dk.c revision 1.79 1 /* $NetBSD: dk.c,v 1.79 2015/01/02 01:14:22 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.79 2015/01/02 01:14:22 christos Exp $");
34
35 #ifdef _KERNEL_OPT
36 #include "opt_dkwedge.h"
37 #endif
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/errno.h>
43 #include <sys/pool.h>
44 #include <sys/ioctl.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/fcntl.h>
48 #include <sys/buf.h>
49 #include <sys/bufq.h>
50 #include <sys/vnode.h>
51 #include <sys/stat.h>
52 #include <sys/conf.h>
53 #include <sys/callout.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/device.h>
57 #include <sys/kauth.h>
58
59 #include <miscfs/specfs/specdev.h>
60
61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
62
63 typedef enum {
64 DKW_STATE_LARVAL = 0,
65 DKW_STATE_RUNNING = 1,
66 DKW_STATE_DYING = 2,
67 DKW_STATE_DEAD = 666
68 } dkwedge_state_t;
69
70 struct dkwedge_softc {
71 device_t sc_dev; /* pointer to our pseudo-device */
72 struct cfdata sc_cfdata; /* our cfdata structure */
73 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
74
75 dkwedge_state_t sc_state; /* state this wedge is in */
76
77 struct disk *sc_parent; /* parent disk */
78 daddr_t sc_offset; /* LBA offset of wedge in parent */
79 uint64_t sc_size; /* size of wedge in blocks */
80 char sc_ptype[32]; /* partition type */
81 dev_t sc_pdev; /* cached parent's dev_t */
82 /* link on parent's wedge list */
83 LIST_ENTRY(dkwedge_softc) sc_plink;
84
85 struct disk sc_dk; /* our own disk structure */
86 struct bufq_state *sc_bufq; /* buffer queue */
87 struct callout sc_restart_ch; /* callout to restart I/O */
88
89 u_int sc_iopend; /* I/Os pending */
90 int sc_flags; /* flags (splbio) */
91 };
92
93 #define DK_F_WAIT_DRAIN 0x0001 /* waiting for I/O to drain */
94
95 static void dkstart(struct dkwedge_softc *);
96 static void dkiodone(struct buf *);
97 static void dkrestart(void *);
98 static void dkminphys(struct buf *);
99
100 static int dklastclose(struct dkwedge_softc *);
101 static int dkwedge_cleanup_parent(struct dkwedge_softc *, int);
102 static int dkwedge_detach(device_t, int);
103 static void dkwedge_delall1(struct disk *, bool);
104 static int dkwedge_del1(struct dkwedge_info *, int);
105
106 static dev_type_open(dkopen);
107 static dev_type_close(dkclose);
108 static dev_type_read(dkread);
109 static dev_type_write(dkwrite);
110 static dev_type_ioctl(dkioctl);
111 static dev_type_strategy(dkstrategy);
112 static dev_type_dump(dkdump);
113 static dev_type_size(dksize);
114 static dev_type_discard(dkdiscard);
115
116 const struct bdevsw dk_bdevsw = {
117 .d_open = dkopen,
118 .d_close = dkclose,
119 .d_strategy = dkstrategy,
120 .d_ioctl = dkioctl,
121 .d_dump = dkdump,
122 .d_psize = dksize,
123 .d_discard = dkdiscard,
124 .d_flag = D_DISK
125 };
126
127 const struct cdevsw dk_cdevsw = {
128 .d_open = dkopen,
129 .d_close = dkclose,
130 .d_read = dkread,
131 .d_write = dkwrite,
132 .d_ioctl = dkioctl,
133 .d_stop = nostop,
134 .d_tty = notty,
135 .d_poll = nopoll,
136 .d_mmap = nommap,
137 .d_kqfilter = nokqfilter,
138 .d_discard = dkdiscard,
139 .d_flag = D_DISK
140 };
141
142 static struct dkwedge_softc **dkwedges;
143 static u_int ndkwedges;
144 static krwlock_t dkwedges_lock;
145
146 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
147 static krwlock_t dkwedge_discovery_methods_lock;
148
149 /*
150 * dkwedge_match:
151 *
152 * Autoconfiguration match function for pseudo-device glue.
153 */
154 static int
155 dkwedge_match(device_t parent, cfdata_t match,
156 void *aux)
157 {
158
159 /* Pseudo-device; always present. */
160 return (1);
161 }
162
163 /*
164 * dkwedge_attach:
165 *
166 * Autoconfiguration attach function for pseudo-device glue.
167 */
168 static void
169 dkwedge_attach(device_t parent, device_t self,
170 void *aux)
171 {
172
173 if (!pmf_device_register(self, NULL, NULL))
174 aprint_error_dev(self, "couldn't establish power handler\n");
175 }
176
177 CFDRIVER_DECL(dk, DV_DISK, NULL);
178 CFATTACH_DECL3_NEW(dk, 0,
179 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
180 DVF_DETACH_SHUTDOWN);
181
182 /*
183 * dkwedge_wait_drain:
184 *
185 * Wait for I/O on the wedge to drain.
186 * NOTE: Must be called at splbio()!
187 */
188 static void
189 dkwedge_wait_drain(struct dkwedge_softc *sc)
190 {
191
192 while (sc->sc_iopend != 0) {
193 sc->sc_flags |= DK_F_WAIT_DRAIN;
194 (void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
195 }
196 }
197
198 /*
199 * dkwedge_compute_pdev:
200 *
201 * Compute the parent disk's dev_t.
