dk.c revision 1.94 1 /* $NetBSD: dk.c,v 1.94 2017/01/19 00:44:40 maya Exp $ */
2
3 /*-
4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.94 2017/01/19 00:44:40 maya Exp $");
34
35 #ifdef _KERNEL_OPT
36 #include "opt_dkwedge.h"
37 #endif
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/errno.h>
43 #include <sys/pool.h>
44 #include <sys/ioctl.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/fcntl.h>
48 #include <sys/buf.h>
49 #include <sys/bufq.h>
50 #include <sys/vnode.h>
51 #include <sys/stat.h>
52 #include <sys/conf.h>
53 #include <sys/callout.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/device.h>
57 #include <sys/kauth.h>
58
59 #include <miscfs/specfs/specdev.h>
60
61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
62
63 typedef enum {
64 DKW_STATE_LARVAL = 0,
65 DKW_STATE_RUNNING = 1,
66 DKW_STATE_DYING = 2,
67 DKW_STATE_DEAD = 666
68 } dkwedge_state_t;
69
70 struct dkwedge_softc {
71 device_t sc_dev; /* pointer to our pseudo-device */
72 struct cfdata sc_cfdata; /* our cfdata structure */
73 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */
74
75 dkwedge_state_t sc_state; /* state this wedge is in */
76
77 struct disk *sc_parent; /* parent disk */
78 daddr_t sc_offset; /* LBA offset of wedge in parent */
79 uint64_t sc_size; /* size of wedge in blocks */
80 char sc_ptype[32]; /* partition type */
81 dev_t sc_pdev; /* cached parent's dev_t */
82 /* link on parent's wedge list */
83 LIST_ENTRY(dkwedge_softc) sc_plink;
84
85 struct disk sc_dk; /* our own disk structure */
86 struct bufq_state *sc_bufq; /* buffer queue */
87 struct callout sc_restart_ch; /* callout to restart I/O */
88
89 kmutex_t sc_iolock;
90 kcondvar_t sc_dkdrn;
91 u_int sc_iopend; /* I/Os pending */
92 int sc_flags; /* flags (sc_iolock) */
93 };
94
95 #define DK_F_WAIT_DRAIN 0x0001 /* waiting for I/O to drain */
96
97 static void dkstart(struct dkwedge_softc *);
98 static void dkiodone(struct buf *);
99 static void dkrestart(void *);
100 static void dkminphys(struct buf *);
101
102 static int dklastclose(struct dkwedge_softc *);
103 static int dkwedge_cleanup_parent(struct dkwedge_softc *, int);
104 static int dkwedge_detach(device_t, int);
105 static void dkwedge_delall1(struct disk *, bool);
106 static int dkwedge_del1(struct dkwedge_info *, int);
107 static int dk_open_parent(dev_t, int, struct vnode **);
108 static int dk_close_parent(struct vnode *, int);
109
110 static dev_type_open(dkopen);
111 static dev_type_close(dkclose);
112 static dev_type_read(dkread);
113 static dev_type_write(dkwrite);
114 static dev_type_ioctl(dkioctl);
115 static dev_type_strategy(dkstrategy);
116 static dev_type_dump(dkdump);
117 static dev_type_size(dksize);
118 static dev_type_discard(dkdiscard);
119
120 const struct bdevsw dk_bdevsw = {
121 .d_open = dkopen,
122 .d_close = dkclose,
123 .d_strategy = dkstrategy,
124 .d_ioctl = dkioctl,
125 .d_dump = dkdump,
126 .d_psize = dksize,
127 .d_discard = dkdiscard,
128 .d_flag = D_DISK | D_MPSAFE
129 };
130
131 const struct cdevsw dk_cdevsw = {
132 .d_open = dkopen,
133 .d_close = dkclose,
134 .d_read = dkread,
135 .d_write = dkwrite,
136 .d_ioctl = dkioctl,
137 .d_stop = nostop,
138 .d_tty = notty,
139 .d_poll = nopoll,
140 .d_mmap = nommap,
141 .d_kqfilter = nokqfilter,
142 .d_discard = dkdiscard,
143 .d_flag = D_DISK | D_MPSAFE
144 };
145
146 static struct dkwedge_softc **dkwedges;
147 static u_int ndkwedges;
148 static krwlock_t dkwedges_lock;
149
150 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
151 static krwlock_t dkwedge_discovery_methods_lock;
152
153 /*
154 * dkwedge_match:
155 *
156 * Autoconfiguration match function for pseudo-device glue.
157 */
158 static int
159 dkwedge_match(device_t parent, cfdata_t match,
160 void *aux)
161 {
162
163 /* Pseudo-device; always present. */
164 return (1);
165 }
166
167 /*
168 * dkwedge_attach:
169 *
170 * Autoconfiguration attach function for pseudo-device glue.
171 */
172 static void
173 dkwedge_attach(device_t parent, device_t self,
174 void *aux)
175 {
176
177 if (!pmf_device_register(self, NULL, NULL))
178 aprint_error_dev(self, "couldn't establish power handler\n");
179 }
180
181 CFDRIVER_DECL(dk, DV_DISK, NULL);
182 CFATTACH_DECL3_NEW(dk, 0,
183 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
184 DVF_DETACH_SHUTDOWN);
185
186 /*
187 * dkwedge_wait_drain:
188 *
189 * Wait for I/O on the wedge to drain.
190 */
191 static void
192 dkwedge_wait_drain(struct dkwedge_softc *sc)
193 {
194
195 mutex_enter(&sc->sc_iolock);
196 while (sc->sc_iopend != 0) {
197 sc->sc_flags |= DK_F_WAIT_DRAIN;
198 cv_wait(&sc->sc_dkdrn, &sc->sc_iolock);
199 }
200 mutex_exit(&sc->sc_iolock);
201 }
202
203 /*
204 * dkwedge_compute_pdev:
205 *
206 * Compute the parent disk's dev_t.
