dk.c revision 1.91.2.2 1 /* $NetBSD: dk.c,v 1.91.2.2 2017/01/07 08:56:31 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.91.2.2 2017/01/07 08:56:31 pgoyette Exp $");
34
35 #ifdef _KERNEL_OPT
36 #include "opt_dkwedge.h"
37 #endif
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/errno.h>
43 #include <sys/pool.h>
44 #include <sys/ioctl.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/fcntl.h>
48 #include <sys/buf.h>
49 #include <sys/bufq.h>
50 #include <sys/vnode.h>
51 #include <sys/stat.h>
52 #include <sys/conf.h>
53 #include <sys/callout.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/device.h>
57 #include <sys/kauth.h>
58
59 #include <miscfs/specfs/specdev.h>
60
61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
62
63 typedef enum {
64 DKW_STATE_LARVAL = 0,
65 DKW_STATE_RUNNING = 1,
66 DKW_STATE_DYING = 2,
67 DKW_STATE_DEAD = 666
68 } dkwedge_state_t;
69
70 struct dkwedge_softc {
71 device_t sc_dev; /* pointer to our pseudo-device */
72 struct cfdata sc_cfdata; /* our cfdata structure */
73 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
74
75 dkwedge_state_t sc_state; /* state this wedge is in */
76
77 struct disk *sc_parent; /* parent disk */
78 daddr_t sc_offset; /* LBA offset of wedge in parent */
79 uint64_t sc_size; /* size of wedge in blocks */
80 char sc_ptype[32]; /* partition type */
81 dev_t sc_pdev; /* cached parent's dev_t */
82 /* link on parent's wedge list */
83 LIST_ENTRY(dkwedge_softc) sc_plink;
84
85 struct disk sc_dk; /* our own disk structure */
86 struct bufq_state *sc_bufq; /* buffer queue */
87 struct callout sc_restart_ch; /* callout to restart I/O */
88
89 kmutex_t sc_iolock;
90 kcondvar_t sc_dkdrn;
91 u_int sc_iopend; /* I/Os pending */
92 int sc_flags; /* flags (sc_iolock) */
93 };
94
95 #define DK_F_WAIT_DRAIN 0x0001 /* waiting for I/O to drain */
96
97 static void dkstart(struct dkwedge_softc *);
98 static void dkiodone(struct buf *);
99 static void dkrestart(void *);
100 static void dkminphys(struct buf *);
101
102 static int dklastclose(struct dkwedge_softc *);
103 static int dkwedge_cleanup_parent(struct dkwedge_softc *, int);
104 static int dkwedge_detach(device_t, int);
105 static void dkwedge_delall1(struct disk *, bool);
106 static int dkwedge_del1(struct dkwedge_info *, int);
107 static int dk_open_parent(dev_t, int, struct vnode **);
108 static int dk_close_parent(struct vnode *, int);
109
110 static dev_type_open(dkopen);
111 static dev_type_close(dkclose);
112 static dev_type_read(dkread);
113 static dev_type_write(dkwrite);
114 static dev_type_ioctl(dkioctl);
115 static dev_type_strategy(dkstrategy);
116 static dev_type_dump(dkdump);
117 static dev_type_size(dksize);
118 static dev_type_discard(dkdiscard);
119
120 const struct bdevsw dk_bdevsw = {
121 .d_open = dkopen,
122 .d_close = dkclose,
123 .d_strategy = dkstrategy,
124 .d_ioctl = dkioctl,
125 .d_dump = dkdump,
126 .d_psize = dksize,
127 .d_discard = dkdiscard,
128 .d_flag = D_DISK | D_MPSAFE
129 };
130
131 const struct cdevsw dk_cdevsw = {
132 .d_open = dkopen,
133 .d_close = dkclose,
134 .d_read = dkread,
135 .d_write = dkwrite,
136 .d_ioctl = dkioctl,
137 .d_stop = nostop,
138 .d_tty = notty,
139 .d_poll = nopoll,
140 .d_mmap = nommap,
141 .d_kqfilter = nokqfilter,
142 .d_discard = dkdiscard,
143 .d_flag = D_DISK | D_MPSAFE
144 };
145
146 static struct dkwedge_softc **dkwedges;
147 static u_int ndkwedges;
148 static krwlock_t dkwedges_lock;
149
150 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
151 static krwlock_t dkwedge_discovery_methods_lock;
152
153 /*
154 * dkwedge_match:
155 *
156 * Autoconfiguration match function for pseudo-device glue.
157 */
158 static int
159 dkwedge_match(device_t parent, cfdata_t match,
160 void *aux)
161 {
162
163 /* Pseudo-device; always present. */
164 return (1);
165 }
166
167 /*
168 * dkwedge_attach:
169 *
170 * Autoconfiguration attach function for pseudo-device glue.
171 */
172 static void
173 dkwedge_attach(device_t parent, device_t self,
174 void *aux)
175 {
176
177 if (!pmf_device_register(self, NULL, NULL))
178 aprint_error_dev(self, "couldn't establish power handler\n");
179 }
180
181 CFDRIVER_DECL(dk, DV_DISK, NULL);
182 CFATTACH_DECL3_NEW(dk, 0,
183 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
184 DVF_DETACH_SHUTDOWN);
185
186 /*
187 * dkwedge_wait_drain:
188 *
189 * Wait for I/O on the wedge to drain.
190 */
191 static void
192 dkwedge_wait_drain(struct dkwedge_softc *sc)
193 {
194
195 mutex_enter(&sc->sc_iolock);
196 while (sc->sc_iopend != 0) {
197 sc->sc_flags |= DK_F_WAIT_DRAIN;
198 cv_wait(&sc->sc_dkdrn, &sc->sc_iolock);
199 }
200 mutex_exit(&sc->sc_iolock);
201 }
202
203 /*
204 * dkwedge_compute_pdev:
205 *
206 * Compute the parent disk's dev_t.
