dk.c revision 1.84 1 /* $NetBSD: dk.c,v 1.84 2015/10/06 11:22:40 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.84 2015/10/06 11:22:40 jmcneill Exp $");
34
35 #ifdef _KERNEL_OPT
36 #include "opt_dkwedge.h"
37 #endif
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/errno.h>
43 #include <sys/pool.h>
44 #include <sys/ioctl.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/fcntl.h>
48 #include <sys/buf.h>
49 #include <sys/bufq.h>
50 #include <sys/vnode.h>
51 #include <sys/stat.h>
52 #include <sys/conf.h>
53 #include <sys/callout.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/device.h>
57 #include <sys/kauth.h>
58
59 #include <miscfs/specfs/specdev.h>
60
61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
62
63 typedef enum {
64 DKW_STATE_LARVAL = 0,
65 DKW_STATE_RUNNING = 1,
66 DKW_STATE_DYING = 2,
67 DKW_STATE_DEAD = 666
68 } dkwedge_state_t;
69
70 struct dkwedge_softc {
71 device_t sc_dev; /* pointer to our pseudo-device */
72 struct cfdata sc_cfdata; /* our cfdata structure */
73 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
74
75 dkwedge_state_t sc_state; /* state this wedge is in */
76
77 struct disk *sc_parent; /* parent disk */
78 daddr_t sc_offset; /* LBA offset of wedge in parent */
79 uint64_t sc_size; /* size of wedge in blocks */
80 char sc_ptype[32]; /* partition type */
81 dev_t sc_pdev; /* cached parent's dev_t */
82 /* link on parent's wedge list */
83 LIST_ENTRY(dkwedge_softc) sc_plink;
84
85 struct disk sc_dk; /* our own disk structure */
86 struct bufq_state *sc_bufq; /* buffer queue */
87 struct callout sc_restart_ch; /* callout to restart I/O */
88
89 u_int sc_iopend; /* I/Os pending */
90 int sc_flags; /* flags (splbio) */
91 };
92
93 #define DK_F_WAIT_DRAIN 0x0001 /* waiting for I/O to drain */
94
95 static void dkstart(struct dkwedge_softc *);
96 static void dkiodone(struct buf *);
97 static void dkrestart(void *);
98 static void dkminphys(struct buf *);
99
100 static int dklastclose(struct dkwedge_softc *);
101 static int dkwedge_cleanup_parent(struct dkwedge_softc *, int);
102 static int dkwedge_detach(device_t, int);
103 static void dkwedge_delall1(struct disk *, bool);
104 static int dkwedge_del1(struct dkwedge_info *, int);
105 static struct vnode *dk_open_parent(dev_t, int);
106 static int dk_close_parent(struct vnode *, int);
107
108 static dev_type_open(dkopen);
109 static dev_type_close(dkclose);
110 static dev_type_read(dkread);
111 static dev_type_write(dkwrite);
112 static dev_type_ioctl(dkioctl);
113 static dev_type_strategy(dkstrategy);
114 static dev_type_dump(dkdump);
115 static dev_type_size(dksize);
116 static dev_type_discard(dkdiscard);
117
118 const struct bdevsw dk_bdevsw = {
119 .d_open = dkopen,
120 .d_close = dkclose,
121 .d_strategy = dkstrategy,
122 .d_ioctl = dkioctl,
123 .d_dump = dkdump,
124 .d_psize = dksize,
125 .d_discard = dkdiscard,
126 .d_flag = D_DISK
127 };
128
129 const struct cdevsw dk_cdevsw = {
130 .d_open = dkopen,
131 .d_close = dkclose,
132 .d_read = dkread,
133 .d_write = dkwrite,
134 .d_ioctl = dkioctl,
135 .d_stop = nostop,
136 .d_tty = notty,
137 .d_poll = nopoll,
138 .d_mmap = nommap,
139 .d_kqfilter = nokqfilter,
140 .d_discard = dkdiscard,
141 .d_flag = D_DISK
142 };
143
144 static struct dkwedge_softc **dkwedges;
145 static u_int ndkwedges;
146 static krwlock_t dkwedges_lock;
147
148 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
149 static krwlock_t dkwedge_discovery_methods_lock;
150
151 /*
152 * dkwedge_match:
153 *
154 * Autoconfiguration match function for pseudo-device glue.
155 */
156 static int
157 dkwedge_match(device_t parent, cfdata_t match,
158 void *aux)
159 {
160
161 /* Pseudo-device; always present. */
162 return (1);
163 }
164
165 /*
166 * dkwedge_attach:
167 *
168 * Autoconfiguration attach function for pseudo-device glue.
169 */
170 static void
171 dkwedge_attach(device_t parent, device_t self,
172 void *aux)
173 {
174
175 if (!pmf_device_register(self, NULL, NULL))
176 aprint_error_dev(self, "couldn't establish power handler\n");
177 }
178
179 CFDRIVER_DECL(dk, DV_DISK, NULL);
180 CFATTACH_DECL3_NEW(dk, 0,
181 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
182 DVF_DETACH_SHUTDOWN);
183
184 /*
185 * dkwedge_wait_drain:
186 *
187 * Wait for I/O on the wedge to drain.
188 * NOTE: Must be called at splbio()!
189 */
190 static void
191 dkwedge_wait_drain(struct dkwedge_softc *sc)
192 {
193
194 while (sc->sc_iopend != 0) {
195 sc->sc_flags |= DK_F_WAIT_DRAIN;
196 (void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
197 }
198 }
199
200 /*
201 * dkwedge_compute_pdev:
202 *
203 * Compute the parent disk's dev_t.