202 */
203 static int
204 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
205 {
206 const char *name, *cp;
207 devmajor_t pmaj;
208 int punit;
209 char devname[16];
210
211 name = pname;
212 switch (type) {
213 case VBLK:
214 pmaj = devsw_name2blk(name, devname, sizeof(devname));
215 break;
216 case VCHR:
217 pmaj = devsw_name2chr(name, devname, sizeof(devname));
218 break;
219 default:
220 pmaj = NODEVMAJOR;
221 break;
222 }
223 if (pmaj == NODEVMAJOR)
224 return (ENODEV);
225
226 name += strlen(devname);
227 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
228 punit = (punit * 10) + (*cp - '0');
229 if (cp == name) {
230 /* Invalid parent disk name. */
231 return (ENODEV);
232 }
233
234 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
235
236 return (0);
237 }
238
239 /*
240 * dkwedge_array_expand:
241 *
242 * Expand the dkwedges array.
243 */
244 static void
245 dkwedge_array_expand(void)
246 {
247 int newcnt = ndkwedges + 16;
248 struct dkwedge_softc **newarray, **oldarray;
249
250 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
251 M_WAITOK|M_ZERO);
252 if ((oldarray = dkwedges) != NULL)
253 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
254 dkwedges = newarray;
255 ndkwedges = newcnt;
256 if (oldarray != NULL)
257 free(oldarray, M_DKWEDGE);
258 }
259
260 static void
261 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
262 {
263 struct disk *dk = &sc->sc_dk;
264 struct disk_geom *dg = &dk->dk_geom;
265
266 memset(dg, 0, sizeof(*dg));
267
268 dg->dg_secperunit = sc->sc_size >> pdk->dk_blkshift;
269 dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
270
271 /* fake numbers, 1 cylinder is 1 MB with default sector size */
272 dg->dg_nsectors = 32;
273 dg->dg_ntracks = 64;
274 dg->dg_ncylinders = dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
275
276 disk_set_info(sc->sc_dev, dk, NULL);
277 }
278
279 /*
280 * dkwedge_add: [exported function]
281 *
282 * Add a disk wedge based on the provided information.
283 *
284 * The incoming dkw_devname[] is ignored, instead being
285 * filled in and returned to the caller.
286 */
287 int
288 dkwedge_add(struct dkwedge_info *dkw)
289 {
290 struct dkwedge_softc *sc, *lsc;
291 struct disk *pdk;
292 u_int unit;
293 int error;
294 dev_t pdev;
295
296 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
297 pdk = disk_find(dkw->dkw_parent);
298 if (pdk == NULL)
299 return (ENODEV);
300
301 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
302 if (error)
303 return (error);
304
305 if (dkw->dkw_offset < 0)
306 return (EINVAL);
307
308 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
309 sc->sc_state = DKW_STATE_LARVAL;
310 sc->sc_parent = pdk;
311 sc->sc_pdev = pdev;
312 sc->sc_offset = dkw->dkw_offset;
313 sc->sc_size = dkw->dkw_size;
314
315 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
316 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
317
318 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
319 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
320
321 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
322
323 callout_init(&sc->sc_restart_ch, 0);
324 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
325
326 /*
327 * Wedge will be added; increment the wedge count for the parent.
328 * Only allow this to happend if RAW_PART is the only thing open.
329 */
330 mutex_enter(&pdk->dk_openlock);
331 if (pdk->dk_openmask & ~(1 << RAW_PART))
332 error = EBUSY;
333 else {
334 /* Check for wedge overlap. */
335 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
336 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
337 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
338
339 if (sc->sc_offset >= lsc->sc_offset &&
340 sc->sc_offset <= llastblk) {
341 /* Overlaps the tail of the existing wedge. */
342 break;
343 }
344 if (lastblk >= lsc->sc_offset &&
345 lastblk <= llastblk) {
346 /* Overlaps the head of the existing wedge. */
347 break;
348 }
349 }
350 if (lsc != NULL) {
351 if (sc->sc_offset == lsc->sc_offset &&
352 sc->sc_size == lsc->sc_size &&
353 strcmp(sc->sc_wname, lsc->sc_wname) == 0)
354 error = EEXIST;
355 else
356 error = EINVAL;
357 } else {
358 pdk->dk_nwedges++;
359 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
360 }
361 }
362 mutex_exit(&pdk->dk_openlock);
363 if (error) {
364 bufq_free(sc->sc_bufq);
365 free(sc, M_DKWEDGE);
366 return (error);
367 }
368
369 /* Fill in our cfdata for the pseudo-device glue. */
370 sc->sc_cfdata.cf_name = dk_cd.cd_name;
371 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
372 /* sc->sc_cfdata.cf_unit set below */
373 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
374
375 /* Insert the larval wedge into the array. */
376 rw_enter(&dkwedges_lock, RW_WRITER);
377 for (error = 0;;) {
378 struct dkwedge_softc **scpp;
379
380 /*
381 * Check for a duplicate wname while searching for
382 * a slot.
383 */
384 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
385 if (dkwedges[unit] == NULL) {
386 if (scpp == NULL) {
387 scpp = &dkwedges[unit];
388 sc->sc_cfdata.cf_unit = unit;
389 }
390 } else {
391 /* XXX Unicode. */
392 if (strcmp(dkwedges[unit]->sc_wname,
393 sc->sc_wname) == 0) {
394 error = EEXIST;
395 break;
396 }
397 }
398 }
399 if (error)
400 break;
401 KASSERT(unit == ndkwedges);
402 if (scpp == NULL)
403 dkwedge_array_expand();
404 else {
405 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
406 *scpp = sc;
407 break;
408 }
409 }
410 rw_exit(&dkwedges_lock);
411 if (error) {
412 mutex_enter(&pdk->dk_openlock);
413 pdk->dk_nwedges--;
414 LIST_REMOVE(sc, sc_plink);
415 mutex_exit(&pdk->dk_openlock);
416
417 bufq_free(sc->sc_bufq);
418 free(sc, M_DKWEDGE);
419 return (error);
420 }
421
422 /*
423 * Now that we know the unit #, attach a pseudo-device for
424 * this wedge instance. This will provide us with the
425 * device_t necessary for glue to other parts of the system.