207 */
208 static int
209 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
210 {
211 const char *name, *cp;
212 devmajor_t pmaj;
213 int punit;
214 char devname[16];
215
216 name = pname;
217 switch (type) {
218 case VBLK:
219 pmaj = devsw_name2blk(name, devname, sizeof(devname));
220 break;
221 case VCHR:
222 pmaj = devsw_name2chr(name, devname, sizeof(devname));
223 break;
224 default:
225 pmaj = NODEVMAJOR;
226 break;
227 }
228 if (pmaj == NODEVMAJOR)
229 return (ENODEV);
230
231 name += strlen(devname);
232 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
233 punit = (punit * 10) + (*cp - '0');
234 if (cp == name) {
235 /* Invalid parent disk name. */
236 return (ENODEV);
237 }
238
239 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
240
241 return (0);
242 }
243
244 /*
245 * dkwedge_array_expand:
246 *
247 * Expand the dkwedges array.
248 */
249 static void
250 dkwedge_array_expand(void)
251 {
252 int newcnt = ndkwedges + 16;
253 struct dkwedge_softc **newarray, **oldarray;
254
255 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
256 M_WAITOK|M_ZERO);
257 if ((oldarray = dkwedges) != NULL)
258 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
259 dkwedges = newarray;
260 ndkwedges = newcnt;
261 if (oldarray != NULL)
262 free(oldarray, M_DKWEDGE);
263 }
264
265 static void
266 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
267 {
268 struct disk *dk = &sc->sc_dk;
269 struct disk_geom *dg = &dk->dk_geom;
270
271 memset(dg, 0, sizeof(*dg));
272
273 dg->dg_secperunit = sc->sc_size;
274 dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
275
276 /* fake numbers, 1 cylinder is 1 MB with default sector size */
277 dg->dg_nsectors = 32;
278 dg->dg_ntracks = 64;
279 dg->dg_ncylinders = dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
280
281 disk_set_info(sc->sc_dev, dk, NULL);
282 }
283
284 /*
285 * dkwedge_add: [exported function]
286 *
287 * Add a disk wedge based on the provided information.
288 *
289 * The incoming dkw_devname[] is ignored, instead being
290 * filled in and returned to the caller.
291 */
292 int
293 dkwedge_add(struct dkwedge_info *dkw)
294 {
295 struct dkwedge_softc *sc, *lsc;
296 struct disk *pdk;
297 u_int unit;
298 int error;
299 dev_t pdev;
300
301 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
302 pdk = disk_find(dkw->dkw_parent);
303 if (pdk == NULL)
304 return (ENODEV);
305
306 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
307 if (error)
308 return (error);
309
310 if (dkw->dkw_offset < 0)
311 return (EINVAL);
312
313 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
314 sc->sc_state = DKW_STATE_LARVAL;
315 sc->sc_parent = pdk;
316 sc->sc_pdev = pdev;
317 sc->sc_offset = dkw->dkw_offset;
318 sc->sc_size = dkw->dkw_size;
319
320 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
321 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
322
323 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
324 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
325
326 bufq_alloc(&sc->sc_bufq, "fcfs", 0);
327
328 callout_init(&sc->sc_restart_ch, 0);
329 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
330
331 mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
332 cv_init(&sc->sc_dkdrn, "dkdrn");
333
334 /*
335 * Wedge will be added; increment the wedge count for the parent.
336 * Only allow this to happend if RAW_PART is the only thing open.
337 */
338 mutex_enter(&pdk->dk_openlock);
339 if (pdk->dk_openmask & ~(1 << RAW_PART))
340 error = EBUSY;
341 else {
342 /* Check for wedge overlap. */
343 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
344 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
345 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
346
347 if (sc->sc_offset >= lsc->sc_offset &&
348 sc->sc_offset <= llastblk) {
349 /* Overlaps the tail of the existing wedge. */
350 break;
351 }
352 if (lastblk >= lsc->sc_offset &&
353 lastblk <= llastblk) {
354 /* Overlaps the head of the existing wedge. */
355 break;
356 }
357 }
358 if (lsc != NULL) {
359 if (sc->sc_offset == lsc->sc_offset &&
360 sc->sc_size == lsc->sc_size &&
361 strcmp(sc->sc_wname, lsc->sc_wname) == 0)
362 error = EEXIST;
363 else
364 error = EINVAL;
365 } else {
366 pdk->dk_nwedges++;
367 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
368 }
369 }
370 mutex_exit(&pdk->dk_openlock);
371 if (error) {
372 cv_destroy(&sc->sc_dkdrn);
373 mutex_destroy(&sc->sc_iolock);
374 bufq_free(sc->sc_bufq);
375 free(sc, M_DKWEDGE);
376 return (error);
377 }
378
379 /* Fill in our cfdata for the pseudo-device glue. */
380 sc->sc_cfdata.cf_name = dk_cd.cd_name;
381 sc->sc_cfdata.cf_atname = dk_ca.ca_name;
382 /* sc->sc_cfdata.cf_unit set below */
383 sc->sc_cfdata.cf_fstate = FSTATE_STAR;
384
385 /* Insert the larval wedge into the array. */
386 rw_enter(&dkwedges_lock, RW_WRITER);
387 for (error = 0;;) {
388 struct dkwedge_softc **scpp;
389
390 /*
391 * Check for a duplicate wname while searching for
392 * a slot.
393 */
394 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
395 if (dkwedges[unit] == NULL) {
396 if (scpp == NULL) {
397 scpp = &dkwedges[unit];
398 sc->sc_cfdata.cf_unit = unit;
399 }
400 } else {
401 /* XXX Unicode. */
402 if (strcmp(dkwedges[unit]->sc_wname,
403 sc->sc_wname) == 0) {
404 error = EEXIST;
405 break;
406 }
407 }
408 }
409 if (error)
410 break;
411 KASSERT(unit == ndkwedges);
412 if (scpp == NULL)
413 dkwedge_array_expand();
414 else {
415 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
416 *scpp = sc;
417 break;
418 }
419 }
420 rw_exit(&dkwedges_lock);
421 if (error) {
422 mutex_enter(&pdk->dk_openlock);
423 pdk->dk_nwedges--;
424 LIST_REMOVE(sc, sc_plink);
425 mutex_exit(&pdk->dk_openlock);
426
427 cv_destroy(&sc->sc_dkdrn);
428 mutex_destroy(&sc->sc_iolock);
429 bufq_free(sc->sc_bufq);
430 free(sc, M_DKWEDGE);
431 return (error);
432 }
433
434 /*
435 * Now that we know the unit #, attach a pseudo-device for
436 * this wedge instance. This will provide us with the
437 * device_t necessary for glue to other parts of the system.