204 */
205 static int
206 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
207 {
208 const char *name, *cp;
209 devmajor_t pmaj;
210 int punit;
211 char devname[16];
212
213 name = pname;
214 switch (type) {
215 case VBLK:
216 pmaj = devsw_name2blk(name, devname, sizeof(devname));
217 break;
218 case VCHR:
219 pmaj = devsw_name2chr(name, devname, sizeof(devname));
220 break;
221 default:
222 pmaj = NODEVMAJOR;
223 break;
224 }
225 if (pmaj == NODEVMAJOR)
226 return (ENODEV);
227
228 name += strlen(devname);
229 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
230 punit = (punit * 10) + (*cp - '0');
231 if (cp == name) {
232 /* Invalid parent disk name. */
233 return (ENODEV);
234 }
235
236 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
237
238 return (0);
239 }
240
241 /*
242 * dkwedge_array_expand:
243 *
244 * Expand the dkwedges array.
245 */
246 static void
247 dkwedge_array_expand(void)
248 {
249 int newcnt = ndkwedges + 16;
250 struct dkwedge_softc **newarray, **oldarray;
251
252 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
253 M_WAITOK|M_ZERO);
254 if ((oldarray = dkwedges) != NULL)
255 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
256 dkwedges = newarray;
257 ndkwedges = newcnt;
258 if (oldarray != NULL)
259 free(oldarray, M_DKWEDGE);
260 }
261
262 static void
263 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
264 {
265 struct disk *dk = &sc->sc_dk;
266 struct disk_geom *dg = &dk->dk_geom;
267
268 memset(dg, 0, sizeof(*dg));
269
270 dg->dg_secperunit = sc->sc_size >> pdk->dk_blkshift;
271 dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
272
273 /* fake numbers, 1 cylinder is 1 MB with default sector size */
274 dg->dg_nsectors = 32;
275 dg->dg_ntracks = 64;
276 dg->dg_ncylinders = dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
277
278 disk_set_info(sc->sc_dev, dk, NULL);
279 }
280
281 /*
282 * dkwedge_add: [exported function]
283 *
284 * Add a disk wedge based on the provided information.
285 *
286 * The incoming dkw_devname[] is ignored, instead being
287 * filled in and returned to the caller.
288 */
289 int
290 dkwedge_add(struct dkwedge_info *dkw)
291 {
292 struct dkwedge_softc *sc, *lsc;
293 struct disk *pdk;
294 u_int unit;
295 int error;
296 dev_t pdev;
297
298 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
299 pdk = disk_find(dkw->dkw_parent);
300 if (pdk == NULL)
301 return (ENODEV);
302
303 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
304 if (error)
305 return (error);
306
307 if (dkw->dkw_offset < 0)
308 return (EINVAL);
309
310 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
311 sc->sc_state = DKW_STATE_LARVAL;
312 sc->sc_parent = pdk;
313 sc->sc_pdev = pdev;
314 sc->sc_offset = dkw->dkw_offset;
315 sc->sc_size = dkw->dkw_size;
316
317 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
318 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
319
320 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
321 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
322
323 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
324
325 callout_init(&sc->sc_restart_ch, 0);
326 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
327
328 /*
329 * Wedge will be added; increment the wedge count for the parent.
330 * Only allow this to happend if RAW_PART is the only thing open.
331 */
332 mutex_enter(&pdk->dk_openlock);
333 if (pdk->dk_openmask & ~(1 << RAW_PART))
334 error = EBUSY;
335 else {
336 /* Check for wedge overlap. */
337 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
338 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
339 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
340
341 if (sc->sc_offset >= lsc->sc_offset &&
342 sc->sc_offset <= llastblk) {
343 /* Overlaps the tail of the existing wedge. */
344 break;
345 }
346 if (lastblk >= lsc->sc_offset &&
347 lastblk <= llastblk) {
348 /* Overlaps the head of the existing wedge. */
349 break;
350 }
351 }
352 if (lsc != NULL) {
353 if (sc->sc_offset == lsc->sc_offset &&
354 sc->sc_size == lsc->sc_size &&
355 strcmp(sc->sc_wname, lsc->sc_wname) == 0)
356 error = EEXIST;
357 else
358 error = EINVAL;
359 } else {
360 pdk->dk_nwedges++;
361 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
362 }
363 }
364 mutex_exit(&pdk->dk_openlock);
365 if (error) {
366 bufq_free(sc->sc_bufq);
367 free(sc, M_DKWEDGE);
368 return (error);
369 }
370
371 /* Fill in our cfdata for the pseudo-device glue. */
372 sc->sc_cfdata.cf_name = dk_cd.cd_name;
373 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
374 /* sc->sc_cfdata.cf_unit set below */
375 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
376
377 /* Insert the larval wedge into the array. */
378 rw_enter(&dkwedges_lock, RW_WRITER);
379 for (error = 0;;) {
380 struct dkwedge_softc **scpp;
381
382 /*
383 * Check for a duplicate wname while searching for
384 * a slot.
385 */
386 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
387 if (dkwedges[unit] == NULL) {
388 if (scpp == NULL) {
389 scpp = &dkwedges[unit];
390 sc->sc_cfdata.cf_unit = unit;
391 }
392 } else {
393 /* XXX Unicode. */
394 if (strcmp(dkwedges[unit]->sc_wname,
395 sc->sc_wname) == 0) {
396 error = EEXIST;
397 break;
398 }
399 }
400 }
401 if (error)
402 break;
403 KASSERT(unit == ndkwedges);
404 if (scpp == NULL)
405 dkwedge_array_expand();
406 else {
407 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
408 *scpp = sc;
409 break;
410 }
411 }
412 rw_exit(&dkwedges_lock);
413 if (error) {
414 mutex_enter(&pdk->dk_openlock);
415 pdk->dk_nwedges--;
416 LIST_REMOVE(sc, sc_plink);
417 mutex_exit(&pdk->dk_openlock);
418
419 bufq_free(sc->sc_bufq);
420 free(sc, M_DKWEDGE);
421 return (error);
422 }
423
424 /*
425 * Now that we know the unit #, attach a pseudo-device for
426 * this wedge instance. This will provide us with the
427 * device_t necessary for glue to other parts of the system.
