dk.c revision 1.76 1 /* $NetBSD: dk.c,v 1.76 2014/12/08 17:45:12 mlelstv Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.76 2014/12/08 17:45:12 mlelstv Exp $");
34
35 #ifdef _KERNEL_OPT
36 #include "opt_dkwedge.h"
37 #endif
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/errno.h>
43 #include <sys/pool.h>
44 #include <sys/ioctl.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/fcntl.h>
48 #include <sys/buf.h>
49 #include <sys/bufq.h>
50 #include <sys/vnode.h>
51 #include <sys/stat.h>
52 #include <sys/conf.h>
53 #include <sys/callout.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/device.h>
57 #include <sys/kauth.h>
58
59 #include <miscfs/specfs/specdev.h>
60
61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
62
63 typedef enum {
64 DKW_STATE_LARVAL = 0,
65 DKW_STATE_RUNNING = 1,
66 DKW_STATE_DYING = 2,
67 DKW_STATE_DEAD = 666
68 } dkwedge_state_t;
69
70 struct dkwedge_softc {
71 device_t sc_dev; /* pointer to our pseudo-device */
72 struct cfdata sc_cfdata; /* our cfdata structure */
73 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
74
75 dkwedge_state_t sc_state; /* state this wedge is in */
76
77 struct disk *sc_parent; /* parent disk */
78 daddr_t sc_offset; /* LBA offset of wedge in parent */
79 uint64_t sc_size; /* size of wedge in blocks */
80 char sc_ptype[32]; /* partition type */
81 dev_t sc_pdev; /* cached parent's dev_t */
82 /* link on parent's wedge list */
83 LIST_ENTRY(dkwedge_softc) sc_plink;
84
85 struct disk sc_dk; /* our own disk structure */
86 struct bufq_state *sc_bufq; /* buffer queue */
87 struct callout sc_restart_ch; /* callout to restart I/O */
88
89 u_int sc_iopend; /* I/Os pending */
90 int sc_flags; /* flags (splbio) */
91 };
92
93 #define DK_F_WAIT_DRAIN 0x0001 /* waiting for I/O to drain */
94
95 static void dkstart(struct dkwedge_softc *);
96 static void dkiodone(struct buf *);
97 static void dkrestart(void *);
98 static void dkminphys(struct buf *);
99
100 static int dklastclose(struct dkwedge_softc *);
101 static int dkwedge_cleanup_parent(struct dkwedge_softc *, int);
102 static int dkwedge_detach(device_t, int);
103 static void dkwedge_delall1(struct disk *, bool);
104 static int dkwedge_del1(struct dkwedge_info *, int);
105
106 static dev_type_open(dkopen);
107 static dev_type_close(dkclose);
108 static dev_type_read(dkread);
109 static dev_type_write(dkwrite);
110 static dev_type_ioctl(dkioctl);
111 static dev_type_strategy(dkstrategy);
112 static dev_type_dump(dkdump);
113 static dev_type_size(dksize);
114 static dev_type_discard(dkdiscard);
115
116 const struct bdevsw dk_bdevsw = {
117 .d_open = dkopen,
118 .d_close = dkclose,
119 .d_strategy = dkstrategy,
120 .d_ioctl = dkioctl,
121 .d_dump = dkdump,
122 .d_psize = dksize,
123 .d_discard = dkdiscard,
124 .d_flag = D_DISK
125 };
126
127 const struct cdevsw dk_cdevsw = {
128 .d_open = dkopen,
129 .d_close = dkclose,
130 .d_read = dkread,
131 .d_write = dkwrite,
132 .d_ioctl = dkioctl,
133 .d_stop = nostop,
134 .d_tty = notty,
135 .d_poll = nopoll,
136 .d_mmap = nommap,
137 .d_kqfilter = nokqfilter,
138 .d_discard = dkdiscard,
139 .d_flag = D_DISK
140 };
141
142 static struct dkwedge_softc **dkwedges;
143 static u_int ndkwedges;
144 static krwlock_t dkwedges_lock;
145
146 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
147 static krwlock_t dkwedge_discovery_methods_lock;
148
149 /*
150 * dkwedge_match:
151 *
152 * Autoconfiguration match function for pseudo-device glue.
153 */
154 static int
155 dkwedge_match(device_t parent, cfdata_t match,
156 void *aux)
157 {
158
159 /* Pseudo-device; always present. */
160 return (1);
161 }
162
163 /*
164 * dkwedge_attach:
165 *
166 * Autoconfiguration attach function for pseudo-device glue.
167 */
168 static void
169 dkwedge_attach(device_t parent, device_t self,
170 void *aux)
171 {
172
173 if (!pmf_device_register(self, NULL, NULL))
174 aprint_error_dev(self, "couldn't establish power handler\n");
175 }
176
177 CFDRIVER_DECL(dk, DV_DISK, NULL);
178 CFATTACH_DECL3_NEW(dk, 0,
179 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
180 DVF_DETACH_SHUTDOWN);
181
182 /*
183 * dkwedge_wait_drain:
184 *
185 * Wait for I/O on the wedge to drain.
186 * NOTE: Must be called at splbio()!
187 */
188 static void
189 dkwedge_wait_drain(struct dkwedge_softc *sc)
190 {
191
192 while (sc->sc_iopend != 0) {
193 sc->sc_flags |= DK_F_WAIT_DRAIN;
194 (void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
195 }
196 }
197
198 /*
199 * dkwedge_compute_pdev:
200 *
201 * Compute the parent disk's dev_t.