207 */
208 static int
209 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
210 {
211 const char *name, *cp;
212 devmajor_t pmaj;
213 int punit;
214 char devname[16];
215
216 name = pname;
217 switch (type) {
218 case VBLK:
219 pmaj = devsw_name2blk(name, devname, sizeof(devname));
220 break;
221 case VCHR:
222 pmaj = devsw_name2chr(name, devname, sizeof(devname));
223 break;
224 default:
225 pmaj = NODEVMAJOR;
226 break;
227 }
228 if (pmaj == NODEVMAJOR)
229 return (ENODEV);
230
231 name += strlen(devname);
232 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
233 punit = (punit * 10) + (*cp - '0');
234 if (cp == name) {
235 /* Invalid parent disk name. */
236 return (ENODEV);
237 }
238
239 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
240
241 return (0);
242 }
243
244 /*
245 * dkwedge_array_expand:
246 *
247 * Expand the dkwedges array.
248 */
249 static void
250 dkwedge_array_expand(void)
251 {
252 int newcnt = ndkwedges + 16;
253 struct dkwedge_softc **newarray, **oldarray;
254
255 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
256 M_WAITOK|M_ZERO);
257 if ((oldarray = dkwedges) != NULL)
258 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
259 dkwedges = newarray;
260 ndkwedges = newcnt;
261 if (oldarray != NULL)
262 free(oldarray, M_DKWEDGE);
263 }
264
265 static void
266 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
267 {
268 struct disk *dk = &sc->sc_dk;
269 struct disk_geom *dg = &dk->dk_geom;
270
271 memset(dg, 0, sizeof(*dg));
272
273 dg->dg_secperunit = sc->sc_size;
274 dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
275
276 /* fake numbers, 1 cylinder is 1 MB with default sector size */
277 dg->dg_nsectors = 32;
278 dg->dg_ntracks = 64;
279 dg->dg_ncylinders = dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
280
281 disk_set_info(sc->sc_dev, dk, NULL);
282 }
283
284 /*
285 * dkwedge_add: [exported function]
286 *
287 * Add a disk wedge based on the provided information.
288 *
289 * The incoming dkw_devname[] is ignored, instead being
290 * filled in and returned to the caller.
291 */
292 int
293 dkwedge_add(struct dkwedge_info *dkw)
294 {
295 struct dkwedge_softc *sc, *lsc;
296 struct disk *pdk;
297 u_int unit;
298 int error;
299 dev_t pdev;
300
301 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
302 pdk = disk_find(dkw->dkw_parent);
303 if (pdk == NULL)
304 return (ENODEV);
305
306 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
307 if (error)
308 return (error);
309
310 if (dkw->dkw_offset < 0)
311 return (EINVAL);
312
313 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
314 sc->sc_state = DKW_STATE_LARVAL;
315 sc->sc_parent = pdk;
316 sc->sc_pdev = pdev;
317 sc->sc_offset = dkw->dkw_offset;
318 sc->sc_size = dkw->dkw_size;
319
320 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
321 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
322
323 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
324 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
325
326 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
327
328 callout_init(&sc->sc_restart_ch, 0);
329 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
330
331 mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
332 cv_init(&sc->sc_dkdrn, "dkdrn");
333
334 /*
335 * Wedge will be added; increment the wedge count for the parent.
336 * Only allow this to happend if RAW_PART is the only thing open.
337 */
338 mutex_enter(&pdk->dk_openlock);
339 if (pdk->dk_openmask & ~(1 << RAW_PART))
340 error = EBUSY;
341 else {
342 /* Check for wedge overlap. */
343 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
344 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
345 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
346
347 if (sc->sc_offset >= lsc->sc_offset &&
348 sc->sc_offset <= llastblk) {
349 /* Overlaps the tail of the existing wedge. */
350 break;
351 }
352 if (lastblk >= lsc->sc_offset &&
353 lastblk <= llastblk) {
354 /* Overlaps the head of the existing wedge. */
355 break;
356 }
357 }
358 if (lsc != NULL) {
359 if (sc->sc_offset == lsc->sc_offset &&
360 sc->sc_size == lsc->sc_size &&
361 strcmp(sc->sc_wname, lsc->sc_wname) == 0)
362 error = EEXIST;
363 else
364 error = EINVAL;
365 } else {
366 pdk->dk_nwedges++;
367 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
368 }
369 }
370 mutex_exit(&pdk->dk_openlock);
371 if (error) {
372 cv_destroy(&sc->sc_dkdrn);
373 mutex_destroy(&sc->sc_iolock);
374 bufq_free(sc->sc_bufq);
375 free(sc, M_DKWEDGE);
376 return (error);
377 }
378
379 /* Fill in our cfdata for the pseudo-device glue. */
380 sc->sc_cfdata.cf_name = dk_cd.cd_name;
381 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
382 /* sc->sc_cfdata.cf_unit set below */
383 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
384
385 /* Insert the larval wedge into the array. */
386 rw_enter(&dkwedges_lock, RW_WRITER);
387 for (error = 0;;) {
388 struct dkwedge_softc **scpp;
389
390 /*
391 * Check for a duplicate wname while searching for
392 * a slot.
393 */
394 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
395 if (dkwedges[unit] == NULL) {
396 if (scpp == NULL) {
397 scpp = &dkwedges[unit];
398 sc->sc_cfdata.cf_unit = unit;
399 }
400 } else {
401 /* XXX Unicode. */
402 if (strcmp(dkwedges[unit]->sc_wname,
403 sc->sc_wname) == 0) {
404 error = EEXIST;
405 break;
406 }
407 }
408 }
409 if (error)
410 break;
411 KASSERT(unit == ndkwedges);
412 if (scpp == NULL)
413 dkwedge_array_expand();
414 else {
415 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
416 *scpp = sc;
417 break;
418 }
419 }
420 rw_exit(&dkwedges_lock);
421 if (error) {
422 mutex_enter(&pdk->dk_openlock);
423 pdk->dk_nwedges--;
424 LIST_REMOVE(sc, sc_plink);
425 mutex_exit(&pdk->dk_openlock);
426
427 cv_destroy(&sc->sc_dkdrn);
428 mutex_destroy(&sc->sc_iolock);
429 bufq_free(sc->sc_bufq);
430 free(sc, M_DKWEDGE);
431 return (error);
432 }
433
434 /*
435 * Now that we know the unit #, attach a pseudo-device for
436 * this wedge instance. This will provide us with the
437 * device_t necessary for glue to other parts of the system.
