Home | History | Annotate | Line # | Download | only in dkwedge
dk.c revision 1.94
      1 /*	$NetBSD: dk.c,v 1.94 2017/01/19 00:44:40 maya Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.94 2017/01/19 00:44:40 maya Exp $");
     34 
     35 #ifdef _KERNEL_OPT
     36 #include "opt_dkwedge.h"
     37 #endif
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/proc.h>
     42 #include <sys/errno.h>
     43 #include <sys/pool.h>
     44 #include <sys/ioctl.h>
     45 #include <sys/disklabel.h>
     46 #include <sys/disk.h>
     47 #include <sys/fcntl.h>
     48 #include <sys/buf.h>
     49 #include <sys/bufq.h>
     50 #include <sys/vnode.h>
     51 #include <sys/stat.h>
     52 #include <sys/conf.h>
     53 #include <sys/callout.h>
     54 #include <sys/kernel.h>
     55 #include <sys/malloc.h>
     56 #include <sys/device.h>
     57 #include <sys/kauth.h>
     58 
     59 #include <miscfs/specfs/specdev.h>
     60 
     61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
     62 
     63 typedef enum {
     64 	DKW_STATE_LARVAL	= 0,
     65 	DKW_STATE_RUNNING	= 1,
     66 	DKW_STATE_DYING		= 2,
     67 	DKW_STATE_DEAD		= 666
     68 } dkwedge_state_t;
     69 
     70 struct dkwedge_softc {
     71 	device_t	sc_dev;	/* pointer to our pseudo-device */
     72 	struct cfdata	sc_cfdata;	/* our cfdata structure */
     73 	uint8_t		sc_wname[128];	/* wedge name (Unicode, UTF-8) */
     74 
     75 	dkwedge_state_t sc_state;	/* state this wedge is in */
     76 
     77 	struct disk	*sc_parent;	/* parent disk */
     78 	daddr_t		sc_offset;	/* LBA offset of wedge in parent */
     79 	uint64_t	sc_size;	/* size of wedge in blocks */
     80 	char		sc_ptype[32];	/* partition type */
     81 	dev_t		sc_pdev;	/* cached parent's dev_t */
     82 					/* link on parent's wedge list */
     83 	LIST_ENTRY(dkwedge_softc) sc_plink;
     84 
     85 	struct disk	sc_dk;		/* our own disk structure */
     86 	struct bufq_state *sc_bufq;	/* buffer queue */
     87 	struct callout	sc_restart_ch;	/* callout to restart I/O */
     88 
     89 	kmutex_t	sc_iolock;
     90 	kcondvar_t	sc_dkdrn;
     91 	u_int		sc_iopend;	/* I/Os pending */
     92 	int		sc_flags;	/* flags (sc_iolock) */
     93 };
     94 
     95 #define	DK_F_WAIT_DRAIN		0x0001	/* waiting for I/O to drain */
     96 
     97 static void	dkstart(struct dkwedge_softc *);
     98 static void	dkiodone(struct buf *);
     99 static void	dkrestart(void *);
    100 static void	dkminphys(struct buf *);
    101 
    102 static int	dklastclose(struct dkwedge_softc *);
    103 static int	dkwedge_cleanup_parent(struct dkwedge_softc *, int);
    104 static int	dkwedge_detach(device_t, int);
    105 static void	dkwedge_delall1(struct disk *, bool);
    106 static int	dkwedge_del1(struct dkwedge_info *, int);
    107 static int	dk_open_parent(dev_t, int, struct vnode **);
    108 static int	dk_close_parent(struct vnode *, int);
    109 
    110 static dev_type_open(dkopen);
    111 static dev_type_close(dkclose);
    112 static dev_type_read(dkread);
    113 static dev_type_write(dkwrite);
    114 static dev_type_ioctl(dkioctl);
    115 static dev_type_strategy(dkstrategy);
    116 static dev_type_dump(dkdump);
    117 static dev_type_size(dksize);
    118 static dev_type_discard(dkdiscard);
    119 
    120 const struct bdevsw dk_bdevsw = {
    121 	.d_open = dkopen,
    122 	.d_close = dkclose,
    123 	.d_strategy = dkstrategy,
    124 	.d_ioctl = dkioctl,
    125 	.d_dump = dkdump,
    126 	.d_psize = dksize,
    127 	.d_discard = dkdiscard,
    128 	.d_flag = D_DISK | D_MPSAFE
    129 };
    130 
    131 const struct cdevsw dk_cdevsw = {
    132 	.d_open = dkopen,
    133 	.d_close = dkclose,
    134 	.d_read = dkread,
    135 	.d_write = dkwrite,
    136 	.d_ioctl = dkioctl,
    137 	.d_stop = nostop,
    138 	.d_tty = notty,
    139 	.d_poll = nopoll,
    140 	.d_mmap = nommap,
    141 	.d_kqfilter = nokqfilter,
    142 	.d_discard = dkdiscard,
    143 	.d_flag = D_DISK | D_MPSAFE
    144 };
    145 
    146 static struct dkwedge_softc **dkwedges;
    147 static u_int ndkwedges;
    148 static krwlock_t dkwedges_lock;
    149 
    150 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
    151 static krwlock_t dkwedge_discovery_methods_lock;
    152 
    153 /*
    154  * dkwedge_match:
    155  *
    156  *	Autoconfiguration match function for pseudo-device glue.
    157  */
    158 static int
    159 dkwedge_match(device_t parent, cfdata_t match,
    160     void *aux)
    161 {
    162 
    163 	/* Pseudo-device; always present. */
    164 	return (1);
    165 }
    166 
    167 /*
    168  * dkwedge_attach:
    169  *
    170  *	Autoconfiguration attach function for pseudo-device glue.
    171  */
    172 static void
    173 dkwedge_attach(device_t parent, device_t self,
    174     void *aux)
    175 {
    176 
    177 	if (!pmf_device_register(self, NULL, NULL))
    178 		aprint_error_dev(self, "couldn't establish power handler\n");
    179 }
    180 
    181 CFDRIVER_DECL(dk, DV_DISK, NULL);
    182 CFATTACH_DECL3_NEW(dk, 0,
    183     dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
    184     DVF_DETACH_SHUTDOWN);
    185 
    186 /*
    187  * dkwedge_wait_drain:
    188  *
    189  *	Wait for I/O on the wedge to drain.
    190  */
    191 static void
    192 dkwedge_wait_drain(struct dkwedge_softc *sc)
    193 {
    194 
    195 	mutex_enter(&sc->sc_iolock);
    196 	while (sc->sc_iopend != 0) {
    197 		sc->sc_flags |= DK_F_WAIT_DRAIN;
    198 		cv_wait(&sc->sc_dkdrn, &sc->sc_iolock);
    199 	}
    200 	mutex_exit(&sc->sc_iolock);
    201 }
    202 
    203 /*
    204  * dkwedge_compute_pdev:
    205  *
    206  *	Compute the parent disk's dev_t.