426 *
427 * This should never fail, unless we're almost totally out of
428 * memory.
429 */
430 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
431 aprint_error("%s%u: unable to attach pseudo-device\n",
432 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
433
434 rw_enter(&dkwedges_lock, RW_WRITER);
435 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
436 rw_exit(&dkwedges_lock);
437
438 mutex_enter(&pdk->dk_openlock);
439 pdk->dk_nwedges--;
440 LIST_REMOVE(sc, sc_plink);
441 mutex_exit(&pdk->dk_openlock);
442
443 bufq_free(sc->sc_bufq);
444 free(sc, M_DKWEDGE);
445 return (ENOMEM);
446 }
447
448 /* Return the devname to the caller. */
449 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
450 sizeof(dkw->dkw_devname));
451
452 /*
453 * XXX Really ought to make the disk_attach() and the changing
454 * of state to RUNNING atomic.
455 */
456
457 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
458 dk_set_geometry(sc, pdk);
459 disk_attach(&sc->sc_dk);
460
461 /* Disk wedge is ready for use! */
462 sc->sc_state = DKW_STATE_RUNNING;
463
464 /* Announce our arrival. */
465 aprint_normal("%s at %s: %s\n", device_xname(sc->sc_dev), pdk->dk_name,
466 sc->sc_wname); /* XXX Unicode */
467 aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
468 device_xname(sc->sc_dev), sc->sc_size, sc->sc_offset, sc->sc_ptype);
469
470 return (0);
471 }
472
473 /*
474 * dkwedge_find:
475 *
476 * Lookup a disk wedge based on the provided information.
477 * NOTE: We look up the wedge based on the wedge devname,
478 * not wname.
479 *
480 * Return NULL if the wedge is not found, otherwise return
481 * the wedge's softc. Assign the wedge's unit number to unitp
482 * if unitp is not NULL.
483 */
484 static struct dkwedge_softc *
485 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
486 {
487 struct dkwedge_softc *sc = NULL;
488 u_int unit;
489
490 /* Find our softc. */
491 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
492 rw_enter(&dkwedges_lock, RW_READER);
493 for (unit = 0; unit < ndkwedges; unit++) {
494 if ((sc = dkwedges[unit]) != NULL &&
495 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
496 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
497 break;
498 }
499 }
500 rw_exit(&dkwedges_lock);
501 if (unit == ndkwedges)
502 return NULL;
503
504 if (unitp != NULL)
505 *unitp = unit;
506
507 return sc;
508 }
509
510 /*
511 * dkwedge_del: [exported function]
512 *
513 * Delete a disk wedge based on the provided information.
514 * NOTE: We look up the wedge based on the wedge devname,
515 * not wname.
516 */
517 int
518 dkwedge_del(struct dkwedge_info *dkw)
519 {
520 return dkwedge_del1(dkw, 0);
521 }
522
523 int
524 dkwedge_del1(struct dkwedge_info *dkw, int flags)
525 {
526 struct dkwedge_softc *sc = NULL;
527
528 /* Find our softc. */
529 if ((sc = dkwedge_find(dkw, NULL)) == NULL)
530 return (ESRCH);
531
532 return config_detach(sc->sc_dev, flags);
533 }
534
535 static int
536 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags)
537 {
538 struct disk *dk = &sc->sc_dk;
539 int rc;
540
541 rc = 0;
542 mutex_enter(&dk->dk_openlock);
543 if (dk->dk_openmask == 0)
544 ; /* nothing to do */
545 else if ((flags & DETACH_FORCE) == 0)
546 rc = EBUSY;
547 else {
548 mutex_enter(&sc->sc_parent->dk_rawlock);
549 rc = dklastclose(sc); /* releases dk_rawlock */
550 }
551 mutex_exit(&dk->dk_openlock);
552
553 return rc;
554 }
555
556 /*
557 * dkwedge_detach:
558 *
559 * Autoconfiguration detach function for pseudo-device glue.
560 */
561 static int
562 dkwedge_detach(device_t self, int flags)
563 {
564 struct dkwedge_softc *sc = NULL;
565 u_int unit;
566 int bmaj, cmaj, rc, s;
567
568 rw_enter(&dkwedges_lock, RW_WRITER);
569 for (unit = 0; unit < ndkwedges; unit++) {
570 if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
571 break;
572 }
573 if (unit == ndkwedges)
574 rc = ENXIO;
575 else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) {
576 /* Mark the wedge as dying. */
577 sc->sc_state = DKW_STATE_DYING;
578 }
579 rw_exit(&dkwedges_lock);
580
581 if (rc != 0)
582 return rc;
583
584 pmf_device_deregister(self);
585
586 /* Locate the wedge major numbers. */
587 bmaj = bdevsw_lookup_major(&dk_bdevsw);
588 cmaj = cdevsw_lookup_major(&dk_cdevsw);
589
590 /* Kill any pending restart. */
591 callout_stop(&sc->sc_restart_ch);
592
593 /*
594 * dkstart() will kill any queued buffers now that the
595 * state of the wedge is not RUNNING. Once we've done
596 * that, wait for any other pending I/O to complete.