438 *
439 * This should never fail, unless we're almost totally out of
440 * memory.
441 */
442 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
443 aprint_error("%s%u: unable to attach pseudo-device\n",
444 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
445
446 rw_enter(&dkwedges_lock, RW_WRITER);
447 dkwedges[sc->sc_cfdata.cf_unit] = NULL;
448 rw_exit(&dkwedges_lock);
449
450 mutex_enter(&pdk->dk_openlock);
451 pdk->dk_nwedges--;
452 LIST_REMOVE(sc, sc_plink);
453 mutex_exit(&pdk->dk_openlock);
454
455 cv_destroy(&sc->sc_dkdrn);
456 mutex_destroy(&sc->sc_iolock);
457 bufq_free(sc->sc_bufq);
458 free(sc, M_DKWEDGE);
459 return (ENOMEM);
460 }
461
462 /* Return the devname to the caller. */
463 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
464 sizeof(dkw->dkw_devname));
465
466 /*
467 * XXX Really ought to make the disk_attach() and the changing
468 * of state to RUNNING atomic.
469 */
470
471 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
472 dk_set_geometry(sc, pdk);
473 disk_attach(&sc->sc_dk);
474
475 /* Disk wedge is ready for use! */
476 sc->sc_state = DKW_STATE_RUNNING;
477
478 /* Announce our arrival. */
479 aprint_normal(
480 "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
481 device_xname(sc->sc_dev), pdk->dk_name,
482 sc->sc_wname, /* XXX Unicode */
483 sc->sc_size, sc->sc_offset,
484 sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
485
486 return (0);
487 }
488
489 /*
490 * dkwedge_find:
491 *
492 * Lookup a disk wedge based on the provided information.
493 * NOTE: We look up the wedge based on the wedge devname,
494 * not wname.
495 *
496 * Return NULL if the wedge is not found, otherwise return
497 * the wedge's softc. Assign the wedge's unit number to unitp
498 * if unitp is not NULL.
499 */
500 static struct dkwedge_softc *
501 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
502 {
503 struct dkwedge_softc *sc = NULL;
504 u_int unit;
505
506 /* Find our softc. */
507 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
508 rw_enter(&dkwedges_lock, RW_READER);
509 for (unit = 0; unit < ndkwedges; unit++) {
510 if ((sc = dkwedges[unit]) != NULL &&
511 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
512 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
513 break;
514 }
515 }
516 rw_exit(&dkwedges_lock);
517 if (unit == ndkwedges)
518 return NULL;
519
520 if (unitp != NULL)
521 *unitp = unit;
522
523 return sc;
524 }
525
526 /*
527 * dkwedge_del: [exported function]
528 *
529 * Delete a disk wedge based on the provided information.
530 * NOTE: We look up the wedge based on the wedge devname,
531 * not wname.
532 */
533 int
534 dkwedge_del(struct dkwedge_info *dkw)
535 {
536 return dkwedge_del1(dkw, 0);
537 }
538
539 int
540 dkwedge_del1(struct dkwedge_info *dkw, int flags)
541 {
542 struct dkwedge_softc *sc = NULL;
543
544 /* Find our softc. */
545 if ((sc = dkwedge_find(dkw, NULL)) == NULL)
546 return (ESRCH);
547
548 return config_detach(sc->sc_dev, flags);
549 }
550
551 static int
552 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags)
553 {
554 struct disk *dk = &sc->sc_dk;
555 int rc;
556
557 rc = 0;
558 mutex_enter(&dk->dk_openlock);
559 if (dk->dk_openmask == 0)
560 /* nothing to do */
561 mutex_exit(&dk->dk_openlock);
562 else if ((flags & DETACH_FORCE) == 0) {
563 rc = EBUSY;
564 mutex_exit(&dk->dk_openlock);
565 } else {
566 mutex_enter(&sc->sc_parent->dk_rawlock);
567 rc = dklastclose(sc); /* releases locks */
568 }
569
570 return rc;
571 }
572
573 /*
574 * dkwedge_detach:
575 *
576 * Autoconfiguration detach function for pseudo-device glue.
577 */
578 static int
579 dkwedge_detach(device_t self, int flags)
580 {
581 struct dkwedge_softc *sc = NULL;
582 u_int unit;
583 int bmaj, cmaj, rc;
584
585 rw_enter(&dkwedges_lock, RW_WRITER);
586 for (unit = 0; unit < ndkwedges; unit++) {
587 if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
588 break;
589 }
590 if (unit == ndkwedges)
591 rc = ENXIO;
592 else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) {
593 /* Mark the wedge as dying. */
594 sc->sc_state = DKW_STATE_DYING;
595 }
596 rw_exit(&dkwedges_lock);
597
598 if (rc != 0)
599 return rc;
600
601 pmf_device_deregister(self);
602
603 /* Locate the wedge major numbers. */
604 bmaj = bdevsw_lookup_major(&dk_bdevsw);
605 cmaj = cdevsw_lookup_major(&dk_cdevsw);
606
607 /* Kill any pending restart. */
608 callout_stop(&sc->sc_restart_ch);
609
610 /*
611 * dkstart() will kill any queued buffers now that the
612 * state of the wedge is not RUNNING. Once we've done
613 * that, wait for any other pending I/O to complete.
614 */
615 dkstart(sc);
616 dkwedge_wait_drain(sc);
617
618 /* Nuke the vnodes for any open instances. */
619 vdevgone(bmaj, unit, unit, VBLK);
620 vdevgone(cmaj, unit, unit, VCHR);
621
622 /* Clean up the parent. */
623 dkwedge_cleanup_parent(sc, flags | DETACH_FORCE);
624
625 /* Announce our departure. */
626 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
627 sc->sc_parent->dk_name,
628 sc->sc_wname); /* XXX Unicode */
629
630 mutex_enter(&sc->sc_parent->dk_openlock);
631 sc->sc_parent->dk_nwedges--;
632 LIST_REMOVE(sc, sc_plink);
633 mutex_exit(&sc->sc_parent->dk_openlock);
634
635 /* Delete our buffer queue. */
636 bufq_free(sc->sc_bufq);
637
638 /* Detach from the disk list. */
639 disk_detach(&sc->sc_dk);
640 disk_destroy(&sc->sc_dk);
641
642 /* Poof. */
643 rw_enter(&dkwedges_lock, RW_WRITER);
644 dkwedges[unit] = NULL;
645 sc->sc_state = DKW_STATE_DEAD;
646 rw_exit(&dkwedges_lock);
647
648 mutex_destroy(&sc->sc_iolock);
649 cv_destroy(&sc->sc_dkdrn);
650
651 free(sc, M_DKWEDGE);
652
653 return 0;
654 }
655
656 /*
657 * dkwedge_delall: [exported function]
658 *
659 * Delete all of the wedges on the specified disk. Used when
660 * a disk is being detached.