438 *
439 * This should never fail, unless we're almost totally out of
440 * memory.
441 */
442 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
443 aprint_error("%s%u: unable to attach pseudo-device\n",
444 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
445
446 rw_enter(&dkwedges_lock, RW_WRITER);
447 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
448 rw_exit(&dkwedges_lock);
449
450 mutex_enter(&pdk->dk_openlock);
451 pdk->dk_nwedges--;
452 LIST_REMOVE(sc, sc_plink);
453 mutex_exit(&pdk->dk_openlock);
454
455 cv_destroy(&sc->sc_dkdrn);
456 mutex_destroy(&sc->sc_iolock);
457 bufq_free(sc->sc_bufq);
458 free(sc, M_DKWEDGE);
459 return (ENOMEM);
460 }
461
462 /* Return the devname to the caller. */
463 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
464 sizeof(dkw->dkw_devname));
465
466 /*
467 * XXX Really ought to make the disk_attach() and the changing
468 * of state to RUNNING atomic.
469 */
470
471 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
472 dk_set_geometry(sc, pdk);
473 disk_attach(&sc->sc_dk);
474
475 /* Disk wedge is ready for use! */
476 sc->sc_state = DKW_STATE_RUNNING;
477
478 /* Announce our arrival. */
479 aprint_normal(
480 "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
481 device_xname(sc->sc_dev), pdk->dk_name,
482 sc->sc_wname, /* XXX Unicode */
483 sc->sc_size, sc->sc_offset,
484 sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
485
486 return (0);
487 }
488
489 /*
490 * dkwedge_find:
491 *
492 * Lookup a disk wedge based on the provided information.
493 * NOTE: We look up the wedge based on the wedge devname,
494 * not wname.
495 *
496 * Return NULL if the wedge is not found, otherwise return
497 * the wedge's softc. Assign the wedge's unit number to unitp
498 * if unitp is not NULL.
499 */
500 static struct dkwedge_softc *
501 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
502 {
503 struct dkwedge_softc *sc = NULL;
504 u_int unit;
505
506 /* Find our softc. */
507 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
508 rw_enter(&dkwedges_lock, RW_READER);
509 for (unit = 0; unit < ndkwedges; unit++) {
510 if ((sc = dkwedges[unit]) != NULL &&
511 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
512 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
513 break;
514 }
515 }
516 rw_exit(&dkwedges_lock);
517 if (unit == ndkwedges)
518 return NULL;
519
520 if (unitp != NULL)
521 *unitp = unit;
522
523 return sc;
524 }
525
526 /*
527 * dkwedge_del: [exported function]
528 *
529 * Delete a disk wedge based on the provided information.
530 * NOTE: We look up the wedge based on the wedge devname,
531 * not wname.
532 */
533 int
534 dkwedge_del(struct dkwedge_info *dkw)
535 {
536 return dkwedge_del1(dkw, 0);
537 }
538
539 int
540 dkwedge_del1(struct dkwedge_info *dkw, int flags)
541 {
542 struct dkwedge_softc *sc = NULL;
543
544 /* Find our softc. */
545 if ((sc = dkwedge_find(dkw, NULL)) == NULL)
546 return (ESRCH);
547
548 return config_detach(sc->sc_dev, flags);
549 }
550
551 static int
552 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags)
553 {
554 struct disk *dk = &sc->sc_dk;
555 int rc;
556
557 rc = 0;
558 mutex_enter(&dk->dk_openlock);
559 if (dk->dk_openmask == 0)
560 /* nothing to do */
561 mutex_exit(&dk->dk_openlock);
562 else if ((flags & DETACH_FORCE) == 0) {
563 rc = EBUSY;
564 mutex_exit(&dk->dk_openlock);
565 } else {
566 mutex_enter(&sc->sc_parent->dk_rawlock);
567 rc = dklastclose(sc); /* releases locks */
568 }
569
570 return rc;
571 }
572
573 /*
574 * dkwedge_detach:
575 *
576 * Autoconfiguration detach function for pseudo-device glue.
577 */
578 static int
579 dkwedge_detach(device_t self, int flags)
580 {
581 struct dkwedge_softc *sc = NULL;
582 u_int unit;
583 int bmaj, cmaj, rc;
584
585 rw_enter(&dkwedges_lock, RW_WRITER);
586 for (unit = 0; unit < ndkwedges; unit++) {
587 if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
588 break;
589 }
590 if (unit == ndkwedges)
591 rc = ENXIO;
592 else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) {
593 /* Mark the wedge as dying. */
594 sc->sc_state = DKW_STATE_DYING;
595 }
596 rw_exit(&dkwedges_lock);
597
598 if (rc != 0)
599 return rc;
600
601 pmf_device_deregister(self);
602
603 /* Locate the wedge major numbers. */
604 bmaj = bdevsw_lookup_major(&dk_bdevsw);
605 cmaj = cdevsw_lookup_major(&dk_cdevsw);
606
607 /* Kill any pending restart. */
608 callout_stop(&sc->sc_restart_ch);
609
610 /*
611 * dkstart() will kill any queued buffers now that the
612 * state of the wedge is not RUNNING. Once we've done
613 * that, wait for any other pending I/O to complete.
614 */
615 dkstart(sc);
616 dkwedge_wait_drain(sc);
617
618 /* Nuke the vnodes for any open instances. */
619 vdevgone(bmaj, unit, unit, VBLK);
620 vdevgone(cmaj, unit, unit, VCHR);
621
622 /* Clean up the parent. */
623 dkwedge_cleanup_parent(sc, flags | DETACH_FORCE);
624
625 /* Announce our departure. */
626 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
627 sc->sc_parent->dk_name,
628 sc->sc_wname); /* XXX Unicode */
629
630 mutex_enter(&sc->sc_parent->dk_openlock);
631 sc->sc_parent->dk_nwedges--;
632 LIST_REMOVE(sc, sc_plink);
633 mutex_exit(&sc->sc_parent->dk_openlock);
634
635 /* Delete our buffer queue. */
636 bufq_free(sc->sc_bufq);
637
638 /* Detach from the disk list. */
639 disk_detach(&sc->sc_dk);
640 disk_destroy(&sc->sc_dk);
641
642 /* Poof. */
643 rw_enter(&dkwedges_lock, RW_WRITER);
644 dkwedges[unit] = NULL;
645 sc->sc_state = DKW_STATE_DEAD;
646 rw_exit(&dkwedges_lock);
647
648 mutex_destroy(&sc->sc_iolock);
649 cv_destroy(&sc->sc_dkdrn);
650
651 free(sc, M_DKWEDGE);
652
653 return 0;
654 }
655
656 /*
657 * dkwedge_delall: [exported function]
658 *
659 * Delete all of the wedges on the specified disk. Used when
660 * a disk is being detached.