202 */
203 static int
204 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
205 {
206 const char *name, *cp;
207 devmajor_t pmaj;
208 int punit;
209 char devname[16];
210
211 name = pname;
212 switch (type) {
213 case VBLK:
214 pmaj = devsw_name2blk(name, devname, sizeof(devname));
215 break;
216 case VCHR:
217 pmaj = devsw_name2chr(name, devname, sizeof(devname));
218 break;
219 default:
220 pmaj = NODEVMAJOR;
221 break;
222 }
223 if (pmaj == NODEVMAJOR)
224 return (ENODEV);
225
226 name += strlen(devname);
227 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
228 punit = (punit * 10) + (*cp - '0');
229 if (cp == name) {
230 /* Invalid parent disk name. */
231 return (ENODEV);
232 }
233
234 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
235
236 return (0);
237 }
238
239 /*
240 * dkwedge_array_expand:
241 *
242 * Expand the dkwedges array.
243 */
244 static void
245 dkwedge_array_expand(void)
246 {
247 int newcnt = ndkwedges + 16;
248 struct dkwedge_softc **newarray, **oldarray;
249
250 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
251 M_WAITOK|M_ZERO);
252 if ((oldarray = dkwedges) != NULL)
253 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
254 dkwedges = newarray;
255 ndkwedges = newcnt;
256 if (oldarray != NULL)
257 free(oldarray, M_DKWEDGE);
258 }
259
260 static void
261 dk_set_geometry(struct dkwedge_softc *sc)
262 {
263 struct disk *disk = &sc->sc_dk;
264 struct disk_geom *dg = &disk->dk_geom;
265
266 memset(dg, 0, sizeof(*dg));
267
268 dg->dg_secperunit = sc->sc_size >> disk->dk_blkshift;
269 dg->dg_secsize = DEV_BSIZE << disk->dk_blkshift;
270
271 /* fake numbers, 1 cylinder is 1 MB with default sector size */
272 dg->dg_nsectors = 32;
273 dg->dg_ntracks = 64;
274 dg->dg_ncylinders = dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
275
276 disk_set_info(sc->sc_dev, disk, NULL);
277 }
278
279 /*
280 * dkwedge_add: [exported function]
281 *
282 * Add a disk wedge based on the provided information.
283 *
284 * The incoming dkw_devname[] is ignored, instead being
285 * filled in and returned to the caller.
286 */
287 int
288 dkwedge_add(struct dkwedge_info *dkw)
289 {
290 struct dkwedge_softc *sc, *lsc;
291 struct disk *pdk;
292 u_int unit;
293 int error;
294 dev_t pdev;
295
296 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
297 pdk = disk_find(dkw->dkw_parent);
298 if (pdk == NULL)
299 return (ENODEV);
300
301 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
302 if (error)
303 return (error);
304
305 if (dkw->dkw_offset < 0)
306 return (EINVAL);
307
308 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
309 sc->sc_state = DKW_STATE_LARVAL;
310 sc->sc_parent = pdk;
311 sc->sc_pdev = pdev;
312 sc->sc_offset = dkw->dkw_offset;
313 sc->sc_size = dkw->dkw_size;
314
315 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
316 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
317
318 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
319 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
320
321 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
322
323 callout_init(&sc->sc_restart_ch, 0);
324 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
325
326 /*
327 * Wedge will be added; increment the wedge count for the parent.
328 * Only allow this to happend if RAW_PART is the only thing open.
329 */
330 mutex_enter(&pdk->dk_openlock);
331 if (pdk->dk_openmask & ~(1 << RAW_PART))
332 error = EBUSY;
333 else {
334 /* Check for wedge overlap. */
335 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
336 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
337 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
338
339 if (sc->sc_offset >= lsc->sc_offset &&
340 sc->sc_offset <= llastblk) {
341 /* Overlaps the tail of the existing wedge. */
342 break;
343 }
344 if (lastblk >= lsc->sc_offset &&
345 lastblk <= llastblk) {
346 /* Overlaps the head of the existing wedge. */
347 break;
348 }
349 }
350 if (lsc != NULL) {
351 if (sc->sc_offset == lsc->sc_offset &&
352 sc->sc_size == lsc->sc_size &&
353 strcmp(sc->sc_wname, lsc->sc_wname) == 0)
354 error = EEXIST;
355 else
356 error = EINVAL;
357 } else {
358 pdk->dk_nwedges++;
359 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
360 }
361 }
362 mutex_exit(&pdk->dk_openlock);
363 if (error) {
364 bufq_free(sc->sc_bufq);
365 free(sc, M_DKWEDGE);
366 return (error);
367 }
368
369 /* Fill in our cfdata for the pseudo-device glue. */
370 sc->sc_cfdata.cf_name = dk_cd.cd_name;
371 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
372 /* sc->sc_cfdata.cf_unit set below */
373 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
374
375 /* Insert the larval wedge into the array. */
376 rw_enter(&dkwedges_lock, RW_WRITER);
377 for (error = 0;;) {
378 struct dkwedge_softc **scpp;
379
380 /*
381 * Check for a duplicate wname while searching for
382 * a slot.
383 */
384 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
385 if (dkwedges[unit] == NULL) {
386 if (scpp == NULL) {
387 scpp = &dkwedges[unit];
388 sc->sc_cfdata.cf_unit = unit;
389 }
390 } else {
391 /* XXX Unicode. */
392 if (strcmp(dkwedges[unit]->sc_wname,
393 sc->sc_wname) == 0) {
394 error = EEXIST;
395 break;
396 }
397 }
398 }
399 if (error)
400 break;
401 KASSERT(unit == ndkwedges);
402 if (scpp == NULL)
403 dkwedge_array_expand();
404 else {
405 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
406 *scpp = sc;
407 break;
408 }
409 }
410 rw_exit(&dkwedges_lock);
411 if (error) {
412 mutex_enter(&pdk->dk_openlock);
413 pdk->dk_nwedges--;
414 LIST_REMOVE(sc, sc_plink);
415 mutex_exit(&pdk->dk_openlock);
416
417 bufq_free(sc->sc_bufq);
418 free(sc, M_DKWEDGE);
419 return (error);
420 }
421
422 /*
423 * Now that we know the unit #, attach a pseudo-device for
424 * this wedge instance. This will provide us with the
425 * device_t necessary for glue to other parts of the system.
