dk.c revision 1.86 1 /* $NetBSD: dk.c,v 1.86 2015/11/28 13:41:31 mlelstv Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.86 2015/11/28 13:41:31 mlelstv Exp $");
34
35 #ifdef _KERNEL_OPT
36 #include "opt_dkwedge.h"
37 #endif
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/errno.h>
43 #include <sys/pool.h>
44 #include <sys/ioctl.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/fcntl.h>
48 #include <sys/buf.h>
49 #include <sys/bufq.h>
50 #include <sys/vnode.h>
51 #include <sys/stat.h>
52 #include <sys/conf.h>
53 #include <sys/callout.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/device.h>
57 #include <sys/kauth.h>
58
59 #include <miscfs/specfs/specdev.h>
60
61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
62
63 typedef enum {
64 DKW_STATE_LARVAL = 0,
65 DKW_STATE_RUNNING = 1,
66 DKW_STATE_DYING = 2,
67 DKW_STATE_DEAD = 666
68 } dkwedge_state_t;
69
70 struct dkwedge_softc {
71 device_t sc_dev; /* pointer to our pseudo-device */
72 struct cfdata sc_cfdata; /* our cfdata structure */
73 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
74
75 dkwedge_state_t sc_state; /* state this wedge is in */
76
77 struct disk *sc_parent; /* parent disk */
78 daddr_t sc_offset; /* LBA offset of wedge in parent */
79 uint64_t sc_size; /* size of wedge in blocks */
80 char sc_ptype[32]; /* partition type */
81 dev_t sc_pdev; /* cached parent's dev_t */
82 /* link on parent's wedge list */
83 LIST_ENTRY(dkwedge_softc) sc_plink;
84
85 struct disk sc_dk; /* our own disk structure */
86 struct bufq_state *sc_bufq; /* buffer queue */
87 struct callout sc_restart_ch; /* callout to restart I/O */
88
89 u_int sc_iopend; /* I/Os pending */
90 int sc_flags; /* flags (splbio) */
91 };
92
93 #define DK_F_WAIT_DRAIN 0x0001 /* waiting for I/O to drain */
94
95 static void dkstart(struct dkwedge_softc *);
96 static void dkiodone(struct buf *);
97 static void dkrestart(void *);
98 static void dkminphys(struct buf *);
99
100 static int dklastclose(struct dkwedge_softc *);
101 static int dkwedge_cleanup_parent(struct dkwedge_softc *, int);
102 static int dkwedge_detach(device_t, int);
103 static void dkwedge_delall1(struct disk *, bool);
104 static int dkwedge_del1(struct dkwedge_info *, int);
105 static struct vnode *dk_open_parent(dev_t, int);
106 static int dk_close_parent(struct vnode *, int);
107
108 static dev_type_open(dkopen);
109 static dev_type_close(dkclose);
110 static dev_type_read(dkread);
111 static dev_type_write(dkwrite);
112 static dev_type_ioctl(dkioctl);
113 static dev_type_strategy(dkstrategy);
114 static dev_type_dump(dkdump);
115 static dev_type_size(dksize);
116 static dev_type_discard(dkdiscard);
117
118 const struct bdevsw dk_bdevsw = {
119 .d_open = dkopen,
120 .d_close = dkclose,
121 .d_strategy = dkstrategy,
122 .d_ioctl = dkioctl,
123 .d_dump = dkdump,
124 .d_psize = dksize,
125 .d_discard = dkdiscard,
126 .d_flag = D_DISK
127 };
128
129 const struct cdevsw dk_cdevsw = {
130 .d_open = dkopen,
131 .d_close = dkclose,
132 .d_read = dkread,
133 .d_write = dkwrite,
134 .d_ioctl = dkioctl,
135 .d_stop = nostop,
136 .d_tty = notty,
137 .d_poll = nopoll,
138 .d_mmap = nommap,
139 .d_kqfilter = nokqfilter,
140 .d_discard = dkdiscard,
141 .d_flag = D_DISK
142 };
143
144 static struct dkwedge_softc **dkwedges;
145 static u_int ndkwedges;
146 static krwlock_t dkwedges_lock;
147
148 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
149 static krwlock_t dkwedge_discovery_methods_lock;
150
151 /*
152 * dkwedge_match:
153 *
154 * Autoconfiguration match function for pseudo-device glue.
155 */
156 static int
157 dkwedge_match(device_t parent, cfdata_t match,
158 void *aux)
159 {
160
161 /* Pseudo-device; always present. */
162 return (1);
163 }
164
165 /*
166 * dkwedge_attach:
167 *
168 * Autoconfiguration attach function for pseudo-device glue.
169 */
170 static void
171 dkwedge_attach(device_t parent, device_t self,
172 void *aux)
173 {
174
175 if (!pmf_device_register(self, NULL, NULL))
176 aprint_error_dev(self, "couldn't establish power handler\n");
177 }
178
179 CFDRIVER_DECL(dk, DV_DISK, NULL);
180 CFATTACH_DECL3_NEW(dk, 0,
181 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
182 DVF_DETACH_SHUTDOWN);
183
184 /*
185 * dkwedge_wait_drain:
186 *
187 * Wait for I/O on the wedge to drain.
188 * NOTE: Must be called at splbio()!
189 */
190 static void
191 dkwedge_wait_drain(struct dkwedge_softc *sc)
192 {
193
194 while (sc->sc_iopend != 0) {
195 sc->sc_flags |= DK_F_WAIT_DRAIN;
196 (void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
197 }
198 }
199
200 /*
201 * dkwedge_compute_pdev:
202 *
203 * Compute the parent disk's dev_t.
