark the wedge as dying. */
    576 		sc->sc_state = DKW_STATE_DYING;
    577 	}
    578 	rw_exit(&dkwedges_lock);
    579 
    580 	if (rc != 0)
    581 		return rc;
    582 
    583 	pmf_device_deregister(self);
    584 
    585 	/* Locate the wedge major numbers. */
    586 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
    587 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
    588 
    589 	/* Kill any pending restart. */
    590 	callout_stop(&sc->sc_restart_ch);
    591 
    592 	/*
    593 	 * dkstart() will kill any queued buffers now that the
    594 	 * state of the wedge is not RUNNING.  Once we've done
    595 	 * that, wait for any other pending I/O to complete.
    596 	 */
    597 	s = splbio();
    598 	dkstart(sc);
    599 	dkwedge_wait_drain(sc);
    600 	splx(s);
    601 
    602 	/* Nuke the vnodes for any open instances. */
    603 	vdevgone(bmaj, unit, unit, VBLK);
    604 	vdevgone(cmaj, unit, unit, VCHR);
    605 
    606 	/* Clean up the parent. */
    607 	dkwedge_cleanup_parent(sc, flags | DETACH_FORCE);
    608 
    609 	/* Announce our departure. */
    610 	aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
    611 	    sc->sc_parent->dk_name,
    612 	    sc->sc_wname);	/* XXX Unicode */
    613 
    614 	mutex_enter(&sc->sc_parent->dk_openlock);
    615 	sc->sc_parent->dk_nwedges--;
    616 	LIST_REMOVE(sc, sc_plink);
    617 	mutex_exit(&sc->sc_parent->dk_openlock);
    618 
    619 	/* Delete our buffer queue. */
    620 	bufq_free(sc->sc_bufq);
    621 
    622 	/* Detach from the disk list. */
    623 	disk_detach(&sc->sc_dk);
    624 	disk_destroy(&sc->sc_dk);
    625 
    626 	/* Poof. */
    627 	rw_enter(&dkwedges_lock, RW_WRITER);
    628 	dkwedges[unit] = NULL;
    629 	sc->sc_state = DKW_STATE_DEAD;
    630 	rw_exit(&dkwedges_lock);
    631 
    632 	free(sc, M_DKWEDGE);
    633 
    634 	return 0;
    635 }
    636 
    637 /*
    638  * dkwedge_delall:	[exported function]
    639  *
    640  *	Delete all of the wedges on the specified disk.  Used when
    641  *	a disk is being detached.
    642  */
    643 void
    644 dkwedge_delall(struct disk *pdk)
    645 {
    646 	dkwedge_delall1(pdk, false);
    647 }
    648 
    649 static void
    650 dkwedge_delall1(struct disk *pdk, bool idleonly)
    651 {
    652 	struct dkwedge_info dkw;
    653 	struct dkwedge_softc *sc;
    654 	int flags;
    655 
    656 	flags = DETACH_QUIET;
    657 	if (!idleonly) flags |= DETACH_FORCE;
    658 
    659 	for (;;) {
    660 		mutex_enter(&pdk->dk_openlock);
    661 		LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    662 			if (!idleonly || sc->sc_dk.dk_openmask == 0)
    663 				break;
    664 		}
    665 		if (sc == NULL) {
    666 			KASSERT(idleonly || pdk->dk_nwedges == 0);
    667 			mutex_exit(&pdk->dk_openlock);
    668 			return;
    669 		}
    670 		strcpy(dkw.dkw_parent, pdk->dk_name);
    671 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    672 			sizeof(dkw.dkw_devname));
    673 		mutex_exit(&pdk->dk_openlock);
    674 		(void) dkwedge_del1(&dkw, flags);
    675 	}
    676 }
    677 
    678 /*
    679  * dkwedge_list:	[exported function]
    680  *
    681  *	List all of the wedges on a particular disk.
    682  *	If p == NULL, the buffer is in kernel space.  Otherwise, it is
    683  *	in user space of the specified process.