661 */
662 void
663 dkwedge_delall(struct disk *pdk)
664 {
665 dkwedge_delall1(pdk, false);
666 }
667
668 static void
669 dkwedge_delall1(struct disk *pdk, bool idleonly)
670 {
671 struct dkwedge_info dkw;
672 struct dkwedge_softc *sc;
673 int flags;
674
675 flags = DETACH_QUIET;
676 if (!idleonly) flags |= DETACH_FORCE;
677
678 for (;;) {
679 mutex_enter(&pdk->dk_openlock);
680 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
681 if (!idleonly || sc->sc_dk.dk_openmask == 0)
682 break;
683 }
684 if (sc == NULL) {
685 KASSERT(idleonly || pdk->dk_nwedges == 0);
686 mutex_exit(&pdk->dk_openlock);
687 return;
688 }
689 strcpy(dkw.dkw_parent, pdk->dk_name);
690 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
691 sizeof(dkw.dkw_devname));
692 mutex_exit(&pdk->dk_openlock);
693 (void) dkwedge_del1(&dkw, flags);
694 }
695 }
696
697 /*
698 * dkwedge_list: [exported function]
699 *
700 * List all of the wedges on a particular disk.
701 */
702 int
703 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
704 {
705 struct uio uio;
706 struct iovec iov;
707 struct dkwedge_softc *sc;
708 struct dkwedge_info dkw;
709 int error = 0;
710
711 iov.iov_base = dkwl->dkwl_buf;
712 iov.iov_len = dkwl->dkwl_bufsize;
713
714 uio.uio_iov = &iov;
715 uio.uio_iovcnt = 1;
716 uio.uio_offset = 0;
717 uio.uio_resid = dkwl->dkwl_bufsize;
718 uio.uio_rw = UIO_READ;
719 KASSERT(l == curlwp);
720 uio.uio_vmspace = l->l_proc->p_vmspace;
721
722 dkwl->dkwl_ncopied = 0;
723
724 mutex_enter(&pdk->dk_openlock);
725 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
726 if (uio.uio_resid < sizeof(dkw))
727 break;
728
729 if (sc->sc_state != DKW_STATE_RUNNING)
730 continue;
731
732 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
733 sizeof(dkw.dkw_devname));
734 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
735 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
736 strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
737 dkw.dkw_offset = sc->sc_offset;
738 dkw.dkw_size = sc->sc_size;
739 strcpy(dkw.dkw_ptype, sc->sc_ptype);
740
741 error = uiomove(&dkw, sizeof(dkw), &uio);
742 if (error)
743 break;
744 dkwl->dkwl_ncopied++;
745 }
746 dkwl->dkwl_nwedges = pdk->dk_nwedges;
747 mutex_exit(&pdk->dk_openlock);
748
749 return (error);
750 }
751
752 device_t
753 dkwedge_find_by_wname(const char *wname)
754 {
755 device_t dv = NULL;
756 struct dkwedge_softc *sc;
757 int i;
758
759 rw_enter(&dkwedges_lock, RW_WRITER);
760 for (i = 0; i < ndkwedges; i++) {
761 if ((sc = dkwedges[i]) == NULL)
762 continue;
763 if (strcmp(sc->sc_wname, wname) == 0) {
764 if (dv != NULL) {
765 printf(
766 "WARNING: double match for wedge name %s "
767 "(%s, %s)\n", wname, device_xname(dv),
768 device_xname(sc->sc_dev));
769 continue;
770 }
771 dv = sc->sc_dev;
772 }
773 }
774 rw_exit(&dkwedges_lock);
775 return dv;
776 }
777
778 device_t
779 dkwedge_find_by_parent(const char *name, size_t *i)
780 {
781 rw_enter(&dkwedges_lock, RW_WRITER);
782 for (; *i < (size_t)ndkwedges; (*i)++) {
783 struct dkwedge_softc *sc;
784 if ((sc = dkwedges[*i]) == NULL)
785 continue;
786 if (strcmp(sc->sc_parent->dk_name, name) != 0)
787 continue;
788 rw_exit(&dkwedges_lock);
789 return sc->sc_dev;
790 }
791 rw_exit(&dkwedges_lock);
792 return NULL;
793 }
794
795 void
796 dkwedge_print_wnames(void)
797 {
798 struct dkwedge_softc *sc;
799 int i;
800
801 rw_enter(&dkwedges_lock, RW_WRITER);
802 for (i = 0; i < ndkwedges; i++) {
803 if ((sc = dkwedges[i]) == NULL)
804 continue;
805 printf(" wedge:%s", sc->sc_wname);
806 }
807 rw_exit(&dkwedges_lock);
808 }
809
810 /*
811 * We need a dummy object to stuff into the dkwedge discovery method link
812 * set to ensure that there is always at least one object in the set.
813 */
814 static struct dkwedge_discovery_method dummy_discovery_method;
815 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
816
817 /*
818 * dkwedge_init:
819 *
820 * Initialize the disk wedge subsystem.