428 *
429 * This should never fail, unless we're almost totally out of
430 * memory.
431 */
432 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
433 aprint_error("%s%u: unable to attach pseudo-device\n",
434 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
435
436 rw_enter(&dkwedges_lock, RW_WRITER);
437 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
438 rw_exit(&dkwedges_lock);
439
440 mutex_enter(&pdk->dk_openlock);
441 pdk->dk_nwedges--;
442 LIST_REMOVE(sc, sc_plink);
443 mutex_exit(&pdk->dk_openlock);
444
445 bufq_free(sc->sc_bufq);
446 free(sc, M_DKWEDGE);
447 return (ENOMEM);
448 }
449
450 /* Return the devname to the caller. */
451 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
452 sizeof(dkw->dkw_devname));
453
454 /*
455 * XXX Really ought to make the disk_attach() and the changing
456 * of state to RUNNING atomic.
457 */
458
459 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
460 dk_set_geometry(sc, pdk);
461 disk_attach(&sc->sc_dk);
462
463 /* Disk wedge is ready for use! */
464 sc->sc_state = DKW_STATE_RUNNING;
465
466 /* Announce our arrival. */
467 aprint_normal(
468 "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
469 device_xname(sc->sc_dev), pdk->dk_name,
470 sc->sc_wname, /* XXX Unicode */
471 sc->sc_size, sc->sc_offset,
472 sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
473
474 return (0);
475 }
476
477 /*
478 * dkwedge_find:
479 *
480 * Lookup a disk wedge based on the provided information.
481 * NOTE: We look up the wedge based on the wedge devname,
482 * not wname.
483 *
484 * Return NULL if the wedge is not found, otherwise return
485 * the wedge's softc. Assign the wedge's unit number to unitp
486 * if unitp is not NULL.
487 */
488 static struct dkwedge_softc *
489 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
490 {
491 struct dkwedge_softc *sc = NULL;
492 u_int unit;
493
494 /* Find our softc. */
495 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
496 rw_enter(&dkwedges_lock, RW_READER);
497 for (unit = 0; unit < ndkwedges; unit++) {
498 if ((sc = dkwedges[unit]) != NULL &&
499 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
500 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
501 break;
502 }
503 }
504 rw_exit(&dkwedges_lock);
505 if (unit == ndkwedges)
506 return NULL;
507
508 if (unitp != NULL)
509 *unitp = unit;
510
511 return sc;
512 }
513
514 /*
515 * dkwedge_del: [exported function]
516 *
517 * Delete a disk wedge based on the provided information.
518 * NOTE: We look up the wedge based on the wedge devname,
519 * not wname.
520 */
521 int
522 dkwedge_del(struct dkwedge_info *dkw)
523 {
524 return dkwedge_del1(dkw, 0);
525 }
526
527 int
528 dkwedge_del1(struct dkwedge_info *dkw, int flags)
529 {
530 struct dkwedge_softc *sc = NULL;
531
532 /* Find our softc. */
533 if ((sc = dkwedge_find(dkw, NULL)) == NULL)
534 return (ESRCH);
535
536 return config_detach(sc->sc_dev, flags);
537 }
538
539 static int
540 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags)
541 {
542 struct disk *dk = &sc->sc_dk;
543 int rc;
544
545 rc = 0;
546 mutex_enter(&dk->dk_openlock);
547 if (dk->dk_openmask == 0)
548 ; /* nothing to do */
549 else if ((flags & DETACH_FORCE) == 0)
550 rc = EBUSY;
551 else {
552 mutex_enter(&sc->sc_parent->dk_rawlock);
553 rc = dklastclose(sc); /* releases dk_rawlock */
554 }
555 mutex_exit(&dk->dk_openlock);
556
557 return rc;
558 }
559
560 /*
561 * dkwedge_detach:
562 *
563 * Autoconfiguration detach function for pseudo-device glue.
564 */
565 static int
566 dkwedge_detach(device_t self, int flags)
567 {
568 struct dkwedge_softc *sc = NULL;
569 u_int unit;
570 int bmaj, cmaj, rc, s;
571
572 rw_enter(&dkwedges_lock, RW_WRITER);
573 for (unit = 0; unit < ndkwedges; unit++) {
574 if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
575 break;
576 }
577 if (unit == ndkwedges)
578 rc = ENXIO;
579 else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) {
580 /* Mark the wedge as dying. */
581 sc->sc_state = DKW_STATE_DYING;
582 }
583 rw_exit(&dkwedges_lock);
584
585 if (rc != 0)
586 return rc;
587
588 pmf_device_deregister(self);
589
590 /* Locate the wedge major numbers. */
591 bmaj = bdevsw_lookup_major(&dk_bdevsw);
592 cmaj = cdevsw_lookup_major(&dk_cdevsw);
593
594 /* Kill any pending restart. */
595 callout_stop(&sc->sc_restart_ch);
596
597 /*
598 * dkstart() will kill any queued buffers now that the
599 * state of the wedge is not RUNNING. Once we've done
600 * that, wait for any other pending I/O to complete.
601 */
602 s = splbio();
603 dkstart(sc);
604 dkwedge_wait_drain(sc);
605 splx(s);
606
607 /* Nuke the vnodes for any open instances. */
608 vdevgone(bmaj, unit, unit, VBLK);
609 vdevgone(cmaj, unit, unit, VCHR);
610
611 /* Clean up the parent. */
612 dkwedge_cleanup_parent(sc, flags | DETACH_FORCE);
613
614 /* Announce our departure. */
615 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
616 sc->sc_parent->dk_name,
617 sc->sc_wname); /* XXX Unicode */
618
619 mutex_enter(&sc->sc_parent->dk_openlock);
620 sc->sc_parent->dk_nwedges--;
621 LIST_REMOVE(sc, sc_plink);
622 mutex_exit(&sc->sc_parent->dk_openlock);
623
624 /* Delete our buffer queue. */
625 bufq_free(sc->sc_bufq);
626
627 /* Detach from the disk list. */
628 disk_detach(&sc->sc_dk);
629 disk_destroy(&sc->sc_dk);
630
631 /* Poof. */
632 rw_enter(&dkwedges_lock, RW_WRITER);
633 dkwedges[unit] = NULL;
634 sc->sc_state = DKW_STATE_DEAD;
635 rw_exit(&dkwedges_lock);
636
637 free(sc, M_DKWEDGE);
638
639 return 0;
640 }
641
642 /*
643 * dkwedge_delall: [exported function]
644 *
645 * Delete all of the wedges on the specified disk. Used when
646 * a disk is being detached.
