Home | History | Annotate | Line # | Download | only in dtv
dtv_math.c revision 1.1
      1  1.1  jmcneill /* $NetBSD: dtv_math.c,v 1.1 2011/07/15 20:27:42 jmcneill Exp $ */
      2  1.1  jmcneill 
      3  1.1  jmcneill /*-
      4  1.1  jmcneill  * Copyright (c) 2011 Alan Barrett <apb (at) NetBSD.org>
      5  1.1  jmcneill  * All rights reserved.
      6  1.1  jmcneill  *
      7  1.1  jmcneill  * Redistribution and use in source and binary forms, with or without
      8  1.1  jmcneill  * modification, are permitted provided that the following conditions
      9  1.1  jmcneill  * are met:
     10  1.1  jmcneill  * 1. Redistributions of source code must retain the above copyright
     11  1.1  jmcneill  *    notice, this list of conditions and the following disclaimer.
     12  1.1  jmcneill  * 2. Redistributions in binary form must reproduce the above copyright
     13  1.1  jmcneill  *    notice, this list of conditions and the following disclaimer in the
     14  1.1  jmcneill  *    documentation and/or other materials provided with the distribution.
     15  1.1  jmcneill  *
     16  1.1  jmcneill  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  1.1  jmcneill  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  1.1  jmcneill  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  1.1  jmcneill  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  1.1  jmcneill  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  1.1  jmcneill  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  1.1  jmcneill  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  1.1  jmcneill  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  1.1  jmcneill  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  1.1  jmcneill  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  1.1  jmcneill  * POSSIBILITY OF SUCH DAMAGE.
     27  1.1  jmcneill  */
     28  1.1  jmcneill 
     29  1.1  jmcneill #include <sys/cdefs.h>
     30  1.1  jmcneill __KERNEL_RCSID(0, "$NetBSD: dtv_math.c,v 1.1 2011/07/15 20:27:42 jmcneill Exp $");
     31  1.1  jmcneill 
     32  1.1  jmcneill #include <sys/bitops.h>
     33  1.1  jmcneill 
     34  1.1  jmcneill #include <dev/dtv/dtvif.h>
     35  1.1  jmcneill 
     36  1.1  jmcneill 
     37  1.1  jmcneill #define LOG10_2_x24 5050445	/* floor(log10(2.0) * 2**24 */
     38  1.1  jmcneill 
     39  1.1  jmcneill /*
     40  1.1  jmcneill  * dtv_intlog10 -- return an approximation to log10(x) * 1<<24,
     41  1.1  jmcneill  * using integer arithmetic.
     42  1.1  jmcneill  *
     43  1.1  jmcneill  * As a special case, returns 0 when x == 0.
     44  1.1  jmcneill  *
     45  1.1  jmcneill  * Results should be approximately as follows, bearing in
     46  1.1  jmcneill  * mind that this function returns only an approximation
     47  1.1  jmcneill  * to the exact results.
     48  1.1  jmcneill  *
     49  1.1  jmcneill  * dtv_intlog10(0) = 0 (special case; the mathematical value is undefined)
     50  1.1  jmcneill  * dtv_intlog10(1) = 0
     51  1.1  jmcneill  * dtv_intlog10(2) = 5050445 (approx 0.30102999 * 2**24)
     52  1.1  jmcneill  * dtv_intlog10(10) = 16777216 (1.0 * 2**24)
     53  1.1  jmcneill  * dtv_intlog10(100) = 33554432 (2.0 * 2**24)
     54  1.1  jmcneill  * dtv_intlog10(1000) = 50331648 (3.0 * 2**24)
     55  1.1  jmcneill  * dtv_intlog10(10000) = 67108864 (4.0 * 2**24)
     56  1.1  jmcneill  * dtv_intlog10(100000) = 83886080 (5.0 * 2**24)
     57  1.1  jmcneill  * dtv_intlog10(1000000) = 100663296 (6.0 * 2**24)
     58  1.1  jmcneill  * dtv_intlog10(10000000) = 117440512 (7.0 * 2**24)
     59  1.1  jmcneill  * dtv_intlog10(100000000) = 134217728 (8.0 * 2**24)
     60  1.1  jmcneill  * dtv_intlog10(1000000000) = 150994944 (9.0 * 2**24)
     61  1.1  jmcneill  * dtv_intlog10(4294967295) = 161614248 (approx 9.63295986 * 2**24)
     62  1.1  jmcneill  */
     63  1.1  jmcneill uint32_t
     64  1.1  jmcneill dtv_intlog10(uint32_t x)
     65  1.1  jmcneill {
     66  1.1  jmcneill 	if (__predict_false(x == 0))
     67  1.1  jmcneill 		return 0;
     68  1.1  jmcneill 	/*
     69  1.1  jmcneill 	 * all we do is find log2(x), as an integer between 0 and 31,
     70  1.1  jmcneill 	 * and scale it.  Thus, there are only 32 values that this
     71  1.1  jmcneill 	 * function will ever return.  To do a better job, we would
     72  1.1  jmcneill 	 * need a lookup table and interpolation.
     73  1.1  jmcneill 	 */
     74  1.1  jmcneill 	return (uint32_t)(LOG10_2_x24) * (uint32_t)ilog2(x);
     75  1.1  jmcneill }
     76