821 */
822 void
823 dkwedge_init(void)
824 {
825 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
826 struct dkwedge_discovery_method * const *ddmp;
827 struct dkwedge_discovery_method *lddm, *ddm;
828
829 rw_init(&dkwedges_lock);
830 rw_init(&dkwedge_discovery_methods_lock);
831
832 if (config_cfdriver_attach(&dk_cd) != 0)
833 panic("dkwedge: unable to attach cfdriver");
834 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
835 panic("dkwedge: unable to attach cfattach");
836
837 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
838
839 LIST_INIT(&dkwedge_discovery_methods);
840
841 __link_set_foreach(ddmp, dkwedge_methods) {
842 ddm = *ddmp;
843 if (ddm == &dummy_discovery_method)
844 continue;
845 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
846 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
847 ddm, ddm_list);
848 continue;
849 }
850 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
851 if (ddm->ddm_priority == lddm->ddm_priority) {
852 aprint_error("dk-method-%s: method \"%s\" "
853 "already exists at priority %d\n",
854 ddm->ddm_name, lddm->ddm_name,
855 lddm->ddm_priority);
856 /* Not inserted. */
857 break;
858 }
859 if (ddm->ddm_priority < lddm->ddm_priority) {
860 /* Higher priority; insert before. */
861 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
862 break;
863 }
864 if (LIST_NEXT(lddm, ddm_list) == NULL) {
865 /* Last one; insert after. */
866 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
867 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
868 break;
869 }
870 }
871 }
872
873 rw_exit(&dkwedge_discovery_methods_lock);
874 }
875
876 #ifdef DKWEDGE_AUTODISCOVER
877 int dkwedge_autodiscover = 1;
878 #else
879 int dkwedge_autodiscover = 0;
880 #endif
881
882 /*
883 * dkwedge_discover: [exported function]
884 *
885 * Discover the wedges on a newly attached disk.
886 * Remove all unused wedges on the disk first.
887 */
888 void
889 dkwedge_discover(struct disk *pdk)
890 {
891 struct dkwedge_discovery_method *ddm;
892 struct vnode *vp;
893 int error;
894 dev_t pdev;
895
896 /*
897 * Require people playing with wedges to enable this explicitly.
898 */
899 if (dkwedge_autodiscover == 0)
900 return;
901
902 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
903
904 /*
905 * Use the character device for scanning, the block device
906 * is busy if there are already wedges attached.
907 */
908 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
909 if (error) {
910 aprint_error("%s: unable to compute pdev, error = %d\n",
911 pdk->dk_name, error);
912 goto out;
913 }
914
915 error = cdevvp(pdev, &vp);
916 if (error) {
917 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
918 pdk->dk_name, error);
919 goto out;
920 }
921
922 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
923 if (error) {
924 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
925 pdk->dk_name, error);
926 vrele(vp);
927 goto out;
928 }
929
930 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
931 if (error) {
932 if (error != ENODEV)
933 aprint_error("%s: unable to open device, error = %d\n",
934 pdk->dk_name, error);
935 vput(vp);
936 goto out;
937 }
938 VOP_UNLOCK(vp);
939
940 /*
941 * Remove unused wedges
942 */
943 dkwedge_delall1(pdk, true);
944
945 /*
946 * For each supported partition map type, look to see if
947 * this map type exists. If so, parse it and add the
948 * corresponding wedges.
949 */
950 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
951 error = (*ddm->ddm_discover)(pdk, vp);
952 if (error == 0) {
953 /* Successfully created wedges; we're done. */
954 break;
955 }
956 }
957
958 error = vn_close(vp, FREAD, NOCRED);
959 if (error) {
960 aprint_error("%s: unable to close device, error = %d\n",
961 pdk->dk_name, error);
962 /* We'll just assume the vnode has been cleaned up. */
963 }
964
965 out:
966 rw_exit(&dkwedge_discovery_methods_lock);
967 }
968
969 /*
970 * dkwedge_read:
971 *
972 * Read some data from the specified disk, used for
973 * partition discovery.
974 */
975 int
976 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
977 void *tbuf, size_t len)
978 {
979 buf_t *bp;
980 int error;
981 bool isopen;
982 dev_t bdev;
983 struct vnode *bdvp;
984
985 /*
986 * The kernel cannot read from a character device vnode
987 * as physio() only handles user memory.
988 *
989 * If the block device has already been opened by a wedge
990 * use that vnode and temporarily bump the open counter.
991 *
992 * Otherwise try to open the block device.
993 */
994
995 bdev = devsw_chr2blk(vp->v_rdev);
996
997 mutex_enter(&pdk->dk_rawlock);
998 if (pdk->dk_rawopens != 0) {
999 KASSERT(pdk->dk_rawvp != NULL);
1000 isopen = true;
1001 ++pdk->dk_rawopens;
1002 bdvp = pdk->dk_rawvp;
1003 error = 0;
1004 } else {
1005 isopen = false;
1006 error = dk_open_parent(bdev, FREAD, &bdvp);
1007 }
1008 mutex_exit(&pdk->dk_rawlock);
1009
1010 if (error)
1011 return error;
1012
1013 bp = getiobuf(bdvp, true);
1014 bp->b_flags = B_READ;
1015 bp->b_cflags = BC_BUSY;
1016 bp->b_dev = bdev;
1017 bp->b_data = tbuf;
1018 bp->b_bufsize = bp->b_bcount = len;
1019 bp->b_blkno = blkno;
1020 bp->b_cylinder = 0;
1021 bp->b_error = 0;
1022
1023 VOP_STRATEGY(bdvp, bp);
1024 error = biowait(bp);
1025 putiobuf(bp);
1026
1027 mutex_enter(&pdk->dk_rawlock);
1028 if (isopen) {
1029 --pdk->dk_rawopens;
1030 } else {
1031 dk_close_parent(bdvp, FREAD);
1032 }
1033 mutex_exit(&pdk->dk_rawlock);
1034
1035 return error;
1036 }
1037
1038 /*
1039 * dkwedge_lookup:
1040 *
1041 * Look up a dkwedge_softc based on the provided dev_t.
1042 */
1043 static struct dkwedge_softc *
1044 dkwedge_lookup(dev_t dev)
1045 {
1046 int unit = minor(dev);
1047
1048 if (unit >= ndkwedges)
1049 return (NULL);
1050
1051 KASSERT(dkwedges != NULL);
1052
1053 return (dkwedges[unit]);
1054 }
1055
1056 static int
1057 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
1058 {
1059 struct vnode *vp;
1060 int error;
1061
1062 error = bdevvp(dev, &vp);
1063 if (error)
1064 return error;
1065
1066 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1067 if (error) {
1068 vrele(vp);
1069 return error;
1070 }
1071 error = VOP_OPEN(vp, mode, NOCRED);
1072 if (error) {
1073 vput(vp);
1074 return error;
1075 }
1076
1077 /* VOP_OPEN() doesn't do this for us. */
1078 if (mode & FWRITE) {
1079 mutex_enter(vp->v_interlock);
1080 vp->v_writecount++;
1081 mutex_exit(vp->v_interlock);
1082 }
1083
1084 VOP_UNLOCK(vp);
1085
1086 *vpp = vp;
1087
1088 return 0;
1089 }
1090
1091 static int
1092 dk_close_parent(struct vnode *vp, int mode)
1093 {
1094 int error;
1095
1096 error = vn_close(vp, mode, NOCRED);
1097 return error;
1098 }
1099
1100 /*
1101 * dkopen: [devsw entry point]
1102 *
1103 * Open a wedge.
