Home | History | Annotate | Line # | Download | only in dkwedge
dk.c revision 1.91
      1 /*	$NetBSD: dk.c,v 1.91 2016/05/29 13:11:21 mlelstv Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.91 2016/05/29 13:11:21 mlelstv Exp $");
     34 
     35 #ifdef _KERNEL_OPT
     36 #include "opt_dkwedge.h"
     37 #endif
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/proc.h>
     42 #include <sys/errno.h>
     43 #include <sys/pool.h>
     44 #include <sys/ioctl.h>
     45 #include <sys/disklabel.h>
     46 #include <sys/disk.h>
     47 #include <sys/fcntl.h>
     48 #include <sys/buf.h>
     49 #include <sys/bufq.h>
     50 #include <sys/vnode.h>
     51 #include <sys/stat.h>
     52 #include <sys/conf.h>
     53 #include <sys/callout.h>
     54 #include <sys/kernel.h>
     55 #include <sys/malloc.h>
     56 #include <sys/device.h>
     57 #include <sys/kauth.h>
     58 
     59 #include <miscfs/specfs/specdev.h>
     60 
     61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
     62 
     63 typedef enum {
     64 	DKW_STATE_LARVAL	= 0,
     65 	DKW_STATE_RUNNING	= 1,
     66 	DKW_STATE_DYING		= 2,
     67 	DKW_STATE_DEAD		= 666
     68 } dkwedge_state_t;
     69 
     70 struct dkwedge_softc {
     71 	device_t	sc_dev;	/* pointer to our pseudo-device */
     72 	struct cfdata	sc_cfdata;	/* our cfdata structure */
     73 	uint8_t		sc_wname[128];	/* wedge name (Unicode, UTF-8) */
     74 
     75 	dkwedge_state_t sc_state;	/* state this wedge is in */
     76 
     77 	struct disk	*sc_parent;	/* parent disk */
     78 	daddr_t		sc_offset;	/* LBA offset of wedge in parent */
     79 	uint64_t	sc_size;	/* size of wedge in blocks */
     80 	char		sc_ptype[32];	/* partition type */
     81 	dev_t		sc_pdev;	/* cached parent's dev_t */
     82 					/* link on parent's wedge list */
     83 	LIST_ENTRY(dkwedge_softc) sc_plink;
     84 
     85 	struct disk	sc_dk;		/* our own disk structure */
     86 	struct bufq_state *sc_bufq;	/* buffer queue */
     87 	struct callout	sc_restart_ch;	/* callout to restart I/O */
     88 
     89 	u_int		sc_iopend;	/* I/Os pending */
     90 	int		sc_flags;	/* flags (splbio) */
     91 };
     92 
     93 #define	DK_F_WAIT_DRAIN		0x0001	/* waiting for I/O to drain */
     94 
     95 static void	dkstart(struct dkwedge_softc *);
     96 static void	dkiodone(struct buf *);
     97 static void	dkrestart(void *);
     98 static void	dkminphys(struct buf *);
     99 
    100 static int	dklastclose(struct dkwedge_softc *);
    101 static int	dkwedge_cleanup_parent(struct dkwedge_softc *, int);
    102 static int	dkwedge_detach(device_t, int);
    103 static void	dkwedge_delall1(struct disk *, bool);
    104 static int	dkwedge_del1(struct dkwedge_info *, int);
    105 static int	dk_open_parent(dev_t, int, struct vnode **);
    106 static int	dk_close_parent(struct vnode *, int);
    107 
    108 static dev_type_open(dkopen);
    109 static dev_type_close(dkclose);
    110 static dev_type_read(dkread);
    111 static dev_type_write(dkwrite);
    112 static dev_type_ioctl(dkioctl);
    113 static dev_type_strategy(dkstrategy);
    114 static dev_type_dump(dkdump);
    115 static dev_type_size(dksize);
    116 static dev_type_discard(dkdiscard);
    117 
    118 const struct bdevsw dk_bdevsw = {
    119 	.d_open = dkopen,
    120 	.d_close = dkclose,
    121 	.d_strategy = dkstrategy,
    122 	.d_ioctl = dkioctl,
    123 	.d_dump = dkdump,
    124 	.d_psize = dksize,
    125 	.d_discard = dkdiscard,
    126 	.d_flag = D_DISK
    127 };
    128 
    129 const struct cdevsw dk_cdevsw = {
    130 	.d_open = dkopen,
    131 	.d_close = dkclose,
    132 	.d_read = dkread,
    133 	.d_write = dkwrite,
    134 	.d_ioctl = dkioctl,
    135 	.d_stop = nostop,
    136 	.d_tty = notty,
    137 	.d_poll = nopoll,
    138 	.d_mmap = nommap,
    139 	.d_kqfilter = nokqfilter,
    140 	.d_discard = dkdiscard,
    141 	.d_flag = D_DISK
    142 };
    143 
    144 static struct dkwedge_softc **dkwedges;
    145 static u_int ndkwedges;
    146 static krwlock_t dkwedges_lock;
    147 
    148 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
    149 static krwlock_t dkwedge_discovery_methods_lock;
    150 
    151 /*
    152  * dkwedge_match:
    153  *
    154  *	Autoconfiguration match function for pseudo-device glue.
    155  */
    156 static int
    157 dkwedge_match(device_t parent, cfdata_t match,
    158     void *aux)
    159 {
    160 
    161 	/* Pseudo-device; always present. */
    162 	return (1);
    163 }
    164 
    165 /*
    166  * dkwedge_attach:
    167  *
    168  *	Autoconfiguration attach function for pseudo-device glue.
    169  */
    170 static void
    171 dkwedge_attach(device_t parent, device_t self,
    172     void *aux)
    173 {
    174 
    175 	if (!pmf_device_register(self, NULL, NULL))
    176 		aprint_error_dev(self, "couldn't establish power handler\n");
    177 }
    178 
    179 CFDRIVER_DECL(dk, DV_DISK, NULL);
    180 CFATTACH_DECL3_NEW(dk, 0,
    181     dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
    182     DVF_DETACH_SHUTDOWN);
    183 
    184 /*
    185  * dkwedge_wait_drain:
    186  *
    187  *	Wait for I/O on the wedge to drain.
    188  *	NOTE: Must be called at splbio()!
    189  */
    190 static void
    191 dkwedge_wait_drain(struct dkwedge_softc *sc)
    192 {
    193 
    194 	while (sc->sc_iopend != 0) {
    195 		sc->sc_flags |= DK_F_WAIT_DRAIN;
    196 		(void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
    197 	}
    198 }
    199 
    200 /*
    201  * dkwedge_compute_pdev:
    202  *
    203  *	Compute the parent disk's dev_t.