    207  */
    208 static int
    209 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
    210 {
    211 	const char *name, *cp;
    212 	devmajor_t pmaj;
    213 	int punit;
    214 	char devname[16];
    215 
    216 	name = pname;
    217 	switch (type) {
    218 	case VBLK:
    219 		pmaj = devsw_name2blk(name, devname, sizeof(devname));
    220 		break;
    221 	case VCHR:
    222 		pmaj = devsw_name2chr(name, devname, sizeof(devname));
    223 		break;
    224 	default:
    225 		pmaj = NODEVMAJOR;
    226 		break;
    227 	}
    228 	if (pmaj == NODEVMAJOR)
    229 		return (ENODEV);
    230 
    231 	name += strlen(devname);
    232 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
    233 		punit = (punit * 10) + (*cp - '0');
    234 	if (cp == name) {
    235 		/* Invalid parent disk name. */
    236 		return (ENODEV);
    237 	}
    238 
    239 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
    240 
    241 	return (0);
    242 }
    243 
    244 /*
    245  * dkwedge_array_expand:
    246  *
    247  *	Expand the dkwedges array.
    248  */
    249 static void
    250 dkwedge_array_expand(void)
    251 {
    252 	int newcnt = ndkwedges + 16;
    253 	struct dkwedge_softc **newarray, **oldarray;
    254 
    255 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
    256 	    M_WAITOK|M_ZERO);
    257 	if ((oldarray = dkwedges) != NULL)
    258 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
    259 	dkwedges = newarray;
    260 	ndkwedges = newcnt;
    261 	if (oldarray != NULL)
    262 		free(oldarray, M_DKWEDGE);
    263 }
    264 
    265 static void
    266 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
    267 {
    268 	struct disk *dk = &sc->sc_dk;
    269 	struct disk_geom *dg = &dk->dk_geom;
    270 
    271 	memset(dg, 0, sizeof(*dg));
    272 
    273 	dg->dg_secperunit = sc->sc_size;
    274 	dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
    275 
    276 	/* fake numbers, 1 cylinder is 1 MB with default sector size */
    277 	dg->dg_nsectors = 32;
    278 	dg->dg_ntracks = 64;
    279 	dg->dg_ncylinders = dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
    280 
    281 	disk_set_info(sc->sc_dev, dk, NULL);
    282 }
    283 
    284 /*
    285  * dkwedge_add:		[exported function]
    286  *
    287  *	Add a disk wedge based on the provided information.
    288  *
    289  *	The incoming dkw_devname[] is ignored, instead being
    290  *	filled in and returned to the caller.
    291  */
    292 int
    293 dkwedge_add(struct dkwedge_info *dkw)
    294 {
    295 	struct dkwedge_softc *sc, *lsc;
    296 	struct disk *pdk;
    297 	u_int unit;
    298 	int error;
    299 	dev_t pdev;
    300 
    301 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
    302 	pdk = disk_find(dkw->dkw_parent);
    303 	if (pdk == NULL)
    304 		return (ENODEV);
    305 
    306 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
    307 	if (error)
    308 		return (error);
    309 
    310 	if (dkw->dkw_offset < 0)
    311 		return (EINVAL);
    312 
    313 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
    314 	sc->sc_state = DKW_STATE_LARVAL;
    315 	sc->sc_parent = pdk;
    316 	sc->sc_pdev = pdev;
    317 	sc->sc_offset = dkw->dkw_offset;
    318 	sc->sc_size = dkw->dkw_size;
    319 
    320 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
    321 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
    322 
    323 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
    324 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
    325 
    326 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
    327 
    328 	callout_init(&sc->sc_restart_ch, 0);
    329 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
    330 
    331 	mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
    332 	cv_init(&sc->sc_dkdrn, "dkdrn");
    333 
    334 	/*
    335 	 * Wedge will be added; increment the wedge count for the parent.
    336 	 * Only allow this to happend if RAW_PART is the only thing open.
    337 	 */
    338 	mutex_enter(&pdk->dk_openlock);
    339 	if (pdk->dk_openmask & ~(1 << RAW_PART))
    340 		error = EBUSY;
    341 	else {
    342 		/* Check for wedge overlap. */
    343 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
    344 			daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
    345 			daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
    346 
    347 			if (sc->sc_offset >= lsc->sc_offset &&
    348 			    sc->sc_offset <= llastblk) {
    349 				/* Overlaps the tail of the existing wedge. */
    350 				break;
    351 			}
    352 			if (lastblk >= lsc->sc_offset &&
    353 			    lastblk <= llastblk) {
    354 				/* Overlaps the head of the existing wedge. */
    355 			    	break;
    356 			}
    357 		}
    358 		if (lsc != NULL) {
    359 			if (sc->sc_offset == lsc->sc_offset &&
    360 			    sc->sc_size == lsc->sc_size &&
    361 			    strcmp(sc->sc_wname, lsc->sc_wname) == 0)
    362 				error = EEXIST;
    363 			else
    364 				error = EINVAL;
    365 		} else {
    366 			pdk->dk_nwedges++;
    367 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
    368 		}
    369 	}
    370 	mutex_exit(&pdk->dk_openlock);
    371 	if (error) {
    372 		cv_destroy(&sc->sc_dkdrn);
    373 		mutex_destroy(&sc->sc_iolock);
    374 		bufq_free(sc->sc_bufq);
    375 		free(sc, M_DKWEDGE);
    376 		return (error);
    377 	}
    378 
    379 	/* Fill in our cfdata for the pseudo-device glue. */
    380 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
    381 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
    382 	/* sc->sc_cfdata.cf_unit set below */
    383 	sc->sc_cfdata.cf_fstate = FSTATE_STAR;
    384 
    385 	/* Insert the larval wedge into the array. */
    386 	rw_enter(&dkwedges_lock, RW_WRITER);
    387 	for (error = 0;;) {
    388 		struct dkwedge_softc **scpp;
    389 
    390 		/*
    391 		 * Check for a duplicate wname while searching for
    392 		 * a slot.
    393 		 */
    394 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
    395 			if (dkwedges[unit] == NULL) {
    396 				if (scpp == NULL) {
    397 					scpp = &dkwedges[unit];
    398 					sc->sc_cfdata.cf_unit = unit;
    399 				}
    400 			} else {
    401 				/* XXX Unicode. */
    402 				if (strcmp(dkwedges[unit]->sc_wname,
    403 					   sc->sc_wname) == 0) {
    404 					error = EEXIST;
    405 					break;
    406 				}
    407 			}
    408 		}
    409 		if (error)
    410 			break;
    411 		KASSERT(unit == ndkwedges);
    412 		if (scpp == NULL)
    413 			dkwedge_array_expand();
    414 		else {
    415 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
    416 			*scpp = sc;
    417 			break;
    418 		}
    419 	}
    420 	rw_exit(&dkwedges_lock);
    421 	if (error) {
    422 		mutex_enter(&pdk->dk_openlock);
    423 		pdk->dk_nwedges--;
    424 		LIST_REMOVE(sc, sc_plink);
    425 		mutex_exit(&pdk->dk_openlock);
    426 
    427 		cv_destroy(&sc->sc_dkdrn);
    428 		mutex_destroy(&sc->sc_iolock);
    429 		bufq_free(sc->sc_bufq);
    430 		free(sc, M_DKWEDGE);
    431 		return (error);
    432 	}
    433 
    434 	/*
    435 	 * Now that we know the unit #, attach a pseudo-device for
    436 	 * this wedge instance.  This will provide us with the
    437 	 * device_t necessary for glue to other parts of the system.