204 */
205 static int
206 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
207 {
208 const char *name, *cp;
209 devmajor_t pmaj;
210 int punit;
211 char devname[16];
212
213 name = pname;
214 switch (type) {
215 case VBLK:
216 pmaj = devsw_name2blk(name, devname, sizeof(devname));
217 break;
218 case VCHR:
219 pmaj = devsw_name2chr(name, devname, sizeof(devname));
220 break;
221 default:
222 pmaj = NODEVMAJOR;
223 break;
224 }
225 if (pmaj == NODEVMAJOR)
226 return (ENODEV);
227
228 name += strlen(devname);
229 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
230 punit = (punit * 10) + (*cp - '0');
231 if (cp == name) {
232 /* Invalid parent disk name. */
233 return (ENODEV);
234 }
235
236 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
237
238 return (0);
239 }
240
241 /*
242 * dkwedge_array_expand:
243 *
244 * Expand the dkwedges array.
245 */
246 static void
247 dkwedge_array_expand(void)
248 {
249 int newcnt = ndkwedges + 16;
250 struct dkwedge_softc **newarray, **oldarray;
251
252 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
253 M_WAITOK|M_ZERO);
254 if ((oldarray = dkwedges) != NULL)
255 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
256 dkwedges = newarray;
257 ndkwedges = newcnt;
258 if (oldarray != NULL)
259 free(oldarray, M_DKWEDGE);
260 }
261
262 static void
263 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
264 {
265 struct disk *dk = &sc->sc_dk;
266 struct disk_geom *dg = &dk->dk_geom;
267
268 memset(dg, 0, sizeof(*dg));
269
270 dg->dg_secperunit = sc->sc_size;
271 dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
272
273 /* fake numbers, 1 cylinder is 1 MB with default sector size */
274 dg->dg_nsectors = 32;
275 dg->dg_ntracks = 64;
276 dg->dg_ncylinders = dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
277
278 disk_set_info(sc->sc_dev, dk, NULL);
279 }
280
281 /*
282 * dkwedge_add: [exported function]
283 *
284 * Add a disk wedge based on the provided information.
285 *
286 * The incoming dkw_devname[] is ignored, instead being
287 * filled in and returned to the caller.
288 */
289 int
290 dkwedge_add(struct dkwedge_info *dkw)
291 {
292 struct dkwedge_softc *sc, *lsc;
293 struct disk *pdk;
294 u_int unit;
295 int error;
296 dev_t pdev;
297
298 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
299 pdk = disk_find(dkw->dkw_parent);
300 if (pdk == NULL)
301 return (ENODEV);
302
303 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
304 if (error)
305 return (error);
306
307 if (dkw->dkw_offset < 0)
308 return (EINVAL);
309
310 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
311 sc->sc_state = DKW_STATE_LARVAL;
312 sc->sc_parent = pdk;
313 sc->sc_pdev = pdev;
314 sc->sc_offset = dkw->dkw_offset;
315 sc->sc_size = dkw->dkw_size;
316
317 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
318 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
319
320 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
321 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
322
323 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
324
325 callout_init(&sc->sc_restart_ch, 0);
326 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
327
328 /*
329 * Wedge will be added; increment the wedge count for the parent.
330 * Only allow this to happend if RAW_PART is the only thing open.
331 */
332 mutex_enter(&pdk->dk_openlock);
333 if (pdk->dk_openmask & ~(1 << RAW_PART))
334 error = EBUSY;
335 else {
336 /* Check for wedge overlap. */
337 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
338 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
339 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
340
341 if (sc->sc_offset >= lsc->sc_offset &&
342 sc->sc_offset <= llastblk) {
343 /* Overlaps the tail of the existing wedge. */
344 break;
345 }
346 if (lastblk >= lsc->sc_offset &&
347 lastblk <= llastblk) {
348 /* Overlaps the head of the existing wedge. */
349 break;
350 }
351 }
352 if (lsc != NULL) {
353 if (sc->sc_offset == lsc->sc_offset &&
354 sc->sc_size == lsc->sc_size &&
355 strcmp(sc->sc_wname, lsc->sc_wname) == 0)
356 error = EEXIST;
357 else
358 error = EINVAL;
359 } else {
360 pdk->dk_nwedges++;
361 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
362 }
363 }
364 mutex_exit(&pdk->dk_openlock);
365 if (error) {
366 bufq_free(sc->sc_bufq);
367 free(sc, M_DKWEDGE);
368 return (error);
369 }
370
371 /* Fill in our cfdata for the pseudo-device glue. */
372 sc->sc_cfdata.cf_name = dk_cd.cd_name;
373 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
374 /* sc->sc_cfdata.cf_unit set below */
375 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
376
377 /* Insert the larval wedge into the array. */
378 rw_enter(&dkwedges_lock, RW_WRITER);
379 for (error = 0;;) {
380 struct dkwedge_softc **scpp;
381
382 /*
383 * Check for a duplicate wname while searching for
384 * a slot.
385 */
386 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
387 if (dkwedges[unit] == NULL) {
388 if (scpp == NULL) {
389 scpp = &dkwedges[unit];
390 sc->sc_cfdata.cf_unit = unit;
391 }
392 } else {
393 /* XXX Unicode. */
394 if (strcmp(dkwedges[unit]->sc_wname,
395 sc->sc_wname) == 0) {
396 error = EEXIST;
397 break;
398 }
399 }
400 }
401 if (error)
402 break;
403 KASSERT(unit == ndkwedges);
404 if (scpp == NULL)
405 dkwedge_array_expand();
406 else {
407 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
408 *scpp = sc;
409 break;
410 }
411 }
412 rw_exit(&dkwedges_lock);
413 if (error) {
414 mutex_enter(&pdk->dk_openlock);
415 pdk->dk_nwedges--;
416 LIST_REMOVE(sc, sc_plink);
417 mutex_exit(&pdk->dk_openlock);
418
419 bufq_free(sc->sc_bufq);
420 free(sc, M_DKWEDGE);
421 return (error);
422 }
423
424 /*
425 * Now that we know the unit #, attach a pseudo-device for
426 * this wedge instance. This will provide us with the
427 * device_t necessary for glue to other parts of the system.