    684  */
    685 int
    686 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
    687 {
    688 	struct uio uio;
    689 	struct iovec iov;
    690 	struct dkwedge_softc *sc;
    691 	struct dkwedge_info dkw;
    692 	int error = 0;
    693 
    694 	iov.iov_base = dkwl->dkwl_buf;
    695 	iov.iov_len = dkwl->dkwl_bufsize;
    696 
    697 	uio.uio_iov = &iov;
    698 	uio.uio_iovcnt = 1;
    699 	uio.uio_offset = 0;
    700 	uio.uio_resid = dkwl->dkwl_bufsize;
    701 	uio.uio_rw = UIO_READ;
    702 	KASSERT(l == curlwp);
    703 	uio.uio_vmspace = l->l_proc->p_vmspace;
    704 
    705 	dkwl->dkwl_ncopied = 0;
    706 
    707 	mutex_enter(&pdk->dk_openlock);
    708 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    709 		if (uio.uio_resid < sizeof(dkw))
    710 			break;
    711 
    712 		if (sc->sc_state != DKW_STATE_RUNNING)
    713 			continue;
    714 
    715 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    716 			sizeof(dkw.dkw_devname));
    717 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
    718 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
    719 		strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
    720 		dkw.dkw_offset = sc->sc_offset;
    721 		dkw.dkw_size = sc->sc_size;
    722 		strcpy(dkw.dkw_ptype, sc->sc_ptype);
    723 
    724 		error = uiomove(&dkw, sizeof(dkw), &uio);
    725 		if (error)
    726 			break;
    727 		dkwl->dkwl_ncopied++;
    728 	}
    729 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
    730 	mutex_exit(&pdk->dk_openlock);
    731 
    732 	return (error);
    733 }
    734 
    735 device_t
    736 dkwedge_find_by_wname(const char *wname)
    737 {
    738 	device_t dv = NULL;
    739 	struct dkwedge_softc *sc;
    740 	int i;
    741 
    742 	rw_enter(&dkwedges_lock, RW_WRITER);
    743 	for (i = 0; i < ndkwedges; i++) {
    744 		if ((sc = dkwedges[i]) == NULL)
    745 			continue;
    746 		if (strcmp(sc->sc_wname, wname) == 0) {
    747 			if (dv != NULL) {
    748 				printf(
    749 				    "WARNING: double match for wedge name %s "
    750 				    "(%s, %s)\n", wname, device_xname(dv),
    751 				    device_xname(sc->sc_dev));
    752 				continue;
    753 			}
    754 			dv = sc->sc_dev;
    755 		}
    756 	}
    757 	rw_exit(&dkwedges_lock);
    758 	return dv;
    759 }
    760 
    761 void
    762 dkwedge_print_wnames(void)
    763 {
    764 	struct dkwedge_softc *sc;
    765 	int i;
    766 
    767 	rw_enter(&dkwedges_lock, RW_WRITER);
    768 	for (i = 0; i < ndkwedges; i++) {
    769 		if ((sc = dkwedges[i]) == NULL)
    770 			continue;
    771 		printf(" wedge:%s", sc->sc_wname);
    772 	}
    773 	rw_exit(&dkwedges_lock);
    774 }
    775 
    776 /*
    777  * We need a dummy object to stuff into the dkwedge discovery method link
    778  * set to ensure that there is always at least one object in the set.
    779  */
    780 static struct dkwedge_discovery_method dummy_discovery_method;
    781 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
    782 
    783 /*
    784  * dkwedge_init:
    785  *
    786  *	Initialize the disk wedge subsystem.