426 *
427 * This should never fail, unless we're almost totally out of
428 * memory.
429 */
430 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
431 aprint_error("%s%u: unable to attach pseudo-device\n",
432 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
433
434 rw_enter(&dkwedges_lock, RW_WRITER);
435 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
436 rw_exit(&dkwedges_lock);
437
438 mutex_enter(&pdk->dk_openlock);
439 pdk->dk_nwedges--;
440 LIST_REMOVE(sc, sc_plink);
441 mutex_exit(&pdk->dk_openlock);
442
443 bufq_free(sc->sc_bufq);
444 free(sc, M_DKWEDGE);
445 return (ENOMEM);
446 }
447
448 /* Return the devname to the caller. */
449 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
450 sizeof(dkw->dkw_devname));
451
452 /*
453 * XXX Really ought to make the disk_attach() and the changing
454 * of state to RUNNING atomic.
455 */
456
457 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
458 disk_blocksize(&sc->sc_dk, DEV_BSIZE << pdk->dk_blkshift);
459 dk_set_geometry(sc);
460 disk_attach(&sc->sc_dk);
461
462 /* Disk wedge is ready for use! */
463 sc->sc_state = DKW_STATE_RUNNING;
464
465 /* Announce our arrival. */
466 aprint_normal("%s at %s: %s\n", device_xname(sc->sc_dev), pdk->dk_name,
467 sc->sc_wname); /* XXX Unicode */
468 aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
469 device_xname(sc->sc_dev), sc->sc_size, sc->sc_offset, sc->sc_ptype);
470
471 return (0);
472 }
473
474 /*
475 * dkwedge_find:
476 *
477 * Lookup a disk wedge based on the provided information.
478 * NOTE: We look up the wedge based on the wedge devname,
479 * not wname.
480 *
481 * Return NULL if the wedge is not found, otherwise return
482 * the wedge's softc. Assign the wedge's unit number to unitp
483 * if unitp is not NULL.
484 */
485 static struct dkwedge_softc *
486 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
487 {
488 struct dkwedge_softc *sc = NULL;
489 u_int unit;
490
491 /* Find our softc. */
492 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
493 rw_enter(&dkwedges_lock, RW_READER);
494 for (unit = 0; unit < ndkwedges; unit++) {
495 if ((sc = dkwedges[unit]) != NULL &&
496 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
497 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
498 break;
499 }
500 }
501 rw_exit(&dkwedges_lock);
502 if (unit == ndkwedges)
503 return NULL;
504
505 if (unitp != NULL)
506 *unitp = unit;
507
508 return sc;
509 }
510
511 /*
512 * dkwedge_del: [exported function]
513 *
514 * Delete a disk wedge based on the provided information.
515 * NOTE: We look up the wedge based on the wedge devname,
516 * not wname.
517 */
518 int
519 dkwedge_del(struct dkwedge_info *dkw)
520 {
521 return dkwedge_del1(dkw, 0);
522 }
523
524 int
525 dkwedge_del1(struct dkwedge_info *dkw, int flags)
526 {
527 struct dkwedge_softc *sc = NULL;
528
529 /* Find our softc. */
530 if ((sc = dkwedge_find(dkw, NULL)) == NULL)
531 return (ESRCH);
532
533 return config_detach(sc->sc_dev, flags);
534 }
535
536 static int
537 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags)
538 {
539 struct disk *dk = &sc->sc_dk;
540 int rc;
541
542 rc = 0;
543 mutex_enter(&dk->dk_openlock);
544 if (dk->dk_openmask == 0)
545 ; /* nothing to do */
546 else if ((flags & DETACH_FORCE) == 0)
547 rc = EBUSY;
548 else {
549 mutex_enter(&sc->sc_parent->dk_rawlock);
550 rc = dklastclose(sc); /* releases dk_rawlock */
551 }
552 mutex_exit(&dk->dk_openlock);
553
554 return rc;
555 }
556
557 /*
558 * dkwedge_detach:
559 *
560 * Autoconfiguration detach function for pseudo-device glue.
561 */
562 static int
563 dkwedge_detach(device_t self, int flags)
564 {
565 struct dkwedge_softc *sc = NULL;
566 u_int unit;
567 int bmaj, cmaj, rc, s;
568
569 rw_enter(&dkwedges_lock, RW_WRITER);
570 for (unit = 0; unit < ndkwedges; unit++) {
571 if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
572 break;
573 }
574 if (unit == ndkwedges)
575 rc = ENXIO;
576 else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) {
577 /* Mark the wedge as dying. */
578 sc->sc_state = DKW_STATE_DYING;
579 }
580 rw_exit(&dkwedges_lock);
581
582 if (rc != 0)
583 return rc;
584
585 pmf_device_deregister(self);
586
587 /* Locate the wedge major numbers. */
588 bmaj = bdevsw_lookup_major(&dk_bdevsw);
589 cmaj = cdevsw_lookup_major(&dk_cdevsw);
590
591 /* Kill any pending restart. */
592 callout_stop(&sc->sc_restart_ch);
593
594 /*
595 * dkstart() will kill any queued buffers now that the
596 * state of the wedge is not RUNNING. Once we've done
597 * that, wait for any other pending I/O to complete.