428 *
429 * This should never fail, unless we're almost totally out of
430 * memory.
431 */
432 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
433 aprint_error("%s%u: unable to attach pseudo-device\n",
434 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
435
436 rw_enter(&dkwedges_lock, RW_WRITER);
437 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
438 rw_exit(&dkwedges_lock);
439
440 mutex_enter(&pdk->dk_openlock);
441 pdk->dk_nwedges--;
442 LIST_REMOVE(sc, sc_plink);
443 mutex_exit(&pdk->dk_openlock);
444
445 bufq_free(sc->sc_bufq);
446 free(sc, M_DKWEDGE);
447 return (ENOMEM);
448 }
449
450 /* Return the devname to the caller. */
451 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
452 sizeof(dkw->dkw_devname));
453
454 /*
455 * XXX Really ought to make the disk_attach() and the changing
456 * of state to RUNNING atomic.
457 */
458
459 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
460 dk_set_geometry(sc, pdk);
461 disk_attach(&sc->sc_dk);
462
463 /* Disk wedge is ready for use! */
464 sc->sc_state = DKW_STATE_RUNNING;
465
466 /* Announce our arrival. */
467 aprint_normal(
468 "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
469 device_xname(sc->sc_dev), pdk->dk_name,
470 sc->sc_wname, /* XXX Unicode */
471 sc->sc_size, sc->sc_offset,
472 sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
473
474 return (0);
475 }
476
477 /*
478 * dkwedge_find:
479 *
480 * Lookup a disk wedge based on the provided information.
481 * NOTE: We look up the wedge based on the wedge devname,
482 * not wname.
483 *
484 * Return NULL if the wedge is not found, otherwise return
485 * the wedge's softc. Assign the wedge's unit number to unitp
486 * if unitp is not NULL.
487 */
488 static struct dkwedge_softc *
489 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
490 {
491 struct dkwedge_softc *sc = NULL;
492 u_int unit;
493
494 /* Find our softc. */
495 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
496 rw_enter(&dkwedges_lock, RW_READER);
497 for (unit = 0; unit < ndkwedges; unit++) {
498 if ((sc = dkwedges[unit]) != NULL &&
499 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
500 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
501 break;
502 }
503 }
504 rw_exit(&dkwedges_lock);
505 if (unit == ndkwedges)
506 return NULL;
507
508 if (unitp != NULL)
509 *unitp = unit;
510
511 return sc;
512 }
513
514 /*
515 * dkwedge_del: [exported function]
516 *
517 * Delete a disk wedge based on the provided information.
518 * NOTE: We look up the wedge based on the wedge devname,
519 * not wname.
520 */
521 int
522 dkwedge_del(struct dkwedge_info *dkw)
523 {
524 return dkwedge_del1(dkw, 0);
525 }
526
527 int
528 dkwedge_del1(struct dkwedge_info *dkw, int flags)
529 {
530 struct dkwedge_softc *sc = NULL;
531
532 /* Find our softc. */
533 if ((sc = dkwedge_find(dkw, NULL)) == NULL)
534 return (ESRCH);
535
536 return config_detach(sc->sc_dev, flags);
537 }
538
539 static int
540 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags)
541 {
542 struct disk *dk = &sc->sc_dk;
543 int rc;
544
545 rc = 0;
546 mutex_enter(&dk->dk_openlock);
547 if (dk->dk_openmask == 0)
548 ; /* nothing to do */
549 else if ((flags & DETACH_FORCE) == 0)
550 rc = EBUSY;
551 else {
552 mutex_enter(&sc->sc_parent->dk_rawlock);
553 rc = dklastclose(sc); /* releases dk_rawlock */
554 }
555 mutex_exit(&dk->dk_openlock);
556
557 return rc;
558 }
559
560 /*
561 * dkwedge_detach:
562 *
563 * Autoconfiguration detach function for pseudo-device glue.
564 */
565 static int
566 dkwedge_detach(device_t self, int flags)
567 {
568 struct dkwedge_softc *sc = NULL;
569 u_int unit;
570 int bmaj, cmaj, rc, s;
571
572 rw_enter(&dkwedges_lock, RW_WRITER);
573 for (unit = 0; unit < ndkwedges; unit++) {
574 if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
575 break;
576 }
577 if (unit == ndkwedges)
578 rc = ENXIO;
579 else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) {
580 /* Mark the wedge as dying. */
581 sc->sc_state = DKW_STATE_DYING;
582 }
583 rw_exit(&dkwedges_lock);
584
585 if (rc != 0)
586 return rc;
587
588 pmf_device_deregister(self);
589
590 /* Locate the wedge major numbers. */
591 bmaj = bdevsw_lookup_major(&dk_bdevsw);
592 cmaj = cdevsw_lookup_major(&dk_cdevsw);
593
594 /* Kill any pending restart. */
595 callout_stop(&sc->sc_restart_ch);
596
597 /*
598 * dkstart() will kill any queued buffers now that the
599 * state of the wedge is not RUNNING. Once we've done
600 * that, wait for any other pending I/O to complete.
601 */
602 s = splbio();
603 dkstart(sc);
604 dkwedge_wait_drain(sc);
605 splx(s);
606
607 /* Nuke the vnodes for any open instances. */
608 vdevgone(bmaj, unit, unit, VBLK);
609 vdevgone(cmaj, unit, unit, VCHR);
610
611 /* Clean up the parent. */
612 dkwedge_cleanup_parent(sc, flags | DETACH_FORCE);
613
614 /* Announce our departure. */
615 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
616 sc->sc_parent->dk_name,
617 sc->sc_wname); /* XXX Unicode */
618
619 mutex_enter(&sc->sc_parent->dk_openlock);
620 sc->sc_parent->dk_nwedges--;
621 LIST_REMOVE(sc, sc_plink);
622 mutex_exit(&sc->sc_parent->dk_openlock);
623
624 /* Delete our buffer queue. */
625 bufq_free(sc->sc_bufq);
626
627 /* Detach from the disk list. */
628 disk_detach(&sc->sc_dk);
629 disk_destroy(&sc->sc_dk);
630
631 /* Poof. */
632 rw_enter(&dkwedges_lock, RW_WRITER);
633 dkwedges[unit] = NULL;
634 sc->sc_state = DKW_STATE_DEAD;
635 rw_exit(&dkwedges_lock);
636
637 free(sc, M_DKWEDGE);
638
639 return 0;
640 }
641
642 /*
643 * dkwedge_delall: [exported function]
644 *
645 * Delete all of the wedges on the specified disk. Used when
646 * a disk is being detached.