    438 	 *
    439 	 * This should never fail, unless we're almost totally out of
    440 	 * memory.
    441 	 */
    442 	if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
    443 		aprint_error("%s%u: unable to attach pseudo-device\n",
    444 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
    445 
    446 		rw_enter(&dkwedges_lock, RW_WRITER);
    447 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
    448 		rw_exit(&dkwedges_lock);
    449 
    450 		mutex_enter(&pdk->dk_openlock);
    451 		pdk->dk_nwedges--;
    452 		LIST_REMOVE(sc, sc_plink);
    453 		mutex_exit(&pdk->dk_openlock);
    454 
    455 		cv_destroy(&sc->sc_dkdrn);
    456 		mutex_destroy(&sc->sc_iolock);
    457 		bufq_free(sc->sc_bufq);
    458 		free(sc, M_DKWEDGE);
    459 		return (ENOMEM);
    460 	}
    461 
    462 	/* Return the devname to the caller. */
    463 	strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
    464 		sizeof(dkw->dkw_devname));
    465 
    466 	/*
    467 	 * XXX Really ought to make the disk_attach() and the changing
    468 	 * of state to RUNNING atomic.
    469 	 */
    470 
    471 	disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
    472 	dk_set_geometry(sc, pdk);
    473 	disk_attach(&sc->sc_dk);
    474 
    475 	/* Disk wedge is ready for use! */
    476 	sc->sc_state = DKW_STATE_RUNNING;
    477 
    478 	/* Announce our arrival. */
    479 	aprint_normal(
    480 	    "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
    481 	    device_xname(sc->sc_dev), pdk->dk_name,
    482 	    sc->sc_wname,	/* XXX Unicode */
    483 	    sc->sc_size, sc->sc_offset,
    484 	    sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
    485 
    486 	return (0);
    487 }
    488 
    489 /*
    490  * dkwedge_find:
    491  *
    492  *	Lookup a disk wedge based on the provided information.
    493  *	NOTE: We look up the wedge based on the wedge devname,
    494  *	not wname.
    495  *
    496  *	Return NULL if the wedge is not found, otherwise return
    497  *	the wedge's softc.  Assign the wedge's unit number to unitp
    498  *	if unitp is not NULL.
    499  */
    500 static struct dkwedge_softc *
    501 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
    502 {
    503 	struct dkwedge_softc *sc = NULL;
    504 	u_int unit;
    505 
    506 	/* Find our softc. */
    507 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
    508 	rw_enter(&dkwedges_lock, RW_READER);
    509 	for (unit = 0; unit < ndkwedges; unit++) {
    510 		if ((sc = dkwedges[unit]) != NULL &&
    511 		    strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
    512 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
    513 			break;
    514 		}
    515 	}
    516 	rw_exit(&dkwedges_lock);
    517 	if (unit == ndkwedges)
    518 		return NULL;
    519 
    520 	if (unitp != NULL)
    521 		*unitp = unit;
    522 
    523 	return sc;
    524 }
    525 
    526 /*
    527  * dkwedge_del:		[exported function]
    528  *
    529  *	Delete a disk wedge based on the provided information.
    530  *	NOTE: We look up the wedge based on the wedge devname,
    531  *	not wname.
    532  */
    533 int
    534 dkwedge_del(struct dkwedge_info *dkw)
    535 {
    536 	return dkwedge_del1(dkw, 0);
    537 }
    538 
    539 int
    540 dkwedge_del1(struct dkwedge_info *dkw, int flags)
    541 {
    542 	struct dkwedge_softc *sc = NULL;
    543 
    544 	/* Find our softc. */
    545 	if ((sc = dkwedge_find(dkw, NULL)) == NULL)
    546 		return (ESRCH);
    547 
    548 	return config_detach(sc->sc_dev, flags);
    549 }
    550 
    551 static int
    552 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags)
    553 {
    554 	struct disk *dk = &sc->sc_dk;
    555 	int rc;
    556 
    557 	rc = 0;
    558 	mutex_enter(&dk->dk_openlock);
    559 	if (dk->dk_openmask == 0)
    560 		/* nothing to do */
    561 		mutex_exit(&dk->dk_openlock);
    562 	else if ((flags & DETACH_FORCE) == 0) {
    563 		rc = EBUSY;
    564 		mutex_exit(&dk->dk_openlock);
    565 	}  else {
    566 		mutex_enter(&sc->sc_parent->dk_rawlock);
    567 		rc = dklastclose(sc); /* releases locks */
    568 	}
    569 
    570 	return rc;
    571 }
    572 
    573 /*
    574  * dkwedge_detach:
    575  *
    576  *	Autoconfiguration detach function for pseudo-device glue.
    577  */
    578 static int
    579 dkwedge_detach(device_t self, int flags)
    580 {
    581 	struct dkwedge_softc *sc = NULL;
    582 	u_int unit;
    583 	int bmaj, cmaj, rc;
    584 
    585 	rw_enter(&dkwedges_lock, RW_WRITER);
    586 	for (unit = 0; unit < ndkwedges; unit++) {
    587 		if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
    588 			break;
    589 	}
    590 	if (unit == ndkwedges)
    591 		rc = ENXIO;
    592 	else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) {
    593 		/* Mark the wedge as dying. */
    594 		sc->sc_state = DKW_STATE_DYING;
    595 	}
    596 	rw_exit(&dkwedges_lock);
    597 
    598 	if (rc != 0)
    599 		return rc;
    600 
    601 	pmf_device_deregister(self);
    602 
    603 	/* Locate the wedge major numbers. */
    604 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
    605 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
    606 
    607 	/* Kill any pending restart. */
    608 	callout_stop(&sc->sc_restart_ch);
    609 
    610 	/*
    611 	 * dkstart() will kill any queued buffers now that the
    612 	 * state of the wedge is not RUNNING.  Once we've done
    613 	 * that, wait for any other pending I/O to complete.
    614 	 */
    615 	dkstart(sc);
    616 	dkwedge_wait_drain(sc);
    617 
    618 	/* Nuke the vnodes for any open instances. */
    619 	vdevgone(bmaj, unit, unit, VBLK);
    620 	vdevgone(cmaj, unit, unit, VCHR);
    621 
    622 	/* Clean up the parent. */
    623 	dkwedge_cleanup_parent(sc, flags | DETACH_FORCE);
    624 
    625 	/* Announce our departure. */
    626 	aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
    627 	    sc->sc_parent->dk_name,
    628 	    sc->sc_wname);	/* XXX Unicode */
    629 
    630 	mutex_enter(&sc->sc_parent->dk_openlock);
    631 	sc->sc_parent->dk_nwedges--;
    632 	LIST_REMOVE(sc, sc_plink);
    633 	mutex_exit(&sc->sc_parent->dk_openlock);
    634 
    635 	/* Delete our buffer queue. */
    636 	bufq_free(sc->sc_bufq);
    637 
    638 	/* Detach from the disk list. */
    639 	disk_detach(&sc->sc_dk);
    640 	disk_destroy(&sc->sc_dk);
    641 
    642 	/* Poof. */
    643 	rw_enter(&dkwedges_lock, RW_WRITER);
    644 	dkwedges[unit] = NULL;
    645 	sc->sc_state = DKW_STATE_DEAD;
    646 	rw_exit(&dkwedges_lock);
    647 
    648 	mutex_destroy(&sc->sc_iolock);
    649 	cv_destroy(&sc->sc_dkdrn);
    650 
    651 	free(sc, M_DKWEDGE);
    652 
    653 	return 0;
    654 }
    655 
    656 /*
    657  * dkwedge_delall:	[exported function]
    658  *
    659  *	Delete all of the wedges on the specified disk.  Used when
    660  *	a disk is being detached.