647 */
648 void
649 dkwedge_delall(struct disk *pdk)
650 {
651 dkwedge_delall1(pdk, false);
652 }
653
654 static void
655 dkwedge_delall1(struct disk *pdk, bool idleonly)
656 {
657 struct dkwedge_info dkw;
658 struct dkwedge_softc *sc;
659 int flags;
660
661 flags = DETACH_QUIET;
662 if (!idleonly) flags |= DETACH_FORCE;
663
664 for (;;) {
665 mutex_enter(&pdk->dk_openlock);
666 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
667 if (!idleonly || sc->sc_dk.dk_openmask == 0)
668 break;
669 }
670 if (sc == NULL) {
671 KASSERT(idleonly || pdk->dk_nwedges == 0);
672 mutex_exit(&pdk->dk_openlock);
673 return;
674 }
675 strcpy(dkw.dkw_parent, pdk->dk_name);
676 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
677 sizeof(dkw.dkw_devname));
678 mutex_exit(&pdk->dk_openlock);
679 (void) dkwedge_del1(&dkw, flags);
680 }
681 }
682
683 /*
684 * dkwedge_list: [exported function]
685 *
686 * List all of the wedges on a particular disk.
687 * If p == NULL, the buffer is in kernel space. Otherwise, it is
688 * in user space of the specified process.
689 */
690 int
691 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
692 {
693 struct uio uio;
694 struct iovec iov;
695 struct dkwedge_softc *sc;
696 struct dkwedge_info dkw;
697 int error = 0;
698
699 iov.iov_base = dkwl->dkwl_buf;
700 iov.iov_len = dkwl->dkwl_bufsize;
701
702 uio.uio_iov = &iov;
703 uio.uio_iovcnt = 1;
704 uio.uio_offset = 0;
705 uio.uio_resid = dkwl->dkwl_bufsize;
706 uio.uio_rw = UIO_READ;
707 KASSERT(l == curlwp);
708 uio.uio_vmspace = l->l_proc->p_vmspace;
709
710 dkwl->dkwl_ncopied = 0;
711
712 mutex_enter(&pdk->dk_openlock);
713 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
714 if (uio.uio_resid < sizeof(dkw))
715 break;
716
717 if (sc->sc_state != DKW_STATE_RUNNING)
718 continue;
719
720 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
721 sizeof(dkw.dkw_devname));
722 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
723 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
724 strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
725 dkw.dkw_offset = sc->sc_offset;
726 dkw.dkw_size = sc->sc_size;
727 strcpy(dkw.dkw_ptype, sc->sc_ptype);
728
729 error = uiomove(&dkw, sizeof(dkw), &uio);
730 if (error)
731 break;
732 dkwl->dkwl_ncopied++;
733 }
734 dkwl->dkwl_nwedges = pdk->dk_nwedges;
735 mutex_exit(&pdk->dk_openlock);
736
737 return (error);
738 }
739
740 device_t
741 dkwedge_find_by_wname(const char *wname)
742 {
743 device_t dv = NULL;
744 struct dkwedge_softc *sc;
745 int i;
746
747 rw_enter(&dkwedges_lock, RW_WRITER);
748 for (i = 0; i < ndkwedges; i++) {
749 if ((sc = dkwedges[i]) == NULL)
750 continue;
751 if (strcmp(sc->sc_wname, wname) == 0) {
752 if (dv != NULL) {
753 printf(
754 "WARNING: double match for wedge name %s "
755 "(%s, %s)\n", wname, device_xname(dv),
756 device_xname(sc->sc_dev));
757 continue;
758 }
759 dv = sc->sc_dev;
760 }
761 }
762 rw_exit(&dkwedges_lock);
763 return dv;
764 }
765
766 void
767 dkwedge_print_wnames(void)
768 {
769 struct dkwedge_softc *sc;
770 int i;
771
772 rw_enter(&dkwedges_lock, RW_WRITER);
773 for (i = 0; i < ndkwedges; i++) {
774 if ((sc = dkwedges[i]) == NULL)
775 continue;
776 printf(" wedge:%s", sc->sc_wname);
777 }
778 rw_exit(&dkwedges_lock);
779 }
780
781 /*
782 * We need a dummy object to stuff into the dkwedge discovery method link
783 * set to ensure that there is always at least one object in the set.
784 */
785 static struct dkwedge_discovery_method dummy_discovery_method;
786 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
787
788 /*
789 * dkwedge_init:
790 *
791 * Initialize the disk wedge subsystem.