    204  */
    205 static int
    206 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
    207 {
    208 	const char *name, *cp;
    209 	devmajor_t pmaj;
    210 	int punit;
    211 	char devname[16];
    212 
    213 	name = pname;
    214 	switch (type) {
    215 	case VBLK:
    216 		pmaj = devsw_name2blk(name, devname, sizeof(devname));
    217 		break;
    218 	case VCHR:
    219 		pmaj = devsw_name2chr(name, devname, sizeof(devname));
    220 		break;
    221 	default:
    222 		pmaj = NODEVMAJOR;
    223 		break;
    224 	}
    225 	if (pmaj == NODEVMAJOR)
    226 		return (ENODEV);
    227 
    228 	name += strlen(devname);
    229 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
    230 		punit = (punit * 10) + (*cp - '0');
    231 	if (cp == name) {
    232 		/* Invalid parent disk name. */
    233 		return (ENODEV);
    234 	}
    235 
    236 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
    237 
    238 	return (0);
    239 }
    240 
    241 /*
    242  * dkwedge_array_expand:
    243  *
    244  *	Expand the dkwedges array.
    245  */
    246 static void
    247 dkwedge_array_expand(void)
    248 {
    249 	int newcnt = ndkwedges + 16;
    250 	struct dkwedge_softc **newarray, **oldarray;
    251 
    252 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
    253 	    M_WAITOK|M_ZERO);
    254 	if ((oldarray = dkwedges) != NULL)
    255 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
    256 	dkwedges = newarray;
    257 	ndkwedges = newcnt;
    258 	if (oldarray != NULL)
    259 		free(oldarray, M_DKWEDGE);
    260 }
    261 
    262 static void
    263 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
    264 {
    265 	struct disk *dk = &sc->sc_dk;
    266 	struct disk_geom *dg = &dk->dk_geom;
    267 
    268 	memset(dg, 0, sizeof(*dg));
    269 
    270 	dg->dg_secperunit = sc->sc_size;
    271 	dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
    272 
    273 	/* fake numbers, 1 cylinder is 1 MB with default sector size */
    274 	dg->dg_nsectors = 32;
    275 	dg->dg_ntracks = 64;
    276 	dg->dg_ncylinders = dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
    277 
    278 	disk_set_info(sc->sc_dev, dk, NULL);
    279 }
    280 
    281 /*
    282  * dkwedge_add:		[exported function]
    283  *
    284  *	Add a disk wedge based on the provided information.
    285  *
    286  *	The incoming dkw_devname[] is ignored, instead being
    287  *	filled in and returned to the caller.
    288  */
    289 int
    290 dkwedge_add(struct dkwedge_info *dkw)
    291 {
    292 	struct dkwedge_softc *sc, *lsc;
    293 	struct disk *pdk;
    294 	u_int unit;
    295 	int error;
    296 	dev_t pdev;
    297 
    298 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
    299 	pdk = disk_find(dkw->dkw_parent);
    300 	if (pdk == NULL)
    301 		return (ENODEV);
    302 
    303 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
    304 	if (error)
    305 		return (error);
    306 
    307 	if (dkw->dkw_offset < 0)
    308 		return (EINVAL);
    309 
    310 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
    311 	sc->sc_state = DKW_STATE_LARVAL;
    312 	sc->sc_parent = pdk;
    313 	sc->sc_pdev = pdev;
    314 	sc->sc_offset = dkw->dkw_offset;
    315 	sc->sc_size = dkw->dkw_size;
    316 
    317 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
    318 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
    319 
    320 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
    321 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
    322 
    323 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
    324 
    325 	callout_init(&sc->sc_restart_ch, 0);
    326 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
    327 
    328 	/*
    329 	 * Wedge will be added; increment the wedge count for the parent.
    330 	 * Only allow this to happend if RAW_PART is the only thing open.
    331 	 */
    332 	mutex_enter(&pdk->dk_openlock);
    333 	if (pdk->dk_openmask & ~(1 << RAW_PART))
    334 		error = EBUSY;
    335 	else {
    336 		/* Check for wedge overlap. */
    337 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    338 			daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
    339 			daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
    340 
    341 			if (sc->sc_offset >= lsc->sc_offset &&
    342 			    sc->sc_offset <= llastblk) {
    343 				/* Overlaps the tail of the existing wedge. */
    344 				break;
    345 			}
    346 			if (lastblk >= lsc->sc_offset &&
    347 			    lastblk <= llastblk) {
    348 				/* Overlaps the head of the existing wedge. */
    349 			    	break;
    350 			}
    351 		}
    352 		if (lsc != NULL) {
    353 			if (sc->sc_offset == lsc->sc_offset &&
    354 			    sc->sc_size == lsc->sc_size &&
    355 			    strcmp(sc->sc_wname, lsc->sc_wname) == 0)
    356 				error = EEXIST;
    357 			else
    358 				error = EINVAL;
    359 		} else {
    360 			pdk->dk_nwedges++;
    361 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
    362 		}
    363 	}
    364 	mutex_exit(&pdk->dk_openlock);
    365 	if (error) {
    366 		bufq_free(sc->sc_bufq);
    367 		free(sc, M_DKWEDGE);
    368 		return (error);
    369 	}
    370 
    371 	/* Fill in our cfdata for the pseudo-device glue. */
    372 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
    373 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
    374 	/* sc->sc_cfdata.cf_unit set below */
    375 	sc->sc_cfdata.cf_fstate = FSTATE_STAR;
    376 
    377 	/* Insert the larval wedge into the array. */
    378 	rw_enter(&dkwedges_lock, RW_WRITER);
    379 	for (error = 0;;) {
    380 		struct dkwedge_softc **scpp;
    381 
    382 		/*
    383 		 * Check for a duplicate wname while searching for
    384 		 * a slot.
    385 		 */
    386 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
    387 			if (dkwedges[unit] == NULL) {
    388 				if (scpp == NULL) {
    389 					scpp = &dkwedges[unit];
    390 					sc->sc_cfdata.cf_unit = unit;
    391 				}
    392 			} else {
    393 				/* XXX Unicode. */
    394 				if (strcmp(dkwedges[unit]->sc_wname,
    395 					   sc->sc_wname) == 0) {
    396 					error = EEXIST;
    397 					break;
    398 				}
    399 			}
    400 		}
    401 		if (error)
    402 			break;
    403 		KASSERT(unit == ndkwedges);
    404 		if (scpp == NULL)
    405 			dkwedge_array_expand();
    406 		else {
    407 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
    408 			*scpp = sc;
    409 			break;
    410 		}
    411 	}
    412 	rw_exit(&dkwedges_lock);
    413 	if (error) {
    414 		mutex_enter(&pdk->dk_openlock);
    415 		pdk->dk_nwedges--;
    416 		LIST_REMOVE(sc, sc_plink);
    417 		mutex_exit(&pdk->dk_openlock);
    418 
    419 		bufq_free(sc->sc_bufq);
    420 		free(sc, M_DKWEDGE);
    421 		return (error);
    422 	}
    423 
    424 	/*
    425 	 * Now that we know the unit #, attach a pseudo-device for
    426 	 * this wedge instance.  This will provide us with the
    427 	 * device_t necessary for glue to other parts of the system.