    661  */
    662 void
    663 dkwedge_delall(struct disk *pdk)
    664 {
    665 	dkwedge_delall1(pdk, false);
    666 }
    667 
    668 static void
    669 dkwedge_delall1(struct disk *pdk, bool idleonly)
    670 {
    671 	struct dkwedge_info dkw;
    672 	struct dkwedge_softc *sc;
    673 	int flags;
    674 
    675 	flags = DETACH_QUIET;
    676 	if (!idleonly) flags |= DETACH_FORCE;
    677 
    678 	for (;;) {
    679 		mutex_enter(&pdk->dk_openlock);
    680 		LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    681 			if (!idleonly || sc->sc_dk.dk_openmask == 0)
    682 				break;
    683 		}
    684 		if (sc == NULL) {
    685 			KASSERT(idleonly || pdk->dk_nwedges == 0);
    686 			mutex_exit(&pdk->dk_openlock);
    687 			return;
    688 		}
    689 		strlcpy(dkw.dkw_parent, pdk->dk_name, sizeof(dkw.dkw_parent));
    690 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    691 			sizeof(dkw.dkw_devname));
    692 		mutex_exit(&pdk->dk_openlock);
    693 		(void) dkwedge_del1(&dkw, flags);
    694 	}
    695 }
    696 
    697 /*
    698  * dkwedge_list:	[exported function]
    699  *
    700  *	List all of the wedges on a particular disk.
    701  */
    702 int
    703 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
    704 {
    705 	struct uio uio;
    706 	struct iovec iov;
    707 	struct dkwedge_softc *sc;
    708 	struct dkwedge_info dkw;
    709 	int error = 0;
    710 
    711 	iov.iov_base = dkwl->dkwl_buf;
    712 	iov.iov_len = dkwl->dkwl_bufsize;
    713 
    714 	uio.uio_iov = &iov;
    715 	uio.uio_iovcnt = 1;
    716 	uio.uio_offset = 0;
    717 	uio.uio_resid = dkwl->dkwl_bufsize;
    718 	uio.uio_rw = UIO_READ;
    719 	KASSERT(l == curlwp);
    720 	uio.uio_vmspace = l->l_proc->p_vmspace;
    721 
    722 	dkwl->dkwl_ncopied = 0;
    723 
    724 	mutex_enter(&pdk->dk_openlock);
    725 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
    726 		if (uio.uio_resid < sizeof(dkw))
    727 			break;
    728 
    729 		if (sc->sc_state != DKW_STATE_RUNNING)
    730 			continue;
    731 
    732 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
    733 			sizeof(dkw.dkw_devname));
    734 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
    735 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
    736 		strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
    737 		    sizeof(dkw.dkw_parent));
    738 		dkw.dkw_offset = sc->sc_offset;
    739 		dkw.dkw_size = sc->sc_size;
    740 		strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
    741 
    742 		error = uiomove(&dkw, sizeof(dkw), &uio);
    743 		if (error)
    744 			break;
    745 		dkwl->dkwl_ncopied++;
    746 	}
    747 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
    748 	mutex_exit(&pdk->dk_openlock);
    749 
    750 	return (error);
    751 }
    752 
    753 device_t
    754 dkwedge_find_by_wname(const char *wname)
    755 {
    756 	device_t dv = NULL;
    757 	struct dkwedge_softc *sc;
    758 	int i;
    759 
    760 	rw_enter(&dkwedges_lock, RW_WRITER);
    761 	for (i = 0; i < ndkwedges; i++) {
    762 		if ((sc = dkwedges[i]) == NULL)
    763 			continue;
    764 		if (strcmp(sc->sc_wname, wname) == 0) {
    765 			if (dv != NULL) {
    766 				printf(
    767 				    "WARNING: double match for wedge name %s "
    768 				    "(%s, %s)\n", wname, device_xname(dv),
    769 				    device_xname(sc->sc_dev));
    770 				continue;
    771 			}
    772 			dv = sc->sc_dev;
    773 		}
    774 	}
    775 	rw_exit(&dkwedges_lock);
    776 	return dv;
    777 }
    778 
    779 device_t
    780 dkwedge_find_by_parent(const char *name, size_t *i)
    781 {
    782 	rw_enter(&dkwedges_lock, RW_WRITER);
    783 	for (; *i < (size_t)ndkwedges; (*i)++) {
    784 		struct dkwedge_softc *sc;
    785 		if ((sc = dkwedges[*i]) == NULL)
    786 			continue;
    787 		if (strcmp(sc->sc_parent->dk_name, name) != 0)
    788 			continue;
    789 		rw_exit(&dkwedges_lock);
    790 		return sc->sc_dev;
    791 	}
    792 	rw_exit(&dkwedges_lock);
    793 	return NULL;
    794 }
    795 
    796 void
    797 dkwedge_print_wnames(void)
    798 {
    799 	struct dkwedge_softc *sc;
    800 	int i;
    801 
    802 	rw_enter(&dkwedges_lock, RW_WRITER);
    803 	for (i = 0; i < ndkwedges; i++) {
    804 		if ((sc = dkwedges[i]) == NULL)
    805 			continue;
    806 		printf(" wedge:%s", sc->sc_wname);
    807 	}
    808 	rw_exit(&dkwedges_lock);
    809 }
    810 
    811 /*
    812  * We need a dummy object to stuff into the dkwedge discovery method link
    813  * set to ensure that there is always at least one object in the set.
    814  */
    815 static struct dkwedge_discovery_method dummy_discovery_method;
    816 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
    817 
    818 /*
    819  * dkwedge_init:
    820  *
    821  *	Initialize the disk wedge subsystem.
