Home | History | Annotate | Line # | Download | only in dkwedge
dk.c revision 1.76
      1 /*	$NetBSD: dk.c,v 1.76 2014/12/08 17:45:12 mlelstv Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.76 2014/12/08 17:45:12 mlelstv Exp $");
     34 
     35 #ifdef _KERNEL_OPT
     36 #include "opt_dkwedge.h"
     37 #endif
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/proc.h>
     42 #include <sys/errno.h>
     43 #include <sys/pool.h>
     44 #include <sys/ioctl.h>
     45 #include <sys/disklabel.h>
     46 #include <sys/disk.h>
     47 #include <sys/fcntl.h>
     48 #include <sys/buf.h>
     49 #include <sys/bufq.h>
     50 #include <sys/vnode.h>
     51 #include <sys/stat.h>
     52 #include <sys/conf.h>
     53 #include <sys/callout.h>
     54 #include <sys/kernel.h>
     55 #include <sys/malloc.h>
     56 #include <sys/device.h>
     57 #include <sys/kauth.h>
     58 
     59 #include <miscfs/specfs/specdev.h>
     60 
     61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
     62 
     63 typedef enum {
     64 	DKW_STATE_LARVAL	= 0,
     65 	DKW_STATE_RUNNING	= 1,
     66 	DKW_STATE_DYING		= 2,
     67 	DKW_STATE_DEAD		= 666
     68 } dkwedge_state_t;
     69 
     70 struct dkwedge_softc {
     71 	device_t	sc_dev;	/* pointer to our pseudo-device */
     72 	struct cfdata	sc_cfdata;	/* our cfdata structure */
     73 	uint8_t		sc_wname[128];	/* wedge name (Unicode, UTF-8) */
     74 
     75 	dkwedge_state_t sc_state;	/* state this wedge is in */
     76 
     77 	struct disk	*sc_parent;	/* parent disk */
     78 	daddr_t		sc_offset;	/* LBA offset of wedge in parent */
     79 	uint64_t	sc_size;	/* size of wedge in blocks */
     80 	char		sc_ptype[32];	/* partition type */
     81 	dev_t		sc_pdev;	/* cached parent's dev_t */
     82 					/* link on parent's wedge list */
     83 	LIST_ENTRY(dkwedge_softc) sc_plink;
     84 
     85 	struct disk	sc_dk;		/* our own disk structure */
     86 	struct bufq_state *sc_bufq;	/* buffer queue */
     87 	struct callout	sc_restart_ch;	/* callout to restart I/O */
     88 
     89 	u_int		sc_iopend;	/* I/Os pending */
     90 	int		sc_flags;	/* flags (splbio) */
     91 };
     92 
     93 #define	DK_F_WAIT_DRAIN		0x0001	/* waiting for I/O to drain */
     94 
     95 static void	dkstart(struct dkwedge_softc *);
     96 static void	dkiodone(struct buf *);
     97 static void	dkrestart(void *);
     98 static void	dkminphys(struct buf *);
     99 
    100 static int	dklastclose(struct dkwedge_softc *);
    101 static int	dkwedge_cleanup_parent(struct dkwedge_softc *, int);
    102 static int	dkwedge_detach(device_t, int);
    103 static void	dkwedge_delall1(struct disk *, bool);
    104 static int	dkwedge_del1(struct dkwedge_info *, int);
    105 
    106 static dev_type_open(dkopen);
    107 static dev_type_close(dkclose);
    108 static dev_type_read(dkread);
    109 static dev_type_write(dkwrite);
    110 static dev_type_ioctl(dkioctl);
    111 static dev_type_strategy(dkstrategy);
    112 static dev_type_dump(dkdump);
    113 static dev_type_size(dksize);
    114 static dev_type_discard(dkdiscard);
    115 
    116 const struct bdevsw dk_bdevsw = {
    117 	.d_open = dkopen,
    118 	.d_close = dkclose,
    119 	.d_strategy = dkstrategy,
    120 	.d_ioctl = dkioctl,
    121 	.d_dump = dkdump,
    122 	.d_psize = dksize,
    123 	.d_discard = dkdiscard,
    124 	.d_flag = D_DISK
    125 };
    126 
    127 const struct cdevsw dk_cdevsw = {
    128 	.d_open = dkopen,
    129 	.d_close = dkclose,
    130 	.d_read = dkread,
    131 	.d_write = dkwrite,
    132 	.d_ioctl = dkioctl,
    133 	.d_stop = nostop,
    134 	.d_tty = notty,
    135 	.d_poll = nopoll,
    136 	.d_mmap = nommap,
    137 	.d_kqfilter = nokqfilter,
    138 	.d_discard = dkdiscard,
    139 	.d_flag = D_DISK
    140 };
    141 
    142 static struct dkwedge_softc **dkwedges;
    143 static u_int ndkwedges;
    144 static krwlock_t dkwedges_lock;
    145 
    146 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
    147 static krwlock_t dkwedge_discovery_methods_lock;
    148 
    149 /*
    150  * dkwedge_match:
    151  *
    152  *	Autoconfiguration match function for pseudo-device glue.
    153  */
    154 static int
    155 dkwedge_match(device_t parent, cfdata_t match,
    156     void *aux)
    157 {
    158 
    159 	/* Pseudo-device; always present. */
    160 	return (1);
    161 }
    162 
    163 /*
    164  * dkwedge_attach:
    165  *
    166  *	Autoconfiguration attach function for pseudo-device glue.
    167  */
    168 static void
    169 dkwedge_attach(device_t parent, device_t self,
    170     void *aux)
    171 {
    172 
    173 	if (!pmf_device_register(self, NULL, NULL))
    174 		aprint_error_dev(self, "couldn't establish power handler\n");
    175 }
    176 
    177 CFDRIVER_DECL(dk, DV_DISK, NULL);
    178 CFATTACH_DECL3_NEW(dk, 0,
    179     dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
    180     DVF_DETACH_SHUTDOWN);
    181 
    182 /*
    183  * dkwedge_wait_drain:
    184  *
    185  *	Wait for I/O on the wedge to drain.
    186  *	NOTE: Must be called at splbio()!
    187  */
    188 static void
    189 dkwedge_wait_drain(struct dkwedge_softc *sc)
    190 {
    191 
    192 	while (sc->sc_iopend != 0) {
    193 		sc->sc_flags |= DK_F_WAIT_DRAIN;
    194 		(void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
    195 	}
    196 }
    197 
    198 /*
    199  * dkwedge_compute_pdev:
    200  *
    201  *	Compute the parent disk's dev_t.