647 */
648 void
649 dkwedge_delall(struct disk *pdk)
650 {
651 dkwedge_delall1(pdk, false);
652 }
653
654 static void
655 dkwedge_delall1(struct disk *pdk, bool idleonly)
656 {
657 struct dkwedge_info dkw;
658 struct dkwedge_softc *sc;
659 int flags;
660
661 flags = DETACH_QUIET;
662 if (!idleonly) flags |= DETACH_FORCE;
663
664 for (;;) {
665 mutex_enter(&pdk->dk_openlock);
666 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
667 if (!idleonly || sc->sc_dk.dk_openmask == 0)
668 break;
669 }
670 if (sc == NULL) {
671 KASSERT(idleonly || pdk->dk_nwedges == 0);
672 mutex_exit(&pdk->dk_openlock);
673 return;
674 }
675 strcpy(dkw.dkw_parent, pdk->dk_name);
676 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
677 sizeof(dkw.dkw_devname));
678 mutex_exit(&pdk->dk_openlock);
679 (void) dkwedge_del1(&dkw, flags);
680 }
681 }
682
683 /*
684 * dkwedge_list: [exported function]
685 *
686 * List all of the wedges on a particular disk.
687 */
688 int
689 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
690 {
691 struct uio uio;
692 struct iovec iov;
693 struct dkwedge_softc *sc;
694 struct dkwedge_info dkw;
695 int error = 0;
696
697 iov.iov_base = dkwl->dkwl_buf;
698 iov.iov_len = dkwl->dkwl_bufsize;
699
700 uio.uio_iov = &iov;
701 uio.uio_iovcnt = 1;
702 uio.uio_offset = 0;
703 uio.uio_resid = dkwl->dkwl_bufsize;
704 uio.uio_rw = UIO_READ;
705 KASSERT(l == curlwp);
706 uio.uio_vmspace = l->l_proc->p_vmspace;
707
708 dkwl->dkwl_ncopied = 0;
709
710 mutex_enter(&pdk->dk_openlock);
711 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
712 if (uio.uio_resid < sizeof(dkw))
713 break;
714
715 if (sc->sc_state != DKW_STATE_RUNNING)
716 continue;
717
718 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
719 sizeof(dkw.dkw_devname));
720 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
721 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
722 strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
723 dkw.dkw_offset = sc->sc_offset;
724 dkw.dkw_size = sc->sc_size;
725 strcpy(dkw.dkw_ptype, sc->sc_ptype);
726
727 error = uiomove(&dkw, sizeof(dkw), &uio);
728 if (error)
729 break;
730 dkwl->dkwl_ncopied++;
731 }
732 dkwl->dkwl_nwedges = pdk->dk_nwedges;
733 mutex_exit(&pdk->dk_openlock);
734
735 return (error);
736 }
737
738 device_t
739 dkwedge_find_by_wname(const char *wname)
740 {
741 device_t dv = NULL;
742 struct dkwedge_softc *sc;
743 int i;
744
745 rw_enter(&dkwedges_lock, RW_WRITER);
746 for (i = 0; i < ndkwedges; i++) {
747 if ((sc = dkwedges[i]) == NULL)
748 continue;
749 if (strcmp(sc->sc_wname, wname) == 0) {
750 if (dv != NULL) {
751 printf(
752 "WARNING: double match for wedge name %s "
753 "(%s, %s)\n", wname, device_xname(dv),
754 device_xname(sc->sc_dev));
755 continue;
756 }
757 dv = sc->sc_dev;
758 }
759 }
760 rw_exit(&dkwedges_lock);
761 return dv;
762 }
763
764 void
765 dkwedge_print_wnames(void)
766 {
767 struct dkwedge_softc *sc;
768 int i;
769
770 rw_enter(&dkwedges_lock, RW_WRITER);
771 for (i = 0; i < ndkwedges; i++) {
772 if ((sc = dkwedges[i]) == NULL)
773 continue;
774 printf(" wedge:%s", sc->sc_wname);
775 }
776 rw_exit(&dkwedges_lock);
777 }
778
779 /*
780 * We need a dummy object to stuff into the dkwedge discovery method link
781 * set to ensure that there is always at least one object in the set.
782 */
783 static struct dkwedge_discovery_method dummy_discovery_method;
784 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
785
786 /*
787 * dkwedge_init:
788 *
789 * Initialize the disk wedge subsystem.