792 */
793 void
794 dkwedge_init(void)
795 {
796 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
797 struct dkwedge_discovery_method * const *ddmp;
798 struct dkwedge_discovery_method *lddm, *ddm;
799
800 rw_init(&dkwedges_lock);
801 rw_init(&dkwedge_discovery_methods_lock);
802
803 if (config_cfdriver_attach(&dk_cd) != 0)
804 panic("dkwedge: unable to attach cfdriver");
805 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
806 panic("dkwedge: unable to attach cfattach");
807
808 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
809
810 LIST_INIT(&dkwedge_discovery_methods);
811
812 __link_set_foreach(ddmp, dkwedge_methods) {
813 ddm = *ddmp;
814 if (ddm == &dummy_discovery_method)
815 continue;
816 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
817 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
818 ddm, ddm_list);
819 continue;
820 }
821 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
822 if (ddm->ddm_priority == lddm->ddm_priority) {
823 aprint_error("dk-method-%s: method \"%s\" "
824 "already exists at priority %d\n",
825 ddm->ddm_name, lddm->ddm_name,
826 lddm->ddm_priority);
827 /* Not inserted. */
828 break;
829 }
830 if (ddm->ddm_priority < lddm->ddm_priority) {
831 /* Higher priority; insert before. */
832 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
833 break;
834 }
835 if (LIST_NEXT(lddm, ddm_list) == NULL) {
836 /* Last one; insert after. */
837 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
838 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
839 break;
840 }
841 }
842 }
843
844 rw_exit(&dkwedge_discovery_methods_lock);
845 }
846
847 #ifdef DKWEDGE_AUTODISCOVER
848 int dkwedge_autodiscover = 1;
849 #else
850 int dkwedge_autodiscover = 0;
851 #endif
852
853 /*
854 * dkwedge_discover: [exported function]
855 *
856 * Discover the wedges on a newly attached disk.
857 * Remove all unused wedges on the disk first.
858 */
859 void
860 dkwedge_discover(struct disk *pdk)
861 {
862 struct dkwedge_discovery_method *ddm;
863 struct vnode *vp;
864 int error;
865 dev_t pdev;
866
867 /*
868 * Require people playing with wedges to enable this explicitly.
869 */
870 if (dkwedge_autodiscover == 0)
871 return;
872
873 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
874
875 /*
876 * Use the character device for scanning, the block device
877 * is busy if there are already wedges attached.
878 */
879 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
880 if (error) {
881 aprint_error("%s: unable to compute pdev, error = %d\n",
882 pdk->dk_name, error);
883 goto out;
884 }
885
886 error = cdevvp(pdev, &vp);
887 if (error) {
888 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
889 pdk->dk_name, error);
890 goto out;
891 }
892
893 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
894 if (error) {
895 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
896 pdk->dk_name, error);
897 vrele(vp);
898 goto out;
899 }
900
901 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
902 if (error) {
903 if (error != ENODEV)
904 aprint_error("%s: unable to open device, error = %d\n",
905 pdk->dk_name, error);
906 vput(vp);
907 goto out;
908 }
909 VOP_UNLOCK(vp);
910
911 /*
912 * Remove unused wedges
913 */
914 dkwedge_delall1(pdk, true);
915
916 /*
917 * For each supported partition map type, look to see if
918 * this map type exists. If so, parse it and add the
919 * corresponding wedges.
920 */
921 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
922 error = (*ddm->ddm_discover)(pdk, vp);
923 if (error == 0) {
924 /* Successfully created wedges; we're done. */
925 break;
926 }
927 }
928
929 error = vn_close(vp, FREAD, NOCRED);
930 if (error) {
931 aprint_error("%s: unable to close device, error = %d\n",
932 pdk->dk_name, error);
933 /* We'll just assume the vnode has been cleaned up. */
934 }
935
936 out:
937 rw_exit(&dkwedge_discovery_methods_lock);
938 }
939
940 /*
941 * dkwedge_read:
942 *
943 * Read some data from the specified disk, used for
944 * partition discovery.
945 */
946 int
947 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
948 void *tbuf, size_t len)
949 {
950 buf_t *bp;
951 int error;
952 bool isopen;
953 dev_t bdev;
954 struct vnode *bdvp;
955
956 /*
957 * The kernel cannot read from a character device vnode
958 * as physio() only handles user memory.
959 *
960 * If the block device has already been opened by a wedge
961 * use that vnode and temporarily bump the open counter.
962 *
963 * Otherwise try to open the block device.
964 */
965
966 bdev = devsw_chr2blk(vp->v_rdev);
967
968 mutex_enter(&pdk->dk_rawlock);
969 if (pdk->dk_rawopens != 0) {
970 KASSERT(pdk->dk_rawvp != NULL);
971 isopen = true;
972 ++pdk->dk_rawopens;
973 bdvp = pdk->dk_rawvp;
974 } else {
975 isopen = false;
976 bdvp = dk_open_parent(bdev, FREAD);
977 }
978 mutex_exit(&pdk->dk_rawlock);
979
980 if (bdvp == NULL)
981 return EBUSY;
982
983 bp = getiobuf(bdvp, true);
984 bp->b_flags = B_READ;
985 bp->b_cflags = BC_BUSY;
986 bp->b_dev = bdev;
987 bp->b_data = tbuf;
988 bp->b_bufsize = bp->b_bcount = len;
989 bp->b_blkno = blkno;
990 bp->b_cylinder = 0;
991 bp->b_error = 0;
992
993 VOP_STRATEGY(bdvp, bp);
994 error = biowait(bp);
995 putiobuf(bp);
996
997 mutex_enter(&pdk->dk_rawlock);
998 if (isopen) {
999 --pdk->dk_rawopens;
1000 } else {
1001 dk_close_parent(bdvp, FREAD);
1002 }
1003 mutex_exit(&pdk->dk_rawlock);
1004
1005 return error;
1006 }
1007
1008 /*
1009 * dkwedge_lookup:
1010 *
1011 * Look up a dkwedge_softc based on the provided dev_t.