    787  */
    788 void
    789 dkwedge_init(void)
    790 {
    791 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
    792 	struct dkwedge_discovery_method * const *ddmp;
    793 	struct dkwedge_discovery_method *lddm, *ddm;
    794 
    795 	rw_init(&dkwedges_lock);
    796 	rw_init(&dkwedge_discovery_methods_lock);
    797 
    798 	if (config_cfdriver_attach(&dk_cd) != 0)
    799 		panic("dkwedge: unable to attach cfdriver");
    800 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
    801 		panic("dkwedge: unable to attach cfattach");
    802 
    803 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
    804 
    805 	LIST_INIT(&dkwedge_discovery_methods);
    806 
    807 	__link_set_foreach(ddmp, dkwedge_methods) {
    808 		ddm = *ddmp;
    809 		if (ddm == &dummy_discovery_method)
    810 			continue;
    811 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
    812 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
    813 					 ddm, ddm_list);
    814 			continue;
    815 		}
    816 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
    817 			if (ddm->ddm_priority == lddm->ddm_priority) {
    818 				aprint_error("dk-method-%s: method \"%s\" "
    819 				    "already exists at priority %d\n",
    820 				    ddm->ddm_name, lddm->ddm_name,
    821 				    lddm->ddm_priority);
    822 				/* Not inserted. */
    823 				break;
    824 			}
    825 			if (ddm->ddm_priority < lddm->ddm_priority) {
    826 				/* Higher priority; insert before. */
    827 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
    828 				break;
    829 			}
    830 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
    831 				/* Last one; insert after. */
    832 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
    833 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
    834 				break;
    835 			}
    836 		}
    837 	}
    838 
    839 	rw_exit(&dkwedge_discovery_methods_lock);
    840 }
    841 
    842 #ifdef DKWEDGE_AUTODISCOVER
    843 int	dkwedge_autodiscover = 1;
    844 #else
    845 int	dkwedge_autodiscover = 0;
    846 #endif
    847 
    848 /*
    849  * dkwedge_discover:	[exported function]
    850  *
    851  *	Discover the wedges on a newly attached disk.
    852  *	Remove all unused wedges on the disk first.
    853  */
    854 void
    855 dkwedge_discover(struct disk *pdk)
    856 {
    857 	struct dkwedge_discovery_method *ddm;
    858 	struct vnode *vp;
    859 	int error;
    860 	dev_t pdev;
    861 
    862 	/*
    863 	 * Require people playing with wedges to enable this explicitly.
    864 	 */
    865 	if (dkwedge_autodiscover == 0)
    866 		return;
    867 
    868 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
    869 
    870 	/*
    871 	 * Use the character device for scanning, the block device
    872 	 * is busy if there are already wedges attached.
    873 	 */
    874 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
    875 	if (error) {
    876 		aprint_error("%s: unable to compute pdev, error = %d\n",
    877 		    pdk->dk_name, error);
    878 		goto out;
    879 	}
    880 
    881 	error = cdevvp(pdev, &vp);
    882 	if (error) {
    883 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
    884 		    pdk->dk_name, error);
    885 		goto out;
    886 	}
    887 
    888 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    889 	if (error) {
    890 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
    891 		    pdk->dk_name, error);
    892 		vrele(vp);
    893 		goto out;
    894 	}
    895 
    896 	error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
    897 	if (error) {
    898 		if (error != ENODEV)
    899 			aprint_error("%s: unable to open device, error = %d\n",
    900 			    pdk->dk_name, error);
    901 		vput(vp);
    902 		goto out;
    903 	}
    904 	VOP_UNLOCK(vp);
    905 
    906 	/*
    907 	 * Remove unused wedges
    908 	 */
    909 	dkwedge_delall1(pdk, true);
    910 
    911 	/*
    912 	 * For each supported partition map type, look to see if
    913 	 * this map type exists.  If so, parse it and add the
    914 	 * corresponding wedges.
    915 	 */
    916 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
    917 		error = (*ddm->ddm_discover)(pdk, vp);
    918 		if (error == 0) {
    919 			/* Successfully created wedges; we're done. */
    920 			break;
    921 		}
    922 	}
    923 
    924 	error = vn_close(vp, FREAD, NOCRED);
    925 	if (error) {
    926 		aprint_error("%s: unable to close device, error = %d\n",
    927 		    pdk->dk_name, error);
    928 		/* We'll just assume the vnode has been cleaned up. */
    929 	}
    930  out:
    931 	rw_exit(&dkwedge_discovery_methods_lock);
    932 }
    933 
    934 /*
    935  * dkwedge_read:
    936  *
    937  *	Read some data from the specified disk, used for
    938  *	partition discovery.
    939  */
    940 int
    941 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
    942     void *tbuf, size_t len)
    943 {
    944 	buf_t *bp;
    945 	int error;
    946 
    947 	/*
    948 	 * The kernel cannot read from a character device vnode
    949 	 * as physio() only handles user memory.
    950 	 *
    951 	 * Determine the corresponding block device and call into
    952 	 * the driver directly.