    202  */
    203 static int
    204 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
    205 {
    206 	const char *name, *cp;
    207 	devmajor_t pmaj;
    208 	int punit;
    209 	char devname[16];
    210 
    211 	name = pname;
    212 	switch (type) {
    213 	case VBLK:
    214 		pmaj = devsw_name2blk(name, devname, sizeof(devname));
    215 		break;
    216 	case VCHR:
    217 		pmaj = devsw_name2chr(name, devname, sizeof(devname));
    218 		break;
    219 	default:
    220 		pmaj = NODEVMAJOR;
    221 		break;
    222 	}
    223 	if (pmaj == NODEVMAJOR)
    224 		return (ENODEV);
    225 
    226 	name += strlen(devname);
    227 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
    228 		punit = (punit * 10) + (*cp - '0');
    229 	if (cp == name) {
    230 		/* Invalid parent disk name. */
    231 		return (ENODEV);
    232 	}
    233 
    234 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
    235 
    236 	return (0);
    237 }
    238 
    239 /*
    240  * dkwedge_array_expand:
    241  *
    242  *	Expand the dkwedges array.
    243  */
    244 static void
    245 dkwedge_array_expand(void)
    246 {
    247 	int newcnt = ndkwedges + 16;
    248 	struct dkwedge_softc **newarray, **oldarray;
    249 
    250 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
    251 	    M_WAITOK|M_ZERO);
    252 	if ((oldarray = dkwedges) != NULL)
    253 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
    254 	dkwedges = newarray;
    255 	ndkwedges = newcnt;
    256 	if (oldarray != NULL)
    257 		free(oldarray, M_DKWEDGE);
    258 }
    259 
    260 static void
    261 dk_set_geometry(struct dkwedge_softc *sc)
    262 {
    263 	struct disk *disk = &sc->sc_dk;
    264 	struct disk_geom *dg = &disk->dk_geom;
    265 
    266 	memset(dg, 0, sizeof(*dg));
    267 
    268 	dg->dg_secperunit = sc->sc_size >> disk->dk_blkshift;
    269 	dg->dg_secsize = DEV_BSIZE << disk->dk_blkshift;
    270 
    271 	/* fake numbers, 1 cylinder is 1 MB with default sector size */
    272 	dg->dg_nsectors = 32;
    273 	dg->dg_ntracks = 64;
    274 	dg->dg_ncylinders = dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
    275 
    276 	disk_set_info(sc->sc_dev, disk, NULL);
    277 }
    278 
    279 /*
    280  * dkwedge_add:		[exported function]
    281  *
    282  *	Add a disk wedge based on the provided information.
    283  *
    284  *	The incoming dkw_devname[] is ignored, instead being
    285  *	filled in and returned to the caller.
    286  */
    287 int
    288 dkwedge_add(struct dkwedge_info *dkw)
    289 {
    290 	struct dkwedge_softc *sc, *lsc;
    291 	struct disk *pdk;
    292 	u_int unit;
    293 	int error;
    294 	dev_t pdev;
    295 
    296 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
    297 	pdk = disk_find(dkw->dkw_parent);
    298 	if (pdk == NULL)
    299 		return (ENODEV);
    300 
    301 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
    302 	if (error)
    303 		return (error);
    304 
    305 	if (dkw->dkw_offset < 0)
    306 		return (EINVAL);
    307 
    308 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
    309 	sc->sc_state = DKW_STATE_LARVAL;
    310 	sc->sc_parent = pdk;
    311 	sc->sc_pdev = pdev;
    312 	sc->sc_offset = dkw->dkw_offset;
    313 	sc->sc_size = dkw->dkw_size;
    314 
    315 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
    316 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
    317 
    318 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
    319 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
    320 
    321 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
    322 
    323 	callout_init(&sc->sc_restart_ch, 0);
    324 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
    325 
    326 	/*
    327 	 * Wedge will be added; increment the wedge count for the parent.
    328 	 * Only allow this to happend if RAW_PART is the only thing open.
    329 	 */
    330 	mutex_enter(&pdk->dk_openlock);
    331 	if (pdk->dk_openmask & ~(1 << RAW_PART))
    332 		error = EBUSY;
    333 	else {
    334 		/* Check for wedge overlap. */
    335 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    336 			daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
    337 			daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
    338 
    339 			if (sc->sc_offset >= lsc->sc_offset &&
    340 			    sc->sc_offset <= llastblk) {
    341 				/* Overlaps the tail of the existing wedge. */
    342 				break;
    343 			}
    344 			if (lastblk >= lsc->sc_offset &&
    345 			    lastblk <= llastblk) {
    346 				/* Overlaps the head of the existing wedge. */
    347 			    	break;
    348 			}
    349 		}
    350 		if (lsc != NULL) {
    351 			if (sc->sc_offset == lsc->sc_offset &&
    352 			    sc->sc_size == lsc->sc_size &&
    353 			    strcmp(sc->sc_wname, lsc->sc_wname) == 0)
    354 				error = EEXIST;
    355 			else
    356 				error = EINVAL;
    357 		} else {
    358 			pdk->dk_nwedges++;
    359 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
    360 		}
    361 	}
    362 	mutex_exit(&pdk->dk_openlock);
    363 	if (error) {
    364 		bufq_free(sc->sc_bufq);
    365 		free(sc, M_DKWEDGE);
    366 		return (error);
    367 	}
    368 
    369 	/* Fill in our cfdata for the pseudo-device glue. */
    370 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
    371 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
    372 	/* sc->sc_cfdata.cf_unit set below */
    373 	sc->sc_cfdata.cf_fstate = FSTATE_STAR;
    374 
    375 	/* Insert the larval wedge into the array. */
    376 	rw_enter(&dkwedges_lock, RW_WRITER);
    377 	for (error = 0;;) {
    378 		struct dkwedge_softc **scpp;
    379 
    380 		/*
    381 		 * Check for a duplicate wname while searching for
    382 		 * a slot.