661 */
662 void
663 dkwedge_delall(struct disk *pdk)
664 {
665 dkwedge_delall1(pdk, false);
666 }
667
668 static void
669 dkwedge_delall1(struct disk *pdk, bool idleonly)
670 {
671 struct dkwedge_info dkw;
672 struct dkwedge_softc *sc;
673 int flags;
674
675 flags = DETACH_QUIET;
676 if (!idleonly) flags |= DETACH_FORCE;
677
678 for (;;) {
679 mutex_enter(&pdk->dk_openlock);
680 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
681 if (!idleonly || sc->sc_dk.dk_openmask == 0)
682 break;
683 }
684 if (sc == NULL) {
685 KASSERT(idleonly || pdk->dk_nwedges == 0);
686 mutex_exit(&pdk->dk_openlock);
687 return;
688 }
689 strlcpy(dkw.dkw_parent, pdk->dk_name, sizeof(dkw.dkw_parent));
690 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
691 sizeof(dkw.dkw_devname));
692 mutex_exit(&pdk->dk_openlock);
693 (void) dkwedge_del1(&dkw, flags);
694 }
695 }
696
697 /*
698 * dkwedge_list: [exported function]
699 *
700 * List all of the wedges on a particular disk.
701 */
702 int
703 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
704 {
705 struct uio uio;
706 struct iovec iov;
707 struct dkwedge_softc *sc;
708 struct dkwedge_info dkw;
709 int error = 0;
710
711 iov.iov_base = dkwl->dkwl_buf;
712 iov.iov_len = dkwl->dkwl_bufsize;
713
714 uio.uio_iov = &iov;
715 uio.uio_iovcnt = 1;
716 uio.uio_offset = 0;
717 uio.uio_resid = dkwl->dkwl_bufsize;
718 uio.uio_rw = UIO_READ;
719 KASSERT(l == curlwp);
720 uio.uio_vmspace = l->l_proc->p_vmspace;
721
722 dkwl->dkwl_ncopied = 0;
723
724 mutex_enter(&pdk->dk_openlock);
725 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
726 if (uio.uio_resid < sizeof(dkw))
727 break;
728
729 if (sc->sc_state != DKW_STATE_RUNNING)
730 continue;
731
732 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
733 sizeof(dkw.dkw_devname));
734 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
735 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
736 strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
737 sizeof(dkw.dkw_parent));
738 dkw.dkw_offset = sc->sc_offset;
739 dkw.dkw_size = sc->sc_size;
740 strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
741
742 error = uiomove(&dkw, sizeof(dkw), &uio);
743 if (error)
744 break;
745 dkwl->dkwl_ncopied++;
746 }
747 dkwl->dkwl_nwedges = pdk->dk_nwedges;
748 mutex_exit(&pdk->dk_openlock);
749
750 return (error);
751 }
752
753 device_t
754 dkwedge_find_by_wname(const char *wname)
755 {
756 device_t dv = NULL;
757 struct dkwedge_softc *sc;
758 int i;
759
760 rw_enter(&dkwedges_lock, RW_WRITER);
761 for (i = 0; i < ndkwedges; i++) {
762 if ((sc = dkwedges[i]) == NULL)
763 continue;
764 if (strcmp(sc->sc_wname, wname) == 0) {
765 if (dv != NULL) {
766 printf(
767 "WARNING: double match for wedge name %s "
768 "(%s, %s)\n", wname, device_xname(dv),
769 device_xname(sc->sc_dev));
770 continue;
771 }
772 dv = sc->sc_dev;
773 }
774 }
775 rw_exit(&dkwedges_lock);
776 return dv;
777 }
778
779 device_t
780 dkwedge_find_by_parent(const char *name, size_t *i)
781 {
782 rw_enter(&dkwedges_lock, RW_WRITER);
783 for (; *i < (size_t)ndkwedges; (*i)++) {
784 struct dkwedge_softc *sc;
785 if ((sc = dkwedges[*i]) == NULL)
786 continue;
787 if (strcmp(sc->sc_parent->dk_name, name) != 0)
788 continue;
789 rw_exit(&dkwedges_lock);
790 return sc->sc_dev;
791 }
792 rw_exit(&dkwedges_lock);
793 return NULL;
794 }
795
796 void
797 dkwedge_print_wnames(void)
798 {
799 struct dkwedge_softc *sc;
800 int i;
801
802 rw_enter(&dkwedges_lock, RW_WRITER);
803 for (i = 0; i < ndkwedges; i++) {
804 if ((sc = dkwedges[i]) == NULL)
805 continue;
806 printf(" wedge:%s", sc->sc_wname);
807 }
808 rw_exit(&dkwedges_lock);
809 }
810
811 /*
812 * We need a dummy object to stuff into the dkwedge discovery method link
813 * set to ensure that there is always at least one object in the set.
814 */
815 static struct dkwedge_discovery_method dummy_discovery_method;
816 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
817
818 /*
819 * dkwedge_init:
820 *
821 * Initialize the disk wedge subsystem.