    428 	 *
    429 	 * This should never fail, unless we're almost totally out of
    430 	 * memory.
    431 	 */
    432 	if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
    433 		aprint_error("%s%u: unable to attach pseudo-device\n",
    434 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
    435 
    436 		rw_enter(&dkwedges_lock, RW_WRITER);
    437 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
    438 		rw_exit(&dkwedges_lock);
    439 
    440 		mutex_enter(&pdk->dk_openlock);
    441 		pdk->dk_nwedges--;
    442 		LIST_REMOVE(sc, sc_plink);
    443 		mutex_exit(&pdk->dk_openlock);
    444 
    445 		bufq_free(sc->sc_bufq);
    446 		free(sc, M_DKWEDGE);
    447 		return (ENOMEM);
    448 	}
    449 
    450 	/* Return the devname to the caller. */
    451 	strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
    452 		sizeof(dkw->dkw_devname));
    453 
    454 	/*
    455 	 * XXX Really ought to make the disk_attach() and the changing
    456 	 * of state to RUNNING atomic.
    457 	 */
    458 
    459 	disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
    460 	dk_set_geometry(sc, pdk);
    461 	disk_attach(&sc->sc_dk);
    462 
    463 	/* Disk wedge is ready for use! */
    464 	sc->sc_state = DKW_STATE_RUNNING;
    465 
    466 	/* Announce our arrival. */
    467 	aprint_normal(
    468 	    "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
    469 	    device_xname(sc->sc_dev), pdk->dk_name,
    470 	    sc->sc_wname,	/* XXX Unicode */
    471 	    sc->sc_size, sc->sc_offset,
    472 	    sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
    473 
    474 	return (0);
    475 }
    476 
    477 /*
    478  * dkwedge_find:
    479  *
    480  *	Lookup a disk wedge based on the provided information.
    481  *	NOTE: We look up the wedge based on the wedge devname,
    482  *	not wname.
    483  *
    484  *	Return NULL if the wedge is not found, otherwise return
    485  *	the wedge's softc.  Assign the wedge's unit number to unitp
    486  *	if unitp is not NULL.
    487  */
    488 static struct dkwedge_softc *
    489 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
    490 {
    491 	struct dkwedge_softc *sc = NULL;
    492 	u_int unit;
    493 
    494 	/* Find our softc. */
    495 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
    496 	rw_enter(&dkwedges_lock, RW_READER);
    497 	for (unit = 0; unit < ndkwedges; unit++) {
    498 		if ((sc = dkwedges[unit]) != NULL &&
    499 		    strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
    500 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
    501 			break;
    502 		}
    503 	}
    504 	rw_exit(&dkwedges_lock);
    505 	if (unit == ndkwedges)
    506 		return NULL;
    507 
    508 	if (unitp != NULL)
    509 		*unitp = unit;
    510 
    511 	return sc;
    512 }
    513 
    514 /*
    515  * dkwedge_del:		[exported function]
    516  *
    517  *	Delete a disk wedge based on the provided information.
    518  *	NOTE: We look up the wedge based on the wedge devname,
    519  *	not wname.
    520  */
    521 int
    522 dkwedge_del(struct dkwedge_info *dkw)
    523 {
    524 	return dkwedge_del1(dkw, 0);
    525 }
    526 
    527 int
    528 dkwedge_del1(struct dkwedge_info *dkw, int flags)
    529 {
    530 	struct dkwedge_softc *sc = NULL;
    531 
    532 	/* Find our softc. */
    533 	if ((sc = dkwedge_find(dkw, NULL)) == NULL)
    534 		return (ESRCH);
    535 
    536 	return config_detach(sc->sc_dev, flags);
    537 }
    538 
    539 static int
    540 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags)
    541 {
    542 	struct disk *dk = &sc->sc_dk;
    543 	int rc;
    544 
    545 	rc = 0;
    546 	mutex_enter(&dk->dk_openlock);
    547 	if (dk->dk_openmask == 0)
    548 		/* nothing to do */
    549 		mutex_exit(&dk->dk_openlock);
    550 	else if ((flags & DETACH_FORCE) == 0) {
    551 		rc = EBUSY;
    552 		mutex_exit(&dk->dk_openlock);
    553 	}  else {
    554 		mutex_enter(&sc->sc_parent->dk_rawlock);
    555 		rc = dklastclose(sc); /* releases locks */
    556 	}
    557 
    558 	return rc;
    559 }
    560 
    561 /*
    562  * dkwedge_detach:
    563  *
    564  *	Autoconfiguration detach function for pseudo-device glue.
    565  */
    566 static int
    567 dkwedge_detach(device_t self, int flags)
    568 {
    569 	struct dkwedge_softc *sc = NULL;
    570 	u_int unit;
    571 	int bmaj, cmaj, rc, s;
    572 
    573 	rw_enter(&dkwedges_lock, RW_WRITER);
    574 	for (unit = 0; unit < ndkwedges; unit++) {
    575 		if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
    576 			break;
    577 	}
    578 	if (unit == ndkwedges)
    579 		rc = ENXIO;
    580 	else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) {
    581 		/* Mark the wedge as dying. */
    582 		sc->sc_state = DKW_STATE_DYING;
    583 	}
    584 	rw_exit(&dkwedges_lock);
    585 
    586 	if (rc != 0)
    587 		return rc;
    588 
    589 	pmf_device_deregister(self);
    590 
    591 	/* Locate the wedge major numbers. */
    592 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
    593 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
    594 
    595 	/* Kill any pending restart. */
    596 	callout_stop(&sc->sc_restart_ch);
    597 
    598 	/*
    599 	 * dkstart() will kill any queued buffers now that the
    600 	 * state of the wedge is not RUNNING.  Once we've done
    601 	 * that, wait for any other pending I/O to complete.