    383 		 */
    384 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
    385 			if (dkwedges[unit] == NULL) {
    386 				if (scpp == NULL) {
    387 					scpp = &dkwedges[unit];
    388 					sc->sc_cfdata.cf_unit = unit;
    389 				}
    390 			} else {
    391 				/* XXX Unicode. */
    392 				if (strcmp(dkwedges[unit]->sc_wname,
    393 					   sc->sc_wname) == 0) {
    394 					error = EEXIST;
    395 					break;
    396 				}
    397 			}
    398 		}
    399 		if (error)
    400 			break;
    401 		KASSERT(unit == ndkwedges);
    402 		if (scpp == NULL)
    403 			dkwedge_array_expand();
    404 		else {
    405 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
    406 			*scpp = sc;
    407 			break;
    408 		}
    409 	}
    410 	rw_exit(&dkwedges_lock);
    411 	if (error) {
    412 		mutex_enter(&pdk->dk_openlock);
    413 		pdk->dk_nwedges--;
    414 		LIST_REMOVE(sc, sc_plink);
    415 		mutex_exit(&pdk->dk_openlock);
    416 
    417 		bufq_free(sc->sc_bufq);
    418 		free(sc, M_DKWEDGE);
    419 		return (error);
    420 	}
    421 
    422 	/*
    423 	 * Now that we know the unit #, attach a pseudo-device for
    424 	 * this wedge instance.  This will provide us with the
    425 	 * device_t necessary for glue to other parts of the system.
    426 	 *
    427 	 * This should never fail, unless we're almost totally out of
    428 	 * memory.
    429 	 */
    430 	if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
    431 		aprint_error("%s%u: unable to attach pseudo-device\n",
    432 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
    433 
    434 		rw_enter(&dkwedges_lock, RW_WRITER);
    435 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
    436 		rw_exit(&dkwedges_lock);
    437 
    438 		mutex_enter(&pdk->dk_openlock);
    439 		pdk->dk_nwedges--;
    440 		LIST_REMOVE(sc, sc_plink);
    441 		mutex_exit(&pdk->dk_openlock);
    442 
    443 		bufq_free(sc->sc_bufq);
    444 		free(sc, M_DKWEDGE);
    445 		return (ENOMEM);
    446 	}
    447 
    448 	/* Return the devname to the caller. */
    449 	strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
    450 		sizeof(dkw->dkw_devname));
    451 
    452 	/*
    453 	 * XXX Really ought to make the disk_attach() and the changing
    454 	 * of state to RUNNING atomic.
    455 	 */
    456 
    457 	disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
    458 	disk_blocksize(&sc->sc_dk, DEV_BSIZE << pdk->dk_blkshift);
    459 	dk_set_geometry(sc);
    460 	disk_attach(&sc->sc_dk);
    461 
    462 	/* Disk wedge is ready for use! */
    463 	sc->sc_state = DKW_STATE_RUNNING;
    464 
    465 	/* Announce our arrival. */
    466 	aprint_normal("%s at %s: %s\n", device_xname(sc->sc_dev), pdk->dk_name,
    467 	    sc->sc_wname);	/* XXX Unicode */
    468 	aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
    469 	    device_xname(sc->sc_dev), sc->sc_size, sc->sc_offset, sc->sc_ptype);
    470 
    471 	return (0);
    472 }
    473 
    474 /*
    475  * dkwedge_find:
    476  *
    477  *	Lookup a disk wedge based on the provided information.
    478  *	NOTE: We look up the wedge based on the wedge devname,
    479  *	not wname.
    480  *
    481  *	Return NULL if the wedge is not found, otherwise return
    482  *	the wedge's softc.  Assign the wedge's unit number to unitp
    483  *	if unitp is not NULL.
    484  */
    485 static struct dkwedge_softc *
    486 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
    487 {
    488 	struct dkwedge_softc *sc = NULL;
    489 	u_int unit;
    490 
    491 	/* Find our softc. */
    492 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
    493 	rw_enter(&dkwedges_lock, RW_READER);
    494 	for (unit = 0; unit < ndkwedges; unit++) {
    495 		if ((sc = dkwedges[unit]) != NULL &&
    496 		    strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
    497 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
    498 			break;
    499 		}
    500 	}
    501 	rw_exit(&dkwedges_lock);
    502 	if (unit == ndkwedges)
    503 		return NULL;
    504 
    505 	if (unitp != NULL)
    506 		*unitp = unit;
    507 
    508 	return sc;
    509 }
    510 
    511 /*
    512  * dkwedge_del:		[exported function]
    513  *
    514  *	Delete a disk wedge based on the provided information.
    515  *	NOTE: We look up the wedge based on the wedge devname,
    516  *	not wname.
    517  */
    518 int
    519 dkwedge_del(struct dkwedge_info *dkw)
    520 {
    521 	return dkwedge_del1(dkw, 0);
    522 }
    523 
    524 int
    525 dkwedge_del1(struct dkwedge_info *dkw, int flags)
    526 {
    527 	struct dkwedge_softc *sc = NULL;
    528 
    529 	/* Find our softc. */
    530 	if ((sc = dkwedge_find(dkw, NULL)) == NULL)
    531 		return (ESRCH);
    532 
    533 	return config_detach(sc->sc_dev, flags);
    534 }
    535 
    536 static int
    537 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags)
    538 {
    539 	struct disk *dk = &sc->sc_dk;
    540 	int rc;
    541 
    542 	rc = 0;
    543 	mutex_enter(&dk->dk_openlock);
    544 	if (dk->dk_openmask == 0)
    545 		;	/* nothing to do */
    546 	else if ((flags & DETACH_FORCE) == 0)
    547 		rc = EBUSY;
    548 	else {
    549 		mutex_enter(&sc->sc_parent->dk_rawlock);
    550 		rc = dklastclose(sc); /* releases dk_rawlock */
    551 	}
    552 	mutex_exit(&dk->dk_openlock);
    553 
    554 	return rc;
    555 }
    556 
    557 /*
    558  * dkwedge_detach:
    559  *
    560  *	Autoconfiguration detach function for pseudo-device glue.
    561  */
    562 static int
    563 dkwedge_detach(device_t self, int flags)
    564 {
    565 	struct dkwedge_softc *sc = NULL;
    566 	u_int unit;
    567 	int bmaj, cmaj, rc, s;
    568 
    569 	rw_enter(&dkwedges_lock, RW_WRITER);
    570 	for (unit = 0; unit < ndkwedges; unit++) {
    571 		if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
    572 			break;
    573 	}
    574 	if (unit == ndkwedges)
    575 		rc = ENXIO;
    576 	else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) {
    577 		/* Mark the wedge as dying. */
    578 		sc->sc_state = DKW_STATE_DYING;
    579 	}
    580 	rw_exit(&dkwedges_lock);
    581 
    582 	if (rc != 0)
    583 		return rc;
    584 
    585 	pmf_device_deregister(self);
    586 
    587 	/* Locate the wedge major numbers. */
    588 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
    589 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
    590 
    591 	/* Kill any pending restart. */
    592 	callout_stop(&sc->sc_restart_ch);
    593 
    594 	/*
    595 	 * dkstart() will kill any queued buffers now that the
    596 	 * state of the wedge is not RUNNING.  Once we've done
    597 	 * that, wait for any other pending I/O to complete.