822 */
823 void
824 dkwedge_init(void)
825 {
826 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
827 struct dkwedge_discovery_method * const *ddmp;
828 struct dkwedge_discovery_method *lddm, *ddm;
829
830 rw_init(&dkwedges_lock);
831 rw_init(&dkwedge_discovery_methods_lock);
832
833 if (config_cfdriver_attach(&dk_cd) != 0)
834 panic("dkwedge: unable to attach cfdriver");
835 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
836 panic("dkwedge: unable to attach cfattach");
837
838 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
839
840 LIST_INIT(&dkwedge_discovery_methods);
841
842 __link_set_foreach(ddmp, dkwedge_methods) {
843 ddm = *ddmp;
844 if (ddm == &dummy_discovery_method)
845 continue;
846 if (LIST_EMPTY(&dkwedge_discovery_methods)) {
847 LIST_INSERT_HEAD(&dkwedge_discovery_methods,
848 ddm, ddm_list);
849 continue;
850 }
851 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
852 if (ddm->ddm_priority == lddm->ddm_priority) {
853 aprint_error("dk-method-%s: method \"%s\" "
854 "already exists at priority %d\n",
855 ddm->ddm_name, lddm->ddm_name,
856 lddm->ddm_priority);
857 /* Not inserted. */
858 break;
859 }
860 if (ddm->ddm_priority < lddm->ddm_priority) {
861 /* Higher priority; insert before. */
862 LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
863 break;
864 }
865 if (LIST_NEXT(lddm, ddm_list) == NULL) {
866 /* Last one; insert after. */
867 KASSERT(lddm->ddm_priority < ddm->ddm_priority);
868 LIST_INSERT_AFTER(lddm, ddm, ddm_list);
869 break;
870 }
871 }
872 }
873
874 rw_exit(&dkwedge_discovery_methods_lock);
875 }
876
877 #ifdef DKWEDGE_AUTODISCOVER
878 int dkwedge_autodiscover = 1;
879 #else
880 int dkwedge_autodiscover = 0;
881 #endif
882
883 /*
884 * dkwedge_discover: [exported function]
885 *
886 * Discover the wedges on a newly attached disk.
887 * Remove all unused wedges on the disk first.
888 */
889 void
890 dkwedge_discover(struct disk *pdk)
891 {
892 struct dkwedge_discovery_method *ddm;
893 struct vnode *vp;
894 int error;
895 dev_t pdev;
896
897 /*
898 * Require people playing with wedges to enable this explicitly.
899 */
900 if (dkwedge_autodiscover == 0)
901 return;
902
903 rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
904
905 /*
906 * Use the character device for scanning, the block device
907 * is busy if there are already wedges attached.
908 */
909 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
910 if (error) {
911 aprint_error("%s: unable to compute pdev, error = %d\n",
912 pdk->dk_name, error);
913 goto out;
914 }
915
916 error = cdevvp(pdev, &vp);
917 if (error) {
918 aprint_error("%s: unable to find vnode for pdev, error = %d\n",
919 pdk->dk_name, error);
920 goto out;
921 }
922
923 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
924 if (error) {
925 aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
926 pdk->dk_name, error);
927 vrele(vp);
928 goto out;
929 }
930
931 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
932 if (error) {
933 if (error != ENODEV)
934 aprint_error("%s: unable to open device, error = %d\n",
935 pdk->dk_name, error);
936 vput(vp);
937 goto out;
938 }
939 VOP_UNLOCK(vp);
940
941 /*
942 * Remove unused wedges
943 */
944 dkwedge_delall1(pdk, true);
945
946 /*
947 * For each supported partition map type, look to see if
948 * this map type exists. If so, parse it and add the
949 * corresponding wedges.
950 */
951 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
952 error = (*ddm->ddm_discover)(pdk, vp);
953 if (error == 0) {
954 /* Successfully created wedges; we're done. */
955 break;
956 }
957 }
958
959 error = vn_close(vp, FREAD, NOCRED);
960 if (error) {
961 aprint_error("%s: unable to close device, error = %d\n",
962 pdk->dk_name, error);
963 /* We'll just assume the vnode has been cleaned up. */
964 }
965
966 out:
967 rw_exit(&dkwedge_discovery_methods_lock);
968 }
969
970 /*
971 * dkwedge_read:
972 *
973 * Read some data from the specified disk, used for
974 * partition discovery.
975 */
976 int
977 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
978 void *tbuf, size_t len)
979 {
980 buf_t *bp;
981 int error;
982 bool isopen;
983 dev_t bdev;
984 struct vnode *bdvp;
985
986 /*
987 * The kernel cannot read from a character device vnode
988 * as physio() only handles user memory.
989 *
990 * If the block device has already been opened by a wedge
991 * use that vnode and temporarily bump the open counter.
992 *
993 * Otherwise try to open the block device.
994 */
995
996 bdev = devsw_chr2blk(vp->v_rdev);
997
998 mutex_enter(&pdk->dk_rawlock);
999 if (pdk->dk_rawopens != 0) {
1000 KASSERT(pdk->dk_rawvp != NULL);
1001 isopen = true;
1002 ++pdk->dk_rawopens;
1003 bdvp = pdk->dk_rawvp;
1004 error = 0;
1005 } else {
1006 isopen = false;
1007 error = dk_open_parent(bdev, FREAD, &bdvp);
1008 }
1009 mutex_exit(&pdk->dk_rawlock);
1010
1011 if (error)
1012 return error;
1013
1014 bp = getiobuf(bdvp, true);
1015 bp->b_flags = B_READ;
1016 bp->b_cflags = BC_BUSY;
1017 bp->b_dev = bdev;
1018 bp->b_data = tbuf;
1019 bp->b_bufsize = bp->b_bcount = len;
1020 bp->b_blkno = blkno;
1021 bp->b_cylinder = 0;
1022 bp->b_error = 0;
1023
1024 VOP_STRATEGY(bdvp, bp);
1025 error = biowait(bp);
1026 putiobuf(bp);
1027
1028 mutex_enter(&pdk->dk_rawlock);
1029 if (isopen) {
1030 --pdk->dk_rawopens;
1031 } else {
1032 dk_close_parent(bdvp, FREAD);
1033 }
1034 mutex_exit(&pdk->dk_rawlock);
1035
1036 return error;
1037 }
1038
1039 /*
1040 * dkwedge_lookup:
1041 *
1042 * Look up a dkwedge_softc based on the provided dev_t.