598 */
599 s = splbio();
600 dkstart(sc);
601 dkwedge_wait_drain(sc);
602 splx(s);
603
604 /* Nuke the vnodes for any open instances. */
605 vdevgone(bmaj, unit, unit, VBLK);
606 vdevgone(cmaj, unit, unit, VCHR);
607
608 /* Clean up the parent. */
609 dkwedge_cleanup_parent(sc, flags | DETACH_FORCE);
610
611 /* Announce our departure. */
612 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
613 sc->sc_parent->dk_name,
614 sc->sc_wname); /* XXX Unicode */
615
616 mutex_enter(&sc->sc_parent->dk_openlock);
617 sc->sc_parent->dk_nwedges--;
618 LIST_REMOVE(sc, sc_plink);
619 mutex_exit(&sc->sc_parent->dk_openlock);
620
621 /* Delete our buffer queue. */
622 bufq_free(sc->sc_bufq);
623
624 /* Detach from the disk list. */
625 disk_detach(&sc->sc_dk);
626 disk_destroy(&sc->sc_dk);
627
628 /* Poof. */
629 rw_enter(&dkwedges_lock, RW_WRITER);
630 dkwedges[unit] = NULL;
631 sc->sc_state = DKW_STATE_DEAD;
632 rw_exit(&dkwedges_lock);
633
634 free(sc, M_DKWEDGE);
635
636 return 0;
637 }
638
639 /*
640 * dkwedge_delall: [exported function]
641 *
642 * Delete all of the wedges on the specified disk. Used when
643 * a disk is being detached.
644 */
645 void
646 dkwedge_delall(struct disk *pdk)
647 {
648 dkwedge_delall1(pdk, false);
649 }
650
651 static void
652 dkwedge_delall1(struct disk *pdk, bool idleonly)
653 {
654 struct dkwedge_info dkw;
655 struct dkwedge_softc *sc;
656 int flags;
657
658 flags = DETACH_QUIET;
659 if (!idleonly) flags |= DETACH_FORCE;
660
661 for (;;) {
662 mutex_enter(&pdk->dk_openlock);
663 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
664 if (!idleonly || sc->sc_dk.dk_openmask == 0)
665 break;
666 }
667 if (sc == NULL) {
668 KASSERT(idleonly || pdk->dk_nwedges == 0);
669 mutex_exit(&pdk->dk_openlock);
670 return;
671 }
672 strcpy(dkw.dkw_parent, pdk->dk_name);
673 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
674 sizeof(dkw.dkw_devname));
675 mutex_exit(&pdk->dk_openlock);
676 (void) dkwedge_del1(&dkw, flags);
677 }
678 }
679
680 /*
681 * dkwedge_list: [exported function]
682 *
683 * List all of the wedges on a particular disk.
684 * If p == NULL, the buffer is in kernel space. Otherwise, it is
685 * in user space of the specified process.
686 */
687 int
688 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
689 {
690 struct uio uio;
691 struct iovec iov;
692 struct dkwedge_softc *sc;
693 struct dkwedge_info dkw;
694 int error = 0;
695
696 iov.iov_base = dkwl->dkwl_buf;
697 iov.iov_len = dkwl->dkwl_bufsize;
698
699 uio.uio_iov = &iov;
700 uio.uio_iovcnt = 1;
701 uio.uio_offset = 0;
702 uio.uio_resid = dkwl->dkwl_bufsize;
703 uio.uio_rw = UIO_READ;
704 KASSERT(l == curlwp);
705 uio.uio_vmspace = l->l_proc->p_vmspace;
706
707 dkwl->dkwl_ncopied = 0;
708
709 mutex_enter(&pdk->dk_openlock);
710 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
711 if (uio.uio_resid < sizeof(dkw))
712 break;
713
714 if (sc->sc_state != DKW_STATE_RUNNING)
715 continue;
716
717 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
718 sizeof(dkw.dkw_devname));
719 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
720 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
721 strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
722 dkw.dkw_offset = sc->sc_offset;
723 dkw.dkw_size = sc->sc_size;
724 strcpy(dkw.dkw_ptype, sc->sc_ptype);
725
726 error = uiomove(&dkw, sizeof(dkw), &uio);
727 if (error)
728 break;
729 dkwl->dkwl_ncopied++;
730 }
731 dkwl->dkwl_nwedges = pdk->dk_nwedges;
732 mutex_exit(&pdk->dk_openlock);
733
734 return (error);
735 }
736
737 device_t
738 dkwedge_find_by_wname(const char *wname)
739 {
740 device_t dv = NULL;
741 struct dkwedge_softc *sc;
742 int i;
743
744 rw_enter(&dkwedges_lock, RW_WRITER);
745 for (i = 0; i < ndkwedges; i++) {
746 if ((sc = dkwedges[i]) == NULL)
747 continue;
748 if (strcmp(sc->sc_wname, wname) == 0) {
749 if (dv != NULL) {
750 printf(
751 "WARNING: double match for wedge name %s "
752 "(%s, %s)\n", wname, device_xname(dv),
753 device_xname(sc->sc_dev));
754 continue;
755 }
756 dv = sc->sc_dev;
757 }
758 }
759 rw_exit(&dkwedges_lock);
760 return dv;
761 }
762
763 void
764 dkwedge_print_wnames(void)
765 {
766 struct dkwedge_softc *sc;
767 int i;
768
769 rw_enter(&dkwedges_lock, RW_WRITER);
770 for (i = 0; i < ndkwedges; i++) {
771 if ((sc = dkwedges[i]) == NULL)
772 continue;
773 printf(" wedge:%s", sc->sc_wname);
774 }
775 rw_exit(&dkwedges_lock);
776 }
777
778 /*
779 * We need a dummy object to stuff into the dkwedge discovery method link
780 * set to ensure that there is always at least one object in the set.