    602 	 */
    603 	s = splbio();
    604 	dkstart(sc);
    605 	dkwedge_wait_drain(sc);
    606 	splx(s);
    607 
    608 	/* Nuke the vnodes for any open instances. */
    609 	vdevgone(bmaj, unit, unit, VBLK);
    610 	vdevgone(cmaj, unit, unit, VCHR);
    611 
    612 	/* Clean up the parent. */
    613 	dkwedge_cleanup_parent(sc, flags | DETACH_FORCE);
    614 
    615 	/* Announce our departure. */
    616 	aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
    617 	    sc->sc_parent->dk_name,
    618 	    sc->sc_wname);	/* XXX Unicode */
    619 
    620 	mutex_enter(&sc->sc_parent->dk_openlock);
    621 	sc->sc_parent->dk_nwedges--;
    622 	LIST_REMOVE(sc, sc_plink);
    623 	mutex_exit(&sc->sc_parent->dk_openlock);
    624 
    625 	/* Delete our buffer queue. */
    626 	bufq_free(sc->sc_bufq);
    627 
    628 	/* Detach from the disk list. */
    629 	disk_detach(&sc->sc_dk);
    630 	disk_destroy(&sc->sc_dk);
    631 
    632 	/* Poof. */
    633 	rw_enter(&dkwedges_lock, RW_WRITER);
    634 	dkwedges[unit] = NULL;
    635 	sc->sc_state = DKW_STATE_DEAD;
    636 	rw_exit(&dkwedges_lock);
    637 
    638 	free(sc, M_DKWEDGE);
    639 
    640 	return 0;
    641 }
    642 
    643 /*
    644  * dkwedge_delall:	[exported function]
    645  *
    646  *	Delete all of the wedges on the specified disk.  Used when
    647  *	a disk is being detached.
    648  */
    649 void
    650 dkwedge_delall(struct disk *pdk)
    651 {
    652 	dkwedge_delall1(pdk, false);
    653 }
    654 
    655 static void
    656 dkwedge_delall1(struct disk *pdk, bool idleonly)
    657 {
    658 	struct dkwedge_info dkw;
    659 	struct dkwedge_softc *sc;
    660 	int flags;
    661 
    662 	flags = DETACH_QUIET;
    663 	if (!idleonly) flags |= DETACH_FORCE;
    664 
    665 	for (;;) {
    666 		mutex_enter(&pdk->dk_openlock);
    667 		LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    668 			if (!idleonly || sc->sc_dk.dk_openmask == 0)
    669 				break;
    670 		}
    671 		if (sc == NULL) {
    672 			KASSERT(idleonly || pdk->dk_nwedges == 0);
    673 			mutex_exit(&pdk->dk_openlock);
    674 			return;
    675 		}
    676 		strcpy(dkw.dkw_parent, pdk->dk_name);
    677 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    678 			sizeof(dkw.dkw_devname));
    679 		mutex_exit(&pdk->dk_openlock);
    680 		(void) dkwedge_del1(&dkw, flags);
    681 	}
    682 }
    683 
    684 /*
    685  * dkwedge_list:	[exported function]
    686  *
    687  *	List all of the wedges on a particular disk.
    688  */
    689 int
    690 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
    691 {
    692 	struct uio uio;
    693 	struct iovec iov;
    694 	struct dkwedge_softc *sc;
    695 	struct dkwedge_info dkw;
    696 	int error = 0;
    697 
    698 	iov.iov_base = dkwl->dkwl_buf;
    699 	iov.iov_len = dkwl->dkwl_bufsize;
    700 
    701 	uio.uio_iov = &iov;
    702 	uio.uio_iovcnt = 1;
    703 	uio.uio_offset = 0;
    704 	uio.uio_resid = dkwl->dkwl_bufsize;
    705 	uio.uio_rw = UIO_READ;
    706 	KASSERT(l == curlwp);
    707 	uio.uio_vmspace = l->l_proc->p_vmspace;
    708 
    709 	dkwl->dkwl_ncopied = 0;
    710 
    711 	mutex_enter(&pdk->dk_openlock);
    712 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    713 		if (uio.uio_resid < sizeof(dkw))
    714 			break;
    715 
    716 		if (sc->sc_state != DKW_STATE_RUNNING)
    717 			continue;
    718 
    719 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    720 			sizeof(dkw.dkw_devname));
    721 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
    722 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
    723 		strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
    724 		dkw.dkw_offset = sc->sc_offset;
    725 		dkw.dkw_size = sc->sc_size;
    726 		strcpy(dkw.dkw_ptype, sc->sc_ptype);
    727 
    728 		error = uiomove(&dkw, sizeof(dkw), &uio);
    729 		if (error)
    730 			break;
    731 		dkwl->dkwl_ncopied++;
    732 	}
    733 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
    734 	mutex_exit(&pdk->dk_openlock);
    735 
    736 	return (error);
    737 }
    738 
    739 device_t
    740 dkwedge_find_by_wname(const char *wname)
    741 {
    742 	device_t dv = NULL;
    743 	struct dkwedge_softc *sc;
    744 	int i;
    745 
    746 	rw_enter(&dkwedges_lock, RW_WRITER);
    747 	for (i = 0; i < ndkwedges; i++) {
    748 		if ((sc = dkwedges[i]) == NULL)
    749 			continue;
    750 		if (strcmp(sc->sc_wname, wname) == 0) {
    751 			if (dv != NULL) {
    752 				printf(
    753 				    "WARNING: double match for wedge name %s "
    754 				    "(%s, %s)\n", wname, device_xname(dv),
    755 				    device_xname(sc->sc_dev));
    756 				continue;
    757 			}
    758 			dv = sc->sc_dev;
    759 		}
    760 	}
    761 	rw_exit(&dkwedges_lock);
    762 	return dv;
    763 }
    764 
    765 device_t
    766 dkwedge_find_by_parent(const char *name, size_t *i)
    767 {
    768 	rw_enter(&dkwedges_lock, RW_WRITER);
    769 	for (; *i < (size_t)ndkwedges; (*i)++) {
    770 		struct dkwedge_softc *sc;
    771 		if ((sc = dkwedges[*i]) == NULL)
    772 			continue;
    773 		if (strcmp(sc->sc_parent->dk_name, name) != 0)
    774 			continue;
    775 		rw_exit(&dkwedges_lock);
    776 		return sc->sc_dev;
    777 	}
    778 	rw_exit(&dkwedges_lock);
    779 	return NULL;
    780 }
    781 
    782 void
    783 dkwedge_print_wnames(void)
    784 {
    785 	struct dkwedge_softc *sc;
    786 	int i;
    787 
    788 	rw_enter(&dkwedges_lock, RW_WRITER);
    789 	for (i = 0; i < ndkwedges; i++) {
    790 		if ((sc = dkwedges[i]) == NULL)
    791 			continue;
    792 		printf(" wedge:%s", sc->sc_wname);
    793 	}
    794 	rw_exit(&dkwedges_lock);
    795 }
    796 
    797 /*
    798  * We need a dummy object to stuff into the dkwedge discovery method link
    799  * set to ensure that there is always at least one object in the set.
    800  */
    801 static struct dkwedge_discovery_method dummy_discovery_method;
    802 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
    803 
    804 /*
    805  * dkwedge_init:
    806  *
    807  *	Initialize the disk wedge subsystem.