    953 	 */
    954 
    955 	bp = getiobuf(vp, true);
    956 	bp->b_flags = B_READ;
    957 	bp->b_cflags = BC_BUSY;
    958 	bp->b_dev = devsw_chr2blk(vp->v_rdev);
    959 	bp->b_data = tbuf;
    960 	bp->b_bufsize = bp->b_resid = bp->b_bcount = len;
    961 	bp->b_lblkno = 0;
    962 	bp->b_blkno = blkno;
    963 
    964 	error = bdev_open(bp->b_dev, FREAD, S_IFBLK, curlwp);
    965 	if (error)
    966 		return error;
    967 
    968 	bdev_strategy(bp);
    969 	error = biowait(bp);
    970 	putiobuf(bp);
    971 
    972 	bdev_close(bp->b_dev, FREAD, S_IFBLK, curlwp);
    973 
    974 	return error;
    975 }
    976 
    977 /*
    978  * dkwedge_lookup:
    979  *
    980  *	Look up a dkwedge_softc based on the provided dev_t.
    981  */
    982 static struct dkwedge_softc *
    983 dkwedge_lookup(dev_t dev)
    984 {
    985 	int unit = minor(dev);
    986 
    987 	if (unit >= ndkwedges)
    988 		return (NULL);
    989 
    990 	KASSERT(dkwedges != NULL);
    991 
    992 	return (dkwedges[unit]);
    993 }
    994 
    995 /*
    996  * dkopen:		[devsw entry point]
    997  *
    998  *	Open a wedge.
    999  */
   1000 static int
   1001 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
   1002 {
   1003 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1004 	struct vnode *vp;
   1005 	int error = 0;
   1006 
   1007 	if (sc == NULL)
   1008 		return (ENODEV);
   1009 	if (sc->sc_state != DKW_STATE_RUNNING)
   1010 		return (ENXIO);
   1011 
   1012 	/*
   1013 	 * We go through a complicated little dance to only open the parent
   1014 	 * vnode once per wedge, no matter how many times the wedge is
   1015 	 * opened.  The reason?  We see one dkopen() per open call, but
   1016 	 * only dkclose() on the last close.
   1017 	 */
   1018 	mutex_enter(&sc->sc_dk.dk_openlock);
   1019 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1020 	if (sc->sc_dk.dk_openmask == 0) {
   1021 		if (sc->sc_parent->dk_rawopens == 0) {
   1022 			KASSERT(sc->sc_parent->dk_rawvp == NULL);
   1023 			error = bdevvp(sc->sc_pdev, &vp);
   1024 			if (error)
   1025 				goto popen_fail;
   1026 			error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1027 			if (error) {
   1028 				vrele(vp);
   1029 				goto popen_fail;
   1030 			}
   1031 			error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED);
   1032 			if (error) {
   1033 				vput(vp);
   1034 				goto popen_fail;
   1035 			}
   1036 			/* VOP_OPEN() doesn't do this for us. */
   1037 			mutex_enter(vp->v_interlock);
   1038 			vp->v_writecount++;
   1039 			mutex_exit(vp->v_interlock);
   1040 			VOP_UNLOCK(vp);
   1041 			sc->sc_parent->dk_rawvp = vp;
   1042 		}
   1043 		sc->sc_parent->dk_rawopens++;
   1044 	}
   1045 	if (fmt == S_IFCHR)
   1046 		sc->sc_dk.dk_copenmask |= 1;
   1047 	else
   1048 		sc->sc_dk.dk_bopenmask |= 1;
   1049 	sc->sc_dk.dk_openmask =
   1050 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1051 
   1052  popen_fail:
   1053 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1054 	mutex_exit(&sc->sc_dk.dk_openlock);
   1055 	return (error);
   1056 }
   1057 
   1058 /*
   1059  * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock.