    822  */
    823 void
    824 dkwedge_init(void)
    825 {
    826 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
    827 	struct dkwedge_discovery_method * const *ddmp;
    828 	struct dkwedge_discovery_method *lddm, *ddm;
    829 
    830 	rw_init(&dkwedges_lock);
    831 	rw_init(&dkwedge_discovery_methods_lock);
    832 
    833 	if (config_cfdriver_attach(&dk_cd) != 0)
    834 		panic("dkwedge: unable to attach cfdriver");
    835 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
    836 		panic("dkwedge: unable to attach cfattach");
    837 
    838 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
    839 
    840 	LIST_INIT(&dkwedge_discovery_methods);
    841 
    842 	__link_set_foreach(ddmp, dkwedge_methods) {
    843 		ddm = *ddmp;
    844 		if (ddm == &dummy_discovery_method)
    845 			continue;
    846 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
    847 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
    848 					 ddm, ddm_list);
    849 			continue;
    850 		}
    851 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
    852 			if (ddm->ddm_priority == lddm->ddm_priority) {
    853 				aprint_error("dk-method-%s: method \"%s\" "
    854 				    "already exists at priority %d\n",
    855 				    ddm->ddm_name, lddm->ddm_name,
    856 				    lddm->ddm_priority);
    857 				/* Not inserted. */
    858 				break;
    859 			}
    860 			if (ddm->ddm_priority < lddm->ddm_priority) {
    861 				/* Higher priority; insert before. */
    862 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
    863 				break;
    864 			}
    865 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
    866 				/* Last one; insert after. */
    867 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
    868 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
    869 				break;
    870 			}
    871 		}
    872 	}
    873 
    874 	rw_exit(&dkwedge_discovery_methods_lock);
    875 }
    876 
    877 #ifdef DKWEDGE_AUTODISCOVER
    878 int	dkwedge_autodiscover = 1;
    879 #else
    880 int	dkwedge_autodiscover = 0;
    881 #endif
    882 
    883 /*
    884  * dkwedge_discover:	[exported function]
    885  *
    886  *	Discover the wedges on a newly attached disk.
    887  *	Remove all unused wedges on the disk first.
    888  */
    889 void
    890 dkwedge_discover(struct disk *pdk)
    891 {
    892 	struct dkwedge_discovery_method *ddm;
    893 	struct vnode *vp;
    894 	int error;
    895 	dev_t pdev;
    896 
    897 	/*
    898 	 * Require people playing with wedges to enable this explicitly.
    899 	 */
    900 	if (dkwedge_autodiscover == 0)
    901 		return;
    902 
    903 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
    904 
    905 	/*
    906 	 * Use the character device for scanning, the block device
    907 	 * is busy if there are already wedges attached.
    908 	 */
    909 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
    910 	if (error) {
    911 		aprint_error("%s: unable to compute pdev, error = %d\n",
    912 		    pdk->dk_name, error);
    913 		goto out;
    914 	}
    915 
    916 	error = cdevvp(pdev, &vp);
    917 	if (error) {
    918 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
    919 		    pdk->dk_name, error);
    920 		goto out;
    921 	}
    922 
    923 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    924 	if (error) {
    925 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
    926 		    pdk->dk_name, error);
    927 		vrele(vp);
    928 		goto out;
    929 	}
    930 
    931 	error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
    932 	if (error) {
    933 		if (error != ENODEV)
    934 			aprint_error("%s: unable to open device, error = %d\n",
    935 			    pdk->dk_name, error);
    936 		vput(vp);
    937 		goto out;
    938 	}
    939 	VOP_UNLOCK(vp);
    940 
    941 	/*
    942 	 * Remove unused wedges
    943 	 */
    944 	dkwedge_delall1(pdk, true);
    945 
    946 	/*
    947 	 * For each supported partition map type, look to see if
    948 	 * this map type exists.  If so, parse it and add the
    949 	 * corresponding wedges.
    950 	 */
    951 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
    952 		error = (*ddm->ddm_discover)(pdk, vp);
    953 		if (error == 0) {
    954 			/* Successfully created wedges; we're done. */
    955 			break;
    956 		}
    957 	}
    958 
    959 	error = vn_close(vp, FREAD, NOCRED);
    960 	if (error) {
    961 		aprint_error("%s: unable to close device, error = %d\n",
    962 		    pdk->dk_name, error);
    963 		/* We'll just assume the vnode has been cleaned up. */
    964 	}
    965 
    966  out:
    967 	rw_exit(&dkwedge_discovery_methods_lock);
    968 }
    969 
    970 /*
    971  * dkwedge_read:
    972  *
    973  *	Read some data from the specified disk, used for
    974  *	partition discovery.
    975  */
    976 int
    977 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
    978     void *tbuf, size_t len)
    979 {
    980 	buf_t *bp;
    981 	int error;
    982 	bool isopen;
    983 	dev_t bdev;
    984 	struct vnode *bdvp;
    985 
    986 	/*
    987 	 * The kernel cannot read from a character device vnode
    988 	 * as physio() only handles user memory.
    989 	 *
    990 	 * If the block device has already been opened by a wedge
    991 	 * use that vnode and temporarily bump the open counter.
    992 	 *
    993 	 * Otherwise try to open the block device.
    994 	 */
    995 
    996 	bdev = devsw_chr2blk(vp->v_rdev);
    997 
    998 	mutex_enter(&pdk->dk_rawlock);
    999 	if (pdk->dk_rawopens != 0) {
   1000 		KASSERT(pdk->dk_rawvp != NULL);
   1001 		isopen = true;
   1002 		++pdk->dk_rawopens;
   1003 		bdvp = pdk->dk_rawvp;
   1004 		error = 0;
   1005 	} else {
   1006 		isopen = false;
   1007 		error = dk_open_parent(bdev, FREAD, &bdvp);
   1008 	}
   1009 	mutex_exit(&pdk->dk_rawlock);
   1010 
   1011 	if (error)
   1012 		return error;
   1013 
   1014 	bp = getiobuf(bdvp, true);
   1015 	bp->b_flags = B_READ;
   1016 	bp->b_cflags = BC_BUSY;
   1017 	bp->b_dev = bdev;
   1018 	bp->b_data = tbuf;
   1019 	bp->b_bufsize = bp->b_bcount = len;
   1020 	bp->b_blkno = blkno;
   1021 	bp->b_cylinder = 0;
   1022 	bp->b_error = 0;
   1023 
   1024 	VOP_STRATEGY(bdvp, bp);
   1025 	error = biowait(bp);
   1026 	putiobuf(bp);
   1027 
   1028 	mutex_enter(&pdk->dk_rawlock);
   1029 	if (isopen) {
   1030 		--pdk->dk_rawopens;
   1031 	} else {
   1032 		dk_close_parent(bdvp, FREAD);
   1033 	}
   1034 	mutex_exit(&pdk->dk_rawlock);
   1035 
   1036 	return error;
   1037 }
   1038 
   1039 /*
   1040  * dkwedge_lookup:
   1041  *
   1042  *	Look up a dkwedge_softc based on the provided dev_t.