1043 */
1044 static struct dkwedge_softc *
1045 dkwedge_lookup(dev_t dev)
1046 {
1047 int unit = minor(dev);
1048
1049 if (unit >= ndkwedges)
1050 return (NULL);
1051
1052 KASSERT(dkwedges != NULL);
1053
1054 return (dkwedges[unit]);
1055 }
1056
1057 static int
1058 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
1059 {
1060 struct vnode *vp;
1061 int error;
1062
1063 error = bdevvp(dev, &vp);
1064 if (error)
1065 return error;
1066
1067 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1068 if (error) {
1069 vrele(vp);
1070 return error;
1071 }
1072 error = VOP_OPEN(vp, mode, NOCRED);
1073 if (error) {
1074 vput(vp);
1075 return error;
1076 }
1077
1078 /* VOP_OPEN() doesn't do this for us. */
1079 if (mode & FWRITE) {
1080 mutex_enter(vp->v_interlock);
1081 vp->v_writecount++;
1082 mutex_exit(vp->v_interlock);
1083 }
1084
1085 VOP_UNLOCK(vp);
1086
1087 *vpp = vp;
1088
1089 return 0;
1090 }
1091
1092 static int
1093 dk_close_parent(struct vnode *vp, int mode)
1094 {
1095 int error;
1096
1097 error = vn_close(vp, mode, NOCRED);
1098 return error;
1099 }
1100
1101 /*
1102 * dkopen: [devsw entry point]
1103 *
1104 * Open a wedge.
1105 */
1106 static int
1107 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
1108 {
1109 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1110 struct vnode *vp;
1111 int error = 0;
1112
1113 if (sc == NULL)
1114 return (ENODEV);
1115 if (sc->sc_state != DKW_STATE_RUNNING)
1116 return (ENXIO);
1117
1118 /*
1119 * We go through a complicated little dance to only open the parent
1120 * vnode once per wedge, no matter how many times the wedge is
1121 * opened. The reason? We see one dkopen() per open call, but
1122 * only dkclose() on the last close.
1123 */
1124 mutex_enter(&sc->sc_dk.dk_openlock);
1125 mutex_enter(&sc->sc_parent->dk_rawlock);
1126 if (sc->sc_dk.dk_openmask == 0) {
1127 if (sc->sc_parent->dk_rawopens == 0) {
1128 KASSERT(sc->sc_parent->dk_rawvp == NULL);
1129 error = dk_open_parent(sc->sc_pdev, FREAD | FWRITE, &vp);
1130 if (error)
1131 goto popen_fail;
1132 sc->sc_parent->dk_rawvp = vp;
1133 }
1134 sc->sc_parent->dk_rawopens++;
1135 }
1136 if (fmt == S_IFCHR)
1137 sc->sc_dk.dk_copenmask |= 1;
1138 else
1139 sc->sc_dk.dk_bopenmask |= 1;
1140 sc->sc_dk.dk_openmask =
1141 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1142
1143 popen_fail:
1144 mutex_exit(&sc->sc_parent->dk_rawlock);
1145 mutex_exit(&sc->sc_dk.dk_openlock);
1146 return (error);
1147 }
1148
1149 /*
1150 * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock.
1151 */
1152 static int
1153 dklastclose(struct dkwedge_softc *sc)
1154 {
1155 int error = 0, doclose;
1156
1157 doclose = 0;
1158 if (sc->sc_parent->dk_rawopens > 0) {
1159 if (--sc->sc_parent->dk_rawopens == 0)
1160 doclose = 1;
1161 }
1162
1163 mutex_exit(&sc->sc_parent->dk_rawlock);
1164 mutex_exit(&sc->sc_dk.dk_openlock);
1165
1166 if (doclose) {
1167 KASSERT(sc->sc_parent->dk_rawvp != NULL);
1168 dk_close_parent(sc->sc_parent->dk_rawvp, FREAD | FWRITE);
1169 sc->sc_parent->dk_rawvp = NULL;
1170 }
1171
1172 return error;
1173 }
1174
1175 /*
1176 * dkclose: [devsw entry point]
1177 *
1178 * Close a wedge.
1179 */
1180 static int
1181 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1182 {
1183 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1184 int error = 0;
1185
1186 if (sc == NULL)
1187 return (ENODEV);
1188 if (sc->sc_state != DKW_STATE_RUNNING)
1189 return (ENXIO);
1190
1191 KASSERT(sc->sc_dk.dk_openmask != 0);
1192
1193 mutex_enter(&sc->sc_dk.dk_openlock);
1194 mutex_enter(&sc->sc_parent->dk_rawlock);
1195
1196 if (fmt == S_IFCHR)
1197 sc->sc_dk.dk_copenmask &= ~1;
1198 else
1199 sc->sc_dk.dk_bopenmask &= ~1;
1200 sc->sc_dk.dk_openmask =
1201 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1202
1203 if (sc->sc_dk.dk_openmask == 0)
1204 error = dklastclose(sc); /* releases locks */
1205 else {
1206 mutex_exit(&sc->sc_parent->dk_rawlock);
1207 mutex_exit(&sc->sc_dk.dk_openlock);
1208 }
1209
1210 return (error);
1211 }
1212
1213 /*
1214 * dkstragegy: [devsw entry point]
1215 *
1216 * Perform I/O based on the wedge I/O strategy.
1217 */
1218 static void
1219 dkstrategy(struct buf *bp)
1220 {
1221 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1222 uint64_t p_size, p_offset;
1223
1224 if (sc == NULL) {
1225 bp->b_error = ENODEV;
1226 goto done;
1227 }
1228
1229 if (sc->sc_state != DKW_STATE_RUNNING ||
1230 sc->sc_parent->dk_rawvp == NULL) {
1231 bp->b_error = ENXIO;
1232 goto done;
1233 }
1234
1235 /* If it's an empty transfer, wake up the top half now. */
1236 if (bp->b_bcount == 0)
1237 goto done;
1238
1239 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1240 p_size = sc->sc_size << sc->sc_parent->dk_blkshift;
1241
1242 /* Make sure it's in-range. */
1243 if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1244 goto done;
1245
1246 /* Translate it to the parent's raw LBA. */
1247 bp->b_rawblkno = bp->b_blkno + p_offset;
1248
1249 /* Place it in the queue and start I/O on the unit. */
1250 mutex_enter(&sc->sc_iolock);
1251 sc->sc_iopend++;
1252 bufq_put(sc->sc_bufq, bp);
1253 mutex_exit(&sc->sc_iolock);
1254
1255 dkstart(sc);
1256 return;
1257
1258 done:
1259 bp->b_resid = bp->b_bcount;
1260 biodone(bp);
1261 }
1262
1263 /*
1264 * dkstart:
1265 *
1266 * Start I/O that has been enqueued on the wedge.