1012 */
1013 static struct dkwedge_softc *
1014 dkwedge_lookup(dev_t dev)
1015 {
1016 int unit = minor(dev);
1017
1018 if (unit >= ndkwedges)
1019 return (NULL);
1020
1021 KASSERT(dkwedges != NULL);
1022
1023 return (dkwedges[unit]);
1024 }
1025
1026 static struct vnode *
1027 dk_open_parent(dev_t dev, int mode)
1028 {
1029 struct vnode *vp;
1030 int error;
1031
1032 error = bdevvp(dev, &vp);
1033 if (error)
1034 return NULL;
1035
1036 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1037 if (error) {
1038 vrele(vp);
1039 return NULL;
1040 }
1041 error = VOP_OPEN(vp, mode, NOCRED);
1042 if (error) {
1043 vput(vp);
1044 return NULL;
1045 }
1046
1047 /* VOP_OPEN() doesn't do this for us. */
1048 if (mode & FWRITE) {
1049 mutex_enter(vp->v_interlock);
1050 vp->v_writecount++;
1051 mutex_exit(vp->v_interlock);
1052 }
1053
1054 VOP_UNLOCK(vp);
1055
1056 return vp;
1057 }
1058
1059 static int
1060 dk_close_parent(struct vnode *vp, int mode)
1061 {
1062 int error;
1063
1064 error = vn_close(vp, mode, NOCRED);
1065 return error;
1066 }
1067
1068 /*
1069 * dkopen: [devsw entry point]
1070 *
1071 * Open a wedge.
1072 */
1073 static int
1074 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
1075 {
1076 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1077 struct vnode *vp;
1078 int error = 0;
1079
1080 if (sc == NULL)
1081 return (ENODEV);
1082 if (sc->sc_state != DKW_STATE_RUNNING)
1083 return (ENXIO);
1084
1085 /*
1086 * We go through a complicated little dance to only open the parent
1087 * vnode once per wedge, no matter how many times the wedge is
1088 * opened. The reason? We see one dkopen() per open call, but
1089 * only dkclose() on the last close.
1090 */
1091 mutex_enter(&sc->sc_dk.dk_openlock);
1092 mutex_enter(&sc->sc_parent->dk_rawlock);
1093 if (sc->sc_dk.dk_openmask == 0) {
1094 if (sc->sc_parent->dk_rawopens == 0) {
1095 KASSERT(sc->sc_parent->dk_rawvp == NULL);
1096 vp = dk_open_parent(sc->sc_pdev, FREAD | FWRITE);
1097 if (vp == NULL)
1098 goto popen_fail;
1099 sc->sc_parent->dk_rawvp = vp;
1100 }
1101 sc->sc_parent->dk_rawopens++;
1102 }
1103 if (fmt == S_IFCHR)
1104 sc->sc_dk.dk_copenmask |= 1;
1105 else
1106 sc->sc_dk.dk_bopenmask |= 1;
1107 sc->sc_dk.dk_openmask =
1108 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1109
1110 popen_fail:
1111 mutex_exit(&sc->sc_parent->dk_rawlock);
1112 mutex_exit(&sc->sc_dk.dk_openlock);
1113 return (error);
1114 }
1115
1116 /*
1117 * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock.
1118 */
1119 static int
1120 dklastclose(struct dkwedge_softc *sc)
1121 {
1122 int error = 0, doclose;
1123
1124 doclose = 0;
1125 if (sc->sc_parent->dk_rawopens > 0) {
1126 if (--sc->sc_parent->dk_rawopens == 0)
1127 doclose = 1;
1128 }
1129
1130 mutex_exit(&sc->sc_parent->dk_rawlock);
1131
1132 if (doclose) {
1133 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1134 dk_close_parent(sc->sc_parent->dk_rawvp, FREAD | FWRITE);
1135 sc->sc_parent->dk_rawvp = NULL;
1136 }
1137
1138 return error;
1139 }
1140
1141 /*
1142 * dkclose: [devsw entry point]
1143 *
1144 * Close a wedge.
1145 */
1146 static int
1147 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1148 {
1149 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1150 int error = 0;
1151
1152 if (sc == NULL)
1153 return (ENODEV);
1154 if (sc->sc_state != DKW_STATE_RUNNING)
1155 return (ENXIO);
1156
1157 KASSERT(sc->sc_dk.dk_openmask != 0);
1158
1159 mutex_enter(&sc->sc_dk.dk_openlock);
1160 mutex_enter(&sc->sc_parent->dk_rawlock);
1161
1162 if (fmt == S_IFCHR)
1163 sc->sc_dk.dk_copenmask &= ~1;
1164 else
1165 sc->sc_dk.dk_bopenmask &= ~1;
1166 sc->sc_dk.dk_openmask =
1167 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1168
1169 if (sc->sc_dk.dk_openmask == 0)
1170 error = dklastclose(sc); /* releases dk_rawlock */
1171 else
1172 mutex_exit(&sc->sc_parent->dk_rawlock);
1173
1174 mutex_exit(&sc->sc_dk.dk_openlock);
1175
1176 return (error);
1177 }
1178
1179 /*
1180 * dkstragegy: [devsw entry point]
1181 *
1182 * Perform I/O based on the wedge I/O strategy.
1183 */
1184 static void
1185 dkstrategy(struct buf *bp)
1186 {
1187 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1188 uint64_t p_size, p_offset;
1189 int s;
1190
1191 if (sc == NULL) {
1192 bp->b_error = ENODEV;
1193 goto done;
1194 }
1195
1196 if (sc->sc_state != DKW_STATE_RUNNING ||
1197 sc->sc_parent->dk_rawvp == NULL) {
1198 bp->b_error = ENXIO;
1199 goto done;
1200 }
1201
1202 /* If it's an empty transfer, wake up the top half now. */
1203 if (bp->b_bcount == 0)
1204 goto done;
1205
1206 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1207 p_size = sc->sc_size << sc->sc_parent->dk_blkshift;
1208
1209 /* Make sure it's in-range. */
1210 if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1211 goto done;
1212
1213 /* Translate it to the parent's raw LBA. */
1214 bp->b_rawblkno = bp->b_blkno + p_offset;
1215
1216 /* Place it in the queue and start I/O on the unit. */
1217 s = splbio();
1218 sc->sc_iopend++;
1219 bufq_put(sc->sc_bufq, bp);
1220 dkstart(sc);
1221 splx(s);
1222 return;
1223
1224 done:
1225 bp->b_resid = bp->b_bcount;
1226 biodone(bp);
1227 }
1228
1229 /*
1230 * dkstart:
1231 *
1232 * Start I/O that has been enqueued on the wedge.