781 */
782 static struct dkwedge_discovery_method dummy_discovery_method;
783 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
784
785 /*
786 * dkwedge_init:
787 *
788 * Initialize the disk wedge subsystem.
789 */
790 void
791 dkwedge_init(void)
792 {
793 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
794 struct dkwedge_discovery_method * const *ddmp;
795 struct dkwedge_discovery_method *lddm, *ddm;
796
797 rw_init(&dkwedges_lock);
798 rw_init(&dkwedge_discovery_methods_lock);
799
800 if (config_cfdriver_attach(&dk_cd) != 0)
801 panic("dkwedge: unable to attach cfdriver");
802 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
803 panic("dkwedge: unable to attach cfattach");
804
805 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
806
807 LIST_INIT(&dkwedge_discovery_methods);
808
809 __link_set_foreach(ddmp, dkwedge_methods) {
810 ddm = *ddmp;
811 if (ddm == &dummy_discovery_method)
812 continue;
813 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
814 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
815 ddm, ddm_list);
816 continue;
817 }
818 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
819 if (ddm->ddm_priority == lddm->ddm_priority) {
820 aprint_error("dk-method-%s: method \"%s\" "
821 "already exists at priority %d\n",
822 ddm->ddm_name, lddm->ddm_name,
823 lddm->ddm_priority);
824 /* Not inserted. */
825 break;
826 }
827 if (ddm->ddm_priority < lddm->ddm_priority) {
828 /* Higher priority; insert before. */
829 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
830 break;
831 }
832 if (LIST_NEXT(lddm, ddm_list) == NULL) {
833 /* Last one; insert after. */
834 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
835 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
836 break;
837 }
838 }
839 }
840
841 rw_exit(&dkwedge_discovery_methods_lock);
842 }
843
844 #ifdef DKWEDGE_AUTODISCOVER
845 int dkwedge_autodiscover = 1;
846 #else
847 int dkwedge_autodiscover = 0;
848 #endif
849
850 /*
851 * dkwedge_discover: [exported function]
852 *
853 * Discover the wedges on a newly attached disk.
854 * Remove all unused wedges on the disk first.
855 */
856 void
857 dkwedge_discover(struct disk *pdk)
858 {
859 struct dkwedge_discovery_method *ddm;
860 struct vnode *vp;
861 int error;
862 dev_t pdev;
863
864 /*
865 * Require people playing with wedges to enable this explicitly.
866 */
867 if (dkwedge_autodiscover == 0)
868 return;
869
870 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
871
872 /*
873 * Use the character device for scanning, the block device
874 * is busy if there are already wedges attached.
875 */
876 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
877 if (error) {
878 aprint_error("%s: unable to compute pdev, error = %d\n",
879 pdk->dk_name, error);
880 goto out;
881 }
882
883 error = cdevvp(pdev, &vp);
884 if (error) {
885 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
886 pdk->dk_name, error);
887 goto out;
888 }
889
890 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
891 if (error) {
892 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
893 pdk->dk_name, error);
894 vrele(vp);
895 goto out;
896 }
897
898 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
899 if (error) {
900 if (error != ENODEV)
901 aprint_error("%s: unable to open device, error = %d\n",
902 pdk->dk_name, error);
903 vput(vp);
904 goto out;
905 }
906 VOP_UNLOCK(vp);
907
908 /*
909 * Remove unused wedges
910 */
911 dkwedge_delall1(pdk, true);
912
913 /*
914 * For each supported partition map type, look to see if
915 * this map type exists. If so, parse it and add the
916 * corresponding wedges.
917 */
918 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
919 error = (*ddm->ddm_discover)(pdk, vp);
920 if (error == 0) {
921 /* Successfully created wedges; we're done. */
922 break;
923 }
924 }
925
926 error = vn_close(vp, FREAD, NOCRED);
927 if (error) {
928 aprint_error("%s: unable to close device, error = %d\n",
929 pdk->dk_name, error);
930 /* We'll just assume the vnode has been cleaned up. */
931 }
932
933 out:
934 rw_exit(&dkwedge_discovery_methods_lock);
935 }
936
937 /*
938 * dkwedge_read:
939 *
940 * Read some data from the specified disk, used for
941 * partition discovery.
942 */
943 int
944 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
945 void *tbuf, size_t len)
946 {
947 buf_t *bp;
948 int error;
949
950 /*
951 * The kernel cannot read from a character device vnode
952 * as physio() only handles user memory.
953 *
954 * Determine the corresponding block device and call into
955 * the driver directly.
956 */
957
958 bp = getiobuf(vp, true);
959 bp->b_flags = B_READ;
960 bp->b_cflags = BC_BUSY;
961 bp->b_dev = devsw_chr2blk(vp->v_rdev);
962 bp->b_data = tbuf;
963 bp->b_bufsize = bp->b_bcount = len;
964 bp->b_blkno = blkno;
965 bp->b_cylinder = 0;
966 bp->b_error = 0;
967
968 error = bdev_open(bp->b_dev, FREAD, S_IFBLK, curlwp);
969 if (error)
970 return error;
971
972 bdev_strategy(bp);
973 error = biowait(bp);
974 putiobuf(bp);
975
976 bdev_close(bp->b_dev, FREAD, S_IFBLK, curlwp);
977
978 return error;
979 }
980
981 /*
982 * dkwedge_lookup:
983 *
984 * Look up a dkwedge_softc based on the provided dev_t.
985 */
986 static struct dkwedge_softc *
987 dkwedge_lookup(dev_t dev)
988 {
989 int unit = minor(dev);
990
991 if (unit >= ndkwedges)
992 return (NULL);
993
994 KASSERT(dkwedges != NULL);
995
996 return (dkwedges[unit]);
997 }
998
999 /*
1000 * dkopen: [devsw entry point]
1001 *
1002 * Open a wedge.