1267 */
1268 static void
1269 dkstart(struct dkwedge_softc *sc)
1270 {
1271 struct vnode *vp;
1272 struct buf *bp, *nbp;
1273
1274 mutex_enter(&sc->sc_iolock);
1275
1276 /* Do as much work as has been enqueued. */
1277 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1278
1279 if (sc->sc_state != DKW_STATE_RUNNING) {
1280 (void) bufq_get(sc->sc_bufq);
1281 if (sc->sc_iopend-- == 1 &&
1282 (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1283 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1284 cv_broadcast(&sc->sc_dkdrn);
1285 }
1286 mutex_exit(&sc->sc_iolock);
1287 bp->b_error = ENXIO;
1288 bp->b_resid = bp->b_bcount;
1289 biodone(bp);
1290 mutex_enter(&sc->sc_iolock);
1291 continue;
1292 }
1293
1294 /* fetch an I/O buf with sc_iolock dropped */
1295 mutex_exit(&sc->sc_iolock);
1296 nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1297 mutex_enter(&sc->sc_iolock);
1298 if (nbp == NULL) {
1299 /*
1300 * No resources to run this request; leave the
1301 * buffer queued up, and schedule a timer to
1302 * restart the queue in 1/2 a second.
1303 */
1304 callout_schedule(&sc->sc_restart_ch, hz / 2);
1305 break;
1306 }
1307
1308 /*
1309 * fetch buf, this can fail if another thread
1310 * has already processed the queue, it can also
1311 * return a completely different buf.
1312 */
1313 bp = bufq_get(sc->sc_bufq);
1314 if (bp == NULL) {
1315 mutex_exit(&sc->sc_iolock);
1316 putiobuf(nbp);
1317 mutex_enter(&sc->sc_iolock);
1318 continue;
1319 }
1320
1321 /* Instrumentation. */
1322 disk_busy(&sc->sc_dk);
1323
1324 /* release lock for VOP_STRATEGY */
1325 mutex_exit(&sc->sc_iolock);
1326
1327 nbp->b_data = bp->b_data;
1328 nbp->b_flags = bp->b_flags;
1329 nbp->b_oflags = bp->b_oflags;
1330 nbp->b_cflags = bp->b_cflags;
1331 nbp->b_iodone = dkiodone;
1332 nbp->b_proc = bp->b_proc;
1333 nbp->b_blkno = bp->b_rawblkno;
1334 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1335 nbp->b_bcount = bp->b_bcount;
1336 nbp->b_private = bp;
1337 BIO_COPYPRIO(nbp, bp);
1338
1339 vp = nbp->b_vp;
1340 if ((nbp->b_flags & B_READ) == 0) {
1341 mutex_enter(vp->v_interlock);
1342 vp->v_numoutput++;
1343 mutex_exit(vp->v_interlock);
1344 }
1345 VOP_STRATEGY(vp, nbp);
1346
1347 mutex_enter(&sc->sc_iolock);
1348 }
1349
1350 mutex_exit(&sc->sc_iolock);
1351 }
1352
1353 /*
1354 * dkiodone:
1355 *
1356 * I/O to a wedge has completed; alert the top half.
1357 */
1358 static void
1359 dkiodone(struct buf *bp)
1360 {
1361 struct buf *obp = bp->b_private;
1362 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1363
1364 if (bp->b_error != 0)
1365 obp->b_error = bp->b_error;
1366 obp->b_resid = bp->b_resid;
1367 putiobuf(bp);
1368
1369 mutex_enter(&sc->sc_iolock);
1370 if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1371 sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1372 cv_broadcast(&sc->sc_dkdrn);
1373 }
1374
1375 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1376 obp->b_flags & B_READ);
1377 mutex_exit(&sc->sc_iolock);
1378
1379 biodone(obp);
1380
1381 /* Kick the queue in case there is more work we can do. */
1382 dkstart(sc);
1383 }
1384
1385 /*
1386 * dkrestart:
1387 *
1388 * Restart the work queue after it was stalled due to
1389 * a resource shortage. Invoked via a callout.
1390 */
1391 static void
1392 dkrestart(void *v)
1393 {
1394 struct dkwedge_softc *sc = v;
1395
1396 dkstart(sc);
1397 }
1398
1399 /*
1400 * dkminphys:
1401 *
1402 * Call parent's minphys function.
1403 */
1404 static void
1405 dkminphys(struct buf *bp)
1406 {
1407 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1408 dev_t dev;
1409
1410 dev = bp->b_dev;
1411 bp->b_dev = sc->sc_pdev;
1412 (*sc->sc_parent->dk_driver->d_minphys)(bp);
1413 bp->b_dev = dev;
1414 }
1415
1416 /*
1417 * dkread: [devsw entry point]
1418 *
1419 * Read from a wedge.
1420 */
1421 static int
1422 dkread(dev_t dev, struct uio *uio, int flags)
1423 {
1424 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1425
1426 if (sc == NULL)
1427 return (ENODEV);
1428 if (sc->sc_state != DKW_STATE_RUNNING)
1429 return (ENXIO);
1430
1431 return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio));
1432 }
1433
1434 /*
1435 * dkwrite: [devsw entry point]
1436 *
1437 * Write to a wedge.
1438 */
1439 static int
1440 dkwrite(dev_t dev, struct uio *uio, int flags)
1441 {
1442 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1443
1444 if (sc == NULL)
1445 return (ENODEV);
1446 if (sc->sc_state != DKW_STATE_RUNNING)
1447 return (ENXIO);
1448
1449 return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio));
1450 }
1451
1452 /*
1453 * dkioctl: [devsw entry point]
1454 *
1455 * Perform an ioctl request on a wedge.
1456 */
1457 static int
1458 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1459 {
1460 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1461 int error = 0;
1462
1463 if (sc == NULL)
1464 return (ENODEV);
1465 if (sc->sc_state != DKW_STATE_RUNNING)
1466 return (ENXIO);
1467 if (sc->sc_parent->dk_rawvp == NULL)
1468 return (ENXIO);
1469
1470 /*
1471 * We pass NODEV instead of our device to indicate we don't
1472 * want to handle disklabel ioctls
1473 */
1474 error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
1475 if (error != EPASSTHROUGH)
1476 return (error);
1477
1478 error = 0;
1479
1480 switch (cmd) {
1481 case DIOCCACHESYNC:
1482 /*
1483 * XXX Do we really need to care about having a writable
1484 * file descriptor here?