597 */
598 s = splbio();
599 dkstart(sc);
600 dkwedge_wait_drain(sc);
601 splx(s);
602
603 /* Nuke the vnodes for any open instances. */
604 vdevgone(bmaj, unit, unit, VBLK);
605 vdevgone(cmaj, unit, unit, VCHR);
606
607 /* Clean up the parent. */
608 dkwedge_cleanup_parent(sc, flags | DETACH_FORCE);
609
610 /* Announce our departure. */
611 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
612 sc->sc_parent->dk_name,
613 sc->sc_wname); /* XXX Unicode */
614
615 mutex_enter(&sc->sc_parent->dk_openlock);
616 sc->sc_parent->dk_nwedges--;
617 LIST_REMOVE(sc, sc_plink);
618 mutex_exit(&sc->sc_parent->dk_openlock);
619
620 /* Delete our buffer queue. */
621 bufq_free(sc->sc_bufq);
622
623 /* Detach from the disk list. */
624 disk_detach(&sc->sc_dk);
625 disk_destroy(&sc->sc_dk);
626
627 /* Poof. */
628 rw_enter(&dkwedges_lock, RW_WRITER);
629 dkwedges[unit] = NULL;
630 sc->sc_state = DKW_STATE_DEAD;
631 rw_exit(&dkwedges_lock);
632
633 free(sc, M_DKWEDGE);
634
635 return 0;
636 }
637
638 /*
639 * dkwedge_delall: [exported function]
640 *
641 * Delete all of the wedges on the specified disk. Used when
642 * a disk is being detached.
643 */
644 void
645 dkwedge_delall(struct disk *pdk)
646 {
647 dkwedge_delall1(pdk, false);
648 }
649
650 static void
651 dkwedge_delall1(struct disk *pdk, bool idleonly)
652 {
653 struct dkwedge_info dkw;
654 struct dkwedge_softc *sc;
655 int flags;
656
657 flags = DETACH_QUIET;
658 if (!idleonly) flags |= DETACH_FORCE;
659
660 for (;;) {
661 mutex_enter(&pdk->dk_openlock);
662 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
663 if (!idleonly || sc->sc_dk.dk_openmask == 0)
664 break;
665 }
666 if (sc == NULL) {
667 KASSERT(idleonly || pdk->dk_nwedges == 0);
668 mutex_exit(&pdk->dk_openlock);
669 return;
670 }
671 strcpy(dkw.dkw_parent, pdk->dk_name);
672 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
673 sizeof(dkw.dkw_devname));
674 mutex_exit(&pdk->dk_openlock);
675 (void) dkwedge_del1(&dkw, flags);
676 }
677 }
678
679 /*
680 * dkwedge_list: [exported function]
681 *
682 * List all of the wedges on a particular disk.
683 * If p == NULL, the buffer is in kernel space. Otherwise, it is
684 * in user space of the specified process.
685 */
686 int
687 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
688 {
689 struct uio uio;
690 struct iovec iov;
691 struct dkwedge_softc *sc;
692 struct dkwedge_info dkw;
693 int error = 0;
694
695 iov.iov_base = dkwl->dkwl_buf;
696 iov.iov_len = dkwl->dkwl_bufsize;
697
698 uio.uio_iov = &iov;
699 uio.uio_iovcnt = 1;
700 uio.uio_offset = 0;
701 uio.uio_resid = dkwl->dkwl_bufsize;
702 uio.uio_rw = UIO_READ;
703 KASSERT(l == curlwp);
704 uio.uio_vmspace = l->l_proc->p_vmspace;
705
706 dkwl->dkwl_ncopied = 0;
707
708 mutex_enter(&pdk->dk_openlock);
709 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
710 if (uio.uio_resid < sizeof(dkw))
711 break;
712
713 if (sc->sc_state != DKW_STATE_RUNNING)
714 continue;
715
716 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
717 sizeof(dkw.dkw_devname));
718 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
719 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
720 strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
721 dkw.dkw_offset = sc->sc_offset;
722 dkw.dkw_size = sc->sc_size;
723 strcpy(dkw.dkw_ptype, sc->sc_ptype);
724
725 error = uiomove(&dkw, sizeof(dkw), &uio);
726 if (error)
727 break;
728 dkwl->dkwl_ncopied++;
729 }
730 dkwl->dkwl_nwedges = pdk->dk_nwedges;
731 mutex_exit(&pdk->dk_openlock);
732
733 return (error);
734 }
735
736 device_t
737 dkwedge_find_by_wname(const char *wname)
738 {
739 device_t dv = NULL;
740 struct dkwedge_softc *sc;
741 int i;
742
743 rw_enter(&dkwedges_lock, RW_WRITER);
744 for (i = 0; i < ndkwedges; i++) {
745 if ((sc = dkwedges[i]) == NULL)
746 continue;
747 if (strcmp(sc->sc_wname, wname) == 0) {
748 if (dv != NULL) {
749 printf(
750 "WARNING: double match for wedge name %s "
751 "(%s, %s)\n", wname, device_xname(dv),
752 device_xname(sc->sc_dev));
753 continue;
754 }
755 dv = sc->sc_dev;
756 }
757 }
758 rw_exit(&dkwedges_lock);
759 return dv;
760 }
761
762 void
763 dkwedge_print_wnames(void)
764 {
765 struct dkwedge_softc *sc;
766 int i;
767
768 rw_enter(&dkwedges_lock, RW_WRITER);
769 for (i = 0; i < ndkwedges; i++) {
770 if ((sc = dkwedges[i]) == NULL)
771 continue;
772 printf(" wedge:%s", sc->sc_wname);
773 }
774 rw_exit(&dkwedges_lock);
775 }
776
777 /*
778 * We need a dummy object to stuff into the dkwedge discovery method link
779 * set to ensure that there is always at least one object in the set.
780 */
781 static struct dkwedge_discovery_method dummy_discovery_method;
782 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
783
784 /*
785 * dkwedge_init:
786 *
787 * Initialize the disk wedge subsystem.