1003 */
1004 static int
1005 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
1006 {
1007 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1008 struct vnode *vp;
1009 int error = 0;
1010
1011 if (sc == NULL)
1012 return (ENODEV);
1013 if (sc->sc_state != DKW_STATE_RUNNING)
1014 return (ENXIO);
1015
1016 /*
1017 * We go through a complicated little dance to only open the parent
1018 * vnode once per wedge, no matter how many times the wedge is
1019 * opened. The reason? We see one dkopen() per open call, but
1020 * only dkclose() on the last close.
1021 */
1022 mutex_enter(&sc->sc_dk.dk_openlock);
1023 mutex_enter(&sc->sc_parent->dk_rawlock);
1024 if (sc->sc_dk.dk_openmask == 0) {
1025 if (sc->sc_parent->dk_rawopens == 0) {
1026 KASSERT(sc->sc_parent->dk_rawvp == NULL);
1027 error = bdevvp(sc->sc_pdev, &vp);
1028 if (error)
1029 goto popen_fail;
1030 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1031 if (error) {
1032 vrele(vp);
1033 goto popen_fail;
1034 }
1035 error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED);
1036 if (error) {
1037 vput(vp);
1038 goto popen_fail;
1039 }
1040 /* VOP_OPEN() doesn't do this for us. */
1041 mutex_enter(vp->v_interlock);
1042 vp->v_writecount++;
1043 mutex_exit(vp->v_interlock);
1044 VOP_UNLOCK(vp);
1045 sc->sc_parent->dk_rawvp = vp;
1046 }
1047 sc->sc_parent->dk_rawopens++;
1048 }
1049 if (fmt == S_IFCHR)
1050 sc->sc_dk.dk_copenmask |= 1;
1051 else
1052 sc->sc_dk.dk_bopenmask |= 1;
1053 sc->sc_dk.dk_openmask =
1054 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1055
1056 popen_fail:
1057 mutex_exit(&sc->sc_parent->dk_rawlock);
1058 mutex_exit(&sc->sc_dk.dk_openlock);
1059 return (error);
1060 }
1061
1062 /*
1063 * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock.
1064 */
1065 static int
1066 dklastclose(struct dkwedge_softc *sc)
1067 {
1068 int error = 0, doclose;
1069
1070 doclose = 0;
1071 if (sc->sc_parent->dk_rawopens > 0) {
1072 if (--sc->sc_parent->dk_rawopens == 0)
1073 doclose = 1;
1074 }
1075
1076 mutex_exit(&sc->sc_parent->dk_rawlock);
1077
1078 if (doclose) {
1079 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1080 error = vn_close(sc->sc_parent->dk_rawvp,
1081 FREAD | FWRITE, NOCRED);
1082 sc->sc_parent->dk_rawvp = NULL;
1083 }
1084
1085 return error;
1086 }
1087
1088 /*
1089 * dkclose: [devsw entry point]
1090 *
1091 * Close a wedge.
1092 */
1093 static int
1094 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1095 {
1096 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1097 int error = 0;
1098
1099 if (sc == NULL)
1100 return (ENODEV);
1101 if (sc->sc_state != DKW_STATE_RUNNING)
1102 return (ENXIO);
1103
1104 KASSERT(sc->sc_dk.dk_openmask != 0);
1105
1106 mutex_enter(&sc->sc_dk.dk_openlock);
1107 mutex_enter(&sc->sc_parent->dk_rawlock);
1108
1109 if (fmt == S_IFCHR)
1110 sc->sc_dk.dk_copenmask &= ~1;
1111 else
1112 sc->sc_dk.dk_bopenmask &= ~1;
1113 sc->sc_dk.dk_openmask =
1114 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1115
1116 if (sc->sc_dk.dk_openmask == 0)
1117 error = dklastclose(sc); /* releases dk_rawlock */
1118 else
1119 mutex_exit(&sc->sc_parent->dk_rawlock);
1120
1121 mutex_exit(&sc->sc_dk.dk_openlock);
1122
1123 return (error);
1124 }
1125
1126 /*
1127 * dkstragegy: [devsw entry point]
1128 *
1129 * Perform I/O based on the wedge I/O strategy.
1130 */
1131 static void
1132 dkstrategy(struct buf *bp)
1133 {
1134 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1135 uint64_t p_size, p_offset;
1136 int s;
1137
1138 if (sc == NULL) {
1139 bp->b_error = ENODEV;
1140 goto done;
1141 }
1142
1143 if (sc->sc_state != DKW_STATE_RUNNING ||
1144 sc->sc_parent->dk_rawvp == NULL) {
1145 bp->b_error = ENXIO;
1146 goto done;
1147 }
1148
1149 /* If it's an empty transfer, wake up the top half now. */
1150 if (bp->b_bcount == 0)
1151 goto done;
1152
1153 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1154 p_size = sc->sc_size << sc->sc_parent->dk_blkshift;
1155
1156 /* Make sure it's in-range. */
1157 if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1158 goto done;
1159
1160 /* Translate it to the parent's raw LBA. */
1161 bp->b_rawblkno = bp->b_blkno + p_offset;
1162
1163 /* Place it in the queue and start I/O on the unit. */
1164 s = splbio();
1165 sc->sc_iopend++;
1166 bufq_put(sc->sc_bufq, bp);
1167 dkstart(sc);
1168 splx(s);
1169 return;
1170
1171 done:
1172 bp->b_resid = bp->b_bcount;
1173 biodone(bp);
1174 }
1175
1176 /*
1177 * dkstart:
1178 *
1179 * Start I/O that has been enqueued on the wedge.
1180 * NOTE: Must be called at splbio()!