1104 */
1105 static int
1106 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
1107 {
1108 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1109 struct vnode *vp;
1110 int error = 0;
1111
1112 if (sc == NULL)
1113 return (ENODEV);
1114 if (sc->sc_state != DKW_STATE_RUNNING)
1115 return (ENXIO);
1116
1117 /*
1118 * We go through a complicated little dance to only open the parent
1119 * vnode once per wedge, no matter how many times the wedge is
1120 * opened. The reason? We see one dkopen() per open call, but
1121 * only dkclose() on the last close.
1122 */
1123 mutex_enter(&sc->sc_dk.dk_openlock);
1124 mutex_enter(&sc->sc_parent->dk_rawlock);
1125 if (sc->sc_dk.dk_openmask == 0) {
1126 if (sc->sc_parent->dk_rawopens == 0) {
1127 KASSERT(sc->sc_parent->dk_rawvp == NULL);
1128 error = dk_open_parent(sc->sc_pdev, FREAD | FWRITE, &vp);
1129 if (error)
1130 goto popen_fail;
1131 sc->sc_parent->dk_rawvp = vp;
1132 }
1133 sc->sc_parent->dk_rawopens++;
1134 }
1135 if (fmt == S_IFCHR)
1136 sc->sc_dk.dk_copenmask |= 1;
1137 else
1138 sc->sc_dk.dk_bopenmask |= 1;
1139 sc->sc_dk.dk_openmask =
1140 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1141
1142 popen_fail:
1143 mutex_exit(&sc->sc_parent->dk_rawlock);
1144 mutex_exit(&sc->sc_dk.dk_openlock);
1145 return (error);
1146 }
1147
1148 /*
1149 * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock.
1150 */
1151 static int
1152 dklastclose(struct dkwedge_softc *sc)
1153 {
1154 int error = 0, doclose;
1155
1156 doclose = 0;
1157 if (sc->sc_parent->dk_rawopens > 0) {
1158 if (--sc->sc_parent->dk_rawopens == 0)
1159 doclose = 1;
1160 }
1161
1162 mutex_exit(&sc->sc_parent->dk_rawlock);
1163 mutex_exit(&sc->sc_dk.dk_openlock);
1164
1165 if (doclose) {
1166 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1167 dk_close_parent(sc->sc_parent->dk_rawvp, FREAD | FWRITE);
1168 sc->sc_parent->dk_rawvp = NULL;
1169 }
1170
1171 return error;
1172 }
1173
1174 /*
1175 * dkclose: [devsw entry point]
1176 *
1177 * Close a wedge.
1178 */
1179 static int
1180 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1181 {
1182 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1183 int error = 0;
1184
1185 if (sc == NULL)
1186 return (ENODEV);
1187 if (sc->sc_state != DKW_STATE_RUNNING)
1188 return (ENXIO);
1189
1190 KASSERT(sc->sc_dk.dk_openmask != 0);
1191
1192 mutex_enter(&sc->sc_dk.dk_openlock);
1193 mutex_enter(&sc->sc_parent->dk_rawlock);
1194
1195 if (fmt == S_IFCHR)
1196 sc->sc_dk.dk_copenmask &= ~1;
1197 else
1198 sc->sc_dk.dk_bopenmask &= ~1;
1199 sc->sc_dk.dk_openmask =
1200 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1201
1202 if (sc->sc_dk.dk_openmask == 0)
1203 error = dklastclose(sc); /* releases locks */
1204 else {
1205 mutex_exit(&sc->sc_parent->dk_rawlock);
1206 mutex_exit(&sc->sc_dk.dk_openlock);
1207 }
1208
1209 return (error);
1210 }
1211
1212 /*
1213 * dkstragegy: [devsw entry point]
1214 *
1215 * Perform I/O based on the wedge I/O strategy.
1216 */
1217 static void
1218 dkstrategy(struct buf *bp)
1219 {
1220 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1221 uint64_t p_size, p_offset;
1222
1223 if (sc == NULL) {
1224 bp->b_error = ENODEV;
1225 goto done;
1226 }
1227
1228 if (sc->sc_state != DKW_STATE_RUNNING ||
1229 sc->sc_parent->dk_rawvp == NULL) {
1230 bp->b_error = ENXIO;
1231 goto done;
1232 }
1233
1234 /* If it's an empty transfer, wake up the top half now. */
1235 if (bp->b_bcount == 0)
1236 goto done;
1237
1238 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1239 p_size = sc->sc_size << sc->sc_parent->dk_blkshift;
1240
1241 /* Make sure it's in-range. */
1242 if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1243 goto done;
1244
1245 /* Translate it to the parent's raw LBA. */
1246 bp->b_rawblkno = bp->b_blkno + p_offset;
1247
1248 /* Place it in the queue and start I/O on the unit. */
1249 mutex_enter(&sc->sc_iolock);
1250 sc->sc_iopend++;
1251 bufq_put(sc->sc_bufq, bp);
1252 mutex_exit(&sc->sc_iolock);
1253
1254 dkstart(sc);
1255 return;
1256
1257 done:
1258 bp->b_resid = bp->b_bcount;
1259 biodone(bp);
1260 }
1261
1262 /*
1263 * dkstart:
1264 *
1265 * Start I/O that has been enqueued on the wedge.