   1060  */
   1061 static int
   1062 dklastclose(struct dkwedge_softc *sc)
   1063 {
   1064 	int error = 0, doclose;
   1065 
   1066 	doclose = 0;
   1067 	if (sc->sc_parent->dk_rawopens > 0) {
   1068 		if (--sc->sc_parent->dk_rawopens == 0)
   1069 			doclose = 1;
   1070 	}
   1071 
   1072 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1073 
   1074 	if (doclose) {
   1075 		KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1076 		error = vn_close(sc->sc_parent->dk_rawvp,
   1077 		    FREAD | FWRITE, NOCRED);
   1078 		sc->sc_parent->dk_rawvp = NULL;
   1079 	}
   1080 
   1081 	return error;
   1082 }
   1083 
   1084 /*
   1085  * dkclose:		[devsw entry point]
   1086  *
   1087  *	Close a wedge.
   1088  */
   1089 static int
   1090 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
   1091 {
   1092 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1093 	int error = 0;
   1094 
   1095 	if (sc == NULL)
   1096 		return (ENODEV);
   1097 	if (sc->sc_state != DKW_STATE_RUNNING)
   1098 		return (ENXIO);
   1099 
   1100 	KASSERT(sc->sc_dk.dk_openmask != 0);
   1101 
   1102 	mutex_enter(&sc->sc_dk.dk_openlock);
   1103 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1104 
   1105 	if (fmt == S_IFCHR)
   1106 		sc->sc_dk.dk_copenmask &= ~1;
   1107 	else
   1108 		sc->sc_dk.dk_bopenmask &= ~1;
   1109 	sc->sc_dk.dk_openmask =
   1110 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1111 
   1112 	if (sc->sc_dk.dk_openmask == 0)
   1113 		error = dklastclose(sc); /* releases dk_rawlock */
   1114 	else
   1115 		mutex_exit(&sc->sc_parent->dk_rawlock);
   1116 
   1117 	mutex_exit(&sc->sc_dk.dk_openlock);
   1118 
   1119 	return (error);
   1120 }
   1121 
   1122 /*
   1123  * dkstragegy:		[devsw entry point]
   1124  *
   1125  *	Perform I/O based on the wedge I/O strategy.
   1126  */
   1127 static void
   1128 dkstrategy(struct buf *bp)
   1129 {
   1130 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1131 	uint64_t p_size, p_offset;
   1132 	int s;
   1133 
   1134 	if (sc == NULL) {
   1135 		bp->b_error = ENODEV;
   1136 		goto done;
   1137 	}
   1138 
   1139 	if (sc->sc_state != DKW_STATE_RUNNING ||
   1140 	    sc->sc_parent->dk_rawvp == NULL) {
   1141 		bp->b_error = ENXIO;
   1142 		goto done;
   1143 	}
   1144 
   1145 	/* If it's an empty transfer, wake up the top half now. */
   1146 	if (bp->b_bcount == 0)
   1147 		goto done;
   1148 
   1149 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
   1150 	p_size   = sc->sc_size << sc->sc_parent->dk_blkshift;
   1151 
   1152 	/* Make sure it's in-range. */
   1153 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
   1154 		goto done;
   1155 
   1156 	/* Translate it to the parent's raw LBA. */
   1157 	bp->b_rawblkno = bp->b_blkno + p_offset;
   1158 
   1159 	/* Place it in the queue and start I/O on the unit. */
   1160 	s = splbio();
   1161 	sc->sc_iopend++;
   1162 	bufq_put(sc->sc_bufq, bp);
   1163 	dkstart(sc);
   1164 	splx(s);
   1165 	return;
   1166 
   1167  done:
   1168 	bp->b_resid = bp->b_bcount;
   1169 	biodone(bp);
   1170 }
   1171 
   1172 /*
   1173  * dkstart:
   1174  *
   1175  *	Start I/O that has been enqueued on the wedge.
   1176  *	NOTE: Must be called at splbio()!
   1177  */
   1178 static void
   1179 dkstart(struct dkwedge_softc *sc)
   1180 {
   1181 	struct vnode *vp;
   1182 	struct buf *bp, *nbp;
   1183 
   1184 	/* Do as much work as has been enqueued. */
   1185 	while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
   1186 		if (sc->sc_state != DKW_STATE_RUNNING) {
   1187 			(void) bufq_get(sc->sc_bufq);
   1188 			if (sc->sc_iopend-- == 1 &&
   1189 			    (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
   1190 				sc->sc_flags &= ~DK_F_WAIT_DRAIN;
   1191 				wakeup(&sc->sc_iopend);
   1192 			}
   1193 			bp->b_error = ENXIO;
   1194 			bp->b_resid = bp->b_bcount;
   1195 			biodone(bp);
   1196 		}
   1197 
   1198 		/* Instrumentation. */
   1199 		disk_busy(&sc->sc_dk);
   1200 
   1201 		nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
   1202 		if (nbp == NULL) {
   1203 			/*
   1204 			 * No resources to run this request; leave the
   1205 			 * buffer queued up, and schedule a timer to
   1206 			 * restart the queue in 1/2 a second.