790 */
791 void
792 dkwedge_init(void)
793 {
794 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
795 struct dkwedge_discovery_method * const *ddmp;
796 struct dkwedge_discovery_method *lddm, *ddm;
797
798 rw_init(&dkwedges_lock);
799 rw_init(&dkwedge_discovery_methods_lock);
800
801 if (config_cfdriver_attach(&dk_cd) != 0)
802 panic("dkwedge: unable to attach cfdriver");
803 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
804 panic("dkwedge: unable to attach cfattach");
805
806 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
807
808 LIST_INIT(&dkwedge_discovery_methods);
809
810 __link_set_foreach(ddmp, dkwedge_methods) {
811 ddm = *ddmp;
812 if (ddm == &dummy_discovery_method)
813 continue;
814 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
815 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
816 ddm, ddm_list);
817 continue;
818 }
819 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
820 if (ddm->ddm_priority == lddm->ddm_priority) {
821 aprint_error("dk-method-%s: method \"%s\" "
822 "already exists at priority %d\n",
823 ddm->ddm_name, lddm->ddm_name,
824 lddm->ddm_priority);
825 /* Not inserted. */
826 break;
827 }
828 if (ddm->ddm_priority < lddm->ddm_priority) {
829 /* Higher priority; insert before. */
830 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
831 break;
832 }
833 if (LIST_NEXT(lddm, ddm_list) == NULL) {
834 /* Last one; insert after. */
835 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
836 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
837 break;
838 }
839 }
840 }
841
842 rw_exit(&dkwedge_discovery_methods_lock);
843 }
844
845 #ifdef DKWEDGE_AUTODISCOVER
846 int dkwedge_autodiscover = 1;
847 #else
848 int dkwedge_autodiscover = 0;
849 #endif
850
851 /*
852 * dkwedge_discover: [exported function]
853 *
854 * Discover the wedges on a newly attached disk.
855 * Remove all unused wedges on the disk first.
856 */
857 void
858 dkwedge_discover(struct disk *pdk)
859 {
860 struct dkwedge_discovery_method *ddm;
861 struct vnode *vp;
862 int error;
863 dev_t pdev;
864
865 /*
866 * Require people playing with wedges to enable this explicitly.
867 */
868 if (dkwedge_autodiscover == 0)
869 return;
870
871 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
872
873 /*
874 * Use the character device for scanning, the block device
875 * is busy if there are already wedges attached.
876 */
877 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
878 if (error) {
879 aprint_error("%s: unable to compute pdev, error = %d\n",
880 pdk->dk_name, error);
881 goto out;
882 }
883
884 error = cdevvp(pdev, &vp);
885 if (error) {
886 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
887 pdk->dk_name, error);
888 goto out;
889 }
890
891 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
892 if (error) {
893 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
894 pdk->dk_name, error);
895 vrele(vp);
896 goto out;
897 }
898
899 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
900 if (error) {
901 if (error != ENODEV)
902 aprint_error("%s: unable to open device, error = %d\n",
903 pdk->dk_name, error);
904 vput(vp);
905 goto out;
906 }
907 VOP_UNLOCK(vp);
908
909 /*
910 * Remove unused wedges
911 */
912 dkwedge_delall1(pdk, true);
913
914 /*
915 * For each supported partition map type, look to see if
916 * this map type exists. If so, parse it and add the
917 * corresponding wedges.
918 */
919 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
920 error = (*ddm->ddm_discover)(pdk, vp);
921 if (error == 0) {
922 /* Successfully created wedges; we're done. */
923 break;
924 }
925 }
926
927 error = vn_close(vp, FREAD, NOCRED);
928 if (error) {
929 aprint_error("%s: unable to close device, error = %d\n",
930 pdk->dk_name, error);
931 /* We'll just assume the vnode has been cleaned up. */
932 }
933
934 out:
935 rw_exit(&dkwedge_discovery_methods_lock);
936 }
937
938 /*
939 * dkwedge_read:
940 *
941 * Read some data from the specified disk, used for
942 * partition discovery.
943 */
944 int
945 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
946 void *tbuf, size_t len)
947 {
948 buf_t *bp;
949 int error;
950 bool isopen;
951 dev_t bdev;
952 struct vnode *bdvp;
953
954 /*
955 * The kernel cannot read from a character device vnode
956 * as physio() only handles user memory.
957 *
958 * If the block device has already been opened by a wedge
959 * use that vnode and temporarily bump the open counter.
960 *
961 * Otherwise try to open the block device.
962 */
963
964 bdev = devsw_chr2blk(vp->v_rdev);
965
966 mutex_enter(&pdk->dk_rawlock);
967 if (pdk->dk_rawopens != 0) {
968 KASSERT(pdk->dk_rawvp != NULL);
969 isopen = true;
970 ++pdk->dk_rawopens;
971 bdvp = pdk->dk_rawvp;
972 } else {
973 isopen = false;
974 bdvp = dk_open_parent(bdev, FREAD);
975 }
976 mutex_exit(&pdk->dk_rawlock);
977
978 if (bdvp == NULL)
979 return EBUSY;
980
981 bp = getiobuf(bdvp, true);
982 bp->b_flags = B_READ;
983 bp->b_cflags = BC_BUSY;
984 bp->b_dev = bdev;
985 bp->b_data = tbuf;
986 bp->b_bufsize = bp->b_bcount = len;
987 bp->b_blkno = blkno;
988 bp->b_cylinder = 0;
989 bp->b_error = 0;
990
991 VOP_STRATEGY(bdvp, bp);
992 error = biowait(bp);
993 putiobuf(bp);
994
995 mutex_enter(&pdk->dk_rawlock);
996 if (isopen) {
997 --pdk->dk_rawopens;
998 } else {
999 dk_close_parent(bdvp, FREAD);
1000 }
1001 mutex_exit(&pdk->dk_rawlock);
1002
1003 return error;
1004 }
1005
1006 /*
1007 * dkwedge_lookup:
1008 *
1009 * Look up a dkwedge_softc based on the provided dev_t.