788 */
789 void
790 dkwedge_init(void)
791 {
792 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
793 struct dkwedge_discovery_method * const *ddmp;
794 struct dkwedge_discovery_method *lddm, *ddm;
795
796 rw_init(&dkwedges_lock);
797 rw_init(&dkwedge_discovery_methods_lock);
798
799 if (config_cfdriver_attach(&dk_cd) != 0)
800 panic("dkwedge: unable to attach cfdriver");
801 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
802 panic("dkwedge: unable to attach cfattach");
803
804 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
805
806 LIST_INIT(&dkwedge_discovery_methods);
807
808 __link_set_foreach(ddmp, dkwedge_methods) {
809 ddm = *ddmp;
810 if (ddm == &dummy_discovery_method)
811 continue;
812 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
813 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
814 ddm, ddm_list);
815 continue;
816 }
817 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
818 if (ddm->ddm_priority == lddm->ddm_priority) {
819 aprint_error("dk-method-%s: method \"%s\" "
820 "already exists at priority %d\n",
821 ddm->ddm_name, lddm->ddm_name,
822 lddm->ddm_priority);
823 /* Not inserted. */
824 break;
825 }
826 if (ddm->ddm_priority < lddm->ddm_priority) {
827 /* Higher priority; insert before. */
828 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
829 break;
830 }
831 if (LIST_NEXT(lddm, ddm_list) == NULL) {
832 /* Last one; insert after. */
833 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
834 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
835 break;
836 }
837 }
838 }
839
840 rw_exit(&dkwedge_discovery_methods_lock);
841 }
842
843 #ifdef DKWEDGE_AUTODISCOVER
844 int dkwedge_autodiscover = 1;
845 #else
846 int dkwedge_autodiscover = 0;
847 #endif
848
849 /*
850 * dkwedge_discover: [exported function]
851 *
852 * Discover the wedges on a newly attached disk.
853 * Remove all unused wedges on the disk first.
854 */
855 void
856 dkwedge_discover(struct disk *pdk)
857 {
858 struct dkwedge_discovery_method *ddm;
859 struct vnode *vp;
860 int error;
861 dev_t pdev;
862
863 /*
864 * Require people playing with wedges to enable this explicitly.
865 */
866 if (dkwedge_autodiscover == 0)
867 return;
868
869 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
870
871 /*
872 * Use the character device for scanning, the block device
873 * is busy if there are already wedges attached.
874 */
875 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
876 if (error) {
877 aprint_error("%s: unable to compute pdev, error = %d\n",
878 pdk->dk_name, error);
879 goto out;
880 }
881
882 error = cdevvp(pdev, &vp);
883 if (error) {
884 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
885 pdk->dk_name, error);
886 goto out;
887 }
888
889 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
890 if (error) {
891 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
892 pdk->dk_name, error);
893 vrele(vp);
894 goto out;
895 }
896
897 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
898 if (error) {
899 if (error != ENODEV)
900 aprint_error("%s: unable to open device, error = %d\n",
901 pdk->dk_name, error);
902 vput(vp);
903 goto out;
904 }
905 VOP_UNLOCK(vp);
906
907 /*
908 * Remove unused wedges
909 */
910 dkwedge_delall1(pdk, true);
911
912 /*
913 * For each supported partition map type, look to see if
914 * this map type exists. If so, parse it and add the
915 * corresponding wedges.
916 */
917 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
918 error = (*ddm->ddm_discover)(pdk, vp);
919 if (error == 0) {
920 /* Successfully created wedges; we're done. */
921 break;
922 }
923 }
924
925 error = vn_close(vp, FREAD, NOCRED);
926 if (error) {
927 aprint_error("%s: unable to close device, error = %d\n",
928 pdk->dk_name, error);
929 /* We'll just assume the vnode has been cleaned up. */
930 }
931
932 out:
933 rw_exit(&dkwedge_discovery_methods_lock);
934 }
935
936 /*
937 * dkwedge_read:
938 *
939 * Read some data from the specified disk, used for
940 * partition discovery.
941 */
942 int
943 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
944 void *tbuf, size_t len)
945 {
946 buf_t *bp;
947 int error;
948
949 /*
950 * The kernel cannot read from a character device vnode
951 * as physio() only handles user memory.
952 *
953 * Determine the corresponding block device and call into
954 * the driver directly.
955 */
956
957 bp = getiobuf(vp, true);
958 bp->b_flags = B_READ;
959 bp->b_cflags = BC_BUSY;
960 bp->b_dev = devsw_chr2blk(vp->v_rdev);
961 bp->b_data = tbuf;
962 bp->b_bufsize = bp->b_bcount = len;
963 bp->b_blkno = blkno;
964 bp->b_cylinder = 0;
965 bp->b_error = 0;
966
967 error = bdev_open(bp->b_dev, FREAD, S_IFBLK, curlwp);
968 if (error)
969 return error;
970
971 bdev_strategy(bp);
972 error = biowait(bp);
973 putiobuf(bp);
974
975 bdev_close(bp->b_dev, FREAD, S_IFBLK, curlwp);
976
977 return error;
978 }
979
980 /*
981 * dkwedge_lookup:
982 *
983 * Look up a dkwedge_softc based on the provided dev_t.
984 */
985 static struct dkwedge_softc *
986 dkwedge_lookup(dev_t dev)
987 {
988 int unit = minor(dev);
989
990 if (unit >= ndkwedges)
991 return (NULL);
992
993 KASSERT(dkwedges != NULL);
994
995 return (dkwedges[unit]);
996 }
997
998 /*
999 * dkopen: [devsw entry point]
1000 *
1001 * Open a wedge.