1485 */
1486 if ((flag & FWRITE) == 0)
1487 error = EBADF;
1488 else
1489 error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
1490 cmd, data, flag,
1491 l != NULL ? l->l_cred : NOCRED);
1492 break;
1493 case DIOCGWEDGEINFO:
1494 {
1495 struct dkwedge_info *dkw = (void *) data;
1496
1497 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1498 sizeof(dkw->dkw_devname));
1499 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1500 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1501 strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
1502 sizeof(dkw->dkw_parent));
1503 dkw->dkw_offset = sc->sc_offset;
1504 dkw->dkw_size = sc->sc_size;
1505 strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
1506
1507 break;
1508 }
1509
1510 default:
1511 error = ENOTTY;
1512 }
1513
1514 return (error);
1515 }
1516
1517 /*
1518 * dkdiscard: [devsw entry point]
1519 *
1520 * Perform a discard-range request on a wedge.
1521 */
1522 static int
1523 dkdiscard(dev_t dev, off_t pos, off_t len)
1524 {
1525 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1526 unsigned shift;
1527 off_t offset, maxlen;
1528
1529 if (sc == NULL)
1530 return (ENODEV);
1531 if (sc->sc_state != DKW_STATE_RUNNING)
1532 return (ENXIO);
1533 if (sc->sc_parent->dk_rawvp == NULL)
1534 return (ENXIO);
1535
1536 shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
1537 KASSERT(__type_fit(off_t, sc->sc_size));
1538 KASSERT(__type_fit(off_t, sc->sc_offset));
1539 KASSERT(0 <= sc->sc_offset);
1540 KASSERT(sc->sc_size <= (__type_max(off_t) >> shift));
1541 KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - sc->sc_size));
1542 offset = ((off_t)sc->sc_offset << shift);
1543 maxlen = ((off_t)sc->sc_size << shift);
1544
1545 if (len > maxlen)
1546 return (EINVAL);
1547 if (pos > (maxlen - len))
1548 return (EINVAL);
1549
1550 pos += offset;
1551 return VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
1552 }
1553
1554 /*
1555 * dksize: [devsw entry point]
1556 *
1557 * Query the size of a wedge for the purpose of performing a dump
1558 * or for swapping to.
1559 */
1560 static int
1561 dksize(dev_t dev)
1562 {
1563 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1564 int rv = -1;
1565
1566 if (sc == NULL)
1567 return (-1);
1568 if (sc->sc_state != DKW_STATE_RUNNING)
1569 return (-1);
1570
1571 mutex_enter(&sc->sc_dk.dk_openlock);
1572 mutex_enter(&sc->sc_parent->dk_rawlock);
1573
1574 /* Our content type is static, no need to open the device. */
1575
1576 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1577 /* Saturate if we are larger than INT_MAX. */
1578 if (sc->sc_size > INT_MAX)
1579 rv = INT_MAX;
1580 else
1581 rv = (int) sc->sc_size;
1582 }
1583
1584 mutex_exit(&sc->sc_parent->dk_rawlock);
1585 mutex_exit(&sc->sc_dk.dk_openlock);
1586
1587 return (rv);
1588 }
1589
1590 /*
1591 * dkdump: [devsw entry point]
1592 *
1593 * Perform a crash dump to a wedge.
1594 */
1595 static int
1596 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1597 {
1598 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1599 const struct bdevsw *bdev;
1600 int rv = 0;
1601
1602 if (sc == NULL)
1603 return (ENODEV);
1604 if (sc->sc_state != DKW_STATE_RUNNING)
1605 return (ENXIO);
1606
1607 mutex_enter(&sc->sc_dk.dk_openlock);
1608 mutex_enter(&sc->sc_parent->dk_rawlock);
1609
1610 /* Our content type is static, no need to open the device. */
1611
1612 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
1613 strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0) {
1614 rv = ENXIO;
1615 goto out;
1616 }
1617 if (size % DEV_BSIZE != 0) {
1618 rv = EINVAL;
1619 goto out;
1620 }
1621 if (blkno + size / DEV_BSIZE > sc->sc_size) {
1622 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1623 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
1624 size / DEV_BSIZE, sc->sc_size);
1625 rv = EINVAL;
1626 goto out;
1627 }
1628
1629 bdev = bdevsw_lookup(sc->sc_pdev);
1630 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
1631
1632 out:
1633 mutex_exit(&sc->sc_parent->dk_rawlock);
1634 mutex_exit(&sc->sc_dk.dk_openlock);
1635
1636 return rv;
1637 }
1638
1639 /*
1640 * config glue
1641 */
1642
1643 /*
1644 * dkwedge_find_partition
1645 *
1646 * Find wedge corresponding to the specified parent name
1647 * and offset/length.
1648 */
1649 device_t
1650 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
1651 {
1652 struct dkwedge_softc *sc;
1653 int i;
1654 device_t wedge = NULL;
1655
1656 rw_enter(&dkwedges_lock, RW_READER);
1657 for (i = 0; i < ndkwedges; i++) {
1658 if ((sc = dkwedges[i]) == NULL)
1659 continue;
1660 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
1661 sc->sc_offset == startblk &&
1662 sc->sc_size == nblks) {
1663 if (wedge) {
1664 printf("WARNING: double match for boot wedge "
1665 "(%s, %s)\n",
1666 device_xname(wedge),
1667 device_xname(sc->sc_dev));
1668 continue;
1669 }
1670 wedge = sc->sc_dev;
1671 }
1672 }
1673 rw_exit(&dkwedges_lock);
1674
1675 return wedge;
1676 }
1677
1678 const char *
1679 dkwedge_get_parent_name(dev_t dev)
1680 {
1681 /* XXX: perhaps do this in lookup? */
1682 int bmaj = bdevsw_lookup_major(&dk_bdevsw);
1683 int cmaj = cdevsw_lookup_major(&dk_cdevsw);
1684 if (major(dev) != bmaj && major(dev) != cmaj)
1685 return NULL;
1686 struct dkwedge_softc *sc = dkwedge_lookup(dev);
1687 if (sc == NULL)
1688 return NULL;
1689 return sc->sc_parent->dk_name;
1690 }
1691
1692