1010 */
1011 static struct dkwedge_softc *
1012 dkwedge_lookup(dev_t dev)
1013 {
1014 int unit = minor(dev);
1015
1016 if (unit >= ndkwedges)
1017 return (NULL);
1018
1019 KASSERT(dkwedges != NULL);
1020
1021 return (dkwedges[unit]);
1022 }
1023
1024 static struct vnode *
1025 dk_open_parent(dev_t dev, int mode)
1026 {
1027 struct vnode *vp;
1028 int error;
1029
1030 error = bdevvp(dev, &vp);
1031 if (error)
1032 return NULL;
1033
1034 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1035 if (error) {
1036 vrele(vp);
1037 return NULL;
1038 }
1039 error = VOP_OPEN(vp, mode, NOCRED);
1040 if (error) {
1041 vput(vp);
1042 return NULL;
1043 }
1044
1045 /* VOP_OPEN() doesn't do this for us. */
1046 if (mode & FWRITE) {
1047 mutex_enter(vp->v_interlock);
1048 vp->v_writecount++;
1049 mutex_exit(vp->v_interlock);
1050 }
1051
1052 VOP_UNLOCK(vp);
1053
1054 return vp;
1055 }
1056
1057 static int
1058 dk_close_parent(struct vnode *vp, int mode)
1059 {
1060 int error;
1061
1062 error = vn_close(vp, mode, NOCRED);
1063 return error;
1064 }
1065
1066 /*
1067 * dkopen: [devsw entry point]
1068 *
1069 * Open a wedge.
1070 */
1071 static int
1072 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
1073 {
1074 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1075 struct vnode *vp;
1076 int error = 0;
1077
1078 if (sc == NULL)
1079 return (ENODEV);
1080 if (sc->sc_state != DKW_STATE_RUNNING)
1081 return (ENXIO);
1082
1083 /*
1084 * We go through a complicated little dance to only open the parent
1085 * vnode once per wedge, no matter how many times the wedge is
1086 * opened. The reason? We see one dkopen() per open call, but
1087 * only dkclose() on the last close.
1088 */
1089 mutex_enter(&sc->sc_dk.dk_openlock);
1090 mutex_enter(&sc->sc_parent->dk_rawlock);
1091 if (sc->sc_dk.dk_openmask == 0) {
1092 if (sc->sc_parent->dk_rawopens == 0) {
1093 KASSERT(sc->sc_parent->dk_rawvp == NULL);
1094 vp = dk_open_parent(sc->sc_pdev, FREAD | FWRITE);
1095 if (vp == NULL)
1096 goto popen_fail;
1097 sc->sc_parent->dk_rawvp = vp;
1098 }
1099 sc->sc_parent->dk_rawopens++;
1100 }
1101 if (fmt == S_IFCHR)
1102 sc->sc_dk.dk_copenmask |= 1;
1103 else
1104 sc->sc_dk.dk_bopenmask |= 1;
1105 sc->sc_dk.dk_openmask =
1106 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1107
1108 popen_fail:
1109 mutex_exit(&sc->sc_parent->dk_rawlock);
1110 mutex_exit(&sc->sc_dk.dk_openlock);
1111 return (error);
1112 }
1113
1114 /*
1115 * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock.
1116 */
1117 static int
1118 dklastclose(struct dkwedge_softc *sc)
1119 {
1120 int error = 0, doclose;
1121
1122 doclose = 0;
1123 if (sc->sc_parent->dk_rawopens > 0) {
1124 if (--sc->sc_parent->dk_rawopens == 0)
1125 doclose = 1;
1126 }
1127
1128 mutex_exit(&sc->sc_parent->dk_rawlock);
1129
1130 if (doclose) {
1131 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1132 dk_close_parent(sc->sc_parent->dk_rawvp, FREAD | FWRITE);
1133 sc->sc_parent->dk_rawvp = NULL;
1134 }
1135
1136 return error;
1137 }
1138
1139 /*
1140 * dkclose: [devsw entry point]
1141 *
1142 * Close a wedge.
1143 */
1144 static int
1145 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1146 {
1147 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1148 int error = 0;
1149
1150 if (sc == NULL)
1151 return (ENODEV);
1152 if (sc->sc_state != DKW_STATE_RUNNING)
1153 return (ENXIO);
1154
1155 KASSERT(sc->sc_dk.dk_openmask != 0);
1156
1157 mutex_enter(&sc->sc_dk.dk_openlock);
1158 mutex_enter(&sc->sc_parent->dk_rawlock);
1159
1160 if (fmt == S_IFCHR)
1161 sc->sc_dk.dk_copenmask &= ~1;
1162 else
1163 sc->sc_dk.dk_bopenmask &= ~1;
1164 sc->sc_dk.dk_openmask =
1165 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1166
1167 if (sc->sc_dk.dk_openmask == 0)
1168 error = dklastclose(sc); /* releases dk_rawlock */
1169 else
1170 mutex_exit(&sc->sc_parent->dk_rawlock);
1171
1172 mutex_exit(&sc->sc_dk.dk_openlock);
1173
1174 return (error);
1175 }
1176
1177 /*
1178 * dkstragegy: [devsw entry point]
1179 *
1180 * Perform I/O based on the wedge I/O strategy.
1181 */
1182 static void
1183 dkstrategy(struct buf *bp)
1184 {
1185 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1186 uint64_t p_size, p_offset;
1187 int s;
1188
1189 if (sc == NULL) {
1190 bp->b_error = ENODEV;
1191 goto done;
1192 }
1193
1194 if (sc->sc_state != DKW_STATE_RUNNING ||
1195 sc->sc_parent->dk_rawvp == NULL) {
1196 bp->b_error = ENXIO;
1197 goto done;
1198 }
1199
1200 /* If it's an empty transfer, wake up the top half now. */
1201 if (bp->b_bcount == 0)
1202 goto done;
1203
1204 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1205 p_size = sc->sc_size << sc->sc_parent->dk_blkshift;
1206
1207 /* Make sure it's in-range. */
1208 if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1209 goto done;
1210
1211 /* Translate it to the parent's raw LBA. */
1212 bp->b_rawblkno = bp->b_blkno + p_offset;
1213
1214 /* Place it in the queue and start I/O on the unit. */
1215 s = splbio();
1216 sc->sc_iopend++;
1217 bufq_put(sc->sc_bufq, bp);
1218 dkstart(sc);
1219 splx(s);
1220 return;
1221
1222 done:
1223 bp->b_resid = bp->b_bcount;
1224 biodone(bp);
1225 }
1226
1227 /*
1228 * dkstart:
1229 *
1230 * Start I/O that has been enqueued on the wedge.