1266 */
1267 static void
1268 dkstart(struct dkwedge_softc *sc)
1269 {
1270 struct vnode *vp;
1271 struct buf *bp, *nbp;
1272
1273 mutex_enter(&sc->sc_iolock);
1274
1275 /* Do as much work as has been enqueued. */
1276 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1277
1278 if (sc->sc_state != DKW_STATE_RUNNING) {
1279 (void) bufq_get(sc->sc_bufq);
1280 if (sc->sc_iopend-- == 1 &&
1281 (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1282 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1283 cv_broadcast(&sc->sc_dkdrn);
1284 }
1285 mutex_exit(&sc->sc_iolock);
1286 bp->b_error = ENXIO;
1287 bp->b_resid = bp->b_bcount;
1288 biodone(bp);
1289 mutex_enter(&sc->sc_iolock);
1290 continue;
1291 }
1292
1293 /* fetch an I/O buf with sc_iolock dropped */
1294 mutex_exit(&sc->sc_iolock);
1295 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1296 mutex_enter(&sc->sc_iolock);
1297 if (nbp == NULL) {
1298 /*
1299 * No resources to run this request; leave the
1300 * buffer queued up, and schedule a timer to
1301 * restart the queue in 1/2 a second.
1302 */
1303 callout_schedule(&sc->sc_restart_ch, hz / 2);
1304 break;
1305 }
1306
1307 /*
1308 * fetch buf, this can fail if another thread
1309 * has already processed the queue, it can also
1310 * return a completely different buf.
1311 */
1312 bp = bufq_get(sc->sc_bufq);
1313 if (bp == NULL) {
1314 mutex_exit(&sc->sc_iolock);
1315 putiobuf(nbp);
1316 mutex_enter(&sc->sc_iolock);
1317 continue;
1318 }
1319
1320 /* Instrumentation. */
1321 disk_busy(&sc->sc_dk);
1322
1323 /* release lock for VOP_STRATEGY */
1324 mutex_exit(&sc->sc_iolock);
1325
1326 nbp->b_data = bp->b_data;
1327 nbp->b_flags = bp->b_flags;
1328 nbp->b_oflags = bp->b_oflags;
1329 nbp->b_cflags = bp->b_cflags;
1330 nbp->b_iodone = dkiodone;
1331 nbp->b_proc = bp->b_proc;
1332 nbp->b_blkno = bp->b_rawblkno;
1333 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1334 nbp->b_bcount = bp->b_bcount;
1335 nbp->b_private = bp;
1336 BIO_COPYPRIO(nbp, bp);
1337
1338 vp = nbp->b_vp;
1339 if ((nbp->b_flags & B_READ) == 0) {
1340 mutex_enter(vp->v_interlock);
1341 vp->v_numoutput++;
1342 mutex_exit(vp->v_interlock);
1343 }
1344 VOP_STRATEGY(vp, nbp);
1345
1346 mutex_enter(&sc->sc_iolock);
1347 }
1348
1349 mutex_exit(&sc->sc_iolock);
1350 }
1351
1352 /*
1353 * dkiodone:
1354 *
1355 * I/O to a wedge has completed; alert the top half.
1356 */
1357 static void
1358 dkiodone(struct buf *bp)
1359 {
1360 struct buf *obp = bp->b_private;
1361 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1362
1363 if (bp->b_error != 0)
1364 obp->b_error = bp->b_error;
1365 obp->b_resid = bp->b_resid;
1366 putiobuf(bp);
1367
1368 mutex_enter(&sc->sc_iolock);
1369 if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1370 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1371 cv_broadcast(&sc->sc_dkdrn);
1372 }
1373
1374 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1375 obp->b_flags & B_READ);
1376 mutex_exit(&sc->sc_iolock);
1377
1378 biodone(obp);
1379
1380 /* Kick the queue in case there is more work we can do. */
1381 dkstart(sc);
1382 }
1383
1384 /*
1385 * dkrestart:
1386 *
1387 * Restart the work queue after it was stalled due to
1388 * a resource shortage. Invoked via a callout.
1389 */
1390 static void
1391 dkrestart(void *v)
1392 {
1393 struct dkwedge_softc *sc = v;
1394
1395 dkstart(sc);
1396 }
1397
1398 /*
1399 * dkminphys:
1400 *
1401 * Call parent's minphys function.
1402 */
1403 static void
1404 dkminphys(struct buf *bp)
1405 {
1406 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1407 dev_t dev;
1408
1409 dev = bp->b_dev;
1410 bp->b_dev = sc->sc_pdev;
1411 (*sc->sc_parent->dk_driver->d_minphys)(bp);
1412 bp->b_dev = dev;
1413 }
1414
1415 /*
1416 * dkread: [devsw entry point]
1417 *
1418 * Read from a wedge.
1419 */
1420 static int
1421 dkread(dev_t dev, struct uio *uio, int flags)
1422 {
1423 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1424
1425 if (sc == NULL)
1426 return (ENODEV);
1427 if (sc->sc_state != DKW_STATE_RUNNING)
1428 return (ENXIO);
1429
1430 return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio));
1431 }
1432
1433 /*
1434 * dkwrite: [devsw entry point]
1435 *
1436 * Write to a wedge.
1437 */
1438 static int
1439 dkwrite(dev_t dev, struct uio *uio, int flags)
1440 {
1441 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1442
1443 if (sc == NULL)
1444 return (ENODEV);
1445 if (sc->sc_state != DKW_STATE_RUNNING)
1446 return (ENXIO);
1447
1448 return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio));
1449 }
1450
1451 /*
1452 * dkioctl: [devsw entry point]
1453 *
1454 * Perform an ioctl request on a wedge.
1455 */
1456 static int
1457 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1458 {
1459 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1460 int error = 0;
1461
1462 if (sc == NULL)
1463 return (ENODEV);
1464 if (sc->sc_state != DKW_STATE_RUNNING)
1465 return (ENXIO);
1466 if (sc->sc_parent->dk_rawvp == NULL)
1467 return (ENXIO);
1468
1469 /*
1470 * We pass NODEV instead of our device to indicate we don't
1471 * want to handle disklabel ioctls
1472 */
1473 error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
1474 if (error != EPASSTHROUGH)
1475 return (error);
1476
1477 error = 0;
1478
1479 switch (cmd) {
1480 case DIOCCACHESYNC:
1481 /*
1482 * XXX Do we really need to care about having a writable
1483 * file descriptor here?