1233 * NOTE: Must be called at splbio()!
1234 */
1235 static void
1236 dkstart(struct dkwedge_softc *sc)
1237 {
1238 struct vnode *vp;
1239 struct buf *bp, *nbp;
1240
1241 /* Do as much work as has been enqueued. */
1242 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1243 if (sc->sc_state != DKW_STATE_RUNNING) {
1244 (void) bufq_get(sc->sc_bufq);
1245 if (sc->sc_iopend-- == 1 &&
1246 (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1247 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1248 wakeup(&sc->sc_iopend);
1249 }
1250 bp->b_error = ENXIO;
1251 bp->b_resid = bp->b_bcount;
1252 biodone(bp);
1253 }
1254
1255 /* Instrumentation. */
1256 disk_busy(&sc->sc_dk);
1257
1258 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1259 if (nbp == NULL) {
1260 /*
1261 * No resources to run this request; leave the
1262 * buffer queued up, and schedule a timer to
1263 * restart the queue in 1/2 a second.
1264 */
1265 disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
1266 callout_schedule(&sc->sc_restart_ch, hz / 2);
1267 return;
1268 }
1269
1270 (void) bufq_get(sc->sc_bufq);
1271
1272 nbp->b_data = bp->b_data;
1273 nbp->b_flags = bp->b_flags;
1274 nbp->b_oflags = bp->b_oflags;
1275 nbp->b_cflags = bp->b_cflags;
1276 nbp->b_iodone = dkiodone;
1277 nbp->b_proc = bp->b_proc;
1278 nbp->b_blkno = bp->b_rawblkno;
1279 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1280 nbp->b_bcount = bp->b_bcount;
1281 nbp->b_private = bp;
1282 BIO_COPYPRIO(nbp, bp);
1283
1284 vp = nbp->b_vp;
1285 if ((nbp->b_flags & B_READ) == 0) {
1286 mutex_enter(vp->v_interlock);
1287 vp->v_numoutput++;
1288 mutex_exit(vp->v_interlock);
1289 }
1290 VOP_STRATEGY(vp, nbp);
1291 }
1292 }
1293
1294 /*
1295 * dkiodone:
1296 *
1297 * I/O to a wedge has completed; alert the top half.
1298 */
1299 static void
1300 dkiodone(struct buf *bp)
1301 {
1302 struct buf *obp = bp->b_private;
1303 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1304
1305 int s = splbio();
1306
1307 if (bp->b_error != 0)
1308 obp->b_error = bp->b_error;
1309 obp->b_resid = bp->b_resid;
1310 putiobuf(bp);
1311
1312 if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1313 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1314 wakeup(&sc->sc_iopend);
1315 }
1316
1317 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1318 obp->b_flags & B_READ);
1319
1320 biodone(obp);
1321
1322 /* Kick the queue in case there is more work we can do. */
1323 dkstart(sc);
1324 splx(s);
1325 }
1326
1327 /*
1328 * dkrestart:
1329 *
1330 * Restart the work queue after it was stalled due to
1331 * a resource shortage. Invoked via a callout.
1332 */
1333 static void
1334 dkrestart(void *v)
1335 {
1336 struct dkwedge_softc *sc = v;
1337 int s;
1338
1339 s = splbio();
1340 dkstart(sc);
1341 splx(s);
1342 }
1343
1344 /*
1345 * dkminphys:
1346 *
1347 * Call parent's minphys function.
1348 */
1349 static void
1350 dkminphys(struct buf *bp)
1351 {
1352 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1353 dev_t dev;
1354
1355 dev = bp->b_dev;
1356 bp->b_dev = sc->sc_pdev;
1357 (*sc->sc_parent->dk_driver->d_minphys)(bp);
1358 bp->b_dev = dev;
1359 }
1360
1361 /*
1362 * dkread: [devsw entry point]
1363 *
1364 * Read from a wedge.
1365 */
1366 static int
1367 dkread(dev_t dev, struct uio *uio, int flags)
1368 {
1369 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1370
1371 if (sc == NULL)
1372 return (ENODEV);
1373 if (sc->sc_state != DKW_STATE_RUNNING)
1374 return (ENXIO);
1375
1376 return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio));
1377 }
1378
1379 /*
1380 * dkwrite: [devsw entry point]
1381 *
1382 * Write to a wedge.
1383 */
1384 static int
1385 dkwrite(dev_t dev, struct uio *uio, int flags)
1386 {
1387 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1388
1389 if (sc == NULL)
1390 return (ENODEV);
1391 if (sc->sc_state != DKW_STATE_RUNNING)
1392 return (ENXIO);
1393
1394 return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio));
1395 }
1396
1397 /*
1398 * dkioctl: [devsw entry point]
1399 *
1400 * Perform an ioctl request on a wedge.
1401 */
1402 static int
1403 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1404 {
1405 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1406 int error = 0;
1407
1408 if (sc == NULL)
1409 return (ENODEV);
1410 if (sc->sc_state != DKW_STATE_RUNNING)
1411 return (ENXIO);
1412 if (sc->sc_parent->dk_rawvp == NULL)
1413 return (ENXIO);
1414
1415 /*
1416 * We pass NODEV instead of our device to indicate we don't
1417 * want to handle disklabel ioctls
1418 */
1419 error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
1420 if (error != EPASSTHROUGH)
1421 return (error);
1422
1423 error = 0;
1424
1425 switch (cmd) {
1426 case DIOCCACHESYNC:
1427 /*
1428 * XXX Do we really need to care about having a writable
1429 * file descriptor here?