1231 * NOTE: Must be called at splbio()!
1232 */
1233 static void
1234 dkstart(struct dkwedge_softc *sc)
1235 {
1236 struct vnode *vp;
1237 struct buf *bp, *nbp;
1238
1239 /* Do as much work as has been enqueued. */
1240 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1241 if (sc->sc_state != DKW_STATE_RUNNING) {
1242 (void) bufq_get(sc->sc_bufq);
1243 if (sc->sc_iopend-- == 1 &&
1244 (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1245 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1246 wakeup(&sc->sc_iopend);
1247 }
1248 bp->b_error = ENXIO;
1249 bp->b_resid = bp->b_bcount;
1250 biodone(bp);
1251 }
1252
1253 /* Instrumentation. */
1254 disk_busy(&sc->sc_dk);
1255
1256 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1257 if (nbp == NULL) {
1258 /*
1259 * No resources to run this request; leave the
1260 * buffer queued up, and schedule a timer to
1261 * restart the queue in 1/2 a second.
1262 */
1263 disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
1264 callout_schedule(&sc->sc_restart_ch, hz / 2);
1265 return;
1266 }
1267
1268 (void) bufq_get(sc->sc_bufq);
1269
1270 nbp->b_data = bp->b_data;
1271 nbp->b_flags = bp->b_flags;
1272 nbp->b_oflags = bp->b_oflags;
1273 nbp->b_cflags = bp->b_cflags;
1274 nbp->b_iodone = dkiodone;
1275 nbp->b_proc = bp->b_proc;
1276 nbp->b_blkno = bp->b_rawblkno;
1277 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1278 nbp->b_bcount = bp->b_bcount;
1279 nbp->b_private = bp;
1280 BIO_COPYPRIO(nbp, bp);
1281
1282 vp = nbp->b_vp;
1283 if ((nbp->b_flags & B_READ) == 0) {
1284 mutex_enter(vp->v_interlock);
1285 vp->v_numoutput++;
1286 mutex_exit(vp->v_interlock);
1287 }
1288 VOP_STRATEGY(vp, nbp);
1289 }
1290 }
1291
1292 /*
1293 * dkiodone:
1294 *
1295 * I/O to a wedge has completed; alert the top half.
1296 */
1297 static void
1298 dkiodone(struct buf *bp)
1299 {
1300 struct buf *obp = bp->b_private;
1301 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1302
1303 int s = splbio();
1304
1305 if (bp->b_error != 0)
1306 obp->b_error = bp->b_error;
1307 obp->b_resid = bp->b_resid;
1308 putiobuf(bp);
1309
1310 if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1311 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1312 wakeup(&sc->sc_iopend);
1313 }
1314
1315 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1316 obp->b_flags & B_READ);
1317
1318 biodone(obp);
1319
1320 /* Kick the queue in case there is more work we can do. */
1321 dkstart(sc);
1322 splx(s);
1323 }
1324
1325 /*
1326 * dkrestart:
1327 *
1328 * Restart the work queue after it was stalled due to
1329 * a resource shortage. Invoked via a callout.
1330 */
1331 static void
1332 dkrestart(void *v)
1333 {
1334 struct dkwedge_softc *sc = v;
1335 int s;
1336
1337 s = splbio();
1338 dkstart(sc);
1339 splx(s);
1340 }
1341
1342 /*
1343 * dkminphys:
1344 *
1345 * Call parent's minphys function.
1346 */
1347 static void
1348 dkminphys(struct buf *bp)
1349 {
1350 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1351 dev_t dev;
1352
1353 dev = bp->b_dev;
1354 bp->b_dev = sc->sc_pdev;
1355 (*sc->sc_parent->dk_driver->d_minphys)(bp);
1356 bp->b_dev = dev;
1357 }
1358
1359 /*
1360 * dkread: [devsw entry point]
1361 *
1362 * Read from a wedge.
1363 */
1364 static int
1365 dkread(dev_t dev, struct uio *uio, int flags)
1366 {
1367 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1368
1369 if (sc == NULL)
1370 return (ENODEV);
1371 if (sc->sc_state != DKW_STATE_RUNNING)
1372 return (ENXIO);
1373
1374 return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio));
1375 }
1376
1377 /*
1378 * dkwrite: [devsw entry point]
1379 *
1380 * Write to a wedge.
1381 */
1382 static int
1383 dkwrite(dev_t dev, struct uio *uio, int flags)
1384 {
1385 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1386
1387 if (sc == NULL)
1388 return (ENODEV);
1389 if (sc->sc_state != DKW_STATE_RUNNING)
1390 return (ENXIO);
1391
1392 return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio));
1393 }
1394
1395 /*
1396 * dkioctl: [devsw entry point]
1397 *
1398 * Perform an ioctl request on a wedge.
1399 */
1400 static int
1401 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1402 {
1403 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1404 int error = 0;
1405
1406 if (sc == NULL)
1407 return (ENODEV);
1408 if (sc->sc_state != DKW_STATE_RUNNING)
1409 return (ENXIO);
1410 if (sc->sc_parent->dk_rawvp == NULL)
1411 return (ENXIO);
1412
1413 /*
1414 * We pass NODEV instead of our device to indicate we don't
1415 * want to handle disklabel ioctls
1416 */
1417 error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
1418 if (error != EPASSTHROUGH)
1419 return (error);
1420
1421 error = 0;
1422
1423 switch (cmd) {
1424 case DIOCCACHESYNC:
1425 /*
1426 * XXX Do we really need to care about having a writable
1427 * file descriptor here?