   1207 			 */
   1208 			disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
   1209 			callout_schedule(&sc->sc_restart_ch, hz / 2);
   1210 			return;
   1211 		}
   1212 
   1213 		(void) bufq_get(sc->sc_bufq);
   1214 
   1215 		nbp->b_data = bp->b_data;
   1216 		nbp->b_flags = bp->b_flags;
   1217 		nbp->b_oflags = bp->b_oflags;
   1218 		nbp->b_cflags = bp->b_cflags;
   1219 		nbp->b_iodone = dkiodone;
   1220 		nbp->b_proc = bp->b_proc;
   1221 		nbp->b_blkno = bp->b_rawblkno;
   1222 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
   1223 		nbp->b_bcount = bp->b_bcount;
   1224 		nbp->b_private = bp;
   1225 		BIO_COPYPRIO(nbp, bp);
   1226 
   1227 		vp = nbp->b_vp;
   1228 		if ((nbp->b_flags & B_READ) == 0) {
   1229 			mutex_enter(vp->v_interlock);
   1230 			vp->v_numoutput++;
   1231 			mutex_exit(vp->v_interlock);
   1232 		}
   1233 		VOP_STRATEGY(vp, nbp);
   1234 	}
   1235 }
   1236 
   1237 /*
   1238  * dkiodone:
   1239  *
   1240  *	I/O to a wedge has completed; alert the top half.
   1241  */
   1242 static void
   1243 dkiodone(struct buf *bp)
   1244 {
   1245 	struct buf *obp = bp->b_private;
   1246 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
   1247 
   1248 	int s = splbio();
   1249 
   1250 	if (bp->b_error != 0)
   1251 		obp->b_error = bp->b_error;
   1252 	obp->b_resid = bp->b_resid;
   1253 	putiobuf(bp);
   1254 
   1255 	if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
   1256 		sc->sc_flags &= ~DK_F_WAIT_DRAIN;
   1257 		wakeup(&sc->sc_iopend);
   1258 	}
   1259 
   1260 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
   1261 	    obp->b_flags & B_READ);
   1262 
   1263 	biodone(obp);
   1264 
   1265 	/* Kick the queue in case there is more work we can do. */
   1266 	dkstart(sc);
   1267 	splx(s);
   1268 }
   1269 
   1270 /*
   1271  * dkrestart:
   1272  *
   1273  *	Restart the work queue after it was stalled due to
   1274  *	a resource shortage.  Invoked via a callout.
   1275  */
   1276 static void
   1277 dkrestart(void *v)
   1278 {
   1279 	struct dkwedge_softc *sc = v;
   1280 	int s;
   1281 
   1282 	s = splbio();
   1283 	dkstart(sc);
   1284 	splx(s);
   1285 }
   1286 
   1287 /*
   1288  * dkminphys:
   1289  *
   1290  *	Call parent's minphys function.
   1291  */
   1292 static void
   1293 dkminphys(struct buf *bp)
   1294 {
   1295 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1296 	dev_t dev;
   1297 
   1298 	dev = bp->b_dev;
   1299 	bp->b_dev = sc->sc_pdev;
   1300 	(*sc->sc_parent->dk_driver->d_minphys)(bp);
   1301 	bp->b_dev = dev;
   1302 }
   1303 
   1304 /*
   1305  * dkread:		[devsw entry point]
   1306  *
   1307  *	Read from a wedge.
   1308  */
   1309 static int
   1310 dkread(dev_t dev, struct uio *uio, int flags)
   1311 {
   1312 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1313 
   1314 	if (sc == NULL)
   1315 		return (ENODEV);
   1316 	if (sc->sc_state != DKW_STATE_RUNNING)
   1317 		return (ENXIO);
   1318 
   1319 	return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio));
   1320 }
   1321 
   1322 /*
   1323  * dkwrite:		[devsw entry point]
   1324  *
   1325  *	Write to a wedge.