1002 */
1003 static int
1004 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
1005 {
1006 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1007 struct vnode *vp;
1008 int error = 0;
1009
1010 if (sc == NULL)
1011 return (ENODEV);
1012 if (sc->sc_state != DKW_STATE_RUNNING)
1013 return (ENXIO);
1014
1015 /*
1016 * We go through a complicated little dance to only open the parent
1017 * vnode once per wedge, no matter how many times the wedge is
1018 * opened. The reason? We see one dkopen() per open call, but
1019 * only dkclose() on the last close.
1020 */
1021 mutex_enter(&sc->sc_dk.dk_openlock);
1022 mutex_enter(&sc->sc_parent->dk_rawlock);
1023 if (sc->sc_dk.dk_openmask == 0) {
1024 if (sc->sc_parent->dk_rawopens == 0) {
1025 KASSERT(sc->sc_parent->dk_rawvp == NULL);
1026 error = bdevvp(sc->sc_pdev, &vp);
1027 if (error)
1028 goto popen_fail;
1029 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1030 if (error) {
1031 vrele(vp);
1032 goto popen_fail;
1033 }
1034 error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED);
1035 if (error) {
1036 vput(vp);
1037 goto popen_fail;
1038 }
1039 /* VOP_OPEN() doesn't do this for us. */
1040 mutex_enter(vp->v_interlock);
1041 vp->v_writecount++;
1042 mutex_exit(vp->v_interlock);
1043 VOP_UNLOCK(vp);
1044 sc->sc_parent->dk_rawvp = vp;
1045 }
1046 sc->sc_parent->dk_rawopens++;
1047 }
1048 if (fmt == S_IFCHR)
1049 sc->sc_dk.dk_copenmask |= 1;
1050 else
1051 sc->sc_dk.dk_bopenmask |= 1;
1052 sc->sc_dk.dk_openmask =
1053 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1054
1055 popen_fail:
1056 mutex_exit(&sc->sc_parent->dk_rawlock);
1057 mutex_exit(&sc->sc_dk.dk_openlock);
1058 return (error);
1059 }
1060
1061 /*
1062 * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock.
1063 */
1064 static int
1065 dklastclose(struct dkwedge_softc *sc)
1066 {
1067 int error = 0, doclose;
1068
1069 doclose = 0;
1070 if (sc->sc_parent->dk_rawopens > 0) {
1071 if (--sc->sc_parent->dk_rawopens == 0)
1072 doclose = 1;
1073 }
1074
1075 mutex_exit(&sc->sc_parent->dk_rawlock);
1076
1077 if (doclose) {
1078 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1079 error = vn_close(sc->sc_parent->dk_rawvp,
1080 FREAD | FWRITE, NOCRED);
1081 sc->sc_parent->dk_rawvp = NULL;
1082 }
1083
1084 return error;
1085 }
1086
1087 /*
1088 * dkclose: [devsw entry point]
1089 *
1090 * Close a wedge.
1091 */
1092 static int
1093 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1094 {
1095 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1096 int error = 0;
1097
1098 if (sc == NULL)
1099 return (ENODEV);
1100 if (sc->sc_state != DKW_STATE_RUNNING)
1101 return (ENXIO);
1102
1103 KASSERT(sc->sc_dk.dk_openmask != 0);
1104
1105 mutex_enter(&sc->sc_dk.dk_openlock);
1106 mutex_enter(&sc->sc_parent->dk_rawlock);
1107
1108 if (fmt == S_IFCHR)
1109 sc->sc_dk.dk_copenmask &= ~1;
1110 else
1111 sc->sc_dk.dk_bopenmask &= ~1;
1112 sc->sc_dk.dk_openmask =
1113 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1114
1115 if (sc->sc_dk.dk_openmask == 0)
1116 error = dklastclose(sc); /* releases dk_rawlock */
1117 else
1118 mutex_exit(&sc->sc_parent->dk_rawlock);
1119
1120 mutex_exit(&sc->sc_dk.dk_openlock);
1121
1122 return (error);
1123 }
1124
1125 /*
1126 * dkstragegy: [devsw entry point]
1127 *
1128 * Perform I/O based on the wedge I/O strategy.
1129 */
1130 static void
1131 dkstrategy(struct buf *bp)
1132 {
1133 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1134 uint64_t p_size, p_offset;
1135 int s;
1136
1137 if (sc == NULL) {
1138 bp->b_error = ENODEV;
1139 goto done;
1140 }
1141
1142 if (sc->sc_state != DKW_STATE_RUNNING ||
1143 sc->sc_parent->dk_rawvp == NULL) {
1144 bp->b_error = ENXIO;
1145 goto done;
1146 }
1147
1148 /* If it's an empty transfer, wake up the top half now. */
1149 if (bp->b_bcount == 0)
1150 goto done;
1151
1152 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1153 p_size = sc->sc_size << sc->sc_parent->dk_blkshift;
1154
1155 /* Make sure it's in-range. */
1156 if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1157 goto done;
1158
1159 /* Translate it to the parent's raw LBA. */
1160 bp->b_rawblkno = bp->b_blkno + p_offset;
1161
1162 /* Place it in the queue and start I/O on the unit. */
1163 s = splbio();
1164 sc->sc_iopend++;
1165 bufq_put(sc->sc_bufq, bp);
1166 dkstart(sc);
1167 splx(s);
1168 return;
1169
1170 done:
1171 bp->b_resid = bp->b_bcount;
1172 biodone(bp);
1173 }
1174
1175 /*
1176 * dkstart:
1177 *
1178 * Start I/O that has been enqueued on the wedge.
1179 * NOTE: Must be called at splbio()!