    808  */
    809 void
    810 dkwedge_init(void)
    811 {
    812 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
    813 	struct dkwedge_discovery_method * const *ddmp;
    814 	struct dkwedge_discovery_method *lddm, *ddm;
    815 
    816 	rw_init(&dkwedges_lock);
    817 	rw_init(&dkwedge_discovery_methods_lock);
    818 
    819 	if (config_cfdriver_attach(&dk_cd) != 0)
    820 		panic("dkwedge: unable to attach cfdriver");
    821 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
    822 		panic("dkwedge: unable to attach cfattach");
    823 
    824 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
    825 
    826 	LIST_INIT(&dkwedge_discovery_methods);
    827 
    828 	__link_set_foreach(ddmp, dkwedge_methods) {
    829 		ddm = *ddmp;
    830 		if (ddm == &dummy_discovery_method)
    831 			continue;
    832 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
    833 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
    834 					 ddm, ddm_list);
    835 			continue;
    836 		}
    837 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
    838 			if (ddm->ddm_priority == lddm->ddm_priority) {
    839 				aprint_error("dk-method-%s: method \"%s\" "
    840 				    "already exists at priority %d\n",
    841 				    ddm->ddm_name, lddm->ddm_name,
    842 				    lddm->ddm_priority);
    843 				/* Not inserted. */
    844 				break;
    845 			}
    846 			if (ddm->ddm_priority < lddm->ddm_priority) {
    847 				/* Higher priority; insert before. */
    848 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
    849 				break;
    850 			}
    851 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
    852 				/* Last one; insert after. */
    853 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
    854 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
    855 				break;
    856 			}
    857 		}
    858 	}
    859 
    860 	rw_exit(&dkwedge_discovery_methods_lock);
    861 }
    862 
    863 #ifdef DKWEDGE_AUTODISCOVER
    864 int	dkwedge_autodiscover = 1;
    865 #else
    866 int	dkwedge_autodiscover = 0;
    867 #endif
    868 
    869 /*
    870  * dkwedge_discover:	[exported function]
    871  *
    872  *	Discover the wedges on a newly attached disk.
    873  *	Remove all unused wedges on the disk first.
    874  */
    875 void
    876 dkwedge_discover(struct disk *pdk)
    877 {
    878 	struct dkwedge_discovery_method *ddm;
    879 	struct vnode *vp;
    880 	int error;
    881 	dev_t pdev;
    882 
    883 	/*
    884 	 * Require people playing with wedges to enable this explicitly.
    885 	 */
    886 	if (dkwedge_autodiscover == 0)
    887 		return;
    888 
    889 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
    890 
    891 	/*
    892 	 * Use the character device for scanning, the block device
    893 	 * is busy if there are already wedges attached.
    894 	 */
    895 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
    896 	if (error) {
    897 		aprint_error("%s: unable to compute pdev, error = %d\n",
    898 		    pdk->dk_name, error);
    899 		goto out;
    900 	}
    901 
    902 	error = cdevvp(pdev, &vp);
    903 	if (error) {
    904 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
    905 		    pdk->dk_name, error);
    906 		goto out;
    907 	}
    908 
    909 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    910 	if (error) {
    911 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
    912 		    pdk->dk_name, error);
    913 		vrele(vp);
    914 		goto out;
    915 	}
    916 
    917 	error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
    918 	if (error) {
    919 		if (error != ENODEV)
    920 			aprint_error("%s: unable to open device, error = %d\n",
    921 			    pdk->dk_name, error);
    922 		vput(vp);
    923 		goto out;
    924 	}
    925 	VOP_UNLOCK(vp);
    926 
    927 	/*
    928 	 * Remove unused wedges
    929 	 */
    930 	dkwedge_delall1(pdk, true);
    931 
    932 	/*
    933 	 * For each supported partition map type, look to see if
    934 	 * this map type exists.  If so, parse it and add the
    935 	 * corresponding wedges.
    936 	 */
    937 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
    938 		error = (*ddm->ddm_discover)(pdk, vp);
    939 		if (error == 0) {
    940 			/* Successfully created wedges; we're done. */
    941 			break;
    942 		}
    943 	}
    944 
    945 	error = vn_close(vp, FREAD, NOCRED);
    946 	if (error) {
    947 		aprint_error("%s: unable to close device, error = %d\n",
    948 		    pdk->dk_name, error);
    949 		/* We'll just assume the vnode has been cleaned up. */
    950 	}
    951 
    952  out:
    953 	rw_exit(&dkwedge_discovery_methods_lock);
    954 }
    955 
    956 /*
    957  * dkwedge_read:
    958  *
    959  *	Read some data from the specified disk, used for
    960  *	partition discovery.
    961  */
    962 int
    963 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
    964     void *tbuf, size_t len)
    965 {
    966 	buf_t *bp;
    967 	int error;
    968 	bool isopen;
    969 	dev_t bdev;
    970 	struct vnode *bdvp;
    971 
    972 	/*
    973 	 * The kernel cannot read from a character device vnode
    974 	 * as physio() only handles user memory.
    975 	 *
    976 	 * If the block device has already been opened by a wedge
    977 	 * use that vnode and temporarily bump the open counter.
    978 	 *
    979 	 * Otherwise try to open the block device.
    980 	 */
    981 
    982 	bdev = devsw_chr2blk(vp->v_rdev);
    983 
    984 	mutex_enter(&pdk->dk_rawlock);
    985 	if (pdk->dk_rawopens != 0) {
    986 		KASSERT(pdk->dk_rawvp != NULL);
    987 		isopen = true;
    988 		++pdk->dk_rawopens;
    989 		bdvp = pdk->dk_rawvp;
    990 		error = 0;
    991 	} else {
    992 		isopen = false;
    993 		error = dk_open_parent(bdev, FREAD, &bdvp);
    994 	}
    995 	mutex_exit(&pdk->dk_rawlock);
    996 
    997 	if (error)
    998 		return error;
    999 
   1000 	bp = getiobuf(bdvp, true);
   1001 	bp->b_flags = B_READ;
   1002 	bp->b_cflags = BC_BUSY;
   1003 	bp->b_dev = bdev;
   1004 	bp->b_data = tbuf;
   1005 	bp->b_bufsize = bp->b_bcount = len;
   1006 	bp->b_blkno = blkno;
   1007 	bp->b_cylinder = 0;
   1008 	bp->b_error = 0;
   1009 
   1010 	VOP_STRATEGY(bdvp, bp);
   1011 	error = biowait(bp);
   1012 	putiobuf(bp);
   1013 
   1014 	mutex_enter(&pdk->dk_rawlock);
   1015 	if (isopen) {
   1016 		--pdk->dk_rawopens;
   1017 	} else {
   1018 		dk_close_parent(bdvp, FREAD);
   1019 	}
   1020 	mutex_exit(&pdk->dk_rawlock);
   1021 
   1022 	return error;
   1023 }
   1024 
   1025 /*
   1026  * dkwedge_lookup:
   1027  *
   1028  *	Look up a dkwedge_softc based on the provided dev_t.