1181 */
1182 static void
1183 dkstart(struct dkwedge_softc *sc)
1184 {
1185 struct vnode *vp;
1186 struct buf *bp, *nbp;
1187
1188 /* Do as much work as has been enqueued. */
1189 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1190 if (sc->sc_state != DKW_STATE_RUNNING) {
1191 (void) bufq_get(sc->sc_bufq);
1192 if (sc->sc_iopend-- == 1 &&
1193 (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1194 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1195 wakeup(&sc->sc_iopend);
1196 }
1197 bp->b_error = ENXIO;
1198 bp->b_resid = bp->b_bcount;
1199 biodone(bp);
1200 }
1201
1202 /* Instrumentation. */
1203 disk_busy(&sc->sc_dk);
1204
1205 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1206 if (nbp == NULL) {
1207 /*
1208 * No resources to run this request; leave the
1209 * buffer queued up, and schedule a timer to
1210 * restart the queue in 1/2 a second.
1211 */
1212 disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
1213 callout_schedule(&sc->sc_restart_ch, hz / 2);
1214 return;
1215 }
1216
1217 (void) bufq_get(sc->sc_bufq);
1218
1219 nbp->b_data = bp->b_data;
1220 nbp->b_flags = bp->b_flags;
1221 nbp->b_oflags = bp->b_oflags;
1222 nbp->b_cflags = bp->b_cflags;
1223 nbp->b_iodone = dkiodone;
1224 nbp->b_proc = bp->b_proc;
1225 nbp->b_blkno = bp->b_rawblkno;
1226 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1227 nbp->b_bcount = bp->b_bcount;
1228 nbp->b_private = bp;
1229 BIO_COPYPRIO(nbp, bp);
1230
1231 vp = nbp->b_vp;
1232 if ((nbp->b_flags & B_READ) == 0) {
1233 mutex_enter(vp->v_interlock);
1234 vp->v_numoutput++;
1235 mutex_exit(vp->v_interlock);
1236 }
1237 VOP_STRATEGY(vp, nbp);
1238 }
1239 }
1240
1241 /*
1242 * dkiodone:
1243 *
1244 * I/O to a wedge has completed; alert the top half.
1245 */
1246 static void
1247 dkiodone(struct buf *bp)
1248 {
1249 struct buf *obp = bp->b_private;
1250 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1251
1252 int s = splbio();
1253
1254 if (bp->b_error != 0)
1255 obp->b_error = bp->b_error;
1256 obp->b_resid = bp->b_resid;
1257 putiobuf(bp);
1258
1259 if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1260 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1261 wakeup(&sc->sc_iopend);
1262 }
1263
1264 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1265 obp->b_flags & B_READ);
1266
1267 biodone(obp);
1268
1269 /* Kick the queue in case there is more work we can do. */
1270 dkstart(sc);
1271 splx(s);
1272 }
1273
1274 /*
1275 * dkrestart:
1276 *
1277 * Restart the work queue after it was stalled due to
1278 * a resource shortage. Invoked via a callout.
1279 */
1280 static void
1281 dkrestart(void *v)
1282 {
1283 struct dkwedge_softc *sc = v;
1284 int s;
1285
1286 s = splbio();
1287 dkstart(sc);
1288 splx(s);
1289 }
1290
1291 /*
1292 * dkminphys:
1293 *
1294 * Call parent's minphys function.
1295 */
1296 static void
1297 dkminphys(struct buf *bp)
1298 {
1299 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1300 dev_t dev;
1301
1302 dev = bp->b_dev;
1303 bp->b_dev = sc->sc_pdev;
1304 (*sc->sc_parent->dk_driver->d_minphys)(bp);
1305 bp->b_dev = dev;
1306 }
1307
1308 /*
1309 * dkread: [devsw entry point]
1310 *
1311 * Read from a wedge.
1312 */
1313 static int
1314 dkread(dev_t dev, struct uio *uio, int flags)
1315 {
1316 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1317
1318 if (sc == NULL)
1319 return (ENODEV);
1320 if (sc->sc_state != DKW_STATE_RUNNING)
1321 return (ENXIO);
1322
1323 return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio));
1324 }
1325
1326 /*
1327 * dkwrite: [devsw entry point]
1328 *
1329 * Write to a wedge.
1330 */
1331 static int
1332 dkwrite(dev_t dev, struct uio *uio, int flags)
1333 {
1334 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1335
1336 if (sc == NULL)
1337 return (ENODEV);
1338 if (sc->sc_state != DKW_STATE_RUNNING)
1339 return (ENXIO);
1340
1341 return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio));
1342 }
1343
1344 /*
1345 * dkioctl: [devsw entry point]
1346 *
1347 * Perform an ioctl request on a wedge.
1348 */
1349 static int
1350 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1351 {
1352 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1353 int error = 0;
1354
1355 if (sc == NULL)
1356 return (ENODEV);
1357 if (sc->sc_state != DKW_STATE_RUNNING)
1358 return (ENXIO);
1359 if (sc->sc_parent->dk_rawvp == NULL)
1360 return (ENXIO);
1361
1362 error = disk_ioctl(&sc->sc_dk, cmd, data, flag, l);
1363 if (error != EPASSTHROUGH)
1364 return (error);
1365
1366 error = 0;
1367
1368 switch (cmd) {
1369 case DIOCCACHESYNC:
1370 /*
1371 * XXX Do we really need to care about having a writable
1372 * file descriptor here?