    598 	 */
    599 	s = splbio();
    600 	dkstart(sc);
    601 	dkwedge_wait_drain(sc);
    602 	splx(s);
    603 
    604 	/* Nuke the vnodes for any open instances. */
    605 	vdevgone(bmaj, unit, unit, VBLK);
    606 	vdevgone(cmaj, unit, unit, VCHR);
    607 
    608 	/* Clean up the parent. */
    609 	dkwedge_cleanup_parent(sc, flags | DETACH_FORCE);
    610 
    611 	/* Announce our departure. */
    612 	aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
    613 	    sc->sc_parent->dk_name,
    614 	    sc->sc_wname);	/* XXX Unicode */
    615 
    616 	mutex_enter(&sc->sc_parent->dk_openlock);
    617 	sc->sc_parent->dk_nwedges--;
    618 	LIST_REMOVE(sc, sc_plink);
    619 	mutex_exit(&sc->sc_parent->dk_openlock);
    620 
    621 	/* Delete our buffer queue. */
    622 	bufq_free(sc->sc_bufq);
    623 
    624 	/* Detach from the disk list. */
    625 	disk_detach(&sc->sc_dk);
    626 	disk_destroy(&sc->sc_dk);
    627 
    628 	/* Poof. */
    629 	rw_enter(&dkwedges_lock, RW_WRITER);
    630 	dkwedges[unit] = NULL;
    631 	sc->sc_state = DKW_STATE_DEAD;
    632 	rw_exit(&dkwedges_lock);
    633 
    634 	free(sc, M_DKWEDGE);
    635 
    636 	return 0;
    637 }
    638 
    639 /*
    640  * dkwedge_delall:	[exported function]
    641  *
    642  *	Delete all of the wedges on the specified disk.  Used when
    643  *	a disk is being detached.
    644  */
    645 void
    646 dkwedge_delall(struct disk *pdk)
    647 {
    648 	dkwedge_delall1(pdk, false);
    649 }
    650 
    651 static void
    652 dkwedge_delall1(struct disk *pdk, bool idleonly)
    653 {
    654 	struct dkwedge_info dkw;
    655 	struct dkwedge_softc *sc;
    656 	int flags;
    657 
    658 	flags = DETACH_QUIET;
    659 	if (!idleonly) flags |= DETACH_FORCE;
    660 
    661 	for (;;) {
    662 		mutex_enter(&pdk->dk_openlock);
    663 		LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    664 			if (!idleonly || sc->sc_dk.dk_openmask == 0)
    665 				break;
    666 		}
    667 		if (sc == NULL) {
    668 			KASSERT(idleonly || pdk->dk_nwedges == 0);
    669 			mutex_exit(&pdk->dk_openlock);
    670 			return;
    671 		}
    672 		strcpy(dkw.dkw_parent, pdk->dk_name);
    673 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    674 			sizeof(dkw.dkw_devname));
    675 		mutex_exit(&pdk->dk_openlock);
    676 		(void) dkwedge_del1(&dkw, flags);
    677 	}
    678 }
    679 
    680 /*
    681  * dkwedge_list:	[exported function]
    682  *
    683  *	List all of the wedges on a particular disk.
    684  *	If p == NULL, the buffer is in kernel space.  Otherwise, it is
    685  *	in user space of the specified process.
    686  */
    687 int
    688 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
    689 {
    690 	struct uio uio;
    691 	struct iovec iov;
    692 	struct dkwedge_softc *sc;
    693 	struct dkwedge_info dkw;
    694 	int error = 0;
    695 
    696 	iov.iov_base = dkwl->dkwl_buf;
    697 	iov.iov_len = dkwl->dkwl_bufsize;
    698 
    699 	uio.uio_iov = &iov;
    700 	uio.uio_iovcnt = 1;
    701 	uio.uio_offset = 0;
    702 	uio.uio_resid = dkwl->dkwl_bufsize;
    703 	uio.uio_rw = UIO_READ;
    704 	KASSERT(l == curlwp);
    705 	uio.uio_vmspace = l->l_proc->p_vmspace;
    706 
    707 	dkwl->dkwl_ncopied = 0;
    708 
    709 	mutex_enter(&pdk->dk_openlock);
    710 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    711 		if (uio.uio_resid < sizeof(dkw))
    712 			break;
    713 
    714 		if (sc->sc_state != DKW_STATE_RUNNING)
    715 			continue;
    716 
    717 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    718 			sizeof(dkw.dkw_devname));
    719 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
    720 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
    721 		strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
    722 		dkw.dkw_offset = sc->sc_offset;
    723 		dkw.dkw_size = sc->sc_size;
    724 		strcpy(dkw.dkw_ptype, sc->sc_ptype);
    725 
    726 		error = uiomove(&dkw, sizeof(dkw), &uio);
    727 		if (error)
    728 			break;
    729 		dkwl->dkwl_ncopied++;
    730 	}
    731 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
    732 	mutex_exit(&pdk->dk_openlock);
    733 
    734 	return (error);
    735 }
    736 
    737 device_t
    738 dkwedge_find_by_wname(const char *wname)
    739 {
    740 	device_t dv = NULL;
    741 	struct dkwedge_softc *sc;
    742 	int i;
    743 
    744 	rw_enter(&dkwedges_lock, RW_WRITER);
    745 	for (i = 0; i < ndkwedges; i++) {
    746 		if ((sc = dkwedges[i]) == NULL)
    747 			continue;
    748 		if (strcmp(sc->sc_wname, wname) == 0) {
    749 			if (dv != NULL) {
    750 				printf(
    751 				    "WARNING: double match for wedge name %s "
    752 				    "(%s, %s)\n", wname, device_xname(dv),
    753 				    device_xname(sc->sc_dev));
    754 				continue;
    755 			}
    756 			dv = sc->sc_dev;
    757 		}
    758 	}
    759 	rw_exit(&dkwedges_lock);
    760 	return dv;
    761 }
    762 
    763 void
    764 dkwedge_print_wnames(void)
    765 {
    766 	struct dkwedge_softc *sc;
    767 	int i;
    768 
    769 	rw_enter(&dkwedges_lock, RW_WRITER);
    770 	for (i = 0; i < ndkwedges; i++) {
    771 		if ((sc = dkwedges[i]) == NULL)
    772 			continue;
    773 		printf(" wedge:%s", sc->sc_wname);
    774 	}
    775 	rw_exit(&dkwedges_lock);
    776 }
    777 
    778 /*
    779  * We need a dummy object to stuff into the dkwedge discovery method link
    780  * set to ensure that there is always at least one object in the set.