   1029  */
   1030 static struct dkwedge_softc *
   1031 dkwedge_lookup(dev_t dev)
   1032 {
   1033 	int unit = minor(dev);
   1034 
   1035 	if (unit >= ndkwedges)
   1036 		return (NULL);
   1037 
   1038 	KASSERT(dkwedges != NULL);
   1039 
   1040 	return (dkwedges[unit]);
   1041 }
   1042 
   1043 static int
   1044 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
   1045 {
   1046 	struct vnode *vp;
   1047 	int error;
   1048 
   1049 	error = bdevvp(dev, &vp);
   1050 	if (error)
   1051 		return error;
   1052 
   1053 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1054 	if (error) {
   1055 		vrele(vp);
   1056 		return error;
   1057 	}
   1058 	error = VOP_OPEN(vp, mode, NOCRED);
   1059 	if (error) {
   1060 		vput(vp);
   1061 		return error;
   1062 	}
   1063 
   1064 	/* VOP_OPEN() doesn't do this for us. */
   1065 	if (mode & FWRITE) {
   1066 		mutex_enter(vp->v_interlock);
   1067 		vp->v_writecount++;
   1068 		mutex_exit(vp->v_interlock);
   1069 	}
   1070 
   1071 	VOP_UNLOCK(vp);
   1072 
   1073 	*vpp = vp;
   1074 
   1075 	return 0;
   1076 }
   1077 
   1078 static int
   1079 dk_close_parent(struct vnode *vp, int mode)
   1080 {
   1081 	int error;
   1082 
   1083 	error = vn_close(vp, mode, NOCRED);
   1084 	return error;
   1085 }
   1086 
   1087 /*
   1088  * dkopen:		[devsw entry point]
   1089  *
   1090  *	Open a wedge.
   1091  */
   1092 static int
   1093 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
   1094 {
   1095 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1096 	struct vnode *vp;
   1097 	int error = 0;
   1098 
   1099 	if (sc == NULL)
   1100 		return (ENODEV);
   1101 	if (sc->sc_state != DKW_STATE_RUNNING)
   1102 		return (ENXIO);
   1103 
   1104 	/*
   1105 	 * We go through a complicated little dance to only open the parent
   1106 	 * vnode once per wedge, no matter how many times the wedge is
   1107 	 * opened.  The reason?  We see one dkopen() per open call, but
   1108 	 * only dkclose() on the last close.
   1109 	 */
   1110 	mutex_enter(&sc->sc_dk.dk_openlock);
   1111 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1112 	if (sc->sc_dk.dk_openmask == 0) {
   1113 		if (sc->sc_parent->dk_rawopens == 0) {
   1114 			KASSERT(sc->sc_parent->dk_rawvp == NULL);
   1115 			error = dk_open_parent(sc->sc_pdev, FREAD | FWRITE, &vp);
   1116 			if (error)
   1117 				goto popen_fail;
   1118 			sc->sc_parent->dk_rawvp = vp;
   1119 		}
   1120 		sc->sc_parent->dk_rawopens++;
   1121 	}
   1122 	if (fmt == S_IFCHR)
   1123 		sc->sc_dk.dk_copenmask |= 1;
   1124 	else
   1125 		sc->sc_dk.dk_bopenmask |= 1;
   1126 	sc->sc_dk.dk_openmask =
   1127 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1128 
   1129  popen_fail:
   1130 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1131 	mutex_exit(&sc->sc_dk.dk_openlock);
   1132 	return (error);
   1133 }
   1134 
   1135 /*
   1136  * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock.
   1137  */
   1138 static int
   1139 dklastclose(struct dkwedge_softc *sc)
   1140 {
   1141 	int error = 0, doclose;
   1142 
   1143 	doclose = 0;
   1144 	if (sc->sc_parent->dk_rawopens > 0) {
   1145 		if (--sc->sc_parent->dk_rawopens == 0)
   1146 			doclose = 1;
   1147 	}
   1148 
   1149 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1150 	mutex_exit(&sc->sc_dk.dk_openlock);
   1151 
   1152 	if (doclose) {
   1153 		KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1154 		dk_close_parent(sc->sc_parent->dk_rawvp, FREAD | FWRITE);
   1155 		sc->sc_parent->dk_rawvp = NULL;
   1156 	}
   1157 
   1158 	return error;
   1159 }
   1160 
   1161 /*
   1162  * dkclose:		[devsw entry point]
   1163  *
   1164  *	Close a wedge.
   1165  */
   1166 static int
   1167 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
   1168 {
   1169 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1170 	int error = 0;
   1171 
   1172 	if (sc == NULL)
   1173 		return (ENODEV);
   1174 	if (sc->sc_state != DKW_STATE_RUNNING)
   1175 		return (ENXIO);
   1176 
   1177 	KASSERT(sc->sc_dk.dk_openmask != 0);
   1178 
   1179 	mutex_enter(&sc->sc_dk.dk_openlock);
   1180 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1181 
   1182 	if (fmt == S_IFCHR)
   1183 		sc->sc_dk.dk_copenmask &= ~1;
   1184 	else
   1185 		sc->sc_dk.dk_bopenmask &= ~1;
   1186 	sc->sc_dk.dk_openmask =
   1187 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1188 
   1189 	if (sc->sc_dk.dk_openmask == 0)
   1190 		error = dklastclose(sc); /* releases locks */
   1191 	else {
   1192 		mutex_exit(&sc->sc_parent->dk_rawlock);
   1193 		mutex_exit(&sc->sc_dk.dk_openlock);
   1194 	}
   1195 
   1196 	return (error);
   1197 }
   1198 
   1199 /*
   1200  * dkstragegy:		[devsw entry point]
   1201  *
   1202  *	Perform I/O based on the wedge I/O strategy.
   1203  */
   1204 static void
   1205 dkstrategy(struct buf *bp)
   1206 {
   1207 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1208 	uint64_t p_size, p_offset;
   1209 	int s;
   1210 
   1211 	if (sc == NULL) {
   1212 		bp->b_error = ENODEV;
   1213 		goto done;
   1214 	}
   1215 
   1216 	if (sc->sc_state != DKW_STATE_RUNNING ||
   1217 	    sc->sc_parent->dk_rawvp == NULL) {
   1218 		bp->b_error = ENXIO;
   1219 		goto done;
   1220 	}
   1221 
   1222 	/* If it's an empty transfer, wake up the top half now. */
   1223 	if (bp->b_bcount == 0)
   1224 		goto done;
   1225 
   1226 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
   1227 	p_size   = sc->sc_size << sc->sc_parent->dk_blkshift;
   1228 
   1229 	/* Make sure it's in-range. */
   1230 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
   1231 		goto done;
   1232 
   1233 	/* Translate it to the parent's raw LBA. */
   1234 	bp->b_rawblkno = bp->b_blkno + p_offset;
   1235 
   1236 	/* Place it in the queue and start I/O on the unit. */
   1237 	s = splbio();
   1238 	sc->sc_iopend++;
   1239 	bufq_put(sc->sc_bufq, bp);
   1240 	dkstart(sc);
   1241 	splx(s);
   1242 	return;
   1243 
   1244  done:
   1245 	bp->b_resid = bp->b_bcount;
   1246 	biodone(bp);
   1247 }
   1248 
   1249 /*
   1250  * dkstart:
   1251  *
   1252  *	Start I/O that has been enqueued on the wedge.