   1326  */
   1327 static int
   1328 dkwrite(dev_t dev, struct uio *uio, int flags)
   1329 {
   1330 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1331 
   1332 	if (sc == NULL)
   1333 		return (ENODEV);
   1334 	if (sc->sc_state != DKW_STATE_RUNNING)
   1335 		return (ENXIO);
   1336 
   1337 	return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio));
   1338 }
   1339 
   1340 /*
   1341  * dkioctl:		[devsw entry point]
   1342  *
   1343  *	Perform an ioctl request on a wedge.
   1344  */
   1345 static int
   1346 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1347 {
   1348 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1349 	int error = 0;
   1350 
   1351 	if (sc == NULL)
   1352 		return (ENODEV);
   1353 	if (sc->sc_state != DKW_STATE_RUNNING)
   1354 		return (ENXIO);
   1355 	if (sc->sc_parent->dk_rawvp == NULL)
   1356 		return (ENXIO);
   1357 
   1358 	error = disk_ioctl(&sc->sc_dk, cmd, data, flag, l);
   1359 	if (error != EPASSTHROUGH)
   1360 		return (error);
   1361 
   1362 	error = 0;
   1363 
   1364 	switch (cmd) {
   1365 	case DIOCCACHESYNC:
   1366 		/*
   1367 		 * XXX Do we really need to care about having a writable
   1368 		 * file descriptor here?
   1369 		 */
   1370 		if ((flag & FWRITE) == 0)
   1371 			error = EBADF;
   1372 		else
   1373 			error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
   1374 					  cmd, data, flag,
   1375 					  l != NULL ? l->l_cred : NOCRED);
   1376 		break;
   1377 	case DIOCGWEDGEINFO:
   1378 	    {
   1379 		struct dkwedge_info *dkw = (void *) data;
   1380 
   1381 		strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
   1382 			sizeof(dkw->dkw_devname));
   1383 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
   1384 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
   1385 		strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
   1386 		dkw->dkw_offset = sc->sc_offset;
   1387 		dkw->dkw_size = sc->sc_size;
   1388 		strcpy(dkw->dkw_ptype, sc->sc_ptype);
   1389 
   1390 		break;
   1391 	    }
   1392 
   1393 	default:
   1394 		error = ENOTTY;
   1395 	}
   1396 
   1397 	return (error);
   1398 }
   1399 
   1400 /*
   1401  * dkdiscard:		[devsw entry point]
   1402  *
   1403  *	Perform a discard-range request on a wedge.
   1404  */
   1405 static int
   1406 dkdiscard(dev_t dev, off_t pos, off_t len)
   1407 {
   1408 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1409 	unsigned shift;
   1410 	off_t offset, maxlen;
   1411 
   1412 	if (sc == NULL)
   1413 		return (ENODEV);
   1414 	if (sc->sc_state != DKW_STATE_RUNNING)
   1415 		return (ENXIO);
   1416 	if (sc->sc_parent->dk_rawvp == NULL)
   1417 		return (ENXIO);
   1418 
   1419 	shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
   1420 	KASSERT(__type_fit(off_t, sc->sc_size));
   1421 	KASSERT(__type_fit(off_t, sc->sc_offset));
   1422 	KASSERT(0 <= sc->sc_offset);
   1423 	KASSERT(sc->sc_size <= (__type_max(off_t) >> shift));
   1424 	KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - sc->sc_size));
   1425 	offset = ((off_t)sc->sc_offset << shift);
   1426 	maxlen = ((off_t)sc->sc_size << shift);
   1427 
   1428 	if (len > maxlen)
   1429 		return (EINVAL);
   1430 	if (pos > (maxlen - len))
   1431 		return (EINVAL);
   1432 
   1433 	pos += offset;
   1434 	return VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
   1435 }
   1436 
   1437 /*
   1438  * dksize:		[devsw entry point]
   1439  *
   1440  *	Query the size of a wedge for the purpose of performing a dump
   1441  *	or for swapping to.