    781  */
    782 static struct dkwedge_discovery_method dummy_discovery_method;
    783 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
    784 
    785 /*
    786  * dkwedge_init:
    787  *
    788  *	Initialize the disk wedge subsystem.
    789  */
    790 void
    791 dkwedge_init(void)
    792 {
    793 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
    794 	struct dkwedge_discovery_method * const *ddmp;
    795 	struct dkwedge_discovery_method *lddm, *ddm;
    796 
    797 	rw_init(&dkwedges_lock);
    798 	rw_init(&dkwedge_discovery_methods_lock);
    799 
    800 	if (config_cfdriver_attach(&dk_cd) != 0)
    801 		panic("dkwedge: unable to attach cfdriver");
    802 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
    803 		panic("dkwedge: unable to attach cfattach");
    804 
    805 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
    806 
    807 	LIST_INIT(&dkwedge_discovery_methods);
    808 
    809 	__link_set_foreach(ddmp, dkwedge_methods) {
    810 		ddm = *ddmp;
    811 		if (ddm == &dummy_discovery_method)
    812 			continue;
    813 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
    814 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
    815 					 ddm, ddm_list);
    816 			continue;
    817 		}
    818 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
    819 			if (ddm->ddm_priority == lddm->ddm_priority) {
    820 				aprint_error("dk-method-%s: method \"%s\" "
    821 				    "already exists at priority %d\n",
    822 				    ddm->ddm_name, lddm->ddm_name,
    823 				    lddm->ddm_priority);
    824 				/* Not inserted. */
    825 				break;
    826 			}
    827 			if (ddm->ddm_priority < lddm->ddm_priority) {
    828 				/* Higher priority; insert before. */
    829 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
    830 				break;
    831 			}
    832 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
    833 				/* Last one; insert after. */
    834 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
    835 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
    836 				break;
    837 			}
    838 		}
    839 	}
    840 
    841 	rw_exit(&dkwedge_discovery_methods_lock);
    842 }
    843 
    844 #ifdef DKWEDGE_AUTODISCOVER
    845 int	dkwedge_autodiscover = 1;
    846 #else
    847 int	dkwedge_autodiscover = 0;
    848 #endif
    849 
    850 /*
    851  * dkwedge_discover:	[exported function]
    852  *
    853  *	Discover the wedges on a newly attached disk.
    854  *	Remove all unused wedges on the disk first.
    855  */
    856 void
    857 dkwedge_discover(struct disk *pdk)
    858 {
    859 	struct dkwedge_discovery_method *ddm;
    860 	struct vnode *vp;
    861 	int error;
    862 	dev_t pdev;
    863 
    864 	/*
    865 	 * Require people playing with wedges to enable this explicitly.
    866 	 */
    867 	if (dkwedge_autodiscover == 0)
    868 		return;
    869 
    870 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
    871 
    872 	/*
    873 	 * Use the character device for scanning, the block device
    874 	 * is busy if there are already wedges attached.
    875 	 */
    876 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
    877 	if (error) {
    878 		aprint_error("%s: unable to compute pdev, error = %d\n",
    879 		    pdk->dk_name, error);
    880 		goto out;
    881 	}
    882 
    883 	error = cdevvp(pdev, &vp);
    884 	if (error) {
    885 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
    886 		    pdk->dk_name, error);
    887 		goto out;
    888 	}
    889 
    890 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    891 	if (error) {
    892 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
    893 		    pdk->dk_name, error);
    894 		vrele(vp);
    895 		goto out;
    896 	}
    897 
    898 	error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
    899 	if (error) {
    900 		if (error != ENODEV)
    901 			aprint_error("%s: unable to open device, error = %d\n",
    902 			    pdk->dk_name, error);
    903 		vput(vp);
    904 		goto out;
    905 	}
    906 	VOP_UNLOCK(vp);
    907 
    908 	/*
    909 	 * Remove unused wedges
    910 	 */
    911 	dkwedge_delall1(pdk, true);
    912 
    913 	/*
    914 	 * For each supported partition map type, look to see if
    915 	 * this map type exists.  If so, parse it and add the
    916 	 * corresponding wedges.
    917 	 */
    918 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
    919 		error = (*ddm->ddm_discover)(pdk, vp);
    920 		if (error == 0) {
    921 			/* Successfully created wedges; we're done. */
    922 			break;
    923 		}
    924 	}
    925 
    926 	error = vn_close(vp, FREAD, NOCRED);
    927 	if (error) {
    928 		aprint_error("%s: unable to close device, error = %d\n",
    929 		    pdk->dk_name, error);
    930 		/* We'll just assume the vnode has been cleaned up. */
    931 	}
    932 
    933  out:
    934 	rw_exit(&dkwedge_discovery_methods_lock);
    935 }
    936 
    937 /*
    938  * dkwedge_read:
    939  *
    940  *	Read some data from the specified disk, used for
    941  *	partition discovery.
    942  */
    943 int
    944 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
    945     void *tbuf, size_t len)
    946 {
    947 	buf_t *bp;
    948 	int error;
    949 
    950 	/*
    951 	 * The kernel cannot read from a character device vnode
    952 	 * as physio() only handles user memory.
    953 	 *
    954 	 * Determine the corresponding block device and call into
    955 	 * the driver directly.
    956 	 */
    957 
    958 	bp = getiobuf(vp, true);
    959 	bp->b_flags = B_READ;
    960 	bp->b_cflags = BC_BUSY;
    961 	bp->b_dev = devsw_chr2blk(vp->v_rdev);
    962 	bp->b_data = tbuf;
    963 	bp->b_bufsize = bp->b_bcount = len;
    964 	bp->b_blkno = blkno;
    965 	bp->b_cylinder = 0;
    966 	bp->b_error = 0;
    967 
    968 	error = bdev_open(bp->b_dev, FREAD, S_IFBLK, curlwp);
    969 	if (error)
    970 		return error;
    971 
    972 	bdev_strategy(bp);
    973 	error = biowait(bp);
    974 	putiobuf(bp);
    975 
    976 	bdev_close(bp->b_dev, FREAD, S_IFBLK, curlwp);
    977 
    978 	return error;
    979 }
    980 
    981 /*
    982  * dkwedge_lookup:
    983  *
    984  *	Look up a dkwedge_softc based on the provided dev_t.