   1043  */
   1044 static struct dkwedge_softc *
   1045 dkwedge_lookup(dev_t dev)
   1046 {
   1047 	int unit = minor(dev);
   1048 
   1049 	if (unit >= ndkwedges)
   1050 		return (NULL);
   1051 
   1052 	KASSERT(dkwedges != NULL);
   1053 
   1054 	return (dkwedges[unit]);
   1055 }
   1056 
   1057 static int
   1058 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
   1059 {
   1060 	struct vnode *vp;
   1061 	int error;
   1062 
   1063 	error = bdevvp(dev, &vp);
   1064 	if (error)
   1065 		return error;
   1066 
   1067 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1068 	if (error) {
   1069 		vrele(vp);
   1070 		return error;
   1071 	}
   1072 	error = VOP_OPEN(vp, mode, NOCRED);
   1073 	if (error) {
   1074 		vput(vp);
   1075 		return error;
   1076 	}
   1077 
   1078 	/* VOP_OPEN() doesn't do this for us. */
   1079 	if (mode & FWRITE) {
   1080 		mutex_enter(vp->v_interlock);
   1081 		vp->v_writecount++;
   1082 		mutex_exit(vp->v_interlock);
   1083 	}
   1084 
   1085 	VOP_UNLOCK(vp);
   1086 
   1087 	*vpp = vp;
   1088 
   1089 	return 0;
   1090 }
   1091 
   1092 static int
   1093 dk_close_parent(struct vnode *vp, int mode)
   1094 {
   1095 	int error;
   1096 
   1097 	error = vn_close(vp, mode, NOCRED);
   1098 	return error;
   1099 }
   1100 
   1101 /*
   1102  * dkopen:		[devsw entry point]
   1103  *
   1104  *	Open a wedge.
   1105  */
   1106 static int
   1107 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
   1108 {
   1109 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1110 	struct vnode *vp;
   1111 	int error = 0;
   1112 
   1113 	if (sc == NULL)
   1114 		return (ENODEV);
   1115 	if (sc->sc_state != DKW_STATE_RUNNING)
   1116 		return (ENXIO);
   1117 
   1118 	/*
   1119 	 * We go through a complicated little dance to only open the parent
   1120 	 * vnode once per wedge, no matter how many times the wedge is
   1121 	 * opened.  The reason?  We see one dkopen() per open call, but
   1122 	 * only dkclose() on the last close.
   1123 	 */
   1124 	mutex_enter(&sc->sc_dk.dk_openlock);
   1125 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1126 	if (sc->sc_dk.dk_openmask == 0) {
   1127 		if (sc->sc_parent->dk_rawopens == 0) {
   1128 			KASSERT(sc->sc_parent->dk_rawvp == NULL);
   1129 			error = dk_open_parent(sc->sc_pdev, FREAD | FWRITE, &vp);
   1130 			if (error)
   1131 				goto popen_fail;
   1132 			sc->sc_parent->dk_rawvp = vp;
   1133 		}
   1134 		sc->sc_parent->dk_rawopens++;
   1135 	}
   1136 	if (fmt == S_IFCHR)
   1137 		sc->sc_dk.dk_copenmask |= 1;
   1138 	else
   1139 		sc->sc_dk.dk_bopenmask |= 1;
   1140 	sc->sc_dk.dk_openmask =
   1141 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1142 
   1143  popen_fail:
   1144 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1145 	mutex_exit(&sc->sc_dk.dk_openlock);
   1146 	return (error);
   1147 }
   1148 
   1149 /*
   1150  * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock.
   1151  */
   1152 static int
   1153 dklastclose(struct dkwedge_softc *sc)
   1154 {
   1155 	int error = 0, doclose;
   1156 
   1157 	doclose = 0;
   1158 	if (sc->sc_parent->dk_rawopens > 0) {
   1159 		if (--sc->sc_parent->dk_rawopens == 0)
   1160 			doclose = 1;
   1161 	}
   1162 
   1163 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1164 	mutex_exit(&sc->sc_dk.dk_openlock);
   1165 
   1166 	if (doclose) {
   1167 		KASSERT(sc->sc_parent->dk_rawvp != NULL);
   1168 		dk_close_parent(sc->sc_parent->dk_rawvp, FREAD | FWRITE);
   1169 		sc->sc_parent->dk_rawvp = NULL;
   1170 	}
   1171 
   1172 	return error;
   1173 }
   1174 
   1175 /*
   1176  * dkclose:		[devsw entry point]
   1177  *
   1178  *	Close a wedge.
   1179  */
   1180 static int
   1181 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
   1182 {
   1183 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1184 	int error = 0;
   1185 
   1186 	if (sc == NULL)
   1187 		return (ENODEV);
   1188 	if (sc->sc_state != DKW_STATE_RUNNING)
   1189 		return (ENXIO);
   1190 
   1191 	KASSERT(sc->sc_dk.dk_openmask != 0);
   1192 
   1193 	mutex_enter(&sc->sc_dk.dk_openlock);
   1194 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1195 
   1196 	if (fmt == S_IFCHR)
   1197 		sc->sc_dk.dk_copenmask &= ~1;
   1198 	else
   1199 		sc->sc_dk.dk_bopenmask &= ~1;
   1200 	sc->sc_dk.dk_openmask =
   1201 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
   1202 
   1203 	if (sc->sc_dk.dk_openmask == 0)
   1204 		error = dklastclose(sc); /* releases locks */
   1205 	else {
   1206 		mutex_exit(&sc->sc_parent->dk_rawlock);
   1207 		mutex_exit(&sc->sc_dk.dk_openlock);
   1208 	}
   1209 
   1210 	return (error);
   1211 }
   1212 
   1213 /*
   1214  * dkstragegy:		[devsw entry point]
   1215  *
   1216  *	Perform I/O based on the wedge I/O strategy.
   1217  */
   1218 static void
   1219 dkstrategy(struct buf *bp)
   1220 {
   1221 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1222 	uint64_t p_size, p_offset;
   1223 
   1224 	if (sc == NULL) {
   1225 		bp->b_error = ENODEV;
   1226 		goto done;
   1227 	}
   1228 
   1229 	if (sc->sc_state != DKW_STATE_RUNNING ||
   1230 	    sc->sc_parent->dk_rawvp == NULL) {
   1231 		bp->b_error = ENXIO;
   1232 		goto done;
   1233 	}
   1234 
   1235 	/* If it's an empty transfer, wake up the top half now. */
   1236 	if (bp->b_bcount == 0)
   1237 		goto done;
   1238 
   1239 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
   1240 	p_size   = sc->sc_size << sc->sc_parent->dk_blkshift;
   1241 
   1242 	/* Make sure it's in-range. */
   1243 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
   1244 		goto done;
   1245 
   1246 	/* Translate it to the parent's raw LBA. */
   1247 	bp->b_rawblkno = bp->b_blkno + p_offset;
   1248 
   1249 	/* Place it in the queue and start I/O on the unit. */
   1250 	mutex_enter(&sc->sc_iolock);
   1251 	sc->sc_iopend++;
   1252 	bufq_put(sc->sc_bufq, bp);
   1253 	mutex_exit(&sc->sc_iolock);
   1254 
   1255 	dkstart(sc);
   1256 	return;
   1257 
   1258  done:
   1259 	bp->b_resid = bp->b_bcount;
   1260 	biodone(bp);
   1261 }
   1262 
   1263 /*
   1264  * dkstart:
   1265  *
   1266  *	Start I/O that has been enqueued on the wedge.