   1442  */
   1443 static int
   1444 dksize(dev_t dev)
   1445 {
   1446 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1447 	int rv = -1;
   1448 
   1449 	if (sc == NULL)
   1450 		return (-1);
   1451 	if (sc->sc_state != DKW_STATE_RUNNING)
   1452 		return (-1);
   1453 
   1454 	mutex_enter(&sc->sc_dk.dk_openlock);
   1455 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1456 
   1457 	/* Our content type is static, no need to open the device. */
   1458 
   1459 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
   1460 		/* Saturate if we are larger than INT_MAX. */
   1461 		if (sc->sc_size > INT_MAX)
   1462 			rv = INT_MAX;
   1463 		else
   1464 			rv = (int) sc->sc_size;
   1465 	}
   1466 
   1467 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1468 	mutex_exit(&sc->sc_dk.dk_openlock);
   1469 
   1470 	return (rv);
   1471 }
   1472 
   1473 /*
   1474  * dkdump:		[devsw entry point]
   1475  *
   1476  *	Perform a crash dump to a wedge.
   1477  */
   1478 static int
   1479 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
   1480 {
   1481 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1482 	const struct bdevsw *bdev;
   1483 	int rv = 0;
   1484 
   1485 	if (sc == NULL)
   1486 		return (ENODEV);
   1487 	if (sc->sc_state != DKW_STATE_RUNNING)
   1488 		return (ENXIO);
   1489 
   1490 	mutex_enter(&sc->sc_dk.dk_openlock);
   1491 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1492 
   1493 	/* Our content type is static, no need to open the device. */
   1494 
   1495 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
   1496 		rv = ENXIO;
   1497 		goto out;
   1498 	}
   1499 	if (size % DEV_BSIZE != 0) {
   1500 		rv = EINVAL;
   1501 		goto out;
   1502 	}
   1503 	if (blkno + size / DEV_BSIZE > sc->sc_size) {
   1504 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
   1505 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
   1506 		    size / DEV_BSIZE, sc->sc_size);
   1507 		rv = EINVAL;
   1508 		goto out;
   1509 	}
   1510 
   1511 	bdev = bdevsw_lookup(sc->sc_pdev);
   1512 	rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
   1513 
   1514 out:
   1515 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1516 	mutex_exit(&sc->sc_dk.dk_openlock);
   1517 
   1518 	return rv;
   1519 }
   1520 
   1521 /*
   1522  * config glue
   1523  */
   1524 
   1525 /*
   1526  * dkwedge_find_partition
   1527  *
   1528  *	Find wedge corresponding to the specified parent name
   1529  *	and offset/length.
   1530  */
   1531 device_t
   1532 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
   1533 {
   1534 	struct dkwedge_softc *sc;
   1535 	int i;
   1536 	device_t wedge = NULL;
   1537 
   1538 	rw_enter(&dkwedges_lock, RW_READER);
   1539 	for (i = 0; i < ndkwedges; i++) {
   1540 		if ((sc = dkwedges[i]) == NULL)
   1541 			continue;
   1542 		if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
   1543 		    sc->sc_offset == startblk &&
   1544 		    sc->sc_size == nblks) {
   1545 			if (wedge) {
   1546 				printf("WARNING: double match for boot wedge "
   1547 				    "(%s, %s)\n",
   1548 				    device_xname(wedge),
   1549 				    device_xname(sc->sc_dev));
   1550 				continue;
   1551 			}
   1552 			wedge = sc->sc_dev;
   1553 		}
   1554 	}
   1555 	rw_exit(&dkwedges_lock);
   1556 
   1557 	return wedge;
   1558 }
   1559 
   1560 const char *
   1561 dkwedge_get_parent_name(dev_t dev)
   1562 {
   1563 	/* XXX: perhaps do this in lookup? */
   1564 	int bmaj = bdevsw_lookup_major(&dk_bdevsw);
   1565 	int cmaj = cdevsw_lookup_major(&dk_cdevsw);
   1566 	if (major(dev) != bmaj && major(dev) != cmaj)
   1567 		return NULL;
   1568 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1569 	if (sc == NULL)
   1570 		return NULL;
   1571 	return sc->sc_parent->dk_name;
   1572 }
   1573