   1253  *	NOTE: Must be called at splbio()!
   1254  */
   1255 static void
   1256 dkstart(struct dkwedge_softc *sc)
   1257 {
   1258 	struct vnode *vp;
   1259 	struct buf *bp, *nbp;
   1260 
   1261 	/* Do as much work as has been enqueued. */
   1262 	while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
   1263 		if (sc->sc_state != DKW_STATE_RUNNING) {
   1264 			(void) bufq_get(sc->sc_bufq);
   1265 			if (sc->sc_iopend-- == 1 &&
   1266 			    (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
   1267 				sc->sc_flags &= ~DK_F_WAIT_DRAIN;
   1268 				wakeup(&sc->sc_iopend);
   1269 			}
   1270 			bp->b_error = ENXIO;
   1271 			bp->b_resid = bp->b_bcount;
   1272 			biodone(bp);
   1273 		}
   1274 
   1275 		/* Instrumentation. */
   1276 		disk_busy(&sc->sc_dk);
   1277 
   1278 		nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
   1279 		if (nbp == NULL) {
   1280 			/*
   1281 			 * No resources to run this request; leave the
   1282 			 * buffer queued up, and schedule a timer to
   1283 			 * restart the queue in 1/2 a second.
   1284 			 */
   1285 			disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
   1286 			callout_schedule(&sc->sc_restart_ch, hz / 2);
   1287 			return;
   1288 		}
   1289 
   1290 		(void) bufq_get(sc->sc_bufq);
   1291 
   1292 		nbp->b_data = bp->b_data;
   1293 		nbp->b_flags = bp->b_flags;
   1294 		nbp->b_oflags = bp->b_oflags;
   1295 		nbp->b_cflags = bp->b_cflags;
   1296 		nbp->b_iodone = dkiodone;
   1297 		nbp->b_proc = bp->b_proc;
   1298 		nbp->b_blkno = bp->b_rawblkno;
   1299 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
   1300 		nbp->b_bcount = bp->b_bcount;
   1301 		nbp->b_private = bp;
   1302 		BIO_COPYPRIO(nbp, bp);
   1303 
   1304 		vp = nbp->b_vp;
   1305 		if ((nbp->b_flags & B_READ) == 0) {
   1306 			mutex_enter(vp->v_interlock);
   1307 			vp->v_numoutput++;
   1308 			mutex_exit(vp->v_interlock);
   1309 		}
   1310 		VOP_STRATEGY(vp, nbp);
   1311 	}
   1312 }
   1313 
   1314 /*
   1315  * dkiodone:
   1316  *
   1317  *	I/O to a wedge has completed; alert the top half.
   1318  */
   1319 static void
   1320 dkiodone(struct buf *bp)
   1321 {
   1322 	struct buf *obp = bp->b_private;
   1323 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
   1324 
   1325 	int s = splbio();
   1326 
   1327 	if (bp->b_error != 0)
   1328 		obp->b_error = bp->b_error;
   1329 	obp->b_resid = bp->b_resid;
   1330 	putiobuf(bp);
   1331 
   1332 	if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
   1333 		sc->sc_flags &= ~DK_F_WAIT_DRAIN;
   1334 		wakeup(&sc->sc_iopend);
   1335 	}
   1336 
   1337 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
   1338 	    obp->b_flags & B_READ);
   1339 
   1340 	biodone(obp);
   1341 
   1342 	/* Kick the queue in case there is more work we can do. */
   1343 	dkstart(sc);
   1344 	splx(s);
   1345 }
   1346 
   1347 /*
   1348  * dkrestart:
   1349  *
   1350  *	Restart the work queue after it was stalled due to
   1351  *	a resource shortage.  Invoked via a callout.
   1352  */
   1353 static void
   1354 dkrestart(void *v)
   1355 {
   1356 	struct dkwedge_softc *sc = v;
   1357 	int s;
   1358 
   1359 	s = splbio();
   1360 	dkstart(sc);
   1361 	splx(s);
   1362 }
   1363 
   1364 /*
   1365  * dkminphys:
   1366  *
   1367  *	Call parent's minphys function.
   1368  */
   1369 static void
   1370 dkminphys(struct buf *bp)
   1371 {
   1372 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1373 	dev_t dev;
   1374 
   1375 	dev = bp->b_dev;
   1376 	bp->b_dev = sc->sc_pdev;
   1377 	(*sc->sc_parent->dk_driver->d_minphys)(bp);
   1378 	bp->b_dev = dev;
   1379 }
   1380 
   1381 /*
   1382  * dkread:		[devsw entry point]
   1383  *
   1384  *	Read from a wedge.
   1385  */
   1386 static int
   1387 dkread(dev_t dev, struct uio *uio, int flags)
   1388 {
   1389 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1390 
   1391 	if (sc == NULL)
   1392 		return (ENODEV);
   1393 	if (sc->sc_state != DKW_STATE_RUNNING)
   1394 		return (ENXIO);
   1395 
   1396 	return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio));
   1397 }
   1398 
   1399 /*
   1400  * dkwrite:		[devsw entry point]
   1401  *
   1402  *	Write to a wedge.
   1403  */
   1404 static int
   1405 dkwrite(dev_t dev, struct uio *uio, int flags)
   1406 {
   1407 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1408 
   1409 	if (sc == NULL)
   1410 		return (ENODEV);
   1411 	if (sc->sc_state != DKW_STATE_RUNNING)
   1412 		return (ENXIO);
   1413 
   1414 	return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio));
   1415 }
   1416 
   1417 /*
   1418  * dkioctl:		[devsw entry point]
   1419  *
   1420  *	Perform an ioctl request on a wedge.
   1421  */
   1422 static int
   1423 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1424 {
   1425 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1426 	int error = 0;
   1427 
   1428 	if (sc == NULL)
   1429 		return (ENODEV);
   1430 	if (sc->sc_state != DKW_STATE_RUNNING)
   1431 		return (ENXIO);
   1432 	if (sc->sc_parent->dk_rawvp == NULL)
   1433 		return (ENXIO);
   1434 
   1435 	/*
   1436 	 * We pass NODEV instead of our device to indicate we don't
   1437 	 * want to handle disklabel ioctls
   1438 	 */
   1439 	error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
   1440 	if (error != EPASSTHROUGH)
   1441 		return (error);
   1442 
   1443 	error = 0;
   1444 
   1445 	switch (cmd) {
   1446 	case DIOCCACHESYNC:
   1447 		/*
   1448 		 * XXX Do we really need to care about having a writable
   1449 		 * file descriptor here?