1373 */
1374 if ((flag & FWRITE) == 0)
1375 error = EBADF;
1376 else
1377 error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
1378 cmd, data, flag,
1379 l != NULL ? l->l_cred : NOCRED);
1380 break;
1381 case DIOCGWEDGEINFO:
1382 {
1383 struct dkwedge_info *dkw = (void *) data;
1384
1385 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1386 sizeof(dkw->dkw_devname));
1387 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1388 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1389 strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
1390 dkw->dkw_offset = sc->sc_offset;
1391 dkw->dkw_size = sc->sc_size;
1392 strcpy(dkw->dkw_ptype, sc->sc_ptype);
1393
1394 break;
1395 }
1396
1397 default:
1398 error = ENOTTY;
1399 }
1400
1401 return (error);
1402 }
1403
1404 /*
1405 * dkdiscard: [devsw entry point]
1406 *
1407 * Perform a discard-range request on a wedge.
1408 */
1409 static int
1410 dkdiscard(dev_t dev, off_t pos, off_t len)
1411 {
1412 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1413 unsigned shift;
1414 off_t offset, maxlen;
1415
1416 if (sc == NULL)
1417 return (ENODEV);
1418 if (sc->sc_state != DKW_STATE_RUNNING)
1419 return (ENXIO);
1420 if (sc->sc_parent->dk_rawvp == NULL)
1421 return (ENXIO);
1422
1423 shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
1424 KASSERT(__type_fit(off_t, sc->sc_size));
1425 KASSERT(__type_fit(off_t, sc->sc_offset));
1426 KASSERT(0 <= sc->sc_offset);
1427 KASSERT(sc->sc_size <= (__type_max(off_t) >> shift));
1428 KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - sc->sc_size));
1429 offset = ((off_t)sc->sc_offset << shift);
1430 maxlen = ((off_t)sc->sc_size << shift);
1431
1432 if (len > maxlen)
1433 return (EINVAL);
1434 if (pos > (maxlen - len))
1435 return (EINVAL);
1436
1437 pos += offset;
1438 return VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
1439 }
1440
1441 /*
1442 * dksize: [devsw entry point]
1443 *
1444 * Query the size of a wedge for the purpose of performing a dump
1445 * or for swapping to.
1446 */
1447 static int
1448 dksize(dev_t dev)
1449 {
1450 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1451 int rv = -1;
1452
1453 if (sc == NULL)
1454 return (-1);
1455 if (sc->sc_state != DKW_STATE_RUNNING)
1456 return (-1);
1457
1458 mutex_enter(&sc->sc_dk.dk_openlock);
1459 mutex_enter(&sc->sc_parent->dk_rawlock);
1460
1461 /* Our content type is static, no need to open the device. */
1462
1463 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1464 /* Saturate if we are larger than INT_MAX. */
1465 if (sc->sc_size > INT_MAX)
1466 rv = INT_MAX;
1467 else
1468 rv = (int) sc->sc_size;
1469 }
1470
1471 mutex_exit(&sc->sc_parent->dk_rawlock);
1472 mutex_exit(&sc->sc_dk.dk_openlock);
1473
1474 return (rv);
1475 }
1476
1477 /*
1478 * dkdump: [devsw entry point]
1479 *
1480 * Perform a crash dump to a wedge.
1481 */
1482 static int
1483 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1484 {
1485 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1486 const struct bdevsw *bdev;
1487 int rv = 0;
1488
1489 if (sc == NULL)
1490 return (ENODEV);
1491 if (sc->sc_state != DKW_STATE_RUNNING)
1492 return (ENXIO);
1493
1494 mutex_enter(&sc->sc_dk.dk_openlock);
1495 mutex_enter(&sc->sc_parent->dk_rawlock);
1496
1497 /* Our content type is static, no need to open the device. */
1498
1499 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
1500 rv = ENXIO;
1501 goto out;
1502 }
1503 if (size % DEV_BSIZE != 0) {
1504 rv = EINVAL;
1505 goto out;
1506 }
1507 if (blkno + size / DEV_BSIZE > sc->sc_size) {
1508 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1509 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
1510 size / DEV_BSIZE, sc->sc_size);
1511 rv = EINVAL;
1512 goto out;
1513 }
1514
1515 bdev = bdevsw_lookup(sc->sc_pdev);
1516 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
1517
1518 out:
1519 mutex_exit(&sc->sc_parent->dk_rawlock);
1520 mutex_exit(&sc->sc_dk.dk_openlock);
1521
1522 return rv;
1523 }
1524
1525 /*
1526 * config glue
1527 */
1528
1529 /*
1530 * dkwedge_find_partition
1531 *
1532 * Find wedge corresponding to the specified parent name
1533 * and offset/length.
1534 */
1535 device_t
1536 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
1537 {
1538 struct dkwedge_softc *sc;
1539 int i;
1540 device_t wedge = NULL;
1541
1542 rw_enter(&dkwedges_lock, RW_READER);
1543 for (i = 0; i < ndkwedges; i++) {
1544 if ((sc = dkwedges[i]) == NULL)
1545 continue;
1546 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
1547 sc->sc_offset == startblk &&
1548 sc->sc_size == nblks) {
1549 if (wedge) {
1550 printf("WARNING: double match for boot wedge "
1551 "(%s, %s)\n",
1552 device_xname(wedge),
1553 device_xname(sc->sc_dev));
1554 continue;
1555 }
1556 wedge = sc->sc_dev;
1557 }
1558 }
1559 rw_exit(&dkwedges_lock);
1560
1561 return wedge;
1562 }
1563
1564 const char *
1565 dkwedge_get_parent_name(dev_t dev)
1566 {
1567 /* XXX: perhaps do this in lookup? */
1568 int bmaj = bdevsw_lookup_major(&dk_bdevsw);
1569 int cmaj = cdevsw_lookup_major(&dk_cdevsw);
1570 if (major(dev) != bmaj && major(dev) != cmaj)
1571 return NULL;
1572 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1573 if (sc == NULL)
1574 return NULL;
1575 return sc->sc_parent->dk_name;
1576 }
1577
1578