   1267  */
   1268 static void
   1269 dkstart(struct dkwedge_softc *sc)
   1270 {
   1271 	struct vnode *vp;
   1272 	struct buf *bp, *nbp;
   1273 
   1274 	mutex_enter(&sc->sc_iolock);
   1275 
   1276 	/* Do as much work as has been enqueued. */
   1277 	while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
   1278 
   1279 		if (sc->sc_state != DKW_STATE_RUNNING) {
   1280 			(void) bufq_get(sc->sc_bufq);
   1281 			if (sc->sc_iopend-- == 1 &&
   1282 			    (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
   1283 				sc->sc_flags &= ~DK_F_WAIT_DRAIN;
   1284 				cv_broadcast(&sc->sc_dkdrn);
   1285 			}
   1286 			mutex_exit(&sc->sc_iolock);
   1287 			bp->b_error = ENXIO;
   1288 			bp->b_resid = bp->b_bcount;
   1289 			biodone(bp);
   1290 			mutex_enter(&sc->sc_iolock);
   1291 			continue;
   1292 		}
   1293 
   1294 		/* fetch an I/O buf with sc_iolock dropped */
   1295 		mutex_exit(&sc->sc_iolock);
   1296 		nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
   1297 		mutex_enter(&sc->sc_iolock);
   1298 		if (nbp == NULL) {
   1299 			/*
   1300 			 * No resources to run this request; leave the
   1301 			 * buffer queued up, and schedule a timer to
   1302 			 * restart the queue in 1/2 a second.
   1303 			 */
   1304 			callout_schedule(&sc->sc_restart_ch, hz / 2);
   1305 			break;
   1306 		}
   1307 
   1308 		/*
   1309 		 * fetch buf, this can fail if another thread
   1310 		 * has already processed the queue, it can also
   1311 		 * return a completely different buf.
   1312 		 */
   1313 		bp = bufq_get(sc->sc_bufq);
   1314 		if (bp == NULL) {
   1315 			mutex_exit(&sc->sc_iolock);
   1316 			putiobuf(nbp);
   1317 			mutex_enter(&sc->sc_iolock);
   1318 			continue;
   1319 		}
   1320 
   1321 		/* Instrumentation. */
   1322 		disk_busy(&sc->sc_dk);
   1323 
   1324 		/* release lock for VOP_STRATEGY */
   1325 		mutex_exit(&sc->sc_iolock);
   1326 
   1327 		nbp->b_data = bp->b_data;
   1328 		nbp->b_flags = bp->b_flags;
   1329 		nbp->b_oflags = bp->b_oflags;
   1330 		nbp->b_cflags = bp->b_cflags;
   1331 		nbp->b_iodone = dkiodone;
   1332 		nbp->b_proc = bp->b_proc;
   1333 		nbp->b_blkno = bp->b_rawblkno;
   1334 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
   1335 		nbp->b_bcount = bp->b_bcount;
   1336 		nbp->b_private = bp;
   1337 		BIO_COPYPRIO(nbp, bp);
   1338 
   1339 		vp = nbp->b_vp;
   1340 		if ((nbp->b_flags & B_READ) == 0) {
   1341 			mutex_enter(vp->v_interlock);
   1342 			vp->v_numoutput++;
   1343 			mutex_exit(vp->v_interlock);
   1344 		}
   1345 		VOP_STRATEGY(vp, nbp);
   1346 
   1347 		mutex_enter(&sc->sc_iolock);
   1348 	}
   1349 
   1350 	mutex_exit(&sc->sc_iolock);
   1351 }
   1352 
   1353 /*
   1354  * dkiodone:
   1355  *
   1356  *	I/O to a wedge has completed; alert the top half.
   1357  */
   1358 static void
   1359 dkiodone(struct buf *bp)
   1360 {
   1361 	struct buf *obp = bp->b_private;
   1362 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
   1363 
   1364 	if (bp->b_error != 0)
   1365 		obp->b_error = bp->b_error;
   1366 	obp->b_resid = bp->b_resid;
   1367 	putiobuf(bp);
   1368 
   1369 	mutex_enter(&sc->sc_iolock);
   1370 	if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
   1371 		sc->sc_flags &= ~DK_F_WAIT_DRAIN;
   1372 		cv_broadcast(&sc->sc_dkdrn);
   1373 	}
   1374 
   1375 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
   1376 	    obp->b_flags & B_READ);
   1377 	mutex_exit(&sc->sc_iolock);
   1378 
   1379 	biodone(obp);
   1380 
   1381 	/* Kick the queue in case there is more work we can do. */
   1382 	dkstart(sc);
   1383 }
   1384 
   1385 /*
   1386  * dkrestart:
   1387  *
   1388  *	Restart the work queue after it was stalled due to
   1389  *	a resource shortage.  Invoked via a callout.
   1390  */
   1391 static void
   1392 dkrestart(void *v)
   1393 {
   1394 	struct dkwedge_softc *sc = v;
   1395 
   1396 	dkstart(sc);
   1397 }
   1398 
   1399 /*
   1400  * dkminphys:
   1401  *
   1402  *	Call parent's minphys function.
   1403  */
   1404 static void
   1405 dkminphys(struct buf *bp)
   1406 {
   1407 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
   1408 	dev_t dev;
   1409 
   1410 	dev = bp->b_dev;
   1411 	bp->b_dev = sc->sc_pdev;
   1412 	(*sc->sc_parent->dk_driver->d_minphys)(bp);
   1413 	bp->b_dev = dev;
   1414 }
   1415 
   1416 /*
   1417  * dkread:		[devsw entry point]
   1418  *
   1419  *	Read from a wedge.
   1420  */
   1421 static int
   1422 dkread(dev_t dev, struct uio *uio, int flags)
   1423 {
   1424 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1425 
   1426 	if (sc == NULL)
   1427 		return (ENODEV);
   1428 	if (sc->sc_state != DKW_STATE_RUNNING)
   1429 		return (ENXIO);
   1430 
   1431 	return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio));
   1432 }
   1433 
   1434 /*
   1435  * dkwrite:		[devsw entry point]
   1436  *
   1437  *	Write to a wedge.
   1438  */
   1439 static int
   1440 dkwrite(dev_t dev, struct uio *uio, int flags)
   1441 {
   1442 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1443 
   1444 	if (sc == NULL)
   1445 		return (ENODEV);
   1446 	if (sc->sc_state != DKW_STATE_RUNNING)
   1447 		return (ENXIO);
   1448 
   1449 	return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio));
   1450 }
   1451 
   1452 /*
   1453  * dkioctl:		[devsw entry point]
   1454  *
   1455  *	Perform an ioctl request on a wedge.
   1456  */
   1457 static int
   1458 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
   1459 {
   1460 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1461 	int error = 0;
   1462 
   1463 	if (sc == NULL)
   1464 		return (ENODEV);
   1465 	if (sc->sc_state != DKW_STATE_RUNNING)
   1466 		return (ENXIO);
   1467 	if (sc->sc_parent->dk_rawvp == NULL)
   1468 		return (ENXIO);
   1469 
   1470 	/*
   1471 	 * We pass NODEV instead of our device to indicate we don't
   1472 	 * want to handle disklabel ioctls
   1473 	 */
   1474 	error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
   1475 	if (error != EPASSTHROUGH)
   1476 		return (error);
   1477 
   1478 	error = 0;
   1479 
   1480 	switch (cmd) {
   1481 	case DIOCCACHESYNC:
   1482 		/*
   1483 		 * XXX Do we really need to care about having a writable
   1484 		 * file descriptor here?