1180 */
1181 static void
1182 dkstart(struct dkwedge_softc *sc)
1183 {
1184 struct vnode *vp;
1185 struct buf *bp, *nbp;
1186
1187 /* Do as much work as has been enqueued. */
1188 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1189 if (sc->sc_state != DKW_STATE_RUNNING) {
1190 (void) bufq_get(sc->sc_bufq);
1191 if (sc->sc_iopend-- == 1 &&
1192 (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1193 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1194 wakeup(&sc->sc_iopend);
1195 }
1196 bp->b_error = ENXIO;
1197 bp->b_resid = bp->b_bcount;
1198 biodone(bp);
1199 }
1200
1201 /* Instrumentation. */
1202 disk_busy(&sc->sc_dk);
1203
1204 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1205 if (nbp == NULL) {
1206 /*
1207 * No resources to run this request; leave the
1208 * buffer queued up, and schedule a timer to
1209 * restart the queue in 1/2 a second.
1210 */
1211 disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
1212 callout_schedule(&sc->sc_restart_ch, hz / 2);
1213 return;
1214 }
1215
1216 (void) bufq_get(sc->sc_bufq);
1217
1218 nbp->b_data = bp->b_data;
1219 nbp->b_flags = bp->b_flags;
1220 nbp->b_oflags = bp->b_oflags;
1221 nbp->b_cflags = bp->b_cflags;
1222 nbp->b_iodone = dkiodone;
1223 nbp->b_proc = bp->b_proc;
1224 nbp->b_blkno = bp->b_rawblkno;
1225 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1226 nbp->b_bcount = bp->b_bcount;
1227 nbp->b_private = bp;
1228 BIO_COPYPRIO(nbp, bp);
1229
1230 vp = nbp->b_vp;
1231 if ((nbp->b_flags & B_READ) == 0) {
1232 mutex_enter(vp->v_interlock);
1233 vp->v_numoutput++;
1234 mutex_exit(vp->v_interlock);
1235 }
1236 VOP_STRATEGY(vp, nbp);
1237 }
1238 }
1239
1240 /*
1241 * dkiodone:
1242 *
1243 * I/O to a wedge has completed; alert the top half.
1244 */
1245 static void
1246 dkiodone(struct buf *bp)
1247 {
1248 struct buf *obp = bp->b_private;
1249 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1250
1251 int s = splbio();
1252
1253 if (bp->b_error != 0)
1254 obp->b_error = bp->b_error;
1255 obp->b_resid = bp->b_resid;
1256 putiobuf(bp);
1257
1258 if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1259 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1260 wakeup(&sc->sc_iopend);
1261 }
1262
1263 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1264 obp->b_flags & B_READ);
1265
1266 biodone(obp);
1267
1268 /* Kick the queue in case there is more work we can do. */
1269 dkstart(sc);
1270 splx(s);
1271 }
1272
1273 /*
1274 * dkrestart:
1275 *
1276 * Restart the work queue after it was stalled due to
1277 * a resource shortage. Invoked via a callout.
1278 */
1279 static void
1280 dkrestart(void *v)
1281 {
1282 struct dkwedge_softc *sc = v;
1283 int s;
1284
1285 s = splbio();
1286 dkstart(sc);
1287 splx(s);
1288 }
1289
1290 /*
1291 * dkminphys:
1292 *
1293 * Call parent's minphys function.
1294 */
1295 static void
1296 dkminphys(struct buf *bp)
1297 {
1298 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1299 dev_t dev;
1300
1301 dev = bp->b_dev;
1302 bp->b_dev = sc->sc_pdev;
1303 (*sc->sc_parent->dk_driver->d_minphys)(bp);
1304 bp->b_dev = dev;
1305 }
1306
1307 /*
1308 * dkread: [devsw entry point]
1309 *
1310 * Read from a wedge.
1311 */
1312 static int
1313 dkread(dev_t dev, struct uio *uio, int flags)
1314 {
1315 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1316
1317 if (sc == NULL)
1318 return (ENODEV);
1319 if (sc->sc_state != DKW_STATE_RUNNING)
1320 return (ENXIO);
1321
1322 return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio));
1323 }
1324
1325 /*
1326 * dkwrite: [devsw entry point]
1327 *
1328 * Write to a wedge.
1329 */
1330 static int
1331 dkwrite(dev_t dev, struct uio *uio, int flags)
1332 {
1333 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1334
1335 if (sc == NULL)
1336 return (ENODEV);
1337 if (sc->sc_state != DKW_STATE_RUNNING)
1338 return (ENXIO);
1339
1340 return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio));
1341 }
1342
1343 /*
1344 * dkioctl: [devsw entry point]
1345 *
1346 * Perform an ioctl request on a wedge.
1347 */
1348 static int
1349 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1350 {
1351 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1352 int error = 0;
1353
1354 if (sc == NULL)
1355 return (ENODEV);
1356 if (sc->sc_state != DKW_STATE_RUNNING)
1357 return (ENXIO);
1358 if (sc->sc_parent->dk_rawvp == NULL)
1359 return (ENXIO);
1360
1361 /*
1362 * We pass NODEV instead of our device to indicate we don't
1363 * want to handle disklabel ioctls
1364 */
1365 error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
1366 if (error != EPASSTHROUGH)
1367 return (error);
1368
1369 error = 0;
1370
1371 switch (cmd) {
1372 case DIOCCACHESYNC:
1373 /*
1374 * XXX Do we really need to care about having a writable
1375 * file descriptor here?