   1450 		 */
   1451 		if ((flag & FWRITE) == 0)
   1452 			error = EBADF;
   1453 		else
   1454 			error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
   1455 					  cmd, data, flag,
   1456 					  l != NULL ? l->l_cred : NOCRED);
   1457 		break;
   1458 	case DIOCGWEDGEINFO:
   1459 	    {
   1460 		struct dkwedge_info *dkw = (void *) data;
   1461 
   1462 		strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
   1463 			sizeof(dkw->dkw_devname));
   1464 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
   1465 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
   1466 		strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
   1467 		dkw->dkw_offset = sc->sc_offset;
   1468 		dkw->dkw_size = sc->sc_size;
   1469 		strcpy(dkw->dkw_ptype, sc->sc_ptype);
   1470 
   1471 		break;
   1472 	    }
   1473 
   1474 	default:
   1475 		error = ENOTTY;
   1476 	}
   1477 
   1478 	return (error);
   1479 }
   1480 
   1481 /*
   1482  * dkdiscard:		[devsw entry point]
   1483  *
   1484  *	Perform a discard-range request on a wedge.
   1485  */
   1486 static int
   1487 dkdiscard(dev_t dev, off_t pos, off_t len)
   1488 {
   1489 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1490 	unsigned shift;
   1491 	off_t offset, maxlen;
   1492 
   1493 	if (sc == NULL)
   1494 		return (ENODEV);
   1495 	if (sc->sc_state != DKW_STATE_RUNNING)
   1496 		return (ENXIO);
   1497 	if (sc->sc_parent->dk_rawvp == NULL)
   1498 		return (ENXIO);
   1499 
   1500 	shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
   1501 	KASSERT(__type_fit(off_t, sc->sc_size));
   1502 	KASSERT(__type_fit(off_t, sc->sc_offset));
   1503 	KASSERT(0 <= sc->sc_offset);
   1504 	KASSERT(sc->sc_size <= (__type_max(off_t) >> shift));
   1505 	KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - sc->sc_size));
   1506 	offset = ((off_t)sc->sc_offset << shift);
   1507 	maxlen = ((off_t)sc->sc_size << shift);
   1508 
   1509 	if (len > maxlen)
   1510 		return (EINVAL);
   1511 	if (pos > (maxlen - len))
   1512 		return (EINVAL);
   1513 
   1514 	pos += offset;
   1515 	return VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
   1516 }
   1517 
   1518 /*
   1519  * dksize:		[devsw entry point]
   1520  *
   1521  *	Query the size of a wedge for the purpose of performing a dump
   1522  *	or for swapping to.
   1523  */
   1524 static int
   1525 dksize(dev_t dev)
   1526 {
   1527 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1528 	int rv = -1;
   1529 
   1530 	if (sc == NULL)
   1531 		return (-1);
   1532 	if (sc->sc_state != DKW_STATE_RUNNING)
   1533 		return (-1);
   1534 
   1535 	mutex_enter(&sc->sc_dk.dk_openlock);
   1536 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1537 
   1538 	/* Our content type is static, no need to open the device. */
   1539 
   1540 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
   1541 		/* Saturate if we are larger than INT_MAX. */
   1542 		if (sc->sc_size > INT_MAX)
   1543 			rv = INT_MAX;
   1544 		else
   1545 			rv = (int) sc->sc_size;
   1546 	}
   1547 
   1548 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1549 	mutex_exit(&sc->sc_dk.dk_openlock);
   1550 
   1551 	return (rv);
   1552 }
   1553 
   1554 /*
   1555  * dkdump:		[devsw entry point]
   1556  *
   1557  *	Perform a crash dump to a wedge.
   1558  */
   1559 static int
   1560 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
   1561 {
   1562 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1563 	const struct bdevsw *bdev;
   1564 	int rv = 0;
   1565 
   1566 	if (sc == NULL)
   1567 		return (ENODEV);
   1568 	if (sc->sc_state != DKW_STATE_RUNNING)
   1569 		return (ENXIO);
   1570 
   1571 	mutex_enter(&sc->sc_dk.dk_openlock);
   1572 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1573 
   1574 	/* Our content type is static, no need to open the device. */
   1575 
   1576 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
   1577 	    strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0) {
   1578 		rv = ENXIO;
   1579 		goto out;
   1580 	}
   1581 	if (size % DEV_BSIZE != 0) {
   1582 		rv = EINVAL;
   1583 		goto out;
   1584 	}
   1585 	if (blkno + size / DEV_BSIZE > sc->sc_size) {
   1586 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
   1587 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
   1588 		    size / DEV_BSIZE, sc->sc_size);
   1589 		rv = EINVAL;
   1590 		goto out;
   1591 	}
   1592 
   1593 	bdev = bdevsw_lookup(sc->sc_pdev);
   1594 	rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
   1595 
   1596 out:
   1597 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1598 	mutex_exit(&sc->sc_dk.dk_openlock);
   1599 
   1600 	return rv;
   1601 }
   1602 
   1603 /*
   1604  * config glue
   1605  */
   1606 
   1607 /*
   1608  * dkwedge_find_partition
   1609  *
   1610  *	Find wedge corresponding to the specified parent name
   1611  *	and offset/length.
   1612  */
   1613 device_t
   1614 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
   1615 {
   1616 	struct dkwedge_softc *sc;
   1617 	int i;
   1618 	device_t wedge = NULL;
   1619 
   1620 	rw_enter(&dkwedges_lock, RW_READER);
   1621 	for (i = 0; i < ndkwedges; i++) {
   1622 		if ((sc = dkwedges[i]) == NULL)
   1623 			continue;
   1624 		if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
   1625 		    sc->sc_offset == startblk &&
   1626 		    sc->sc_size == nblks) {
   1627 			if (wedge) {
   1628 				printf("WARNING: double match for boot wedge "
   1629 				    "(%s, %s)\n",
   1630 				    device_xname(wedge),
   1631 				    device_xname(sc->sc_dev));
   1632 				continue;
   1633 			}
   1634 			wedge = sc->sc_dev;
   1635 		}
   1636 	}
   1637 	rw_exit(&dkwedges_lock);
   1638 
   1639 	return wedge;
   1640 }
   1641 
   1642 const char *
   1643 dkwedge_get_parent_name(dev_t dev)
   1644 {
   1645 	/* XXX: perhaps do this in lookup? */
   1646 	int bmaj = bdevsw_lookup_major(&dk_bdevsw);
   1647 	int cmaj = cdevsw_lookup_major(&dk_cdevsw);
   1648 	if (major(dev) != bmaj && major(dev) != cmaj)
   1649 		return NULL;
   1650 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1651 	if (sc == NULL)
   1652 		return NULL;
   1653 	return sc->sc_parent->dk_name;
   1654 }
   1655 
   1656