    985  */
    986 static struct dkwedge_softc *
    987 dkwedge_lookup(dev_t dev)
    988 {
    989 	int unit = minor(dev);
    990 
    991 	if (unit >= ndkwedges)
    992 		return (NULL);
    993 
    994 	KASSERT(dkwedges != NULL);
    995 
    996 	return (dkwedges[unit]);
    997 }
    998 
    999 /*
   1000  * dkopen:		[devsw entry point]
   1001  *
   1002  *	Open a wedge.
   1003  */
   1004 static int
   1005 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
   1006 {
   1007 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1008 	struct vnode *vp;
   1009 	int error = 0;
   1010 
   1011 	if (sc == NULL)
   1012 		return (ENODEV);
   1013 	if (sc->sc_state != DKW_STATE_RUNNING)
   1014 		return (ENXIO);
   1015 
   1016 	/*
   1017 	 * We go through a complicated little dance to only open the parent
   1018 	 * vnode once per wedge, no matter how many times the wedge is
   1019 	 * opened.  The reason?  We see one dkopen() per open call, but
   1020 	 * only dkclose() on the last close.
   1021 	 */
   1022 	mutex_enter(&sc->sc_dk.dk_openlock);
   1023 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1024 	if (sc->sc_dk.dk_openmask == 0) {
   1025 		if (sc->sc_parent->dk_rawopens == 0) {
   1026 			KASSERT(sc->sc_parent->dk_rawvp == NULL);
   1027 			error = bdevvp(sc->sc_pdev, &vp);
   1028 			if (error)
   1029 				goto popen_fail;
   1030 			error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1031 			if (error) {
   1032 				vrele(vp);
   1033 				goto popen_fail;
   1034 			}
   1035 			error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED);
   1036 			if (error) {
   1037 				vput(vp);
   1038 				goto popen_fail;
   1039 			}
   1040 			/* VOP_OPEN() doesn't do this for us. */
   1041 			mutex_enter(vp->v_interlock);
   1042 			vp->v_writecount++;
   1043 			mutex_exit(vp->v_interlock);
   1044 			VOP_UNLOCK(vp);
   1045 			sc->sc_parent->dk_rawvp = vp;
   1046 		}
   1047 		sc->sc_parent->dk_rawopens++;
   1048 	}
   1049 	if (fmt == S_IFCHR)
   1050 		sc->sc_dk.dk_copenmask |= 1;
   1051 	else
   1052 		sc->sc_dk.dk_bopenmask |= 1;
   1053 	sc->sc_dk.dk_openmask =
   1054 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1055 
   1056  popen_fail:
   1057 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1058 	mutex_exit(&sc->sc_dk.dk_openlock);
   1059 	return (error);
   1060 }
   1061 
   1062 /*
   1063  * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock.
   1064  */
   1065 static int
   1066 dklastclose(struct dkwedge_softc *sc)
   1067 {
   1068 	int error = 0, doclose;
   1069 
   1070 	doclose = 0;
   1071 	if (sc->sc_parent->dk_rawopens > 0) {
   1072 		if (--sc->sc_parent->dk_rawopens == 0)
   1073 			doclose = 1;
   1074 	}
   1075 
   1076 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1077 
   1078 	if (doclose) {
   1079 		KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1080 		error = vn_close(sc->sc_parent->dk_rawvp,
   1081 		    FREAD | FWRITE, NOCRED);
   1082 		sc->sc_parent->dk_rawvp = NULL;
   1083 	}
   1084 
   1085 	return error;
   1086 }
   1087 
   1088 /*
   1089  * dkclose:		[devsw entry point]
   1090  *
   1091  *	Close a wedge.
   1092  */
   1093 static int
   1094 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
   1095 {
   1096 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1097 	int error = 0;
   1098 
   1099 	if (sc == NULL)
   1100 		return (ENODEV);
   1101 	if (sc->sc_state != DKW_STATE_RUNNING)
   1102 		return (ENXIO);
   1103 
   1104 	KASSERT(sc->sc_dk.dk_openmask != 0);
   1105 
   1106 	mutex_enter(&sc->sc_dk.dk_openlock);
   1107 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1108 
   1109 	if (fmt == S_IFCHR)
   1110 		sc->sc_dk.dk_copenmask &= ~1;
   1111 	else
   1112 		sc->sc_dk.dk_bopenmask &= ~1;
   1113 	sc->sc_dk.dk_openmask =
   1114 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1115 
   1116 	if (sc->sc_dk.dk_openmask == 0)
   1117 		error = dklastclose(sc); /* releases dk_rawlock */
   1118 	else
   1119 		mutex_exit(&sc->sc_parent->dk_rawlock);
   1120 
   1121 	mutex_exit(&sc->sc_dk.dk_openlock);
   1122 
   1123 	return (error);
   1124 }
   1125 
   1126 /*
   1127  * dkstragegy:		[devsw entry point]
   1128  *
   1129  *	Perform I/O based on the wedge I/O strategy.
   1130  */
   1131 static void
   1132 dkstrategy(struct buf *bp)
   1133 {
   1134 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1135 	uint64_t p_size, p_offset;
   1136 	int s;
   1137 
   1138 	if (sc == NULL) {
   1139 		bp->b_error = ENODEV;
   1140 		goto done;
   1141 	}
   1142 
   1143 	if (sc->sc_state != DKW_STATE_RUNNING ||
   1144 	    sc->sc_parent->dk_rawvp == NULL) {
   1145 		bp->b_error = ENXIO;
   1146 		goto done;
   1147 	}
   1148 
   1149 	/* If it's an empty transfer, wake up the top half now. */
   1150 	if (bp->b_bcount == 0)
   1151 		goto done;
   1152 
   1153 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
   1154 	p_size   = sc->sc_size << sc->sc_parent->dk_blkshift;
   1155 
   1156 	/* Make sure it's in-range. */
   1157 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
   1158 		goto done;
   1159 
   1160 	/* Translate it to the parent's raw LBA. */
   1161 	bp->b_rawblkno = bp->b_blkno + p_offset;
   1162 
   1163 	/* Place it in the queue and start I/O on the unit. */
   1164 	s = splbio();
   1165 	sc->sc_iopend++;
   1166 	bufq_put(sc->sc_bufq, bp);
   1167 	dkstart(sc);
   1168 	splx(s);
   1169 	return;
   1170 
   1171  done:
   1172 	bp->b_resid = bp->b_bcount;
   1173 	biodone(bp);
   1174 }
   1175 
   1176 /*
   1177  * dkstart:
   1178  *
   1179  *	Start I/O that has been enqueued on the wedge.
   1180  *	NOTE: Must be called at splbio()!