1484 */
1485 if ((flag & FWRITE) == 0)
1486 error = EBADF;
1487 else
1488 error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
1489 cmd, data, flag,
1490 l != NULL ? l->l_cred : NOCRED);
1491 break;
1492 case DIOCGWEDGEINFO:
1493 {
1494 struct dkwedge_info *dkw = (void *) data;
1495
1496 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1497 sizeof(dkw->dkw_devname));
1498 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1499 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1500 strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
1501 dkw->dkw_offset = sc->sc_offset;
1502 dkw->dkw_size = sc->sc_size;
1503 strcpy(dkw->dkw_ptype, sc->sc_ptype);
1504
1505 break;
1506 }
1507
1508 default:
1509 error = ENOTTY;
1510 }
1511
1512 return (error);
1513 }
1514
1515 /*
1516 * dkdiscard: [devsw entry point]
1517 *
1518 * Perform a discard-range request on a wedge.
1519 */
1520 static int
1521 dkdiscard(dev_t dev, off_t pos, off_t len)
1522 {
1523 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1524 unsigned shift;
1525 off_t offset, maxlen;
1526
1527 if (sc == NULL)
1528 return (ENODEV);
1529 if (sc->sc_state != DKW_STATE_RUNNING)
1530 return (ENXIO);
1531 if (sc->sc_parent->dk_rawvp == NULL)
1532 return (ENXIO);
1533
1534 shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
1535 KASSERT(__type_fit(off_t, sc->sc_size));
1536 KASSERT(__type_fit(off_t, sc->sc_offset));
1537 KASSERT(0 <= sc->sc_offset);
1538 KASSERT(sc->sc_size <= (__type_max(off_t) >> shift));
1539 KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - sc->sc_size));
1540 offset = ((off_t)sc->sc_offset << shift);
1541 maxlen = ((off_t)sc->sc_size << shift);
1542
1543 if (len > maxlen)
1544 return (EINVAL);
1545 if (pos > (maxlen - len))
1546 return (EINVAL);
1547
1548 pos += offset;
1549 return VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
1550 }
1551
1552 /*
1553 * dksize: [devsw entry point]
1554 *
1555 * Query the size of a wedge for the purpose of performing a dump
1556 * or for swapping to.
1557 */
1558 static int
1559 dksize(dev_t dev)
1560 {
1561 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1562 int rv = -1;
1563
1564 if (sc == NULL)
1565 return (-1);
1566 if (sc->sc_state != DKW_STATE_RUNNING)
1567 return (-1);
1568
1569 mutex_enter(&sc->sc_dk.dk_openlock);
1570 mutex_enter(&sc->sc_parent->dk_rawlock);
1571
1572 /* Our content type is static, no need to open the device. */
1573
1574 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1575 /* Saturate if we are larger than INT_MAX. */
1576 if (sc->sc_size > INT_MAX)
1577 rv = INT_MAX;
1578 else
1579 rv = (int) sc->sc_size;
1580 }
1581
1582 mutex_exit(&sc->sc_parent->dk_rawlock);
1583 mutex_exit(&sc->sc_dk.dk_openlock);
1584
1585 return (rv);
1586 }
1587
1588 /*
1589 * dkdump: [devsw entry point]
1590 *
1591 * Perform a crash dump to a wedge.
1592 */
1593 static int
1594 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1595 {
1596 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1597 const struct bdevsw *bdev;
1598 int rv = 0;
1599
1600 if (sc == NULL)
1601 return (ENODEV);
1602 if (sc->sc_state != DKW_STATE_RUNNING)
1603 return (ENXIO);
1604
1605 mutex_enter(&sc->sc_dk.dk_openlock);
1606 mutex_enter(&sc->sc_parent->dk_rawlock);
1607
1608 /* Our content type is static, no need to open the device. */
1609
1610 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
1611 strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0) {
1612 rv = ENXIO;
1613 goto out;
1614 }
1615 if (size % DEV_BSIZE != 0) {
1616 rv = EINVAL;
1617 goto out;
1618 }
1619 if (blkno + size / DEV_BSIZE > sc->sc_size) {
1620 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1621 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
1622 size / DEV_BSIZE, sc->sc_size);
1623 rv = EINVAL;
1624 goto out;
1625 }
1626
1627 bdev = bdevsw_lookup_acquire(sc->sc_pdev);
1628 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
1629 bdevsw_release(bdev);
1630
1631 out:
1632 mutex_exit(&sc->sc_parent->dk_rawlock);
1633 mutex_exit(&sc->sc_dk.dk_openlock);
1634
1635 return rv;
1636 }
1637
1638 /*
1639 * config glue
1640 */
1641
1642 /*
1643 * dkwedge_find_partition
1644 *
1645 * Find wedge corresponding to the specified parent name
1646 * and offset/length.
1647 */
1648 device_t
1649 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
1650 {
1651 struct dkwedge_softc *sc;
1652 int i;
1653 device_t wedge = NULL;
1654
1655 rw_enter(&dkwedges_lock, RW_READER);
1656 for (i = 0; i < ndkwedges; i++) {
1657 if ((sc = dkwedges[i]) == NULL)
1658 continue;
1659 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
1660 sc->sc_offset == startblk &&
1661 sc->sc_size == nblks) {
1662 if (wedge) {
1663 printf("WARNING: double match for boot wedge "
1664 "(%s, %s)\n",
1665 device_xname(wedge),
1666 device_xname(sc->sc_dev));
1667 continue;
1668 }
1669 wedge = sc->sc_dev;
1670 }
1671 }
1672 rw_exit(&dkwedges_lock);
1673
1674 return wedge;
1675 }
1676
1677 const char *
1678 dkwedge_get_parent_name(dev_t dev)
1679 {
1680 /* XXX: perhaps do this in lookup? */
1681 int bmaj = bdevsw_lookup_major(&dk_bdevsw);
1682 int cmaj = cdevsw_lookup_major(&dk_cdevsw);
1683 if (major(dev) != bmaj && major(dev) != cmaj)
1684 return NULL;
1685 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1686 if (sc == NULL)
1687 return NULL;
1688 return sc->sc_parent->dk_name;
1689 }
1690
1691