1430 */
1431 if ((flag & FWRITE) == 0)
1432 error = EBADF;
1433 else
1434 error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
1435 cmd, data, flag,
1436 l != NULL ? l->l_cred : NOCRED);
1437 break;
1438 case DIOCGWEDGEINFO:
1439 {
1440 struct dkwedge_info *dkw = (void *) data;
1441
1442 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1443 sizeof(dkw->dkw_devname));
1444 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1445 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1446 strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
1447 dkw->dkw_offset = sc->sc_offset;
1448 dkw->dkw_size = sc->sc_size;
1449 strcpy(dkw->dkw_ptype, sc->sc_ptype);
1450
1451 break;
1452 }
1453
1454 default:
1455 error = ENOTTY;
1456 }
1457
1458 return (error);
1459 }
1460
1461 /*
1462 * dkdiscard: [devsw entry point]
1463 *
1464 * Perform a discard-range request on a wedge.
1465 */
1466 static int
1467 dkdiscard(dev_t dev, off_t pos, off_t len)
1468 {
1469 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1470 unsigned shift;
1471 off_t offset, maxlen;
1472
1473 if (sc == NULL)
1474 return (ENODEV);
1475 if (sc->sc_state != DKW_STATE_RUNNING)
1476 return (ENXIO);
1477 if (sc->sc_parent->dk_rawvp == NULL)
1478 return (ENXIO);
1479
1480 shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
1481 KASSERT(__type_fit(off_t, sc->sc_size));
1482 KASSERT(__type_fit(off_t, sc->sc_offset));
1483 KASSERT(0 <= sc->sc_offset);
1484 KASSERT(sc->sc_size <= (__type_max(off_t) >> shift));
1485 KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - sc->sc_size));
1486 offset = ((off_t)sc->sc_offset << shift);
1487 maxlen = ((off_t)sc->sc_size << shift);
1488
1489 if (len > maxlen)
1490 return (EINVAL);
1491 if (pos > (maxlen - len))
1492 return (EINVAL);
1493
1494 pos += offset;
1495 return VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
1496 }
1497
1498 /*
1499 * dksize: [devsw entry point]
1500 *
1501 * Query the size of a wedge for the purpose of performing a dump
1502 * or for swapping to.
1503 */
1504 static int
1505 dksize(dev_t dev)
1506 {
1507 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1508 int rv = -1;
1509
1510 if (sc == NULL)
1511 return (-1);
1512 if (sc->sc_state != DKW_STATE_RUNNING)
1513 return (-1);
1514
1515 mutex_enter(&sc->sc_dk.dk_openlock);
1516 mutex_enter(&sc->sc_parent->dk_rawlock);
1517
1518 /* Our content type is static, no need to open the device. */
1519
1520 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1521 /* Saturate if we are larger than INT_MAX. */
1522 if (sc->sc_size > INT_MAX)
1523 rv = INT_MAX;
1524 else
1525 rv = (int) sc->sc_size;
1526 }
1527
1528 mutex_exit(&sc->sc_parent->dk_rawlock);
1529 mutex_exit(&sc->sc_dk.dk_openlock);
1530
1531 return (rv);
1532 }
1533
1534 /*
1535 * dkdump: [devsw entry point]
1536 *
1537 * Perform a crash dump to a wedge.
1538 */
1539 static int
1540 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1541 {
1542 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1543 const struct bdevsw *bdev;
1544 int rv = 0;
1545
1546 if (sc == NULL)
1547 return (ENODEV);
1548 if (sc->sc_state != DKW_STATE_RUNNING)
1549 return (ENXIO);
1550
1551 mutex_enter(&sc->sc_dk.dk_openlock);
1552 mutex_enter(&sc->sc_parent->dk_rawlock);
1553
1554 /* Our content type is static, no need to open the device. */
1555
1556 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
1557 rv = ENXIO;
1558 goto out;
1559 }
1560 if (size % DEV_BSIZE != 0) {
1561 rv = EINVAL;
1562 goto out;
1563 }
1564 if (blkno + size / DEV_BSIZE > sc->sc_size) {
1565 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1566 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
1567 size / DEV_BSIZE, sc->sc_size);
1568 rv = EINVAL;
1569 goto out;
1570 }
1571
1572 bdev = bdevsw_lookup(sc->sc_pdev);
1573 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
1574
1575 out:
1576 mutex_exit(&sc->sc_parent->dk_rawlock);
1577 mutex_exit(&sc->sc_dk.dk_openlock);
1578
1579 return rv;
1580 }
1581
1582 /*
1583 * config glue
1584 */
1585
1586 /*
1587 * dkwedge_find_partition
1588 *
1589 * Find wedge corresponding to the specified parent name
1590 * and offset/length.
1591 */
1592 device_t
1593 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
1594 {
1595 struct dkwedge_softc *sc;
1596 int i;
1597 device_t wedge = NULL;
1598
1599 rw_enter(&dkwedges_lock, RW_READER);
1600 for (i = 0; i < ndkwedges; i++) {
1601 if ((sc = dkwedges[i]) == NULL)
1602 continue;
1603 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
1604 sc->sc_offset == startblk &&
1605 sc->sc_size == nblks) {
1606 if (wedge) {
1607 printf("WARNING: double match for boot wedge "
1608 "(%s, %s)\n",
1609 device_xname(wedge),
1610 device_xname(sc->sc_dev));
1611 continue;
1612 }
1613 wedge = sc->sc_dev;
1614 }
1615 }
1616 rw_exit(&dkwedges_lock);
1617
1618 return wedge;
1619 }
1620
1621 const char *
1622 dkwedge_get_parent_name(dev_t dev)
1623 {
1624 /* XXX: perhaps do this in lookup? */
1625 int bmaj = bdevsw_lookup_major(&dk_bdevsw);
1626 int cmaj = cdevsw_lookup_major(&dk_cdevsw);
1627 if (major(dev) != bmaj && major(dev) != cmaj)
1628 return NULL;
1629 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1630 if (sc == NULL)
1631 return NULL;
1632 return sc->sc_parent->dk_name;
1633 }
1634
1635