   1485 		 */
   1486 		if ((flag & FWRITE) == 0)
   1487 			error = EBADF;
   1488 		else
   1489 			error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
   1490 					  cmd, data, flag,
   1491 					  l != NULL ? l->l_cred : NOCRED);
   1492 		break;
   1493 	case DIOCGWEDGEINFO:
   1494 	    {
   1495 		struct dkwedge_info *dkw = (void *) data;
   1496 
   1497 		strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
   1498 			sizeof(dkw->dkw_devname));
   1499 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
   1500 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
   1501 		strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
   1502 		    sizeof(dkw->dkw_parent));
   1503 		dkw->dkw_offset = sc->sc_offset;
   1504 		dkw->dkw_size = sc->sc_size;
   1505 		strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
   1506 
   1507 		break;
   1508 	    }
   1509 
   1510 	default:
   1511 		error = ENOTTY;
   1512 	}
   1513 
   1514 	return (error);
   1515 }
   1516 
   1517 /*
   1518  * dkdiscard:		[devsw entry point]
   1519  *
   1520  *	Perform a discard-range request on a wedge.
   1521  */
   1522 static int
   1523 dkdiscard(dev_t dev, off_t pos, off_t len)
   1524 {
   1525 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1526 	unsigned shift;
   1527 	off_t offset, maxlen;
   1528 
   1529 	if (sc == NULL)
   1530 		return (ENODEV);
   1531 	if (sc->sc_state != DKW_STATE_RUNNING)
   1532 		return (ENXIO);
   1533 	if (sc->sc_parent->dk_rawvp == NULL)
   1534 		return (ENXIO);
   1535 
   1536 	shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
   1537 	KASSERT(__type_fit(off_t, sc->sc_size));
   1538 	KASSERT(__type_fit(off_t, sc->sc_offset));
   1539 	KASSERT(0 <= sc->sc_offset);
   1540 	KASSERT(sc->sc_size <= (__type_max(off_t) >> shift));
   1541 	KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - sc->sc_size));
   1542 	offset = ((off_t)sc->sc_offset << shift);
   1543 	maxlen = ((off_t)sc->sc_size << shift);
   1544 
   1545 	if (len > maxlen)
   1546 		return (EINVAL);
   1547 	if (pos > (maxlen - len))
   1548 		return (EINVAL);
   1549 
   1550 	pos += offset;
   1551 	return VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
   1552 }
   1553 
   1554 /*
   1555  * dksize:		[devsw entry point]
   1556  *
   1557  *	Query the size of a wedge for the purpose of performing a dump
   1558  *	or for swapping to.
   1559  */
   1560 static int
   1561 dksize(dev_t dev)
   1562 {
   1563 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1564 	int rv = -1;
   1565 
   1566 	if (sc == NULL)
   1567 		return (-1);
   1568 	if (sc->sc_state != DKW_STATE_RUNNING)
   1569 		return (-1);
   1570 
   1571 	mutex_enter(&sc->sc_dk.dk_openlock);
   1572 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1573 
   1574 	/* Our content type is static, no need to open the device. */
   1575 
   1576 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
   1577 		/* Saturate if we are larger than INT_MAX. */
   1578 		if (sc->sc_size > INT_MAX)
   1579 			rv = INT_MAX;
   1580 		else
   1581 			rv = (int) sc->sc_size;
   1582 	}
   1583 
   1584 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1585 	mutex_exit(&sc->sc_dk.dk_openlock);
   1586 
   1587 	return (rv);
   1588 }
   1589 
   1590 /*
   1591  * dkdump:		[devsw entry point]
   1592  *
   1593  *	Perform a crash dump to a wedge.
   1594  */
   1595 static int
   1596 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
   1597 {
   1598 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1599 	const struct bdevsw *bdev;
   1600 	int rv = 0;
   1601 
   1602 	if (sc == NULL)
   1603 		return (ENODEV);
   1604 	if (sc->sc_state != DKW_STATE_RUNNING)
   1605 		return (ENXIO);
   1606 
   1607 	mutex_enter(&sc->sc_dk.dk_openlock);
   1608 	mutex_enter(&sc->sc_parent->dk_rawlock);
   1609 
   1610 	/* Our content type is static, no need to open the device. */
   1611 
   1612 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
   1613 	    strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0) {
   1614 		rv = ENXIO;
   1615 		goto out;
   1616 	}
   1617 	if (size % DEV_BSIZE != 0) {
   1618 		rv = EINVAL;
   1619 		goto out;
   1620 	}
   1621 	if (blkno + size / DEV_BSIZE > sc->sc_size) {
   1622 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
   1623 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
   1624 		    size / DEV_BSIZE, sc->sc_size);
   1625 		rv = EINVAL;
   1626 		goto out;
   1627 	}
   1628 
   1629 	bdev = bdevsw_lookup(sc->sc_pdev);
   1630 	rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
   1631 
   1632 out:
   1633 	mutex_exit(&sc->sc_parent->dk_rawlock);
   1634 	mutex_exit(&sc->sc_dk.dk_openlock);
   1635 
   1636 	return rv;
   1637 }
   1638 
   1639 /*
   1640  * config glue
   1641  */
   1642 
   1643 /*
   1644  * dkwedge_find_partition
   1645  *
   1646  *	Find wedge corresponding to the specified parent name
   1647  *	and offset/length.
   1648  */
   1649 device_t
   1650 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
   1651 {
   1652 	struct dkwedge_softc *sc;
   1653 	int i;
   1654 	device_t wedge = NULL;
   1655 
   1656 	rw_enter(&dkwedges_lock, RW_READER);
   1657 	for (i = 0; i < ndkwedges; i++) {
   1658 		if ((sc = dkwedges[i]) == NULL)
   1659 			continue;
   1660 		if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
   1661 		    sc->sc_offset == startblk &&
   1662 		    sc->sc_size == nblks) {
   1663 			if (wedge) {
   1664 				printf("WARNING: double match for boot wedge "
   1665 				    "(%s, %s)\n",
   1666 				    device_xname(wedge),
   1667 				    device_xname(sc->sc_dev));
   1668 				continue;
   1669 			}
   1670 			wedge = sc->sc_dev;
   1671 		}
   1672 	}
   1673 	rw_exit(&dkwedges_lock);
   1674 
   1675 	return wedge;
   1676 }
   1677 
   1678 const char *
   1679 dkwedge_get_parent_name(dev_t dev)
   1680 {
   1681 	/* XXX: perhaps do this in lookup? */
   1682 	int bmaj = bdevsw_lookup_major(&dk_bdevsw);
   1683 	int cmaj = cdevsw_lookup_major(&dk_cdevsw);
   1684 	if (major(dev) != bmaj && major(dev) != cmaj)
   1685 		return NULL;
   1686 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
   1687 	if (sc == NULL)
   1688 		return NULL;
   1689 	return sc->sc_parent->dk_name;
   1690 }
   1691 
   1692