   1181  */
   1182 static void
   1183 dkstart(struct dkwedge_softc *sc)
   1184 {
   1185 	struct vnode *vp;
   1186 	struct buf *bp, *nbp;
   1187 
   1188 	/* Do as much work as has been enqueued. */
   1189 	while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
   1190 		if (sc->sc_state != DKW_STATE_RUNNING) {
   1191 			(void) bufq_get(sc->sc_bufq);
   1192 			if (sc->sc_iopend-- == 1 &&
   1193 			    (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
   1194 				sc->sc_flags &= ~DK_F_WAIT_DRAIN;
   1195 				wakeup(&sc->sc_iopend);
   1196 			}
   1197 			bp->b_error = ENXIO;
   1198 			bp->b_resid = bp->b_bcount;
   1199 			biodone(bp);
   1200 		}
   1201 
   1202 		/* Instrumentation. */
   1203 		disk_busy(&sc->sc_dk);
   1204 
   1205 		nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
   1206 		if (nbp == NULL) {
   1207 			/*
   1208 			 * No resources to run this request; leave the
   1209 			 * buffer queued up, and schedule a timer to
   1210 			 * restart the queue in 1/2 a second.
   1211 			 */
   1212 			disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
   1213 			callout_schedule(&sc->sc_restart_ch, hz / 2);
   1214 			return;
   1215 		}
   1216 
   1217 		(void) bufq_get(sc->sc_bufq);
   1218 
   1219 		nbp->b_data = bp->b_data;
   1220 		nbp->b_flags = bp->b_flags;
   1221 		nbp->b_oflags = bp->b_oflags;
   1222 		nbp->b_cflags = bp->b_cflags;
   1223 		nbp->b_iodone = dkiodone;
   1224 		nbp->b_proc = bp->b_proc;
   1225 		nbp->b_blkno = bp->b_rawblkno;
   1226 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
   1227 		nbp->b_bcount = bp->b_bcount;
   1228 		nbp->b_private = bp;
   1229 		BIO_COPYPRIO(nbp, bp);
   1230 
   1231 		vp = nbp->b_vp;
   1232 		if ((nbp->b_flags & B_READ) == 0) {
   1233 			mutex_enter(vp->v_interlock);
   1234 			vp->v_numoutput++;
   1235 			mutex_exit(vp->v_interlock);
   1236 		}
   1237 		VOP_STRATEGY(vp, nbp);
   1238 	}
   1239 }
   1240 
   1241 /*
   1242  * dkiodone:
   1243  *
   1244  *	I/O to a wedge has completed; alert the top half.
   1245  */
   1246 static void
   1247 dkiodone(struct buf *bp)
   1248 {
   1249 	struct buf *obp = bp->b_private;
   1250 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
   1251 
   1252 	int s = splbio();
   1253 
   1254 	if (bp->b_error != 0)
   1255 		obp->b_error = bp->b_error;
   1256 	obp->b_resid = bp->b_resid;
   1257 	putiobuf(bp);
   1258 
   1259 	if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
   1260 		sc->sc_flags &= ~DK_F_WAIT_DRAIN;
   1261 		wakeup(&sc->sc_iopend);
   1262 	}
   1263 
   1264 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
   1265 	    obp->b_flags & B_READ);
   1266 
   1267 	biodone(obp);
   1268 
   1269 	/* Kick the queue in case there is more work we can do. */
   1270 	dkstart(sc);
   1271 	splx(s);
   1272 }
   1273 
   1274 /*
   1275  * dkrestart:
   1276  *
   1277  *	Restart the work queue after it was stalled due to
   1278  *	a resource shortage.  Invoked via a callout.
   1279  */
   1280 static void
   1281 dkrestart(void *v)
   1282 {
   1283 	struct dkwedge_softc *sc = v;
   1284 	int s;
   1285 
   1286 	s = splbio();
   1287 	dkstart(sc);
   1288 	splx(s);
   1289 }
   1290 
   1291 /*
   1292  * dkminphys:
   1293  *
   1294  *	Call parent's minphys function.
   1295  */
   1296 static void
   1297 dkminphys(struct buf *bp)
   1298 {
   1299 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1300 	dev_t dev;
   1301 
   1302 	dev = bp->b_dev;
   1303 	bp->b_dev = sc->sc_pdev;
   1304 	(*sc->sc_parent->dk_driver->d_minphys)(bp);
   1305 	bp->b_dev = dev;
   1306 }
   1307 
   1308 /*
   1309  * dkread:		[devsw entry point]
   1310  *
   1311  *	Read from a wedge.
   1312  */
   1313 static int
   1314 dkread(dev_t dev, struct uio *uio, int flags)
   1315 {
   1316 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1317 
   1318 	if (sc == NULL)
   1319 		return (ENODEV);
   1320 	if (sc->sc_state != DKW_STATE_RUNNING)
   1321 		return (ENXIO);
   1322 
   1323 	return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio));
   1324 }
   1325 
   1326 /*
   1327  * dkwrite:		[devsw entry point]
   1328  *
   1329  *	Write to a wedge.
   1330  */
   1331 static int
   1332 dkwrite(dev_t dev, struct uio *uio, int flags)
   1333 {
   1334 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1335 
   1336 	if (sc == NULL)
   1337 		return (ENODEV);
   1338 	if (sc->sc_state != DKW_STATE_RUNNING)
   1339 		return (ENXIO);
   1340 
   1341 	return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio));
   1342 }
   1343 
   1344 /*
   1345  * dkioctl:		[devsw entry point]
   1346  *
   1347  *	Perform an ioctl request on a wedge.
   1348  */
   1349 static int
   1350 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1351 {
   1352 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1353 	int error = 0;
   1354 
   1355 	if (sc == NULL)
   1356 		return (ENODEV);
   1357 	if (sc->sc_state != DKW_STATE_RUNNING)
   1358 		return (ENXIO);
   1359 	if (sc->sc_parent->dk_rawvp == NULL)
   1360 		return (ENXIO);
   1361 
   1362 	error = disk_ioctl(&sc->sc_dk, cmd, data, flag, l);
   1363 	if (error != EPASSTHROUGH)
   1364 		return (error);
   1365 
   1366 	error = 0;
   1367 
   1368 	switch (cmd) {
   1369 	case DIOCCACHESYNC:
   1370 		/*
   1371 		 * XXX Do we really need to care about having a writable
   1372 		 * file descriptor here?