1376 */
1377 if ((flag & FWRITE) == 0)
1378 error = EBADF;
1379 else
1380 error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
1381 cmd, data, flag,
1382 l != NULL ? l->l_cred : NOCRED);
1383 break;
1384 case DIOCGWEDGEINFO:
1385 {
1386 struct dkwedge_info *dkw = (void *) data;
1387
1388 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1389 sizeof(dkw->dkw_devname));
1390 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1391 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1392 strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
1393 dkw->dkw_offset = sc->sc_offset;
1394 dkw->dkw_size = sc->sc_size;
1395 strcpy(dkw->dkw_ptype, sc->sc_ptype);
1396
1397 break;
1398 }
1399
1400 default:
1401 error = ENOTTY;
1402 }
1403
1404 return (error);
1405 }
1406
1407 /*
1408 * dkdiscard: [devsw entry point]
1409 *
1410 * Perform a discard-range request on a wedge.
1411 */
1412 static int
1413 dkdiscard(dev_t dev, off_t pos, off_t len)
1414 {
1415 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1416 unsigned shift;
1417 off_t offset, maxlen;
1418
1419 if (sc == NULL)
1420 return (ENODEV);
1421 if (sc->sc_state != DKW_STATE_RUNNING)
1422 return (ENXIO);
1423 if (sc->sc_parent->dk_rawvp == NULL)
1424 return (ENXIO);
1425
1426 shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
1427 KASSERT(__type_fit(off_t, sc->sc_size));
1428 KASSERT(__type_fit(off_t, sc->sc_offset));
1429 KASSERT(0 <= sc->sc_offset);
1430 KASSERT(sc->sc_size <= (__type_max(off_t) >> shift));
1431 KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - sc->sc_size));
1432 offset = ((off_t)sc->sc_offset << shift);
1433 maxlen = ((off_t)sc->sc_size << shift);
1434
1435 if (len > maxlen)
1436 return (EINVAL);
1437 if (pos > (maxlen - len))
1438 return (EINVAL);
1439
1440 pos += offset;
1441 return VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
1442 }
1443
1444 /*
1445 * dksize: [devsw entry point]
1446 *
1447 * Query the size of a wedge for the purpose of performing a dump
1448 * or for swapping to.
1449 */
1450 static int
1451 dksize(dev_t dev)
1452 {
1453 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1454 int rv = -1;
1455
1456 if (sc == NULL)
1457 return (-1);
1458 if (sc->sc_state != DKW_STATE_RUNNING)
1459 return (-1);
1460
1461 mutex_enter(&sc->sc_dk.dk_openlock);
1462 mutex_enter(&sc->sc_parent->dk_rawlock);
1463
1464 /* Our content type is static, no need to open the device. */
1465
1466 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1467 /* Saturate if we are larger than INT_MAX. */
1468 if (sc->sc_size > INT_MAX)
1469 rv = INT_MAX;
1470 else
1471 rv = (int) sc->sc_size;
1472 }
1473
1474 mutex_exit(&sc->sc_parent->dk_rawlock);
1475 mutex_exit(&sc->sc_dk.dk_openlock);
1476
1477 return (rv);
1478 }
1479
1480 /*
1481 * dkdump: [devsw entry point]
1482 *
1483 * Perform a crash dump to a wedge.
1484 */
1485 static int
1486 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1487 {
1488 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1489 const struct bdevsw *bdev;
1490 int rv = 0;
1491
1492 if (sc == NULL)
1493 return (ENODEV);
1494 if (sc->sc_state != DKW_STATE_RUNNING)
1495 return (ENXIO);
1496
1497 mutex_enter(&sc->sc_dk.dk_openlock);
1498 mutex_enter(&sc->sc_parent->dk_rawlock);
1499
1500 /* Our content type is static, no need to open the device. */
1501
1502 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
1503 rv = ENXIO;
1504 goto out;
1505 }
1506 if (size % DEV_BSIZE != 0) {
1507 rv = EINVAL;
1508 goto out;
1509 }
1510 if (blkno + size / DEV_BSIZE > sc->sc_size) {
1511 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1512 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
1513 size / DEV_BSIZE, sc->sc_size);
1514 rv = EINVAL;
1515 goto out;
1516 }
1517
1518 bdev = bdevsw_lookup(sc->sc_pdev);
1519 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
1520
1521 out:
1522 mutex_exit(&sc->sc_parent->dk_rawlock);
1523 mutex_exit(&sc->sc_dk.dk_openlock);
1524
1525 return rv;
1526 }
1527
1528 /*
1529 * config glue
1530 */
1531
1532 /*
1533 * dkwedge_find_partition
1534 *
1535 * Find wedge corresponding to the specified parent name
1536 * and offset/length.
1537 */
1538 device_t
1539 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
1540 {
1541 struct dkwedge_softc *sc;
1542 int i;
1543 device_t wedge = NULL;
1544
1545 rw_enter(&dkwedges_lock, RW_READER);
1546 for (i = 0; i < ndkwedges; i++) {
1547 if ((sc = dkwedges[i]) == NULL)
1548 continue;
1549 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
1550 sc->sc_offset == startblk &&
1551 sc->sc_size == nblks) {
1552 if (wedge) {
1553 printf("WARNING: double match for boot wedge "
1554 "(%s, %s)\n",
1555 device_xname(wedge),
1556 device_xname(sc->sc_dev));
1557 continue;
1558 }
1559 wedge = sc->sc_dev;
1560 }
1561 }
1562 rw_exit(&dkwedges_lock);
1563
1564 return wedge;
1565 }
1566
1567 const char *
1568 dkwedge_get_parent_name(dev_t dev)
1569 {
1570 /* XXX: perhaps do this in lookup? */
1571 int bmaj = bdevsw_lookup_major(&dk_bdevsw);
1572 int cmaj = cdevsw_lookup_major(&dk_cdevsw);
1573 if (major(dev) != bmaj && major(dev) != cmaj)
1574 return NULL;
1575 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1576 if (sc == NULL)
1577 return NULL;
1578 return sc->sc_parent->dk_name;
1579 }
1580
1581