1428 */
1429 if ((flag & FWRITE) == 0)
1430 error = EBADF;
1431 else
1432 error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
1433 cmd, data, flag,
1434 l != NULL ? l->l_cred : NOCRED);
1435 break;
1436 case DIOCGWEDGEINFO:
1437 {
1438 struct dkwedge_info *dkw = (void *) data;
1439
1440 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1441 sizeof(dkw->dkw_devname));
1442 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1443 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1444 strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
1445 dkw->dkw_offset = sc->sc_offset;
1446 dkw->dkw_size = sc->sc_size;
1447 strcpy(dkw->dkw_ptype, sc->sc_ptype);
1448
1449 break;
1450 }
1451
1452 default:
1453 error = ENOTTY;
1454 }
1455
1456 return (error);
1457 }
1458
1459 /*
1460 * dkdiscard: [devsw entry point]
1461 *
1462 * Perform a discard-range request on a wedge.
1463 */
1464 static int
1465 dkdiscard(dev_t dev, off_t pos, off_t len)
1466 {
1467 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1468 unsigned shift;
1469 off_t offset, maxlen;
1470
1471 if (sc == NULL)
1472 return (ENODEV);
1473 if (sc->sc_state != DKW_STATE_RUNNING)
1474 return (ENXIO);
1475 if (sc->sc_parent->dk_rawvp == NULL)
1476 return (ENXIO);
1477
1478 shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
1479 KASSERT(__type_fit(off_t, sc->sc_size));
1480 KASSERT(__type_fit(off_t, sc->sc_offset));
1481 KASSERT(0 <= sc->sc_offset);
1482 KASSERT(sc->sc_size <= (__type_max(off_t) >> shift));
1483 KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - sc->sc_size));
1484 offset = ((off_t)sc->sc_offset << shift);
1485 maxlen = ((off_t)sc->sc_size << shift);
1486
1487 if (len > maxlen)
1488 return (EINVAL);
1489 if (pos > (maxlen - len))
1490 return (EINVAL);
1491
1492 pos += offset;
1493 return VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
1494 }
1495
1496 /*
1497 * dksize: [devsw entry point]
1498 *
1499 * Query the size of a wedge for the purpose of performing a dump
1500 * or for swapping to.
1501 */
1502 static int
1503 dksize(dev_t dev)
1504 {
1505 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1506 int rv = -1;
1507
1508 if (sc == NULL)
1509 return (-1);
1510 if (sc->sc_state != DKW_STATE_RUNNING)
1511 return (-1);
1512
1513 mutex_enter(&sc->sc_dk.dk_openlock);
1514 mutex_enter(&sc->sc_parent->dk_rawlock);
1515
1516 /* Our content type is static, no need to open the device. */
1517
1518 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1519 /* Saturate if we are larger than INT_MAX. */
1520 if (sc->sc_size > INT_MAX)
1521 rv = INT_MAX;
1522 else
1523 rv = (int) sc->sc_size;
1524 }
1525
1526 mutex_exit(&sc->sc_parent->dk_rawlock);
1527 mutex_exit(&sc->sc_dk.dk_openlock);
1528
1529 return (rv);
1530 }
1531
1532 /*
1533 * dkdump: [devsw entry point]
1534 *
1535 * Perform a crash dump to a wedge.
1536 */
1537 static int
1538 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1539 {
1540 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1541 const struct bdevsw *bdev;
1542 int rv = 0;
1543
1544 if (sc == NULL)
1545 return (ENODEV);
1546 if (sc->sc_state != DKW_STATE_RUNNING)
1547 return (ENXIO);
1548
1549 mutex_enter(&sc->sc_dk.dk_openlock);
1550 mutex_enter(&sc->sc_parent->dk_rawlock);
1551
1552 /* Our content type is static, no need to open the device. */
1553
1554 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
1555 rv = ENXIO;
1556 goto out;
1557 }
1558 if (size % DEV_BSIZE != 0) {
1559 rv = EINVAL;
1560 goto out;
1561 }
1562 if (blkno + size / DEV_BSIZE > sc->sc_size) {
1563 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1564 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
1565 size / DEV_BSIZE, sc->sc_size);
1566 rv = EINVAL;
1567 goto out;
1568 }
1569
1570 bdev = bdevsw_lookup(sc->sc_pdev);
1571 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
1572
1573 out:
1574 mutex_exit(&sc->sc_parent->dk_rawlock);
1575 mutex_exit(&sc->sc_dk.dk_openlock);
1576
1577 return rv;
1578 }
1579
1580 /*
1581 * config glue
1582 */
1583
1584 /*
1585 * dkwedge_find_partition
1586 *
1587 * Find wedge corresponding to the specified parent name
1588 * and offset/length.
1589 */
1590 device_t
1591 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
1592 {
1593 struct dkwedge_softc *sc;
1594 int i;
1595 device_t wedge = NULL;
1596
1597 rw_enter(&dkwedges_lock, RW_READER);
1598 for (i = 0; i < ndkwedges; i++) {
1599 if ((sc = dkwedges[i]) == NULL)
1600 continue;
1601 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
1602 sc->sc_offset == startblk &&
1603 sc->sc_size == nblks) {
1604 if (wedge) {
1605 printf("WARNING: double match for boot wedge "
1606 "(%s, %s)\n",
1607 device_xname(wedge),
1608 device_xname(sc->sc_dev));
1609 continue;
1610 }
1611 wedge = sc->sc_dev;
1612 }
1613 }
1614 rw_exit(&dkwedges_lock);
1615
1616 return wedge;
1617 }
1618
1619 const char *
1620 dkwedge_get_parent_name(dev_t dev)
1621 {
1622 /* XXX: perhaps do this in lookup? */
1623 int bmaj = bdevsw_lookup_major(&dk_bdevsw);
1624 int cmaj = cdevsw_lookup_major(&dk_cdevsw);
1625 if (major(dev) != bmaj && major(dev) != cmaj)
1626 return NULL;
1627 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1628 if (sc == NULL)
1629 return NULL;
1630 return sc->sc_parent->dk_name;
1631 }
1632
1633