   1373 		 */
   1374 		if ((flag & FWRITE) == 0)
   1375 			error = EBADF;
   1376 		else
   1377 			error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
   1378 					  cmd, data, flag,
   1379 					  l != NULL ? l->l_cred : NOCRED);
   1380 		break;
   1381 	case DIOCGWEDGEINFO:
   1382 	    {
   1383 		struct dkwedge_info *dkw = (void *) data;
   1384 
   1385 		strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
   1386 			sizeof(dkw->dkw_devname));
   1387 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
   1388 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
   1389 		strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
   1390 		dkw->dkw_offset = sc->sc_offset;
   1391 		dkw->dkw_size = sc->sc_size;
   1392 		strcpy(dkw->dkw_ptype, sc->sc_ptype);
   1393 
   1394 		break;
   1395 	    }
   1396 
   1397 	default:
   1398 		error = ENOTTY;
   1399 	}
   1400 
   1401 	return (error);
   1402 }
   1403 
   1404 /*
   1405  * dkdiscard:		[devsw entry point]
   1406  *
   1407  *	Perform a discard-range request on a wedge.
   1408  */
   1409 static int
   1410 dkdiscard(dev_t dev, off_t pos, off_t len)
   1411 {
   1412 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1413 	unsigned shift;
   1414 	off_t offset, maxlen;
   1415 
   1416 	if (sc == NULL)
   1417 		return (ENODEV);
   1418 	if (sc->sc_state != DKW_STATE_RUNNING)
   1419 		return (ENXIO);
   1420 	if (sc->sc_parent->dk_rawvp == NULL)
   1421 		return (ENXIO);
   1422 
   1423 	shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
   1424 	KASSERT(__type_fit(off_t, sc->sc_size));
   1425 	KASSERT(__type_fit(off_t, sc->sc_offset));
   1426 	KASSERT(0 <= sc->sc_offset);
   1427 	KASSERT(sc->sc_size <= (__type_max(off_t) >> shift));
   1428 	KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - sc->sc_size));
   1429 	offset = ((off_t)sc->sc_offset << shift);
   1430 	maxlen = ((off_t)sc->sc_size << shift);
   1431 
   1432 	if (len > maxlen)
   1433 		return (EINVAL);
   1434 	if (pos > (maxlen - len))
   1435 		return (EINVAL);
   1436 
   1437 	pos += offset;
   1438 	return VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
   1439 }
   1440 
   1441 /*
   1442  * dksize:		[devsw entry point]
   1443  *
   1444  *	Query the size of a wedge for the purpose of performing a dump
   1445  *	or for swapping to.
   1446  */
   1447 static int
   1448 dksize(dev_t dev)
   1449 {
   1450 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1451 	int rv = -1;
   1452 
   1453 	if (sc == NULL)
   1454 		return (-1);
   1455 	if (sc->sc_state != DKW_STATE_RUNNING)
   1456 		return (-1);
   1457 
   1458 	mutex_enter(&sc->sc_dk.dk_openlock);
   1459 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1460 
   1461 	/* Our content type is static, no need to open the device. */
   1462 
   1463 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
   1464 		/* Saturate if we are larger than INT_MAX. */
   1465 		if (sc->sc_size > INT_MAX)
   1466 			rv = INT_MAX;
   1467 		else
   1468 			rv = (int) sc->sc_size;
   1469 	}
   1470 
   1471 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1472 	mutex_exit(&sc->sc_dk.dk_openlock);
   1473 
   1474 	return (rv);
   1475 }
   1476 
   1477 /*
   1478  * dkdump:		[devsw entry point]
   1479  *
   1480  *	Perform a crash dump to a wedge.
   1481  */
   1482 static int
   1483 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
   1484 {
   1485 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1486 	const struct bdevsw *bdev;
   1487 	int rv = 0;
   1488 
   1489 	if (sc == NULL)
   1490 		return (ENODEV);
   1491 	if (sc->sc_state != DKW_STATE_RUNNING)
   1492 		return (ENXIO);
   1493 
   1494 	mutex_enter(&sc->sc_dk.dk_openlock);
   1495 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1496 
   1497 	/* Our content type is static, no need to open the device. */
   1498 
   1499 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
   1500 		rv = ENXIO;
   1501 		goto out;
   1502 	}
   1503 	if (size % DEV_BSIZE != 0) {
   1504 		rv = EINVAL;
   1505 		goto out;
   1506 	}
   1507 	if (blkno + size / DEV_BSIZE > sc->sc_size) {
   1508 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
   1509 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
   1510 		    size / DEV_BSIZE, sc->sc_size);
   1511 		rv = EINVAL;
   1512 		goto out;
   1513 	}
   1514 
   1515 	bdev = bdevsw_lookup(sc->sc_pdev);
   1516 	rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
   1517 
   1518 out:
   1519 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1520 	mutex_exit(&sc->sc_dk.dk_openlock);
   1521 
   1522 	return rv;
   1523 }
   1524 
   1525 /*
   1526  * config glue
   1527  */
   1528 
   1529 /*
   1530  * dkwedge_find_partition
   1531  *
   1532  *	Find wedge corresponding to the specified parent name
   1533  *	and offset/length.
   1534  */
   1535 device_t
   1536 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
   1537 {
   1538 	struct dkwedge_softc *sc;
   1539 	int i;
   1540 	device_t wedge = NULL;
   1541 
   1542 	rw_enter(&dkwedges_lock, RW_READER);
   1543 	for (i = 0; i < ndkwedges; i++) {
   1544 		if ((sc = dkwedges[i]) == NULL)
   1545 			continue;
   1546 		if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
   1547 		    sc->sc_offset == startblk &&
   1548 		    sc->sc_size == nblks) {
   1549 			if (wedge) {
   1550 				printf("WARNING: double match for boot wedge "
   1551 				    "(%s, %s)\n",
   1552 				    device_xname(wedge),
   1553 				    device_xname(sc->sc_dev));
   1554 				continue;
   1555 			}
   1556 			wedge = sc->sc_dev;
   1557 		}
   1558 	}
   1559 	rw_exit(&dkwedges_lock);
   1560 
   1561 	return wedge;
   1562 }
   1563 
   1564 const char *
   1565 dkwedge_get_parent_name(dev_t dev)
   1566 {
   1567 	/* XXX: perhaps do this in lookup? */
   1568 	int bmaj = bdevsw_lookup_major(&dk_bdevsw);
   1569 	int cmaj = cdevsw_lookup_major(&dk_cdevsw);
   1570 	if (major(dev) != bmaj && major(dev) != cmaj)
   1571 		return NULL;
   1572 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1573 	if (sc == NULL)
   1574 		return NULL;
   1575 	return sc->sc_parent->dk_name;
   1576 }
   1577 
   1578